Science.gov

Sample records for active voltammetric microsensors

  1. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  2. Fiber optic chemical microsensors employing optically active silica microspheres

    NASA Astrophysics Data System (ADS)

    Pope, Edward J. A.

    1995-05-01

    Dye-doped porous silica microspheres can be prepared from liquid solution at temperatures near ambient. Microsphere diameter can be controlled between approximately 5.0 microns to in excess of a millimeter. The resulting microspheres can be attached to the distal end of an optical fiber in which the proximal end is attached to a spectrophotometer. Depending upon the organic species doped into the microsphere, a wide variety of sensing functions are possible. In this paper, the use of microsensors for measuring pH, temperature, and solvent content of aqueous solutions is demonstrated. Potential utility of this type of sensor to heavy metals detection and biomedical diagnostics is also discussed.

  3. A method to determine photosynthetic activity from oxygen microsensor data in biofilms subjected to evaporation.

    PubMed

    Li, Tong; Podola, Björn; de Beer, Dirk; Melkonian, Michael

    2015-10-01

    Phototrophic biofilms are widely distributed in nature and their ecological importance is well recognized. More recently, there has been a growing interest in using artificial phototrophic biofilms in innovative photobioreactors for production of microalgal biomass in biotechnological applications. To study physiological processes within these biofilms, microsensors have been applied in several studies. Here, the 'light-dark shift method' relies on measurement of photosynthetic activity in terms of light-induced oxygen production. However, when applied to non-submerged biofilms that can be found in numerous locations in nature, as well as in some types of photobioreactors, limitations of this approach are obvious due to rapid removal of gaseous species at the biofilm surface. Here, we introduce a mathematical correction to recover the distribution of the actual photosynthetic activity along the depth gradient in the biofilm, based on a numerical solution of the inversed diffusion equation of oxygen. This method considers changes in mass transport during the measurement period as can found on biofilms possessing a thin flow/mass transfer boundary layer (e. g., non-submerged biofilms). Using both simulated and real microsensor data, the proposed method was shown to be much more accurate than the classical method, which leads to underestimations of rates near the biofilm surface. All test profiles could be recovered with a high fit. According to our simulated microsensor measurements, a depth resolution of ≤20 μm is recommended near the surface. We conclude that our method strongly improves the quality of data acquired from light-dark measurements of photosynthetic activity in biofilms.

  4. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  5. Voltammetric and spectrophotometric determination of antioxidant activity of Eugenia dysenterica DC leaves extracts.

    PubMed

    Clementino, Silva Elton; Garcia, Rezende Stefani; Moreira, Béda Roanna C Clícia; Pagliarini, Balest Aiessa; Cabral, Reis Bruna; Dâmaris, Silveira; de Souza, Gil Eric

    2016-03-01

    Eugenia dysenterica DC (cagaiteira) is a native tree from Cerrado biome. Cagaita fruits are known and consumed in natura, mainly by inhabitants from Cerrado. In this study, we evaluated the antioxidant activity of leaves of this plant. For this evaluation we used four methods, the reduction of phosphomolybdenum, scanning by hydrogen peroxide, DPPH radical scavenging assay and determination of electrochemical parameters by differential pulse voltammetry. The results indicate that all extracts from leaves of this species have significant antioxidant potential, following the order: crude ethanol extract CEE) >crude aqueous extract (CAE) >crude hexane extract (CHE). The voltammetric approaches were also applied in order to evaluate the redox behavior of the hydrophilic extracts, as well as of their sub-extracts. Thus, the results suggest the presence of catechol-like polyphenols, which were confirmed by chromatography and phytochemical methods. Voltammetric analysis showed to be a reliable and fast method to determine redox behavior of E. dysenterica extracts. PMID:27087097

  6. Voltammetric and spectrophotometric determination of antioxidant activity of Eugenia dysenterica DC leaves extracts.

    PubMed

    Clementino, Silva Elton; Garcia, Rezende Stefani; Moreira, Béda Roanna C Clícia; Pagliarini, Balest Aiessa; Cabral, Reis Bruna; Dâmaris, Silveira; de Souza, Gil Eric

    2016-03-01

    Eugenia dysenterica DC (cagaiteira) is a native tree from Cerrado biome. Cagaita fruits are known and consumed in natura, mainly by inhabitants from Cerrado. In this study, we evaluated the antioxidant activity of leaves of this plant. For this evaluation we used four methods, the reduction of phosphomolybdenum, scanning by hydrogen peroxide, DPPH radical scavenging assay and determination of electrochemical parameters by differential pulse voltammetry. The results indicate that all extracts from leaves of this species have significant antioxidant potential, following the order: crude ethanol extract CEE) >crude aqueous extract (CAE) >crude hexane extract (CHE). The voltammetric approaches were also applied in order to evaluate the redox behavior of the hydrophilic extracts, as well as of their sub-extracts. Thus, the results suggest the presence of catechol-like polyphenols, which were confirmed by chromatography and phytochemical methods. Voltammetric analysis showed to be a reliable and fast method to determine redox behavior of E. dysenterica extracts.

  7. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong

    2014-11-01

    The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285 µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB.

  8. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-01

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than <1.5% RSD variation (n = 50). In contrast, plasticized poly(vinyl chloride), polystyrene, and poly(acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision. PMID:27187779

  9. Influence of uranium (VI) on the metabolic activity of stable multispecies biofilms studied by oxygen microsensors and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Krawczyk-Bärsch, Evelyn; Grossmann, Kay; Arnold, Thuro; Hofmann, Susann; Wobus, Axel

    2008-11-01

    The effect of uranium added in ecologically relevant concentrations (1 × 10 -5 and 1 × 10 -6 M) to stable multispecies biofilms was studied by electrochemical oxygen microsensors with tip diameters of 10 μm and by confocal laser fluorescence microscopy (CLSM). The microsensor profile measurements in the stable multispecies biofilms exposed to uranium showed that the oxygen concentration decreased faster with increasing biofilm depth compared to the uranium free biofilms. In the uranium containing biofilms, the oxygen consumption, calculated from the steady-state microprofiles, showed high consumption rates of up to 61.7 nmol cm -3 s -1 in the top layer (0-70 μm) and much lower consumption rates in the lower zone of the biofilms. Staining experiments with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 4,6-diamidino-2-phenylindole (DAPI) confirmed the high respiratory activities of the bacteria in the upper layer. Analysis of the amplified 16S rRNA gene fragments showed that the addition of uranium in ecologically relevant concentrations did not change the bacterial diversity in the stable multispecies biofilms and is therefore not responsible for the different oxygen profiles in the biofilms. The fast decrease in the oxygen concentrations in the biofilm profiles showed that the bacteria in the top region of the biofilms, i.e., the metabolically most active biofilm zone, battle the toxic effects of aqueous uranium with an increased respiratory activity. This increased respiratory activity results in O 2 depleted zones closer to the biofilm/air interface which may trigger uranium redox processes, since suitable redox partners, e.g., extracellular polymeric substance (EPS) and other organics (e.g., metabolites), are sufficiently available in the biofilm porewaters. Such redox reactions may lead to precipitation of uranium (IV) solids and consequently to a removal of uranium from the aqueous phase.

  10. Prototype of calorimetric flow microsensor

    NASA Astrophysics Data System (ADS)

    Sazhin, Oleg

    2012-11-01

    An analytical model of calorimetric flow sensor has been developed. The results of the application of this model are utilized to develop a calorimetric flow microsensor with optimal functional characteristics. The technology to manufacture the microsensor is described. A prototype of the microsensor suitable to be used in the mass air flow meter has been designed. The basic characteristics of the microsensor are presented.

  11. Microscale Distribution of Nitrification Activity in Sediment Determined with a Shielded Microsensor for Nitrate

    PubMed Central

    Jensen, Kim; Revsbech, Niels Peter; Nielsen, Lars Peter

    1993-01-01

    Microprofiles of O2 and NO3- were measured simultaneously in freshwater sediment with microsensors which were completely free from electrical interference because of coaxial designs. Depth profiles of nitrification (NO3- production) and denitrification (NO3- consumption) were subsequently determined by computer simulation of the measured microprofiles. The nitrifying bacterial community responded very quickly to changes in environmental conditions, and new steady-state microprofiles of O2 and NO3- were usually approached within a few hours after perturbation. Nitrification started quickly after introduction of O2 in previously anoxic layers, suggesting prolonged survival of the nitrifiers during anaerobiosis. Changes in the availability of O2 and NH4+ greatly affected the nitrification profile, and there was a high rate of coupled nitrification-denitrification under conditions in which nitrification occurred right above the oxic-anoxic interface. Addition of C2H2 rapidly removed the NO3- peaks, indicating that NO3- production was due mainly to autotrophic nitrification. PMID:16349065

  12. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-02-01

    As shown in recent work, thin layer ion-selective multi-ionophore membranes can be interrogated by cyclic voltammetry to detect the ion activity of multiple species simultaneously and selectively. Additional fundamental evidence is put forward on ion discrimination with thin multi-ionophore-based membranes with thicknesses of 200 ± 25 nm and backside contacted with poly-3-octylthiophene (POT). An anodic potential scan partially oxidizes the POT film (to POT(+)), thereby initiating the release of hydrophilic cations from the membrane phase to the sample solution at a characteristic potential. Varying concentration of added cation-exchanger demonstrates that it limits the ion transfer charge and not the deposited POT film. Voltammograms with multiple peaks are observed with each associated with the transfer of one type of ion (lithium, potassium, and sodium). Experimental conditions (thickness and composition of the membrane and concentration of the sample) are chosen that allow one to describe the system by a thermodynamic rather than kinetic model. As a consequence, apparent stability constants for sodium, potassium, and lithium (assuming 1:1 stoichiometry) with their respective ionophores are calculated and agree well with the values obtained by the potentiometric sandwich membrane technique. As an analytical application, a membrane containing three ionophores was used to determine lithium, sodium, and potassium in artificial samples at the same location and within a single voltammetric scan. Lithium and potassium were also determined in undiluted human plasma in the therapeutic concentration range. PMID:26712342

  13. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.

    PubMed

    Cheng, Liqiu; House, Mitch W; Weiss, W Jason; Banks, M Katherine

    2016-02-01

    Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process.

  14. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.

    PubMed

    Cheng, Liqiu; House, Mitch W; Weiss, W Jason; Banks, M Katherine

    2016-02-01

    Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process. PMID:26707733

  15. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes.

    PubMed

    Seviour, T; Doyle, L E; Lauw, S J L; Hinks, J; Rice, S A; Nesatyy, V J; Webster, R D; Kjelleberg, S; Marsili, E

    2015-03-01

    In Pseudomonas aeruginosa, chemical deconvolution of the pyocyanin voltammetric signal allows its expression to be observed simultaneously with the quorum sensing molecule Pseudomonas quinolone signal (PQS). Such analysis has revealed that PQS might protect pyocyanin from self-oxidation, but also exert a pro-oxidative effect on pyocyanin under oxidative conditions to produce additional redox metabolites. PMID:25650009

  16. LLNL Microsensors Program

    SciTech Connect

    Lavietes, A

    2004-04-26

    The Microsensors Program was born out the need for enhanced sensor technology in support of the Weapons Program. In the interest of expanded diagnostic capabilities to provide true performance characteristics of weapon assemblies in flight and ground tests, a suite of sensor requirements was proposed. These potential new sensor technologies were envisioned to be completely unobtrusive and allow for the development of test vehicles (mock warheads and bomb assemblies) that were designed to mechanical and electrical specifications as close to the stockpile weapon design configuration as possible. The closeness of a test vehicle design to the respective stockpile weapon design is referred to as ''fidelity,'' with the term ''high-fidelity'' to mean all components are designed to emulate, very closely, the true system design. These efforts were in line with many activities associated with Stockpile Stewardship and were intended to enable better modeling and performance assessment without the need for underground testing. Several weapons are currently undergoing Life Extension Programs (LEP) to lengthen each weapon system's respective service life. The ability to assess the projected life of these complex assemblies is crucial to the success of the LEP activities.

  17. Microsensors for border patrol applications

    NASA Astrophysics Data System (ADS)

    Falkofske, Dwight; Krantz, Brian; Shimazu, Ron; Berglund, Victor

    2005-05-01

    A top concern in homeland security efforts is the lack of ability to monitor the thousands of miles of open border with our neighbors. It is not currently feasible to continually monitor the borders for illegal intrusions. The MicroSensor System (MSS) seeks to achieve a low-cost monitoring solution that can be efficiently deployed for border patrol applications. The modifications and issues regarding the unique requirements of this application will be discussed and presented. The MicroSensor System was developed by the Defense Microelectronics Activity (DMEA) for military applications, but border patrol applications, with their unique sensor requirements, demand careful adaptation and modification from the military application. Adaptation of the existing sensor design for border applications has been initiated. Coverage issues, communications needs, and other requirements need to be explored for the border patrol application. Currently, border patrol has a number of deficiencies that can be addressed with a microsensor network. First, a distributed networked sensor field could mitigate the porous border intruder detection problem. Second, a unified database needs to be available to identify aliens attempting to cross into the United States. This database needs to take unique characteristics (e.g. biometrics, fingerprints) recovered from a specialized field unit to reliably identify intruders. Finally, this sensor network needs to provide a communication ability to allow border patrol officers to have quick access to intrusion information as well as equipment tracking and voice communication. MSS already addresses the sensing portion of the solution, including detection of acoustic, infrared, magnetic, and seismic events. MSS also includes a low-power networking protocol to lengthen the battery life. In addition to current military requirements, MSS needs a solar panel solution to extend its battery life to 5 years, and an additional backbone communication link

  18. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  19. Tapered GRIN fiber microsensor.

    PubMed

    Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B

    2014-12-15

    The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach. PMID:25606989

  20. Sulfate reducing bacterial community and in situ activity in mature fine tailings analyzed by real time qPCR and microsensor.

