Science.gov

Sample records for active volcano located

  1. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  2. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  3. Orographic Flow over an Active Volcano

    NASA Astrophysics Data System (ADS)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  4. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  5. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  6. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  7. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, R.I.

    1980-01-01

    One of the most spectacular, awesomely beautiful, and at times, most destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of feet into the atmoshpehere and pouring out red-hot molten lava in fountains and streams. 

  8. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  9. Descent of tremor source locations before the 2014 phreatic eruption of Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ogiso, Masashi; Matsubayashi, Hirotoshi; Yamamoto, Tetsuya

    2015-12-01

    On 27 September 2014, Ontake volcano, in central Japan, suddenly erupted without precursory activity. We estimated and tracked the source locations of volcanic tremor associated with the eruption at high temporal resolution, using a method based on the spatial distribution of tremor amplitudes. Although the tremor source locations were not well constrained in depth, their epicenters were well located beneath the erupted crater and the summit. Tremor sources were seen to descend approximately 2 km over a period of several minutes prior to the beginning of the eruption. Detailed analysis of the time series of tremor amplitudes suggests that this descent is a robust feature. Our finding may be an important constraint for modeling the 2014 eruption of Ontake volcano as well as for monitoring activities on this and other volcanoes.

  10. Network-based evaluation of infrasound source location at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Fee, D.; Rowell, C. R.; Johnson, J. B.; Yokoo, A.; Matoza, R. S.

    2013-12-01

    An important step in advancing the science and application of volcano infrasound is improved source location and characterization. Here we evaluate different network-based infrasonic source location methods, primarily srcLoc and semblance, using data collected at Sakurajima Volcano, Japan in July 2013. We investigate these methods in 2- and 3-dimensions to assess the necessity of considering 3-D sensor and vent locations. In addition, we compare source locations found using array back azimuth projection from dual arrays. The effect of significant local topography on source location will also be evaluated. Preliminary analysis indicates periods of high- and low-level activity, suggesting different processes occurring in the upper conduit and vent. Network processing will be applied to determine signal versus noise, a technique which illuminates when the volcano is producing infrasound, to further investigate these processes. We combine this with other methods to identify the number and style of eruptions. By bringing together source location, timing of activity level, type of activity (such as tremor, explosions, etc.), and number of events, we aim to improve understanding of the activity and associated infrasound signals at Sakurajima Volcano.

  11. Seismic tomography reveals magma chamber location beneath Uturuncu volcano (Bolivia)

    NASA Astrophysics Data System (ADS)

    Kukarina, Ekaterina; West, Michael; Koulakov, Ivan

    2014-05-01

    Uturuncu volcano belongs to the Altiplano-Puna Volcanic Complex in the central Andes, the product of an ignimbrite ''flare-up''. The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Satellite measurements show that the hill has been rising more than half an inch a year for almost 20 years, suggesting that the Uturuncu volcano, which has erupted last time more than 300,000 years ago, is steadily inflating, which makes it fertile ground for study. In 2009 an international multidisciplinary team formed a project called PLUTONS to study Uturuncu. Under this project a 100 km wide seismic network was set around the volcano by seismologists from University of Alaska Fairbanks. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. To study the deformation source beneath the volcano we performed simultaneous tomographic inversion for the Vp and Vs anomalies and source locations, using the non-linear passive source tomographic code, LOTOS. We estimated both P and S wave velocity structures beneath the entire Uturuncu volcano by using arrival times of P and S waves from more than 600 events registered by 33 stations. To show the reliability of the results, we performed a number of different tests, including checkerboard synthetic tests and tests with odd/even data. Obtained Vp/Vs ratio distribution shows increased values beneath the south Uturuncu, at a depth of about 15 km. We suggest the high ratio anomaly is caused by partial melt, presented in expanding magma chamber, responsible for the volcano inflation. The resulting Vp, Vs and the ratio

  12. Seismic activity of Erebus volcano, antarctica

    NASA Astrophysics Data System (ADS)

    Kaminuma, Katsutada

    1987-11-01

    Mount Erebus is presently the only Antarctic volcano with sustained eruptive activity in the past few years. It is located on Ross Island and a convecting anorthoclase phonolite lava lake has occupied the summit crater of Mount Erebus from January 1973 to September 1984. A program to monitor the seismic activity of Mount Erebus named IMESS was started in December 1980 as an international cooperative program among Japan, the United States and New Zealand. A new volcanic episode began on 13 September, 1984 and continued until December. Our main observations from the seismic activity from 1982 1985 are as follows: (1) The average numbers of earthquakes which occurred around Mount Erebus in 1982, 1983 and January August 1984 were 64, 134 and 146 events per day, respectively. Several earthquake swarms occurred each year. (2) The averag number of earthquakes in 1985 is 23 events per day, with only one earthquake swarm. (3) A remarkable decrease of the background seismicity is recognized before and after the September 1984 activity. (4) Only a few earthquakes were located in the area surrounding Erebus mountain after the September 1984 activity. A magma reservoir is estimated to be located in the southwest area beneath the Erebus summit, based on the hypocenter distributions of earthquakes.

  13. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  14. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  15. Controls on the location of arc volcanoes: an Andean study

    NASA Astrophysics Data System (ADS)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  16. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  17. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    NASA Astrophysics Data System (ADS)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  18. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  19. Seismicity characteristics of a potentially active Quaternary volcano: The Tatun Volcano Group, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos I.; Lin, Cheng-Horng; Liang, Wen-Tzong

    2007-02-01

    The Tatun Volcano Group (TVG) is located at the northern tip of Taiwan, near the capital Taipei and close to two nuclear power plants. Because of lack of any activity in historical times it has been classified as an extinct volcano, even though more recent studies suggest that TVG might have been active during the last 20 ka. In May 2003 a seismic monitoring project at the TVG area was initiated by deploying eight three-component seismic stations some of them equipped with both short-period and broadband sensors. During the 18 months observation period local seismicity mainly consisted of high frequency earthquakes either occurring as isolated events, or as a continuous sequence in the form of spasmodic bursts. Mixed and low frequency events were also present during the same period, even though they occurred only rarely. Arrival times from events with clear P-/S-wave phases were inverted in order to obtain a minimum 1D velocity model with station corrections. Probabilistic nonlinear earthquake locations were calculated for all these events using the newly derived velocity model. Most high frequency seismicity appeared to be concentrated near the areas of hydrothermal activity, forming tight clusters at depths shallower than 4 km. Relative locations, calculated using the double-difference method and utilising catalogue and cross-correlation differential traveltimes, showed insignificant differences when compared to the nonlinear probabilistic locations. In general, seismicity in the TVG area seems to be primarily driven by circulation of hydrothermal fluids as indicated by the occurrence of spasmodic bursts, mixed/low frequency events and a b-value (1.17 ± 0.1) higher than in any other part of Taiwan. These observations, that are similar to those reported in other dormant Quaternary volcanoes, indicate that a magma chamber may still exist beneath TVG and that a future eruption or period of unrest should not be considered unlikely.

  20. Multiple Active Volcanoes in the Northeast Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    were mostly similar throughout the entire Mata chain. Mata Taha, Ua, Fa (4), and Ono (6) had ΔNTU/ΔT ratios between 3/°C and 4.4/°C. W Mata and Mata Fitu were lower at 1.9/°C. The ratio at Mata Tolu (3) was much lower (0.35/°C) and implies a diffuse, low particle source. (E Mata is also likely a diffuse source, but the plume was too weak to calculate a reliable ΔNTU/Δθ ratio.) These inferences will be evaluated by calculating 3He/heat, Fe/heat, and Mn/heat ratios in plume samples from each volcano. Camera tows confirmed the location of active vents fields on the SE flank of Mata Fitu (~2600 m) and the summit of Mata Tolu (˜1800 m). Including the 9 Matas, a total of 15 volcanoes and 3 ridge segments have been examined during several expeditions since 2008 in this small (˜70x70 km) study area. Active hydrothermal fields occur on all 3 ridge segments and 12 of the volcanoes, making this region one of the most intensely active, and volcanically diverse, yet identified.

  1. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island

  2. Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Trianaputri, Mila Olivia

    2015-04-01

    Indonesia contains 27 active volcanoes passing the West through the East part. Therefore, Indonesia is the most hazard front due to the volcanic activities. To obtain the new precursory signals leading to the eruptions, we applied remote sensing technique to observe ground surface change series at the summit of Sinabung and Kelud volcanoes. Sinabung volcano is located at Karo Region, North Sumatra Province. This volcano is a strato volcano type which is re-activated in August 2010. The eruption continues to the later years by ejecting volcanic products such as lava, pyroclastic flow, and ash fall deposits. This study is targeted to observe ground surface change series at the summit of Sinabung volcano since 2007 to 2011. In addition, we also compared the summit ground surface changes after the eruptions of Kelud volcano in 2007. Kelud volcano is also strato volcano type which is located at East Java, Indonesia. The Synthetic Aperture Radar (SAR) remotely sensed technology makes possible to observe rapidly a wide ground surface changes related to ground surface roughness. Detection series were performed by extracting the backscattering intensity of the Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS). The intensity values were then calculated using a Normalized Radar Cross-Section (NRCS). Based on surface roughness criterion at the summit of Sinabung volcano, we could observe the ground surface changes prior to the early eruption in August 2010. The continuous increment of NRCS values showed clearly at window size 3×3 pixel of the summit of Sinabung volcano. The same phenomenon was also detected at the summit of Kelud volcano after the 2007 eruptions. The detected ground surface changes were validated using optical Landsat-8, backscattering intensity ratio for volcanic products detection, and radial component of a tilt-meter data.

  3. Thermal surveillance of active volcanoes

    NASA Technical Reports Server (NTRS)

    Friedman, J. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. There are three significant scientific results of the discovery of 48 pinpoint anomalies on the upper flanks of Mt. Rainier: (1) Many of these points may actually be the location of fumarolic vapor emission or warm ground considerably below the summit crater. (2) Discovery of these small anomalies required specific V/H scanner settings for precise elevation on Mt. Rainier's flank, to avoid smearing the anomalies to the point of nonrecognition. Several past missions flown to map the thermal anomalies of the summit area did not/detect the flank anomalies. (3) This illustrates the value of the aerial IR scanner as a geophysical tool suited to specific problem-oriented missions, in contrast to its more general value in a regional or reconnaissance anomaly-mapping role.

  4. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  5. Degassing Processes at Persistently Active Explosive Volcanoes

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range

  6. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  7. Recent Seismic and Geodetic Activity at Multiple Volcanoes in the Ecuadorean Andes

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Ruiz, M. C.; McCausland, W. A.; Prejean, S. G.; Mothes, P. A.; Bell, A. F.; Hidalgo, S.; Barrington, C.; Yepez, M.; Aguaiza, S.; Plain, M.

    2015-12-01

    The state of volcanic activity often fluctuates between periods of repose and unrest. The transition time between a period of repose and unrest, or vice versa for an open system, can occur within a matter of hours or days. Because of this short time scale, real-time seismic and geodetic (e.g. tiltmeter, GPS) monitoring networks are crucial for characterizing the state of activity of a volcano. In the Ecuadorean Andes, 5 volcanoes demonstrate long-term (Tungurahua, Reventador, and Guagua Pichincha) or recently reactivated (Cotopaxi, Chiles-Cerro Negro) seismic and geodetic activity. The Instituto Geofisico regularly characterizes volcano seismicity into long period, very long period, volcano-tectonic, and tremor events. Significant recent changes at these volcanoes include: rigorous reactivation of glacier-capped Cotopaxi, drumbeat seismicity absent a dome extrusion at Tungurahua, and regularly reoccurring (~7 day recurrence interval), shallow seismic swarms at Guagua Pichincha. These volcanoes locate along both the Western and Eastern Cordillera of the Ecuadorean Andes and, where data are available, manifest important variations in chemical composition, daily gas flux, and surficial deformation. We summarize the long-term geophysical parameters measured at each volcano and place recent changes in each parameter in a larger magmatic and hydrothermal context. All of the studied volcanoes present significant societal hazards to local and regional communities.

  8. Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

    1998-01-01

    We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

  9. Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano

    NASA Astrophysics Data System (ADS)

    Hibert, C.; Mangeney, A.; Grandjean, G.; Baillard, C.; Rivet, D.; Shapiro, N. M.; Satriano, C.; Maggi, A.; Boissier, P.; Ferrazzini, V.; Crawford, W.

    2014-05-01

    Since the collapse of the Dolomieu crater floor at Piton de la Fournaise Volcano (la Réunion) in 2007, hundreds of seismic signals generated by rockfalls have been recorded daily at the Observatoire Volcanologique du Piton de la Fournaise (OVPF). To study rockfall activity over a long period of time, automated methods are required to process the available continuous seismic records. We present a set of automated methods designed to identify, locate, and estimate the volume of rockfalls from their seismic signals. The method used to automatically discriminate seismic signals generated by rockfalls from other common events recorded at OVPF is based on fuzzy sets and has a success rate of 92%. A kurtosis-based automated picking method makes it possible to precisely pick the onset time and the final time of the rockfall-generated seismic signals. We present methods to determine rockfall locations based on these accurate pickings and a surface-wave propagation model computed for each station using a Fast Marching Method. These methods have successfully located directly observed rockfalls with an accuracy of about 100 m. They also make it possible to compute the seismic energy generated by rockfalls, which is then used to retrieve their volume. The methods developed were applied to a data set of 12,422 rockfalls that occurred over a period extending from the collapse of the Dolomieu crater floor in April 2007 to the end of the UnderVolc project in May 2011 to identify the most hazardous areas of the Piton de la Fournaise volcano summit.

  10. Seismicity study of volcano-tectonic in and around Tangkuban Parahu active volcano in West Java region, Indonesia

    NASA Astrophysics Data System (ADS)

    Ry, Rexha V.; Priyono, A.; Nugraha, A. D.; Basuki, A.

    2016-05-01

    Tangkuban Parahu is one of the active volcano in Indonesia located about 15 km northern part of Bandung city. The objective of this study is to investigate the seismic activity in the time periods of January 2013 to December 2013. First, we identified seismic events induced by volcano-tectonic activities. These micro-earthquake events were identified as having difference of P-wave and S-wave arrival times less than three seconds. Then, we constrained its location of hypocenter to locate the source of the activities. Hypocenter determination was performed using adaptive simulated annealing method. Using these results, seismic tomographic inversions were conducted to image the three-dimensional velocity structure of Vp, Vs, and the Vp/Vs ratio. In this study, 278 micro-earthquake events have been identified and located. Distribution of hypocenters around Tangkuban Parahu volcano forms an alignment structure and may be related to the stress induced by magma below, also movement of shallow magma below Domas Crater. Our preliminary tomographic inversion results indicate the presences of low Vp, high Vs, and low Vp/Vs ratio that associate to accumulated young volcanic eruption products and hot material zones.

  11. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W., II

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  12. Study of Seismic Activity at Ceboruco Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  13. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  14. Dike propagation in active volcanoes: importance, evidence, models and perspectives

    NASA Astrophysics Data System (ADS)

    Acocella, V.

    2011-12-01

    Most eruptions are fed by dikes; therefore, better knowledge of dike propagation is crucial to improve our understanding of how magma is transferred and extruded at volcanoes. Dike pattern data from a few tens of active volcanic edifices show how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice, the proximity to the surface, and regional tectonic control. Relief enhances the development of radial dikes, which may also cluster following volcano elongation or regional patterns. Dikes approaching the surface of volcanic edifices, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress); in presence of scarps, dikes reorient subparallel to the scarp (perpendicular to the minimum gravitational stress). These relationships have been also observed or inferred during eruptions at Etna, Stromboli, Vesuvio (Italy), Erta Ale (Afar) and Faial (Azores). While numerical modelling of dike propagation remains challenging, analogue models of dike emplacement have been performed over a few decades, also supporting part of the above-described evidence. Analogue models have been mostly conducted injecting air or water within gelatine and, recently, injecting vegetable oil within sand. More sophisticated analogue modelling is foreseen for the future, using a more appropriate scaling, a larger sensitivity and providing a more quantitative approach in capturing relationships. More in general, future research on dikes should be devoted towards identifying dike propagation paths, dike arrest mechanisms, and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.

  15. Kizimen Volcano, Kamchatka, Russia: 2010-2012 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Droznin, V.; Malik, N.; Muravyev, Y.

    2012-12-01

    New eruptive activity at Kizimen Volcano began in October 2010 after 1.5 years of seismic build up. Two vents located at the summit of the volcano had been producing occasional steam-and-gas emissions with traces of ash until early December. Kizimen is located at a junction between Shapensky graben in the Central Kamchatka Depression and a horst of Tumrok Ridge. Kizimen is a 2376 m a.s.l. complex stratovolcano. The only single eruption reported in historic time occurred from December 1928 to January 1929. Little is known about the volcano; explosive activity was preceded by strong local earthquakes, and ashfalls were reported in neighboring settlements. During the period between eruptions the volcano was producing constant fumarolic activity, reported since 1825. During the cause of the current (2010-2012) eruption, the volcano produced several eruptive phases: moderate explosive activity was observed from December 10, 2010 to late February 2011 (ashfalls and descend of pyroclastic flows resulted in a large lahar traveling along the valley of the Poperechny Creek on December 13, 2010); from late February to mid-December the volcano produced an explosive-effusive phase (the lava flow descended eastern flank, while explosive activity has decreased), which resulted in strong explosions on December 14, 2011 accompanied by scores of pyroclastic flows of various thickness to the NE foot on the volcano. Since then, a constant growth of the large lava flow has been accompanied by strong steam-and-gas emissions from the summit crater. The erupted materials are tephra and deposits of pyroclastic and lava flows consisted of high-aluminous andesites and dacites of potassium-sodium series: SiO2 content varied from 61% in December 2010 to 65-68% in January-February 2011, and up to 62% in December 2011. Ashfalls area exceeded 100 km2 (the weight of erupted tephra > 107 tons), while the total area of pyroclastic flows was estimated to be 15.5 km2 (V= 0.16 km3). Until late May 2012

  16. July 1973 ground survey of active Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  17. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  18. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  19. Digital data set of volcano hazards for active Cascade Volcanos, Washington

    USGS Publications Warehouse

    Schilling, Steve P.

    1996-01-01

    Scientists at the Cascade Volcano Observatory have completed hazard assessments for the five active volcanos in Washington. The five studies included Mount Adams (Scott and others, 1995), Mount Baker (Gardner and others, 1995), Glacier Peak (Waitt and others, 1995), Mount Rainier (Hoblitt and others, 1995) and Mount St. Helens (Wolfe and Pierson, 1995). Twenty Geographic Information System (GIS) data sets have been created that represent the hazard information from the assessments. The twenty data sets have individual Open File part numbers and titles

  20. Global data collection and the surveillance of active volcanoes

    USGS Publications Warehouse

    Ward, P.L.

    1990-01-01

    Data relay systems on existing earth-orbiting satellites provide an inexpensive way to collect environmental data from numerous remote sites around the world. This technology could be used effectively for fundamental monitoring of most of the world's active volcanoes. Such global monitoring would focus attention on the most dangerous volcanoes that are likely to significantly impact the geosphere and the biosphere. ?? 1990.

  1. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  2. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  3. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  4. Holocene recurrent explosive activity at Chimborazo volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Barba, Diego; Robin, Claude; Samaniego, Pablo; Eissen, Jean-Philippe

    2008-09-01

    Ice-capped Chimborazo is one of the large composite Ecuadorian volcanoes whose recent eruptive activity is poorly known. This paper presents the characteristics and the ages of a newly discovered Holocene sequence of pyroclastic deposits on the east and north sides of the cone. Lying upon a moraine of the Late-Glacial period, the most complete section of ~ 4.5 m in thickness is located 5 km from the present summit crater. It consists of seven massive or diffusely stratified ash flow layers and four fallout layers interbedded with seven paleosoils. Based on field study, most flow deposits were assessed as surge layers, and six radiocarbon analyses obtained from charcoal fragments and paleosoils indicate that eruptions occurred at quite regular intervals between about 8000 and 1000 years ago. The first two and most potent events generated thick lahars over the north and west flanks of the cone. Surface textures of volcanic clasts were analysed by scanning electron microscopy. Blocky and blocky/fluidal vitric clasts indicate fragmentation during vulcanian explosions of a quite solidified shallow magma body. In addition, aggregates either cemented at a cooling stage (with surface fluidal textures), or consisting of fine particles (moss-looking aggregates), form a large part of the surge deposits. These characteristics indicate powerful explosions and intense fragmentation due to phreatic water reaching the conduit, probably from the ice-cap. Since the last eruption occurred between the early part of the 5th century (~ AD 420) and the end of the 7th century, these results highlight that Chimborazo is a potentially active volcano. Given its dominating presence over the densely populated Ambato and Riobamba basins, and owing its large ice-cap, Chimborazo should be considered a dangerous volcano.

  5. Seismic exploration of Fuji volcano with active sources in 2003

    NASA Astrophysics Data System (ADS)

    Oikawa, J.; Kagiyama, T.; Tanaka, S.; Miyamachi, H.; Tsutsui, T.; Ikeda, Y.; Katayama, H.; Matsuo, N.; Oshima, H.; Nishimura, Y.; Yamamoto, K.; Watanabe, T.; Yamazaki, F.

    2004-12-01

    Fuji volcano (altitude 3,776 m) is the largest basaltic stratovolcano in Japan. In late August and early September 2003, seismic exploration was conducted around Fuji volcano by the detonation of 500 kg charges of dynamite to investigate the seismic structure of that area. Seismographs with an eigenfrequency of 2 Hz were used for observation, positioned along a WSW-ENE line passing through the summit of the mountain. A total of 469 observation points were installed at intervals of 250-500 m. The data were stored in memory on-site using data loggers. The sampling interval was 4 ms. Charges were detonated at 5 points, one at each end of the observation line and 3 along its length. The first arrival times at each observation point for each detonation were recorded as data. The P-wave velocity structure directly below the observation line was determined by forward calculation using the ray tracing method [Zelt and Smith, 1992]. The P-wave velocity structure below the volcano, assuming a layered structure, was found to be as follows. (1) The first layer extends for about 40 km around the summit and to a depth of 1-2 km. The P-wave velocity is 2.5 km/s on the upper surface of the layer and 3.5 km/s on the lower interface. (2) The second layer has P-wave velocities of 4.0 km/s on the top interface and 5.5 km/s at the lower interface. The layer is 25 km thick to the west of the summit and 1-2 km thick to the east, and forms a dome shape with a peak altitude of 2000 m directly below the summit. (3) The third layer is 5-12 km thick and has P-wave velocities of 5.7 km/s at the top interface and 6.5 km/s at the lower interface. This layer reaches shallower levels to the east of the summit, corresponding to the area where the second layer is thinner. Mt. Fuji is located slightly back from where the Philippine Sea Plate subducts below the Eurasian plate in association with collision with the Izu Peninsula. Matsuda (1971) suggested that Mt. Fuji lies on the same uplifted body as

  6. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  7. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  8. Imaging an Active Volcano Edifice at Tenerife Island, Spain

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli

    2008-08-01

    An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  9. Volcano Deformation and Modeling on Active Volcanoes in the Philippines from ALOS InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Morales Rivera, Anieri M.; Amelung, Falk; Eco, Rodrigo

    2015-05-01

    Bulusan, Kanlaon, and Mayon volcanoes have erupted over the last decade, and Taal caldera showed signs of volcanic unrest within the same time range. Eruptions at these volcanoes are a threat to human life and infrastructure, having over 1,000,000 people living within 10 km from just these 4 volcanic centers. For this reason, volcano monitoring in the Philippines is of extreme importance. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA) to make an InSAR time series analysis over Bulusan, Kanlaon, Mayon, and Taal volcanoes for the 2007-2011 period. Time-dependent deformation was detected at all of the volcanoes. Deformation related to changes in pressurization of the volcanic systems was found on Taal caldera and Bulusan volcanoes, with best fitting Mogi sources located at half-space depths of 3.07 km and 0.5 km respectively.

  10. A pattern recognition system for locating small volcanoes in Magellan SAR images of Venus

    NASA Astrophysics Data System (ADS)

    Burl, M. C.; Fayyad, U. M.; Smyth, P.; Aubele, J. C.; Crumpler, L. S.

    1993-03-01

    The Magellan data set constitutes an example of the large volumes of data that today's instruments can collect, providing more detail of Venus than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations put together. However, data analysis technology has not kept pace with data collection and storage technology. Due to the sheer size of the data, complete and comprehensive scientific analysis of such large volumes of image data is no longer feasible without the use of computational aids. Our progress towards developing a pattern recognition system for aiding in the detection and cataloging of small-scale natural features in large collections of images is reported. Combining classical image processing, machine learning, and a graphical user interface, the detection of the 'small-shield' volcanoes (less than 15km in diameter) that constitute the most abundant visible geologic feature in the more that 30,000 synthetic aperture radar (SAR) images of the surface of Venus are initially targeted. Our eventual goal is to provide a general, trainable tool for locating small-scale features where scientists specify what to look for simply by providing examples and attributes of interest to measure. This contrasts with the traditional approach of developing problem specific programs for detecting Specific patterns. The approach and initial results in the specific context of locating small volcanoes is reported. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 105 to 106 of these volcanoes visible in the Magellan data. Identifying and studying these volcanoes is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is forbiddingly time-consuming. Hence, the development of techniques to partially automate this task were undertaken. The primary constraints for

  11. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  12. Marapi an active West-Central Sumatra Volcano: a geological and petrological study

    NASA Astrophysics Data System (ADS)

    Del Marmol, M.; Budianto, A.; Fournelle, J.; Jacobs, P.; Elburg, M. A.

    2010-12-01

    Marapi volcano (West - Central Sumatra), Sumatra’s most active volcano (not to be confused with Merapi on Java), located in a densely populated area and where more than 50 explosive eruptions have been recorded in the last 200 years has been studied in detail in the field to gain fundamental understanding of the volcano's activity in terms of its basic geology, petrology and geochemistry. Marapi is one of a few active volcanoes among many dormant volcanoes of this island. Large deposits of the nearby Maninjau caldera, dated 50 ka (n=3), associated with very silica-rich volcanic products is another reason for concern, since caldera formation is linked with severe explosive activity. Those deposits are found at the base of the volcano and largely in the deeply incised valley which follows the Sumatra fault extending parallel to the Sumatra volcanic front. A possible landslide parallel to the Sumatra fault is recognized on the LANDSAT image. Landslides on the external old external side have allowed the collection of the oldest part of the volcano as most of it is covered with a thick primary forest. These landslides occurring on old volcanic terrain are a threat to the surrounding population living nearby the rivers especially during the heavy rainy seasons. A 20 m high stratigraphic column has been studied, with the volcano’s explosive nature seen in the collected samples (i.e. bombs and pumices). A new sketch map of the area of the craters (6 over 2km) replaces the one made in 1921 at the Dutch colonial time. A geological and hazard map have been created showing the extension of the various deposits.

  13. Long Period (LP) volcanic earthquake source location at Merapi volcano by using dense array technics

    NASA Astrophysics Data System (ADS)

    Metaxian, Jean Philippe; Budi Santoso, Agus; Laurin, Antoine; Subandriyo, Subandriyo; Widyoyudo, Wiku; Arshab, Ghofar

    2015-04-01

    Since 2010, Merapi shows unusual activity compared to last decades. Powerful phreatic explosions are observed; some of them are preceded by LP signals. In the literature, LP seismicity is thought to be originated within the fluid, and therefore to be representative of the pressurization state of the volcano plumbing system. Another model suggests that LP events are caused by slow, quasi-brittle, low stress-drop failure driven by transient upper-edifice deformations. Knowledge of the spatial distribution of LP events is fundamental for better understanding the physical processes occurring in the conduit, as well as for the monitoring and the improvement of eruption forecasting. LP events recorded at Merapi have a spectral content dominated by frequencies between 0.8 and 3 Hz. To locate the source of these events, we installed a seismic antenna composed of 4 broadband CMG-6TD Güralp stations. This network has an aperture of 300 m. It is located on the site of Pasarbubar, between 500 and 800 m from the crater rim. Two multi-parameter stations (seismic, tiltmeter, S-P) located in the same area, equipped with broadband CMG-40T Güralp sensors may also be used to complete the data of the antenna. The source of LP events is located by using different approaches. In the first one, we used a method based on the measurement of the time delays between the early beginnings of LP events for each array receiver. The observed differences of time delays obtained for each pair of receivers are compared to theoretical values calculated from the travel times computed between grid nodes, which are positioned in the structure, and each receiver. In a second approach, we estimate the slowness vector by using MUSIC algorithm applied to 3-components data. From the slowness vector, we deduce the back-azimuth and the incident angle, which give an estimation of LP source depth in the conduit. This work is part of the Domerapi project funded by French Agence Nationale de la Recherche (https

  14. Measuring thermal budgets of active volcanoes by satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  15. Prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China.

    PubMed

    Yang, Hong-Mei; Lou, Kai; Sun, Jian; Zhang, Tao; Ma, Xiao-Long

    2012-02-01

    The Usu mud volcanoes are the largest group of terrestrial mud volcanoes in China. The volcanoes are located in a typical arid and semi-arid region, and the group consists of 36 erupting active mud volcanoes. In this study, the prokaryotic diversity and community structure in the sediment of an active mud volcano were investigated by constructing bacterial and archaeal clone libraries of the 16S rRNA gene. A total of 100 bacterial and 100 archaeal clones were analysed and found to comprise 11 and 7 distinct phylotypes, respectively. The bacterial phylotypes were classified into three phyla (Proteobacteria, Actinobacteria, and Fusobacteria). Of these, Proteobacteria were the most abundant bacterial group, with Deltaproteobacteria dominating the sediment community, and these were affiliated with the order Desulfuromonadales. The archaeal phylotypes were all closely related to uncultivated species, and the majority of the members were related to the orders Methanosarcinales and Halobacteriales of the Euryarchaeota originating from methane hydrate bearing or alkaline sediments. The rest of the archaeal phylotypes belonged to the phylum Crenarchaeota, with representatives from similar habitats. These results suggested that a large number of novel microbial groups and potential methanogenesis may exist in this unique ecosystem. PMID:21656823

  16. Characterization of Source and Wave Propagation Effects of Volcano-seismic Events and Tremor Using the Amplitude Source Location Method

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Londono, J. M.; López, C. M.; Ruiz, M. C.; Mothes, P. A.; Maeda, Y.

    2015-12-01

    We propose application of the amplitude source location (ASL) method to characterize source and wave propagation effects of volcano-seismic events and tremor observed at different volcanoes. We used this method to estimate the source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We estimated the cumulative source amplitude (Is) as the offset value of the time-integrated envelope of the vertical seismogram corrected for geometrical spreading and medium attenuation in the 5-10 Hz band. We studied these parameters of tremor signals associated with eruptions and explosion events at Tungurahua volcano, Ecuador; long-period (LP) events at Cotopaxi volcano, Ecuador; and LP events at Nevado del Ruiz volcano, Colombia. We identified two types of eruption tremor at Tungurahua; noise-like inharmonic waveforms and harmonic oscillatory signals. We found that Is increased linearly with increasing source amplitude for explosion events and LP events, and that Is increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. The Is values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The linear relationship between the source amplitude and Is for LP events can be explained by the wave propagation effects in the diffusion model for multiple scattering assuming a diffusion coefficient of 105 m2/s and an intrinsic Q factor of around 50. The resultant mean free path is approximately 100 m. Our results suggest that Cotopaxi and Nevado del Ruiz volcanoes have similar highly scattering and attenuating structures. Our approach provides a systematic way to compare the size of volcano-seismic signals observed at different volcanoes. The scaling relations among source parameters that we identified

  17. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  18. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Miura, S.

    2014-12-01

    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  19. Linking petrology and seismology at an active volcano.

    PubMed

    Saunders, Kate; Blundy, Jon; Dohmen, Ralf; Cashman, Kathy

    2012-05-25

    Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology. PMID:22628652

  20. Output rate of magma from active central volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1980-01-01

    For part of their historic records, nine of the most active volcanoes on earth have each erupted magma at a nearly constant rate. These output rates are very similar and range from 0.69 to 0.26 cu m/s. The volcanoes discussed - Kilauea, Mauna Loa, Fuego, Santiaguito, Nyamuragira, Hekla, Piton de la Fournaise, Vesuvius and Etna - represent almost the whole spectrum of plate tectonic settings of volcanism. A common mechanism of buoyantly rising magma-filled cracks in the upper crust may contribute to the observed restricted range of the rates of output.

  1. Temporal Variations of Magnetic Field Associated with Seismic Activity at Cerro Machin Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Londono, J. M.; Serna, J. P.; Guzman, J.

    2011-12-01

    A study of magnetic variations was carried out at Cerro Machin Volcano, Colombia for the period 2009 -2010, with two permanent magnetometers located at South and North of the central dome, separated about 2.5 km each other. After corrections, we found that there is no clear correlation between volcanic seismicity and temporal changes of magnetic field for each magnetometer station, if they are analyzed individually. On the contrary, when we calculated the residual Magnetic field (RMF), for each magnetometer, and then we made the subtraction between them, and plot it vs time, we found a clear correlation of changes in local magnetic field with the occurrence of volcanic seismicity (ML >1.6). We found a change in the RMF between 1584 nT and 1608 nT, each time that a volcano-tectonic earthquake occurred. The máximum lapse time between the previous change in RMF and the further occurrence of the earthquake is 24 days, with an average of 11 days. This pattern occurred more than 9 times during the studied period. Based on the results, we believed that the simple methodology proposed here, is a good tool for monitoring changes in seismicity associated with activity at Cerro Machín volcano. We suggest that the temporal changes of RMF at Cerro Machín Volcano, are associated with piezo-magnetic effects, due to changes in strain-stress inside the volcano, produced by the interaction between local faulting and magma movement.

  2. Volcanic Risk Perception in Five Communities Located near the Chichón Volcano, Northern Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Novelo-Casanova, D. A.

    2010-12-01

    The Chichón volcano (17° 19’ N and 93° 15’ W) is located in the state of Chiapas, Mexico. This volcano is classified by UNESCO as one of the ten most dangerous volcanos in the world. The eruptions of March and April in 1982 affected at least 51 communities located in the surroundings of the volcano and caused the death of about 2000 people. In this work we evaluate the risk perception in five communities highly populated: Juárez, Ostuacán, Pichucalco, Reforma and Sunuapa. We selected these communities because they have a high possibility to be affected by a volcanic eruption in the future. Our survey was carried out during February and March 2006. A total of 222 families were interviewed using a questionnaire to measure risk perception. These questionnaires retrieved general information as how long people had been living there and their reasons to do so; their experiences during the 1982 events, their opinion about the authorities participation and their perception of volcanic risk; the plans of the community for disaster prevention and mitigation. Some of the most important results are: (1). People perceive a very low volcanic risk and the 70% of interviewees believe that a new eruption in the future is almost improbable because it happened in 1982. This result is particularly interesting because, according to the state government, more than 100,000 inhabitants will be directly affected in case of a new similar eruption; (2). About 95% of the population do not know the current activity of the volcano and consider that the authorities do not inform properly to their communities; (3). The response of the authorities during the events of 1982 was ranked as deficient mainly because they were unable provide shelters, storage facilities, food as well as medicine and health care access; (4). Approximately 60% of the community will accept to be re-located again in case of a new eruption; (5). About 70% of the population will not accept to be re-located because

  3. Virtual Investigations of an Active Deep Sea Volcano

    NASA Astrophysics Data System (ADS)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  4. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes. PMID:19494913

  5. Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources

    SciTech Connect

    Eylon Shalev; Peter E. Malin; Wendy McCausland

    2002-06-06

    In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

  6. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. PMID:22458514

  7. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    NASA Astrophysics Data System (ADS)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  8. China's Changbaishan volcano showing signs of increased activity

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-10-01

    Roughly 1100 years ago, the Changbaishan volcano that lies along the border between northeastern China and North Korea erupted, sending pyroclastic flows dozens of kilometers and blasting a 5-kilometer-wide chunk off of the tip of the stratovolcano. The eruption, known as the Millennium eruption because of its proximity to the turn of the first millennium, was one of the largest volcanic events in the Common Era. In the subsequent period, there have been three smaller eruptions, the most recent of which took place in 1903. Starting in 1999, spurred by signs of resumed activity, scientists established the Changbaishan Volcano Observatory, a network to track changing gas compositions, seismic activity, and ground deformation. Reporting on the data collected over the past 12 years, Xu et al. found that these volcanic indices each leapt during a period of heightened activity from 2002 to 2006.

  9. Numerical model of heat conduction in active volcanoes induced by magmatic activity

    NASA Astrophysics Data System (ADS)

    Atmojo, Antono Arif; Rosandi, Yudi

    2015-09-01

    We study the heat transfer mechanism of active volcanoes using the numerical thermal conduction model. A 2D model of volcano with its conduit filled by magma is considered, and acts as a constant thermal source. The temperature of the magma activity diffuses through the rock layers of the mountain to the surface. The conduction equation is solved using finite-difference method, with some adaptations to allow temperature to flow through different materials. Our model allows to simulate volcanoes having dikes, branch-pipes, and sills by constructing the domain appropriately, as well as layers with different thermal properties. Our research will show the possibility to monitor magma activity underneath a volcano by probing its surface temperature. The result of our work will be very useful for further study of volcanoes, eruption prediction, and volcanic disaster mitigation.

  10. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  11. Continuous gravity observations at active volcanoes through superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo

    2016-04-01

    Continuous gravity measurements at active volcanoes are usually taken through spring gravimeters that are easily portable and do not require much power to work. However, intrinsic limitations dictate that, when used in continuous, these instruments do not provide high-quality data over periods longer than some days. Superconducting gravimeters (SG), that feature a superconducting sphere in a magnetic field as the proof mass, provide better-quality data than spring gravimeters, but are bigger and need mains electricity to work, implying that they cannot be installed close to the active structures of high volcanoes. An iGrav SG was installed on Mt. Etna (Italy) in September 2014 and has worked almost continuously since then. It was installed about 6km from the active craters in the summit zone of the volcano. Such distance is normally too much to observe gravity changes due to relatively fast (minutes to days) volcanic processes. Indeed, mass redistributions in the shallowest part of the plumbing system induce short-wavelength gravity anomalies, centered below the summit craters. Nevertheless, thanks to the high precision and long-term stability of SGs, it was possible to observe low-amplitude changes over a wide range of timescales (minutes to months), likely driven by volcanic activity. Plans are in place for the implementation of a mini-array of SGs at Etna.

  12. Diversity and activity of benthic microbial communities at the North Alex mud volcano, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Makarow, Dorothee; Feseker, Tomas; Schmitz, Ruth; Treude, Tina

    2010-05-01

    North Alex mud volcano, located on the upper slope of the western Nile deep-sea fan, is characterized by an active seepage center transporting pore fluids, hydrocarbons and gases from deep subsurface sources to the sediment-water interface. Surface sediments feature steep temperature gradient of 8.5°C m-1. We sampled the top 40 cm of the sediments at different locations between the center and rim of the mud volcano to study the diversity, activity, and physiological characteristics of benthic microorganisms. The sediments revealed the activity of anaerobic oxidation of methane coupled to sulfate reduction with a mesophilic temperature optimum. Organisms involved in the process include consortia of methanotrophic archaea (ANME-2 group) and an unknown bacterial partner. Besides methanotrophic organisms the sediments harbored a variety of other bacterial and archaeal groups - including potentially thermophilic bacteria that could be involved in sulfur cycling. This poster presentation will provide an overview of microbial activities and community compositions of North Alex mud volcano sediments.

  13. Analysis of the seismicity activity of the volcano Ceboruco, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ayala, N. A.; Nunez-Cornu, F. J.; Escudero, C. R.; Zamora-Camacho, A.; Gomez, A.

    2014-12-01

    The Ceboruco is a stratovolcano is located in the state of Nayarit,Mexico (104 ° 30'31 .25 "W, 21 ° 7'28 .35" N, 2280msnm). This is an volcano active, as part of the Trans-Mexican Volcanic Belt, Nelson (1986) reports that it has had activity during the last 1000 years has averaged eruptions every 125 years or so, having last erupted in 1870, currently has fumarolic activity. In the past 20 years there has been an increase in the population and socio-economic activities around the volcano (Suárez Plascencia, 2013); which reason the Ceboruco study has become a necessity in several ways. Recent investigations of seismicity (Rodríguez Uribe et al., 2013) have classified the earthquakes in four families Ceboruco considering the waveform and spectral features. We present analysis included 57 days of seismicity from March to October 2012, in the period we located 97 events with arrivals of P and S waves clear, registered in at least three seasons, three components of the temporal network Ceboruco volcano.

  14. Deep structure and origin of active volcanoes in China

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2010-12-01

    Recent geophysical studies have provided important constraints on the deep structure and origin of the active intraplate volcanoes in Mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab (e.g., Zhao et al., 2009a), while the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well (Zhao et al., 2009b). The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate) (Lei et al., 2009a). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and Indian slab's deep subduction in the west down to the lower mantle (Lei et al., 2009b; Zhao, 2009). The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions (Zhao, 2009). References Lei, J., D. Zhao, Y. Su, 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302. Lei, J., D. Zhao, B. Steinberger et al., 2009b. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 173, 33-50. Zhao, D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297-323. Zhao, D., Z. Wang, N. Umino, A. Hasegawa, 2009a. Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89-106. Zhao, D., Y. Tian, J. Lei, L. Liu, 2009b. Seismic

  15. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    USGS Publications Warehouse

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  16. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  17. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  18. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  19. Venus lives!. [evidence for active volcanoes

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Francis, Peter W.