    PubMed

    Liu, Hong; Tan, Shuying; Yu, Tong; Liu, Yang

    2016-06-01

    Sulfate reducing bacteria (SRB) play significant roles in anaerobic environments in oil sands mature fine tailings (MFTs). Hydrogen sulfide (H2S) is produced during the biological sulfate reduction process. The production of toxic H2S is one of the concerns because it may hinder the landscape remediation efficiency of oil sands tailing ponds. In present study, the in situ activity and the community structure of SRB in MFT and gypsum amended MFT in two settling columns were investigated. Combined techniques of H2S microsensor and dissimilatory sulfite reductase β-subunit (dsrB) genes-based real time quantitative polymerase chain reaction (qPCR) were applied to detect the in situ H2S and the abundance of SRB. A higher diversity of SRB and more H2S were observed in gypsum amended MFT than that in MFT, indicating a higher sulfate reduction activity in gypsum amended MFT; in addition, the activity of SRB varied as depth in both MFT and gypsum amended MFT: the deeper the more H2S produced. Long-term plans for tailings management can be assessed more wisely with the information provided in this study. PMID:27266310

  1. Voltammetric determination of ruthenium in the form of complexes with biologically active ligands

    SciTech Connect

    Medyantseva, E.P.; Budnikov, G.K.; Balakaeva, T.A.

    1992-02-10

    The interest in the analytical chemistry of ruthenium and its compounds has recently been increasing. Ruthenium compounds can be used an antitumor agents and in the treatment of tuberculosis and fungal infections. It has been suggested that there is a specific relationship between the reduction potentials of the compounds and their biological activity. Of greatest interest among the biologically active compounds are the compounds with nitrogen-containing heterocycles. In order to obtain information on the degree of oxidation of the central atom in the complexes and to select the optimum conditions for the determination of the mono- and bi-nuclear complexes of ruthenium compounds with biologically active ligands such as imidazole (Im), histidine (His), benzimidazole (BIm) and its methyl derivative [1,2(CH{sub 3}){sub 2} - BIm], benzohyroxamic acid (Bha), and 1-phenyl-2-methylamino-1-propanol or ephedrine (Eph) in the present work, the authors studied their electrochemical behavior at dropping mercury (dme) and a platinum electrodes. 6 refs., 1 fig., 2 tabs.

  2. Identification of Medicinally Active Ingredient in Ultradiluted Digitalis purpurea: Fluorescence Spectroscopic and Cyclic-Voltammetric Study

    PubMed Central

    Sharma, Anup; Purkait, Bulbul

    2012-01-01

    Serially diluted and agitated (SAD) drugs available commercially are in use with great faith because of the astonishing results they produce. The scientific viewpoint attached to the centuries-old therapy with SAD drugs, as in homeopathy, remained doubtful for want of appropriate research and insufficient evidence base. The conflicting points related to SAD drug mostly related to the level of concentrations/dilutions, use of drug in contradictory clinical conditions compared to the modern system of medicine, identification of medicinally active ingredient in concentrations and dilutions used in commercially available SAD drugs, and lack of laboratory-based pharmacological data vis-à-vis modern medicine. Modus operandi of SAD drug is also unknown. To address some of these issues an analytical study was carried out wherein commercially available SAD drug Digitalis purpurea, commonly used in different systems of medicine, was put to test. Various concentrations of commercially available Digitalis purpurea were analyzed using analytical methods: cyclic voltammetry, emission spectroscopy, and UV-VIS spectroscopy. These analytical methods apparently identified the medicinal ingredients and effect of serial dilution in commercial preparation of the drugs. PMID:22606641

  3. Low-cost microsensors program

    NASA Astrophysics Data System (ADS)

    Anderson, John S.; Bradley, Daryl; Chen, Chungte W.; Chin, Richard; Jurgelewicz, K.; Radford, William A.; Kennedy, Adam; Murphy, Daniel F.; Ray, Michael; Wyles, Richard; Brown, James C.; Newsome, Gwendolyn W.

    2001-10-01

    The objectives of the Low Cost Microsensors (LCMS) Program are twofold. The first is to develop and deliver a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 X 512 format focal plane array (FPA) engine. The second is to develop an expendable microsensor built upon a VOx 160 X 128 format FPA engine. The 640 X 480 sensor is applicable to long-range surveillance and targeting missions and is a reusable asset. The 160 X 120 sensor is designed for applications where miniaturization is required as well as low cost and low power. The 160 X 120 is also intended for expendable military applications. The intent of this DUS&T effort is to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging.

  4. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  5. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  6. Chemical micro-sensor

    DOEpatents

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  7. Flexible Microsensor Array for the Monitoring and Control of Plant Growth System

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for

  8. ISFET Based Microsensors for Environmental Monitoring

    PubMed Central

    Jimenez-Jorquera, Cecilia; Orozco, Jahir; Baldi, Antoni

    2010-01-01

    The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the same substrate and accordingly they can be implemented in compact probes for particular applications e.g., in situ monitoring and/or on-line measurements. In the field of microsensors for environmental applications, Ion Selective Field Effect Transistors (ISFETs) have a special interest. They are particularly helpful for measuring pH and other ions in small volumes and they can be integrated in compact flow cells for continuous measurements. In this paper the technologies used to fabricate ISFETs and a review of the role of ISFETs in the environmental field are presented. PMID:22315527

  9. Piezoresistive position microsensors with ppm-accuracy

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Shulev, Assen; Stavreva, Galina; Todorov, Vencislav

    2015-05-01

    In this article, the relation between position accuracy and the number of simultaneously measured values, such as coordinates, has been analyzed. Based on this, a conceptual layout of MEMS devices (microsensors) for multidimensional position monitoring comprising a single anchored and a single actuated part has been developed. Both parts are connected with a plurality of micromechanical flexures, and each flexure includes position detecting cantilevers. Microsensors having detecting cantilevers oriented in X and Y direction have been designed and prototyped. Experimentally measured results at characterization of 1D, 2D and 3D position microsensors are reported as well. Exploiting different flexure layouts, a travel range between 50μm and 1.8mm and sensors' sensitivity in the range between 30μV/μm and 5mV/μm@ 1V DC supply voltage have been demonstrated. A method for accurate calculation of all three Cartesian coordinates, based on measurement of at least three microsensors' signals has also been described. The analyses of experimental results prove the capability of position monitoring with ppm-(part per million) accuracy. The technology for fabrication of MEMS devices with sidewall embedded piezoresistors removes restrictions in strong improvement of their usability for position sensing with a high accuracy. The present study is, also a part of a common strategy for developing a novel MEMS-based platform for simultaneous accurate measurement of various physical values when they are transduced to a change of position.

  10. MicroSensors Systems: detection of a dismounted threat

    NASA Astrophysics Data System (ADS)

    Shimazu, Ron N.; Berglund, Victor P.; Falkofske, Dwight M.; Krantz, Brian S.

    2004-11-01

    The MicroSensors Systems (MSS) Program is developing a layered sensor network to detect dismounted threats approaching high value assets. The MSS subsystem elements include sensitive receivers (capable of detecting<<1 Watt emissions in dense signal or degraded signal environments) and low power, miniature, disposable sensors (acoustic, magnetic, and infrared). A novel network protocol has been developed to reduce the network traffic resulting in conservation of system power and lower probability of detection and interception. The MSS program will provide unprecedented levels of real-time battlefield information, greatly enhancing combat situational awareness when integrated with the existing Command, Control, and Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020. The program has established two Centers of Excellence for Sensor Technology each of which is capable of designing and building next generation, networked microsensor systems. The Defense Microelectronics Activity has teamed with the Centers of Excellence and industry to preserve long-term Department of Defense access to key next generation manufacturing technologies.

  11. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  12. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine.

    PubMed

    von Ohle, Christiane; Gieseke, Armin; Nistico, Laura; Decker, Eva Maria; DeBeer, Dirk; Stoodley, Paul

    2010-04-01

    Dental biofilms are characterized by structural and functional heterogeneity. Due to bacterial metabolism, gradients develop and diverse ecological microniches exist. The aims of this study were (i) to determine the metabolic activity of microorganisms in naturally grown dental biofilms ex vivo by measuring dissolved oxygen (DO) and pH profiles with microelectrodes with high spatial resolution and (ii) to analyze the impact of an antimicrobial chlorhexidine (CHX) treatment on microbial physiology during stimulation by sucrose in real time. Biofilms were cultivated on standardized human enamel surfaces in vivo. DO and pH profiles were measured in a flow cell system in sterile human saliva, after sucrose addition (10%), again after alternative treatment of the sucrose exposed biofilms with CHX (0.2%) for 1 or 10 min or after being killed with paraformaldehyde (4%). Biofilm structure was visualized by vitality staining with confocal microscopy. With saliva as the sole nutrient source oxygen consumption was high within the superficial biofilm layers rendering deeper layers (>220 mum) anoxic. Sucrose addition induced the thickness of the anaerobic zone to increase with a concurrent decrease in pH (7.1 to 4.4). CHX exposure reduced metabolic activity and microbial viability at the biofilm surface and drove metabolic activity deeper into the biofilm. CHX treatment led to a reduced viability at the biofilm surface with minor influence on overall biofilm physiology after 1 min; even after 10 min there was measurable respiration and fermentation inside the biofilm. However, the local microenvironment was more aerated, less acidogenic, and presumably less pathogenic.

  13. Non-invasive microsensors for studying cell/tissue physiology

    NASA Astrophysics Data System (ADS)

    Vanegas, D. C.; Taguchi, M.; Chaturvedi, P.; Burrs, S.; McLamore, E. S.

    2013-05-01

    Non-invasive tools that allow real-time quantification of molecules relevant to metabolism, homeostasis, and cell signaling in cells and tissue are of great importance for studying physiology. Several microsensor technologies have been developed to monitor concentration of molecules such as ions, oxygen, electroactive molecules (e.g., nitric oxide, hydrogen peroxide), and biomolecules (e.g., sugars, hormones). The major challenges for microsensors are overcoming relatively low sensitivity and low signal-to-noise ratio. Modern approaches for enhancing microsensor performance focus on the incorporation of catalytic nanomaterials to increase sensitivity, reduce response time, and increase operating range. To improve signal-to-noise ratio, a non-invasive microsensor modality called self-referencing (SR) is being applied. The SR technique allows measurement of temporal and spatial transport dynamics at the cell, tissue, organ, and organismal level.

  14. Plasmon resonance microsensor for droplet analysis.

    PubMed

    Chaigneau, M; Balaa, K; Minea, T; Louarn, G

    2007-08-15

    Microscale fiber tip sensors based on the plasmon resonance are reported. The fabrication process derived from our previous approach for manufacturing near-field scanning optical microscopy probes has been optimized for sensing applications. A typical tip sensor is a tapered fiber 400 microm in length, coated with a nanoporous thin silver film. The miniaturized geometry of the sensor allows detection in a single droplet of liquid solution (approximately 20 microl). The tip sensor is sensitive for refractive indices between 1.33 and 1.40 with a sensitivity of at least 3 x 10(-4) refractive index unit (RIU)/nm. The Raman scattering enhancement through these microsensors demonstrates the important role played by the localized plasmon resonance. The sensors' linear response covers a large region, interesting for biosensing in aqueous environments such as biomedical applications. PMID:17700810

  15. Sensing fuel properties with thermal microsensors

    NASA Astrophysics Data System (ADS)

    Bonne, Ulrich

    1996-05-01

    We report on measurements of combustion-relevant fuel properties for on-line, feedforward control with small, rugged and fully compensated microsensor-based systems. Such silicon microstructure sensor systems have been demonstrated to determine gaseous and liquid fuel properties such as stoichiometric oxygen demand, octane number, heating value, density and other properties of interest. The measurement approach consists of a three-step process: (1) Measurement of changes in electrical quantities when the sensing elements come in contact with the fluid, (2) Conversion of these quantities into primary sensor outputs, yi, such as thermal conductivity, specific heat, temperature and pressure, and (3) Correlation between these and the properties of interest, Y(yi). By coupling this property sensor to an equally rugged and small thermal flow microsensor, millisecond-range response time signals of mass or volume flow, or stoichiometric oxygen demand rate are provided for feed-forward control, without exposing any sensor to harsh exhaust gas environments. Having presented results with gaseous fuels elsewhere, we update these here but concentrate on the determination of octane and cetane number of liquid fuels. Analysis results show that the correlations between these combustion performance properties and physical fuel properties are as good as the ones between octane and critical compression ratio or between cetane and ignition delay. However, all those correlations appear to be limited presently by the accuracy or at least consistency of available data, which are needed for calibration of the sensor system. In checking the temperature dependence of one of the correlations for octane, we found the system output to shift by 15% when using hexadecane as a reference fuel, but only by 1% with iso-octane as reference, for a 10 degree(s)C shift in temperature.

  16. Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, ChungChiun

    2011-01-01

    An amperometric solid electrolyte oxygen (O2) microsensor using a novel and robust structure has been developed with a detection range of 0.025 to 21 percent of O2 concentration. The microsensor has a simple structure with a sensing area of 1.10 0.99 mm(exp 2), and is operated by applying voltage across the electrodes and measuring the resulting current flow at a temperature of 600 C.

  17. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  18. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  19. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  20. Nanoporous-carbon adsorbers for chemical microsensors.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak; Yelton, William Graham

    2004-11-01

    Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC may outperform existing, irreproducible coatings for SAW sensor and {micro}ChemLab preconcentrator applications. Success of this project will provide a strategic advantage to the development of a robust, manufacturable, highly-sensitive chemical microsensor for public health, industrial, and national security needs. We use pulsed-laser deposition to grow NPC films at room-temperature with negligible residual stress, and hence, can be deposited onto nearly any substrate material to any thickness. Controlled deposition yields reproducible NPC density, morphology, and porosity, without any discernable variation in surface chemistry. NPC coatings > 20 {micro}m thick with density < 5% that of graphite have been demonstrated. NPC can be 'doped' with nearly any metal during growth to provide further enhancements in analyte detection and selectivity. Optimized NPC-coated SAW devices were compared directly to commonly-used polymer coated SAWs for sensitivity to a variety of VOC, TIC, CWA and NPP. In every analyte, NPC outperforms each polymer coating by multiple orders-of-magnitude in detection sensitivity, with improvements ranging from 103 to 108 times greater detection sensitivity! NPC-coated SAW sensors appear capable of detecting most analytes tested to

  1. AFM-based force microsensor for a microrobot

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej; Fahlbusch, Stephan

    2001-10-01

    Microrobots are the result of increasing research activities at the border between microsystem technology and robotics. Today already, robots with dimensions of a few cubic- centimeters can be developed. Like conventional robots, microrobots represent a complex system that usually contains several different types of actuators and sensors. The measurement of gripping forces is the most important sensor application in micromanipulation besides visual servoing to protect the parts from too high surface pressures and thereby damage during the assembly process. Very small forces in the range of 200 (mu) N down to 0.1 (mu) N or even less have to be sensed. Thus, the aim of our current research activities is the development of a high-resolution integrated force microsensor for measuring gripping forces in a microhandling robot. On the one hand, the sensor should be a device for teleoperated manipulation tasks in a flexible microhandling station. On the other hand, typical microhandling operations should to a large extend be automated with the aid of computer-based signal processing of sensor information. The user should be provided with an interface for teleoperated manipulation and an interface for partially automated manipulation of microobjects. In this paper, a concept for the measurement of gripping forces in microrobotics using piezoresistive AFM (atomic force microscope) cantilevers is introduced. Further on, the concept of a microrobot-based SEM station and its applications are presented.

  2. Micro-sensors for space applications

    SciTech Connect

    Butler, M.A.; Frye-Mason, G.C.; Osbourn, G.C.

    1999-12-08

    Important factors in the application of sensing technology to space applications are low mass, small size, and low power. All of these attributes are enabled by the application of MEMS and micro-fabrication technology to microsensors. Two types of sensors are utilized in space applications: remotes sensing from orbit around the earth or another planetary body, and point sensing in the spacecraft or external to it. Several Sandia projects that apply microfabrication technologies to the development of new sensing capabilities having the potential for space applications will be briefly described. The Micro-Navigator is a project to develop a MEMS-based device to measure acceleration and rotation in all three axes for local area navigation. The Polychromator project is a joint project with Honeywell and MIT to develop an electrically programmable diffraction grating that can be programmed to synthesize the spectra of molecules. This grating will be used as the reference cell in a gas correlation radiometer to enable remote chemical detection of most chemical species. Another area of research where microfabrication is having a large impact is the development of a lab on a chip. Sandia's efforts to develop the {mu}ChemLab{trademark} will be described including the development of microfabricated pre-concentrators, chromatographic columns, and detectors. Smart sensors that allow the spacecraft independent decision making capabilities depend on pattern recognition. Sandia's development of a new pattern recognition methodology that can be used to interpret sensor response as well as for target recognition applications will be described.

  3. Applied research in remotely queried embedded microsensors

    NASA Astrophysics Data System (ADS)

    Krantz, Donald G.; Belk, John H.; Dubow, Joel; Hautamaki, Charles; Mantell, Susan C.; Polla, Dennis L.; Zurn, Shayne M.

    1998-07-01

    Sensors embedded in structural composites have been a topic of research in recent years. Embedded sensors can be used to monitor and optimize the manufacturing process, to monitor performance during use, and for structural health monitoring in high-performance applications. For several years, embedded optical fibers were the predominant type of sensor. There are well-known reasons that optical fiber sensors have not yet been fully embraced in industry including primarily the cost of equipment and sensors, the fragility of the optical fiber itself, and the need to provide ingress and egress from the structure. Recent work by the authors and others has produced prototype wireless electronic sensors of various types that address these shortcomings. The US Office of Naval Research is funding a multi-disciplinary team to consolidate progress made in earlier programs towards self- contained microsensors to be embedded in a composite structure and queried using methods that do not require physical connections. The sensors are to be left in place for the lifetime of the structure, are powered by the querying apparatus, and require no penetrations through the surface of the structure. This paper describes the integrated approach taken to realize the goal of an interrogatable strain rosette that is embedded 0.25' into a graphite composite plate. It also describes the progress to date of the sensor system itself.

  4. Remotely queried wireless embedded microsensors in composites

    NASA Astrophysics Data System (ADS)

    Krantz, Donald G.; Belk, John H.

    1997-05-01

    Embedding sensors in structural composites has been a topic of research in recent years. Embedded sensors can be used to monitor and optimize the manufacturing process, to monitor performance during use, and for structural health monitoring in high-performance applications. To date, optical fiber sensors have been the principal sensing technique for these applications. There are well-known problems with optical fiber sensors, including high manufacturing costs, fragility, the need to provide ingress and egress from the structure, and the interdependence of strain and temperature measurements. The US Naval Research Laboratory is funding a multi-disciplinary team to develop micro-machined sensors and an associated remote-querying capability to allow self- contained microsensors to be embedded in a composite structure and queried using methods that do not require physical connections. The sensors are to be left in place for the lifetime of the structure, are powered by the querying apparatus, and require no penetrations through the surface of the structure. Part of this work included studying electromagnetic propagation into graphite-epoxy (conductive) composites. A key part of this research has been the development of embeddable antennae that can operate within a conductive composite matrix with the efficiency required to both absorb power for the circuitry and to transmit and receive data. This paper describes the integrated approach taken to realize the goal of an interrogatable strain rosette that is embedded 0.25' into a graphite composite plate. Aspects of the sensors, the transponder, and the antenna are also covered.

  5. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C. PMID:22164067

  6. Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses

    SciTech Connect

    Santegoeds, C.M.; Damgaard, L.R.; Hesselink, G.; Zopfi, J.; Lens, P.; Muyzer, G.; Beer, D. de

    1999-10-01

    Using molecular techniques and microsensors for H{sub 2}S and CH{sub 4}, the authors studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria was located in a surface layer of 50 to 100 {micro}m thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 {micro}m from the aggregate surface) with a higher activity. The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates and the methanogenic aggregates was located more inward, starting at ca. 100 {micro}m from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor, but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data.

  7. In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O{sub 2}, Mn, Fe, S({minus}2), and pH in porewaters

    SciTech Connect

    Luther, G.W. III; Reimers, C.E.; Nuzzio, D.B.; Lovalvo, D.

    1999-12-01

    Solid-state microelectrodes have been used in situ in Raritan Bay, NJ to measure pore water profiles of dissolved O{sub 2}, Mn, Fe, and sulfide at (sub)millimeter resolution by voltammetric techniques. The voltammetric sensor was positioned with microprofiling instrumentation mounted on a small remote operated vehicle (ROV). This instrumentation and the sensor were controlled and monitored in real time from a research vessel anchored at the study site. The voltammetric analyzer was connected to the electrodes of the voltammetric cell with a 30 m cable which also bridged receiver-transmitter transducers to ensure signal quality along the cable. Single analyte O{sub 2}, pH, and resistivity microsensors were operated alongside the voltammetric sensor. The authors report on the technology of the system and the concentration changes of redox species observed from 2 to 3 cm above to approximately 4 cm below the sediment-water interface during three deployments. O{sub 2} measurements from both Clark and voltammetric electrodes were in excellent agreement. The profiles obtained show that there is no detectable overlap of O{sub 2} and Mn{sup 2+} in the sediments which is similar to previous reports from other continental margin sediments which were cored and analyzed in the laboratory. These data indicate that O{sub 2} is not a direct oxidant for Mn{sup 2+} when diffusive (rather than advective) processes control the transport of solutes within the sediment. Subsurface Mn{sup 2+} peaks were observed at about 2 cm and coincide with a subsurface pH maximum. The data can be explained by organic matter decomposition with alternate electron acceptors and by the formation of authigenic phases containing reduced Mn at depth.

  8. Conformal and embedded IDT microsensors for health monitoring of structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.

  9. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  10. Development of a Self-calibrating Dissolved Oxygen Microsensor Array for the Monitoring and Control of Plant Growth in a Space Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy

    2004-01-01

    Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,

  11. Dielectric properties modelling of cellular structures with PDMS for micro-sensor applications

    NASA Astrophysics Data System (ADS)

    Kachroudi, Achraf; Basrour, Skandar; Rufer, Libor; Sylvestre, Alain; Jomni, Fathi

    2015-12-01

    Electro-active polymers are emerging in the fields of actuators and micro-sensors because their good dielectric and mechanical properties makes them suitable for such applications. In this work, we focus on micro-structured (cellular) polymer materials (referred as piezoelectrets or ferroelectrets) that need prior charging to attain piezoelectric behaviour. The development of such applications requires an in-depth knowledge of the intrinsic dielectric properties of such structures and models to enable the accurate prediction of a given micro-structured material’s dielectric properties. Various polymers including polypropylene, polytetrafluoroethylene, fluoroethylenepropylene, cyclo-olefines and poly(ethylene terephthalate) in a cellular form have been studied by researchers over the last fifteen years. However, there is still a lack of information on the intrinsic dielectric properties of the most recently used dielectric polymer (polydimethylsiloxane, PDMS) over wide frequency and temperature ranges. In this work, we shall propose an exhaustive equivalent electrical circuit model and explain how it can be used to predict the micro-structured PDMS complex permittivity versus frequency and temperature. The results obtained from the model were found to be in good agreement with experimental data for various micro-structured PDMS materials. Typically, for micro-sensor applications, the dielectric constant and dielectric losses are key factors which need to be minimized. We have developed a configuration which enables both to be strongly reduced with a reduction of 16% in the dielectric constant of a micro-structured PDMS compared with the bulk material. In addition, the phenomena responsible for dielectric losses variations with frequency and temperature are discussed and correlated with the theoretical model. Our model is thus proved to be a powerful tool for the control of the dielectric properties of micro-structured PDMS material for micro-sensor applications.

  12. Synthesis, spectroscopic, thermal, voltammetric studies and biological activity of crystalline complexes of pyridine-2,6-dicarboxylic acid and 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Çolak, Alper Tolga; Çolak, Ferdağ; Yeşilel, Okan Zafer; Büyükgüngör, Orhan

    2009-11-01

    Two new compounds (8-H 2Q) 2[M(dipic) 2]·6H 2O (M = Co ( 1) and Ni ( 2), 8-HQ = 8-hydroxyquinoline, dipic = dipicolinate) have been prepared and characterized by elemental analysis, spectral (IR and UV-vis), thermal analyses, magnetic measurements and single-crystal X-ray diffraction techniques. Both 1 and 2 consist two 8-hydroxyquinolinium cations, one bis(dipicolinate)M(II) anion [M = Co(II), Ni(II)] and six uncoordinated water molecules. Both 1 and 2 crystallize in the monoclinic space group C2/c. In the compounds anion, each dipic ligand simultaneously exhibits tridentate coordination modes through N atom of pyridine ring and oxygen atoms of the carboxylate groups. The crystal packing of 1 and 2 is a composite of intermolecular hydrogen bonding and C-O⋯π interactions. The in vitro antibacterial and antifungal activities of 1 and 2 were evaluated by the agar well diffusion method by MIC tests. Both new compounds showed the same antimicrobial activity against Gram-positive bacteria and yeast and fungi expect Gram-negative bacteria.

  13. Voltammetric studies of poly(carbon disulfide)

    SciTech Connect

    Geng, L.; Xu, J.; Prasad, S.; Skotheim, T.A.; Lee, H.S.; McBreen, J.

    1992-12-31

    Poly(carbon disulfide) was studied by cyclic voltammetry using glassy carbon and platinum macro- and microdisk electrodes. The electron transfer kinetics is significantly faster at glassy carbon electrodes than at Pt electrodes. It is chemically reversible with moderate electron transfer rates. Voltammetric results of poly(carbon disulfide) are in good agreement with battery testing data. The k{sup 0} value measured at a Pt microdisk electrode is 7{times}10{sup 3} cm/sec. Electrochemical data suggest that PCS can be a potential cathode material for low current density lithium batteries.

  14. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOEpatents

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  15. Acoustic Wave Chemical Microsensors in GaAs

    SciTech Connect

    Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason; John L. Reno; Richard Kottenstette; Stephen A. Casalnuovo; Susan L. Hietala; Vincent M. Hietala

    1998-09-20

    High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperature compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.

  16. Identification of soft drinks using MEMS-IDT microsensors

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Karjathkar, Sonal; Jacesko, Stefany; Varadan, Vijay K.; Gardner, Julian W.

    2005-05-01

    Development of a taste sensor with high sensitivity, stability and selectivity is highly desirable for the food and beverage industries. The main goal of a taste sensor is to reproduce five kinds of senses of humans, which is quite difficult. The importance of knowing quality of beverages and drinking water has been recognized as a result of increase in concern in environmental pollution issues. However, no accurate measuring system appropriate for quality evaluation of beverages is available. A highly sensitive microsensor using horizontally polarized Surface Acoustic Waves (SH-SAW) for the detection and identification of soft drinks is presented in this paper. Different soft drinks were tested using this sensor and the results which could distinguish between two popular soft drinks like Pepsi and Coca cola is presented in this paper. The SH-SAW microsensors are fabricated on 36°-rotated Y cut X propagating LiTaO3 (36YX.LT) substrate. This design consists of a dual delay line configuration in which one line is free and other one is metallized and shielded. Due to high electromechanical coupling of 36YX.LT, it could detect difference in electrical properties and hence to distinguish different soft drinks. Measured electrical characteristics of these soft drinks at X-band frequency using free space system show distinguishable results. It is clear from these results that the microsensor based on 36YX.LT is an effective liquid identification system for quantifying human sensory expressions.

  17. The development of integrated chemical microsensors in GaAs

    SciTech Connect

    CASALNUOVO,STEPHEN A.; ASON,GREGORY CHARLES; HELLER,EDWIN J.; HIETALA,VINCENT M.; BACA,ALBERT G.; HIETALA,S.L.