    1988-01-01

    Observational evidence which supports the contention that Venus is a volcanically and tectonically active planet is discussed. It is argued that, although there are no observations to date that would prove that Venus has been volcanically active during the last decade, planetological studies presented evidence for youthful volcanic mountains on Venus: the surface of the northern quarter of Venus is considered to be younger than 1 Gy, and some units are likely to be much younger. Because of the small sizes of likely volcanic manifestations and the long intervals expected between eruptions, it is unlikely that any direct evidence of eruptions will be detected with existing and planned spacecraft. It is suggested that future studies of the dynamics and the chemical mixing of the Venusian atmosphere might supply an unequivocal evidence for active volcanism on this planet.

  20. Underwater observations of active lava flows from Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Tribble, G.W.

    1991-01-01

    Underwater observation of active submarine lava flows from Kilauea volcano, Hawaii, in March-June 1989 revealed both pillow lava and highly channelized lava streams flowing down a steep and unconsolidated lava delta. The channelized streams were 0.7-1.5 m across and moved at rates of 1-3 m/s. The estimated flux of a stream was 0.7 m3/s. Jets of hydrothermal water and gas bubbles were associated with the volcanic activity. The rapidly moving channelized lava streams represent a previously undescribed aspect of submarine volcanism. -Author

  1. Interagency collaboration on an active volcano: a case study at Hawai‘i Volcanoes National Park

    USGS Publications Warehouse

    Kauahikaua, James P.; Orlando, Cindy

    2014-01-01

    Because Kilauea and Mauna Loa are included within the National Park, there is a natural intersection of missions for the National Park Service (NPS) and the U.S. Geological Survey (USGS). HAVO staff and the USGS Hawaiian Volcano Observatory scientists have worked closely together to monitor and forecast multiple eruptions from each of these volcanoes since HAVO’s founding in 1916.

  2. Geothermal activity and energy of the Yakedake volcano, Gifu-Nagano, Japan

    SciTech Connect

    Iriyama, Jun

    1996-12-31

    The temperature of the most active solfatara in the summit crater of the Yakedake volcano (altitude 2,455 m Gifu-Nagano, Japan) was 92.2 and 129.4{degrees}C in September 1995 and in October 1994, respectively. The temperature of solfatara in the northern summit dome at an altitude of 2,240 to 2,270 m ranged from 68.2 to 92.5{degrees}C in September 1995. The water sample from a crater pond, Shoga-ike, located on the summit, showed a pH and electrical conductivity of 4.38 and 42.2 {mu}S/cm in October 1991, 4.35 and 42.4 {mu}S/cm in September 1992, 4.11 and 76.6 {mu}S/cm in October 1994, and 4.30 and 45.1 {mu}S/cm in September 1995, respectively. In 1960, the water sample from the same pond showed the pH and electrical conductivity of 3.7 and 80.8 {mu}S/cm, respectively. Although the values of pH and electrical conductivity in 1994 approached to the values at the volcano`s pre-eruption in 1960, the eruption in the summit dome did not occur in 1995. However, a large steam explosion occurred in the Nakanoyu area of the southeastern Mountainside of the volcano. The geothermal energy within the summit dome at an altitude of 2,050 to 2,455 m of the Yakedake volcano is calculated, using new data, to be about 4.8 x 10{sup 17} J, which represents a thermal power output of 5.1 x 10{sup 2} MW{sub th} averaged over 30 yrs.

  3. Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi; Ruiz, Mario; Palacios, Pablo; Ortiz, Hugo; Yepes, Hugo

    2013-05-01

    The amplitude source location (ASL) method, which uses high-frequency amplitudes under the assumption of isotropic S-wave radiation, has been shown to be useful for locating the sources of various types of volcano-seismic signals. We tested the ASL method by using synthetic seismograms and examined the source amplitudes determined by this method for various types of volcano-seismic signals observed at different volcanoes. Our synthetic tests indicated that, although ASL results are not strongly influenced by velocity structure and noise, they do depend on site amplification factors at individual stations. We first applied the ASL method to volcano-tectonic (VT) earthquakes at Taal volcano, Philippines. Our ASL results for the largest VT earthquake showed that a frequency range of 7-12 Hz and a Q value of 50 were appropriate for the source location determination. Using these values, we systematically estimated source locations and amplitudes of VT earthquakes at Taal. We next applied the ASL method to long-period events at Cotopaxi volcano and to explosions at Tungurahua volcano in Ecuador. We proposed a practical approach to minimize the effects of site amplifications among different volcano seismic networks, and compared the source amplitudes of these various volcano-seismic events with their seismic magnitudes. We found a proportional relation between seismic magnitude and the logarithm of the source amplitude. The ASL method can be used to determine source locations of small events for which onset measurements are difficult, and thus can estimate the sizes of events over a wider range of sizes compared with conventional hypocenter determination approaches. Previously, there has been no parameter widely used to quantify the sources of volcano-seismic signals. This study showed that the source amplitude determined by the ASL method may be a useful quantitative measure of volcano-seismic event size.

  4. Scaling and Transition of the Explosive Activity at Stromboli Volcano

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Marchetti, E.; Genco, R.; Lacanna, G.; Delle Donne, D.; Valade, S.; Ulivieri, G.

    2014-12-01

    Explosive activity at Stromboli volcano covers a wide energetic and temporal spectrum, spanning from small puffing to violent paroxysms and with the corresponding mass discharge rate ranging 7 orders of magnitude. At the lowest end, puffing activity is characterized by discrete small pulses of gas and fragments with limited excess pressure, driving gas and ejecta at the rate of 1 kg/s few meters high above the vents and repeating almost persistently at the rate of ~ 1 event every 2 seconds. With increasing mass discharge rate ordinary explosive activity (103 kg/s) is repeating every ~ few minutes ejecting hot lava fragments at ~200 m height whereas larger (Mayor) explosions are occurring every year with a mass eruptive rate of 105 kg/s driving progressively higher eruptive clouds at ~500 m above the vent. At the other end of the activity, the paroxysms have a mass discharge rate of 107 kg/s, driving the eruptive column up to few km above the crater and repeating at a rate of one event every ~10 years. Clear limits among these different eruptive styles have not been defined and the dynamics driving this broad explosive spectrum is still debated. We show how seismic, ground tilt and infrasonic data collected at Stromboli since 2008 for a total of ~24000 events provide a geophysical-based classification of explosive activity at Stromboli volcano highlighting changes in eruptive dynamics.

  5. The explosive activity of the Colima volcano in 2005

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nuñez-Cornu, F.; Diaz-Torres, J.

    2005-12-01

    The Colima volcano, Mexico, showed a new cycle of explosive activity beginning in March and April the 2005. This increased gradually and in May it appeared an explosive event which generated piroclastic flows on all flanks of the volcano. On May 23 a new dome was created, and it was observed from the Volcanological Observatory of the Nevado de Colima. Hours later its dome was destroyed by a strong explosion, which formed a column 3 km hight and piroclastic flows that reached a distance of 5 km on the ravines of the South sector. On May 30 the most intense explosion from 1999 occurred when the plume reached heights over 3.500 m above the crater, and piroclastic flows. In the month of June it generated four explosive events of characteristics similar to those of May. These constant explosions caused constant morphological changes on the top, being the most significant the collapse of the North and South walls of the crater in the first week of June, and the creation of a new crater in July. This activity was similar to the one shown in 1902-1903 and reported by Severo Diaz (1906), but without reaching the maximum levels of activity reported for 1903, where it had levels of three to five maximum explosive events per day. The explosions deposited great amount of nonconsolidated materials, like ash, lithics and rocks on the flanks of the volcano, which with the present rainy season have generated lahares, two in the month of June, ten in July and eight in August (RESCO reports). These have flowed in small flows on the ravines of La Lumbre, Montegrande, San Antonio and La Arena. None of them have caused damages until August, 2005.

  6. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.

    2009-12-01

    We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis

  7. Repetitive Long-Period Seismicity: Source Location and Mechanism Characteristics, Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Waite, G. P.

    2012-12-01

    Villarrica Volcano, Chile has an exposed magma free-surface, characterized by vigorous degassing ranging from small bubble bursts to Strombolian style slug bursting. Slug bursting events are characterized by both repetitive seismic and acoustic signals within the long-period (LP) band. We use the very repetitive nature of the low amplitude seismic LP signals to identify them with a matched filter on several persistent seismic stations, functional over the three year experiment duration. We stack the seismic and acoustic signals accompanying degassing to increase the signal to noise ratio, and tie signals measured 2010-2012 to produce a synthetic seismic network that recorded LP signals at a wide range of azimuths and distances from the source. Particle motions for most of the 21 stations were dominantly tangential, indicating the presence of a complex source geometry that deviated greatly from the logical axisymmetric geometry visible at the lave lake surface. We use the synthetic network to solve for the moment-tensor and location of the LP source, searching for the best source-time function using combinations of moment components, single force components, and both, for six different homogeneous half-space velocity models. Using the best source configuration and velocity model as a guide, we present forward models of reasonable geometries with geologic significance, including dikes, sills, pipes, and combination mechanisms to validate and test the sensitivity of the results of the free-inversion. Our results indicate that the current repetitive LP seismicity dominated by tangential particle motions is probably associated with relic fissure geometry from the last eruptive phase, and is caused by a conduit constriction through which large gas slugs pass (seismic emission) and subsequently burst at the surface (acoustic emission).

  8. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    NASA Astrophysics Data System (ADS)

    Francis, P. W.; Rothery, D. A.

    1987-07-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  9. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  10. Geodetic Observations and Numerical Models of Magmatic Activity at Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Galgana, G. A.; Newman, A. V.; Solidum, R. U.; Bacolcol, T.

    2009-12-01

    We present modeling results based on geodetic observations at Taal Volcano, an active, tholeiitic volcano situated in southwestern Luzon, Philippines. The ~25 km2 multi-vent stratovolcano is located inside a 30-km wide caldera lake, situated within a volcanic region affected by transtensional tectonics. Continuous dual- and single-frequency (L1) GPS observations from 1998-2005 of sites situated around the volcano reveal deformation pulses averaging 3-9 months in length, with inflationary phases producing > 200 mm/yr of surface extension accompanied by 120 mm uplift (in 2000), and about 73 mm/yr extension with 50 mm uplift in early 2005. We use a two-step modeling procedure to seek the sources for this rapid volcanic deformation: first, we use analytical models to determine the Mogi (small spherical) source of deformation, using inversions at selected periods when there are significant inflationary/deflationary changes observed by surface deformation measurements. We determine the best-fit Mogi source to be near the center of Volcano Island, at ~5 km below the surface, similar to that determined for all of the major deformation events. Then, based on the best-fit source locations, axisymmetric finite element models are constructed to represent crustal geometry at the vicinity of Taal volcano. The continuous GPS time series is then used to constrain forward models by estimating the pressurization history at the source, represented by a 1-kilometer radius spherical reservoir with annuli of concentric shells (modeled initially as elastic, then viscoelastic), embedded within a multi-layered elastic lithosphere. The deformation estimates are then statistically compared, with the best-fit forward models showing active patterns of pressure variations. Results show that purely elastic approximation of the volcanic lithosphere produces significantly higher pressure (or volume) change estimates of magma chamber inflation/deflation, as compared to models incorporating a time

  11. Location and Waveform Classification of Seismicity at Tungurahua Volcano (Ecuador) During the February and April 2014 Eruptive Phases

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Hartmann, J.; Hidalgo, S.; Douchain, J. M.; Cordova, J.; Alvarado, A. P.; Ruiz, M. C.; Parra, R.

    2015-12-01

    We examined 6 months of seismic recordings collected in 2014 during a temporary experiment carried at Tungurahua. This andesitic stratovolcano has been erupting since 1999 and its activity since late 2008 is characterized by the occurrence of eruptive phases lasting from few weeks to months, separated by quiescence periods. These phases have quite variable temporal evolutions. They include the emission of ash and gases with the occurrence of Strombolian to Vulcanian explosions. We use data from the temporary network and permanent monitoring network which includes 6 broadband and 6 short period stations. The temporary network was installed at the end of October 2013 to improve the density and azimuthal coverage. In 2014, it included 11 broadband stations located up to 4200 m elevation. This network is still running at the time of writing. We processed the data including the eruptive phases of February and April 2014 which started with major Vulcanian explosions generating plumes up to 13,000 m elevation and pyroclastic flows. We first applied waveform classification techniques to search for characteristic short period repeating events. Results outline the presence of several families mostly grouping explosion quakes (EQs) and Long Period events(LPs). We then focused on the location of the seismo-volcanic sources. Volcano-tectonic events are not frequent at Tungurahua. As suggested by waveform classification most of the seismicity is related to eruptive processes with EQs, LPs and tremors. To locate such signals which are often emergent or steady, we used a method based on the decay of the amplitude as a function of the distance. Amplitudes calculated at the different stations are corrected for site effect using coda site amplification factors. Approximating that seismic amplitudes decay as a function of distance as body waves in a homogeneous medium, we use an inversion technique to locate the source of the events. We used this technique to locate the source of

  12. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  13. Catalogue of satellite photography of the active volcanoes of the world

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1976-01-01

    A catalogue is presented of active volcanoes as viewed from Earth-orbiting satellites. The listing was prepared of photographs, which have been screened for quality, selected from the earth resources technology satellite (ERTS) and Skylab, Apollo and Gemini spacecraft. There is photography of nearly every active volcano in the world; the photographs are particularly useful for regional studies of volcanic fields.

  14. Active Source Tomography of Stromboli Volcano (Italy): Results From the 2006 Seismic Experiment.

    NASA Astrophysics Data System (ADS)

    Zuccarello, L.; Patanè, D.; Cocina, O.; Castellano, M.; Sgroi, T.; Favali, P.; de Gori, P.

    2008-12-01

    Stromboli island, located in the Southern Tyrrhenian sea, is the emerged part (about 900 m a.s.l.) of a 3km-high strato-volcano. Its persistent Strombolian activity, documented for over 2000 years, is sometimes interrupted by lava effusions or major explosions. Despite the amount of recent published geophysical studies aimed to clarifying eruption dynamics, the spatial extend and geometrical characteristics of the plumbing system remain poorly understood. In fact, the knowledge of the inner structure and the zones of magma storage is limited to the upper few hundreds meters of the volcanic edifice and P- and S-waves velocity models are available only in restricted areas. In order to obtain a more suitable internal structural and velocity models of the volcano, from 25 November to 2 December 2006, a seismic tomography experiment through active seismics using air-gun sources was carried out and the final Vp model is here presented. The data has been inverted for the Vp structure by using the code Simulps13q, considering a 3D grid of nodes spaced 0.5 km down to 2 km depth, beneath the central part of volcano. The results show a relatively high velocity zones located both in the inner part of the volcanic structure, at about 1km b.s.l. and in the last 200-300 m a.s.l. in correspondence with the volcanic conduit. Slower zones were located around the summit craters in agreement with volcanological and petrological informations for the area. The relatively high velocity zones could suggest the presence of intrusive bodies related to the plumbing system.

  15. Some insights about the activity of the Ceboruco Volcano (Nayarit, Mexico) from recent seismic low-frequency activity

    NASA Astrophysics Data System (ADS)

    Rodríguez Uribe, María Carolina; Núñez-Cornú, Francisco Javier; Nava Pichardo, Fidencio Alejandro; Suárez-Plascencia, Carlos

    2013-10-01

    The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the western end of the Mexican volcanic belt, near several population centers and by the side of a strategic highway. During the last 1,000 years it has had, on the average, one eruption every 125 years. It last eruptive activity began in 1870, and during the following 5 years it presented superficial activity including vapor emissions, ash falls, and rhyodacitic lava flows along the southeast side. A data set consisting of 139 low-frequency volcanic-type earthquakes, recorded from March 2003 to July 2008 at the CEBN triaxial short period digital station on the southwestern side of the volcano, was classified according to waveform and spectral characteristics into four families: short duration, extended coda, bobbin, and modulated amplitude. Approximate hypocentral locations indicate that there is no particular location for events of any family, but rather that all events occur at different points within the volcano. The presence of ongoing volcanic-earthquake activity together with the ongoing vapor emissions indicate that the Ceboruco volcano continues to be active, and the higher occurrence rates of short-duration events, as compared with those for the other families, could indicate an increase in the stress in the volcanic edifice. This apparent stress increase, together with the fact that the last eruption occurred 143 years ago, tell us that the Ceboruco may be approaching a critical state, and may represent a hazard to the surrounding communities and economic activities.

  16. Linking subsurface to surface degassing at active volcanoes: A thermodynamic model with applications to Erebus volcano

    NASA Astrophysics Data System (ADS)

    Iacovino, Kayla

    2015-12-01

    Volcanic plumbing systems are the pathways through which volatiles are exchanged between the deep Earth and the atmosphere. The interplay of a multitude of processes occurring at various depths in the system dictates the composition and quantity of gas eventually erupted through volcanic vents. Here, a model is presented as a framework for interpreting surface volcanic gas measurements in terms of subsurface degassing processes occurring throughout a volcanic plumbing system. The model considers all possible sources of fluid from multiple depths, including degassing of dissolved volatiles during crystallization and/or decompression as recorded in melt inclusions plus any co-existing fluid phase present in a magma reservoir. The former is achieved by differencing melt inclusion volatile contents between groups of melt inclusions saturated at discrete depths. The latter is calculated using a thermodynamic model, which computes the composition of a C-O-H-S fluid in equilibrium with a melt given a minimum of five thermodynamic parameters commonly known for natural systems (T, P, fO2, either fH2 or one parameter for H2O, and either fS2 or one parameter for CO2). The calculated fluids are thermodynamically decompressed and run through a mixing model, which finds all possible mixtures of subsurface fluid that match the chemistry of surface gas within ±2.0 mol%. The method is applied to Mount Erebus (Antarctica), an active, intraplate volcano whose gas emissions, which emanate from an active phonolitic lava lake, have been well quantified by FTIR, UV spectroscopy, and multi-gas sensors over the last several decades. In addition, a well-characterized suite of lavas and melt inclusions, and petrological interpretations thereof, represent a wealth of knowledge about the shallow, intermediate, and deep parts of the Erebus plumbing system. The model has been used to calculate the compositions of seven C-O-H-S fluids that originate from four distinct regions within the Erebus

  17. Satellite observations of Lava Lake activity at Nyiragongo volcano, ex-Zaire, during the Rwandan refugee crisis.

    PubMed

    Oppenheimer, C

    1998-09-01

    In June 1994 the summit crater of Nyiragongo volcano, located in the Great Lakes region of central Africa, began to fill with new lava, ending nearly 12 years of quiescence. An earlier eruption of the volcano in 1977 had culminated in the catastrophic draining of a lava lake through fissures in the crater wall, feeding highly mobile lava flows which reached the outskirts of Goma and killed more than 70 people. By July 1994, as many as 20,000 Hutu refugees were arriving in Goma every hour, only 18 km south from the summit of Nyiragongo. The exodus brought more than one million people to the camps near the town raising fears of a repeat of the 1977 eruption. This paper examines the role that satellite remote sensing could have played in surveillance of the volcano during this time, and demonstrates the potential for monitoring this and other volcanoes in the future. Images recorded by the spaceborne Advanced Very High Resolution Radiometer (AVHRR)--freely available over the Internet--provide semi-quantitative information on the activity of the volcano. The aim of this paper is to promote the wider use of readily available technologies. PMID:9753815

  18. Anomalous geomagnetic variations associated with the volcanic activity of the Mayon volcano, Philippines during 2009-2010

    NASA Astrophysics Data System (ADS)

    Takla, E. M.; Yoshikawa, A.; Kawano, H.; Uozumi, T.; Abe, S.

    2014-12-01

    Local anomalous geomagnetic variations preceding and accompanying the volcanic eruptions had been reported by several researchers. This paper uses continuous high-resolution geomagnetic data to examine the occurrence of any anomalous geomagnetic field variations that possibly linked with the volcanic eruption of the Mayon volcano, Philippines during 2009-2010. The nearest geomagnetic observing point from the Mayon volcano is the Legazpi (LGZ) station, Philippines; which is located about 13 km South of the Mayon volcano. The amplitude range of daily variations and the amplitude of Ultra Low Frequency emissions in the Pc3 range (Pc3; 10-45 s) were examined at the LGZ station and also were compared with those from the Davao (DAV) station, Philippines as a remote reference station. Both the LGZ and DAV stations belong to the MAGDAS Network. The result of data analysis reveals significant anomalous changes in the amplitude range of daily variations and the Pc3 amplitude at the LGZ station before and during the volcanic eruption of the Mayon volcano. From the obtained results, it appears that the observed anomalous variations are dependent on the change in the underground conductivity connected with variation in the physical properties of the Earth's crust due to the activity of the Mayon volcano. Therefore, these anomalous geomagnetic variations are considered to be of a local volcanic origin.

  19. Volcano Observations Using an Unmanned Autonomous Helicopter : seismic and GPS observations near the active summit area of Sakurajima and Kirishima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.

    2012-04-01

    Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to

  20. Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, P.; Whilldin, D.; Chouet, B.

    2004-01-01

    Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

  1. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  2. Zonation of North Alex Mud Volcano Highlighted by 3-D Active and Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Lefeldt, M. R.; Klaeschen, D.; Papenberg, C. A.; Brueckmann, W.

    2010-12-01

    The West Nile Delta forms part of the source of the large turbiditic Nile Deep Sea Fan. Since the late Miocene sediments have formed an up to 10 km thick pile, which includes about 1 - 3 km of Messinian evaporates. The sediment load of the overburden implies strong overpressures and salt-related tectonic deformation. Both are favourable for fluid migration towards the seafloor guided by the fractured margin. The western deltaic system, Rosetta branch, has formed an 80 km wide continental shelf. Here at 700 m water depth the mud volcano North Alex (NA) developed his circular bathymetric feature, which proved to be an active gas and mud-expelling structure. A 3-D high-resolution multichannel seismic survey (IFM-GEOMAR P-Cable system) was completed across the mud volcano. 3-D time migration provided a 3-D data cube with a 6.25 m grid. Vertical seismic sections did reveal a large set of faults located within the main mud volcano as well as surrounding the structure. Internal faults are mainly related to episodic mud expulsion processes and continuous gas and fluid production. Deep cutting external faults surround the structure in a half circle shape. Horizontal amplitude maps (time slices) of indicate recent activity of these faults even up to the seafloor. High gas saturation of the sediments is indicated by inverted reflection events. In the centre the gas front cuts into the seafloor reflection while it dips down with increasing radius. Only with the small grid resolution inward dipping reflections become visible, which form an upward opened concave reflector plane underlying the top gas front. The interpretation assumes an oval lens shaped body (conduit) saturated with gas at the top of the mud volcano. It provides the upper termination of the mud chimney. This separation is further supported by passive seismic observations. Distant earthquakes can stimulate long-period harmonic oscillations in mud volcanoes. Such oscillations are detectable with three

  3. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  4. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  5. Morphometric, acoustic and lithofacies characterization of mud volcanoes in the Eastern Mediterranean: Toward a new approach and classification to constrain the regional distribution and activity of mud volcanoes?

    NASA Astrophysics Data System (ADS)

    Flore, Mary; Sébastien, Migeon; Elia, d'Acremont; Alain, Rabaute; Silvia, Ceramicola; Daniel, Praeg; Christian, Blanpied

    2015-04-01

    On continental margins, several types of seabed features recording fluid circulation within the sediment column have already been recognized, including mud volcanoes, pockmarks, carbonates pavements and/or mounds and brine lakes. They can be associated to (a) thermogenic or biogenic fluids migrating along tectonic conduits, (b) dissociation of gas hydrates, or (c) dewatering of turbidite channels and mass-transport deposits. Although fluid-escape structures have been analyzed for the last two decades using diverse and complementary data, many questions are still debated about their morphologies/architectures, origin and formation, their temporal dynamic and the impact of the geodynamical context on their location/formation. In the Eastern Mediterranean, fluid seepages and in particular mud volcanoes, were identified in three geodynamical contexts including active margins (Calabrian accretionary prism and Mediterranean ridge) and highly-sedimented passive margin (Nil deep-sea fan). In this study, we follow a new approach allowing to (1) better quantify a broad set of morphological parameters that characterize the seabed fluid-escape structures, (2) propose an advance classification of these structures, the final goal being to test whether one or several morphological types of fluid-escape structures can be characteristic of one tectonic and sedimentological setting in the Eastern Mediterranean basin. To achieve this classification based on geophysical and geological analysis (morphometry, reflectivity, seismic r and lithofacies features), we used a broad homogenous dataset at the scale of the Eastern Mediterranean, including multibeam bathymetry, acoustic backscatter, 2D/3D seismic reflection, and sediment cores description and analysis. More than 500 mud volcano-like structures were identified based on one criterion or on the association of several criteria, while 40 of them were clearly proved to be mud volcanoes by coring. These structures exhibit different

  6. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  7. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  8. A synthesis of the recent activity of Galeras volcano, Colombia: Seven years of continuous surveillance, 1989 1995

    NASA Astrophysics Data System (ADS)

    Cortés J, Gloria Patricia; Raigosa A, Jaime

    1997-05-01

    The current period of re-activation since 1988 at Galeras volcano, Colombia, has been characterized mainly by the following events: (1) a semi-continuous series of Vulcanian eruptions during 5-9 May 1989; (2) emplacement of an andesitic lava dome at the bottom of the main crater in October-November 1991; (3) six vulcanian eruptions during 1992-1993, the first of which destroyed most of the dome on 16 July 1992; and (4) three volcano-tectonic seismic crises in April 1993, November-December 1993 and March 1995. During much of this seven-year period, several small ash and gas emissions also have taken place. The 4-9 May 1989 eruptions originated from the secondary crater El Pinta and deposited ash, lapilli and blocks in the crater area. The 1992-1993 eruptions originated from the main crater and were associated with obstruction of the conduit by magma from dome emplacement in late 1991, causing overpressurization of the system. For the 1992-1993 eruptions, pre-eruptive seismicity, deformation and SO 2 flux all exhibited very low levels. The eruptions were characterized by their sudden initiation, low intensity (VEI = 1), small eruption columns, and small volumes of erupted material. The source of the volcano-tectonic seismic crises is located approximately 3 km north and northeast of the crater. Some of these events were felt in Pasto and other towns located around the volcano, on one occasion causing loss of life, injuries and damage to buildings.

  9. Identifying hazard parameter to develop quantitative and dynamic hazard map of an active volcano in Indonesia

    NASA Astrophysics Data System (ADS)

    Suminar, Wulan; Saepuloh, Asep; Meilano, Irwan

    2016-05-01

    Analysis of hazard assessment to active volcanoes is crucial for risk management. The hazard map of volcano provides information to decision makers and communities before, during, and after volcanic crisis. The rapid and accurate hazard assessment, especially to an active volcano is necessary to be developed for better mitigation on the time of volcanic crises in Indonesia. In this paper, we identified the hazard parameters to develop quantitative and dynamic hazard map of an active volcano. The Guntur volcano in Garut Region, West Java, Indonesia was selected as study area due population are resided adjacent to active volcanoes. The development of infrastructures, especially related to tourism at the eastern flank from the Summit, are growing rapidly. The remote sensing and field investigation approaches were used to obtain hazard parameters spatially. We developed a quantitative and dynamic algorithm to map spatially hazard potential of volcano based on index overlay technique. There were identified five volcano hazard parameters based on Landsat 8 and ASTER imageries: volcanic products including pyroclastic fallout, pyroclastic flows, lava and lahar, slope topography, surface brightness temperature, and vegetation density. Following this proposed technique, the hazard parameters were extracted, indexed, and calculated to produce spatial hazard values at and around Guntur Volcano. Based on this method, the hazard potential of low vegetation density is higher than high vegetation density. Furthermore, the slope topography, surface brightness temperature, and fragmental volcanic product such as pyroclastics influenced to the spatial hazard value significantly. Further study to this proposed approach will be aimed for effective and efficient analyses of volcano risk assessment.

  10. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  11. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  12. Late-stage summit activity of Martian shield volcanoes

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.

    1982-01-01

    The preservation of morphologically fresh lava flows which pre-date the most recent episodes of caldera collapse at the summits of Ascraeus, Arsia and Olympus Montes indicates that explosive eruptions were not associated with this stage of Tharsis shield volcanism. The existence of resurfaced floor segments, complex wrinkle ridges, and lava terraces within the summit craters suggests that lava lakes comprised the dominant form of the intra-caldera activity. Multiple collapse episodes on Ascraeus and Olympus Montes are indicated by the nested summit craters. The most plausible cause of caldera collapse appears to be large-scale sub-terminal effusive activity, which is corroborated by the previously recognized existence of large lava flows on the flanks of these volcanoes. Due to the implied sequence of large-scale explosive (silicic) volcanism followed by effusive (basaltic) activity, it appears highly unlikely that ignimbrites or other forms of pyroclastic flows (previously proposed as possible deposits within the Olympus Mons aureole material) were ever erupted from the Tharsis Montes.

  13. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  14. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging ... the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of ...

  15. Observations of Active Volcanoes Using the EO-1 Satellite

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Wright, R.; Oppenheimer, C.; Geschwind, L. R.; Donegan, S.; Garbeil, H.

    2001-12-01

    Previous satellite observations of active volcanoes have been hampered by instruments that are primarily designed to measure surface reflectance of the Earth's vegetation. Sensors detecting radiation in the near-IR and IR are frequently saturated by highly radiant active volcanic features. Two satellite instruments, Hyperion and the Advanced Land Imager (ALI) on the Earth Observing -1 (EO-1) offer a means to circumvent saturation issues. Hyperion is a hyperspectral instrument that collects data in 242 narrow spectral bands between 0.4 and 2.5 microns and produces images that are 7.5 km x 100 km. For each 30m x 30m pixel, accurate atmospheric corrections and multiple component thermal models for lava flows can be generated. ALI is a Landsat-like instrument having 10 spectral bands at 0.4 - 2.35 microns. One of these, the 1.2 micron band, is sensitive to high temperature thermal anomalies such as overturning lava lakes and open lava channels. ALI also has a 10-m panchromtic band that allows for greater detailed mapping of volcanic features. ALI and Hyperion analyses for Erta Ale (Ethiopia), Mt. Etna (Sicily), Santiaguito (Guatemala), Popocatepetl (Mexico), and Mayon (Philippines) will be presented. While distribution of these data sets is limited to the EO-1 Science Team, the future of NASA's high spatial resolution terrestrial observation program will likely be based on a hybrid of these EO-1 sensors.

  16. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Rivalta, E.; Pinel, V.; Maccaferri, F.; Bagnardi, M.; Acocella, V.

    2015-12-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we show with numerical models that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observations. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control: 1) the shallow accumulation of magma in stacked sills, consistently with observations; 2) the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  17. Development of an automatic volcanic ash sampling apparatus for active volcanoes

    NASA Astrophysics Data System (ADS)

    Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko

    2013-12-01

    We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.

  18. Infrasound of basaltic effusive activity at Piton de la Fournaise Volcano

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Valade, Sebastien; Villeneuve, Nicolas; Peltier, Aline; Ferrazzini, Valérie; Di Muro, Andrea; Ripepe, Maurizio

    2016-04-01

    On August 24th 2015, a 67 days long eruptive activity started at Piton de la Fournaise Volcano. During the last phases of the eruption we deployed a portable, small aperture, infrasonic array which allowed us to record unprecedented data from effusive volcanic activity. The array consisted on four, few tens of meters spaced, infrasound pressure sensors and was installed on the outer rim of the Enclos Foqué, roughly 2.5 km far from the active vent, sited on the southern flank of the central cone. The system was almost continuously operating from October, 15th to December, 7th 2015, thus recording the end of the first eruptive phase (Autust 24th - October 17th) as well as the two short-living following phases (from 22 to 24 and from 29 to 31 October, 2015). The infrasound records have been coupled with discrete high-rate (30 Hz) thermal and visible imagery acquisitions located at a short distance from the vent (100-200 m) providing detailed information on the eruptive source dynamics. The comparison with seismic and ground tilt data recorded by the permanent network operated by the Observatoire Volcanologique du Piton de la Fournaise (OVPF), shows that infrasound can be succesfully used to locate the source, detect the onset, and the end, of the effusive phases as well as accurately track the time evolution of the effusive process. We present results which allows a detailed analysis of the shallow magma dynamics during the effusive activity at Piton de la Fournaise Volcano. As far as we know these are amongst the few rare infrasound dataset reported for this style of basaltic volcanic activity.

  19. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  20. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  1. Interpreting Low Spatial Resolution Thermal Data from Active Volcanoes on Io and the Earth

    NASA Technical Reports Server (NTRS)

    Keszthelyi, L.; Harris, A. J. L.; Flynn, L.; Davies, A. G.; McEwen, A.

    2001-01-01

    The style of volcanism was successfully determined at a number of active volcanoes on Io and the Earth using the same techniques to interpret thermal remote sensing data. Additional information is contained in the original extended abstract.

  2. Vailulu’u Seamount, Samoa: Life and death on an active submarine volcano

    PubMed Central

    Staudigel, Hubert; Hart, Stanley R.; Pile, Adele; Bailey, Bradley E.; Baker, Edward T.; Brooke, Sandra; Connelly, Douglas P.; Haucke, Lisa; German, Christopher R.; Hudson, Ian; Jones, Daniel; Koppers, Anthony A. P.; Konter, Jasper; Lee, Ray; Pietsch, Theodore W.; Tebo, Bradley M.; Templeton, Alexis S.; Zierenberg, Robert; Young, Craig M.

    2006-01-01

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu’u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu’u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu’u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  3. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  4. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    USGS Publications Warehouse

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  5. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Chouet, Bernard A.; Power, John

    2011-02-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

  6. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    USGS Publications Warehouse

    Dawson, P.B.; Chouet, B.A.; Power, J.

    2011-01-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data. Copyright 2011 by the American Geophysical Union.

  7. Research on identification of active volcano features based on Landsat TM/ETM+ imagery

    NASA Astrophysics Data System (ADS)

    Kong, Xiangsheng; Qian, Yonggang

    2009-10-01

    Volcanic activity can present unpredictable disasters to city populations living within regions and for people traveling in plane that intersect with ash-laden eruption clouds. Methods of monitoring volcanic activity include searching for variations in the thermal anomaly, clouds resource and subsidence deformation from active volcano. Over any active volcanoes, low spatial resolution satellite image are used to identify changes in eruptive activity, but are of insufficient spatial resolution to map active volcanic features. The Landsat data can be used to identify the thermal characteristics of a series of lava flows at Fuego volcano and Pacaya volcano, Guatemala. We use Landsat TM/ETM+ 7, 5, 4 (displayed in red, green, and blue, respectively) false-color composite of the research region, acquired on 18 December 1989 and 23 January 2000 to indicate the volcano image features which appear halo structure with blue red and yellow. The interpretation flag is obvious which indicate the difference temperature of volcano crater. Spatially varying haze emitted by volcano activity is identified and removed based on Improved Haze Optimized Transform (HOT) which is a robust haze assessing method. With improved spatial resolution in the thermal IR, we are able to map the bifurcation and braiding of underground lava tubes. With higher spatial resolution panchromatic data, we are able to map lava flow fields, trace very high temperature lava channels, and identify an accurate feature associated with a collapsed crater floor. At both Fuego and Pacaya, we are able to use the thermal data to estimate temperature. We can monitor the dynamic change of the two volcanoes using two difference date Landsat data.

  8. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    PubMed Central

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  9. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10‑6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  10. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    PubMed

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  11. Potentially active volcanoes of Peru - Observations using Landsat Thematic Mapper and Space Shuttle imagery

    NASA Technical Reports Server (NTRS)

    De Silva, S. L.; Francis, P. W.

    1990-01-01

    A synoptic study of the volcanoes of southern Peru (14-17 deg S), the northernmost part of the Central Volcanic Zone (CVZ 14-28 deg S) of the Andes, was conducted on the basis of Landsat TM images and color photography. The volcanoes were classified and their relative ages determined using subtle glacial-morphological features. Eight of them were postulated as potentially active. These are located in a narrow volcanic zone which probably reflects a steep dip of the Nazca plate through the zone of magma generation. The break in the trend of the volcanic arc possibly reflects the complexity of the crustal stress field above a major segment boundary in the subducting plate. There are also fields of mafic monogenetic centers in this region. In comparison with the southern part of the CVZ, the general paucity of older volcanic edifices north of 17 deg S suggested a more recent onset of volcanism, a possible result of the oblique subduction of the Nazca ridge and the consequent northward migration of its intersection with the Peru-Chile trench. This, together with the lack of any large silicic caldera systems and youthful dacite domes, suggested that there are real differences in the volcanic evolution of the two parts of the CVZ.

  12. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  13. Reawakening of a volcano: Activity beneath Eyjafjallajökull volcano from 1991 to 2009

    NASA Astrophysics Data System (ADS)

    Hjaltadóttir, Sigurlaug; Vogfjörd, Kristín S.; Hreinsdóttir, Sigrún; Slunga, Ragnar

    2015-10-01

    The ice-capped Eyjafjallajökull volcano, south Iceland, had been dormant for 170 years when the first signs of reawakening of the volcano were captured by seismic and geodetic measurements in 1994. These were the first clear observed signs of unrest followed by 16 years of intermittent magmatic unrest culminating in 2010 when two eruptions broke out on the flank and at the summit. We analyze seismic data from 1991 through 2008 and GPS data from 1992 to May 2009 to infer magma movements beneath the volcano. The relocated earthquakes reveal an overall pipe-like pattern northeast of the summit crater, sporadically mapping the pathway of magma from the base of the crust towards an intrusion in the upper crust. During the study period, three major seismic swarms were recorded. Two of them, in 1994 and 1999-2000, occurred in the upper and intermediate crust and accompanied crustal deformation centered at the southeastern flank. No uplift was detected during the 19- to 25-km-deep 1996 swarm, near the crust-mantle boundary, but the horizontal, ~ E-W oriented T-axes indicate a period of tension/opening, suggesting magma intruding up into the base of the crust. The GPS measured deformation during 1999-2000 can be modeled as intrusion of a horizontal, circular sill with volume of 0.030 ± 0.007 km3 at 5.0 ± 1.3 km depth. The less constrained 4.5- to 5-km-deep sill model for the 1994 episode indicates a three times smaller intruded volume (0.011 km3) than during 1999-2000. In the years between/following the intrusions, contraction was observed at the southeastern flank. The contraction from 2000.5 to 2009.3 can be fitted by a circular sill model with a volume contraction of - 0.0015 ± 0.0003 km3/year at 5.5 ± 2.0 km depth. The less well constrained model for 1994.7 to 1998.6 gives a volume contraction of -(0.0009-0.0010) km3 at a fixed depth of 5 km. The accumulated volume changes (~- 0.013 km3 for the second period, ~ 0.0037 km3 for the first period) are much larger than

  14. Blast waves from violent explosive activity at Yasur volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-12-01

    The violent Strombolian activity at Yasur volcano (Vanuatu) was recorded with infrasonic, seismic and thermal sensors. Infrasound array allowed to identify and stack ~3000 infrasonic and seismic transiensts of explosions from two distinct vents. The stacked seismic signals evidence a low-frequency (0.15 Hz) signal preceding of ~5-6 s the explosion that was hidden by the high seismic tremor and microseism. Infrasonic signals are self-similar presenting a stable strong asymmetry, with a sharp positive pressure (5-106 Pa) onset followed by a longer lasting negative rarefaction phase. Self-similarity and asymmetry of the recorded pressure waveforms are recalling blast waves. Regardless the pressure amplitude, ratio between the positive and negative phase is constant. This fit the Friedland waveform and support the blast wave model. Thermal imagery detects this pressure wave as soon as it exits the vent as a relative ~20 m thick cold front, which radiates spherically from the source. This front of apparent cold temperature is moving before the volcanic hot gas/fragments cloud at a velocity ranging between 342 and 403 m/s. We interpret this cold front as produced by the change of the atmospheric refraction index induced by the passage of the shock front. Assuming a supersonic dynamics, we calculate that the mean acoustic pressure (25 Pa) recorded at the array is generated by a a gas expansion velocity of 372 m/s equivalent to Mach number of 1.1. Our data are then suggesting that explosive activity at Yasur is able to generate blast waves indicating supersonic gas expansion. Blast waves are expected and well documented for Plinian and Vulcanian eruptions, but have never been recorded during Strombolian events. This evidence has a direct consequence on the source modeling of infrasonic transients explosions as it requires non-linear source dynamics to explain also small scale (VEI<2) explosive processes.

  15. Observed inflation-deflation cycles at Popocatepetl volcano using tiltmeters and its possible correlation with regional seismic activity in Mexico

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, M. G., Sr.; Jimenez Velazquez, J. C., Sr.; Valdes Gonzalez, C. M., Sr.; Reyes Pimentel, T. A.; Galaviz Alonso, S. A.

    2014-12-01

    Popocatepetl, the smoking mountain, is a stratovolcano located in central Mexico with an elevation of 5450 masl. The active volcano, close to some of the largest urban centers in Mexico - 60 km and 30 km far from Mexico City and Puebla, respectively - poses a high hazard to an estimated population of 500 thousand people living in the vicinity of the edifice. Accordingly, in July 1994 the Popocatepetl Volcanological Observatory (POVO) was established. The observatory is operated and supported by the National Center for Disaster Prevention of Mexico (CENAPRED), and is equipped to fully monitor different aspects of the volcanic activity. Among the instruments deployed, we use in this investigation two tiltmometers and broad-band seismometers at two sites (Chipiquixtle and Encinos), which send the information gathered continuously to Mexico City.In this research, we study the characteristics of the tiltmeters signals minutes after the occurrence of certain earthquakes. The Popocatepetl volcano starts inflation-deflation cycles due to the ground motion generated by events located at certain regions. We present the analysis of the tiltmeters and seismic signals of all the earthquakes (Mw>5) occurred from January 2013 to June 2014, recorded at Chipiquixtle and Encinos stations. First, we measured the maximum tilt variation after each earthquake. Next, we apply a band-pass filter for different frequency ranges to the seismic signals of the two seismic stations, and estimated the total energy of the strong motion phase of the seismic record. Finally, we compared both measurements and observed that the maximum tilt variations were occurring when the maximum total energy of the seismic signals were in a specific frequency range. We also observed that the earthquake records that have the maximum total energy in that frequency range were the ones with a epicentral location south-east of the volcano. We conclude that our observations can be used set the ground for an early

  16. Stable and unstable phases of elevated seismic activity at the persistently restless Telica Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Roman, Diana C.; Geirsson, Halldor; LaFemina, Peter; McNutt, Stephen R.; Muñoz, Angelica; Tenorio, Virginia

    2015-01-01

    Telica Volcano, Nicaragua, is a persistently restless volcano with daily seismicity rates that can vary by orders of magnitude without apparent connection to eruptive activity. Low-frequency (LF) events are dominant and peaks in seismicity rate show little correlation with eruptive episodes, presenting a challenge for seismic monitoring and eruption forecasting. A short period seismic station (TELN) has been operated on Telica's summit since 1993, and in 2010 the installation of a six-station broadband seismic and eleven-station continuous GPS network (the TESAND network) was completed to document in detail the seismic characteristics of a persistently restless volcano. Between our study period of November 2009 and May 2013, over 400,000 events were detected at the TESAND summit station (TBTN), with daily event rates ranging from 5 to 1400. We present spectral analyses and classifications of ~ 200,000 events recorded by the TESAND network between April 2010 and March 2013, and earthquake locations for a sub-set of events between July 2010 and February 2012. In 2011 Telica erupted in a series of phreatic vulcanian explosions. Six months before the 2011 eruption, we observe a sudden decrease in LF events concurrent with a swarm of high-frequency (HF) events, followed by a decline in overall event rates, which reached a minimum at the eruption onset. We observe repeated periods of high and low seismicity rates and suggest these changes in seismicity represent repeated transitions between open-system and closed-system degassing. We suggest that these short- and long-term transitions between open to closed-system degassing form part of a long-term pattern of stable vs. unstable phases at Telica. Stable phases are characterised by steady high-rate seismicity and represent stable open-system degassing, whereas unstable phases are characterised by highly variable seismicity rates and represent repeated transitions from open to closed-system degassing, where the system is

  17. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  18. Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014

    NASA Astrophysics Data System (ADS)

    Shevtsov, Boris M.; Firstov, Pavel P.; Cherneva, Nina V.; Holzworth, Robert H.; Akbashev, Renat R.

    2016-03-01

    According to World Wide Lightning Location Network (WWLLN) data, a sequence of lightning discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka. Information on the ash cloud motion was confirmed by the measurements of atmospheric electricity, satellite observations and meteorological and seismic data. It was concluded that WWLLN resolution is enough to detect the earlier stage of volcanic explosive eruption when electrification processes develop the most intensively. The lightning method has the undeniable advantage for the fast remote sensing of volcanic electric activity anywhere in the world. There is a good opportunity for the development of WWLLN technology to observe explosive volcanic eruptions.

  19. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  20. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Neal, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analyzed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analyzed using data from the European Remote Sensing Satellites (ERS), Japanese Earth Resources Satellite (JERS) and the U. S. Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  1. Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 -January 1977

    USGS Publications Warehouse

    Yuan, A.T.E.; McNutt, S.R.; Harlow, D.H.

    1984-01-01

    We examine seismic and eruptive activity at Fuego Volcano (14??29???N, 90?? 53???W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ??? 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes. Over 4000 A-type events were recorded January 3-7, 1977 (cumulative seismic energy ??? 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ?? 0.2 to 2.1 ?? 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions. During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ?? 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement. ?? 1984.

  2. Investigating the active hydrothermal field of Kolumbo Volcano using CTD profiling

    NASA Astrophysics Data System (ADS)

    Eleni Christopoulou, Maria; Mertzimekis, Theo; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve

    2014-05-01

    The submarine Kolumbo volcano NE of Santorini Island and the unique active hydrothermal vent field on its crater field (depth ~ 500 m) have been recently explored in multiple cruises aboard E/V Nautilus. ROV explorations showed the existence of extensive vent activity and almost completely absence of vent-specific macrofauna. Gas discharges have been found to be 99%-rich in CO2, which is sequestered at the bottom of the crater due to a special combination of physicochemical and geomorphological factors. The dynamic conditions existing along the water column in the crater have been studied in detail by means of temperature, salinity and conductivity depth profiles for the first time. CTD sensors aboard the ROV Hercules were employed to record anomalies in those parameters in an attempt to investigate several active and inactive vent locations. Temporal CTD monitoring inside and outside of the crater was carried out over a period of two years. Direct comparison between the vent field and locations outside the main cone, where no hydrothermal activity is known to exist, showed completely different characteristics. CTD profiles above the active vent field (NNE side) are correlated to Kolumbo's cone morphology. The profiles suggest the existence of four distinct zones of physicochemical properties in the water column. The layer directly above the chimneys exhibit gas discharges highly enriched in CO2. Continuous gas motoring is essential to identify the onset of geological hazards in the region.

  3. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  4. Subglacial melting associated with activity at Bárdarbunga volcano, Iceland, explored using numerical reservoir simulations

    NASA Astrophysics Data System (ADS)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís

    2015-04-01

    Increased seismic activity was observed within the caldera of Bárdarbunga, a central volcano beneath Vatnajökull glacier, on 16 August 2014. The seismicity traced the path of a lateral dyke, initially propagating to the south east of the volcano, before changing course and continuing beyond the northern extent of the glacier. A short fissure eruption occurred at the site of the Holuhraun lavas on 29 August, lasting for approximately 5 hours and producing less than 1 million cubic meters of lava, before recommencing in earnest on 31 August with the large effusive eruption, which is still ongoing at the time of writing. The glacier surface has been monitored aerially since the onset of heightened seismic activity, and the caldera and dyke propagation path surveyed using radar profiling. Ice cauldrons are shallow depressions which form on the glacier surface due to basal melting, as a manifestation of heat flux from below; the melting ice acts as a calorimeter, allowing estimations of heat flux magnitude to be made. Several cauldrons were observed outside the caldera, two to the south east of Bárdarbunga, and three located above the path of the dyke under the Dyngjujökull outlet glacier. The cauldrons range in volume from approximately 0.001 km3 to 0.02 km3. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved. The nature of the heat source required to generate the aforementioned cauldrons is not obvious and two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using analytical and finite element modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. A range of permeabilities has been explored. It is found that an intrusion of a dyke or sill into rocks where the groundwater is near or at the boiling point curve can

  5. Measuring volcanic gases at Taal Volcano Main Crater for monitoring volcanic activity and possible gas hazard

    NASA Astrophysics Data System (ADS)

    Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.

    2012-12-01

    Taal is an active volcano located in southwest Luzon, Philippines. It consists of mainly tuff cones which have formed an island at the center of a 30 km wide Taal Caldera. Most historical eruptions, since 1572 on Taal Volcano Island, have been characterized as hydromagmatic eruptions. Taal Main Crater, produced during the 1911 eruption, is the largest crater in the island currently filled by a 1.2 km wide, 85 m deep acidic lake. The latest historical eruption occurred in 1965-1977. Monitoring of CO2 emissions from the Main Crater Lake (MCL) and fumarolic areas within the Main Crater started in 2008 with a collaborative project between ITER and PHIVOLCS. Measurements were done by accumulation chamber method using a Westsystem portable diffuse fluxmeter. Baseline total diffuse CO2 emissions of less than 1000 t/d were established for the MCL from 3 campaign-type surveys between April, 2008 to March, 2010 when seismicity was within background levels. In May, 2010, anomalous seismic activity from the volcano started and the total CO2 emission from the MCL increased to 2716±54 t/d as measured in August, 2010. The CO2 emission from the lake was highest last March, 2011 at 4670±159 t/d when the volcano was still showing signs of unrest. Because CO2 emissions increased significantly (more than 3 times the baseline value) at this time, this activity may be interpreted as magmatic and not purely hydrothermal. Most likely deep magma intrusions occurred but did not progress further to shallower depths and no eruption occurred. No large increase in lake water temperature near the surface (average for the whole lake area) during the period when CO2 was above background, it remained at 30-34°C and a few degrees lower than average ambient temperature. Total CO2 emissions from the MCL have decreased to within baseline values since October, 2011. Concentrations of CO2, SO2 and H2S in air in the fumarolic area within the Main Crater also increased in March, 2011. The measurements

  6. Characterising Seismicity at Alutu, an Actively Deforming Volcano in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, M.; Nowacki, A.; Kendall, J. M.; Wookey, J. M.; Biggs, J.; Bastow, I. D.; Ayele, A.; Bedada, T.

    2013-12-01

    The Main Ethiopian Rift (MER) provides a unique example of the tectonic and volcanic processes occuring during the transition from continental rifting to oceanic spreading. Situated 100 km south of Addis Ababa along the eastern rift margin, Alutu is a silicic stratovolcano that geodetic measurements (InSAR and GPS) have shown is actively deforming. Though the volcano has received relatively little scientific attention it is also a site of economic significance as a geothermal power plant resides within the caldera. As part of ARGOS (Alutu Research Geophysical ObservationS), a multi-disciplinary project aiming to investigate the magmatic and hydrothermal processes occuring at Alutu, a seismic network of 12 broadband seismometers was deployed in January 2012. Other components of ARGOS include InSAR, GPS, geologic mapping and magnetotellurics. From the seismic dataset, P- and S-wave arrivals across the array were manually picked and used to locate events using a non-linear earthquake location algorithm (NonLinLoc) and a predefined 1D velocity model. Perturbations were later applied to this velocity model to investigate the sensitivity of the locations and evaluate the true uncertainties of the solutions. Over 1000 events were successfully located during 2012, where picks were possible at 4 or more stations. Seismicity clusters at both shallow depths (z<2 km) beneath the caldera and at deeper depths of 5-15 km. There is a significant increase in seismicity during the rainy months, suggesting the shallow events may be related to the hydrothermal system. We interpret the deeper events as being magmatic in origin. Events are also located along the eastern border faults that bound the outer edges of the MER and highlights that seismicity arises concurrently via tectonic processes. An adapted version of Richter's original local magnitude scale (ML) to account for attenuation within the MER (Keir et al., 2006) was then used to compute magnitudes for the best located events

  7. Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989-1990 eruptions at redoubt volcano, Alaska

    USGS Publications Warehouse

    Lahr, J.C.; Chouet, B.A.; Stephens, C.D.; Power, J.A.; Page, R.A.

    1994-01-01

    Determination of the precise locations of seismic events associated with the 1989-1990 eruptions of Redoubt Volcano posed a number of problems, including poorly known crustal velocities, a sparse station distribution, and an abundance of events with emergent phase onsets. In addition, the high relief of the volcano could not be incorporated into the hypoellipse earthquake location algorithm. This algorithm was modified to allow hypocenters to be located above the elevation of the seismic stations. The velocity model was calibrated on the basis of a posteruptive seismic survey, in which four chemical explosions were recorded by eight stations of the permanent network supplemented with 20 temporary seismographs deployed on and around the volcanic edifice. The model consists of a stack of homogeneous horizontal layers; setting the top of the model at the summit allows events to be located anywhere within the volcanic edifice. Detailed analysis of hypocentral errors shows that the long-period (LP) events constituting the vigorous 23-hour swarm that preceded the initial eruption on December 14 could have originated from a point 1.4 km below the crater floor. A similar analysis of LP events in the swarm preceding the major eruption on January 2 shows they also could have originated from a point, the location of which is shifted 0.8 km northwest and 0.7 km deeper than the source of the initial swarm. We suggest this shift in LP activity reflects a northward jump in the pathway for magmatic gases caused by the sealing of the initial pathway by magma extrusion during the last half of December. Volcano-tectonic (VT) earthquakes did not occur until after the initial 23-hour-long swarm. They began slowly just below the LP source and their rate of occurrence increased after the eruption of 01:52 AST on December 15, when they shifted to depths of 6 to 10 km. After January 2 the VT activity migrated gradually northward; this migration suggests northward propagating withdrawal of

  8. Recent Eruptive Activity at Etna Volcano Inferred by Borehole Strainmeters : Source Modeling and Magma Volume Balance

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Alessandro; Calvari, Sonia; Currenti, Gilda; Linde, Alan; Sacks, Selwyn

    2015-04-01

    After the end of the last effusive flank 2008-2009 eruption, in January 2011 the eruptive activity resumed at Etna producing a new phase with 44 lava fountain episodes through December 2013. Almost all the lava fountains had similar characteristics. The intensity of the initial strombolian explosions increased rapidly and the activity soon shifted to lava fountains. The paroxysmal phase was accompanied by increasing tephra emission with lava fountain reaching up to ~0.5-0.8 km above the crater and an eruption column rising several kilometers above the volcano summit before being dispersed by wind to the distal volcano flanks and by lava flow output. The paroxysmal episodes lasted a few hours and fed lava flows that expanded in the Valle del Bove depression with maximum lengths of 4-6 km. These eruptive episodes emitted much more magma than in the phases occurred in the previous decades. In November 2011, the first two borehole strainmeters, dilatometers type with nominal precision of ~ 10^10 - 10^11, were installed at Etna at ~180 m depth below the ground surface with distances from the summit central crater of 6 (DEGI) and 10 km (DRUV), respectively. During the paroxysmal events these high precision instruments detected negative strain changes indicating medium expansion at both sites. For each fountain episode the amplitude of the stain changes were almost similar with ~0.2 and ~1 μstrain at DRUV and DEGI, respectively. A Finite Element Model was set up to estimate accurately the tilt and volumetric strain, taking into account the real profile of the volcano and the elastic medium heterogeneity. The numerical computations indicated an elongated depressurizing source located at 0 km b.s.l., which underwent a volume change of ~2 × 106 m3 which is the most of the magma volume erupted, while a smaller remaining part (~0.5 × 106 m^3) is accommodated by the magma compressibility. This allowed to infer a representative average erupted volume of ~2.5 × 106 m3 for

  9. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  10. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Bagnardi, Marco; Acocella, Valerio

    2016-04-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we use numerical models to show that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observation. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control the shallow accumulation of magma in stacked sills, consistently with observations as well as the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  11. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity

    NASA Astrophysics Data System (ADS)

    Tárraga, Marta; Cruz-Reyna, Servando; Mendoza-Rosas, Ana; Carniel, Roberto; Martínez-Bringas, Alicia; García, Alicia; Ortiz, Ramon

    2012-06-01

    The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.

  12. Icelandic Volcanoes Geohazard Supersite and FUTUREVOLC: role of interferometric synthetic aperture radar to identify renewed unrest and track magma movement beneath the most active volcanoes in Iceland

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Spaans, Karsten; Drouin, Vincent; Sigmundsson, Freysteinn; Hooper, Andrew; Michalczewska, Karolina; Ófeigsson, Benedikt

    2014-05-01

    FUTUREVOLC is an integrated volcano monitoring project, funded by the European Commission (FP7) and led by the University of Iceland and the Icelandic Meteorological Office (IMO). The project is a European collaborative effort, comprising 26 partners, aimed at integrating ground based and satellite observations for improved monitoring and evaluation of volcanic hazards. Iceland has also recently been declared a Geohazard Supersite by the Committee on Earth Observation Satellites, based on its propensity for relatively frequent eruptions and their potentially hazardous, long ranging effects. Generating a long-term time series of ground displacements is key to gaining a better understanding of sub-volcanic processes, including the detection of new melt and migration of magma within the crust. The focus of the FUTUREVOLC deformation team is to generate and interpret an extended time series of high resolution deformation measurements derived from InSAR observations, in the vicinity of the four most active volcanoes in Iceland: Grímsvötn, Katla, Hekla and Bárdarbunga. A comprehensive network of continuous deformation monitoring equipment, led by IMO and collaborators, is already deployed at these volcanoes, including GPS, tilt and borehole strainmeters. InSAR observations are complementary to field based measurements and their high spatial resolution assists in resolving the geometry and location of the source of the deformation. InSAR and tilt measurements at Hekla indicate renewed melt supply to a sub-volcanic reservoir after the last eruption in 2000. Recent deformation studies utilising data spanning this eruption, have provided insight into the shallow plumbing system which may explain the large reduction in eruption repose interval following the 1970 eruption. Although InSAR and GPS observations at Katla volcano (between 2001 and 2009) suggest no indication of magma induced deformation outside the ice-cap, it is possible that a small flood at Mýrdalsjökull in

  13. An active ring fault detected at Tendürek volcano by using InSAR

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Sudhaus, H.; Holohan, E. P.; Walter, T. R.; Shirzaei, M.

    2013-08-01

    ring faults are present at many ancient, deeply eroded volcanoes, they have been detected at only very few modern volcanic centers. At the so far little studied Tendürek volcano in eastern Turkey, we generated an ascending and a descending InSAR time series of its surface displacement field for the period from 2003 to 2010. We detected a large (~105 km2) region that underwent subsidence at the rate of ~1 cm/yr during this period. Source modeling results show that the observed signal fits best to simulations of a near-horizontal contracting sill located at around 4.5 km below the volcano summit. Intriguingly, the residual displacement velocity field contains a steep gradient that systematically follows a system of arcuate fractures visible on the volcano's midflanks. RapidEye satellite optical images show that this fracture system has deflected Holocene lava flows, thus indicating its presence for at least several millennia. We interpret the arcuate fracture system as the surface expression of an inherited ring fault that has been slowly reactivated during the detected recent subsidence. These results show that volcano ring faults may not only slip rapidly during eruptive or intrusive phases, but also slowly during dormant phases.

  14. Active volcanoes observed through Art: the contribution offered by the social networks

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Neri, Emilia

    2015-04-01

    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  15. Linking observations at active volcanoes to physical processes through conduit flow modelling

    NASA Astrophysics Data System (ADS)

    Thomas, Mark; Neuberg, Jurgen

    2010-05-01

    Low frequency seismic events observed on volcanoes such as Soufriere hills, Montserrat may offer key indications about the state of a volcanic system. To obtain a better understanding of the source of these events and of the physical processes that take place within a volcano it is necessary to understand the conditions of magma a depth. This can be achieved through conduit flow modelling (Collier & Neuberg, 2006). 2-D compressible Navier-Stokes equations are solved through a Finite Element approach, for differing initial water and crystal contents, magma temperatures, chamber overpressures and geometric shapes of conduit. In the fully interdependent modelled system each of these variables has an effect on the magma density, viscosity, gas content, and also the pressure within the flow. These variables in turn affect the magma ascent velocity and the overall eruption dynamics of an active system. Of particular interest are the changes engendered in the flow by relativity small variations in the conduit geometry. These changes can have a profound local effect of the ascent velocity of the magma. By restricting the width of 15m wide, 5000m long vertical conduit over a 100m distance a significant acceleration of the magma is seen in this area. This has implications for the generation of Low-Frequency (LF) events at volcanic systems. The strain-induced fracture of viscoelastic magma or brittle failure of melt has been previously discussed as a possible source of LF events by several authors (e.g. Tuffen et al., 2003; Neuberg et al., 2006). The location of such brittle failure however has been seen to occur at relativity shallow depths (<1000m), which does not agree with the location of recorded LF events. By varying the geometry of the conduit and causing accelerations in the magma flow, localised increases in the shear strain rate of up to 30% are observed. This provides a mechanism of increasing the depth over witch brittle failure of melt may occur. A key observable

  16. Coupling of Activity at Neighbouring Volcanoes in Iceland: Ground Deformation and Activity at the Bárðarbunga-Tungnafellsjökull and Eyjafjallajökull-Katla Volcano Pairs

    NASA Astrophysics Data System (ADS)

    Parks, M.; Heimisson, E. R.; Sigmundsson, F.; Hooper, A. J.; Ofeigsson, B.; Vogfjord, K. S.; Arnadottir, T.; Dumont, S.; Drouin, V.; Bagnardi, M.; Spaans, K.; Hreinsdottir, S.; Friðriksdóttir, H. M.; Jonsdottir, K.; Guðmundsson, G.; Hensch, M.; Hjaltadottir, S.; Hjartardottir, A. R.; Einarsson, P.; Gudmundsson, M. T.; Hognadottir, T.; Lafemina, P.; Geirsson, H.; Sturkell, E.; Magnússon, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) techniques are used to generate a time series of high-resolution deformation measurements, in the vicinity of two pairs of closely spaced volcanoes in Iceland: Bárðarbunga and Tungnafellsjökull, as well as Eyjafjallajökull and Katla. Following the declaration of Icelandic Volcanoes as a Permanent Geohazard Supersite in 2013, a considerable amount of SAR data was made available for both past and future satellite acquisitions, including new X-band images and historic C-band images. InSAR time series have been formed using these data and compared to other geodetic and microseismic measurements to determine the most likely processes responsible for recently observed deformation and/or seismicity. A comprehensive network of seismometers and continuous GPS stations are already deployed at these volcanoes and a series of campaign GPS measurements have been undertaken since 2010. We present an overview of the temporal variation in InSAR observations and these complementary field based measurements at Bárðarbunga and Tungnafellsjökull from 2014-2015 (covering the recent eruption at Holuhraun and contemporaneous slow collapse of the Bárðarbunga caldera), and Eyjafjallajökull and Katla volcanoes from 2010 onwards, after the 2010 explosive eruption of Eyjafjallajökull. We undertake a joint InSAR-GPS inversion using a Markov-chain Monte Carlo approach. The best-fit source geometries responsible for both the inflation of a 50 km long dyke and simultaneous deflation of the Bárðarbunga central volcano during the 2014-2015 unrest and eruption are found. Using these we calculate the stress changes associated with the Bárðarbunga deformation events and compare our results to the location of earthquake swarms in the vicinity of neighbouring Tungnafellsjökull, where seismic activity increased significantly following the onset of unrest at Bárðarbunga in August 2014. We also determine the optimal source parameters for

  17. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  18. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. A Wireless Seismoacoustic Sensor Network for Monitoring Activity at Volcano Reventador, Ecuador

    NASA Astrophysics Data System (ADS)

    Welsh, M.; Werner-Allen, G.; Lorincz, K.; Marcillo, O.; Ruiz, M.; Johnson, J.; Lees, J. M.

    2005-12-01

    We developed a wireless sensor network for monitoring seismoacoustic activity at Volcano Reventador, Ecuador. Wireless sensor networks are a new technology and our group is among the first to apply them to monitoring volcanoes. The small size, low power, and wireless communication capabilities can greatly simplify deployments of large sensor arrays. The network consisted of 16 wireless sensor nodes, each outfitted with an 8 MHz CPU (TI MSP430) and a 2.4 GHz IEEE 802.15.4 radio (Chipcon CC2420) with data rates up to 80 Kbps. Each node acquired acoustic and seismic data at 24-bit resolution, with a microphone and either a single-axis geophone or triaxial short-period seismometer. Each node is powered by two D-cell batteries with a lifetime of about 1 week, and measures 18 x 10 x 8 cm. Nodes were distributed radially from the vent over a 3 km aperture. Control and data messages are relayed via radio to a base station node, with inter-node distances of up to 420 m. The base station transmits data using a FreeWave radio modem, via a repeater, to a laptop located 4 km from the deployment site. Each node samples continuous sensor data and a simple event-detection algorithm is used to trigger data collection. When a sensor detects an event, it relays a short message to the base station via radio. If several nodes report an event within a short time interval, the last 60 seconds of data is downloaded from each node in turn. One of the sensor nodes is programmed to transmit continuous data; due to limited radio bandwidth, it is not possible to collect continuous data from all nodes in the array. A GPS receiver and time synchronization protocol is used to establish a global timebase across all sensor nodes.

  20. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (<10 km depth). The tomographic model reveals a low-velocity feature between 3 and 5 km depth that lies beneath the caldera, consistent with a magma body. In contrast to earlier tomographic studies, where elevated temperatures were sufficient to explain the recovered low velocities, the larger amplitude low-velocity anomalies in our joint tomography model require low degrees of partial melt (˜10%), and a minimum melt volume of ˜2.5 km3. Furthermore, synthetic tests suggest that even greater magnitude low-velocity anomalies, and by inference larger volumes of magma (up to 8 km3), are needed to explain the observed waveform variability. The lateral extent and shape of the inferred magma body indicates that the extensional tectonic regime at Newberry influences the emplacement of magmatic intrusions. Our study shows that jointly inverting active source and passive source seismic data improves tomographic imaging of the shallow crustal seismic structure of volcanic systems and that active source experiments would benefit from longer deployment times to also record teleseismic sources.

  1. Volcano-hydrothermal activity detected by precise levelling surveys at the Tatun volcano group in Northern Taiwan during 2006-2013

    NASA Astrophysics Data System (ADS)

    Murase, Masayuki; Lin, Cheng-Hong; Kimata, Fumiaki; Mori, Hitoshi; Pu, Hsin-Chieh

    2014-10-01

    Precise levelling surveys were conducted from 2006 to 2013 on three levelling routes in the Tatun volcano group (TVG) located approximately 15 km northeast of Taipei, to detect deformation in relation to the volcano-hydrothermal activities of the TVG. Uplift was detected around the most active fumarole, Tayoukeng fumarole, throughout the period 2007 to 2011; the uplift rate throughout the period from March 2009 to March 2011 was reduced in comparison to the rate between 2007 and 2009. Following this, a dormant state or a small amount of subsidence was detected in the period March 2011 to March 2013. And throughout the period from June 2006 to March 2013, subsidence was centred on an area 0.5 km east of the summit of Mt. Cising, the highest peak in the TVG. A model of two spherical sources was therefore estimated from the deformation recorded from August 2007 to March 2011, using a genetic algorithm. A deflation source was obtained about 0.5 km northeast of Mt. Cising at a depth of 2 km; and an inflation source was situated approximately 1 km south of the Tayoukeng fumarole at a depth of 0.7 km. Based on previous seismic and AMT studies, the estimated sources are interpreted as being hydrothermal reservoirs. Because almost all the benchmarks around Mt. Cising show subsidence at a constant speed, we conclude that the deeper hydrothermal reservoir at a depth of 2 km may have been releasing hydrothermal fluid at a constant rate throughout the period from 2006 to 2013. However, it was suggested that in 2011 the shallower hydrothermal reservoir at a depth of 0.7 km changed from an inflation state to a dormant state (or small deflation) based on temporal vertical changes around Tayoukeng fumarole. A possible model for the volcano-hydrothermal system is therefore proposed. It is considered that the hydrothermal fluid may be supplied intermittently from the magma chamber to the deeper hydrothermal reservoir at a depth of 2 km (although this type of fluid input event may not

  2. Evaluating life-safety risk of fieldwork at New Zealand's active volcanoes

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia; Jolly, Gill; Taig, Tony; Webb, Terry

    2014-05-01

    Volcano observatories monitor active or potentially active volcanoes. Although the number and scope of remote monitoring instruments and methods continues to grow, in-person field data collection is still required for comprehensive monitoring. Fieldwork anywhere, and especially in mountainous areas, contains an element of risk. However, on volcanoes with signs of unrest, there is an additional risk of volcanic activity escalating while on site, with potentially lethal consequences. As an employer, a volcano observatory is morally and sometimes legally obligated to take reasonable measures to ensure staff safety and to minimise occupational risk. Here we present how GNS Science evaluates life-safety risk for volcanologists engaged in fieldwork on New Zealand volcanoes with signs of volcanic unrest. Our method includes several key elements: (1) an expert elicitation for how likely an eruption is within a given time frame, (2) quantification of, based on historical data when possible, given a small, moderate, or large eruption, the likelihood of exposure to near-vent processes, ballistics, or surge at various distances from the vent, and (3) estimate of fatality rate given exposure to these volcanic hazards. The final product quantifies hourly fatality risk at various distances from a volcanic vent; various thresholds of risk (for example, zones with more than 10-5 hourly fatality risk) trigger different levels of required approval to undertake work. Although an element of risk will always be present when conducting fieldwork on potentially active volcanoes, this is a first step towards providing objective guidance for go/no go decisions for volcanic monitoring.

  3. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    USGS Publications Warehouse

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  4. Hydrogochemical tools for monitoring active volcanoes: Applications to El Chichón volcano, México.

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; de La Cruz-Reyna, S.; Ramos, S.; Morton, O.; Ceniceros, N.; Aguayo, A.; Cruz, O.

    2010-03-01

    In 1982, a series of eruptions resulted in the worst disaster linked with volcanic activity in México. The characteristics of the phenomena together with a lack of prevention measures resulted in approximately 2000 deaths. An important aspect to prevent disasters is a thorough knowledge and monitoring of the potentially destructive natural phenomena. Monitoring the activity of dormant or active volcanoes by various methods is thus a key measure to estimate the hazard and design adequate risk reduction measures. Despite of the 1982 volcanic disaster, until only a few years, hydrogeochemical monitoring was the only regular surveillance of El Chichón post-eruptive activity. The first samples of the crater-lake water were collected by Casadevall et al. in 1983. Since 1985, a systematic sampling and chemical analyses program has been carried out by the Geophysics Institute in collaboration with local authorities from the State of Chiapas. Chemical analyses of main ions and Rare Earth elements (REE) are performed in the Laboratorio de Química Analítica and Laboratorio ICP-MS of the Instituto de Geofísica, UNAM. Results are interpreted considering the physico-chemical changes that may be recognized as precursors of volcanic activity. The problem is difficult because at least two main water reservoirs feed the crater lake; besides, dissolution of acid volcanic gases, water-rock interactions and geochemical processes among dissolved species have resulted in a complex chemical behavior of the lake-water along the years. The calculated degree of neutralization, pH values, and chloride and sulfate concentrations of samples taken at different dates result in a classification of the volcano as active or inactive according to the method developed by Varekamp. A pH of 0.5, very high conductivity and a temperature of about 50°C characterized the first years following the eruptions. An overall decrease on the temperature and ionic concentrations, along with a less acid p

  5. Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Connor, Laura J.; Cañon-Tapia, Edgardo; Le Corvec, Nicolas

    2013-12-01

    Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ˜700 km long (N-S) and 70 to 150 km wide (W-E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10-1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10-2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW-SE and N-S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE-SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate

  6. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    NASA Astrophysics Data System (ADS)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  7. Subsurface mass migration at active volcanoes: what we learnt from the VOLUME project

    NASA Astrophysics Data System (ADS)

    Saccorotti, G.; Volume Team

    2009-04-01

    Movements of multiphase fluids beneath active volcanoes are generally detected at the surface in terms of changes in geophysical and geochemical observables. The prompt detection and interpretation of such signals thus represent a crucial step toward the short-term evaluation of volcanic hazard. Funded through the European 6th framework program, the VOLUME project joined 19 institutions from 6 EU and 5 extra-european countries under the common goal of improving our understanding of how subsurface mass movement manifests itself at the surface, in turn revealing the significance of such movements as precursors to impending eruptions. We integrated high-end experimental procedures with a robust modeling framework to address some of the most relevant issues of modern, quantitative volcanology. In particular, our studies focused on: (i) Unrevealing the complex interplay between hydrothermal and magmatic fluids in generating the observed geophysical / geochemical signals, (ii) Detailing the location, geometry and dynamics of magma pathways and storage zones (iii) Probing variations of the elastic parameters of volcanic media in response to stress changes induced by mass migration, and (iv) Developing a robust computational framework for forward-modelling the geophysical observables resulting from the dynamics of multiphase magmatic systems. VOLUME activities developed at both european and extra-european volcanoes. We present here the most striking results obtained at two italian test-sites, namely Etna and Campi Flegrei, for which we had available data sets of unprecedented sensitivity and temporal resolution. Results from Etna include a) mapping of the shallow plumbing system from Moment-Tensor inversion of broadband seismic signal, b) the detection of deep magma intrusion from inversion of joint gravity-tremor anomalies; c) the measurement of changes in both elastic anisotropy and seismic velocity concomitant to the waning stage of the 2002 NE flank lava effusion; and

  8. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  9. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  10. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  11. Volcanic activity and satellite-detected thermal anomalies at Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. A large nuee ardente eruption occurred at Santiaguito volcano, within the test area on 16 September 1973. Through a system of local observers, the eruption has been described, reported to the international scientific community, extent of affected area mapped, and the new ash sampled. A more extensive report on this event will be prepared. The eruption is an excellent example of the kind of volcanic situation in which satellite thermal imagery might be useful. The Santiaguito dome is a complex mass with a whole series of historically active vents. It's location makes access difficult, yet its activity is of great concern to large agricultural populations who live downslope. Santiaguito has produced a number of large eruptions with little apparent warning. In the earlier ground survey large thermal anomalies were identified at Santiaguito. There is no way of knowing whether satellite monitoring could have detected changes in thermal anomaly patterns related to this recent event, but the position of thermal anomalies on Santiaguito and any changes in their character would be relevant information.

  12. Inside active volcanoes; an exhibit on the move!

    USGS Publications Warehouse

    Fiske, R.S.

    1990-01-01

    All of us are aware of the emphasis currently being placed in the United States on science education and public understanding of science. Most of this emphasis is directed toward mass audiences through book publications, school curricula, and television programs; sadly, most of it deals with non-earth science topics. In an effort to take advantage of this awakened consciousness and to highlight the earth sciences, the Smithsonian Institution and the U.S Geological Survey joined forces to prepare a traveling exhibit on volcanoes that is currently touring the country. This note will serve to bring you up to date on the progress of this exhibit as it reaches the mid-point of its tour. 

  13. Cotopaxi volcano's unrest and eruptive activity in 2015: mild awakening after 73 years of quiescence

    NASA Astrophysics Data System (ADS)

    Hidalgo, Silvana; Bernard, Benjamin; Battaglia, Jean; Gaunt, Elizabeth; Barrington, Charlotte; Andrade, Daniel; Ramón, Patricio; Arellano, Santiago; Yepes, Hugo; Proaño, Antonio; Almeida, Stefanie; Sierra, Daniel; Dinger, Florian; Kelly, Peter; Parra, René; Bobrowski, Nicole; Galle, Bo; Almeida, Marco; Mothes, Patricia; Alvarado, Alexandra

    2016-04-01

    Cotopaxi volcano (5,897 m) is located 50 km south of Quito, the capital of Ecuador. The most dangerous hazards of this volcano are the devastating lahars that can be generated by the melting of its ice cap during pyroclastic flow-forming eruptions. The first seismic station was installed in 1976. Cotopaxi has been monitored by the Instituto Geofísico (Escuela Politécnica Nacional) since 1983. Presently the monitoring network is comprised of 11 broadband and 5 short period seismometers, 4 scanning DOAS, 1 infrared and 5 visible cameras, 7 DGPS, 5 tiltmeters, 11 AFM (lahar detectors) and a network of ashmeters. Due to the recent unrest, the monitoring of the volcano has been complemented by campaign airborne Multi-GAS and thermal IR measurements and ground-based mobile DOAS and stationary solar FTIR. After 73 years of quiescence, the first sign of unrest was a progressive increase in the amplitude of transient seismic events in April 2015. Since May 20, an increase in SO2 emissions from ˜500 t/d to ˜3 kt/day was detected followed by the appearance of seismic tremor on June 4. Both SO2 emissions of up to 5 kt/day and seismic tremor were observed until August 14 when a swarm of volcano-tectonic earthquakes preceded the first phreatic explosions. These explosions produced ash and gas columns reaching up to 9 km above the crater. The ash fall produced by the opening phase covered over 500 km2 with a submillimetric deposit corresponding to a mass of 1.65E+8 kg (VEI 1). During this period of explosions, SO2 emission rates up to 24 kt/day were observed, the highest thus far. The ash was dominantly hydrothermally altered and oxidized lithic fragments, hydrothermal minerals (alunite, gypsum), free crystals of plagioclase and pyroxenes, and little juvenile material. Unrest continued after August 14, with three episodes of ash emission. However, the intensity of ash fallout, average seismic amplitude, and SO2 emissions during each successive episode progressively decreased

  14. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  15. Intense Seismic Activity at Chiles and Cerro Negro Volcanoes on the Colombia-Ecuador Border

    NASA Astrophysics Data System (ADS)

    Torres, R. A.; Cadena, O.; Gomez, D.; Ruiz, M. C.; Prejean, S. G.; Lyons, J. J.; White, R. A.

    2015-12-01

    The region of Chiles and Cerro Negro volcanoes, located on the Colombian-Ecuadorian border, has experienced an ongoing seismic swarm beginning in Aug. 2013. Based on concern for local residents and authorities, a cooperative broadband monitoring network was installed by the Servicio Geológico Colombiano in Colombia and the Instituto Geofísico of the Escuela Politécnica Nacional in Ecuador. Since November 2013 more than 538,000 earthquakes were recorded; although since May 2015 the seismicity has decreased significantly to an average of 70 events per day. Three large earthquake swarms with increasing energy occurred in Aug.-Oct. 2013, March-May 2014, and Sept.-Dec. 2014. By the end of 2014, roughly 400 earthquakes greater than M 3 had occurred with a maximum rate of 8000 earthquakes per day. The largest earthquake was a 5.6 ML on Oct. 20, 2014. This event produced an InSAR coseismic deformation of ~23 cm (S. Ebmeier, personal communication). Most events are typical brittle failure volcano-tectonic (VT) earthquakes that are located in a cluster beneath the southern flank of Chiles volcano, with depths between 1.5 and 10 km. Although the great majority of earthquakes are VT, some low-frequency (LF, ~0.5 Hz) and very-low-frequency (VLF) events have occurred. Particle motion analysis suggests that the VLF source migrated with time. While a VLF on Oct. 15, 2014 was located south of Chiles volcano, near the InSAR source, the VLF registered on Feb. 14, 2015 was likely located very close to Chiles Volcano. We infer that magma intrusion and resulting fluid exsolution at depths greater than 5 km are driving seismicity in the Chiles-Cerro Negro region. However earthquakes are failing in a manner consistent with regional tectonics. Relative relocations reveal a structure consistent with mapped regional faults. Thus seismicity is likely controlled by an interaction of magmatic and tectonic processes. Because the regional stress field is highly compressional and the volcanoes

  16. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  17. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments. PMID:27315168

  18. Time Variation of Seismic Anisotropy, Stress and Cracks on Active Volcanoes (Invited)

    NASA Astrophysics Data System (ADS)

    Savage, M. K.

    2013-12-01

    We summarize measurements of seismic anisotropy and its relation to other geophysical measurements of stress and cracks on eleven active volcanoes; Unzen (Unz), Sakurajima (Sak), Aso, Asama (Asm) and Kirishima (Kir) in Japan; Okmok (Okm) in Alaska, Ruapehu (Rua) and Tongariro (Ton) in New Zealand, Soufriere Hills (Sou) in Montserrat, Kilauea (Kil) in Hawaii and Piton de la Fournaise (PdF) in La Reunion. We used the MFAST shear wave splitting computer code, an objective code that is fully automatic except for the S arrival pick. Fast polarization directions (phi) should be parallel to cracks and hence the maximum horizontal stress direction. Time delays (dt) increase with path length and percent anisotropy, usually related to crack density. Where possible we used S waves from deep earthquakes to ensure that the movement of the earthquakes was not correlated with the volcanic activity. At some volcanoes we used families of repeating events with similar waveforms and at most volcanoes we also computed splitting at earthquakes local to the volcano. We compared the phi and dt variation in time to eruption occurrences and to other available parameters including seismicity rate, b-values, focal mechanisms, isotropic velocity changes from noise cross-correlation, Vp/Vs ratios, Geodetic measurements such as GPS and tilt, and gas flux. All volcanoes had some stations with excellent shear wave arrivals that yielded measureable splitting. Individual measurements showed scatter in most areas, but at most of the volcanoes, moving averages of phi or dt (or both) yielded time variations that correlated with other measurements related to volcanic activity or to stress changes or changes in crack-filling material such as gas flux. The multiplet studies did not yield slowly varying splitting but instead showed distinct jumps in splitting parameters at various times, which appears to be caused in part by cycle skipping. Time resolution of changes depends on the seismicity available

  19. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea).

    PubMed

    Pachiadaki, Maria G; Lykousis, Vasilios; Stefanou, Euripides G; Kormas, Konstantinos A

    2010-06-01

    We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers. PMID:20370830

  20. Smithsonian Volcano Data on Google Earth

    NASA Astrophysics Data System (ADS)

    Venzke, E.; Siebert, L.; Luhr, J. F.

    2006-12-01

    Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website (www.volcano.si.edu) and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that

  1. BrO/SO2 ratios at Popocatepetl volcano during increased activity in 2012

    NASA Astrophysics Data System (ADS)

    Fickel, M.; Delgado Granados, H.

    2012-12-01

    Since its reactivation in 1994 after many decades of inactivity, Popocatepetl volcano has been showing long periods of quiescent degassing and some events of intensified activity in connection with dome building and destruction processes. During a period of increased activity of the volcano, which began in April 2012, mobile ultraviolet DOAS measurements and stationary DOAS scans were performed to quantify SO2 fluxes and BrO/SO2 ratios within the volcanic plume. The results of these measurements are presented in the context of the volcanic activity, which consisted of increased emission of gas and ash and Vulcanian type explosions. In general, SO2 emissions were high during the period April-June 2012 and so the BrO emissions, however, the BrO/SO2 ratios did not change strongly before, during and after the increased activity.

  2. Magnetic precursors to the 2013 eruptive activity at Popocatepetl Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Martin, A.; Gonzalez, E.; Cifuentes-Nava, G.; HernaNdez-Quintero, J.; Flores, A.