    1999-11-01

    Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators; GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.

  18. Wireless microsensors for health monitoring of aircraft structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-01-01

    The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial

  19. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  20. Voltammetric analysis of Pinus needles with physiological, phylogenetic, and forensic applications.

    PubMed

    Ortiz-Miranda, Annette S; König, Peter; Kahlert, Heike; Scholz, Fritz; Osete-Cortina, Laura; Doménech-Carbó, María Teresa; Doménech-Carbó, Antonio

    2016-07-01

    Polyphenolic compounds are electrochemically active components of vegetal matter which were targeted under simple experimental conditions to produce voltammetric profiles characterizing the metabolite composition. Application to bivariate and multivariate chemometric techniques permits to discriminate the species and age of plant leaves, illustrated here for the case of six Pinus species from two different subgenera. Such responses, associated with the electrochemical oxidation of polyphenolic compounds (quercetin, gallic acid, ellagic acid, among others), define a voltammetric profile which varies systematically with the age of the leaves for the different species. The application of this methodology for phylogenetic studies, plant physiology, forensic science, and chemoecology is discussed. Graphical Abstract Image of Pinus in a typical Mediterranean forest; Courtesy of the Botanic Garden of the University of Valencia. PMID:27173392

  1. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats.

    PubMed

    Nielsen, Michael; Revsbech, Niels P; Kühl, Michael

    2015-01-01

    We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5-5 pA per μmol L(-1) H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8-10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1-2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats.

  2. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats

    PubMed Central

    Nielsen, Michael; Revsbech, Niels P.; Kühl, Michael

    2015-01-01

    We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5–5 pA per μmol L-1 H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8–10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1–2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats. PMID:26257714

  3. The offset equivalent magnetic induction for Hall microsensors

    NASA Astrophysics Data System (ADS)

    Căruntu, George; Panait, Cornel

    2009-01-01

    An essential parameter in the setting up of the performance of the measurement systems that uses Hall microsensors is the magnetic offset of such devices. This paperwork presents the structure, the operating conditions, and the main characteristic for the Hall plates and for bipolar lateral magnetotransistor. By using numerical simulation, the values of the offset-equivalent magnetic induction for the two analysed devices are compared and it is also emphasised the way in which choosing the geometry and the material features allows getting high-performance sensors.

  4. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  5. A Resonant Pressure Microsensor Capable of Self-Temperature Compensation

    PubMed Central

    Li, Yinan; Wang, Junbo; Luo, Zhenyu; Chen, Deyong; Chen, Jian

    2015-01-01

    Resonant pressure microsensors are widely used in the fields of aerospace exploration and atmospheric pressure monitoring due to their advantages of quasi-digital output and long-term stability, which, however, requires the use of additional temperature sensors for temperature compensation. This paper presents a resonant pressure microsensor capable of self-temperature compensation without the need for additional temperature sensors. Two doubly-clamped “H” type resonant beams were arranged on the pressure diaphragm, which functions as a differential output in response to pressure changes. Based on calibration of a group of intrinsic resonant frequencies at different pressure and temperature values, the functions with inputs of two resonant frequencies and outputs of temperature and pressure under measurement were obtained and thus the disturbance of temperature variations on resonant frequency shifts was properly addressed. Before compensation, the maximal errors of the measured pressure values were over 1.5% while after compensation, the errors were less than 0.01% of the full pressure scale (temperature range of −40 °C to 70 °C and pressure range of 50 kPa to 110 kPa). PMID:25938197

  6. Microsensors to monitor missile storage and maintenance needs

    SciTech Connect

    Mee, D.K.; Thundat, T.G.; Oden, P.I.

    1997-10-30

    Accurate assessments of reliability and condition based maintenance can only be implemented where a good understanding of ammunition stockpile condition exists. Use of miniaturized intelligent sensors provides an inexpensive means of nondestructively gaining insight into stockpile condition while keeping costs low. In the past, evaluation of ammunition lifetimes has utilized humidity, temperature, pressure, shock, and corrosion. New technologies provide the possibility of obtaining these environmental parameters, as well as a number of other indicators of propellant degradation, including NOx by utilizing a microsensor with capability for remote wireless monitoring. Micro-electro-mechanical systems (MEMS) like microcantilevers promise to revolutionize the field of sensor design. In the automobile industry, micromachined acceleration sensors are now used for triggering airbags and pressure sensors adjust the air-fuel intake ratio in the engine. By applying coatings to the sensor`s surface the behavior of the microdevice can be measurably altered to respond to chemical species as demonstrated by ORNL using microcantilevers to detect mercury vapor and humidity. Ultimately, single-chip detectors with electronics and telemetry could be developed with conceivably hundreds of individual microsensors on each chip to simultaneously monitor identify, and quantify many important chemical species for ammunition as well as measure environmental parameters.

  7. Novel needle-electrochemical microsensor for in-vitro and in-vivo measurements of oxygen

    NASA Astrophysics Data System (ADS)

    Xu, Weiya; Ma, Wentao; Li, Kaiyang; Hu, Jiming; Li, Hongyi; Cao, Lianxin; Song, Yu; Zhao, Lan

    2001-09-01

    Electrochemical microsensors have been applied in the field of biomedicine for many years. The aim of this work was to develop a novel oxygen sensor to monitor the partial pressure of oxygen in tissues and acupuncture points. The functions of microsensor were evaluated through in vitro experiments. In vivo in tissues and acupuncture points. The data from oxygen microsensor were compared with the data from blood gas analyzer. The measurements depend on the physiological changes of experimental animal. The further development of this new sensor is to be a tool for meridian research.

  8. Thin-film microsensor offers intelligent detection of many gases

    SciTech Connect

    1995-12-01

    Scientists at Argonne (IL) National Laboratory have developed a thin-film microsensor that is capable of detecting and quantifying a wide variety of gases and gas mixtures at concentraitons as low as 1 ppm. The sensor technology is suitable for controlling boiler and flue-gas emissions, characterizing contaminated soil and air, monitoring for noxious gases, and providing early intelligent detection of toxic vapors. Intelligence comes from onboard neural network software that identifies gases by matching cyclic voltammograms with stored patterns previously obtained from standard reference samples. The sensor and the techniques used to optimize the thin films involved will be the subject of a talk given by Jim Vetrone on Tuesday aternoon at 2:20 p.m. in Room 1011.

  9. Integration of Nanostructures into Microsensor Devices on Whole Wafers

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.; Evans, Laura J.; Berger, Gordon M.; Hunter, Gary W.

    2015-01-01

    Chemical sensors are used in a wide variety of applications, such as environmental monitoring, fire detection, emission monitoring, and health monitoring. The fabrication of chemical sensors involving nanostructured materials holds the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently are limited in the ability to control their location on the sensor, which in turn hinders the progress for batch fabrication. This report discusses the advantages of using nanomaterials in sensor designs, some of the challenges encountered with the integration of nanostructures into microsensor / devices, and then briefly describes different methods attempted by other groups to address this issue. Finally, this report will describe how our approach for the controlled alignment of nanostructures onto a sensor platform was applied to demonstrate an approach for the mass production of sensors with nanostructures.

  10. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  11. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  12. Voltammetric Mechanism of Multiion Detection with Thin Ionophore-Based Polymeric Membrane.

    PubMed

    Greenawalt, Peter J; Amemiya, Shigeru

    2016-06-01

    The capability to detect multianalyte ions in their mixed solution is an important advantage of voltammetry with an ionophore-based polymeric membrane against the potentiometric and optical counterparts. This advanced capability is highly attractive for the analysis of physiological ions at millimolar concentrations in biological and biomedical samples. Herein, we report on the comprehensive response mechanisms based on the voltammetric exchange and transfer of millimolar multiions at a thin polymeric membrane, where an ionophore is exhaustively depleted upon the transfer of the most favorable primary ion, I(zI). With a new voltammetric ion-exchange mechanism, the primary ion is exchanged with the secondary favorable ion, J(zJ), at more extreme potentials to transfer a net charge of |zJ|/nJ - |zI|/nI for each ionophore molecule, which forms 1:nI and 1:nJ complexes with the respective ions. Alternatively, an ion-transfer mechanism utilizes the second ionophore that independently transfers the secondary ion without ion exchange. Experimentally, a membrane is doped with a Na(+)- or Li(+)-selective ionophore to detect not only the primary ion, but also the secondary alkaline earth ion, based on the ion-exchange mechanism, where both ions form 1:1 complexes with the ionophores to transfer a net charge of +1. Interestingly, the resultant peak potentials of the secondary divalent ion vary with its sample activity to yield an apparently super-Nernstian slope as predicted theoretically. By contrast, the voltammetric exchange of calcium ion (nI = 3) with lithium ion (nJ = 1) by a Ca(2+)-selective ionophore is thermodynamically unfavorable, thereby requiring a Li(+)-selective ionophore for the ion-transfer mechanism. PMID:27111277

  13. Voltammetric measurements at the surface of cotton: absorption and catalase reactivity of a dinuclear manganese complex.

    PubMed

    Marken, Frank; Taylor, James E; Bonné, Michael J; Helton, Matthew E; Parry, Matthew L; McKee, Vickie

    2007-02-13

    Voltammetric measurements at the surface of cotton fabric were conducted after impregnating the surface of the textile with graphite flakes. The resulting conducting surface contact was connected to a conventional basal plane pyrolytic graphite substrate electrode and employed both in stagnant solution and in rotating disc voltammetry mode. Diffusion through the immobilized cotton sample (inter-fiber) is probed with the aqueous Fe(CN)6(4-/3-) redox system. With a small amount of platinum immobilized at the cotton surface, catalase reactivity toward hydrogen peroxide was observed and used to further quantify the diffusion (intra- and inter-fiber) into the reactive zone at the graphite-cotton interface. A well-known catalase model system, the dinuclear manganese metal complex [Mn(IV)2(micro-O)3L2](PF6)2 (with L=1,4,7-trimethyl-1,4,7-triazacyclononane), is investigated in aqueous 0.1 M carbonate buffer at pH 9.8 in contact with cotton fabric. Absorption of the metal complex is monitored and quantified by voltammetric methods. A Langmurian binding constant of approximately K=2x103 M-1 was determined. Voltammetric measurements of the adsorbed metal complex reveal strong absorption and chemically irreversible reduction characteristics similar to those observed in solution. In the presence of hydrogen peroxide, catalyst coverage dependent anodic catalase activity was observed approximately following the rate law rate=k[catalyst]surface[H2O2]solution and with k=3x104 dm3 s-1 mol-1. The catalyst reactivity was modified by the presence of cotton.

  14. Intangible pointlike tracers for liquid-crystal-based microsensors

    SciTech Connect

    Brasselet, Etienne; Juodkazis, Saulius

    2010-12-15

    We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by the trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.

  15. Portable system based on microsensors for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Orozco, J.; Baldi, A.; Baena, R.; Cadarso, A.; Bratov, A.; Jimenez, C.

    2007-03-01

    A versatile and portable system based on microsensors for measuring simultaneously pH, oxidation-reduction potential (ORP), conductivity and temperature in samples of environmental interest has been assembled and evaluated. An ion selective field effect transistor (ISFET) for pH measurements and platinum microelectrodes for ORP and conductivity measurements are used within the system. The multi-parametric system includes a commercial temperature sensor and the circuitry for each one of the mentioned sensors which can be exchanged or replaced. A commercial module with a USB interface is used for the acquisition and control of data from a laptop PC. Validation of the whole system has been carried out with standard solutions, providing high device-to-device reproducibility and stable response of all sensors during at least 24 h measured in a standard solution. Analysis of waste water samples with the portable system has been carried out to test its feasibility in environmental applications. Data have been compared with commercial electrodes.

  16. In situ applications of a new diver-operated motorized microsensor profiler.

    PubMed

    Weber, Miriam; Faerber, Paul; Meyer, Volker; Lott, Christian; Eickert, Gabriele; Fabricius, Katharina E; De Beer, Dirk

    2007-09-01

    Microsensors are powerful tools for microenvironment studies, however their use has often been restricted to laboratory applications due to the lack of adequate equipment for in situ deployments. Here we report on new features, construction details, and examples of applications of an improved diver-operated motorized microsensor profiler for underwater field operation to a water depth of 25 m. The new motorized profiler has a final precision of 5 microm, and can accommodate amperometric Clark-type microsensors for oxygen and hydrogen sulfide, potentiometric microsensors (e.g., for pH, Ca2+), and fiber-optic irradiance microsensors. The profiler is interfaced by a logger with a signal display, and has pushbuttons for underwater operation. The system can be pre-programmed to autonomous operation or interactively operated by divers. Internal batteries supply power for up to 24 h of measurements and 36 h of data storage (max. 64 million data points). Two flexible stands were developed for deployment on uneven or fragile surfaces, such as coral reefs. Three experimental pilot studies are presented, where (1) the oxygen distribution in a sand ripple was 3-D-mapped, (2) the microenvironment of sediment accumulated on a stony coral was studied, and (3) oxygen dynamics during an experimental sedimentation were investigated. This system allows SCUBA divers to perform a wide array of in situ measurements, with deployment precision and duration similar to those possible in the laboratory.