    2013-12-01

    Popocateptl volcano, 60km from Mexico City, has been erupting since 1994 with periods of more intense activity. Volcanomagnetic signals at Popocatepetl have been correlated with different volcanic phenomena especially ascent of several magma batches in pulses lasting several hours that precede increasing seismicity at the volcano. Data from the TL magnetic station on the northern flank of the volcano at 4000masl and from the CPX station at the same altitude on the southwestern flank are processed with the data from the TEO base station (weighted differences) in order to remove signals not associated with the volcano. Short term negative volcanic anomalies around 10nT preceded sharp increases in seismicity and copious ash emission during April and May 2013. They were correlated with periods of harmonic tremor and interpreted as new ascending magma batches, below the Curie point. A longer term descending magnetic trend from February on, is of thermomagnetic origen and is associated with the more mafic andesite compositions of the ash which contain higher MgO and are consistent with influx of deeper magma at higher magmatic temperatures. Sharp positive magnetic peaks are related both with explosions and seismic events, while sustained steps of positive anomalies are related with dome growth and cooling

  3. Location and wavefield attributes of long-period signals at Villarrica volcano (Chile) determined by array and polarization-moveout analysis

    NASA Astrophysics Data System (ADS)

    Lehr, Johanna; Thorwart, Martin; Rabbel, Wolfgang

    2016-04-01

    Villarrica Volcano is the most active volcano in Chile whose latest eruption occurred in March 2015. Increasing the knowledge on its processes, structure and behavior is thus crucial to an effective monitoring and hazard assessment. In this context, long-period volcanic signals (LP) are considered to be a key to the understanding of fluid dynamics and volcanic plumbing systems, accessible by seismological observations. However, standard seismological location tools usually fail due to the emergent onset of the signal and its serious distortion caused by attenuation and scattering in a complex geology. Therefore, alternative methods are needed. In March 2012, a dense seismic network was installed at Villarrica for two weeks with 50 stations covering the volcanic edifice including 6 subarrays. About 400 LP events were identified. LP-events recorded on crater stations look similar to typical earthquakes arrivals with distinguishable P- and S-wave onsets indicating a source near the crater. But with increasing source distance waveforms gradually change into typical LP-events. To investigate how to locate these LP-events we tested two approaches at the basis of a show-case event. In a first trial, records of the subarrays were used to determine backazimuths and slowness by beamforming in the time domain. The analysis was performed in a moving window, using semblance to measure the beam quality. The epicenter was derived by intersecting azimuthal rays. It locates ca. 1 km southeast of the summit crater. Slownesses range from 0.5 s/km up to 2.0 s/km. At frequencies above 2 Hz, additional maxima appear in the semblance distribution of near-summit arrays which can be interpreted as side-scattered signals. Since the crossing points of the backazimuth rays showed some scattering we tested polarization analysis (applied to the subset of 3-component stations) as an alternative location method. Although the direct interpretation of the backazimuths was unreliable, we identified

  4. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to

  5. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  6. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  7. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  8. Dueling Volcanoes: How Activity Levels At Kilauea Influence Eruptions At Mauna Loa

    NASA Astrophysics Data System (ADS)

    Trusdell, F.

    2011-12-01

    The eruption of Kilauea at Pu`u `O`o is approaching its 29th anniversary. During this time, Mauna Loa has slowly inflated following its most recent eruption in 1984. This is Mauna Loa's longest inter-eruptive interval observed in HVO's 100 years of operation. When will the next eruption of Mauna Loa take place? Is the next eruption of Mauna Loa tied to the current activity at Kilauea? Historically, eruptive periods at Kilauea and Mauna Loa volcanoes appear to be inversely correlated. In the past, when Mauna Loa was exceptionally active, Kilauea Volcano was in repose, recovery, or in sustained lava lake activity. Swanson and co-workers (this meeting) have noted that explosive activity on Kilauea, albeit sporadic, was interspersed between episodes of effusive activity. Specifically, Swanson and co-workers note as explosive the time periods between 300 B.C.E.-1000 C.E and 1500-1800 C.E. They also point to evidence for low magma supply to Kilauea during these periods and few flank eruptions. During the former explosive period, Mauna Loa was exceedingly active, covering approximately 37% of its surface or 1882 km2, an area larger than Kilauea. This period is also marked by summit activity at Mauna Loa sustained for 300 years. In the 1500-1800 C.E. period, Mauna Loa was conspicuously active with 29 eruptions covering an area of 446 km2. In the late 19th and early 20th century, Kilauea was dominated by nearly continuous lava-lake activity. Meanwhile Mauna Loa was frequently active from 1843 C.E. to 1919 C.E., with 24 eruptions for an average repose time of 3.5 years. I propose that eruptive activity at one volcano may affect eruptions at the other, due to factors that impact magma supply, volcanic plumbing, and flank motion. This hypothesis is predicated on the notion that when the rift zones of Kilauea, and in turn its mobile south flank, are active, Mauna Loa's tendency to erupt is diminished. Kilauea's rift zones help drive the south flank seaward, in turn, as Mauna

  9. Dynamics and kinematics of eruptive activity at Fuego volcano, Guatemala 2005--2009

    NASA Astrophysics Data System (ADS)

    Lyons, John J.

    Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005--2009. A pattern of eruptive activity was observed during 2005--2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10--30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: (1) an initial inflation due to pressurization, followed by (2) a rapid deflation as overpressure is explosively release, and finally (3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation-deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially

  10. Explosive Activity at Tungurahua Volcano: Analysis of Seismic and Infrasonic Data from 2006 - 2011

    NASA Astrophysics Data System (ADS)

    Steele, A. L.; Ruiz, M. C.; Lyons, J. J.

    2012-12-01

    Tungurahua is an active, steep-sided andesitic stratovolcano, located in central Ecuador. Historic eruptions are characterized by strong explosions, lava and pyroclastic flows, lahars and tephra fallout. After 75 years of quiescence, a renewed phase of explosive activity began in October 1999. Since, Tungurahua has experienced a series of eruptive cycles, with almost continuous activity separated by only short periods (months) of repose. We apply several statistical techniques to a continuous catalog of over 4500 volcanic explosions, recorded between July 2006 and May 2011. Reduced amplitudes and energies are calculated for each event using four collocated broadband seismic and infrasound sensors. An initial time series analysis isolates 8 phases of activity: Jul-Aug 2006, Feb-Apr 2007, Jul 2007-Feb 2008, Mar 2008-Jun 2009, Jan-Mar 2010, May-Jul 2010, Nov-Dec 2010 and Apr-May 2011. Small temporal changes in the volcanic eruption mechanism across successive episodes are identified by a lack of dependency in event rate auto-correlation and a continuous fluctuation in the proxy b-value of moving-window, frequency-amplitude distributions. We highlight the May-July 2010 episode because it is statistically distinct from the other periods of explosive activity. Peak explosion event rate during this time is approximately six times that of any other episode across the observation period (max ~ 242 events; 31 May 2010), while cumulative daily seismo-acoustic explosion energies are at least an order of magnitude greater. The coefficient of variation (Cv = σ/μ, where; σ is the standard deviation; and μ is the mean repose time of explosions) is used to show a strong clustering of events with time (episodes 1-5 & 7-8 = Cv ~ 2-5) and not representative of a Poisson controlled process. A Cv ~ 13.7 in May-July 2010 (episode 6) further highlights the anomalous nature of activity during this period. The volcano acoustic-seismic ratio (VASR, or η), the ratio of elastic energy

  11. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  12. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Decker, R.; Okamura, A.

    2004-12-01

    Summarizing 1600 years of observations and interpretations into a brief presentation forces some difficult choices on highlighting the following techniques that are presented chronologically: Visual Observations, 400 AD to present: Missionary William Ellis' Hawaiian Guides told him that Kilauea "had been burning from time immemorial, or, to use their own words, `mai ka po mai', from chaos till now...that in earlier ages it used to boil up, overflow its banks, and inundate the adjacent country...and on occasions they supposed Pele went by a road under ground from her house in the crater to the shore". Observations of the nearly-continuous lava lake in Kilauea Caldera from 1823 until 1924 established that its surface level fluctuated from about 700 to 1100 m above sea level in 10 up-and-down episodes. Tilt Measurements, 1914 to present: Horizontal-seismometer drift and water-tube tiltmeters show that the range of long-term, ground-surface tilt radial to Halemaumau Crater exceeds 500 microradians. Triangulation and Leveling, 1920: R. M. Wilson measured deformation changes related to major Kilauea summit subsidence in 1924. The caldera area around Halemaumau subsided concentrically as much as 4 m relative to the Volcano House benchmark, and triangulation points moved toward Halemaumau by as much as 1.6 m in the caldera area. K. Mogi in 1958 modeled Kilauea leveling data and inferred 3-4 km-deep magma reservoirs. Gravity Measurements, 1959 to present: Changes were first measured during Kilauea summit subsidence related to the lower-east-rift Kapoho eruption. Surveys made before and after the 1975 M7.2 Kalapana Earthquake show that gravity changes are not a simple proxy for elevation changes. Electronic Distance Measurements (EDM), 1964 to present: D. A. Swanson, W. A. Duffield, and R. S. Fiske use EDM for trilateration proving movement of the south flank of Kilauea toward the sea. EDM show displacements as large as 8.7 m of Kilauea's south flank toward the sea related

  13. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  14. Chemical composition of soils in the areas of volcanic ashfalls around active volcanoes in Kamchatka

    NASA Astrophysics Data System (ADS)

    Zakharikhina, L. V.; Litvinenko, Yu. S.

    2016-03-01

    The geochemical features of volcanic soils (Andosols) in the northern soil province of Kamchatka are identified. The background regional concentrations ( Cb r ) of most of chemical elements in the studied soils are lower than their average concentrations in soils of the world and in the European volcanic soils. Only Na, Ca, and Mg are present in elevated concentrations in all the studied soils in the north of Kamchatka. Regional background concentrations of elements are exceeded by 1.6 times in the area of active ashfalls of the Tolbachik volcano and by 1.3 times in the area of active ashfalls of the Shiveluch volcano. The concentrations of mobile forms of elements in these areas exceed their regional background concentrations by 2.1 and 2.6 times, respectively.

  15. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  16. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    NASA Astrophysics Data System (ADS)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  17. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  18. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  19. Observations of the Electrical Activity of the Redoubt Volcano in Alaska

    NASA Astrophysics Data System (ADS)

    Krehbiel, P. R.; Behnke, S. A.; Thomas, R. J.; Edens, H. E.; Rison, W.; McNutt, S. R.; Higman, B.; Holzworth, R. H.; Thomas, J. N.

    2009-12-01

    The Mt. Redoubt volcano in Alaska underwent a series of 22 major explosive eruptions over a 2.5 week period between 23 March and 4 April 2009. We were able to deploy a 4-station Lightning Mapping Array (LMA) in advance of the eruptions along a 60 km stretch of the Kenai coastline, 70-80 km east of Redoubt on the opposite side of Cook Inlet, and to monitor and control the station operations remotely via internet connections. The LMA data show that the eruptions produced spectacular lightning, both over and downwind of the volcano, lasting between 20 to 80 minutes depending on the eruption strength. The discharging was essentially continuous during the initial stages of the eruptions and gradually evolved into more discrete and spatially structured discharges displaced from 10 km up to 80 or 90 km away from Redoubt. The discharge rates and VHF radiation signals were comparable to or greater than observed in Great Plains thunderstorms, with discernible but complex 'flashes' occurring at a rate of 2-3 per second in the active stages of eruptions, decaying to about 10-15 per minute of horizontally extensive discrete discharges in later stages. Individual eruptions produced literally thousands of discharges. The approximately linear array of the mapping stations, coupled with their distance from Redoubt and the inability to have a station at a closer distance, has precluded obtaining useful altitude information from the time-of-arrival data. The exception has been lightning at the end of the March 28 eruption as the plume cloud drifted over the northern end of the LMA network; which showed negative charge at 6 km altitude and positive charge between 8 and 9 km altitude, exactly the same as seen in normally electrified thunderstorms. Three of the four stations had been deployed on 50-100m high bluffs overlooking Cook Inlet in an attempt to use sea-surface interference effects to determine altitude, as in our study of the 2006 Augustine eruptions. But only partial

  20. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  1. Magmatic inflation at a dormant stratovolcano: 1996-1998 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Dzurisin, D.; Power, J.A.; Moran, S.C.; Thatcher, W.

    2002-01-01

    A series of ERS radar interferograms that collectively span the time interval from July 1992 to August 2000 reveal that a presumed magma body located 6.6 ??? 0.5 km beneath the southwest flank of the Mount Peulik volcano inflated 0.051 ??? 0.005 km3 between October 1996 and September 1998. Peulik has been active only twice during historical time, in 1814 and 1852, and the volcano was otherwise quiescent during the 1990s. The inflation episode spanned at least several months because separate interferograms show that the associated ground deformation was progressive. The average inflation rate of the magma body was ???0.003 km3/month from October 1996 to September 1997, peaked at 0.005 km3/month from 26 June to 9 October 1997, and dropped to ???0.001 km3/month from October 1997 to September 1998. An intense earthquake swarm, including three ML 4.8 - 5.2 events, began on 8 May 1998 near Becharof Lake, ???30 km northwest of Peulik. More than 400 earthquakes with a cumulative moment of 7.15 ?? 1017 N m were recorded in the area through 19 October 1998. Although the inflation and earthquake swarm occured at about the same time, the static stress changes that we calculated in the epicentral area due to inflation beneath Peulik appear too small to provide a causal link. The 1996-1998 inflation episode at Peulik confirms that satellite radar interferometry can be used to detect magma accumulation beneath dormant volcanoes at least several months before other signs of unrest are apparent. This application represents a first step toward understanding the eruption cycle at Peulik and other stratovolcanoes with characteristically long repose periods.

  2. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. PMID:24631200

  3. Elevated Seismic Activity Beneath the Slumbering Morne aux Diables Volcano, Northern Dominica and the Monitoring Role of the Seismic Research Centre

    NASA Astrophysics Data System (ADS)

    Watts, R. B.; Robertson, R. E.; Abraham, W.; Cole, P.; de Roche, T.; Edwards, S.; Higgins, M.; Johnson, M.; Joseph, E. P.; Latchman, J.; Lynch, L.; Nath, N.; Ramsingh, C.; Stewart, R. C.

    2012-12-01

    Since June 2009, periods of elevated seismic activity have been experienced around the flanks of Morne Aux Diables Volcano in northern Dominica. This long-dormant volcano is a complex of 7 andesitic lava domes with a central depression where a cold soufrière is evident. Prior to this activity, seismicity was very quiet except for a short period in 2000 and an intense short-lived swarm in April 2003. The most recent earthquake activity has been regularly felt by residents in villages on all flanks of the complex. In Dec 09/Jan10, scientists from the Seismic Research Centre (SRC), based in Trinidad & Tobago, in collaboration with staff of the Office of Disaster Management (ODM) and Dominica Public Seismic Network (DPSN) improved the monitoring capacity around this volcano from 1 to 7 seismic stations. Earthquakes are determined to be volcano-tectonic in nature and located at shallow depths (<4 km) beneath the central depression. Additionally, in Jan/Feb 10 geothermal sampling was undertaken and 2 permanent GPS sites were deployed. Public information leaflets prepared by SRC scientists using a "Question & Answer" format have been distributed to concerned citizens whilst many public meetings were carried out by ODM staff. Field investigations indicate that the previous Late Pleistocene activity of Morne Aux Diables switched from Pelèan dome growth and gravitational collapse to more explosive pumice-falls and associated ignimbrites, both styles forming extensive pyroclastic fans around the central complex. The town of Portsmouth is located on one of these fans ~5 km southwest of the central depression. Sporadic, short bursts of seismic activity continue at the time of writing.

  4. Autonomous thermal camera system for monitoring the active lava lake at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, N.; Oppenheimer, C.; Kyle, P.

    2014-02-01

    In December 2012, the Mount Erebus Volcano Observatory installed a thermal infrared camera system to monitor the volcano's active lava lake. The new system is designed to be autonomous, and capable of capturing images of the lava lake continuously throughout the year. This represents a significant improvement over previous systems which required the frequent attention of observatory researchers and could therefore only be operated during a few weeks of the annual field campaigns. The extreme environmental conditions at the summit of Erebus pose significant challenges for continuous monitoring equipment, and a custom-made system was the only viable solution. Here we describe the hardware and software of the new system in detail and report on a publicly available online repository where data will be archived. Aspects of the technical solutions we had to find in order to overcome the challenges of automating this equipment may be relevant in other environmental science domains where remote instrument operation is involved.

  5. Autonomous thermal camera system for monitoring the active lava lake at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, N.; Oppenheimer, C.; Kyle, P.

    2013-10-01

    In December 2012, the Mount Erebus Volcano Observatory installed a thermal infrared camera system to monitor the volcano's active lava lake. The new system is designed to be autonomous, and capable of capturing images of the lava lake continuously throughout the year. This represents a significant improvement over previous systems which required the frequent attention of observatory researchers and could therefore only be operated during a few weeks of the annual field campaigns. The extreme environmental conditions at the summit of Erebus pose significant challenges for continuous monitoring equipment, and a custom made system was the only viable solution. Here we describe the hardware and software of the new system in detail and report on a publicly-available online repository where data will be archived. Aspects of the technical solutions we had to find in order to overcome the challenges of automating this equipment may be relevant in other environmental science domains where remote instrument operation is involved.

  6. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    NASA Astrophysics Data System (ADS)

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.

    2003-04-01

    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  7. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  8. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions

    NASA Astrophysics Data System (ADS)

    Wei, Haiquan; Liu, Guoming; Gill, James

    2013-04-01

    One of the largest explosive eruptions in the past several thousand years occurred at Tianchi volcano, also known as Changbaishan, on the China-North Korea border. This historically active polygenetic central volcano consists of three parts: a lower basaltic shield, an upper trachytic composite cone, and young comendite ash flows. The Millennium Eruption occurred between 938 and 946 ad, and was preceded by two smaller and chemically different rhyolitic pumice deposits. There has been at least one additional, small eruption in the last three centuries. From 2002 to 2005, seismicity, deformation, and the helium and hydrogen gas contents of spring waters all increased markedly, causing regional concern. We attribute this event to magma recharge or volatile exhalation or both at depth, followed by two episodes of addition of magmatic fluids into the overlying aquifer without a phreatic eruption. The estimated present magma accumulation rate is too low by itself to account for the 2002-2005 unrest. The most serious volcanic hazards are ash eruption and flows, and lahars. The available geological information and volcano monitoring data provide a baseline for comprehensive assessment of future episodes of unrest and possible eruptive activity.

  9. The largest Au deposits in the St Ives Goldfield (Yilgarn Craton, Western Australia) may be located in a major Neoarchean volcano-sedimentary depo-centre

    NASA Astrophysics Data System (ADS)

    McGoldrick, K. L.; Squire, R. J.; Cas, R. A. F.; Briggs, M.; Tunjic, J.; Allen, C. M.; Campbell, I. H.; Hayman, P. C.

    2013-10-01

    The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.

  10. Observations of Io's Active Volcanoes from IRTF: Imaging and Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.

    2014-12-01

    We have been observing Ionian volcanism from NASA's Infrared Telescope Facility (IRTF) for more than two decades. The frequency of our observations increases dramatically when spacecraft are observing Io in order to complement the data returned by the spacecraft. The Japanese Space Agency's (JAXA) Hisaki (Sprint-A) mission recently observd the Jupiter system from earth orbit, monitoring the Io Plasma Torus and Jovian aurora. In order to investigate the possible influence of Io volcanism on the torus, we observed Io's volcanoes from the IRTF in Hawaii between September 2013 and May 2014. We imaged Io at 2.2, 3.5, and 4.8 microns in eclipse and reflected sunlight. We also observed Io during occultation by Jupiter, which allows us to locate and characterize individual volcanic eruptions, with greater spatial accuracy, on the Jupiter-facing hemisphere. The 2013 3.5 micron images of a sunlit Io showed no obvious bright volcanic features. However, further increases in spatial resolution is possible with shift-and-add processing of short exposure images. Preliminary occultation lightcurves from 2013 show moderate levels of activity at Kaneheliki/Janus and Loki, the two volcanic centers most often observed in occultation lightcurves. Loki was much brighter in 2013 than during the New Horizons flyby in 2007, but not as bright as during the Galileo era (see figure). From February 2014 through May 2014, due to a planned upgrade on the SPEX instrument and an unplanned required repair on the NSFCam2 instrument (both of which we have used previously), we exclusively used the CSHELL instrument as an imager. Unfortunately, CSHELL was not designed for imaging and has limited spatial resolution and photometric precision, complicating image analysis.

  11. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  12. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  13. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  14. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.; McEwen, A.S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 ??m) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale. ?? 2011 by the American Geophysical Union.

  15. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo; McEwen, Alfred S.

    2011-11-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  16. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  17. Carbon-14 ages of the past 20 ka of eruptive activity of Teide volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Guillou, H.; Paterne, M.; Pérez Torrado, F. J.; Paris, R.; Badiola, E. R.

    2003-04-01

    Teide volcano, the highest volcano on earth (3718 m a.s.l., >7 Km high) after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the Island of Tenerife. Its most recent eruptive activity (last 20 Ka) is associated with the very active NW branch of the 120º triple rift system of the island. Most of the eruptions of Tenerife during the past 20 ka have occurred along this volcanic feature, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon-14 ages, obtained via coupled mass spectrometer, and others in process, provide important time constraints on the evolution of Teide's volcanic system, the frequency and distribution of its eruptions, and the associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1240 ± 60 years BP, but to the Pico Viejo volcano (17570 ± 150 years BP), flank parasitic vents (Mña. Abejera upper vent, 5170 ± 110 years BP; Mña. Abejera lower vent, 4790 ± 70 years BP; Mancha Ruana, 2420 ± 70 years BP; Mña. La Angostura, 2010 ± 60 years BP and Roques Blancos, 1790 ± 60 years BP) and the NW rift (Mña. Chío, 3620 ± 70 years BP). Although the volcanic activity during the past 20 ka included the involvement of at least 7 voluminous phonolitic flank vents in the northern, more unstable slopes of the Teide, it took place without any apparent response of the volcano; on the contrary, these eruptions seemed to progressively buttress and

  18. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  19. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-05-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  20. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Technical Reports Server (NTRS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  1. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity. PMID:21382146

  2. Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Kato, A.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T.

    2015-12-01

    On 27 September 2014, Mt. Ontake in Japan produced a phreatic (steam type) eruption with a Volcanic Explosivity Index value of 2 after being dormant for seven years. The local stress field around volcanoes is the superposition of the regional stress field and stress perturbations related to volcanic activity. Temporal stress changes over periods of weeks to months are generally attributed to volcanic processes. Here we show that monitoring temporal changes in the local stress field beneath Mt. Ontake, using focal mechanism solutions of volcano-tectonic (VT) earthquakes, is an effective tool for assessing the state of volcanic activity. We estimated focal mechanism solutions of 157 VT earthquakes beneath Mt. Ontake from August 2014 to March 2015, assuming that the source was double-couple. Pre-eruption seismicity was dominated by normal faulting with east-west tension, whereas most post-eruption events were reverse faulting with east-west compression. The misfit angle between observed slip vectors and those derived theoretically from the regional (i.e., background) stress pattern is used to evaluate the deviation of the local stress field, or the stress perturbation related to volcanic activity. The moving average of misfit angles tended to exceed 90° before the eruption, and showed a marked decrease immediately after the eruption. This indicates that during the precursory period the local stress field beneath Mt. Ontake was rotated by stress perturbations caused by the inflation of magmatic/hydrothermal fluids. Post-eruption events of reverse faulting acted to shrink the volcanic edifice after expulsion of volcanic ejecta, controlled by the regional stress field. The misfit angle is a good indicator of the state of volcanic activity. The monitoring method by using this indicator is applicable to other volcanoes and may contribute to the mitigation of volcanic hazards.

  3. The model of the Uzon-Geizernaya volcano-tectonic depression and Kikhpinych volcano, Kamchatka, from the joint analysis of microseismic sounding data and local geodynamic activity

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorbatikov, A. V.; Stepanova, M. Yu.

    2015-05-01

    The model of the magmatic system beneath the Uzon-Geizernaya volcano-tectonic depression and adjacent Kikhpinych volcano in Kamchatka is constructed to a depth of 30 km based on the microseismic sounding data. For doing this, measurements of the natural microseismic field by the Guralp CMG-6TD portable broadband seismometer were carried out at 60 points along three profiles with a total length of about 28 km. The revealed structural heterogeneities were interpreted in the common context with the previous geological, geological-morphological, and petrological results. The area of a shallow crystallized magmatic reservoir is identified and spatially localized below the depression. The zones of the presumed concentration of the basaltic melts probably responsible for the local geodynamic activation of the region during the past 15 years are revealed as the peripheral magmatic chamber of the Kikhpinych volcano at a depth of 5-12 km and a deeper (15-20 km) magma storage. The geometry of the identified deep structures is consistent with the local microseismicity and the model of the contemporary magmatic intrusion into the upper crustal layers, which is based on the data of satellite interferometry.

  4. Mount St. Helens Volcano Reawakens: An Overview of the First Month of Activity

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Sisson, T.; Scott, W. E.

    2004-12-01

    Late in the evening of 22 September 2004, a shallow (< 2 km), high-frequency earthquake swarm began beneath Mount St. Helens volcano in southwest Washington. Seismicity declined and then, on the afternoon of 25 September and the following day, rapidly increased both in rate and magnitude. This prompted the U.S. Geological Survey's Cascades Volcano Observatory to issue an alert above background level for the first time since the 1980s. Over the following week, maximum earthquake magnitudes increased to M3.5 and the first steam-and-ash emission occurred on 1 October. Four additional steam-and-ash emissions occurred through 5 October; the last and largest sent an ash plume to 15,000 feet. Seismicity then dropped to low levels and changed character to more low-frequency events where it remains as of 24 October. Throughout, earthquake locations have remained shallow. By 30 September, field observers noted localized deformation on the south side of the 1980-86 lava dome and adjacent glacier, but in retrospect the deformation probably began earlier. The volume of the deforming area, or welt, grew to 5.4 million cubic meters by 4 October, grew to 11.7 million cubic meters by 13 October, and continues growing. Gas-sensing flights began on 27 September and detected only a few point sources of magmatic gas over the next several days. By 4 October, however, emission rates for carbon dioxide were large enough to be detected in the plume and by 7 October emissions rates for carbon dioxide, hydrogen sulfide and sulfur dioxide were readily measured. Since 7 October, sulfur dioxide has remained the principal sulfur gas. Forward-Looking InfraRed (FLIR) images from 1 to 10 October recorded increasing, but well below magmatic, temperatures on the northwest flank of the welt. On 11 October, temperature measurements of 500 to 600 degrees C coincided with the appearance of a lava spine on the northwest side of the welt that heralded the beginning of exogenous dome growth. Microbeam

  5. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G. The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes. Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001. This catalog includes: (1) earthquake origin

  6. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times

  7. What drives centuries-long polygenetic scoria cone activity at Barren Island volcano?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu

    2014-12-01

    Barren Island in the Andaman Sea is an active mafic stratovolcano, which had explosive and effusive eruptions, followed by caldera formation, in prehistoric time (poorly dated). A scoria cone within the caldera, marking volcanic resurgence, was active periodically from 1787 to 1832 (the historic eruptions). Since 1991, the same scoria cone has produced six eruptions, commonly including lava flows. Links between Barren Island's eruptions and giant earthquakes (such as the 26 December 2004 Great Sumatra megathrust earthquake) have been suggested, though there is no general correlation between them. The ≥ 227-year-long activity of the scoria cone, named here Shanku ("cone"), is normally driven by purely magmatic processes. I present a "source to surface" model for Barren Island and Shanku, including the source region, deeper and shallow magma chambers, volcanotectonics, dyking from magma chambers, and eruptions and eruptive style as controlled by crustal stresses, composition and volatile content. Calculations show that dykes ~ 0.5 m thick and a few hundred meters long, originating from shallow-level magma chambers (~ 5 km deep), are suitable feeders of the Shanku eruptions. Shanku, a polygenetic scoria cone (at least 13 eruptions since 1787), has three excellent analogues, namely Anak Krakatau (40 eruptions since 1927), Cerro Negro (23 eruptions since 1850), and Yasur (persistent activity for the past hundreds of years). This is an important category of volcanoes, gradational between small "monogenetic" scoria cones and larger "polygenetic" volcanoes.

  8. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  9. Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia

    USGS Publications Warehouse

    Hidayat, D.; Chouet, B.; Voight, B.; Dawson, P.; Ratdomopurbo, A.

    2002-01-01

    Very-long-period (VLP) pulses with period of 6-7s, displaying similar waveforms, were identified in 1998 from broadband seismographs around the summit crater. These pulses accompanied most of multiphase (MP) earthquakes, a type of long-period event locally defined at Merapi Volcano. Source mechanisms for several VLP pulses were examined by applying moment tensor inversion to the waveform data. Solutions were consistent with a crack striking ???70?? and dipping ???50?? SW, 100m under the active dome, suggest pressurized gas transport involving accumulation and sudden release of 10-60 m3 of gas in the crack over a 6s interval.

  10. Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayat, D.; Chouet, B.; Voight, B.; Dawson, P.; Ratdomopurbo, A.

    2002-12-01

    Very-long-period (VLP) pulses with period of 6-7s, displaying similar waveforms, were identified in 1998 from broadband seismographs around the summit crater. These pulses accompanied most of multiphase (MP) earthquakes, a type of long-period event locally defined at Merapi Volcano. Source mechanisms for several VLP pulses were examined by applying moment tensor inversion to the waveform data. Solutions were consistent with a crack striking ~70° and dipping ~50° SW, 100m under the active dome, suggest pressurized gas transport involving accumulation and sudden release of 10-60 m3 of gas in the crack over a 6s interval.

  11. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  12. Gas flux measurements of episodic bimodal eruptive activity at Karymsky volcano (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Arellano, S.; Galle, B.; Melnikov, D.

    2012-04-01

    Volcanoes of intermediate magmatic composition commonly exhibit episodes of intermittent gas and ash emission of variable duration. Due to the multiple conditions present at each system, different mechanisms have been proposed to account for the observed activity, and without key measurements at hand, a definite understanding of the situation might not be singled out. Karymsky, the most active volcano of Central Kamchatka, has presented a remarkably stable pattern of bimodal eruption since a few weeks after its violent reactivation in 1996. Periods of quasi-periodic explosive emissions with typical recurrence intervals of 3-10 min are alternated with episodes of semi-continuous discharge which intensity has a typical modulation at a frequency of 1 Hz. Geophysical studies at Karymsky have identified the main visual, seismic and acoustic features of these two eruption modalities. From these observations, the time scales of the processes have been defined and relevant models have been formulated, according to which the two modes are controlled by the rheological properties of an intruding gas-saturated magma batch and a shallow gas-depleted magma plug. Explosions are explained as the consequence of the formation of temporary sealing, overpressure buildup and vent clearance. Clearly, direct measurements of the gas emission rate are the key parameter to test such models. In this work, we report on the results of a field campaign for SO2 gas measurements carried out at Karymsky during 10-14 September 2011. We deployed 2 NOVAC-type, scanning DOAS systems as well as 1 rapid wide-Field of View mini-DOAS plume tracker. With this setup, we derived time-resolved SO2 flux, plume height, direction and speed, and detected pulses of increasing emission with high temporal resolution. We observed phases of explosive and quiescent degassing with variable amounts of ash emission and detected intensity changes of the associated acoustic signals. The repose time intervals between these

  13. Degassing processes and eruptive activity at Merapi volcano: The bearing of short-lived U-series isotopes.

    NASA Astrophysics Data System (ADS)

    Gauthier, P. J.; Le Cloarec, M. F.

    2003-04-01

    For more than 20 years, volcanic gases have been regularly collected at Merapi volcano (Central Java, Indonesia) and subsequently analyzed for their radionuclide (210Pb, 210Bi, and 210Po) and SO_2 contents. Gas sampling was carried out during various periods of contrasted volcanic activity and at different locations: high-temperature fumarolic fields (Woro: 600^oC; Gendol 850^oC), main plume released through fractures within the summit crater, and active growing lava domes. These new results show the high volatility of the three radionuclides in andesitic gases, although their emanation coefficients (0.94%, 3.5%, and <= 53% for 210Pb, 210Bi, and 210Po, respectively) are significantly lower than those observed at basaltic volcanoes. This emphasizes the major role of magma temperature on the degassing of these metals, which are mainly transported in volcanic gases as Pb-chloride compounds, and Bi- and Po-metallic species. 210Pb--210Bi--210Po radioactive disequilibria in the gas phase at Merapi appear to be characteristic of the degassing processes and gas paths within the edifice. Gases released at both Gendol and Woro fumarolic fields are clearly of magmatic origin, but their 210Pb--210Bi--210Po isotopic signature is strongly altered by secondary processes: condensation and transformation of gases crossing brines (Woro); deposition and subsequent degassing of sublimates according to temperature variations in the ground (Woro, Gendol). High-temperature gases collected in the main plume are of pure primary magmatic origin. They are likely directly tapped in the degassing reservoir and escape through the main fractures with little interaction with the dome-forming host rocks. On the other hand, gases arising from the growing dome are strongly depleted in the most volatile isotopes and gas species. We conclude from these observations that lava is almost completely degassed prior to its emission at the surface, and that magmatic degassing at Merapi is an open

  14. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to

  15. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  16. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  17. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: implications for geofluid migration and a midcrustal geofluid reservoir

    NASA Astrophysics Data System (ADS)

    Kosuga, M.

    2014-12-01

    The 2011 off the Pacific coast of Tohoku (Tohoku-oki) earthquake caused increased seismicity in many inland areas in Japan. A triggered seismic cluster north of the Moriyoshi-zan volcano in Akita prefecture, Tohoku District, is of interest in light of the contribution of geofluids to seismic activity. We observed an active seismic cluster characterized by the migration of seismicity and reflected/scattered phases. We relocated hypocenters of the cluster using data from temporal observations and the hypoDD location technique, which significantly increased the hypocentral accuracy. We interpreted a complex spatiotemporal variation of seismicity in the cluster as the migration of pore fluid pressure from multiple pressure sources. The hydraulic diffusivity of the cluster was in the range of 0.01 to 0.7 m2/s and increased with time, implying that the migration of hypocenters accelerated after a pathway for fluids was formed by fracturing of the wall rock during the initial stage of seismic activity. A prominent feature of the seismograms is a reflected/scattered phase observed at stations around the volcano. We regard the phase as S-to-S scattered waves and estimated the location of the scatterers using a back-projection method. The scatterers are inferred to be located about 5 km northwest of the Moriyoshi-zan volcano, at an approximate depth of 13 km. The Moriyoshi-zan area is one of the source areas of deep low-frequency earthquakes that have been interpreted as events generated by the migration of geofluids. The depth of the scatterers is close to the upper depth limit of low-frequency earthquakes. Thus, we interpret the observed scatterers to be a reservoir of geofluid that came from the uppermost mantle accompanying contemporaneous low-frequency earthquakes.

  18. Relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia

    SciTech Connect

    Fischer, T.P.; Williams, S.N.; Arehart, G.B.; Sturchio, N.C.

    1996-06-01

    Forecasting volcanic eruptions is critical to the mitigation of hazards for the millions of people living dangerously close to active volcanoes. Volcanic gases collected over five years from Galeras Volcano, Colombia, and analyzed for chemical and isotopic composition show the effects of long-term degassing of the magma body and a gradual decline in sulfur content of the gases. In contrast, short-term (weeks), sharp variations are the precursors to explosive eruptions. Selective absorption of magmatic SO{sub 2} and HCl due to interaction with low-temperature geothermal waters allows the gas emissions to become dominated by CO{sub 2}. Absorption appears to precede an eruption because magmatic volatiles are slowed or retained by a sealing carapace, reducing the total flux of volatiles and allowing the hydrothermal volatiles to dominate gas emissions. Temporal changes in gas compositions were correlated with eruptive activity and provide new evidence bearing on the mechanism of this type of `pneumatic` explosive eruptions. 18 refs., 5 figs.

  19. Seismic image of a CO2 reservoir beneath a seismically active volcano

    USGS Publications Warehouse

    Julian, B.R.; Pitt, A.M.; Foulger, G.R.

    1998-01-01

    Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt and Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day-1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997) which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds Vp/VS was about 9% lower than in the surrounding rocks. Theory (Mavko and Mukerji 1995), experiment (Ito, DeVilbiss and Nur 1979) and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that Vp/VS is sensitive to pore-fluid compressibility, through its effect on Vp. The observed Vp/VS anomaly is probably caused directly by CO2, and seismic Vp/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  20. Seismic image of a CO2 reservoir beneath a seismically active volcano

    NASA Astrophysics Data System (ADS)

    Julian, Bruce R; Pitt, A. M.; Foulger, G. R.

    1998-04-01

    Mammoth Mountain is a seismically active volcano 200000 to 50000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic `long-period' earthquakes (Pitt & Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day -1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997), which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds VP/VS was about 9 per cent lower than in the surrounding rocks. Theory (Mavko & Mukerji 1995), experiment (Ito, DeVilbiss & Nur 1979), and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that VP/VS is sensitive to pore-fluid compressibility, through its effect on VP . The observed VP/VS anomaly is probably caused directly by CO2, and seismic VP/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  1. SO2 Emissions at Semeru Volcano, Indonesia: Characterization and Quantification of Persistent and Periodic Explosive Activity.

    NASA Astrophysics Data System (ADS)

    Smekens, J. F.; Clarke, A. B.; Burton, M. R.; Harijoko, A.; Wibowo, H.

    2014-12-01

    We present the first measurements of SO2 emissions at Semeru volcano, Indonesia, using an SO2 camera. Activity at Semeru is characterized by quiescent degassing interspersed with short-lived explosive events with low ash burden. The interval between explosions was measured at 32.1±15.7 minutes in a webcam survey of the volcano between the months of June and December 2013. We distinguish between two types of events: shorter events (type I: ~5 mins duration) with emissions returning quickly to baseline levels, and longer events (type II: ~15 mins duration) often showing multiple pulses and a longer period of increased emissions before a return to quiescent levels. Type I events represent >90% of the activity and release an average of 200-450 kg of SO2 per event. The single type II event we documented with the SO2 camera released a total of 1300 kg of SO2. We estimate the daily average emissions of Semeru to be 21-60 t d-1 of SO2, amounting to a yearly output of 7.5-22 Gg (7,500 - 22,000 metric tons), with 35-60% released during explosive events. The time series patterns of degassing are consistent with the existence of a viscous plug at the top of the conduit, causing accumulation and pressurization of the magma to produce the explosive events.

  2. SO2 emissions at Semeru volcano, Indonesia: Characterization and quantification of persistent and periodic explosive activity

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-François; Clarke, Amanda B.; Burton, Michael R.; Harijoko, Agung; Wibowo, Haryo E.

    2015-07-01

    We present the first measurements of SO2 emissions at Semeru volcano, Indonesia, using an SO2 camera. Activity at Semeru is characterized by quiescent degassing interspersed with short-lived explosive events with low ash burden. The interval between explosions was measured at 32.1 ± 15.7 min in a webcam survey of the volcano between the months of June and December 2013. We distinguish between two types of events: shorter events (type I: ~ 5 min duration) with emissions returning quickly to baseline levels, and longer events (type II: ~ 15 min duration) often showing multiple pulses and a longer period of increased emissions before a return to quiescent levels. Type I events represent > 90% of the activity and release an average of 200-500 kg of SO2 per event. The single type II event we documented with the SO2 camera released a total of 1460 kg of SO2. We estimate the daily average emissions of Semeru to be 21-71 t d- 1 of SO2, amounting to a yearly output of 8-26 Gg (8000-26,000 metric tons), with 35-65% released during explosive events. The time series patterns of degassing are consistent with the existence of a viscous plug at the top of the conduit, which seals the conduit immediately prior to explosive events, causing pressurization of the underlying magma followed by a sudden release of gas and fragmented magma.

  3. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  4. Precursory Activity of the 2005 Eruption of Santa Ana Volcano, El Salvador.

    NASA Astrophysics Data System (ADS)

    Colvin, A.; Patrick, M.; Rose, W. I.; Escobar, D.; Montalvo, F.; Gutierrez, E.; Olmos, R.

    2007-12-01

    After a period of unrest, Santa Ana (Illamatepec) volcano in El Salvador erupted suddenly on October 1st, 2005 at 1420 UTC (0820 local time), ejecting its acidic crater lake and generating a gas-and-ash plume ~10 km above the volcano. The short-lived eruption (~1 hr duration) deposited ballistics and ash up to 5m thick at the crater rim and depositing ash up to 40 km to the west. Underlying phreatomagmatic deposits exposed in the crater suggest that larger eruptions of this type are characteristic of recent historic activity. In this study, precursory activity to the 2005 eruption is investigated by analyzing physical and chemical parameters of the crater lake. Data has been compiled on water chemistry, temperature, and color of the lake from direct sampling and ground observations from 2004-2007. Lake water data suggests three phases of activity: (1) constant, well constrained activity from Jan. 2004 to Dec. 2004 showing SO4 ~10,000 ppm, Cl ~6000 ppm, and SO4/Cl ~1.6; (2) potential precursory activity from Jan. 2005 to Oct. 2005 expressed as a ramping up of SO4 to 11,625 ppm in May with a sudden decrease to 8250 ppm one month later, increased variability in Cl, and color change from dark coffee color to green in mid-September; and (3) post- eruption activity to present showing increasing Cl to a maximum of 22340 ppm, low SO4/Cl=0.38-0.8, an increase in temperature to 65.6 degrees C, and color change to yellowish-green). Analysis of high resolution satellite imagery from the ASTER sensor (15-90m/pixel) from 2000 to 2007 provides further information on lake size, temperature, and color. ASTER images show that the lake re-established itself further to the west after the eruption, drowning the adjacent high temperature fumarole field (max. 875 degrees C) which potentially contributed to the observed post-eruption changes in the lake. The combination of synoptic satellite-based remote sensing data with ground measurements will enhance the capabilities to recognize and

  5. Gravity and deformation changes at two persistently active volcanoes: Insights into magmatic processes

    NASA Astrophysics Data System (ADS)

    Williams-Jones, G.; Rymer, H.

    2004-05-01

    Insights on some of the mechanisms responsible for persistent volcanism can be best achieved through the synergy of temporal geophysical and geochemical data sets. Gravity changes combined with ground deformation have been shown to provide important information on magma reservoir mass changes while measurements of gas flux have been influential in determining the rate of magma emplacement. The integration of long-term micro-gravity and ground deformation data with SO2 flux and total sulphur budgets collected at Poás and Masaya volcanoes (since 1983 and 1993, respectively) now allows for the identification of significant cycles of activity. Recent eruptive activity at Poás volcano (Costa Rica) has been characterised by the disappearance and subsequent reappearance of the summit crater lake following intrusive episodes in 1980 and 1986-1989. Magma approached the surface on both occasions and was detected by the observation of concurrent increases in micro-gravity. These increases can be best modelled in terms of brittle fracturing of a shallow magma carapace allowing magma ascent through the conduit system to beneath the crater. This process allows for the vertical transfer of heat and gas and is driven by convection of buoyant, volatile-rich magma displacing colder, degassed magma. As magma pressure drops, the connection between the deeper magma reservoir and shallow conduit system is severed allowing the hydrothermal system to resume its role as a cooling mechanism. In contrast, recent activity at Masaya volcano (Nicaragua) has been characterised by repeated periods of significant passive degassing (>2000 t/d SO2) with the eruption of only negligible amounts of juvenile material. The resulting cycle gravity and gas flux variations is clearly not driven by intrusion of additional magma into the shallow system. Rather, it may be due in part to blocking and gas accumulation caused by restrictions in the shallow volcano substructure. However, as with Poás, this

  6. Morphometry of scoria cones located on a volcano flank: A case study from Mt. Etna (Italy), based on high-resolution LiDAR data

    NASA Astrophysics Data System (ADS)

    Favalli, Massimilano; Karátson, Dávid; Mazzarini, Francesco; Pareschi, Maria Teresa; Boschi, Enzo

    2009-10-01

    H/ Wco ratio of scoria cones for detecting age, especially on large active volcanoes.

  7. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  8. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  9. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  10. Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano

    NASA Astrophysics Data System (ADS)

    Almendros, Javier; Ibáñez, Jesús M.; Carmona, Enrique; Zandomeneghi, Daria

    2007-02-01

    We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May-July 2004. The period selected for the analysis (May 12-31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1-6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S-P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma

  11. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes

    USGS Publications Warehouse

    Battaglia, J.; Aki, K.

    2003-01-01

    We present a method for locating the source of seismic events on Piton de la Fournaise. The method is based on seismic amplitudes corrected for station site effects using coda site amplification factors. Once corrected, the spatial distribution of amplitudes shows smooth and simple contours for many types of events, including rockfalls, long-period events and eruption tremor. On the basis of the simplicity of these distributions we develop inversion methods for locating their origins. To achieve this, the decrease of the amplitude as a function of the distance to the source is approximated by the decay either of surface or body waves in a homogeneous medium. The method is effective for locating rockfalls, long-period events, and eruption tremor sources. The sources of eruption tremor are usually found to be located at shallow depth and close to the eruptive fissures. Because of this, our method is a useful tool for locating fissures at the beginning of eruptions.

  12. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: implications for geofluid migration and a midcrustal geofluid reservoir

    NASA Astrophysics Data System (ADS)

    Kosuga, Masahiro

    2014-12-01

    The 2011 off the Pacific coast of Tohoku (Tohoku-oki) earthquake caused increased seismicity in many inland areas in Japan. A seismic cluster north of the Moriyoshi-zan volcano in Akita prefecture, Tohoku District, is of interest in light of the contribution of geofluids to seismic activity. We observed a seismic cluster characterized by the migration of seismicity and reflected/scattered phases. We relocated hypocenters of the cluster using data from temporal observations and the hypoDD location technique, which significantly increased the hypocentral accuracy. We interpreted a complex spatiotemporal variation of seismicity in the cluster as the migration of pore fluid pressure from multiple pressure sources. The hydraulic diffusivity of the cluster was in the range of 0.01 to 0.7 m2/s and increased with time, implying that the migration of hypocenters accelerated after a pathway for fluids was formed by fracturing of the wall rock during the initial stage of seismic activity. A prominent feature of the seismograms is a reflected/scattered phase observed at stations around the volcano. We regard the phase as S-to- S scattered waves and estimated the location of the scatterers using a back-projection method. The scatterers are inferred to be located about 5 km northwest of the Moriyoshi-zan volcano, at an approximate depth of 13 km. The Moriyoshi-zan area is one of the source areas of deep low-frequency earthquakes that have been interpreted as events generated by the migration of geofluids. The depth of the scatterers is close to the upper limit of the depth at which low-frequency earthquakes occur. Thus, we interpret the observed scatterers to be a reservoir of geofluid that came from the uppermost mantle accompanying contemporaneous low-frequency earthquakes.

  13. Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java

    NASA Astrophysics Data System (ADS)

    Budi-Santoso, Agus; Lesage, Philippe; Dwiyono, Sapari; Sumarti, Sri; Subandriyo; Surono; Jousset, Philippe; Metaxian, Jean-Philippe

    2013-07-01

    The 2010 eruption of Merapi is the first large explosive eruption of the volcano that has been instrumentally observed. The main characteristics of the seismic activity during the pre-eruptive period and the crisis are presented and interpreted in this paper. The first seismic precursors were a series of four shallow swarms during the period between 12 and 4 months before the eruption. These swarms are interpreted as the result of perturbations of the hydrothermal system by increasing heat flow. Shorter-term and more continuous precursory seismic activity started about 6 weeks before the initial explosion on 26 October 2010. During this period, the rate of seismicity increased almost constantly yielding a cumulative seismic energy release for volcano-tectonic (VT) and multiphase events (MP) of 7.5 × 1010 J. This value is 3 times the maximum energy release preceding previous effusive eruptions of Merapi. The high level reached and the accelerated behavior of both the deformation of the summit and the seismic activity are distinct features of the 2010 eruption. The hypocenters of VT events in 2010 occur in two clusters at of 2.5 to 5 km and less than 1.5 km depths below the summit. An aseismic zone was detected at 1.5-2.5 km depth, consistent with studies of previous eruptions, and indicating that this is a robust feature of Merapi's subsurface structure. Our analysis suggests that the aseismic zone is a poorly consolidated layer of altered material within the volcano. Deep VT events occurred mainly before 17 October 2010; subsequent to that time shallow activity strongly increased. The deep seismic activity is interpreted as associated with the enlargement of a narrow conduit by an unusually large volume of rapidly ascending magma. The shallow seismicity is interpreted as recording the final magma ascent and the rupture of a summit-dome plug, which triggered the eruption on 26 October 2010. Hindsight forecasting of the occurrence time of the eruption is performed

  14. Volcanic activity observed from continuous seismic records in the region of the Klyuchevskoy group of volcanoes

    NASA Astrophysics Data System (ADS)

    Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Chebrov, V.; Gordeev, E.; Frank, W.

    2015-12-01

    We analyze continuous seismic records from 18 permanent stations operated in vicinity of the Klyuchevskoy group of volcanos (Kamchatka, Russia) during the period between 2009 and 2014. We explore the stability of the inter-station cross-correlation to detect different periods of sustained emission from seismic energy. The main idea of this approach is that cross-correlation waveforms computed from a wavefield emitted by a seismic source from a fixed position remain stable during the period when this source is acting. The detected periods of seismic emission correspond to different episodes of activity of volcanoes: Klyuchevskoy, Tolbachik, Shiveluch, and Kizimen. For Klyuchevskoy and Tolbachik whose recent eruptions are mostly effusive, the detected seismic signals correspond to typical volcanic tremor, likely caused by degassing processes. For Shiveluch and Kizimen producing more silicic lavas, the observed seismic emission often consists of many repetitive long period (LP) seismic events that might be related to the extrusion of viscous magmas. We develop an approach for automatic detection of these individual LP events in order to characterize variations of their size and recurrence in time.

  15. Tilt effects on moment tensor inversion in the near field of active volcanoes

    NASA Astrophysics Data System (ADS)

    van Driel, M.; Wassermann, J.; Pelties, C.; Schiemenz, A.; Igel, H.

    2015-09-01

    Dynamic tilts (rotational motion around horizontal axes) change the projection of local gravity onto the horizontal components of seismometers. This causes sensitivity of these components to tilt, especially at low frequencies. We analyse the consequences of this effect onto moment tensor inversion for very long period (vlp) events in the near field of active volcanoes on the basis of synthetic examples using the station distribution of a real deployed seismic network and the topography of Mt. Merapi volcano (Java, Indonesia). The examples show that for periods in the vlp range of 10-30 s tilt can have a strong effect on the moment tensor inversion, although its effect on the horizontal seismograms is significant only for few stations. We show that tilts can be accurately computed using the spectral element method and include them in the Green's functions. The (simulated) tilts might be largely influenced by strain-tilt coupling (stc). However, due to the frequency dependence of the tilt contribution to the horizontal seismograms, only the largest tilt signals affect the source inversion in the vlp frequency range. As these are less sensitive to stc than the weaker signals, the effect of stc can likely be neglected in this application. In the converse argument, this is not necessarily true for longer periods, where the horizontal seismograms are dominated by the tilt signal and rotational sensors would be necessary to account for it. As these are not yet commercially available, this study underlines the necessity for the development of such instruments.

  16. Social studies of volcanology: knowledge generation and expert advice on active volcanoes

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2012-04-01

    This paper examines the philosophy and evolution of volcanological science in recent years, particularly in relation to the growth of volcanic hazard and risk science. It uses the lens of Science and Technology Studies to examine the ways in which knowledge generation is controlled and directed by social forces, particularly during eruptions, which constitute landmarks in the development of new technologies and models. It also presents data from a survey of volcanologists carried out during late 2008 and early 2009. These data concern the felt purpose of the science according to the volcanologists who participated and their impressions of the most important eruptions in historical time. It demonstrates that volcanologists are motivated both by the academic science environment and by a social concern for managing the impact of volcanic hazards on populations. Also discussed are the eruptions that have most influenced the discipline and the role of scientists in policymaking on active volcanoes. Expertise in volcanology can become the primary driver of public policy very suddenly when a volcano erupts, placing immense pressure on volcanologists. In response, the epistemological foundations of volcanology are on the move, with an increasing volume of research into risk assessment and management. This requires new, integrated methodologies for knowledge collection that transcend scientific disciplinary boundaries.

  17. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data

    PubMed Central

    Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-01-01

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569

  18. Fiber Bragg grating strain sensors to monitor and study active volcanoes

    NASA Astrophysics Data System (ADS)

    Sorrentino, Fiodor; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvo; Giacomelli, Umberto; Grassi, Renzo; Maccioni, Enrico; Morganti, Mauro

    2016-04-01

    Stress and strain changes are among the best indicators of impending volcanic activity. In volcano geodesy, borehole volumetric strain-meters are mostly utilized. However, they are not easy to install and involve high implementation costs. Advancements in opto-electronics have allowed the development of low-cost sensors, reliable, rugged and compact, thus particularly suitable for field application. In the framework of the EC FP7 MED-SUV project, we have developed strain sensors based on the fiber Bragg grating (FBG) technology. In comparison with previous implementation of the FBG technology to study rock deformations, we have designed a system that is expected to offer a significantly higher resolution and accuracy in static measurements and a smooth dynamic response up to 100 Hz, implying the possibility to observe seismic waves. The system performances are tailored to suit the requirements of volcano monitoring, with special attention to power consumption and to the trade-off between performance and cost. Preliminary field campaigns were carried out on Mt. Etna (Italy) using a prototypal single-axis FBG strain sensor, to check the system performances in out-of-the-lab conditions and in the harsh volcanic environment (lack of mains electricity for power, strong diurnal temperature changes, strong wind, erosive ash, snow and ice during the winter time). We also designed and built a FBG strain sensor featuring a multi-axial configuration which was tested and calibrated in the laboratory. This instrument is suitable for borehole installation and will be tested on Etna soon.

  19. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  20. Plume indications from hydrothermal activity on Kawio Barat Submarine Volcano, Sangihe Talaud Sea, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Baker, E. T.; Walker, S. L.; Wirasantosa, S.; Permana, H.; Sulistiyo, B.; Shank, T. M.; Holden, J. F.; Butterfield, D.; Ramdhan, M.; Adi, R.; Marzuki, M. I.

    2010-12-01

    Kawio Barat submarine volcano has formed in response to the active tectonic conditions in Sangihe Talaud, an area that lies in the subduction zone between the Molucca Sea Plate and Celebes Sea Plate. Submarine volcanic activity in the western Sangihe volcanic arc is controlled by the west-dipping Molucca Sea Plate as it subducts beneath the Sangihe Arc. A secondary faulting system on Kawio Barat is in a northwest - southeast direction, and creates a network of deep cracks that facilitate hydrothermal discharge in this area. Hydrothermal activity on Kawio Barat was first discovered by joint Indonesia/Australian cruises in 2003. In 2010, as part of the joint US/Indonesian INDEX-SATAL expedition, we conducted CTD casts that confirmed continuing activity. Hydrothermal plumes were detected by light -scattering (LSS) and oxidation-reduction potential (ORP) sensors on the CTD package. LSS anomalies were found between 1600-1900 m, with delta NTU levels of 0.020-0.040. ORP anomalies coincident with the LSS anomalies indicate strong concentrations of reduced species such as H2S and Fe, confirming the hydrothermal origin of the plumes. Images of hydrothermal vents on Kawio Barat Submarine volcano, recorded by high- definition underwater cameras on the ROV “Little Hercules” operated from the NOAA ship Okeanos Explorer, confirmed the presence and sources of the detected vent plumes in the northern and southwest part of the summit in 1800-1900 m depth. In southwest part of this summit chimney, drips of molten sulfur were observed in the proximity of microbal staining.

  1. Locations of Long-Period Seismic Events Beneath the Soufriere Hills Volcano, Montserrat, W.I., Inferred from a Waveform Semblance Method

    NASA Astrophysics Data System (ADS)

    Taira, T.; Linde, A. T.; Sacks, I. S.; Shalev, E.; Malin, P. E.; Nielsen, J. M.; Voight, B.; Hidayat, D.; Mattioli, G. S.

    2005-05-01

    Analysis of long-period (LP) seismic events provides information about the internal state of a volcano because LP events are attributed mainly to fluid dynamics between magma and hydrothermal reservoirs in its volcano (e.g., Chouet, 1992). We analyzed LP events recorded by three borehole seismic stations (AIRS, OLVN, and TRNT) at Soufriere Hills Volcano (SHV), Montserrat, W.I., during the period from March to June 2003. Borehole stations were deployed by the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory project (e.g., Shalev et al., 2003; Mattioli et al., 2004) and equipped with three-component short-period velocity seismometers with a sampling rate of 200 Hz. We selected 61 LP events with high signal-to-noise ratios. Almost all of the selected LP events are characterized by dominant periods in a range of 0.3 to 2.0 sec and durations of about 30 sec. Several LP events appear to be generated by a single source, based on the strong similarity in their waveforms. We first identified a family of LP events based on the dimensionless cross-correlation coefficient (CCC) of their spectral amplitudes of a period in a range of 0.2 to 2.0 sec, under the assumption of a fluid-driven crack model (Chouet, 1986). Seven LP events are identified as a family of LP events with high CCCs, particularly CCCs at AIRS in the vertical component greater than 0.88 in each event. This result suggested that these LP events are probably due to a repeated excitation of an identical source mechanism. We next attempted to estimate the locations of the identified a family of LP events by a waveform semblance method (Kawakatsu et al., 2000; Almendros and Chouet, 2003). To apply the above method, we searched the seismic phases with a rectilinear polarization from LP events, by performing a complex polarization analysis (Vidale, 1986). These phases are identified as averaged particle motion ellipticities of all stations in a time window less than 0.50. Incident angles of the

  2. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  3. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  4. Sulfur dioxide emissions related to volcanic activity at Asama volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohwada, Michiko; Kazahaya, Kohei; Mori, Toshiya; Kazahaya, Ryunosuke; Hirabayashi, Jun-ichi; Miyashita, Makoto; Onizawa, Shin'ya; Mori, Takehiko

    2013-12-01

    A 40-year-long record of the sulfur dioxide (SO2) emission rate of Asama volcano, Japan, is presented including high-temporal-resolution data since the 2004 eruption. The 2004 and 2008-2009 eruptive activities were associated with high SO2 emission, and SO2 emission rates markedly fluctuated. In contrast, stable and weak SO2 emissions have been observed for the rest of the investigated interval. The fluctuation of the SO2 emission rates is correlated with the number of shallow low-frequency B-type earthquakes, implying that increased flows of gas and/or magma induced the B-type earthquakes along the shallow conduit. The total volumes of outgassed magma during the 2004 and 2008-2009 eruptive activities are estimated to be 1.9 × 108 and 1.5 × 108 m3, respectively. These volumes are about 100-200 times larger than those of the erupted magma, indicating that the large volumes of the magma were outgassed without being erupted (i.e., excess degassing/outgassing). Degassing and outgassing driven by magma convection rather than by permeable gas flow in the conduit is concluded as the probable degassing/outgassing process of Asama volcano based on model examinations, and is thought to occur regardless of the outgassing intensity. Production rates of outgassed magma related to the 2004 and 2008-2009 eruptive periods are estimated to have been 7.4 × 103 and 6.7 × 103 kg/s, respectively. These values are one order of magnitude higher than the average production rate of 0.92 × 103 kg/s for the inactive periods. Increased supply of fresh magma is thought to activate magma convection in the conduit and to thereby increase magma degassing/outgassing.

  5. The Pulse of the Volcano: Discovery of Episodic Activity at Prometheus on Io

    NASA Technical Reports Server (NTRS)

    Davies, A. G.

    2003-01-01

    The temporal behaviour of thermal output from a volcano yields valuable clues to the processes taking place at and beneath the surface. Galileo Near Infrared Mapping Spectrometer (NIMS) data show that the ionian volcanoes Prometheus and Amirani have significant thermal emission in excess of nonvolcanic background emission in every geometrically appropriate NIMS observation. The 5 micron brightness of these volcanoes shows considerable variation from orbit to orbit. Prometheus in particular exhibits an episodicity that yields valuable constraints to the mechanisms of magma supply and eruption. This work is part of an on-going study to chart and quantify the thermal emission of Io's volcanoes, determine mass eruption rates, and note eruption style.

  6. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  7. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  8. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  9. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Caress, D. W.; Gwiazda, R.; Melling, H.; Riedel, M.; Jin, Y. K.; Hong, J. K.; Kim, Y.-G.; Graves, D.; Sherman, A.; Lundsten, E.; Anderson, K.; Lundsten, L.; Villinger, H.; Kopf, A.; Johnson, S. B.; Hughes Clarke, J.; Blasco, S.; Conway, K.; Neelands, P.; Thomas, H.; Côté, M.

    2015-09-01

    Morphologic features, 600-1100 m across and elevated up to 30 m above the surrounding seafloor, interpreted to be mud volcanoes were investigated on the continental slope in the Beaufort Sea in the Canadian Arctic. Sediment cores, detailed mapping with an autonomous underwater vehicle, and exploration with a remotely operated vehicle show that these are young and actively forming features experiencing ongoing eruptions. Biogenic methane and low-chloride, sodium-bicarbonate-rich waters are extruded with warm sediment that accumulates to form cones and low-relief circular plateaus. The chemical and isotopic compositions of the ascending water indicate that a mixture of meteoric water, seawater, and water from clay dehydration has played a significant role in the evolution of these fluids. The venting methane supports extensive siboglinid tubeworms communities and forms some gas hydrates within the near seafloor. We believe that these are the first documented living chemosynthetic biological communities in the continental slope of the western Arctic Ocean.

  10. Locating and quantifying the seismic discontinuities in a complex medium through the migration and AVA analysis of reflected and converted waves: an application to the Mt Vesuvius volcano

    NASA Astrophysics Data System (ADS)

    Auger, E.; Virieux, J.; Zollo, A.

    2003-02-01

    In this paper, we show how the migration of active seismic data can be used to identify and position a seismic discontinuity in a complex medium, and how the amplitude variations of the converted P to S waves can be interpreted to constrain the seismic velocities below the interface. For the application we turn our attention on Mt Vesuvius, an active volcano threatening a densely populated area. To better define its plumbing system, we investigate a mid-crust seismic discontinuity first identified by Zollo et al. (1996, Science,274, 592-594) and assumed to be the top of a layer containing low-velocity material. We deduce a reference velocity model from previous works on first arrival times, and use it to migrate PP reflected and PS converted waves. In the migration image, the interface extends at least 20000 m NE and 20000 m SW of the volcano, at the depth of 8000 m, and with a mean dip less than 3 per cent. The migration of finite-difference synthetics exclude the fact that the migrated phases interpreted as 8000 m deep reflections or conversions might be multiples in the shallow layers. The PS and first arrival amplitudes are compared at a fixed station and for all the shots to determine the variations of the P-to-S conversion coefficient with the angle of incidence. It appears to vary very slowly over the whole range of incidence angle at disposal (50∘-80∘). This implies a dramatic drop of S-wave velocity from approximately 3600 m s-1 above to less than 1000 m s-1 below the interface. The smoothness of the variations indicate that the P-wave velocity also diminishes across the interface. The very low S-wave velocity, other geophysical observations at Vesuvius and in other volcanic systems, lead to the conclusion that below the 8000 m discontinuity there is a very extended layer of hot, partially molten material.

  11. Insights on Volcanic Activity - Self-Potential and Gravity surveys of Masaya volcano

    NASA Astrophysics Data System (ADS)

    Williams-Jones, G.; Mauri, G.; Saracco, G.

    2006-12-01

    For more than ten years, the activity of Masaya volcano, Nicaragua, has been surveyed annually in order to characterize the long term mass/density variations within the shallow magma chamber. However, the injection of new magma is a rapid process, requiring only several hours or days. Other cyclical short period phenomena may be present (e.g., hydrothermal systems) and responsible for noise in the measured signal during a typical dynamic gravity survey. In order to determine the origin and importance of this noise and fully characterize any short period variations, a continuous gravity survey was made from February 16, 2006 to March 12, 2006 in the summit crater of Masaya. During this period, a short term of gravity variation of 60 μGal was measured with a wavelength of 20 hours. Hydrothermal systems, which may or may not be well developed, are directly related to heat, gas and fluids coming from the shallow magma chamber and plumbing system. Others sources of fluids are rainfall and the local aquifer, notably at the caldera lake, Laguna Masaya. Movement of hydrothermal fluids, which will generate self-potential (SP) signals, are directly influenced by superficial dyke injection and fluctuations of magma in the shallow plumbing system. The depth and movement of large fluid cells can be localized by self- potential data when processed by continuous wavelet transform. To characterize the shape and position of the hydrothermal system on the Masaya volcano, several SP profiles were made in conjunction with the continuous gravity survey. The SP data from around the summit pit craters were processed by continuous wavelet transform to localize the main large cell of hydrothermal fluid and determine the effects of the hydrothermal fluids on the continuous gravity measurements. The combination of SP and continuous gravity can give insight into short and medium term variations in magmatic activity.

  12. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2011-01-01

    Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

  13. Characterization and interpretation of volcanic activity at Redoubt, Bezymianny and Karymsky volcanoes through direct and remote measurements of volcanic emissions

    NASA Astrophysics Data System (ADS)

    Lopez, Taryn M.

    Surface measurements of volcanic emissions can provide critical insight into subsurface processes at active volcanoes such as the influx or ascent of magma, changes in conduit permeability, and relative eruption size. In this dissertation I employ direct and remote measurements of volcanic emissions to characterize activity and elucidate subsurface processes at three active volcanoes around the North Pacific. The 2009 eruption of Redoubt Volcano, Alaska, produced elevated SO2 emissions that were detected by the Ozone Monitoring Instrument (OMI) satellite sensor for over three months. This provided a rare opportunity to characterize Redoubt's daily SO2 emissions and to validate the OMI measurements. Order of magnitude variations in daily SO2 mass were observed, with over half of the cumulative SO2 emissions released during the explosive phase of the eruption. Correlations among OMI daily SO2 mass, tephra mass and acoustic energies during the explosive phase suggest that OMI data may be used to infer eruption size and explosivity. From 2007 through 2010 direct and remote measurements of volcanic gas composition and flux were measured at Bezymianny Volcano, Kamchatka, Russia. During this period Bezymianny underwent five explosive eruptions. Estimates of passive and eruptive SO2 emissions suggest that the majority of SO2 is released passively. Order of magnitude variations in total volatile flux observed throughout the study period were attributed to changes in the depth of gas exsolution and separation from the melt at the time of sample collection. These findings suggest that exsolved gas composition may be used to detect magma ascent prior to eruption at Bezymianny Volcano. Karymsky Volcano, Kamchatka, Russia, is a dynamic volcano which exhibited four end-member activity types during field campaigns in 2011 and 2012, including: discrete ash explosions, pulsatory degassing, gas jetting, and explosive eruption. These activity types were characterized quantitatively

  14. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  15. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity

    NASA Astrophysics Data System (ADS)

    Laiolo, M.; Ranaldi, M.; Tarchini, L.; Carapezza, M. L.; Coppola, D.; Ricci, T.; Cigolini, C.

    2016-04-01

    occurred at Stromboli during the analysed time span (2007-2011) but no clear correlations emerge between soil gas release and volcanic activity. This is probably due to i) the distal location of the monitoring stations with respect to the active craters and to ii) the fact that during the investigated period no major eruptive phenomena (paroxysmal explosion, flank eruption) occurred. Comparison of MLR and PCR methods in time-series analysis indicates that MLR can be more easily applied to real time data processing in monitoring of open conduit active volcanoes (like Stromboli) where the transition to an eruptive phase may occur in relatively short times.

  16. International Volcanological Field School in Kamchatka and Alaska: Experiencing Language, Culture, Environment, and Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E.; Ivanov, B.; Izbekov, P.; Kasahara, M.; Melnikov, D.; Selyangin, O.; Vesna, Y.

    2003-12-01

    The Kamchatka State University of Education, University of Alaska Fairbanks, and Hokkaido University are developing an international field school focused on explosive volcanism of the North Pacific. An experimental first session was held on Mutnovsky and Gorely Volcanoes in Kamchatka during August 2003. Objectives of the school are to:(1) Acquaint students with the chemical and physical processes of explosive volcanism, through first-hand experience with some of the most spectacular volcanic features on Earth; (2) Expose students to different concepts and approaches to volcanology; (3) Expand students' ability to function in a harsh environment and to bridge barriers in language and culture; (4) Build long-lasting collaborations in research among students and in teaching and research among faculty in the North Pacific region. Both undergraduate and graduate students from Russia, the United States, and Japan participated. The school was based at a mountain hut situated between Gorely and Mutnovsky Volcanoes and accessible by all-terrain truck. Day trips were conducted to summit craters of both volcanoes, flank lava flows, fumarole fields, ignimbrite exposures, and a geothermal area and power plant. During the evenings and on days of bad weather, the school faculty conducted lectures on various topics of volcanology in either Russian or English, with translation. Although subjects were taught at the undergraduate level, lectures led to further discussion with more advanced students. Graduate students participated by describing their research activities to the undergraduates. A final session at a geophysical field station permitted demonstration of instrumentation and presentations requiring sophisticated graphics in more comfortable surroundings. Plans are underway to make this school an annual offering for academic credit in the Valley of Ten Thousand Smokes, Alaska and in Kamchatka. The course will be targeted at undergraduates with a strong interest in and

  17. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  18. Organic geochemical signatures controlling methane outgassing at active mud volcanoes in the Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    DongHun, Lee; YoungKeun, Jin; JungHyun, Kim; Heldge, Niemann; JongKu, Gal; BoHyung, Choi

    2016-04-01

    Based on the water column acoustic anomalies related to active methane (CH4) venting, numerous active Mud Volcanoes (MVs) were recently identified at ~282, ~420, and ~740 m water depths on the continental slope of the Canadian Beaufort Sea (Paull et al., 2015). While geophysical aspects such as the multibeam bathymetric mapping are thoroughly investigated, biogeochemical processes controlling outgassing CH4 at the active MVs are not well constrained. Here, we investigated three sediment cores from the active MVs and one sediment core from a non-methane influenced reference site recovered during the ARA-05C expedition with the R/V ARAON in 2014. We analyzed lipid biomarkers and their stable carbon isotopic values (δ13C) in order to determine key biogeochemical processes involved in CH4 cycling in the MV sediments. Downcore CH4 and sulphate (SO42-) concentration measurements revealed a distinct sulfate-methane transition zone (SMTZ) at the shallow sections of the cores (15 - 45 cm below seafloor (cm bsf) at 282 m MV, 420 m MV, and 740 m MV). The most abundant diagnostic lipid biomarkers in the SMTZ were sn-2-hydroxyarchaeol (-94‰) and archaeol (-66‰) with the sn-2-hydroxyarchaeol: archaeol ratio of 1.1 to 5, indicating the presence of ANME-2 or -3. However, we also found substantial amounts of monocyclic biphytane-1 (BP-1, -118‰), which is rather indicative for ANME-1. Nevertheless, the concentration of sn-2-hydroxyarchaeol was 2-fold higher than any other archaeal lipids, suggesting a predominant ANME-2 or -3 rather than ANME-1 as a driving force for the anaerobic methane oxidation (AOM) in these systems. We will further investigate the microbial community at the active MVs using nucleic acid (RNA and DNA) sequence analyses in near future. Our study provides first biogeochemical data set of the active MVs in the Canadian Beaufort Sea, which helps to better understand CH4 cycling mediated in these systems. Reference Paull, C.K., et al. (2015), Active mud

  19. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  20. Children's Objective Physical Activity by Location: Why the Neighborhood Matters

    PubMed Central

    Kneeshaw-Price, Stephanie; Saelens, Brian; Sallis, James; Glanz, Karen; Frank, Lawrence; Kerr, Jacqueline; Hannon, Peggy; Grembowski, David; Chan, KC Gary; Cain, Kelli

    2014-01-01

    Knowledge of where children are active may lead to more informed policies about how and where to intervene and improve physical activity. This study examined where children aged 6–11 were physically active using time-stamped accelerometer data and parent-reported place logs and assessed the association of physical-activity location variation with demographic factors. Children spent most time and did most physical activity at home and school. Although neighborhood time was limited, this time was more proportionally active than time in other locations (e.g., active 42.1% of time in neighborhood vs. 18.1% of time at home). Children with any neighborhood-based physical activity had higher average total physical activity. Policies and environments that encourage children to spend time outdoors in their neighborhoods could result in higher overall physical activity. PMID:23877357

  1. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  2. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Dean, K., G.; Dehn, J.; Miller, T., P.; Kirianov, V. Yu.

    There are about 100 potentially active volcanoes in the North Pacific Ocean region that includes Alaska, the Kamchatka Peninsula, and the Kurile Islands, but fewer than 25% are monitored seismically. The region averages about five volcanic eruptions per year, and more than 20,000 passengers and millions of dollars of cargo fly the air routes in this region each day. One of the primary public safety objectives of the Alaska Volcano Observatory (AVO) is to mitigate the hazard posed by volcanic ash clouds drifting into these busy air traffic routes. The AVO uses real-time remote sensing data (AVHRR, GOES, and GMS) in conjunction with other methods (primarily seismic) to monitor and analyze volcanic activity in the region. Remote sensing data can be used to detect volcanic thermal anomalies and to provide unique information on the location, movement, and composition of volcanic eruption clouds. Satellite images are routinely analyzed twice each day at AVO and many times per day during crisis situations. As part of its formal working relationship with the Kamchatka Volcanic Eruption Response Team (KVERT), the AVO provides satellite observations of volcanic activity in Kamchatka and distributes notices of volcanic eruptions from KVERT to non-Russian users in the international aviation community. This paper outlines the current remote sensing capabilities and operations of the AVO and describes the responsibilities and procedures of federal agencies and international aviation organizations for volcanic eruptions in the North Pacific region. A case study of the December 4, 1997, eruption of Bezymianny volcano, Russia, is used to illustrate how real-time remote sensing and hazard communication are used to mitigate the threat of volcanic ash to aircraft.

  3. Developments in analysis of basaltic ash applied to recent activity at Stromboli and Etna volcanoes

    NASA Astrophysics Data System (ADS)

    Lautze, Nicole; Taddeucci, Jacopo; Andronico, Daniele; Tornetta, Lauretta; Cannata, Chiara; Cristaldi, Antonio

    2010-05-01

    Volcanic ash is widely distributed and therefore generally safe to collect in real-time, however, there is a paucity of published studies that characterize the textural properties of ash (relative to larger clasts), probably because its small size makes ash inherently difficult to analyze. Recent advances in analytical techniques enable automated, relatively quick, quantitative classification of the morphoscopy and surface chemistry of a hundreds of ash particles using a Field Emission SEM. We present results of such analysis on eight samples of ash collected at different locations from a weak ash-producing event at Etna on 24 November 2006, and seven samples of ash collected during the 2007 eruptive crisis of Stromboli. The latter includes ash from lava-sea water interaction, the paroxysmal explosion on 15 March, and Strombolian explosions at the summit craters. The morphoscopy data can be compared to grain size data collected by conventional techniques, while the surface chemistry data can be considered a proxy for component analysis, as it reflects the degree of crystallinity and alteration of the particles. Our data show that insight into the particle source and eruptive dynamics of both volcanoes can be obtained from this detailed analysis of the ash. In particular, the different sources of ash at Stromboli have distinctive alteration signatures, while the Etna samples show subtle differences that can be related to relatively small-scale plume zonations.

  4. A Fluorescein Tracer Release Experiment in the Hydrothermally Active Crater of Vailulu'u Volcano, Samoa

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Workman, R.; Koppers, A.; Girard, A.

    2001-12-01

    Vailulu'u (Rockne) volcano marks the active end of the Samoa hotspot chain. The volcano is 4400 meters high, with a summit crater 2000 meters wide by 400 meters deep and summit peaks reaching to within 600 meters of the sea surface. The crater is hydrothermally active, as witnessed by intense particulate concentrations in the water column (values to 1.4 NTU's), a particulate smog ``halo'' surrounding the summit and extending out many kilometers, high Mn concentrations and 3He/4He ratios (values to 3.8 ppb and 8.6 Ra, respectively), and bottom-water temperature anomalies of 0.5oC. Basalts from the crater have been dated in the range 5-50 years, and likely reflect eruptions associated with a 1995 earthquake swarm. On April 3, 2001, we released a 20 kg point-source charge of fluorescein dye 30 meters above the 975m deep crater floor. The dye was dissolved in a 180 liter mixture of propanol and water, adjusted to a density 1.3 per mil heavier than the ambient water at the release depth. Released from a rubberized bag by means of a galvanic link. First detection of the released dye was 39 hours after the deployment; the dye was in a 50 meter thick layer, with a concentration peak at 900 meters (relative to the release depth of 945m). Tracking was carried out by a CTD-based fluorometer operated in tow-yo mode from the U.S.C.G. Icebreaker Polar Sea. The detection limit was 25 picograms/gram, and the maximum detected concentration was 18,000 pg/g (if evenly dispersed in the lower 150 meters of water in the crater, the expected concentration would be approx. 130 pg/g). While the dye pool was only surveyed for 4 days due to ship-transit constraints, significant horizontal and vertical dispersion was apparent. Vertical dispersion velocities were typically 0.05 cm/sec; horizontal velocities were typically higher by a factor of 10. An approximate diapycnal or eddy diffusivity, K, can be calculated from the rate of vertical spreading of the dye layer: K = Z2/2(t-t0), where Z is

  5. The heartbeat of the volcano: The discovery of episodic activity at Prometheus on Io

    USGS Publications Warehouse

    Davies, A.G.; Wilson, L.; Matson, D.; Leone, G.; Keszthelyi, L.; Jaeger, W.

    2006-01-01

    The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (??m) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ???0.8 km3, with a peak instantaneous volumetric flux (effusion rate) of ???140 m3 s-1, and an averaged volumetric flux (eruption rate) of ???49 m3 s-1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ???2-3 km and a maximum depth of ???14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at

  6. The heartbeat of the volcano: The discovery of episodic activity at Prometheus on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Wilson, Lionel; Matson, Dennis; Leone, Giovanni; Keszthelyi, Laszlo; Jaeger, Windy

    2006-10-01

    The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (μm) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ˜0.8 km 3, with a peak instantaneous volumetric flux (effusion rate) of ˜140 m 3 s -1, and an averaged volumetric flux (eruption rate) of ˜49 m 3 s -1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ˜2-3 km and a maximum depth of ˜14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at

  7. Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Métaxian, J. P.; Mars, J. I.; Bean, C. J.; O'Brien, G. S.; Macedo, O.; Zandomeneghi, D.

    2014-01-01

    A series of 16 vulcanian explosions occurred at Ubinas volcano between May 24 and June 14, 2009. The intervals between explosions were from 2.1 h to more than 6 days (mean interval, 33 h). Considering only the first nine explosions, the average time interval was 7.8 h. Most of the explosions occurred after a short time interval (< 8 h) and had low energy, which suggests that the refilling time was not sufficient for large accumulation of gas. A tremor episode followed 75% of the explosions, which coincided with pulses of ash emission. The durations of the tremors following the explosions were longer for the two highest energy explosions. To better understand the physical processes associated with these eruptive events, we localized the sources of explosions using two seismic antennas that were composed of three-component 10 and 12 sensors. We used the high-resolution MUSIC-3C algorithm to estimate the slowness vector for the first waves that composed the explosion signals recorded by the two antennas assuming propagation in a homogeneous medium. The initial part of the explosions was dominated by two frequencies, at 1.1 Hz and 1.5 Hz, for which we identified two separated sources located at 4810 m and 3890 m +/- 390 altitude, respectively. The position of these two sources was the same for the full 16 explosions. This implies the reproduction of similar mechanisms in the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of these two sources as the limits of the conduit portion that was involved in the fragmentation process. Seismic data and ground deformation recorded simultaneously less than 2 km from the crater showed a decompression movement 2 s prior to each explosion. This movement can be interpreted as gas leakage at the level of the cap before its destruction. The pressure drop generated in the conduit could be the cause of the fragmentation process that propagated deeper. Based on these

  8. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999. Highlights of the catalog period include: 1) a large volcanogenic seismic

  9. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic

  10. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  11. A preliminary seismic study of Taal Volcano, Luzon Island Philippines

    NASA Astrophysics Data System (ADS)

    You, S.-H.; Gung, Y.; Lin, C.-H.; Konstantinou, K. I.; Chang, T.-M.; Chang, E. T. Y.; Solidum, R.

    2013-03-01

    The very active Taal Volcano lies in the southern part of Luzon Island only 60 km from Manila, the capital of the Philippines. In March 2008 we deployed a temporary seismic network around Taal that consisted of 8 three-component short period seismometers. This network recorded during the period from March to November 2008 about 1050 local events. In the early data processing stages, unexpected linear drifting of clock time was clearly identified for a number of stations. The drifting rates of each problematic station were determined and the errors were corrected before further processing. Initial location of each event was derived by manually picked P-/S-phases arrival times using HYPO71 and a general velocity model based on AK135. Since the velocity structure beneath Taal is essentially unknown, we used travel times of 338 well-located events in order to derive a minimum 1D velocity model using VELEST. The resulting locations show that most events occurred at the shallow depth beneath the Taal Volcano, and two major earthquake groups were noticed, with one lying underneath the western shore of Taal lake and the other one spread around the eastern flank of the Taal Volcano. Since there is no reported volcano activities during the operation period of our seismic array, we are still not confident to interpret these findings in terms of other natures of volcano at the current stage. However, our work represents an important pioneer step towards other more advanced seismic studies in Taal Volcano.

  12. Detecting Volcano-Tectonic Earthquakes at the Tatun Volcano Group in Taiwan with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Sun, W. F.; Lin, C. H.; Chang, W. Y.

    2015-12-01

    The Tatun Volcano Group (TVG) is located at the northernmost tip of the island of Taiwan. Although TVG have been erupted 0.1-0.2 Ma ago and are considered being extinct, some recent studies suggest that they are active or dormant volcanos. We perform a systematic detection of volcano-tectonic earthquakes beneath TVG using three dense, small-aperture seismic arrays, which were deployed for six months in 2012. We use broadband frequency-wavenumber beam forming and moving-window grid-search methods to compute array parameters for all nearly continuous data and identify volcano-tectonic earthquakes. We detect much more events than that listed in the TVG volcano-tectonic earthquake catalog, about 50 events per month. Our results suggest that dense array techniques are capable of capturing detailed spatiotemporal evolution of volcano-tectonic earthquake behaviours at TVG, and also help to better understand the source mechanism of the brittle, uppermost part of the crust to the combined effect of the local hydrothermal fluid pressure and the regional stress field in the volcanic environment.

  13. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan

    PubMed Central

    Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H.

    2002-01-01

    Significant anomalous changes in the ultra low frequency range (≈0.01 Hz) were observed in both geoelectric and geomagnetic fields before the major volcano-seismic activity in the Izu Island region, Japan. The spectral intensity of the geoelectric potential difference between some electrodes on Niijima Island and the third principal component of geomagnetic field variations at an array network in Izu Peninsula started to increase from a few months before the onset of the volcano-seismic activity, culminating immediately before nearby magnitude 6 class earthquakes. Appearance of similar changes in two different measurements conducted at two far apart sites seems to provide information supporting the reality of preseismic electromagnetic signals. PMID:12032286

  14. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  15. Spectral Analysis of the Signals Associated with Increased Activity in Popocatepetl Volcano April 2012

    NASA Astrophysics Data System (ADS)

    Cuenca, J.