  17. In situ applications of a new diver-operated motorized microsensor profiler.

    PubMed

    Weber, Miriam; Faerber, Paul; Meyer, Volker; Lott, Christian; Eickert, Gabriele; Fabricius, Katharina E; De Beer, Dirk

    2007-09-01

    Microsensors are powerful tools for microenvironment studies, however their use has often been restricted to laboratory applications due to the lack of adequate equipment for in situ deployments. Here we report on new features, construction details, and examples of applications of an improved diver-operated motorized microsensor profiler for underwater field operation to a water depth of 25 m. The new motorized profiler has a final precision of 5 microm, and can accommodate amperometric Clark-type microsensors for oxygen and hydrogen sulfide, potentiometric microsensors (e.g., for pH, Ca2+), and fiber-optic irradiance microsensors. The profiler is interfaced by a logger with a signal display, and has pushbuttons for underwater operation. The system can be pre-programmed to autonomous operation or interactively operated by divers. Internal batteries supply power for up to 24 h of measurements and 36 h of data storage (max. 64 million data points). Two flexible stands were developed for deployment on uneven or fragile surfaces, such as coral reefs. Three experimental pilot studies are presented, where (1) the oxygen distribution in a sand ripple was 3-D-mapped, (2) the microenvironment of sediment accumulated on a stony coral was studied, and (3) oxygen dynamics during an experimental sedimentation were investigated. This system allows SCUBA divers to perform a wide array of in situ measurements, with deployment precision and duration similar to those possible in the laboratory. PMID:17937304

  18. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Hegde, Rajesh N; Hosamani, Ragunatharaddi R; Nandibewoor, Sharanappa T

    2009-09-01

    The voltammetric oxidation of cinnarizine was investigated. In pH 2.5 Britton-Robinson buffer, cinnarizine shows an irreversible oxidation peak at about 1.20 V at a multi-walled carbon nanotube (MWCNT)-modified glassy carbon electrode. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of cinnarizine. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the cinnarizine determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 9.0x10(-8) to 6.0x10(-6) M and 2.58x10(-9) M, respectively for cinnarizine. The proposed method was successfully applied to cinnarizine determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for the detection of analyte in urine as a real sample. PMID:19446444

  19. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging.

    PubMed

    Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo

    2015-09-21

    This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.

  20. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging

    PubMed Central

    Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo

    2015-01-01

    This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679

  1. Measurement of unsteady gas temperature with optical fibre Fabry-Perot microsensors

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. M.; MacPherson, W. N.; Barton, J. S.; Jones, J. D. C.; Buttsworth, D. R.; Jones, T. V.; Chana, K. S.; Anderson, S. J.

    2002-05-01

    We describe the application of thin-film optical fibre Fabry-Perot (FFP) microsensors to high-bandwidth measurement of unsteady total temperature in transonic gas flows. An aerodynamic probe containing two temperature sensitive FFP microsensors was deployed in the rotor exit flow region of a gas turbine research rig. Measurements reveal gas temperature oscillations typically 4 K peak to peak at the blade passing frequency of 10 kHz with components to the third harmonic detected in the power spectrum of the temperature signal.

  2. Monitoring Volatile Organic Tank Waste Using Cermet Microsensors

    SciTech Connect

    Edward G. Gatliff, Ph.D.; Laura R. Skubal, Ph.D.; Michael C. Vogt, Ph.D.

    2006-03-13

    Presently, very few inexpensive technologies exist in the marketplace that can determine the contents of tank waste or monitor the chemistry of tank constituents in near-real time. The research addressed this problem by developing and assessing ceramic-metallic based microsensors for determining the constituents of a liquid organic storage tank by examining the gases in the headspace of the tank. Overall, the WBO and YSZ sensors responded well to the chemicals in this study. Responses to various concentrations were distinguishable visually. This is a clear indication that pattern recognition tools will be effective in resolving the constituents and concentrations. In tests, such as the test with acetophenone, one sensor, the WBO sensor is not extremely effective. However, the other sensor, the YSZ sensor, is effective in resolving the concentrations. This supports the need to use an array of sensors, as one sensor may be reactive to a compound while another may not. In the course of this research, several interesting phenomena surfaced. New sensors, that were fabricated but not used in a contaminant gas, seemed to function more effectively and predictably if a ?conditioning? step was imposed upon them prior to use in square wave voltammetry. A conditioning step consists of running cyclic voltammetry prior to running square wave voltammetry. This step tends to ?cleanse? the sensor surface by providing a full -1.0 V to +1.0V sweep and both oxidizing and reducing compounds on the sensor surface. [Note: squarewave voltammetry will simply oxidize or reduce compounds ? it will not induce both reactions.] This sweep is essential for recovery between samples.

  3. Distributed optical microsensors for hydrogen leak detection and related applications

    SciTech Connect

    Hunter, Scott Robert; Patton, James; Sepaniak, Michael; Datskos, Panos G; Smith, Barton

    2010-01-01

    Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classi cation techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever s MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multi-dimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.

  4. Distributed optical microsensors for hydrogen leak detection and related applications

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton

    2010-04-01

    Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.

  5. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds.

    PubMed

    James, Garth A; Ge Zhao, Alice; Usui, Marcia; Underwood, Robert A; Nguyen, Hung; Beyenal, Haluk; deLancey Pulcini, Elinor; Agostinho Hunt, Alessandra; Bernstein, Hans C; Fleckman, Philip; Olerud, John; Williamson, Kerry S; Franklin, Michael J; Stewart, Philip S

    2016-03-01

    Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms and by the responding leukocytes, may impede wound healing by depleting the oxygen that is required for healing. In this study, oxygen microsensors to measure oxygen transects through in vitro cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse wound model, and ex vivo human chronic wound specimens was used. The results showed that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17 to 72 mmHg on live mice and from 6.4 to 1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. To characterize the metabolic activities of the bacteria in the mouse scabs, transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds was performed. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results also indicated that the bacteria within the wounds experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results supported the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions, through their metabolic activities and through their recruitment of cells that consume oxygen for host defensive processes.

  6. Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System

    NASA Technical Reports Server (NTRS)

    Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.

  7. Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations

    PubMed Central

    Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.

    2006-01-01

    A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.

  8. Microsensors and MEMS for health monitoring of composite and aircraft structures in flight

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1999-07-01

    Microsensors and Microelectromechanical Systems (MEMS) are currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture.

  9. Characterization and evaluation of phosphate microsensors to monitor internal phosphorus loading in Lake Erie sediments.

    PubMed

    Ding, Xue; Behbahani, Mohsen; Gruden, Cyndee; Seo, Youngwoo

    2015-09-01

    Monitoring phosphate concentration is very important to prevent and control eutrophication in natural waters. In this study, cobalt-based microsensors were modified, characterized, and tested to monitor internal soluble phosphorous (SRP) loading in lakes with improved detection limits. The effectiveness of surface modification on the performance of a cobalt-based microelectrode was fully examined by determining detection limit, response time, selectivity, interference with ions (sulfate, nitrate, and nitrite) and dissolved oxygen (DO). To assess their performance, phosphate sensors were applied to sediment samples collected from Lake Erie. SRP loading from sediments was determined under different DO conditions. After increasing the phosphate sensing area and modifying the surface, phosphate microsensors showed an increased detection limit of up to 10(-8) M concentration of phosphate ion. The phosphate microsensor also showed its ability to measure sediment SRP profiling without disturbing sediment structure, and diffusion coefficients of phosphate in sediment could be determined under both oxic and anoxic conditions. Modified phosphate sensors showed improved sensitivity and could be applied to both water and sediment samples with high spatial resolution; however, signal interferences (especially with oxygen) required consideration during sample analysis. Overall, obtained results showed that phosphate microsensors can be an effective tool for measurement of phosphate in lake water and sediment samples for SRP monitoring.

  10. The modelling of a capacitive microsensor for biosensing applications

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P. H.; Schoeman, J.; Joubert, T. H.

    2014-06-01

    Microsensing is a leading field in technology due to its wide application potential, not only in bio-engineering, but in other fields as well. Microsensors have potentially low-cost manufacturing processes, while a single device type can have various uses, and this consequently helps with the ever-growing need to provide better health conditions in rural parts of the world. Capacitive biosensors detect a change in permittivity (or dielectric constant) of a biological material, usually within a parallel plate capacitor structure which is often implemented with integrated electrodes of an inert metal such as gold or platinum on a microfluidic substrate typically with high dielectric constant. There exist parasitic capacitance components in these capacitive sensors, which have large influence on the capacitive measurement. Therefore, they should be considered for the development of sensitive and accurate sensing devices. An analytical model of a capacitive sensor device is discussed, which accounts for these parasitic factors. The model is validated with a laboratory device of fixed geometry, consisting of two parallel gold electrodes on an alumina (Al2O3) substrate mounted on a glass microscope slide, and with a windowed cover layer of poly-dimethyl-siloxane (PDMS). The thickness of the gold layer is 1μm and the electrode spacing is 300μm. The alumina substrate has a thickness of 200μm, and the high relative permittivity of 11.5 is expected to be a significantly contributing factor to the total device capacitance. The 155μm thick PDMS layer is also expected to contribute substantially to the total device capacitance since the relative permittivity for PDMS is 2.7. The wideband impedance analyser evaluation of the laboratory device gives a measurement result of 2pF, which coincides with the model results; while the handheld RLC meter readout of 4pF at a frequency of 10kHz is acceptable within the measurement accuracy of the instrument. This validated model will

  11. Electrochemical Quartz Crystal Microbalance Monitoring of the Cyclic Voltammetric Deposition of Polyaniline

    ERIC Educational Resources Information Center

    Xie, Qingji; Li, Zhili; Deng, Chunyan; Liu, Meiling; Zhang, Youyu; Ma, Ming; Xia, Shaoxi; Xiao, Xiaoming; Yin, Dulin; Yao, Shouzhuo

    2007-01-01

    A real-time, labeled-free and nanogram-sensitive mass sensor, electrochemical quartz crystal microbalance (EQCM) is used to monitor a cyclic voltammetric deposition of polyaniline (PANI). The results determined that the efficiency for PANI deposition and the anion-doping ratio is calculated in one single cyclic voltammetric.

  12. Pyrolytic carbon film electrodesPart 2. Voltammetric propertie.

    PubMed

    Surmann, J P; Wenders, G

    1996-01-01

    Home-made pyrolytic carbon film electrodes (PCFE) were tested in voltammetric experiments. Different drugs were analyzed by differential pulse voltammetry. In many cases the reproducibility of the signals is as satisfactory as by using glassy carbon electrodes (GCE). The cleaning procedure is very easy to accomplish by wiping off the electrode surface with a paper tissue dipped into methanol. The peak- to residual current rate is much better at the PCFE than at the GCE. Therefore the detection limit is lowered at the former.

  13. Voltammetric response of ferroceneboronic acid to diol and phenolic compounds as possible pollutants.

    PubMed

    Takahashi, Shigehiro; Abiko, Naoyuki; Haraguchi, Nobuhiro; Fujita, Hiroyuki; Seki, Eriko; Ono, Tetsuya; Yoshida, Kentaro; Anzai, Jun-ichi

    2011-01-01

    A voltammetric determination of possible organic pollutants such as diol and phenolic compounds in water was studied using ferroceneboronic acid (FBA) as a redox-active marker. A cyclic voltammogram of FBA exhibited a pair of oxidation and reduction peaks at 230 and 170 mV at pH 7.0, respectively, while another pair of redox peaks was observed in the presence of diol or phenolic compounds tested. The results were rationalized based on the formation of boronate esters of FBA with the added compounds. The changes in the redox peak currents were dependent on the concentration of the additives, suggesting a usefulness of FBA in the electrochemical determination of these compounds in water. PMID:22066227

  14. Electrochemistry of moexipril: experimental and computational approach and voltammetric determination.

    PubMed

    Taşdemir, Hüdai I; Kiliç, E

    2014-09-01

    The electrochemistry of moexipril (MOE) was studied by electrochemical methods with theoretical calculations performed at B3LYP/6-31 + G (d)//AM1. Cyclic voltammetric studies were carried out based on a reversible and adsorption-controlled reduction peak at -1.35 V on a hanging mercury drop electrode (HMDE). Concurrently irreversible diffusion-controlled oxidation peak at 1.15 V on glassy carbon electrode (GCE) was also employed. Potential values are according to Ag/AgCI, (3.0 M KCI) and measurements were performed in Britton-Robinson buffer of pH 5.5. Tentative electrode mechanisms were proposed according to experimental results and ab-initio calculations. Square-wave adsorptive stripping voltammetric methods have been developed and validated for quantification of MOE in pharmaceutical preparations. Linear working range was established as 0.03-1.35 microM for HMDE and 0.2-20.0 microM for GCE. Limit of quantification (LOQ) was calculated to be 0.032 and 0.47 microM for HMDE and GCE, respectively. Methods were successfully applied to assay the drug in tablets by calibration and standard addition methods with good recoveries between 97.1% and 106.2% having relative standard deviation less than 10%.

  15. Voltammetric detection of biological molecules using chopped carbon fiber.

    PubMed

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules. PMID:20953048

  16. Voltammetric detection of biological molecules using chopped carbon fiber.

    PubMed

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  17. Electrochemistry of moexipril: experimental and computational approach and voltammetric determination.

    PubMed

    Taşdemir, Hüdai I; Kiliç, E

    2014-09-01

    The electrochemistry of moexipril (MOE) was studied by electrochemical methods with theoretical calculations performed at B3LYP/6-31 + G (d)//AM1. Cyclic voltammetric studies were carried out based on a reversible and adsorption-controlled reduction peak at -1.35 V on a hanging mercury drop electrode (HMDE). Concurrently irreversible diffusion-controlled oxidation peak at 1.15 V on glassy carbon electrode (GCE) was also employed. Potential values are according to Ag/AgCI, (3.0 M KCI) and measurements were performed in Britton-Robinson buffer of pH 5.5. Tentative electrode mechanisms were proposed according to experimental results and ab-initio calculations. Square-wave adsorptive stripping voltammetric methods have been developed and validated for quantification of MOE in pharmaceutical preparations. Linear working range was established as 0.03-1.35 microM for HMDE and 0.2-20.0 microM for GCE. Limit of quantification (LOQ) was calculated to be 0.032 and 0.47 microM for HMDE and GCE, respectively. Methods were successfully applied to assay the drug in tablets by calibration and standard addition methods with good recoveries between 97.1% and 106.2% having relative standard deviation less than 10%. PMID:25272934

  18. In General, the Total Voltammetric Current from a Mixture of Redox-Active Substances will Not be the Sum of the Currents that Each Substance would Produce Independently at the Same Concentration as in the Mixture

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Oh, Woon Su; Gao, Xue-Rong; Rawashdeh, Abdel Monem M.

    2003-01-01

    At the potential range where both decamethylferrocene (dMeFc) and ferrocene (Fc) are oxidized with rates controlled by linear diffusion, electrogenerated Fc(+) radicals diffusing outwards from the electrode react quantitatively (K23 C=5.8 x 10(exp 8) with dMeFc diffusing towards the electrode and produce Fc and dMeFc. That reaction replaces dMeFc with Fc, whose diffusion coefficient is higher than that of dMeFc(+), and the total mass-transfer limited current from the mixture is increased by approximately 10%. Analogous observations are made when mass-transfer is controlled by convective-diffusion as in RDE voltammetry. Similar results have been obtained with another, and for all practical purposes randomly selected pair of redox-active substances, [Co(bipy)3](2+) and N - methylphenothiazine (MePTZ); reaction of MePTZ(+) with [Co(bipy)3](2+) replaces the latter with MePTZ, which diffuses faster and the current increases by approximately 20%. The experimental voltammograms have been simulated numerically and the role of (a) the rate constant of the homogeneous reaction; (b) the relative concentrations; and, (c) the diffusion coefficients of all species involved have been studied in detail. Importantly, it was also identified that within any given redox system the dependence of the mass-transfer limited current on the bulk concentrations of the redox-active species is expected to be non-linear. These findings are discussed in terms of their electroanalytical implications.

  19. Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite.

    PubMed

    Zhu, Hong; Lu, Xiaoqing; Li, Meixian; Shao, Yuanhua; Zhu, Zhiwei

    2009-10-15

    In this paper, a novel nonenzymatic glucose voltammetric sensor based on a kind of nanocomposite of gold nanoparticles (GNPs) embedded in multi-walled carbon nanotubes (MWCNTs)/ionic liquid (IL) gel was reported. The surface morphology of this nanocomposite was characterized using X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. It can be found that most of GNPs lie close to the ektexine of MWCNTs and the others have obviously inserted the inner of MWCNTs through the defects or ends of MWCNTs, due to the attraction between GNPs and MWCNTs as well as the repulsion between GNPs and IL. Voltammetry was used to evaluate the electrocatalytic activities of the nanocomposite biosensor toward nonenzymatic glucose oxidation in alkaline media. The GNPs embedded in MWCNTs/IL gel have strong and sensitive voltammetric responses to glucose, owing to a possible synergistic effect among GNPs, MWCNTs and IL. Under the optimal condition, the linear range for the detection of the glucose is 5.0-120 microM with the correlation coefficient of 0.998, based on the oxidation peak observed during cathodic direction of the potential sweep. The kinetics and mechanism of glucose electro-oxidation were intensively investigated in this system. This kind of nanocomposite biosensor is also highly resistant toward poisoning by chloride ions and capable of sensing glucose oxidation in the presence of 20 microM uric acid and 70 microM ascorbic acid. This work provides a simple and easy approach to the detection of glucose in body fluid with high sensitivity and excellent selectivity. PMID:19635383

  20. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  1. Methodology and Significance of Microsensor-based Oxygen Mapping in Plant Seeds – an Overview

    PubMed Central

    Rolletschek, Hardy; Stangelmayer, Achim; Borisjuk, Ljudmilla

    2009-01-01

    Oxygen deficiency is commonplace in seeds, and limits both their development and their germination. It is, therefore, of considerable relevance to crop production. While the underlying physiological basis of seed hypoxia has been known for some time, the lack of any experimental means of measuring the global or localized oxygen concentration within the seed has hampered further progress in this research area. The development of oxygen-sensitive microsensors now offers the capability to determine the localized oxygen status within a seed, and to study its dynamic adjustment both to changes in the ambient environment, and to the seed's developmental stage. This review illustrates the use of oxygen microsensors in seed research, and presents an overview of existing data with an emphasis on crop species. Oxygen maps, both static and dynamic, should serve to increase our basic understanding of seed physiology, as well as to facilitate upcoming breeding and biotechnology-based approaches for crop improvement. PMID:22412307

  2. The NASA Smart Probe Project for real-time multiple microsensor tissue recognition

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.; Mah, Robert W.

    2003-01-01

    BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.

  3. Carbon nanotubes on polymer-based pressure micro-sensor for manometric catheters

    NASA Astrophysics Data System (ADS)

    Teng, M. F.; Hariz, A.; Hsu, H. Y.; Omari, T.

    2008-12-01

    In this paper we investigate the fabrication process of a novel polymer based pressure micro-sensor for use in manometric measurements in medical diagnostics. Review and analysis of polymer materials properties and polymer based sensors has been carried out and has been reported by us elsewhere [1]. The interest in developing a novel polymer based flexible pressure micro-sensor was motivated by the numerous problems inherent in the currently available manometric catheters used in the hospitals. The most critical issue regarding existing catheters was the running and maintenance costs [2]. Thus expensive operation costs lead to reuse of the catheters, which increase the risk for disease transmission. The novel flexible polymer based pressure micro-sensor was build using SU-8, which is a special kind of negative photoresist. Single-walled carbon nanotubes (SWCNTs) and aluminum are used as the sensing material and contacting electrodes respectively. The pressure sensor diaphragm was first patterned on top of an oxidized silicon wafer using SU-8, followed by aluminum deposition to define the electrodes. The carbon nanotube is then deposited using dielectrophoresis (DEP) process. Once the carbon nanotubes are aligned in between these electrodes, the remaining of the sensor structure is formed using SU-8. Patterning of SU-8 and release from the substrate make the device ready for further testing of sensing ability. This research not only investigates the use of polymeric materials to build pressure sensors, but also explores the feasibility of full utilization of polymeric materials to replace conventional silicon materials in micro-sensors fabrication for use in medical environments. The completed sensor is expected to form an integral part of a large versatile sensing system. For example, the biocompatible artificial skin, is predicted to be capable of sensing force, pressure, temperature, and humidity, and may be used in such applications as medical and robotic system.

  4. Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems

    PubMed Central

    Kim, Jong-Wan; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto

    2007-01-01

    This paper presents the integration of an inductor by complementary metal-oxide-semiconductor (CMOS) compatible processes for integrated smart microsensor systems that have been developed to monitor the motion and vital signs of humans in various environments. Integration of radio frequency transmitter (RF) technology with complementary metal-oxide-semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize the wireless smart microsensors system. The essential RF components such as a voltage controlled RF-CMOS oscillator (VCO), spiral inductors for an LC resonator and an integrated antenna have been fabricated and evaluated experimentally. The fabricated RF transmitter and integrated antenna were packaged with subminiature series A (SMA) connectors, respectively. For the impedance (50 Ω) matching, a bonding wire type inductor was developed. In this paper, the design and fabrication of the bonding wire inductor for impedance matching is described. Integrated techniques for the RF transmitter by CMOS compatible processes have been successfully developed. After matching by inserting the bonding wire inductor between the on-chip integrated antenna and the VCO output, the measured emission power at distance of 5 m from RF transmitter was -37 dBm (0.2 μW).

  5. Identification of cross-country skiing movement patterns using micro-sensors.

    PubMed

    Marsland, Finn; Lyons, Keith; Anson, Judith; Waddington, Gordon; Macintosh, Colin; Chapman, Dale

    2012-01-01

    This study investigated the potential of micro-sensors for use in the identification of the main movement patterns used in cross-country skiing. Data were collected from four elite international and four Australian athletes in Europe and in Australia using a MinimaxX™ unit containing accelerometer, gyroscope and GPS sensors. Athletes performed four skating techniques and three classical techniques on snow at moderate velocity. Data from a single micro-sensor unit positioned in the centre of the upper back was sufficient to visually identify cyclical movement patterns for each technique. The general patterns for each technique were identified clearly across all athletes while at the same time distinctive characteristics for individual athletes were observed. Differences in speed, snow condition and gradient of terrain were not controlled in this study and these factors could have an effect on the data patterns. Development of algorithms to process the micro-sensor data into kinematic measurements would provide coaches and scientists with a valuable performance analysis tool. Further research is needed to develop such algorithms and to determine whether the patterns are consistent across a range of different speeds, snow conditions and terrain, and for skiers of differing ability.

  6. Identification of Cross-Country Skiing Movement Patterns Using Micro-Sensors

    PubMed Central

    Marsland, Finn; Lyons, Keith; Anson, Judith; Waddington, Gordon; Macintosh, Colin; Chapman, Dale

    2012-01-01

    This study investigated the potential of micro-sensors for use in the identification of the main movement patterns used in cross-country skiing. Data were collected from four elite international and four Australian athletes in Europe and in Australia using a MinimaxX™ unit containing accelerometer, gyroscope and GPS sensors. Athletes performed four skating techniques and three classical techniques on snow at moderate velocity. Data from a single micro-sensor unit positioned in the centre of the upper back was sufficient to visually identify cyclical movement patterns for each technique. The general patterns for each technique were identified clearly across all athletes while at the same time distinctive characteristics for individual athletes were observed. Differences in speed, snow condition and gradient of terrain were not controlled in this study and these factors could have an effect on the data patterns. Development of algorithms to process the micro-sensor data into kinematic measurements would provide coaches and scientists with a valuable performance analysis tool. Further research is needed to develop such algorithms and to determine whether the patterns are consistent across a range of different speeds, snow conditions and terrain, and for skiers of differing ability. PMID:22666075

  7. Indirect voltammetric determination of trace hydroxylamine using magnetic microspheres.

    PubMed

    Yang, Ming; Zhu, Jun-Jie

    2003-02-01

    A new indirect voltammetric method for the determination of hydroxylamine is described. It is based on the reduction of an electroactive derivative of hydroxylamine on the surface of a magnetic electrode. The electroactive derivative produced by hydroxylamine reacted with magnetic polymer microspheres containing carbonyl groups on the surface. The experimental conditions are discussed. It was found that the peak potential (Ep) of the derivative was -0.46 V (vs. Ag/AgCl) under optimum conditions. Hydroxylamine could be determined in the range of 5-2,000 microg l(-1) with the detection limit of 2 microg l(-1) and relative standard deviation for the determination of 100 microg l(-1) hydroxylamine was 2.35%. Satisfactory results were obtained for the determination of hydroxylamine in aqueous medium.

  8. XCII. A Low-Cost Voltammetric Signal Generator for the Electroanalytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed

    1977-01-01

    Describes the construction of a versatile signal generator suitable for use in cyclic voltammetric experiments, which can also be adapted to a conventional dc polarograph by replacing its ramp source. (MLH)

  9. Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator

    NASA Astrophysics Data System (ADS)

    Pesantez, Daniel

    The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) microdevice would replace periodic laboratory diagnosis tests with a continuous monitor that provides real-time data on organ viability. Amperometry, a technique that correlates an electrical signal with analyte concentration, is used as a method to detect glucose concentrations. A novel two-electrode electrochemical sensing cell design is presented. It uses a modified metallic working electrode (WE) and a bare metallic reference electrode (RE) that acts as a pseudo-reference/counter electrode as well. The proposed microsensor has the potential to be used as a minimally invasive sensor for its reduced number of probes and very small dimensions achieved by micromachining and lithography. In order to improve selectivity of the microdevice, two electron transfer mechanisms or generations were explored. A first generation microsensor uses molecular oxygen as the electron acceptor in the enzymatic reaction and oxidizes hydrogen peroxide (H2O2) to get the electrical signal. The microsensor's modified WE with conductive polymer polypyrrole (PPy) and corresponding enzyme glucose oxidase (GOx) immobilized into its matrix, constitutes the electrochemical detection mechanism. Photoluminescence spectroscopic analysis confirmed and quantified enzyme immobilized concentrations within the matrix. In

  10. Voltammetric determination of antioxidant character in Berberis lycium Royel, Zanthoxylum armatum and Morus nigra Linn plants.

    PubMed

    Ahmed, Safeer; Shakeel, Faria

    2012-07-01

    The antioxidant activity potential of three different plant extracts was investigated against superoxide anion radical while employing cyclic voltammetry technique. The plants Berberis lyceum Royle, Morus nigra Linn and Zanthoxylum armatum were selected because of their potential use in the traditional medicine. The voltammetric response of the electrochemically generated superoxide anion radial in DMSO was monitored in the absence and presence of the plat extracts. The decrease in the current was interpreted in terms of antiradical activity of the added extract. The thermodynamic feasibility of the radical scavenging by extracts was accounted in terms of antioxidant activity coefficient (K(ao)) and standard Gibbs free energy (ΔG(o)). The values of K(ao) and ΔG(o) ranged from 1.0 x 102 to 57 x 102 L(-1) and -18 to -27 kJmol(-1), respectively. The possible mechanism of the antioxidant reaction was regarded as E(r)C(i) mechanism i.e. reversible electron transfer followed by hydrogen atom transfer- an irreversible chemical reaction.

  11. Recent Trends in Monitoring of European Water Framework Directive Priority Substances Using Micro-Sensors: A 2007–2009 Review

    PubMed Central

    Namour, Philippe; Lepot, Mathieu; Jaffrezic-Renault, Nicole

    2010-01-01

    This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report). Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests. PMID:22163635

  12. Electrochemical and Hydrodynamic Interferences on the Performances of an Oxygen Microsensor with Built-in Electrochemical Microactuator

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Chae-Hyang

    2004-01-01

    A concept of novel electrochemical in situ self-calibration technique for an oxygen microsensor has been proposed to devise a convenient calibration method without an externally coupled apparatus. Systemic investigations on the influences of various electrochemical (pH) and hydrodynamic (solution stirring) conditions on the proposed microsensor performances are presented. The results suggest that: 1) The calibrating microenvironments can be manipulated with carefully engineered sensor designs and optimized generating signals; 2) The external oxygen permeable membrane is needed to minimize the electrochemical and hydrodynamic interferences.