    2013-05-01

    After several decades of being inactive in 1994 had a strong reactivation. Since then he has had long periods where volcanic activity including increased growth and destruction of a dome. In April 2012 Popocatepetl Volcano activity showed an increase in the emission of gas and ash, and Vulcanian type explosions. As a result the National Center for Disaster Prevention (CENAPRED) raised the yellow phase from 2 to 3. Spectrally analyzes seismic activity characteristic of the types of events (explosions, LP, Type-B and tremors) that provides information of the source processes that cause it, despite sustained change reflected by the complexity of the volcanic apparatus, through of: 1) the spectral content of the process provides the source, 2) the spectral ratio H / V, its associated amplification and dominant frequencies, 3) time frequency analysis showing the variation in frequency, 4) the particle motion to analyze its retrograde or prograde acting in a volcanic complex medium. The calculation of H / V was performed by each hour using windows with duration of 80 seconds in the broadband seismic station "Canario" (PPPB). The predominant frequencies of H / V are around 1.4-1.8 Hz to 2.1-2.6 Hz and amplifications from 2.3 to 6.9 times. Analysis of H / V of 48 hours (days 16 and April 17) for the case of 1.4-1.8 Hz was observed: (1) From 0-9 hours there is no amplification. (2) The seismic amplification increases from 10 to 11 hours. (3) A first crisis reaches a maximum at 13 hours with about 6 times of amplification. (4) From 14 to 15 hours there is a strong relaxation of the activity. (5) The activity begins to increase from 16 to 23 hours where it reaches its maximum amplification of almost 7 times. (6) The following two hours and is kept exceeding 6 times of amplification. (7) Then is followed by a decrease to 4 hours on the day 17, from which is maintained at a level variable. (8) At 18 hours of the day 17 grows the amplification at 6.2 times, which conforms a

  16. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  17. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  18. Character of seismic motion at a location of a gas hydrate-bearing mud volcano on the SW Barents Sea margin

    NASA Astrophysics Data System (ADS)

    Franek, Peter; Mienert, Jürgen; Buenz, Stefan; Géli, Louis

    2014-08-01

    The Håkon Mosby mud volcano (HMMV) at 1270 m water depth on the SW Barents Sea slope has been intensively studied since its discovery in 1989. A variety of sensors monitored morphological, hydrological, geochemical, and biological parameters in the HMMV area. An ocean bottom seismometer deployment allowed us to register seismic motion for 2 years, from October 2008 to October 2010. The analysis of seismic records documents two types of seismic signals. The first type are harmonic tremors with frequency peaks around 4-5 and 8-10 Hz that occur in swarms. Their origin could be from fluid flow circulation or resonant vibrations of gas bubbles or from delayed movement of fluid-rich sediments in the conduit or in a deeper pseudo-mud chamber of the HMMV. Because swarms occur with a periodicity of ~ 6 h, tide-related effects are suspected to influence the mechanism originating the tremors. The second type of signals are regional earthquakes that were in 15 cases recognized in seismic records. The activity of harmonic tremors was not significantly affected by earthquakes.

  19. Locadiff with ambient seismic noise : theoretical background and application to monitoring volcanoes and active faults.

    NASA Astrophysics Data System (ADS)

    Larose, Eric; Obermann, Anne; Planes, Thomas; Rossetto, Vincent; Margerin, Ludovic; Sens-Schoenfelder, Christoph; Campillo, Michel

    2015-04-01

    This contribution will cover recent theoretical, numerical, and field data processing developments aiming at modeling how coda waves are perturbed (in phase and amplitude) by mechanical changes in the crust. Using continuous ambient seismic noise, we cross-correlate data every day and compare the coda of the correlograms. We can relative velocity changes and waveform decorrelation along the year, that are related to mechanical changes in the shallow crust, associated to the seismic or volcanic activity, but also to environmental effects such as hydrology. Bibliography : Anne Obermann, Thomas Planes, Eric Larose and Michel Campillo, Imaging pre- and co-eruptive structural changes of a volcano with ambient seismic noise, J. Geophys. Res. 118 6285-6294 (2013). A. Obermann, B. Froment, M. Campillo, E. Larose, T. Planès, B. Valette, J. H. Chen, and Q. Y. Liu, Seismic noise correlations to image structural and mechanical changes associated with the Mw7.9 2008-Wenchuan earthquake, J. Geophys. Res. Solid Earth, 119, 1-14,(2014). Thomas Planès, Eric Larose, Ludovic Margerin, Vincent Rossetto, Christoph Sens-Schoenfelder, Decorrelation and phase-shift of coda waves induced by local changes : Multiple scattering approach and numerical validation, Waves in Random and Complex Media 24, 99-125, (2014)

  20. Landform monitoring in active volcano by UAV and SfM-MVS technique

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Kamiya, I.; Tobita, M.; Iwahashi, J.; Nakajima, H.

    2014-11-01

    Nishinoshima volcano in Ogasawara Islands has erupted since November, 2013. This volcanic eruption formed and enlarged a new island, and fused the new island with the old Nishinoshima Island. We performed automated aerial photographing using an Unmanned Aerial Vehicle (UAV) over the joined Nishinoshima Island on March 22 and July 4, 2014. We produced ortho-mosaic photos and digital elevation model (DEM) data by new photogrammetry software with computer vision technique, i.e. Structure from Motion (SfM) for estimating the photographic position of the camera and Multi-view Stereo (MVS) for generating the 3-D model. We also estimated the area and volume of the new island via analysis of ortho-mosaic photo and DEM data. Transition of volume estimated from the UAV photographing and other photographing shows the volcanic activity still keeps from initial level. The ortho-mosaic photos and DEM data were utilized to create an aerial photo interpretation map and a 3-D map. These operations revealed new knowledge and problems to be solved on the photographing and analysis using UAV and new techniques as this was first case in some respects.

  1. Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli

    NASA Astrophysics Data System (ADS)

    Calvari, Sonia; Intrieri, Emanuele; Di Traglia, Federico; Bonaccorso, Alessandro; Casagli, Nicola; Cristaldi, Antonio

    2016-05-01

    Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli volcano, investigated by means of a monitoring network comprising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network revealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse occurred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlargement of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.

  2. He, N and C isotopes and fluxes in Aira caldera: Comparative study of hydrothermal activity in Sakurajima volcano and Wakamiko crater, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Sano, Yuji; Takahata, Naoto; Kawagucci, Shinsuke; Takahashi, Hirochi

    2013-05-01

    We investigate the degassing activity of an active submarine crater, Wakamiko, and an active sub-aerial volcano, Sakurajima, both located in Aira caldera, southern Kyushu, Japan. We provide 3He/4He, δ13C-CO2 and δ15N data for 15 hot springs, wells and bubbling gas from Sakurajima volcano, along with 3He/4He from seawater at four different sites for both Kagoshima bay and Wakamiko crater. We find a common magmatic 3He/4He ratio for Sakurajima and Wakamiko, 7.2 ± 0.8 Ra, which is consistent with 1) a mixing between air-saturated water (ASW) and MORB-type He, and 2) a common magmatic source located in the center of Aira caldera. Corrected 3He/4He, δ13C-CO2 and CH4/3He data for Sakurajima are correlated with the distance from the volcanic vent (Showa crater), which we attribute to crustal contamination and biogenic reaction. The low δ13C-CO2 values (- 10.1 ± 0.2‰ to - 13.7 ± 0.3‰) observed at Sakurajima may result from the addition of carbon from organic matter from basement rocks in magmatic source. After correction for air-derived nitrogen, we find δ15Nc values range between - 1.7‰ and + 4.3‰ which indicates that magmatic N is dominated by a sedimentary-derived component (up to 65.8%). We calculate Wakamiko fluxes of 4He (975 ± 228 mol/y), 3He (0.011 ± 0.003 mol/y), CO2 (184 ± 43 t/d), and heat (195 ± 22 MW). Our helium and heat fluxes are the first in situ fluxes ever reported for Wakamiko crater. All these Wakamiko fluxes are at least one order of magnitude lower than those observed for Sakurajima (CO2: 1800 t/d; 3He: 0.71 mol/y; heat: 2100 MW): degassing at Sakurajima volcano is much stronger than that at Wakamiko crater. The variation of Sakurajima CO2 flux with time, source (Minamidake or Showa crater) and eruptive activity, appears not to significantly affect the CO2 flux at Wakamiko crater, which is much more stable (132-307 t/d) during the last 30 years. This indicates that there is no link between Sakurajima and Wakamiko degassing

  3. Magma storage depths beneath an active rift volcano in Afar (Dabbahu), constrained by melt inclusion analyses, seismicity and Interferometric Synthetic Aperture Radar (INSAR)

    NASA Astrophysics Data System (ADS)

    Field, L.; Blundy, J.; Wright, T. J.; Yirgu, G.; Afar Consortium

    2010-12-01

    Dabbahu volcano is located at the northern end of the active Manda Hararo rift segment in western Afar, Ethiopia. In 2005 a major rifting episode began in the segment, which has been modelled as basalt dyke injections (1). Seismic activity, inflation and deflation have been recorded at the volcano. The aim of this research is to provide an insight into the history and evolution of a silicic magmatic centre in the rift, and to contribute to the wider aims of the NERC Afar Consortium to track the creation, migration, evolution and emplacement of magma from the asthenosphere to the crust. The volatile contents of rare melt inclusions trapped within phenocrysts of alkali feldspar, clinopyroxene and olivine from Dabbahu have been studied using secondary ion mass spectrometry. The host lavas are mildly peralkaline obsidians, which, based on field evidence and preliminary results from 40Ar-39Ar dating, represent the youngest samples on the volcano (<4 ka). Whilst the obsidian and pumice groundmass glasses are largely degassed, the H2O contents of the analysed inclusions are up to 5.8 wt%. CO2 contents are generally low; <462 ppm in the alkali feldspar-hosted inclusions, but higher values (up to 1457 ppm) have been found in the clinopyroxene-hosted inclusions. The pressure (and depth) of pre-eruptive magma storage beneath Dabbahu has been constrained using H2O and CO2 data, which suggest shallow magma storage at depths of ~1 - 5 km below the surface. These depths are consistent with observations from recorded seismicity and InSAR at Dabbahu. Seismicity has been recorded from deformation caused by deflation of the magma chamber following the 2005 dyke emplacement event (Oct 2005 - Apr 2006)(2) and InSAR has monitored deflation and subsequent steady inflation after this event. We show that melt inclusions accurately record a stable, shallow magma chamber as corroborated by remote sensing and geophysical observations at Dabbahu volcano. 1 Ayele et al. 2009 ‘September 2005

  4. Volcanic history of El Chichon Volcano (Chiapas, Mexico) during the Holocene, and its impact on human activity

    USGS Publications Warehouse

    Espindola, J.M.; Macias, J.L.; Tilling, R.I.; Sheridan, M.F.

    2000-01-01

    Before its devastating eruption in 1982, El Chichon Volcano was little known and did not appear on any listings of hazardous volcanoes. Subsequent geologic studies, based on stratigraphic and radiocarbon investigations, showed that at least three explosive eruptions had occurred previously at this volcano. In this paper, we present the result of recent studies on the stratigraphy of the volcano and new radiocarbon ages which show that at least 11 eruptions have taken place at El Chichon in the past 8000 years. Explosive events, most of them producing block-and-ash flow and surge deposits, occurred around 550, 900, 1250, 1500, 1600, 1900, 2000, 2500, 3100, 3700 and 7700 years BP. The juvenile products of these eruptions have a trachyandesitic composition with similar degree of evolution, as evidenced from their SiO2 abundance and depletion in MgO, CaO, TiO2, as well as trace and rare earth elements. This suggests segregation of olivine and orthopyroxene from the melt. Since human settlements in southeast Mexico and Central America can be traced as far back as approximately 2500 years BP, most of these events probably affected human activity. In fact, there are reports of pottery shards and other artifacts in deposits from the eruption of 1250 BP. Pottery fragments in deposits of an eruption that took place 2500 BP are also reported in this paper. Thus, the impact of the volcano on human activities has been frequent, with most of the repose intervals lasting between 100 to 600 years. The impact of the eruptions was probably of greater than local extent, because airfall tephra could reach distant sites and possibly even affect weather. The eruptive history of El Chichon also offers clues in the investigation of the Maya civilization. Several researchers have considered the volcano as an important factor in the answer to some intriguing questions such as the extensive use of volcanic ash in Late Classic Maya ceramics or, of greater importance, the causes of the

  5. Volcanic history of El Chichón Volcano (Chiapas, Mexico) during the Holocene, and its impact on human activity

    NASA Astrophysics Data System (ADS)

    Espíndola, J. M.; Macías, J. L.; Tilling, R. I.; Sheridan, M. F.

    Before its devastating eruption in 1982, El Chichón Volcano was little known and did not appear on any listings of hazardous volcanoes. Subsequent geologic studies, based on stratigraphic and radiocarbon investigations, showed that at least three explosive eruptions had occurred previously at this volcano. In this paper, we present the result of recent studies on the stratigraphy of the volcano and new radiocarbon ages which show that at least 11 eruptions have taken place at El Chichón in the past 8000years. Explosive events, most of them producing block-and-ash flow and surge deposits, occurred around 550, 900, 1250, 1500, 1600, 1900, 2000, 2500, 3100, 3700 and 7700years BP. The juvenile products of these eruptions have a trachyandesitic composition with similar degree of evolution, as evidenced from their SiO2 abundance and depletion in MgO, CaO, TiO2, as well as trace and rare earth elements. This suggests segregation of olivine and orthopyroxene from the melt. Since human settlements in southeast Mexico and Central America can be traced as far back as approximately 2500years BP, most of these events probably affected human activity. In fact, there are reports of pottery shards and other artifacts in deposits from the eruption of 1250 BP. Pottery fragments in deposits of an eruption that took place 2500 BP are also reported in this paper. Thus, the impact of the volcano on human activities has been frequent, with most of the repose intervals lasting between 100 to 600years. The impact of the eruptions was probably of greater than local extent, because airfall tephra could reach distant sites and possibly even affect weather. The eruptive history of El Chichón also offers clues in the investigation of the Maya civilization. Several researchers have considered the volcano as an important factor in the answer to some intriguing questions such as the extensive use of volcanic ash in Late Classic Maya ceramics or, of greater importance, the causes of the collapse

  6. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border

    NASA Astrophysics Data System (ADS)

    Liu, Jia-qi; Chen, Shuang-shuang; Guo, Zheng-fu; Guo, Wen-feng; He, Huai-yu; You, Hai-tao; Kim, Hang-min; Sung, Gun-ho; Kim, Haenam

    2015-11-01

    The intense Cenozoic volcanism of Mt. Changbai provides a natural laboratory for investigating the characteristics of volcanism and the dynamical evolution of the Northeast Asian continental margin. Mt. Changbai volcanoes predominantly consist of Wangtian'e volcano in China, Tianchi volcano spanning China and DPR Korea, and Namphothe volcano in DPR Korea. Geochronology data and historical records of volcanism indicate that the three eruption centers were formed in the following sequence: Wangtian'e volcano to Namphothe and Tianchi volcano, advancing temporally and spatially from southwest to northeast. The three eruption centers of Mt. Changbai volcano are located close together, have similar magma evolution trends, bimodal volcanic rock distribution, and an enriched mantle source, etc. Although the Cenozoic volcanism in Mt. Changbai is thought to be somewhat related to the subduction of the Western Pacific Plate, the regularity of volcanic activity and petrography characteristics have continental rift affinity. We therefore conclude that the occurrence of synchronous and similar volcanic activity on both sides of the Japan Sea (i.e., the Japan Arc and Northeast China) likely respond to the rift expansion and the back-arc spreading of Japan Sea. From many perspectives, Mt. Changbai volcano is a giant active volcano with hidden potentially eruptive risks.

  7. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    PubMed

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment. PMID:23116231

  8. 24 CFR 570.309 - Restriction on location of activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Restriction on location of activities. 570.309 Section 570.309 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Entitlement...

  9. Choice and Constraint in the Location of Urban Retail Activities.

    ERIC Educational Resources Information Center

    Hay, Iain

    1992-01-01

    Discusses problems that students have in appreciating the relevance of the philosophy underlying geography instruction. Presents an activity that requires students to apply geographic concepts to decisions concerning the location of urban retail outlets. Includes details on implementation, rationale and background, and procedures. (SG)

  10. New insights into eruptive activity and lava flow hazard at Nyamulagira volcano, D.R.C., from a new GIS-based lava flow map

    NASA Astrophysics Data System (ADS)

    Smets, B.; Kervyn, M.; Kervyn, F.; D'Oreye, N.; Wauthier, C.

    2010-12-01

    Nyamulagira, located in the western branch of the East African Rift (EAR), is Africa’s most active volcano with one eruption every 2 - 4 years. A map of Nyamulagira lava flows was produced during the 1960’s by Thonnard et al. (1965). This map, which results from the mosaicking of several aerial photographs, contains locally some geographic inaccuracies. The photo-interpretation also led in places to the discrimination of lava units not corresponding to any flow boundaries in the field. Finally, 19 eruptions occurred since this first edition, which causes it to be outdated and of limited use to document the recent eruptive history. Recently, Smets et al. (2010) have produced a new map of lava flows using a combination of optical and radar satellite imagery. This map is GIS-based and can be quickly updated during/after each eruption. Using the new lava flow map of Nyamulagira and a compilation of bibliographic/field information of the last 31 eruptions, the evolution of eruptive activity since the early 1900’s was reconstructed and the volume of erupted lava estimated for each eruption from 1938 to 2010. The spatio-temporal evolution of eruptive activity suggests a strong control from the rift tectonics but also from inherited basement structures on the location, the fissure orientation and the relative lava volume for the successive eruptions. The time lapse after each eruption is strongly correlated with the erupted volume of lava. The 1938-40 eruption is a key event in the volcano recent history, as the corresponding caldera collapse led to an increase of flank eruptions. Nyamulagira flank eruptions systematically destroy large areas of the protected forest of the Virunga National Park, a UNESCO World Heritage in danger since 1994. The lava flows from distal eruptions or from exceptionally high effusion rate or volume events also threaten local population, mainly south of the main edifice near Lake Kivu.

  11. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  12. Ultra-high Resolution Mapping of the Inner Crater of the Active Kick'em Jenny Volcano

    NASA Astrophysics Data System (ADS)

    Hart, L.; Scott, C.; Tominaga, M.; Smart, C.; Vaughn, I.; Roman, C.; Carey, S.; German, C. R.; Participants, T.

    2015-12-01

    We conducted high-resolution geological characterization of a 0.015km^2 region of the inner crater of the most active submarine volcano in the Caribbean, Kick'em Jenny, located 8 km off Grenada in the Lesser Antilles Island Arc. We obtained digital still images and microbathymetery at an altitude of 3 m from the seafloor by using stereo cameras and a BlueView system mounted on Remotely Operated Vehicle (ROV) Hercules during the NA054 cruise on E/V Nautilus (Sept. - Oct. 2014). The seafloor images were processed to construct 2-D photo mosaics of the survey area using Standard Hercules Imaging Suite. We systematically classified the photographed seafloor geology based on the distribution of seafloor morphology and the observable rock fragment and outcrop sizes. The center of the crater floor shows a smooth, coherent texture with little variation in sea floor morphology. From immediately outside this area toward the crater rim, we observe an extensive area covered with outcrops, small rocks, and sediment: and within this area, (1) the north section is partially covered by uneven outcrops with elongated lineaments and a course, rugged seafloor with individual rock fragments observable; (2) the middle section contains high variability and heterogeneity in seafloor morphology in a non-systematic manner; and (3) overall, the southern most section displays subdued seafloor features both in space and variability compared to the other areas. The distributions of rock fragments were classified into four distinct sizes. We observe: (i) little variation in size distribution near the center of the crater floor; and (ii) rock fragment size increasing toward the rim of the crater. To obtain a better understanding of the link between variation in seafloor morphology, rock size distribution, and other in situ processes, we compare our observations on the digital photo mosaic to bathymetry data and ROV visuals (e.g. vents and bacterial mats).

  13. Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania

    USGS Publications Warehouse

    Kervyn, M.; Ernst, G.G.J.; Keller, J.; Vaughan, R. Greg; Klaudius, J.; Pradal, E.; Belton, F.; Mattsson, H.B.; Mbede, E.; Jacobs, P.M.

    2010-01-01

    On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al.2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.

  14. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    NASA Technical Reports Server (NTRS)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  15. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  16. Selection of active member locations in adaptive structures

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Bruno, R.; Salama, M.

    1989-01-01

    The effective use of multiple passive and active members in adaptive structures necessitates that these members be optimally distributed throughout the structure. In truss structures, the problem falls into the class of combinatorial optimization for which the solution becomes exceedingly intractable as the problem size increases. This is overcome by using the simulated annealing algorithm to obtain near optimal locations for passive and/or active members. The maximization of the rate of energy dissipation over a finite time period as the measure of optimality is adopted. The selection of optimal locations for both passive and active members is consistently treated through the use of the energy dissipation rate criterion within the simulated annealing algorithm. Numerical examples are used to illustrate the effectiveness of the methodology for large truss structures.

  17. Geochemical heterogeneities and dynamics of magmas inside the plumbing system of a persistently active volcano: evidences from Stromboli

    NASA Astrophysics Data System (ADS)

    Pompilio, Massimo; Bertagnini, Antonella; Métrich, Nicole; Belhadj, Oulfa

    2010-05-01

    Shallow processes such as degassing, crystallization and magma drain-back commonly operate in the upper parts of the plumbing systems of open-conduit basaltic volcanoes, often hindering the identification of potentially important geochemical changes in the volcano systems. Stromboli, known for its long-lived persistent activity over the last 18 centuries, is a suitable subject of study for addressing this issue, since basaltic magmas presently erupting at in this volcano record both deep and shallow processes. We report petrological and geochemical data on magmas erupted by Stromboli since the beginning of the persistent activity, in order to find a correlation between magma composition and the dynamics of magma in the plumbing system. Geochemical data on deep-derived magmas erupted as pumice during paroxysmal eruptions allowed us to identify two distinct parental melts (1944- and 2003-Type). These magmas, in which geochemical differences are linked to source processes rather than crystal fractionation, have alternately fed the deep reservoir in the last two millennia several times. The chemical heterogeneities recorded in lava flows and the products of Strombolian activity testify to the extent of homogenization after magma recharges at shallow depths. Persistent heterogeneities in the shallow plumbing system have important implications for magma residence times calculated on the basis of time-series analysis. These models are based on the assumptions that the reservoir is well stirred and chemically homogeneous and that the time for the re-homogenization after recharge (or mixing) is shorter than the residence time. We argue that these models do not apply to present-day activity at Stromboli and may not apply to other open-conduit, persistently degassing basaltic volcanoes. Thus compositional variations within the shallow magma bodies provide only a biased signal of ongoing changes within the plumbing system. We conclude that source changes responsible for

  18. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Song-Chuen; Hsu, Shu-Kun; Wang, Yunshuen; Chung, San-Hsiung; Chen, Po-Chun; Tsai, Ching-Hui; Liu, Char-Shine; Lin, Hsiao-Shan; Lee, Yuan-Wei

    2014-10-01

    In order to identify the mud diapirs and mud volcanoes off SW Taiwan, we have examined ∼1500 km long MCS profiles and related marine geophysical data. Our results show ten quasi-linear mud diapirs, oriented NNE-SSW to N-S directions. Thirteen mud volcanoes are identified from the multibeam bathymetric data. These mud volcanoes generally occur on tops of the diapiric structures. Moreover, the active mud flow tracks out of mud volcanoes MV1, MV3 and MV6 are observed through the high backscatter intensity stripes on the sidescan sonar images. The heights of the cone-shaped mud volcanoes range from 65 m to 345 m, and the diameters at base from 680 m to 4100 m. These mud volcanoes have abrupt slopes between 5.3° and 13.6°, implying the mudflow is active and highly viscous. In contrast, the flat crests of mud volcanoes are due to relative lower-viscosity flows. The larger cone-shaped mud volcanoes located at deeper water depths could be related to a longer eruption history. The formation of mud diapirs and volcanoes in the study area are ascribed to the overpressure in sedimentary layers, compressional tectonic forces and gas-bearing fluids. Especially, the gas-bearing fluid plays an important role in enhancing the intrusion after the diapirism as a large amount of gas expulsions is observed. The morphology of the upper Kaoping Slope is mainly controlled by mud diapiric intrusions.

  19. A satellite geodetic survey of spatiotemporal deformation of Iranian volcanos

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.

    2012-04-01

    Surface deformation in volcanic areas is usually due to movement of magma, hydrothermal activity at depth, weight of volcano, landside, etc. Iran, located at the convergence of the Eurasian and Arabian tectonic plates, is the host of five apparently inactive volcanoes, named 'Damavand', 'Taftan', 'Bazman', 'Sabalan' and 'Sahand'. Through investigation of the long term surface deformation rate at Damavand volcano, the highest point in the middle east, Shirzaei et al. (2011) demonstrated that a slow gravity-driven deformation in the form of spreading is going on at this volcano. Extending the earlier work, in this study, I explore large sets of SAR data obtained by Envisat radar satellite from 2003 through 2010 at all Iranian volcanoes. Multitemporal interferometric analysis of the SAR data sets allows retrieving sub-millimeter surface deformation at these volcanic systems. As a result, I detect a transient flank failure in the form of landslide at Damavand that is followed by elevated fumarolic activity. This suggests that landslide might have triggered volcanic unrest. Moreover, I measure significant surface deformation at Taftan and Bazman volcanos associated with different episodes of uplift and subsidence. The inverse model simulations suggest that the time-dependent inflations and deflations of extended and spherical pressurized magma chambers are responsible for the surface displacements at these volcanoes. I also detect time-dependent surface displacements at Sabalan and Sahand volcanoes, where the investigation of the type and the sources of the observed deformation is subject of ongoing research. This study is a best example that shows the absent of recent eruption can not be used as a reliable factor in volcanic hazard assessment and a continuous monitoring system is of vital importance. Reference Shirzaei, M., Walter, T.R., Nankali, H.R. and Holohan, E.P., 2011. Gravity-driven deformation of Damavand volcano, Iran, detected through InSAR time series

  20. Cost effective aero-photogrammetry toys at active volcanoes: On the use of drones, balloons and kites

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.

    2014-05-01

    The availability of aerial photographs allows spatial mapping of flows and fractures, generation of digital elevation models and other change detection. Therefore aerial photographs significantly improve our understanding of volcanic processes. The common problem is the lack of available data for most volcanoes, and the lack of systematic and chronologic repeat surveys. This work summarizes the current state of knowledge and technical implementations that currently revolutionize the field of aero-photogrammetry. By the use of unmanned vehicles, such as octocopters, helicopters and small airplanes, photo data can be acquired from almost any place at distances up to kilometres from the operator. Moreover, by the use of helium balloons, kites or their hybrid helikites, near field aero-photographs are obtained. In combination with modern stitching procedures and computer vision algorithms, the positioning of the camera and the digital elevation model of the ground can be extracted, and the active volcano and its eruption cloud be imaged from almost any perspective. This field is increasingly gaining flexibility, as lightweight cameras are available from visible, infrared and other spectral bands. Here example data are provided from volcanoes that are difficult to access by regular airplanes, showing the strengths and the limits of these new aero-photogrammetry toys.

  1. Evolution of magma feeding system in Kumanodake agglutinate activity, Zao Volcano, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Takebe, Yoshinori; Ban, Masao

    2015-10-01

    The Kumanodake agglutinate of Zao Volcano in northeastern Japan consists of pyroclastic surge layers accumulated during the early part of the newest stage of activity (ca. 33 ka to present). Our petrologic study of this agglutinate based on systematically collected samples aims to reveal the evolution of magma feeding system. To understand the magma evolution, we have examined samples from the agglutinate by using petrologic data including, petrography, analysis of minerals (plagioclase, pyroxene, and olivine), glass compositions, and whole rock major element and trace element (Ba, Sr, Cr, Ni, V, Rb, Zr, Nb, and Y) compositions. Agglutinate are mixed, medium-K, calc-alkaline olv-cpx-opx basaltic andesite (55.2-56.2% SiO2). Results show that the magma feeding system comprised a shallow felsic chamber injected by mafic magma from depth. The felsic magma (59-62% SiO2, 950-990 °C), which was stored at a shallower depth, had orthopyroxene (Mg# = 60-69), clinopyroxene (Mg# = 65-71), and low-An plagioclase (Anca. 58-70). The mafic magma is further divisible into two types: less-differentiated and more-differentiated, designed respectively as an initial mafic magma-1 and a second mafic magma-2. The original mafic magma-1 was olivine (Fo~ 84) basalt (ca. 48-51% SiO2, 1110-1140 °C). The second mafic magma-2, stored occasionally at 4-6 km depth, was basalt (1070-1110 °C) having Foca. 80 olivine and high-An (Anca. 90) plagioclase phenocrysts. These two magmas mixed (first mixing) to form hybrid mafic magma. The forced injections of the hybrid mafic magmas activated the felsic magma, and these two were mixed (second mixing) shortly before eruptions. The explosivity is inferred to have increased over time because the abundance of large scoria increased. Furthermore, the erupted magma composition became more mafic, which reflects increased percentage of the hybrid mafic magma involved in the second mixing. At the beginning of activity, the mafic magma also acted as a heat

  2. Seismic Structure Beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    You, S. H.; Gung, Y.; Konstantinou, K. I.; Lin, C. H.

    2014-12-01

    The very active Taal Volcano is situated 60 km south of Metro Manila in the southern part of Luzon Island. Based on its frequent explosive eruptions and high potential hazards to nearby population of several million, Taal Volcano is chosen as one of the 15 most dangerous "Decade Volcanoes" in the world. We deployed a temporary seismic network consisting of 8 stations since March 2008. The temporal network was operated from late March 2008 to mid March 2010 and recorded over 2270 local earthquakes. In the early data processing stages, unexpected linear drifting of clock time was clearly identified from ambient noise cross-correlation functions for a number of stations. The drifting rates of all problematic stations were determined as references to correct timing errors prior to further processing. Initial locations of earthquakes were determined from manually picking P- and S-phases arrivals with a general velocity model based on AK135. We used travel times of 305 well-located local events to derive a minimum 1-D model using VELEST. Two major earthquake groups were noticed from refined locations. One was underneath the western shore of Taal Lake with a linear feature, and the other spread at shallower depths showing a less compact feature around the eastern flank of Taal Volcano Island. We performed seismic tomography to image the 3D structure beneath Taal Volcano using a well-established algorithm, LOTOS. Some interesting features are noted in the tomographic results, such as a probable solidified past magma conduit below the northwestern corner of Taal Volcano Island, characterized by high Vp, Vs, and low Vp/Vs ratio, and a potential large hydrothermal reservoir beneath the central of Taal Volcano Island, characterized by low Vs and high Vp/Vs ratio. Combining the results of seismicity and tomographic images, we also suggest the potential existence of a magma chamber beneath the southwestern Taal Lake, and a magma conduit or fault extending from there to the

  3. Waters associated with an active basaltic volcano, Kilauea, Hawaii: Variation in solute sources, 1973-1991

    USGS Publications Warehouse

    Tilling, R.I.; Jones, B.F.

    1996-01-01

    Chemical and isotopic analyses of samples collected from a 1262-m-deep research borehole at the summit of Kilauea Volcano provide unique time-series data for composition of waters in the uppermost part of its hydrothermal system. These waters have a distinctive geochemical signature: a very low proportion of chloride relative to other anions compared with other Hawaiian wa-ters - thermal (???30 ??C) or nonthermal (<30 ??C) - and with most thermal waters of the world. Isotope data demonstrate that the borehole waters are of essentially meteoric origin, with minimal magmatic input. The water chemistry exhibits marked temporal variations, including pronounced short-term (days to weeks) effects of rainfall dilution and longer term (months to years) decline of total solutes. The 1973-1974 samples are Na-sulfate-dominant, but samples collected after July 1975 are (Mg + Ca)-bicarbonate-dominant. This compositional shift, probably abrupt, was associated with an increase in the partial pressure of CO2 (PCO2) related to volcanic degassing of CO2 accompanying a large eruption (December 31, 1974) and associated intense seismicity. Following the initial sharp increase, the PCO2 then decreased, approaching preemption values in April 1976. Beginning in mid-1975, solute concentrations of the borehole waters decreased substantially, from ???45 meq/L to <25 meq/L in only eight months; by 1991, total solute concentrations were <17 meq/L. This decline in solutes cannot be attributed to rainfall dilution and is inferred to reflect the decreasing availability with time of the easily leachable salts of alkali metals and sulfate, which originated in sublimates and fumarolic encrustations in fractures and cavities of rocks along the hydrologic flow paths. The overall chemistry of the summit-borehole waters is largely determined by hydrolysis reactions associated with normal weathering of host tholeiitic basalts on a geologic time scale, despite short-term perturbations in composition

  4. Location of an intermediate hub for port activities

    NASA Astrophysics Data System (ADS)

    Burciu, Ş.; Ştefănică, C.; Roşca, E.; Dragu, V.; Ruscă, F.

    2015-11-01

    An intermediate hub might increase the accessibility level of ports but also hinterland and so it can be considered more than a facility with a transhipment role. These hubs might lead to the development of other transport services and enhance their role in gathering and covering economic centres within hinterlands and also getting the part of logistic facility for the ports, with effects on port utilization and its connectivity to global economy. A new location for a hub terminal leads to reduced transport distances within hinterland, with decreased transport costs and external effects, so with gains in people's life quality. Because the production and distribution systems are relatively fixed on short and medium term and the location decisions are strategic and on long term, the logistic chains activities location models have to consider the uncertainties regarding the possible future situations. In most models, production costs are considered equal, the location problem reducing itself to a problem that aims to minimize the total transport costs, meaning the transport problem. The main objective of the paper is to locate a hub terminal that links the producers of cereals that are going to be exported by naval transportation with the Romanian fluvial-maritime ports (Galaţi, Brăila). GIS environment can be used to integrate and analyse a great amount of data and has the ability of using functions as location - allocation models necessary both to private and public sector, being able to determine the optimal location for services like factories, warehouses, logistic platforms and other public services.

  5. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity

    USGS Publications Warehouse

    Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.

  6. Remote sensing of Italian volcanos

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Casacchia, R.; Coradini, A.; Duncan, A. M.; Guest, J. E.; Kahle, A.; Lanciano, P.; Pieri, D. C.; Poscolieri, M.

    1990-01-01

    The results of a July 1986 remote sensing campaign of Italian volcanoes are reviewed. The equipment and techniques used to acquire the data are described and the results obtained for Campi Flegrei and Mount Etna are reviewed and evaluated for their usefulness for the study of active and recently active volcanoes.

  7. Seismic structure and origin of active intraplate volcanoes in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Duan, Yonghong; Zhao, Dapeng; Zhang, Xiankang; Xia, Shaohong; Liu, Zhi; Wang, Fuyun; Li, Li

    2009-05-01

    Three-dimensional P-wave velocity structure beneath the Changbai and other intraplate volcanic areas in Northeast Asia is determined by inverting 1378 high-quality P-wave arrival times from 186 teleseismic events recorded by 61 broadband seismic stations. Low-velocity (low-V) anomalies are revealed beneath the Changbai, Longgan, Xianjindao volcanoes. High-velocity (high-V) anomalies are found in the mantle transition zone, where deep-focus earthquakes under Hunchun occur at depths of 500-600 km. The high-V anomaly reflects the deep subduction of the Pacific slab under NE Asia which may have contributed to the formation of the Changbai, Longgang, Xianjindao and Jingpohu intraplate volcanoes. A low-V anomaly is also revealed in the mantle transition zone, which may have a close relationship with the occurrence of deep earthquakes under the Hunchun area. Our results support the Big Mantle Wedge (BMW) model by Zhao et al. [Zhao, D., Lei, J., Tang, Y., 2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography, Chin. Sci. Bull. 49, 1401-1408; Zhao, D., Maruyama, S., Omori, S., 2007. Mantle dynamics of western Pacific and East Asia: insight from seismic tomography and mineral physics. Gondwana Res. 11, 120-131.] who proposed that the intraplate volcanoes in NE Asia are caused by the back-arc magmatism associated with the deep dehydration process of the subducting slab and convective circulation process in the BMW above the stagnant Pacific slab.

  8. Soufriere Hills Volcano

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.

    This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is

  9. New constraints on the magmatic system beneath Newberry Volcano from the analysis of active and passive source seismic data, and ambient noise

    NASA Astrophysics Data System (ADS)

    Heath, B.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    Magmatic systems beneath arc-volcanoes are often poorly resolved by seismic imaging due to the small spatial scale and large magnitude of crustal heterogeneity in combination with field experiments that sparsely sample the wavefield. Here we report on our continued analysis of seismic data from a line of densely-spaced (~300 m), three-component seismometers installed on Newberry Volcano in central Oregon for ~3 weeks; the array recorded an explosive shot, ~20 teleseismic events, and ambient noise. By jointly inverting both active and passive-source travel time data, the resulting tomographic image reveals a more detailed view of the presumed rhyolitic magma chamber at ~3-5 km depth, previously imaged by Achauer et al. (1988) and Beachly et al. (2012). The magma chamber is elongated perpendicular to the trend of extensional faulting and encircled by hypocenters of small (M < 2) earthquakes located by PNSN. We also model teleseismic waveforms using a 2-D synthetic seismogram code to recreate anomalous amplitudes observed in the P-wave coda for sites within the caldera. Autocorrelation of ambient noise data also reveals large amplitude waveforms for a small but spatially grouped set of stations, also located within the caldera. On the basis of these noise observations and 2-D synthetic models, which both require slow seismic speeds at depth, we conclude that our tomographic model underestimates low-velocity anomalies associated with the inferred crustal magma chamber; this is due in large part to wavefront healing, which reduces observed travel time anomalies, and regularization constraints, which minimize model perturbations. Only by using various methods that interrogate different aspects of the seismic data are we able to more realistically constrain the complicated, heterogeneous volcanic system. In particular, modeling of waveform characteristics provides a better measure of the spatial scale and magnitude of crustal velocities near magmatic systems.

  10. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.

    2006-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a

  11. Magma Feeding System of the Past ca. 30-ky Activities of the Zao Volcano, NE Japan

    NASA Astrophysics Data System (ADS)

    Ban, M.; Kotaro, M.; Takebe, Y.; Sato, H.; Sagawa, H.

    2006-12-01

    In the youngest stage (30 ka to present) of the Zao volcano, three active periods (ca. 31 to 29 ka, 7.5 to 4.1 ka, and 2.0 to present) can be observed. Piles of pyroclastic rocks by numerous small to medium sized eruptions are main products of the activities. In this study we examined the magma feeding system in the three periods, based on the petrologic features of the products. Rocks erupted in the three periods are olivine± pyroxene basaltic andesite to andesite, and these were formed by mixing of two end-member magmas, judged from the petrographic and mineralogic features. The estimated felsic end-members are similar among the periods, andesite (ca.60% in silica content) with orthopyroxene (Mg#=ca.64), clinopyroxene (Mg#=ca.68), plagioclase (An=ca.65) phenocrysts. The estimated mafic end-members are basalt with olivine (Fo=ca.80) and plagioclase (An=ca.90) phenocrysts in all periods, however, the bulk MgO, Cr and Ni contents of the erupted rocks are higher in the second period than in the other two periods. During the second and third periods, silica contents of the rocks decreased temporally from 58 to 55-56 % and recovered up to 58 %, and these variations can be explained by the different percentages of the basaltic magma involved in the mixing. Those features are suggesting that the mafic end-member magmas are distinct among periods, and may have been stored in the deeper part of the crust for ca.3.5 to 2.0 ky. Looking at the chemical compositions of rocks in the past ca.0.8-ky eruptions closely, gradual decrease in Zr (and increase in Cr) contents toward upper part can be seen at least twice, which may correspond to the progressive injection of the basaltic magma to the shallower andesitic magma chamber, and it is estimated that the duration of each injection is less than 0.2 ky.

  12. Characterization of volcanic activity using observations of infrasound, volcanic emissions, and thermal imagery at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Fee, D.; Prata, F.

    2012-04-01

    Karymsky Volcano is one of the most active and dynamic volcanoes in Kamchatka, with activity ranging from vigorous degassing, frequent ash emissions, and apparent vent sealing, all punctuated by daily to weekly explosive magmatic eruptions. Recent studies have highlighted the strengths in using complementary infrasound measurements and remote volcanic emission measurements to characterize volcanic activity, with the potential to discriminate emission-type, approximate ash-cloud height, and estimate SO2 emission mass. Here we use coincident measurements of infrasound, SO2, ash, and thermal radiation collected over a ten day period at Karymsky Volcano in August 2011 to characterize the observed activity and elucidate vent processes. The ultimate goal of this project is to enable different types of volcanic activity to be identified using only infrasound data, which would significantly improve our ability to continuously monitor remote volcanoes. Four types of activity were observed. Type 1 activity is characterized by discrete ash emissions occurring every 1 - 5 minutes that either jet or roil out of the vent, by plumes from 500 - 1500 m (above vent) altitudes, and by impulsive infrasonic onsets. Type 2 activity is characterized by periodic pulses of gas emission, little or no ash, low altitude (100 - 200 m) plumes, and strong audible jetting or roaring. Type 3 activity is characterized by sustained emissions of ash and gas, with multiple pulses lasting from ~1 - 3 minutes, and by plumes from 300 - 1500 m. Type 4 activity is characterized by periods of relatively long duration (~30 minutes to >1 hour) quiescence, no visible plume and weak SO2 emissions at or near the detection limit, followed by an explosive, magmatic eruption, producing ash-rich plumes to >2000 m, and centimeter to meter (or greater) sized pyroclastic bombs that roll down the flanks of the edifice. Eruption onset is accompanied by high-amplitude infrasound and occasionally visible shock

  13. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  14. Shiveluch Volcano, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964.

    Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the 'Ring of Fire,' a string of volcanoes that encircles the Pacific Ocean.

    The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.

    The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude.

    ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

  15. Volcano Near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-549, 19 November 2003

    The volcanic plains to the east, southeast, and south of the giant Tharsis volcano, Pavonis Mons, are dotted by dozens of small volcanoes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 2.1oS, 109.1oW. The elongate depression in the lower left (southwest) quarter of the image is the collapsed vent area for this small, unnamed volcano. A slightly sinuous, leveed channel runs from the depression toward the upper right (north-northeast); this is the trace of a collapsed lava tube. The entire scene has been mantled by dust, such that none of the original volcanic rocks are exposed--except minor occurrences on the steepest slopes in the vent area. The scene is 3 km (1.9 mi) wide and illuminated by sunlight from the left/upper left.

  16. Characterising volcanic activity of Piton de la Fournaise volcano by the spatial distribution of seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Sens-Schoenfelder, C.; Pomponi, E.

    2013-12-01

    We apply Passive Image Interferometry to investigate the seismic noise recorded from October 2009 until December 2011 by 21 stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. The analyzed period contains three eruptions in 2009 and January 2010, two eruptions plus one dyke intrusion in late 2010, and a seismic crises in 2011. Seismic noise of vertical and horizontal components is cross-correlated to measure velocity changes as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface deformation we can identify patterns of the velocity changes that appear characteristic for the type of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano.

  17. What more have we learned from thermal infrared remote sensing of active volcanoes other than they are hot? (Invited)

    NASA Astrophysics Data System (ADS)

    Ramsey, M.

    2009-12-01

    Thermal infrared (TIR) remote sensing has been used for decades to detect changes in the heat output of active and reawakening volcanoes. The data from these thermally anomalous pixels are commonly used either as a monitoring tool or to calculate parameters such as effusion rate and eruptive style. First and second generation TIR data have been limited in the number of spectral channels and/or the spatial resolution. Two spectral channels with only one km spatial resolution has been the norm and therefore the number of science applications is limited to very large or very hot events. The one TIR channel of the Landsat ETM+ instrument improved the spatial resolution to 60 m, but it was not until the launch of ASTER in late 1999 that orbital TIR spectral resolution increased to five channels at 90 m per pixel. For the first time, the ability existed to capture multispectral emitted radiance from volcanic surfaces, which has allowed the extraction of emissivity as well as temperature. Over the past decade ASTER TIR emissivity data have been examined for a variety of volcanic processes including lava flow emplacement at Kilauea and Kluichevskoi, silicic lava dome composition at Sheveluch, Bezymianny and Mt. St. Helens, low temperature fumaroles emissions at Cerro Negro, and textural changes on the pyroclastic flow deposits at Merapi, Sheveluch and Bezymianny. Thermal-temporal changes at the 90 m scale are still an important monitoring tool for active volcanoes using ASTER TIR data. However, the ability to extract physical parameters such as micron-scale roughness and bulk mineralogy has added tremendously to the science derived from the TIR region. This new information has also presented complications such as the effects of sub-pixel thermal heterogeneities and amorphous glass on the emissivity spectra. If better understood, these complications can provide new insights into the physical state of the volcanic surfaces. Therefore, new data processing algorithms

  18. An ultrasound personal locator for time-activity assessment.

    PubMed

    Allen-Piccolo, Gian; Rogers, Jamesine V; Edwards, Rufus; Clark, Michael C; Allen, T Tracy; Ruiz-Mercado, Ilse; Shields, Kyra N; Canuz, Eduardo; Smith, Kirk R

    2009-01-01

    The UC Berkeley Time-Activity Monitoring System (UCB-TAMS) was developed to measure time-activity in exposure studies. The system consists of small, light, inexpensive battery-operated 40-kHz ultrasound transmitters (tags) worn by participants and an ultrasound receiver (locator) attached to a datalogger fixed in an indoor location. Presence or absence of participants is monitored by distinguishing the unique ultrasound ID of each tag. Efficacy tests in rural households of highland Guatemala showed the system to be comparable to the gold-standard time-activity measure of direct observation by researchers, with an accuracy of predicting time-weighted averages of 90-95%, minute-by-minute accuracy of 80-85%, and sensitivity/specificity values of 86-89%/71-74% for one-minute readings on children 3-8 years-old. Additional controlled tests in modern buildings and in rural Guatemalan homes confirmed the performance of the system with the presence of other ultrasound sources, with multiple tags, covered by clothing, and in other non-ideal circumstances. PMID:19496478

  19. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  20. Volcano seismicity in Alaska

    NASA Astrophysics Data System (ADS)

    Buurman, Helena

    I examine the many facets of volcano seismicity in Alaska: from the short-lived eruption seismicity that is limited to only the few weeks during which a volcano is active, to the seismicity that occurs in the months following an eruption, and finally to the long-term volcano seismicity that occurs in the years in which volcanoes are dormant. I use the rich seismic dataset that was recorded during the 2009 eruption of Redoubt Volcano to examine eruptive volcano seismicity. I show that the progression of magma through the conduit system at Redoubt could be readily tracked by the seismicity. Many of my interpretations benefited greatly from the numerous other datasets collected during the eruption. Rarely was there volcanic activity that did not manifest itself in some way seismically, however, resulting in a remarkably complete chronology within the seismic record of the 2009 eruption. I also use the Redoubt seismic dataset to study post-eruptive seismicity. During the year following the eruption there were a number of unexplained bursts of shallow seismicity that did not culminate in eruptive activity despite closely mirroring seismic signals that had preceded explosions less than a year prior. I show that these episodes of shallow seismicity were in fact related to volcanic processes much deeper in the volcanic edifice by demonstrating that earthquakes that were related to magmatic activity during the eruption were also present during the renewed shallow unrest. These results show that magmatic processes can continue for many months after eruptions end, suggesting that volcanoes can stay active for much longer than previously thought. In the final chapter I characterize volcanic earthquakes on a much broader scale by analyzing a decade of continuous seismic data across 46 volcanoes in the Aleutian arc to search for regional-scale trends in volcano seismicity. I find that volcanic earthquakes below 20 km depth are much more common in the central region of the arc

  1. Chronology of Postglacial Eruptive Activity and Calculation of Eruption Probabilities for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.

    2007-01-01

    Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.

  2. Locations that Support Social Activity Participation of the Aging Population

    PubMed Central

    van den Berg, Pauline; Kemperman, Astrid; de Kleijn, Boy; Borgers, Aloys

    2015-01-01

    Social activities are an important aspect of health and quality of life of the aging population. They are key elements in the prevention of loneliness. In order to create living environments that stimulate older adults to engage in social activities, more insight is needed in the social activity patterns of the aging population. This study therefore analyzes the heterogeneity in older adults’ preferences for different social activity location types and the relationship between these preferences and personal and mobility characteristics. This is done using a latent class multinomial logit model based on two-day diary data collected in 2014 in Noord-Limburg in the Netherlands among 213 respondents aged 65 or over. The results show that three latent classes can be identified among the respondents who recorded social activities in the diary: a group that mainly socializes at home, a group that mainly socializes at a community center and a group that is more likely to socialize at public ‘third’ places. The respondents who did not record any interactions during the two days, are considered as a separate segment. Relationships between segment membership and personal and mobility characteristics were tested using cross-tabulations with chi-square tests and analyses of variance. The results suggest that both personal and mobility characteristics play an important role in social activity patterns of older adults. PMID:26343690

  3. Locations that Support Social Activity Participation of the Aging Population.

    PubMed

    van den Berg, Pauline; Kemperman, Astrid; de Kleijn, Boy; Borgers, Aloys

    2015-09-01

    Social activities are an important aspect of health and quality of life of the aging population. They are key elements in the prevention of loneliness. In order to create living environments that stimulate older adults to engage in social activities, more insight is needed in the social activity patterns of the aging population. This study therefore analyzes the heterogeneity in older adults' preferences for different social activity location types and the relationship between these preferences and personal and mobility characteristics. This is done using a latent class multinomial logit model based on two-day diary data collected in 2014 in Noord-Limburg in the Netherlands among 213 respondents aged 65 or over. The results show that three latent classes can be identified among the respondents who recorded social activities in the diary: a group that mainly socializes at home, a group that mainly socializes at a community center and a group that is more likely to socialize at public 'third' places. The respondents who did not record any interactions during the two days, are considered as a separate segment. Relationships between segment membership and personal and mobility characteristics were tested using cross-tabulations with chi-square tests and analyses of variance. The results suggest that both personal and mobility characteristics play an important role in social activity patterns of older adults. PMID:26343690

  4. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  5. Satellite relay telemetry in the surveillance of active volcanoes and major fault zones

    NASA Technical Reports Server (NTRS)

    Eaton, J. P.; Ward, P. L.

    1972-01-01

    A review was made of efforts to develop a dense telemetered microearthquake network to study earthquake mechanics along the San Andreas fault and the strain mechanics of the Kilauea Volcano. The principle elements and objectives of the ERTS-A proposal are outlined. Some of the aspects of the earthquake network and the results obtained from it as well as some promising experiments in computerized record processing are discussed.

  6. Rates of volcanic activity along the southwest rift zone of Mauna Loa volcano, Hawaii.

    USGS Publications Warehouse

    Lipman, P.W.

    1981-01-01

    Flow-by-flow mapping of the 65 km long subaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new 14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10 000 years. The sequence of historic eruptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1000 years. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (unpubl. Kilauea data by R. T. Holcomb). Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa's southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone. -Author

  7. Remotely triggered seismic activity in Hakone volcano during and after the passage of surface waves from the 2011 M9.0 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Yukutake, Yohei; Miyazawa, Masatoshi; Honda, Ryou; Harada, Masatake; Ito, Hiroshi; Sakaue, Minoru; Koketsu, Kazuki; Yoshida, Akio

    2013-07-01

    Immediately after the March 11, 2011, M9.0 Tohoku-Oki earthquake, seismic activity increased remarkably beneath Hakone volcano, central Japan, at an epicentral distance of 450 km. The heightened seismicity was initiated during the passage of the large-amplitude surface waves from the main shock and continued over the subsequent 2 months. We obtained hypocenters and focal mechanisms of the seismic sequence, with the aim of clarifying the physical mechanism responsible for the remotely triggered seismicity. We used data from a dense seismic network containing 56 online permanent and offline temporary stations in and around the Hakone volcano. We found that the earthquakes that occurred during the passage of the surface waves are located at the lower depth limit of ordinary seismicity in the caldera. These earthquakes have larger magnitudes than both the ordinary seismicity prior to the Tohoku-Oki earthquake and the seismicity triggered after the passage of the surface waves. The focal mechanism that we determined is a strike-slip fault type with the P-axis in the NW-SE direction, which is consistent with the focal mechanisms of earthquakes that occurred after the passage of the surface waves and the tectonic stress field in the region. We also tried to detect missing events that occurred immediately after the passage of the surface waves, by using a waveform correlation technique. The detected events are distributed near the hypocenters of the earthquakes that occurred during the passage of the surface waves. The origin times of the first four events after the arrival of surface waves are consistent with the phases of the decrease in normal stress generated by the surface waves. The results suggest that the changes in dynamic stress due to the surface waves from the 2011 Tohoku-Oki earthquake contributed significantly to the initiation of the sequence of triggered seismic activity. Assuming that normal stress changes on the faults did play an important role in the

  8. Remote sensing of volcanos and volcanic terrains

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.

    1989-01-01

    The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.

  9. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Haney, Matthew M.; Parker, Tom; Searcy, Cheryl; Prejean, Stephanie

    2013-01-01

    Between January 1 and December 31, 2012, the Alaska Volcano Observatory located 4,787 earthquakes, of which 4,211 occurred within 20 kilometers of the 33 volcanoes monitored by a seismograph network. There was significant seismic activity at Iliamna, Kanaga, and Little Sitkin volcanoes in 2012. Instrumentation highlights for this year include the implementation of the Advanced National Seismic System Quake Monitoring System hardware and software in February 2012 and the continuation of the American Recovery and Reinvestment Act work in the summer of 2012. The operational highlight was the removal of Mount Wrangell from the list of monitored volcanoes. This catalog includes hypocenters, magnitudes, and statistics of the earthquakes located in 2012 with the station parameters, velocity models, and other files used to locate these earthquakes.

  10. Seismicity at Baru Volcano, Western Panama, Panama

    NASA Astrophysics Data System (ADS)

    Camacho, E.; Novelo-Casanova, D. A.; Tapia, A.; Rodriguez, A.

    2008-12-01

    The Baru volcano in Western Panama (8.808°N, 82.543°W) is a 3,475 m high strato volcano that lies at about 50 km from the Costa Rican border. The last major eruptive event at this volcano occurred c.1550 AD and no further eruptive activity from that time is known. Since the 1930´s, approximately every 30 years a series of seismic swarms take place in the surroundings of the volcanic edifice. Theses swarms last several weeks alarming the population who lives near the volcano. The last of these episodes occurred on May 2006 and lasted one and a half months. More than 20,000 people live adjacent to the volcano and any future eruption has the potential to be very dangerous. In June 2007, a digital seismic monitoring network of ten stations, linked via internet, was installed around the volcano in a collaborative project between the University of Panama and the Panamanian Government. The seismic data acquisition at the sites is performed using LINUX-SEISLOG and the events are recorded by four servers at different locations using the Earth Worm system. In this work we analyze the characteristics of the volcano seismicity recorded from May 4th, 2006 to July 31st, 2008 by at least 4 stations and located at about 15 km from the summit. To determine the seismic parameters, we tested several crustal velocity models and used the seismic analysis software package SEISAN. Our final velocity model was determined using seismic data for the first four km obtained from a temporal seismic network deployed in 1981 by the British Geological Survey (BGS) as part of geothermal studies conducted at Cerro Pando, Western Panama Highlands. Our results indicate that all the events recorded in the quadrant 8.6-9.0°N and 82.2-82.7°W are located in the depth range of 0.1 to 8 km. Cross sections show vertical alignments of hypocenters below the summit although most of the seismicity is concentrated in its eastern flank reaching the town of Boquete. All the calculated focal mechanisms are of

  11. A subsurface structure change associated with the eruptive activity at Sakurajima Volcano, Japan, inferred from an accurately controlled source

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Yamaoka, Koshun; Miyamachi, Hiroki; Watanabe, Toshiki; Kunitomo, Takahiro; Ikuta, Ryoya; Yakiwara, Hiroshi; Iguchi, Masato

    2015-07-01

    Temporal variations of Green functions associated with the eruptive activity at Sakurajima Volcano, Japan, were estimated using an accurately controlled routinely operated signal system (ACROSS). We deconvolved 400 s waveforms of the ACROSS signal at nearby stations by a known source time function and stacked the results based on the time relative to individual eruptions and the eruption intervals; the quantities obtained by this procedure are Green functions corresponding to various stages of the eruptive activity. We found an energy decrease in the later phase of the Green functions in active eruptive periods. This energy decrease, localized in the 2-6 s window of the Green functions, is difficult to explain by contamination from volcanic earthquakes and tremors. The decrease could be more reasonably attributed to a subsurface structure change caused by the volcanic activity.

  12. High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    Kolumbo submarine volcano is located 7 km north-east of the island of Santorini in the Hellenic arc (Greece), and comprises one of about twenty submarine cones in a NE-trending rift zone. Kolumbo erupted explosively in 1649-50AD, causing 70 fatalities on Santorini. Kolumbo's crater is 1700 m in diameter, with a crater rim at 10 m below sea level and crater floor at depth of 505 m. Recent marine geological investigations, using ROVs, reveal a very active high-temperature hydrothermal vent field in the northeastern part of the Kolumbo crater floor, about 25,000 m2. Vent chimneys up to 4 m high are vigorously emitting colorless gas plumes up to 10 m high in the water column. Temperatures up to 220oC are recorded in vent fluids. Some vents are in crater- like depressions, containing debris from collapsed extinct chimneys. The entire crater floor of Kolumbo is mantled by a reddish-orange bacterial mat, and bacterial filaments of a variety of colors cling to chimneys in dense clusters. Glassy tunicates and anemones are common in lower-temperature environments on the crater floor. Most chimneys show a high porosity, with a central conduit surrounded by an open and very permeable framework of sulfides and sulfates, aiding fluid flow through the chimney walls. In the sulfate-rich samples, blades of euhedral barite and anhydrite crystals coat the outside of the chimney wall, and layers of barite alternate with sulfide in the interior. The dominant sulfides are pyrite, sphalerite, wurtzite, marcasite and galena. Crusts on extinct and lower-temperature chimneys are composed of amorphous silica, goethite and halite. Sulfur isotope composition of sulfates is virtually at sea water values, whereas the sulfides are more depleted. Elevated levels of copper, gold and silver are observed in bulk composition of chimney samples. Both the structural setting, character of the vent field and sulfide/sulfate mineralogy and geochemistry indicate on-going Kuroko-type mineralization in the

  13. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  14. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  15. Internal structure of Erebus volcano, Antarctica imaged by high-resolution active-source seismic tomography and coda interferometry

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, D.; Aster, R.; Kyle, P.; Barclay, A.; Chaput, J.; Knox, H.

    2013-03-01

    Erebus volcano, Antarctica has hosted a persistent convecting phonolite lava lake for over 40 years. The lake produces small (VEI 0-1) Strombolian eruptions resulting from gas slugs rising through the upper conduit system. High-resolution (to scale lengths of several hundreds of meters) three-dimensional P-wave tomographic velocity images were obtained to a depth of approximately 600 m below the volcano surface. Data were collected using 91 seismographs deployed over an approximately 4 by 4 km area of the summit region. Seismic illumination was provided by 12 chemical shots emplaced in shallow snow and ice boreholes. P-wave direct arrival travel-time measurements were used to invert for strong velocity anomalies (with spatial variations in Vp exceeding ±1 km/s) associated with the uppermost few km. Shallow anomalies correlate with fumarolic ice caves, a prominent radial chilled dike, and ring structures associated with the caldera rim. Conduit structures feeding the lava lake and other vents within the Inner Crater are evidently too small (e.g., less than many 10 s of meters) to be imaged under the resolution limits of this experiment. However, combined velocity and coda interferometry scattering intensity images identify near-summit regions with both low velocity and high scattering that are candidates for magma accommodation. Results indicate a nonaxisymmetric near-summit magmatic system that is likely constrained by heterogeneous structures in the uppermost volcano. The most extensive volume of near-summit magma likely resides approximately 500 m NW of the active Inner Crater vents at depths of 500 m and more below the surface.

  16. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  17. Study of Tatun Volcanoes by Fluxgate Geomagnetic Data

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yen, H. Y.; Chen, C. H.

    2014-12-01

    Tatun volcanoes, located at northern Taipei city, the capital city of Taiwan, are still active according to the previous studies. Thus, construct the geometry of the volcanic structures of Tatun volcanoes is necessary. We used 3-component geomagnetic data from two temporal fluxgate magnetometers and YMM(Yangming mountain) a permanent station from April to August 2014. The susceptibility of igneous rock is generally larger than metamorphic and sedimentary rocks, thus we use the Parkinson vectors derived from 3-component geomagnetic data through the magnetic transfer function to find out the location and geometry of the igneous rock under Tatun volcanoes. In order to know the depth of the anomalies, we used the magnetotelluric data of previous study that are in the vicinity of three stations to compute the skin depth, which show the relationship between frequency and the penetration depth of the electromagnetic wave. Then, we use the magnetic transfer function to calculate the azimuth of the anomalies at a specific depth.

  18. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  19. Preliminary radon measurements at Villarrica volcano, Chile

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Laiolo, M.; Coppola, D.; Ulivieri, G.

    2013-10-01

    We report data from a radon survey conducted at Villarrica volcano. Measurements have been obtained at selected sites by E-PERM® electrets and two automatic stations utilizing DOSEman detectors (SARAD Gmbh). Mean values for Villarrica are 1600 (±1150) Bq/m3 are similar to values recorded at Cerro Negro and Arenal in Central America. Moderately higher emissions, at measurement sites, were recorded on the NNW sector of the volcano and the summit, ranging from 1800 to 2400 Bq/m3. These measurements indicate that this area could potentially be a zone of flank weakness. In addition, the highest radon activities, up to 4600 Bq/m3, were measured at a station located near the intersection of the Liquiñe-Ofqui Fault Zone with the Gastre Fault Zone. To date, the Villarrica radon measurements reported here are, together with those collected at Galeras (Colombia), the sole radon data reported from South American volcanoes. This research may contribute to improving future geochemical monitoring and volcano surveillance.

  20. Spreading Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Delaney, Paul T.; Denlinger, Roger P.

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  1. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  2. Microearthquake activity around Kueishantao island, offshore northeastern Taiwan: Insights into the volcano-tectonic interactions at the tip of the southern Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konstantinou, K. I.; Pan, C.-Y.; Lin, C.-H.

    2013-05-01

    Kueishantao is a volcanic island located offshore the northeastern coast of Taiwan and lies at the tip of the southern Okinawa Trough which is the back-arc basin of the Ryukyu subduction zone. Its last eruption occurred during the Holocene (~ 7 ka), hence Kueishantao can be considered as an active volcano. In an effort to better understand how magmatic processes may interact with the regional tectonics, a seismic network was installed in the area during early January 2008. This network consisted of 16 three-component seismometers located both on Kueishantao and the coast of northeastern Taiwan. One year of data was analyzed yielding 425 earthquakes whose P and S arrival times were manually picked and each event was located using a nonlinear probabilistic location method. In order to improve the location accuracy, the minimum 1-D velocity model for this dataset was derived and all earthquakes were relocated using this model. The results show a tight cluster of events near Kueishantao while the remaining earthquakes are scattered between the island and mainland Taiwan. The majority of hypocentral depths range between 2.5 and 10 km where the former depth coincides with the bottom of the shallow sedimentary layer and the latter with the ductile lower crust. Waveforms of the three largest events were also inverted for the determination of their deviatoric and full moment tensor. No statistically significant isotropic component was found, while two of the events can be explained by a double-couple source. The third event exhibited a low frequency content (< 10 Hz) and a large non-double-couple component suggesting fluid involvement at its source. A stress inversion of all available focal mechanisms in the area shows that fluid circulation in the upper crust generates a local stress field around Kueishantao facilitating the opening of cracks along the NW-SE direction of regional extension.

  3. Locating the feminist scholar: relational empowerment and social activism.

    PubMed

    VanderPlaat, M

    1999-11-01

    Over the past decade, the rhetoric of "empowerment" has permeated the health promotion, education, and social welfare literature. Many scholars and professionals, particularly those active in the field of social intervention and community development, have found themselves struggling for location in the emancipatory process. This struggle often is characterized by a profound self-consciousness of privilege and the fear of being perceived as imposing and manipulative. This article explores the tensions inherent in the role of the scholar/activist using illustrations from the author's experience as principal investigator of the Atlantic Regional Evaluation of the Community Action Program for Children. In so doing, it discusses the importance of a relational approach to empowerment, one characterized by mutuality. A commitment to mutuality is seen as a key factor in enhancing the emancipatory capacities of empowerment-based research projects. PMID:10662258

  4. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  5. On the geometric form of volcanoes - Comment

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1982-01-01

    The model of Lacey et al. (1981) accounting for the geometric regularity and approximate cone shape of volcanoes is discussed. It is pointed out that, contrary to the model, volcano eruptions do not occur randomly in elevation and azimuth, but are commonly restricted to summit vents and a few well defined flank zones, so that the form of a volcano is determined by its vent locations and styles of eruption. Other false predictions of the model include the constancy of lava volumes at all vent elevations, the increase in volcano radius as the square root of time, a critical height for volcano growth, the influence of planetary gravity on volcano height and the negligible influence of ash falls and flows and erosional deposition. It is noted that the model of Shteynberg and Solov'yev, in which cone shape is related to stresses due to increasing cone height, may provide a better understanding of volcano morphology.

  6. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    NASA Astrophysics Data System (ADS)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    to extract 3D informations from thermal images taken from different positions. This paper presents the first 3D thermal map of an active volcano (Piton de la Fournaise, La Réunion Island) directly generated from 70 thermal images (so-called "stereothermogrammetric" DEM). The data were obtained above Dolomieu caldera by helicopter just before sunrise, during a clear weather in 2008. They were obtained before the eruptive events occurring within the Dolomieu caldera. We used a 28 mm focal FLIR Thermacam PM695 lent by the Piton de la Fournaise Observatory. The thermal images were acquired automatically every 30 seconds with the helicopter flying around the caldera at low altitude (less than 100 m height above the caldera). This survey led to the acquisition of images with a ground pixel size in the range of 1-3 m. A particular attention has been brought to the obtaining of a high overlap percentage (80 percents) for the localization of the maximum tie points on the image. Finally, the acquisition of 70 images allowed the generation of a 3D thermal model of the caldera containing more than 500000 points. i.e. 1 point each 2 m², considering a surface of 106 m² for the Dolomieu caldera. This model is then compared with a DEM recently obtained with the LIDAR method after the eruptive events occurring within Dolomieu. The comparison of these independent methods leads to the validation of the stereothermogrammetric method. It allows the quantification of the thickness of the lava flows within the Dolomieu collapse in 2008 and 2009, i.e. approximately 80 meters, as estimated by previous studies from field observations.

  7. Continuous, Long-term, Cyclic, Varied Eruptive Activity Observed at NW Rota-1 Submarine Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Dziak, R. P.; Baker, E. T.; Cashman, K. V.; Embley, R. W.; Ferrini, V.; de Ronde, C. E.; Butterfield, D. A.; Deardorff, N.; Haxel, J. H.; Matsumoto, H.; Fowler, M. J.; Walker, S. L.; Bobbitt, A. M.; Merle, S. G.

    2009-12-01

    NW Rota-1 is a conical, basaltic-andesite submarine volcano in the Mariana arc with a summit depth of 520 m. Eruptive activity was first witnessed here during remotely operated vehicle (ROV) dives in 2004, and was also observed during all four subsequent ROV expeditions in 2005, 2006, and 2009. Cyclic explosive bursts were documented by a portable hydrophone during the 2006 ROV dives. More recently, a year of instrumental monitoring data from a moored hydrophone and plume sensor show that the volcano was continuously active from February 2008 to February 2009, and that the cyclic character of the eruptions occurred with variable intensity and periodicity. The 2008-2009 hydrophone record includes explosive bursts every 1-2 minutes, with high acoustic amplitudes in the first half of the year and lower more variable amplitudes in the second half. In contrast, the moored turbidity sensor recorded major eruptive plumes on a time scale of every few days to weeks, and at approximately the same frequency throughout the year. This apparent disparity may be explained by the most recent ROV and portable hydrophone observations at NW Rota-1 in April 2009, which confirmed continuous and diverse eruptive activity with cyclicity over several time scales, from minutes to days. Visual observations at the eruptive vent provided new insight into the process of very slow lava extrusion on the seafloor. During slow extrusion (at rates of 1-2 m3/hr), lava spines rose in the eruptive vent, then gradually disintegrated into angular blocks as they cooled and were shoved aside by the next lava to emerge. Freshly erupted lava blocks periodically tumbled down the sides of a growing cone (40-m high and 300-m wide) that had been constructed by this process since the last visit in 2006. Thus auto-brecciation during slow lava extrusion underwater produces primary deposits that could easily be mistaken as secondary, and can construct substantial landforms on submarine arc volcanoes. Even during

  8. Location performance objectives for the NNWSI area-to-location screening activity

    SciTech Connect

    Sinnock, S.; Fernandez, J.A.

    1984-01-01

    Fifty-four objectives were identified to guide the screening of the Nevada Research and Development Area of the Nevada Test Site for relatively favorable locations for the disposal of nuclear waste in a mined geologic repository. The objectives were organized as a hierarchy composed of 4 upper-level, 12 middle-level, and 38 lower-level objectives. The four upper-level objectives account for broad national goals to contain and isolate nuclear waste in an environmentally sound and economically acceptable manner. The middle-level objectives correspond to topical categories that logically relate the upper-level objectives to site-specific concerns such as seismicity, sensitive species, and flooding hazards (represented by the lower-level objectives). The relative merits of alternative locations were compared by an application of decision analysis based on standard utility theory. The relative favorabilities of pertinent physical conditions at each alternative location were weighted in relation to the importance of objectives, and summed to produce maps indicating the most and the least favorable locations. Descriptions of the objectives were organized by the hierarchical format; they detail the applicability of each objective to geologic repository siting, previously published siting criteria corresponding to each objective, and the rationale for the weight assigned to each objective, and the pertinent attributes for evaluating locations with respect to each objective. 51 references, 47 figures, 4 tables.

  9. Permafrost and Periglacial Activity Distribution and Geothermal Anomalies in the Chachani and El Misti Volcanoes (Southern Peru)

    NASA Astrophysics Data System (ADS)

    Palacios, D.; Andrés, N.; Úbeda, J.; Alcalá, J.

    2009-04-01

    The El Misti volcano (16˚ 17′ S, 71˚ 24′ W, 5.822 m) is considered one of the most potentially catastrophic in America. Its crater is 18 km from the centre of Arequipa (2335 m a.s.l.), a city with more than 800,000 inhabitants whose population has doubled over the last 20 years, spreading out over the volcano's sides and gullies in many new settlements, less than 12 km away from the crater. Although the last significant eruptive period occurred in 2300-2050 BP, during the last five thousand years the recurrence period for eruptions has been 500 to 1500 years (Thouret et al. 2001). The last eruption occurred between 1440 and 1447 AD, although it was low-intensity. The crater currently has fumarolic activity. The volcano does not show any signs of having supported glaciers or any periglacial form in the past. The Chachani volcanic complex (16˚ 11' S 71˚ 31' W, 6.057 m a.s.l.) lies 18 km northeast of El Misti and 22 km from the centre of the city of Arequipa. The complex is made up of several volcanic cones and domes. The date of the most recent eruption is unknown, and no current or recent eruptive activity has been recorded or detected (Paquereau et al. 2006). The complex probably supported glaciers during the Little Ice Age, although there are none at present. Geomorphological evidence shows that glaciers during the Last Glacial Maximum were very extensive, with some of their feet reaching an altitude of 4000m. Rocky glaciers up to 1800 m long can be found inside some of the cirques. The PichuPichi Complex (16° 25' 25"S 71°14'27", 5650 m a.s.l.), 22 km E of El Misti, supported substantial glaciers during the Last Glacial Maximum, with a minimum foot altitude of c.4000 m, and like the Chachani, has numerous rock glacier formations in its cirques. The aim of this paper is to ascertain whether the lack of glacial or periglacial geomorphological evidence on the El Misti volcano is due to its destruction from subsequent volcanic activity, or

  10. Chilean Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On the border between Chile and the Catamarca province of Argentina lies a vast field of currently dormant volcanoes. Over time, these volcanoes have laid down a crust of magma roughly 2 miles (3.5 km) thick. It is tinged with a patina of various colors that can indicate both the age and mineral content of the original lava flows. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 15, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  11. SO2 Emission from Active Volcanoes Measured Simultaneously by COSPEC and mini-DOAS

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Roselló, José I.; Calvo, David; Padrón, Eleazar; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.; Millán, Millán M.; Galle, Bo

    2008-01-01

    We measured SO2 emission rate from six volcanoes in Latin America (Santa Ana, El Salvador; San Cristóbal and Masaya, Nicaragua; Arenal and Poás, Costa Rica; Tungurahua and Sierra Negra, Ecuador) and from Mt. Etna, Italy, using two different remote sensing techniques: COSPEC (COrrelation SPECtrometer) and miniDOAS (miniaturized Differential Optical Absorption Spectroscopy). One of the goals of this study was to evaluate the differences in SO2 emission rates obtained by these two methods. The observed average SO2 emission rates measured during this study were 2688 t· d -1 from Tungurahua in July 2006, 2375 t· d -1 in September 2005 and 480 t· d -1 in February 2006 from Santa Ana, 1200 t· d -1 in May 2005 from Etna, 955 t· d -1 in March 2006 and 1165 t· d -1 in December 2006 from Masaya, 5400 t· d -1 of March 7, 2006 and 265 t· d -1 in March 2006 from San Cristobal, 113 t· d -1 in April 2006 from Arenal, 104 t· d -1 in April 2006 from Poás and 11 t· d -1 in July 2006 from Sierra Negra volcano. Most of the observed relative differences of SO2 emission measurements from COSPEC and miniDOAS were lower than 10%.

  12. Favourable Locations of Possible Periodic Biogen Activity On Mars

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.

    In aur approach the basic assumptions were the following. 1. If once liquid water- loving organisms developed on ancient Mars, 2. during the later global cooling they tried to follow the location of the liquid water. 3. If there were no continuous exis- tence of liquid water on Mars, 4. but there were warm periods because of the climate changes, 6. locally liquid water appeared at some places like in lakes, subsurface reser- voires, water outbreaks. 6. The living organisms on the ancient probably wet Mars may have interrupted their biogen activity during the frozen periods. 7. The best chance for their reactivation during the next warm period is at that regions where the wet periods was the most frequent and longest. We looked for these possible places and analyzed from this point of view the possibility of repeated watery periods and astrobiological consequences at the equatorial regions (because of high temperature during thicker atmosphere) at volcanic centers (long lasted hot spot activity), in subsurface water basins, and at regions of frequent basal melting of the cryosphere.

  13. Volcanoes of the Solar System

    NASA Astrophysics Data System (ADS)

    Frankel, Charles

    1996-09-01

    Nothing can be more breathtaking than the spectacle of a volcano erupting. Space-age lunar and planetary missions offer us an unprecedented perspective on volcanism. Starting with the Earth, Volcanoes of the Solar System takes the reader on a guided tour of the terrestrial planets and moons and their volcanic features. We see lunar lava fields through the eyes of the Apollo astronauts, and take an imaginary hike up the Martian slopes of Olympus Mons--the tallest volcano in the solar system. Complemented by over 150 photographs, this comprehensive and lucid account of volcanoes describes the most recent data on the unique and varied volcanic features of Venus and updates our knowledge on the prodigiously active volcanoes of Io. A member of the Association of European Volcanologists, Charles Frankel has directed documentary films on geology, astronomy and space exploration and has authored a number of articles on the earth sciences.

  14. SO2 degassing at Tungurahua volcano (Ecuador) between 2007 and 2013: Transition from continuous to episodic activity

    NASA Astrophysics Data System (ADS)

    Hidalgo, Silvana; Battaglia, Jean; Arellano, Santiago; Steele, Alexander; Bernard, Benjamin; Bourquin, Julie; Galle, Bo; Arrais, Santiago; Vásconez, Freddy

    2015-06-01

    We present continuous SO2 measurements performed at Tungurahua volcano with a permanent network of 4 scanning DOAS instruments between 2007 and 2013. The volcano has been erupting since September 1999, but on the contrary to the first years of eruption when the activity was quasi-continuous, the activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. During our study period we distinguish 11 phases lasting from 17 to 527 days separated by quiescence periods of 26 to 184 days. We propose a new routine to quantify the SO2 emissions when data from a dense DOAS monitoring network are available. This routine consists in summing all the highest validated SO2 measurements among all stations during the 10 h of daily working-time to obtain a daily observed SO2 mass. Since measurement time is constant at Tungurahua the "observed" amounts can be expressed in tons per 10 h and can easily be converted to a daily average flux or mass per day. Our results provide time series having an improved correlation on a long time scale with the eruptive phases and with quiescence periods. A total of 1.25 Mt (1.25 × 109 kg) of SO2 has been released by Tungurahua during the study period, with 95% of these emissions occurring during phases of activity and only 5% during quiescence. This shows a contrast with previous volcanic behaviour when passive degassing dominated the total SO2 emissions. SO2 average daily mass emission rates are of 73 ± 56 t/d during quiescent periods, 735 ± 969 t/d during long-lasting phases and 1424 ± 1224 t/d during short-lasting phases. Degassing during the different eruptive phases displays variable patterns. However, two contrasting behaviours can be distinguished for the onset of eruptive phases with both sudden and progressive onsets being observed. The first is characterised by violent opening of the conduit by high energy Vulcanian explosions; and the second by a progressive, in crescendo

  15. Mast Cell Phenotype, Location, and Activation in Severe Asthma

    PubMed Central

    Balzar, Silvana; Fajt, Merritt L.; Comhair, Suzy A. A.; Erzurum, Serpil C.; Bleecker, Eugene; Busse, William W.; Castro, Mario; Gaston, Benjamin; Israel, Elliot; Schwartz, Lawrence B.; Curran-Everett, Douglas; Moore, Charity G.; Wenzel, Sally E.

    2011-01-01

    Rationale: Severe asthma (SA) remains poorly understood. Mast cells (MC) are implicated in asthma pathogenesis, but it remains unknown how their phenotype, location, and activation relate to asthma severity. Objectives: To compare MC-related markers measured in bronchoscopically obtained samples with clinically relevant parameters between normal subjects and subjects with asthma to clarify their pathobiologic importance. Methods: Endobronchial biopsies, epithelial brushings, and bronchoalveolar lavage were obtained from subjects with asthma and normal subjects from the Severe Asthma Research Program (N = 199). Tryptase, chymase, and carboxypeptidase A (CPA)3 were used to identify total MC (MCTot) and the MCTC subset (MCs positive for both tryptase and chymase) using immunostaining and quantitative real-time polymerase chain reaction. Lavage was analyzed for tryptase and prostaglandin D2 (PGD2) by ELISA. Measurements and Main Results: Submucosal MCTot (tryptase-positive by immunostaining) numbers were highest in “mild asthma/no inhaled corticosteroid (ICS) therapy” subjects and decreased with greater asthma severity (P = 0.002). In contrast, MCTC (chymase-positive by immunostaining) were the predominant (MCTC/MCTot > 50%) MC phenotype in SA (overall P = 0.005). Epithelial MCTot were also highest in mild asthma/no ICS, but were not lower in SA. Instead, they persisted and were predominantly MCTC. Epithelial CPA3 and tryptase mRNA supported the immunostaining data (overall P = 0.008 and P = 0.02, respectively). Lavage PGD2 was higher in SA than in other steroid-treated groups (overall P = 0.02), whereas tryptase did not differentiate the groups. In statistical models, PGD2 and MCTC/MCTot predicted SA. Conclusions: Severe asthma is associated with a predominance of MCTC in the airway submucosa and epithelium. Activation of those MCTC may contribute to the increases in PGD2 levels. The data suggest an altered and active MC population contributes to SA pathology

  16. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  17. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  18. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  19. Eruptive activity of enigmatic medium-sized volcanoes in the Michoacán-Guanajuato Volcanic Field (MGVF), Central Mexico: The case of El Metate

    NASA Astrophysics Data System (ADS)

    Chevrel, M.; Siebe, C.; Guilbaud, M. N.

    2014-12-01

    The MGVF has a total area of ca. 40,000 km2 and is well known for being the host of the only two monogenetic volcanoes in Mexico that were born in historical times: Jorullo (1759-1774) and Paricutin (1943-1952). Another particularity of the MGVF is its high number of eruptive vents with over 1000 small monogenetic cones and associated lava flows (average vol. of 0.021 km3) and ca. 400 medium-sized volcanoes (average vol. from 0.5 to 50 km3). Most of these medium-sized volcanoes may be characterized as shields that were produced dominantly by effusive activity as opposed to the small cones formed also by explosive phases of activity. The products of the small cones range from olivine basalts to andesites whereas the medium-sized volcanoes are restricted to a smaller compositional range in the andesitic domain. Although the medium-sized volcanoes are more sparsely distributed in time and space and less abundant than the small cones, the risks associated with renewal of this type of activity should not be neglected. This study focuses on El Metate which is probably the youngest shield of the MGVF (< 3,700 y. BP). Unlike a typical shield volcano composed of a succession of thin fluid basaltic flows, El Metate consists of well-preserved >60 m thick andesite flows distributed radially around a summit dome. Detailed mapping and sampling allowed us to reconstruct its eruptive activity and the time sequence of lava flow emplacement. We have identified 13 individual lava flows with lengths ranging between 3 and 15 km covering 103 km2 and average thicknesses between 60 and 150 m. Individual volumes range between 0.5 and 3.5 km3 for a total of 11 to 15 km3. Estimates of flow emplacement parameters indicate maximum average effusion rates ranging between 15 and 100 m3.s-1 and a cumulative duration from 15 to 30 years. Such a short emplacement time is comparable to the historical monogenetic eruption of nearby Paricutin volcano (9 years) but the erupted volume of lava is

  20. Broadband seismic measurements of degassing activity associated with lava effusion at Popocatépetl Volcano, Mexico

    USGS Publications Warehouse

    Arciniega-Ceballos, Alejandra; Chouet, Bernard A.; Dawson, Phillip; Asch, Guenter

    2008-01-01

    From November 1999 through July 2000, a broadband seismic experiment was carried out at Popocatépetl Volcano to record seismic activity over a wide period range (0.04–100 s). We present an overview of the seismicity recorded during this experiment and discuss results of analyses of long-period (LP) and very-long-period (VLP) seismic signals recorded at stations nearest to the crater over a four-month interval December 1999–March 2000. Three families of LP signals (Types-I, II, and III) are identified based on distinctive waveform features observed periods shorter than 1 s, periods longer than 15 s, and within the period range 0.5–2.5 s. Type-I LP events have impulsive first arrivals and exhibit a characteristic harmonic wave train with dominant periods in the 1.4–1.9 s range during the first 10 s of signal. These events are also associated with a remarkable VLP wavelet with period near 30 s. Type-II LP events represent pairs of events occurring in rapid succession and whose signatures are superimposed. These are typically marked by slowly emergent first arrivals and by a characteristic VLP wave train with dominant period near 30 s, made of two successive wavelets whose shapes are quasi-identical to those of the VLP wavelets associated with Type-I events. Type-III LP events represent the most energetic signals observed during our experiment. These have an emergent first arrival and display a harmonic signature with dominant period near 1.1 s. They are dominated by periods in the 0.25–0.35 s band and contain no significant energy at periods longer than 15 s. Hypocentral locations of the three types of LP events obtained from phase picks point to shallow seismic sources clustered at depths shallower than 2 km below the crater floor. Observed variations in volcanic eruptive activity correlate with defined LP families. Most of the observed seismicity consists of Type-I events that occur in association with 1–3-min-long degassing bursts (

  1. Properties of the near-field term and its effect on polarisation analysis and source locations of long-period (LP) and very-long-period (VLP) seismic events at volcanoes

    NASA Astrophysics Data System (ADS)

    Lokmer, Ivan; Bean, Christopher J.

    2010-04-01

    Seismicity that originates within volcanic magmatic and hydrothermal plumbing systems is characterised by wavelengths that are often comparable to or longer than the source-receiver distance. The effect of such a near-field configuration must be explored when analysing these signals. Herein, we summarise properties of near-field observations for both a single force and moment-tensor seismic sources. We show radiation patterns of the near-, intermediate- and far-field terms for the source types that are most likely candidates for long- (LP) and very-long-period (VLP) volcanic seismicity, including: a single force, compensated linear vector dipole (CLVD), a tensile crack and a pipe-like source. We find that the deviation of the first motion polarisation from the radial direction is significant in all planes except one whose normal is parallel to the symmetry axis (if there is one) of the source mechanism. However, this deviation is less pronounced (or even negligible), when there is a considerable volumetric component in the source (as in the case of a tensile crack or pipe). Our location test shows that the accuracy of locations obtained using the semblance or cross-correlation techniques is very significantly affected by the near-field geometry. This effect is especially pronounced for shallow sources, such as often encountered on volcanoes, and decreases with increasing source depth. Hence, in practical applications on volcanoes, 3D full waveform numerical simulation (including topography and structural heterogeneities) should be used in order to both validate location techniques and as an interpretational aid to reduce misinterpretations of location results.

  2. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    ... of which are so thick that they block the penetration of light from CALIPSO's lidar to the surface. The yellow layer near the surface over France is believed to be primarily air pollution, but could also contain ash from the volcano. Highlighting its ...

  3. Temporal changes in thermal waters related to volcanic activity of Tokachidake Volcano, Japan: implications for forecasting future eruptions

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryo; Shibata, Tomo; Murayama, Yasuji; Ogino, Tagiru; Okazaki, Noritoshi

    2015-01-01

    In order to detect changes in volcanic activity of Tokachidake Volcano, Japan, we have continuously monitored thermal waters discharging at the western to southwestern flank of the volcano since 1986. The steam-heated waters in the Nukkakushi crater discharged with boiling temperature until 2002. Thermal waters at the Tokachidake spa area have similar compositions to fumarolic gas emitted from the summit craters, indicating that the waters formed by absorption of volcanic gas into shallow aquifers. Thermal waters at the Fukiage spa area were derived from the same aquifer as the Tokachidake spa area until early 1986. However, after that time, NaCl-type thermal water entered the Fukiage spa area during the increase in volcanic activity associated with the 1988-1989 eruption, thus leading to a clear increase in Cl concentrations and temperature. After the eruption, the supply of the NaCl-type thermal water was halted, and the Cl concentrations of the thermal waters decreased. In contrast, SO4 concentrations gradually increased in the Fukiage spa area after 1989, and the temperature has been maintained. These observations indicate that SO4-rich thermal water with a relatively high temperature entered the system instead of the NaCl-type thermal water. As was the case for the 1988-1989 eruption, the Cl concentrations at the Fukiage spa area increased in 2012 during an increase in volcanic activity, implying that the supply of the NaCl-type thermal water had resumed. However, the chemical changes in the thermal waters since 2012 are small compared with those before the 1988-1989 eruption, with oxygen and hydrogen isotopic compositions remaining nearly the same as those of meteoric waters.

  4. Northern Arizona Volcanoes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111

  5. Volcano-Ice Interactions During Recent Eruptions of Aleutian Arc Volcanoes and Implications for Melt Water Generation

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.

    2013-12-01

    Recent eruptions in Alaska (Redoubt 2009; Pavlof 2007, 2013; Veniaminof 2013) all involved ice eruptive-product interactions that led to variable amounts of melt water generation. Production of melt water during explosive eruptions is the primary mechanism for lahar generation, which is a significant and sometimes-deadly hazard at snow and ice clad volcanoes. During the 2009 eruption of Redoubt Volcano, pyroclastic flows produced by explosive destruction of lava domes swept across and eroded glacier ice and generated large quantities of melt water that formed correspondingly large lahars (107-109 m3) in the Drift River valley north of the volcano. Three of the twenty lahars generated during the eruption were large enough to threaten an oil storage facility 40 km from the volcano. During eruptions of Pavlof Volcano in 2007 and 2013 spatter-fed lava flows and minor pyroclastic flows descended over snow and ice on the upper flanks of the volcano and produced some melt water that generated lahars in the associated drainages. These lahars were smaller than those associated with the 2009 eruption of Redoubt Volcano because the melt water generation mechanism was different. At Veniaminof Volcano, a low-level eruption beginning in June 2013 produced small lava flows that flowed passively over glacier ice and produced only limited amounts of melt water. Although melt pits surrounding the lava flows eventually developed, the rate of melt water production was gradual and no significant outflows of water occurred. These eruptions and comparison with past events highlight the various mechanisms for melt water production during eruptive activity at snow and ice clad Alaskan volcanoes. Dynamic emplacement of eruptive products over glacier ice that involves significant erosion of ice and snow leads to production of large volumes of melt water. Less dynamic, but still energetic interactions such as those that have occurred at Pavlof Volcano, produce smaller amounts of melt and

  6. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    NASA Astrophysics Data System (ADS)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  7. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  8. Vailulu'u Seamount, Samoa: Life and Death at the Edge of An Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Vailulu'U Research Group, T.

    2005-12-01

    Exploration of Vailulu'u seamount (14°13'S; 169°04'W) by manned submersible, ROV, and surface ship revealed a new, 300m tall volcano that has grown in the summit crater in less than four years. This shows that Vailulu'u's eruption behavior is at this stage not predictable and continued growth could allow Vailulu'u to breach sea level within decades Several types of hydrothermal vents fill Vailulu'u crater with particulates that reduce visibility to less than a few meters in some regions. Hydrothermal solutions mix with seawater that enters the crater from its breaches to produce distinct biological habitats. Low temperature hydrothermal vents can produce Fe-oxide chimneys or up to one meter-thick microbial mats. Higher temperature vents (85°C) produce low salinity acidic fluids containing buoyant droplets of immiscible CO2. Low temperature hydrothermal vents at Nafanua summit (708m depth) support a thriving population of eels (Dysommia rusosa). The areas around the high temperature vents and the moat and remaining crater around the new volcano is almost devoid of any macroscopic life and is littered with fish, and mollusk carcasses that apparently died from exposure to hydrothermal fluid components in deeper crater waters. Acid- tolerant polychaetes adapt to this environment and feed near and on these carcasses. Vailulu'u presents a natural laboratory for the study of how seamounts and their volcanic systems interact with the hydrosphere to produce distinct biological habitats, and how marine life can adapt to these conditions or be trapped in a toxic volcanic system that leads to mass mortality. The Vailulu'u research team: Hubert Staudigel, Samantha Allen, Brad Bailey, Ed Baker, Sandra Brooke, Ryan Delaney, Blake English, Lisa Haucke, Stan Hart, John Helly, Ian Hudson, Matt Jackson, Daniel Jones, Alison Koleszar, Anthony Koppers, Jasper Konter, Laurent Montesi, Adele Pile, Ray Lee, Scott Mcbride, Julie Rumrill, Daniel Staudigel, Brad Tebo, Alexis Templeton

  9. PS-InSAR measurements at the most active volcanoes in Iceland: role of the GEO supersite initiative in deformation monitoring at Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull volcanoes

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Drouin, Vincent; Sigmundsson, Freysteinn; Spaans, Karsten; Hooper, Andrew; Ófeigsson, Benedikt; Árnadóttir, Þóra; Hreinsdóttir, Sigrún; Michalczewska, Karolina; Hjaltadóttir, Sigurlaug; María Friðriksdóttir, Hildur; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur; Vogfjörd, Kristín; Jónsdóttir, Kristín; Hensch, Martin; Guðmundsson, Gunnar; Geirsson, Halldór; Sturkell, Erik

    2015-04-01

    Analysis of a time series of ground deformation measurements at active volcanoes can provide an improved understanding of sub-volcanic and sub-aerial processes; including those related to magmatic, hydrothermal and structural development. Interpreting a long time series may also help determine background behavior, and identify any deviations from this, including the migration of new melt. We use Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques to generate a time series of high-resolution deformation measurements, in the vicinity of the most active volcanoes in Iceland: Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull and compare these to other geodetic measurements. A comprehensive network of continuous GPS stations is already deployed at these volcanoes and a series of campaign GPS measurements are routinely undertaken each summer. InSAR observations are complementary to these field based measurements and their high spatial resolution assists in resolving the geometry of the deformation field hence gaining improved constraints on the inferred source. The Committee on Earth Observation Satellites has recently declared Iceland a Permanent Geohazard Supersite, based on its propensity for relatively frequent eruptions and their potentially hazardous, long ranging effects. The recent Supersite award ensures a considerable amount of SAR data is made available for both past and future satellite acquisitions, including new X-band images (acquired by TerraSAR-X and Cosmo-SkyMed satellites), and historic C-band images from ERS and ENVISAT. We present a series of long-term deformation measurements for Hekla, Katla, Eyjafjallajökull and Askja volcanoes, derived using PS-InSAR techniques, and include recent interferograms spanning the 2014 unrest and eruption within the Bárðarbunga volcanic system. InSAR and tilt measurements at Hekla indicate renewed melt supply to a sub-volcanic reservoir after the last eruption in 2000. Recent

  10. Unusual seismic activity in 2011 and 2013 at the submarine volcano Rocard, Society hot spot (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Talandier, Jacques; Hyvernaud, Olivier; Maury, René C.

    2016-05-01

    We analyze two seismic events that occurred on 27 May 2011 and 29 April 2013 at the Rocard submarine volcano which overlies the Society hot spot. The Polynesian Seismic Network recorded for the first time unusual associated short- and long-period signals, with perfectly monochromatic (0.0589 Hz) Rayleigh wave trains of long period and duration. None of the numerous observations of long-period (10-30 s) signals previously associated with volcanic activity in Japan, Italy, Mexico, Indonesia, Antarctica, and the Hawaiian Islands have the characteristics we observed at Rocard. We propose a tentative model for these unusual and rather enigmatic signals, in which the movement of lava excited the resonance of a shallow open conduit under a high hydrostatic pressure of ~400 bars.

  11. Formation of a zoned magma chamber and its temporal evolution during the historic eruptive activity of Tarumai Volcano, Japan: Petrological implications for a long-term forecast of eruptive activity of an active volcano

    NASA Astrophysics Data System (ADS)

    Nakagawa, Mitsuhiro; Hiraga, Naoto; Furukawa, Ryuta

    2011-08-01

    Tarumai Volcano started a series of historic eruptive activity in AD 1667 after a dormancy of approximately 2000 years. The historic juvenile ejecta are mainly silicic andesite pumice associated with scoria, banded pumice and dome lava (SiO 2 = 55-63%), and are mixing products of two or three end-member magmas. In the initial largest plinian eruptions (AD 1667 period), simple mixing between two end-member magmas, silicic andesite (SA) and basalt, occurred. Large plinian eruptions (AD 1739 period) and the latest intermittent eruptions (AD 1804-AD 1909: latest period) also produced mixed magmas including both the SA, intermediate-SiO 2 andesite (IA), and basalt. Magmatic temperatures of the SA and IA magmas are 900-950 °C and approximately 1000 °C, respectively. The rocks of each period form linear trends in oxide-oxide diagrams, suggesting that mixing of two end-member magmas occurred in each period. Thus, it can be estimated that the IA magma was formed by mixing between the basaltic and SA magmas. These relations suggest that the injection of the basaltic magma into the SA magma occurred before the AD 1667 period, resulting in the formation of a zoned magma chamber. These two magmas were then withdrawn to mingle, during the AD 1667 period. After the period, the zoned chamber was composed of an upper SA magma and a lower mixed IA magma. Chemical compositions of the basaltic magma have been slightly different in each period since AD 1667. In addition, the phenocrystic minerals of the IA magma also have changed as a consequence of re-equilibration with the more mafic IA bulk magma compositions present from AD 1739 to AD 1909. Thus, distinct basaltic magma has repeatedly injected into the zoned chamber before each eruption. Although the scale of eruptions became much smaller after the plinian eruptions of AD 1739, the ratio of IA magma in the latest eruptive materials is much larger than that in AD 1739, suggesting that a larger amount of the lower part (IA magma

  12. Volcanoes triggered by dynamic and static stress changes in Chile: Observations, stress field changes and physical modelling

    NASA Astrophysics Data System (ADS)

    Gaete, Ayleen; Walter, Thomas

    2015-04-01

    Evidence is increasing that subduction zone earthquakes may influence the volcanic activity along a volcanic arc. The processes of triggering, however, are not clear. In a commonly discussed concept, changes of the crustal stress field may affect intrusive bodies under volcano, open magma pathways and faults, and decompress a magma-fluid system. Other concepts focus on the dynamic passage of seismic waves, inducing bubble growth and ascent as well as fluid migration. Volcanoes in the south and central Andes have a century long documented history of earthquake - eruption interactions. Numerous subduction earthquakes were followed by more and unexpected volcano eruptions, which is why we here concentrate our research on this particular area. The most recent major subduction earthquake occurred on April 1st, 2014, close to the coast of northern Chile. During this event we had volcano monitoring stations located at several active volcanoes and fumarole sites, as well as at on of the largest geyser fields of the world, all located within 500 km distance to the earthquake epicenter. Here we present preliminary results describing if and how those monitored volcano sites showed activity level changes, which is an opportunity to study the influence of earthquakes over active and dormant volcanoes. After analysis of the date we computed the static strain and stress field in the overriding plate and at the sites of the volcanoes. In addition we design physical models that allow to study not only the effects of static stress changes and dilatation on fluid paths, but also the effect of dynamic processes. To this aim we simulate real seismic waveforms on a shaking table hosting an analogue volcano, and discuss under which situations magma paths and ascent rates are augmented and hindered by the subduction earthquake. Results are transferrable to other subduction related volcano-earthquake interactions and may allow better understanding of the processes of static and dynamic

  13. Volcanoes and the Environment

    NASA Astrophysics Data System (ADS)

    Marti, Edited By Joan; Ernst, Gerald G. J.

    2005-10-01

    Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds

  14. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  15. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    USGS Publications Warehouse

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  16. A wireless sensor network for monitoring volcano-seismic signals

    NASA Astrophysics Data System (ADS)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  17. Warm Brine Lakes in Craters of Active Mud Volcanoes, Menes Caldera off NW Egypt: Evidence for Deep-Rooted Thermogenic Processes

    NASA Astrophysics Data System (ADS)

    Dupré, S.; Mascle, J.; Foucher, J. P.; Woodside, J. M.; Pierre, C.

    2015-12-01

    The Menes caldera is a fault-controlled depression (~8 km in diameter) at ~3,000 m water depth in the western province of the Nile deep-sea fan off NW Egypt, comprising seven mud volcanoes (MVs) of which two are active. Based on multichannel and chirp seismic data, temperature profiles, and high-resolution bathymetric data collected during several oceanographic expeditions, the present study investigates factors controlling mud volcano morphology, the geometry of feeder channels, and the origin of emitted fluids (Dupré et al. 2014). The active Cheops and Chephren mud volcanoes are 1,500 m wide with subcircular craters at their summits, about 250 m in diameter, generally a few tens of metres deep, and filled with methane-rich muddy brines with temperatures reaching 42 °C and 57 °C respectively. Deployments of CTDs and corers with attached temperature sensors tracked these warm temperatures down to almost 0.5 km depth below the brine lake surface at the Cheops mud volcano, in a feeder channel probably only a few tens of metres wide. Thermogenic processes involve the dissolution of Messinian evaporites by warm fluids likely sourced even deeper, i.e. 1.7 and 2.6 km below the seabed at the Cheops and Chephren MVs respectively, and which ascend along listric faults. Seepage activity appears broadly persistent since the initiation of mud volcanism in the Early Pliocene, possibly accompanied by lateral migration of feeder channels.

  18. Volcano plumbing system geometry: The result of multi-parametric effects

    NASA Astrophysics Data System (ADS)

    Tibaldi, Alessandro

    2014-05-01

    Magma is transported from magma chambers towards the surface through networks of planar structures (intrusive sheets) spanning from vertical dikes to inclined sheets and horizontal sills. This study presents an overview of intrusive sheets at several volcanoes located in different settings in order to contribute to assess the factors controlling the geometry of magma plumbing systems. Data have been mainly acquired in the field and secondarily through a collection and analysis of geophysical publications; data include local lithology and tectonics of the substratum surrounding the volcano with special reference to local fault kinematics and related stress tensor, regional tectonics (general kinematics and far-field stress tensors), crustal thickness, geology and shape of the volcano, topographic setting, and characteristics of the plumbing system. Data from active volcanoes and eroded extinct volcanoes are discussed; the shallow plumbing system of active volcanoes has been reconstructed by combining available geophysical data with field information derived from outcropping sheets, morphometric analyses of pyroclastic cones, and the orientation and location of eruptive fissures. The study of eroded volcanoes enabled to assess the plumbing system geometry at lower levels in the core of the edifice or under the volcano-substratum interface. Key sites are presented in extensional, transcurrent and contractional tectonic settings, and different geodynamic areas have been investigated in North and South-America, Iceland, Southern Tyrrhenian Sea and Africa. The types of sheet arrangements that are illustrated include swarms of parallel dikes, diverging rift patterns, centrally-inclined sheets, radial dikes, bi-modal dike strikes, circum-lateral collapse sheets, and mixed members. This review shows that intrusive sheet emplacement at a volcano depends upon the combination of several local and regional factors, some of which are difficult to be constrained. While much

  19. Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands

    NASA Astrophysics Data System (ADS)

    Yudovskaya, Marina A.; Distler, Vadim V.; Chaplygin, Ilya V.; Mokhov, Andrew V.; Trubkin, Nikolai V.; Gorbacheva, Sonya A.

    2006-03-01

    The distribution of gold in high-temperature fumarole gases of the Kudryavy volcano (Kurile Islands) was measured for gas, gas condensate, natural fumarolic sublimates, and precipitates in silica tubes from vents with outlet temperatures ranging from 380 to 870°C. Gold abundance in condensates ranges from 0.3 to 2.4 ppb, which is significantly lower than the abundances of transition metals. Gold contents in zoned precipitates from silica tubes increase gradually with a decrease in temperature to a maximum of 8 ppm in the oxychloride zone at a temperature of approximately 300°C. Total Au content in moderate-temperature sulfide and oxychloride zones is mainly a result of Au inclusions in the abundant Fe-Cu and Zn sulfide minerals as determined by instrumental neutron activation analysis. Most Au occurs as a Cu-Au-Ag triple alloy. Single grains of native gold and binary Au-Ag alloys were also identified among sublimates, but aggregates and crystals of Cu-Au-Ag alloy were found in all fumarolic fields, both in silica tube precipitates and in natural fumarolic crusts. Although the Au triple alloy is homogeneous on the scale of microns and has a composition close to (Cu,Ni,Zn)3(Au,Ag)2, transmission electron microscopy (TEM) shows that these alloy solid solutions consist of monocrystal domains of Au-Ag, Au-Cu, and possibly Cu2O. Gold occurs in oxide assemblages due to the decomposition of its halogenide complexes under high-temperature conditions (650-870°C). In lower temperature zones (<650°C), Au behavior is related to sulfur compounds whose evolution is strongly controlled by redox state. Other minerals that formed from gas transport and precipitation at Kudryavy volcano include garnet, aegirine, diopside, magnetite, anhydrite, molybdenite, multivalent molybdenum oxides (molybdite, tugarinovite, and ilsemannite), powellite, scheelite, wolframite, Na-K chlorides, pyrrhotite, wurtzite, greenockite, pyrite, galena, cubanite, rare native metals (including Fe, Cr, Mo

  20. Temporal change of the mode of eruptive activity and the magma plumbing system of Sakurajima Volcano since 20th century : Implications for forecast future eruptive activity

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Matsumoto, A.; Amma-Miyasaka, M.; Togashi, Y.; Iguchi, M.

    2011-12-01

    Sakurajima volcano is a post-caldera volcano of Aira caldera and has repeated large plinian eruptions with dormant periods in AD 1471, AD 1779 and AD 1914. After AD 1914 eruption, medium scale of lava effusion occurred in AD 1946. Since AD 1955, frequent vulcanian eruptions have repeated until now. Thus, mode of eruptive activity of the volcano has changed since 20th century. Based on temporal change of petrological features of these eruptive materials, We discuss the relationship between the mode of eruptive activity and magma system to forecast the future eruptive activity. The rocks of AD 1471 and AD 1779 eruptions are CPX-OPX dacite, in which normally and reversely zoned pyroxene and plagioclase phenocrysts coexist. In addition, compositional distribution of plagioclase phenocrysts is bi-modal. These suggest that these rocks are mixing products between dacitic and andesitic magmas. This is consistent with compositional variations of whole-rock chemistry for these rocks. On the other hand, the rocks of AD 1914 and AD 1946 eruption often contain olivine phenocrysts. Plagioclase and pyroxenes phenocrysts in these rocks show similar features to those of AD 1471 and AD 1779 eruptions, suggesting that these rocks are also mixing products of two end-member magmas, dacitic and andesitic ones. However, olivine phenocrysts are much magnesian compared with pyroxenes phenocrysts, indicating that these olivine phencorysts are derived from another basaltic magma. Thus, the basaltic magma injected into the mixed magma between dacitic and andesitic ones. Mixing among three magmas has been recognized since 20th century. The rocks from frequent eruptions since AD 1955 also contain minor amount of olivine phenocrysts, suggesting the injection of basaltic magma has continued. In 1970's and AD 1987 periods, relatively larger scale of vulcanian eruptions had occurred. The rocks from these periods contain considerable amount of olivine phenocrysts, indicating mixing ratio of the

  1. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (<1cm) rounded xenoliths are common. A comprehensive study of the volcano's petrography and whole-rock chemistry is currently underway. Jun Jaegyu is the northernmost volcanic center of the James Ross Island Volcanic Group (JRIVG), and the only center in this region of the Antarctic Peninsula with evidence of recent activity. It lies along the boundary between the Late Cenozoic JRIVG and the Upper Paleozoic rocks of the Trinity Peninsula Formation. While the tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  2. The diversity of mud volcanoes in the landscape of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  3. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  4. Evolution of Popocatépetl volcano's glaciers in Mexico with and without volcanic activity: diagnosis from a minimal mass balance model

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gonzalez, G.; Cortes Ramos, J.; Delgado Granados, H.

    2013-05-01

    This work describes the influence of eruptive activity on the evolution of the glacial cover on Popocatepetl volcano. Here, we try to answer a simple question: what had happened if this glacier had not been affected by the volcanic activity? In order to answer this question we modeled the mass balance evolution of this glacier using meteorological data and a minimal mass balance model developed for glaciers elsewhere. For this model we assumed no volcanic activity. These results were compared with measurements available for the actual situation at Popocatépetl Volcano. It was possible to separate the influence of the volcanic activity on the evolution of this glacier system considering two scenarios: one was modeled with a simulation of the mass balance where volcanic activity does not affect, and a second scenario is based on the documented studies developed around the glacial disappearance of the glaciers.

  5. A new method to monitor water vapor cycles in active volcanoes

    NASA Astrophysics Data System (ADS)

    Girona, T.; Costa Rodriguez, F.; Taisne, B.

    2014-12-01

    Simultaneous monitoring of different gas species of volcanic plumes is crucial to understand the mechanisms involved in persistent degassing, and to anticipate volcanic unrest episodes and magma ascent towards the surface. Progress in gas remote-sensing techniques during the last decades has led to the development of ultraviolet absorption spectrometers and UV cameras, which enable to monitor SO2 emission cycles in real time, at very high-frequency (~ 1Hz), and from several kilometers away from the volcanic plume. However, monitoring of the more abundant gases, i.e., H2O and CO2, is limited to volcanoes where infrared spectrometers and infrared lamps can be installed at both sides of the crater rims. In this study, we present a new and simple methodology to register H2O emission cycles from long distances (several kilometers), which is based on the light scattered by the micrometric water droplets of condensed plumes. The method only requires a commercial digital camera and a laptop for image processing, since, as we demonstrate, there is a linear correlation between the digital brightness of the plume and its volcanogenic water content. We have validated the method experimentally by generating controlled condensed plumes with an ultrasonic humidifier, and applied it to the plume of Erebus volcano using a 30 minutes-long movie [1]. The wavelet transforms of the plume brightness and SO2 time series (measured with DOAS [1]) show two common periodic components in the bands ~100­-250 s and ~500-­650 s. However, there is a third periodic component in the band ~300-­450 s in the SO2 time series that is absent in the brightness time series. We propose that the common periodic components are induced by magmatic foams collapsing intermittently beneath shallow geometrical barriers composed by bubbles with high content of both H2O and SO2, whereas the third periodic component could be induced by foams collapsing beneath a deeper geometrical barrier composed by bubbles with

  6. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    USGS Publications Warehouse

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-01-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema‘uma‘u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema‘uma‘u magma reservoir. In fact, a relatively small density increase (<200 kg m−3) of a portion of the reservoir can produce the positive residual gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  7. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-09-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema`uma`u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema`uma`u magma reservoir. In fact, a relatively small density increase (<200 kg m-3) of a portion of the reservoir can produce the positive residual gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  8. A warning model based on temporal changes of coda Q for volcanic activity at Nevado Del Ruiz Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Londoño, John M.; Sudo, Yasuaki

    2002-07-01

    The coda Q has been calculated for Nevado del Ruiz Volcano, Colombia (NRV) from 1985 to 1999 by using a single scattering model. During this period, the inverse of Q (Q-1 proportional to attenuation) exhibited a long-term decrease with time, as well as shorter-term variations related to the volcanic activity. Q-1 increased prior to volcanic crises and decreased afterward. Based on these observations, a seismic warning criterion has been developed. The parameters (frequency band, size of moving average window, and threshold levels) necessary to evidence clear and significant short-term changes in Q-1 have been investigated and appropriated values are proposed. We suggest a phenomenological model with three stages for the short-term temporal changes in Q-1 at NRV. Firstly, Q-1 increases before a volcanic crises because of accumulation of gas and/or liquid, which decreases the aspect ratio of fluid pockets and increases the fractional volume of fluid in the rocks and the pore aspect ratio. Secondly, Q-1 starts to decrease during the crises by the discharging of fluids such as gas, water, etc. from the volcano. Finally, Q-1 becomes more stable after the crisis at a lower value because of the degassing and/or increasing of rigidity of the medium because of the long-term crystallization and cooling processes. Q-1 seems to be a promising monitoring tool at NRV. It is possible that the observed temporal changes of Q-1, combined with other parameters, may help to predict with greater accuracy a volcanic crisis at NRV.

  9. Volcanoes generate devastating waves

    SciTech Connect

    Lockridge, P. )

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  10. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  11. Active faults on the eastern flank of Etna volcano (Italy) monitored through soil radon measurements

    NASA Astrophysics Data System (ADS)

    Neri, M.; Giammanco, S.; Ferrera, E.; Patanè, G.; Zanon, V.

    2012-04-01

    This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the unstable eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. In particular, the highest anomalies were found at the intersection between WNW-ESE and NW-SE -running faults. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. These maps revealed a progressive deepening of hypocenters from NW to SE, with the exception of a narrow zone in the central part of the area, with a roughly WNW-ESE direction. Also, the highest values of seismic energy were released during events in the southern and northwestern sectors of the area. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquake depth and intensity can give some hints on the source of gas and/or on fault dynamics. Lastly, an important spin-off of this study is the recognition of some areas where radon activity was so high (>50000 Bq/m3) that it may represent a potential hazard to the local population. In fact, radon is the leading cause of lung cancer after cigarette smoke for long exposures and, due to its molecular weight, it accumulates in underground rooms or in low ground, particularly where air circulation is low or absent

  12. Mantle to surface gas triggers of magmatic activity at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Oppenheimer, C.; Moretti, R.; Kyle, P.

    2009-04-01

    Intraplate volcanoes are associated with extensional tectonics, mantle upwelling and high heat flow. Erupted magmas have an alkaline nature and are rich in volatiles, especially CO2, that are inherited from fluid-rich magmatic sources in the mantle. Localized alkaline centers emit gas fluxes that exceed what can be sustained by the rates of magma erupted. At Mount Erebus this dichotomy is evidenced by open-path Fourier transform infrared (FTIR) spectroscopy of gases released from the lava lake. Different gas signatures are associated with explosive and non-explosive gas emissions, representative of volatile contents and redox conditions that identify the overlap between shallow and deep degassing sources. We show that this multiple signature of magma degassing provides a unique probe for magma differentiation and transfer of CO2-rich oxidized fluids from lithospheric roots up to the surface, and show how these processes operate in time and space. Magma deeper than 4 km equilibrates under vapour buffered conditions, whereas shallower magmas allow deep, CO2-rich fluids to accumulate and prior to release either via open-system degassing conditions and reduced oxidation states, or as volatile-enriched, phonolitic blobs that preserve the deep oxidized signature, and ascend as a closed-system to explode at the surface during Strombolian phases.

  13. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... height map   Ash from Iceland's Eyjafjallajökull volcano, viewed here in imagery from the Multi-angle Imaging SpectroRadiometer ... natural-color, nadir (vertical) view of the scene, with the volcano itself located outside the upper left corner of the image. The ash ...

  14. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  15. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  16. Chiliques volcano, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000

  17. Thematic mapper studies of Andean volcanoes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.

    1986-01-01

    The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.

  18. Small-scale volcanoes on Mars: distribution and types

    NASA Astrophysics Data System (ADS)

    Broz, Petr; Hauber, Ernst

    2015-04-01

    Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (active over most (if not all) of its history, a similar distribution of volcano size might be expected. Martian small-scale volcanoes were not intensely studied for a long time due to a lack of high-resolution data enabling their proper identification; however their existence and basic characteristics were predicted on theoretical grounds. Streams of new high-resolution images now enable discovering and studying kilometer-size volcanoes with various shapes in unprecedented detail. Several types of small-scale volcanoes in various regions on Mars were recently described. Scoria cones provide a record of magmatic volatile content and have been identified in Tharsis (Ulysses Colles), on flanks of large volcanoes (e.g., Pavonis Mons), in the caldera of Ulysses Patera, in chaotic terrains or other large depressions (Hydraotes Colles, Coprates Chasma) and in the northern lowlands. Tuff rings and tuff cones, formed as a result of water-magma interaction, seem to be relatively rare on Mars and were only tentatively identified in three locations (Nepenthes/Amenthes region, Arena Colles and inside Lederberg crater), and alternative interpretations (mud volcanoes) seem possible. Other relatively rare volcanoes seem to be lava domes, reported only from two regions (Acracida Planitia and Terra Sirenum). On the other hand, small shields and rootless cones (which are not primary volcanic landforms) represent widely spread phenomena recognized in Tharsis and Elysium. Based on these new observations, the distribution of small volcanoes on Mars seems to be much more widespread than anticipated a decade

  19. Shiveluch and Klyuchevskaya Volcanoes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

  20. Earthquake sources near Uturuncu Volcano

    NASA Astrophysics Data System (ADS)

    Keyson, L.; West, M. E.

    2013-12-01

    Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.

  1. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    NASA Astrophysics Data System (ADS)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  2. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  3. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds. PMID:25627249

  4. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  5. Reconstructing 800 years of historical eruptive activity at Popocatépetl Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Martin-Del Pozzo, Ana Lillian; Rodríguez, Alan; Portocarrero, Jorge

    2016-03-01

    Pictorial and written documents spanning 800 years were analyzed for information about historical eruptions at Popocatépetl volcano. These documents were prepared by several indigenous groups as well as by the Spanish conquistadors and missionaries during their military campaigns and long-term evangelization and colonization and later on, by Indian nobles and Spanish historians. Pre-Columbian drawings show flames coming out of Popocatépetl's crater while later descriptions from the Spanish colonial period in Mexico (1521 to 1821) refer to ash emission and ballistics, lahars, and some pumice falls, similar to what were depicted in the thirteenth to sixteenth century drawings. Graphic information from the pre-Columbian codices, colonial maps, and paintings referring to the eruptions were correlated with historical accounts and religious chronicles, thereby leading to the reconstruction of a more detailed sequence of eruptive events. From such information, it was possible for us to prepare ash distribution maps for the 1540, 1592, and 1664 eruptions. Most of the known historical eruptions seem to be similar to those that have been occurring at Popocatépetl since 1994, indicating the importance of ash emission and crater dome formation throughout its recent eruptive history. The strongest eruptions occurred in 1510, 1519, 1540, 1580, 1664, and 2001; these produced widespread ash falls that affected both populated and rural areas. Duration of eruptive episodes during the past 800 years were estimated to have ranged from less than a year to more than 30 years, separated by repose periods ranging between 7 and over 100 years.

  6. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected. PMID:18247739

  7. Spatial Databases for CalVO Volcanoes: Current Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.

    2013-12-01

    The U.S. Geological Survey (USGS) California Volcano Observatory (CalVO) aims to advance scientific understanding of volcanic processes and to lessen harmful impacts of volcanic activity in California and Nevada. Within CalVO's area of responsibility, ten volcanoes or volcanic centers have been identified by a national volcanic threat assessment in support of developing the U.S. National Volcano Early Warning System (NVEWS) as posing moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. To better understand the extent of potential hazards at these and other volcanoes and volcanic centers, the USGS Volcano Science Center (VSC) is continually compiling spatial databases of volcano information, including: geologic mapping, hazards assessment maps, locations of geochemical and geochronological samples, and the distribution of volcanic vents. This digital mapping effort has been ongoing for over 15 years and early databases are being converted to match recent datasets compiled with new data models designed for use in: 1) generating hazard zones, 2) evaluating risk to population and infrastructure, 3) numerical hazard modeling, and 4) display and query on the CalVO as well as other VSC and USGS websites. In these capacities, spatial databases of CalVO volcanoes and their derivative map products provide an integrated and readily accessible framework of VSC hazards science to colleagues, emergency managers, and the general public.

  8. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  9. Double Glacier Volcano, a 'new' Quaternary volcano in the eastern Aleutian volcanic arc

    USGS Publications Warehouse

    Reed, B.L.; Lanphere, M.A.; Miller, T.P.

    1992-01-01

    The Double Glacier Volcano (DGV) is a small dome complex of porphyritic hornblende andesite and dacite that is part of the Cook Inlet segment of Quaternary volcanoes of the eastern Aleutian arc. Its discovery reduces the previously described large volcano gap in Cook Inlet segment to a distance similar to that between other volcanoes in the area. DGV lavas are medium-K, calcalkaline andesites and dacites with concentrations of major and minor elements similar to the other Quaternary volcanoes of the Cook Inlet segment. Available K-Ar ages indicate that DGV was active 600-900 ka. ?? 1992 Springer-Verlag.

  10. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    NASA Astrophysics Data System (ADS)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  11. Recent activity of Anatahan volcano, Northern Marina Islands, and its magma plumbing system

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.; Matsushima, T.; Tabei, T.; Watanabe, A.; Maeno, F.; Camacho, J. T.

    2009-12-01

    The volcanic activity of Anatahan that began in 2003 has declined such as faint emission of volcanic gas from the crater and scarcity of volcanic tremor in 2009. Our team carried out geological, geodetic and seismological observation repeatedly till mid-2009 from the beginning of the eruption. The early phase of the eruption (2003-2004) can be characterized by magmatic and phreatomagmatic explosions, contrasting to mainly phreatic nature in the later phase (2005-2008). The active crater (Eastern Crater) was widened and deepened (much below the sea level) as the eruption progressed. Dominant products of phreatic explosions comprise of thick accumulation of thin layers of fine ash. A rough estimate of the total volume during these 5 years is as much as 1 km3, close to the volume of materials lost by enlargement of the active crater. Seismic observation was carried out during mid-2008 and mid-2009 by settling 5 temporary stations covering the whole of the island, each of which includes a 3 components short-period seismometer with corner frequency of 1Hz and a low-power consumption digital data recorder with 24-bits AD resolutions. GPS campaign observation was repeated in the same station during this period. VT and LP event were observed, though very low in occurrence in this period. Hypocenters of VT and LP events show all events occurred at the depth of less than 8km around the eastern crater. Among them, LP events occurred in the shallower (less than 3km) region. The error in the depth may be not more than a few kilometers, but that in the epicenter should be smaller than 1km because the most events are located inside of the seismic network. Moreover, the tremors observed in the 2008 summer continued for about 3 weeks. The amplitude increased gradually, kept at the maximum, and stopped abruptly. During the maximum amplitude period, ash emission was observed by VAAC. Estimated reduced displacement at the maximum is about 1 cm2, typical of a hydro-magmatic eruption

  12. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe

    2015-04-01

    and observations on active volcanoes. The issue to facilitate the access to this valued source of information is to reshape this fragmented community into a unique infrastructure concerning common technical solutions and data policies. Some of the key actions include the implementation of virtual accesses to geophysical, geochemical, volcanological and environmental raw data and metadata, multidisciplinary volcanic and hazard products, tools for modelling volcanic processes, and transnational access to facilities of volcano observatories. Indeed this implementation will start from the outcomes of the two EC-FP7 projects, Futurevolc and MED-SUV, relevant to three out of four global volcanic Supersites, which are located in Europe and managed by European institutions. This approach will ease the exchange and collaboration among the European volcano community, thus allowing better understanding of the volcanic processes occurring at European volcanoes considered worldwide as natural laboratories.

  13. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Zhiming; Kwoun, Oh-Ig

    2007-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  14. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Zhiming; Kwoun, Oh-Ig

    2008-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  15. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  16. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide. PMID:20818536

  17. Transition from Effusive to Explosive Activity during Lava Dome Eruption: The Example of the 2010 of Merapi Volcano (Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Drignon, M. J.; Arbaret, L.; Burgisser, A.; Komorowski, J. C.; Martel, C.; Putra, R.

    2014-12-01

    Understanding the transition between effusive and explosive activity in dome-forming volcanoes remains a challenging question for eruption forecasting and eruptive scenario definition. The explosive activity of 26 Oct. and 5 Nov. during the 2010 eruption of Merapi volcano offers the opportunity to explore this transition by quantifying the mechanisms that led to the dome explosion. Forty-three pumice samples were analyzed by 1) scanning electron microscope for textural analysis and 2) elemental analyzer for water content. The SEM images were processed so as to determine the proportions of gas bubbles, microlites and glass in each sample. These data were combined with the glass water content to feed the simple physical model developed by Burgisser et al. [1,2] to calculate pre-explosive pressure, depth, and porosity level for each pyroclastic pumice sample. Preliminary results indicate that the water content in the melt is high, reaching 7 wt.%. These water contents yield a wide range of pre-eruptive pressures. Samples from 26 Oct. originated at pressures from a few MPa to 280 MPa. These pressures correspond to depths ranging from a few hundred meters to more than 10 km. This suggests that large overpressures were associated with conduit evacuation that reached unexpected depths. Samples from the 5 Nov. event range from ~10 to ~100 MPa. This suggests that this event also evacuated a large part of the volcanic conduit. Pre-explosive porosities of both events are low (<10 vol. %) along the depth of the entire conduit, which suggests extensive permeable outgassing of the magma-filed conduit prior to each explosive evacuation. Ongoing work includes analysis of melt CO2 content due to preliminary evidence that it played an important role in the 2010 Merapi eruption. The modeled conduit properties serve as baseline data for conduit flow modeling and building plausible eruptive scenarios. [1] Burgisser et al. (2010) J. Volcanol. Geotherm. Res. 194, 27-41. [2] Burgisser et

  18. Mineralized microbes from Giggenbach submarine volcano

    NASA Astrophysics Data System (ADS)

    Jones, Brian; de Ronde, C. E. J.; Renaut, Robin W.

    2008-08-01

    The Giggenbach submarine volcano, which forms part of the Kermadec active arc front, is located ˜780 km NNE of the North Island of New Zealand. Samples collected from chimneys associated with seafloor hydrothermal vents on this volcano, at a depth of 160-180 m, contain silicified microbes and microbes entombed in reticular Fe-rich precipitates. The mineralized biota includes filamentous, rod-shaped, and rare coccoid microbes. In the absence of organic carbon for rDNA analysis or preserved cells, the taxonomic affinity of these microbes, in terms of extant taxa, remains questionable because of their architectural simplicity and the paucity of taxonomically significant features. The three-dimensional preservation of the microbes indicates rapid mineralization with a steady supply of supersaturated fluids to the nucleation sites present on the surfaces of the microbes. The mineralization styles evident in the microbes from the Giggenbach submarine volcano are similar to those associated with mineralized microbes found in terrestrial hot spring deposits in New Zealand, Iceland, Yellowstone, and Kenya. These similarities exist even though the microbes are probably different and the fluids become supersaturated with respect to opal-A by different mechanisms. For ancient rocks it means that interpretations of the depositional settings cannot be based solely on the silicified microbes or their style of silicification.

  19. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-com