  13. Voltammetric Ion Selectivity of Thin Ionophore-Based Polymeric Membranes: Kinetic Effect of Ion Hydrophilicity.

    PubMed

    Amemiya, Shigeru

    2016-09-01

    The high ion selectivity of potentiometric and optical sensors based on ionophore-based polymeric membranes is thermodynamically limited. Here, we report that the voltammetric selectivity of thin ionophore-based polymeric membranes can be kinetically improved by several orders of magnitude in comparison with their thermodynamic selectivity. The kinetic improvement of voltammetric selectivity is evaluated quantitatively by newly introducing a voltammetric selectivity coefficient in addition to a thermodynamic selectivity coefficient. Experimentally, both voltammetric and thermodynamic selectivity coefficients are determined from cyclic voltammograms of excess amounts of analyte and interfering ions with respect to the amount of a Na(+)- or Li(+)-selective ionophore in thin polymeric membranes. We reveal the slower ionophore-facilitated transfer of a smaller alkaline earth metal cation with higher hydrophilicity across the membrane/water interface, thereby kinetically improving voltammetric Na(+) selectivity against calcium, strontium, and barium ions by 3, 2, and 1 order of magnitude, respectively, in separate solutions. Remarkably, voltammetric Na(+) and Li(+) selectivity against calcium and magnesium ions in mixed solutions is improved by 4 and >7 orders of magnitude, respectively, owing to both thermodynamic and kinetic effects in comparison with thermodynamic selectivity in separate solutions. Advantageously, the simultaneous detection of sodium and calcium ions is enabled voltammetrically in contrast to the potentiometric and optical counterparts. Mechanistically, we propose a new hypothetical model that the slower transfer of a more hydrophilic ion is controlled by its partial dehydration during the formation of the adduct with a "water finger" prior to complexation with an ionophore at the membrane/water interface. PMID:27527590

  14. Voltammetric determination of cefixime in pharmaceuticals and biological fluids.

    PubMed

    Jain, Rajeev; Gupta, Vinod K; Jadon, N; Radhapyari, K

    2010-12-01

    Electroreduction and adsorption of cefixime was studied in phosphate buffer by cyclic voltammetry (CV), differential pulse cathodic adsorptive stripping voltammetry (DPCAdSV), and square-wave cathodic adsorptive stripping voltammetry (SWCAdSV) at hanging mercury drop electrode (HMDE). These fully validated sensitive and reproducible cathodic adsorptive stripping voltammetric procedures were applied for the trace determination of the bulk drug in pharmaceutical formulations and in human urine. The optimal experimental parameters were as follows: accumulation potential=-0.1 V (vs. Ag/AgCl, 3M KCl), accumulation time=50s, frequency=140 Hz, pulse amplitude=0.07 V, and scan increment=10 mV in phosphate buffer (pH 2.6). The first peak current showed a linear dependence with the drug concentration over the range of 50 ng ml(-1) to 25.6 μg ml(-1). The achieved limit of detection and limit of quantitation were 3.99 and 13.3 ng ml(-1) by SWCAdSV and 7.98 and 26.6 ng ml(-1) by DPCAdSV, respectively. The procedure was applied to assay the drug in tablets. Applicability was also tested in urine samples. Peak current was linear with the drug concentration in the range of 1 to 60 μg ml(-1) of the urine, and minimum detectability was found to be 12.6 ng ml(-1) by SWCAdSV and 58.4 ng ml(-1) by DPCAdSV.

  15. Novel voltammetric biosensor for determining acrylamide in food samples.

    PubMed

    Stobiecka, Agata; Radecka, Hanna; Radecki, Jerzy

    2007-04-15

    Recent findings showing that acrylamide is formed in heat-treated foods rich in asparagine and reducing sugars such as glucose, have accelerated the needs for the development of new analytical methods to determine this potential human carcinogen. Acrylamide forms adduct with hemoglobin (Hb) as a result of the reaction with the alpha-NH2 group of N-terminal valine of Hb. This interaction is the basis of a new voltammetric biosensor to detect acrylamide. The biosensor was constructed using a carbon-paste electrode modified with hemoglobin (Hb), which contains four prosthetic groups of heme--Fe(III). Such an electrode displays a reversible reduction/oxidation process of Hb-Fe(III)/Hb-Fe(II). Interaction between Hb and acrylamide was observed through decreasing of the peak current of Hb-Fe(III) reduction. The electrodes presented a very low detection limit (1.2 x 10(-10)M). The validation made in the matrix obtained by water extraction of potato chips showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.

  16. Voltammetric determination of benzo[a]pyrene in the environment

    SciTech Connect

    Vodzinskii, Yu.V.; Sidorova, T.I.; Shilina, A.I.

    1992-06-10

    The increased contamination of the natural environment and the number of oncological illnesses have necessitated constant control of the content of cancerogenic substances, including polyarenes and their indicator benzo[a]pyrene (BP) in water, in the atmosphere, and so forth. Owing to their complexity the cancerogens are usually determined only with respect to BP. Benzo[a]pyrene is determined in extracts by means of the quasiline luminescence spectra in liquid nitrogen temperature using the Shpol`skii effect. The determination of BP by high-performance liquid chromatography is usually conducted on imported research equipment; this method has not yet been used for large-scale analyses. On account of the laborious nature and the insufficient specificity of the methods BP has not been determined systematicly in plants, effluents, and other environmental subjects. The aim of the present work was to develop a procedure for the voltammetric determination of BP in environmental subjects at detection limits 50% below the maximum permissible concentration. 10 refs., 5 figs., 6 tabs.

  17. Novel Method for Measuring Temperature Distribution within Fuel Cell using Microsensors

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Yuan; Hsieh, Chi-Lieh; Wu, Guan-Wei

    2007-05-01

    A fuel cell has the potential to become an important source of electric power. However, measuring the temperature inside the fuel cell is difficult. Hence, in this investigation, an array of microsensors is set up inside the fuel cell to measure the temperature distribution. The substrate of a bipolar plate in the fuel cell is stainless steel (SS-316) and an electroforming technique is implemented to fabricate channels in the stainless steel substrate. Then micro-electro-mechanical system (MEMS) technologies are employed to fabricate a platinum temperature sensor on the rib of a channel in the stainless steel substrate. In this experiment, the temperature of microsensor is measured to range from 31 to 80 °C and its resistance ranges from 0.593 to 0.649 Ω. Experimental results demonstrate that temperature is almost linearly related to resistance and that accuracy and sensitivity are 0.5 °C and 1.93× 10-3/°C, respectively. The performance curves of a single fuel cell operating at 34 °C and H2/O2 gas flow rates of 50/50 ml/min are determined. The maximum power density is 170 mW/cm2 and the current density is 513 mA/cm2.

  18. Xanthine microsensor based on polypyrrole molecularly imprinted film modified carbon fiber microelectrodes.

    PubMed

    Liu, Bin; Wang, Xiao-Li; Lian, Hui-Ting; Sun, Xiang-Ying

    2013-09-15

    A molecularly imprinted polymers (MIPs) microsensor was presented as a carbon fiber microelectrode (CFME) coating for specifically recognizing xanthine (Xan). The polymeric film was obtained based on the imprinted procedure of electropolymerization of pyrrole in the presence of the template molecule Xan by cyclic voltammetry, and template was removed by magnetic stirring. Under the optimum conditions, a satisfactory molecularly binding selectivity of Xan was obtained from the MIPs microsensor with an imprinting factor (IF) of 6.63 and a linear response to concentration in certain ranges. The ranges are from 4.0 × 10⁻⁶ to 6.0 × 10⁻⁵ M and from 8.0 × 10⁻⁵ to 2.0 × 10⁻³ M with a detection limit of 2.5 × 10⁻⁷ M. Meanwhile, good stability (relative standard deviation [RSD] = 3.2%, n = 10) and reproducibility (RSD = 2.0%, n = 10) were observed, and recoveries ranging from 96.9 to 102.5% were calculated when applied to Xan determination in real blood serum samples.

  19. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  20. Dual-nanomaterial based electrode for voltammetric stripping of trace Fe(II) in coastal waters.

    PubMed

    Lin, Mingyue; Pan, Dawei; Zhu, Yun; Hu, Xueping; Han, Haitao; Wang, ChenChen

    2016-07-01

    In this work, a dual-nanomaterial based electrode was established for selective and sensitive detection of trace Fe(II) in the presence of complexing agent (2,2'-bipyridyl). Titanium carbide nanoparticles (TiCNPs) were used as the growth-template for the formation of three-dimensional platinum nanoflowers (PtNFs) due to their unique cubic structures. Nafion was employed as the conducting matrix to help TiCNPs better attached onto the surface of the electrode and slow down the crystal rate of PtNFs during electrodeposition, which resulted in flower structure and more active surface of PtNFs. Taking advantage of synergistic effects of TiCNPs and Nafion as well as the catalytic amplifying effect of PtNFs, the excellent anodic signal responses for the voltammetric stripping determination of Fe(II) were obtained. The linear range of Fe(II) on this dual-nanomaterial based electrode was from 1nmolL(-1) to 6μmolL(-1) with the lowest detectable concentration of 0.1nmolL(-1) and a detection limit of 0.03nmolL(-1). Additionally, the effect of several experimental parameters, such as concentration and pH value of buffer solution, concentration of modifier and ligand, deposition potential and time of electrochemical determination, and scan rate were studied for analytical applications. The fabricated sensor had been successfully applied for the sensitive determination of trace Fe(II) in coastal waters.

  1. Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

    PubMed Central

    Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.

    2012-01-01

    Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998

  2. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    PubMed

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples. PMID:24705875

  3. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    PubMed

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples.

  4. Using micro-sensor data to quantify macro kinematics of classical cross-country skiing during on-snow training.

    PubMed

    Marsland, Finn; Mackintosh, Colin; Anson, Judith; Lyons, Keith; Waddington, Gordon; Chapman, Dale W

    2015-01-01

    Micro-sensors were used to quantify macro kinematics of classical cross-country skiing techniques and measure cycle rates and cycle lengths during on-snow training. Data were collected from seven national level participants skiing at two submaximal intensities while wearing a micro-sensor unit (MinimaxX™). Algorithms were developed identifying double poling (DP), diagonal striding (DS), kick-double poling (KDP), tucking (Tuck), and turning (Turn). Technique duration (T-time), cycle rates, and cycle counts were compared to video-derived data to assess system accuracy. There was good reliability between micro-sensor and video calculated cycle rates for DP, DS, and KDP, with small mean differences (Mdiff% = -0.2 ± 3.2, -1.5 ± 2.2 and -1.4 ± 6.2) and trivial to small effect sizes (ES = 0.20, 0.30 and 0.13). Very strong correlations were observed for DP, DS, and KDP for T-time (r = 0.87-0.99) and cycle count (r = 0.87-0.99), while mean values were under-reported by the micro-sensor. Incorrect Turn detection was a major factor in technique cycle misclassification. Data presented highlight the potential of automated ski technique classification in cross-country skiing research. With further refinement, this approach will allow many applied questions associated with pacing, fatigue, technique selection and power output during training and competition to be answered.

  5. Voltammetric detection of 5-hydroxytryptamine release in the rat brain.

    PubMed

    Hashemi, Parastoo; Dankoski, Elyse C; Petrovic, Jelena; Keithley, Richard B; Wightman, R M

    2009-11-15

    5-Hydroxytryptamine (5-HT) is an important molecule in the brain that is implicated in mood and emotional processes. In vivo, its dynamic release and uptake kinetics are poorly understood due to a lack of analytical techniques for its rapid measurement. Whereas fast-scan cyclic voltammetry with carbon fiber microelectrodes is used frequently to monitor subsecond dopamine release in freely moving and anesthetized rats, the electrooxidation of 5-HT forms products that quickly polymerize and irreversibly coat the carbon electrode surface. Previously described modifications of the electrochemical waveform allow stable and sensitive 5-HT measurements in mammalian tissue slice preparations and in the brain of fruit fly larvae. For in vivo applications in mammals, however, the problem of electrode deterioration persists. We identify the root of this problem to be fouling by extracellular metabolites such as 5-hydoxyindole acetic acid (5-HIAA), which is present in 200-1000 times the concentration of 5-HT and displays similar electrochemical properties, including filming of the electrode surface. To impede access of the 5-HIAA to the electrode surface, a thin layer of Nafion, a cation exchange polymer, has been electrodeposited onto cylindrical carbon-fiber microelectrodes. The presence of the Nafion film was confirmed with environmental scanning electron microscopy and was demonstrated by the diminution of the voltammetric signals for 5-HIAA as well as other common anionic species. The modified microelectrodes also display increased sensitivity to 5-HT, yielding a characteristic cyclic voltammogram that is easily distinguishable from other common electroactive brain species. The thickness of the Nafion coating and a diffusion coefficient (D) in the film for 5-HT were evaluated by measuring permeation through Nafion. In vivo, we used physiological, anatomical, and pharmacological evidence to validate the signal as 5-HT. Using Nafion-modified microelectrodes, we present the

  6. Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels.

    PubMed

    Yang, Liju; Guiseppi-Wilson, Adilah; Guiseppi-Elie, Anthony

    2011-04-01

    Microlithographically fabricated interdigitated microsensor electrodes (IMEs) were cleaned, surface activated, chemically functionalized (amine) and derivatized with an Acrloyl-PEG-NHS to receive a spun-applied monomer cocktail of UV polymerizable monomer. IMEs were 2050.5, 1550.5, 1050.5 and 0550.5 possessing lines and spaces that were 20, 15, 10, and 5 μm respectively; 5 mm line lengths and were 50 lines on each opposing bus. Bioactive hydrogels were synthesized from spun-applied and UV-crosslinked tetraethyleneglycol diacrylate (TEGDA) (crosslinker), 2-hydroxyethylmethacrylate (HEMA), polyethyleneglycol(200) monomethacrylate (PEGMA), N-[tris(hydroxymethyl)methyl]-acrylamide (HMMA) and poly(HEMA) (MW 60,000) (viscosity modifier) and 2,2-dimethoxy-2-phenylacetophenone (DMPA) (photoinitiator) to produce a 5 μm thick p(HEMA-co-PEGMA-co-HMMA) hydrogel membrane on the IMEs. Unmodified and hydrogel coated IMEs where characterized by AC electrical impedance spectroscopy using 50 mV p-t-p over the frequency range from 10 Hz to 100 kHz in aqueous PBS 7.4 buffer and in buffer containing 50 mM [Fe(CN)(6)](3-/4- ) solution at RT. Impedimetric responses were found to scale with the device geometric parameters. Equivalent circuit modeling revealed deviations from ideality at lower device dimensions suggesting an implication of the substrate surface charge on the double layer capacitance of the electrodes. Diffusion coefficients derived from the Warburg component are in accord with literature values.

  7. A multiplexing fiber optic microsensor system for monitoring oxygen concentration in plants

    NASA Astrophysics Data System (ADS)

    Chaturvedi, P.; Hauser, B. A.; Allen, L. H.; Boote, K. J.; Karplus, E.; McLamore, E. S.

    2013-05-01

    The accurate and rapid measurement of physiological O2 transport is vital for understanding spatially and temporally dynamic metabolism and stress signalling in plant cells and tissues. Single channel luminescent O2- quenched optrodes have been available for use in laboratory and field experiments since the early 2000's. However, to collect the large datasets needed to understand O2 transport in complex systems, many experiments require a multiple channel O2 sensor system. This research reports the development of a multiplexing fiber optic O2 microsensor system designed to conduct high temporal resolution experiments for field studies of plant physiology. The 10 channel system was demonstrated for measuring O2 concentration in developing soybean seeds (Glycine max L. Merr.) within a climate controlled greenhouse.

  8. The Application of Impedance Microsensors for Real-Time Analysis of Pseudomonas aeruginosa Biofilm Formation.

    PubMed

    Chabowski, Konrad; Junka, Adam Feliks; Szymczyk, Patrycja; Piasecki, Tomasz; Sierakowski, Andrzej; Mączynska, Beata; Nitsch, Karol

    2015-01-01

    Biofilms formed by nosocomial pathogens represent a major threat to patients undergoing invasive procedures. As prophylaxis remains the most efficient anti-biofilm option, it is of paramount importance to develop diagnostic tools able to detect biofilm at the early stage of formation. The present study investigates the ability of impedance microsensors to detect Pseudomonas aeruginosa biofilm presence using the impedance spectroscopy method. The measured data were analyzed using Electrical Equivalent Circuit modelling (EEC). It allowed to recognize conduction and polarization phenomena on the sensors surface and in its environment. The impedance assay results, confirmed by means of electron microscopy and quantitative cultures, indicate that specific EEC parameters may be used for monitoring the development of pseudomonal biofilm.

  9. Electrical Characteristics of WO3-Based CO2-Sensitive Solid-State Microsensor

    NASA Astrophysics Data System (ADS)

    Chao, Shuchi

    1993-09-01

    A WO3-impregnated thin polymer across two closely spaced microelectrodes is employed as a solid-state CO2 microsensor at 1 atm and room temperature. Its function is based on the WO3 transformation to the conducting HXWO3 by intercalation of released protons from CO2 equilibration in the polymer. The response to CO2 concentrations is reversible and linear between ˜0--16% at ˜840 kΩ per 1% change over prolonged operations of ˜80-second switching time. A dependence on residual water in the polymer is detected but exerts no influence on the CO2 response as long as the polymer is not entirely dried out by H2O-free gas.

  10. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature. PMID:22247656

  11. A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  12. Titanium Dioxide Nanoparticle Humidity Microsensors Integrated with Circuitry on-a-Chip

    PubMed Central

    Hu, Yu-Chih; Dai, Ching-Liang; Hsu, Cheng-Chih

    2014-01-01

    A humidity microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process was presented. The integrated sensor chip consists of a humidity sensor and a readout circuit. The humidity sensor is composed of a sensitive film and interdigitated electrodes. The sensitive film is titanium dioxide prepared by the sol-gel method. The titanium dioxide is coated on the interdigitated electrodes. The humidity sensor requires a post-process to remove the sacrificial layer and to coat the titanium dioxide. The resistance of the sensor changes as the sensitive film absorbs or desorbs vapor. The readout circuit is employed to convert the resistance variation of the sensor into the output voltage. The experimental results show that the integrated humidity sensor has a sensitivity of 4.5 mV/RH% (relative humidity) at room temperature. PMID:24594612

  13. Chemical microsensors

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  14. Spectrometric and Voltammetric Analysis of Urease – Nickel Nanoelectrode as an Electrochemical Sensor

    PubMed Central

    Hubalek, Jaromir; Hradecky, Jan; Adam, Vojtech; Krystofova, Olga; Huska, Dalibor; Masarik, Michal; Trnkova, Libuse; Horna, Ales; Klosova, Katerina; Adamek, Martin; Zehnalek, Josef; Kizek, Rene

    2007-01-01

    Urease is the enzyme catalyzing the hydrolysis of urea into carbon dioxide and ammonia. This enzyme is substrate-specific, which means that the enzyme catalyzes the hydrolysis of urea only. This feature is a basic diagnostic criterion used in the determination of many bacteria species. Most of the methods utilized for detection of urease are based on analysis of its enzyme activity – the hydrolysis of urea. The aim of this work was to detect urease indirectly by spectrometric method and directly by voltammetric methods. As spectrometric method we used is called indophenol assay. The sensitivity of detection itself is not sufficient to analyse the samples without pre-concentration steps. Therefore we utilized adsorptive transfer stripping technique coupled with differential pulse voltammetry to detect urease. The influence of accumulation time, pH of supporting electrolyte and concentration of urease on the enzyme peak height was investigated. Under the optimized experimental conditions (0.2 M acetate buffer pH 4.6 and accumulation time of 120 s) the detection limit of urease evaluated as 3 S/N was 200 ng/ml. The activity of urease enzyme depends on the presence of nickel. Thus the influence of nickel(II) ions on electrochemical response of the enzyme was studied. Based on the results obtained the interaction of nickel(II) ions and urease can be determined using electrochemical methods. Therefore we prepared Ni nanoelectrodes to measure urease. The Ni nanoelectrodes was analysed after the template dissolution by scanning electron microscopy. The results shown vertically aligned Ni nanopillars almost covered the electrode surface, whereas the defect places are minor and insignificant in comparison with total electrode surface. We were able to not only detect urease itself but also to distinguish its native and denatured form.

  15. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure?

    PubMed

    Gabbett, Tim J

    2013-08-01

    The physical demands of rugby league, rugby union, and American football are significantly increased through the large number of collisions players are required to perform during match play. Because of the labor-intensive nature of coding collisions from video recordings, manufacturers of wearable microsensor (e.g., global positioning system [GPS]) units have refined the technology to automatically detect collisions, with several sport scientists attempting to use these microsensors to quantify the physical demands of collision sports. However, a question remains over the validity of these microtechnology units to quantify the contact demands of collision sports. Indeed, recent evidence has shown significant differences in the number of "impacts" recorded by microtechnology units (GPSports) and the actual number of collisions coded from video. However, a separate study investigated the validity of a different microtechnology unit (minimaxX; Catapult Sports) that included GPS and triaxial accelerometers, and also a gyroscope and magnetometer, to quantify collisions. Collisions detected by the minimaxX unit were compared with video-based coding of the actual events. No significant differences were detected in the number of mild, moderate, and heavy collisions detected via the minimaxX units and those coded from video recordings of the actual event. Furthermore, a strong correlation (r = 0.96, p < 0.01) was observed between collisions recorded via the minimaxX units and those coded from video recordings of the event. These findings demonstrate that only one commercially available and wearable microtechnology unit (minimaxX) can be considered capable of offering a valid method of quantifying the contact loads that typically occur in collision sports. Until such validation research is completed, sport scientists should be circumspect of the ability of other units to perform similar functions.

  16. Integrated luminescent chemical microsensors based on GaN LEDs for security applications using smartphones

    NASA Astrophysics Data System (ADS)

    Orellana, Guillermo; Muñoz, Elias; Gil-Herrera, Luz K.; Muñoz, Pablo; Lopez-Gejo, Juan; Palacio, Carlos

    2012-09-01

    Development of PCB-integrateable microsensors for monitoring chemical species is a goal in areas such as lab-on-a-chip analytical devices, diagnostics medicine and electronics for hand-held instruments where the device size is a major issue. Cellular phones have pervaded the world inhabitants and their usefulness has dramatically increased with the introduction of smartphones due to a combination of amazing processing power in a confined space, geolocalization and manifold telecommunication features. Therefore, a number of physical and chemical sensors that add value to the terminal for health monitoring, personal safety (at home, at work) and, eventually, national security have started to be developed, capitalizing also on the huge number of circulating cell phones. The chemical sensor-enabled "super" smartphone provides a unique (bio)sensing platform for monitoring airborne or waterborne hazardous chemicals or microorganisms for both single user and crowdsourcing security applications. Some of the latest ones are illustrated by a few examples. Moreover, we have recently achieved for the first time (covalent) functionalization of p- and n-GaN semiconductor surfaces with tuneable luminescent indicator dyes of the Ru-polypyridyl family, as a key step in the development of innovative microsensors for smartphone applications. Chemical "sensoring" of GaN-based blue LED chips with those indicators has also been achieved by plasma treatment of their surface, and the micrometer-sized devices have been tested to monitor O2 in the gas phase to show their full functionality. Novel strategies to enhance the sensor sensitivity such as changing the length and nature of the siloxane buffer layer are discussed in this paper.

  17. Assessment of subsurface VOCs using a chemical microsensor array. Final report

    SciTech Connect

    Batterman, S.A.; Zellers, E.T.

    1993-06-01

    This report describes the results of laboratory investigations of several performance parameters relevant to surface-acoustic-wave (SAW) chemical sensor arrays for the measurement of volatile organic compounds (VOCs) in contaminated soil and groundwater. The small size, low cost, sensitivity and selectivity of such instruments promise improvements in the quality and quantity of data used to guide site assessment and restoration efforts. In this investigation, calibrations were performed for 15 different coated SAW sensors. Each sensor was exposed to six VOCs selected to represent three chemical classes of contaminants that are commonly found at waste sites (i.e., aliphatic, aromatic and chlorinated hydrocarbons). A new pattern recognition method was developed for determining which coated sensors would maximize the selectivity and accuracy of quantitation for a given set of vapor contaminants. Using this method, an optimal subwet of four coated sensors was selected for testing in a prototype microsensor instrument. Additional laboratory experiments were performed with this optimized array to assess the limits of detection and linear response ranges for the representative vapors, as well as the additivity of responses to vapors in binary mixtures, temperature and humidity effects, aging effects, and other performance parameters related to the application of this technology to soil and groundwater VOC monitoring. Results demonstrate that SAW microsensor arrays can identify and quantify specific VOCs at concentrations in the {mu}g/L to mg/L range when present alone or in simple (e.g., binary) mixtures. SAW sensor technology offers a potentially effective alternative to existing field instrumentation for headspace analysis, soil vapor monitoring, and vacuum extraction process monitoring of VOCs in subsurface media.

  18. Discrimination of Rice with Different Pretreatment Methods by Using a Voltammetric Electronic Tongue

    PubMed Central

    Wang, Li; Niu, Qunfeng; Hui, Yanbo; Jin, Huali

    2015-01-01

    In this study, an application of a voltammetric electronic tongue for discrimination and prediction of different varieties of rice was investigated. Different pretreatment methods were selected, which were subsequently used for the discrimination of different varieties of rice and prediction of unknown rice samples. To this aim, a voltammetric array of sensors based on metallic electrodes was used as the sensing part. The different samples were analyzed by cyclic voltammetry with two sample-pretreatment methods. Discriminant Factorial Analysis was used to visualize the different categories of rice samples; however, radial basis function (RBF) artificial neural network with leave-one-out cross-validation method was employed for prediction modeling. The collected signal data were first compressed employing fast Fourier transform (FFT) and then significant features were extracted from the voltammetric signals. The experimental results indicated that the sample solutions obtained by the non-crushed pretreatment method could efficiently meet the effect of discrimination and recognition. The satisfactory prediction results of voltammetric electronic tongue based on RBF artificial neural network were obtained with less than five-fold dilution of the sample solution. The main objective of this study was to develop primary research on the application of an electronic tongue system for the discrimination and prediction of solid foods and provide an objective assessment tool for the food industry. PMID:26205274

  19. Discrimination of Rice with Different Pretreatment Methods by Using a Voltammetric Electronic Tongue.

    PubMed

    Wang, Li; Niu, Qunfeng; Hui, Yanbo; Jin, Huali

    2015-07-22

    In this study, an application of a voltammetric electronic tongue for discrimination and prediction of different varieties of rice was investigated. Different pretreatment methods were selected, which were subsequently used for the discrimination of different varieties of rice and prediction of unknown rice samples. To this aim, a voltammetric array of sensors based on metallic electrodes was used as the sensing part. The different samples were analyzed by cyclic voltammetry with two sample-pretreatment methods. Discriminant Factorial Analysis was used to visualize the different categories of rice samples; however, radial basis function (RBF) artificial neural network with leave-one-out cross-validation method was employed for prediction modeling. The collected signal data were first compressed employing fast Fourier transform (FFT) and then significant features were extracted from the voltammetric signals. The experimental results indicated that the sample solutions obtained by the non-crushed pretreatment method could efficiently meet the effect of discrimination and recognition. The satisfactory prediction results of voltammetric electronic tongue based on RBF artificial neural network were obtained with less than five-fold dilution of the sample solution. The main objective of this study was to develop primary research on the application of an electronic tongue system for the discrimination and prediction of solid foods and provide an objective assessment tool for the food industry.

  20. Voltammetric detection of As(III) with Porphyridium cruentum based modified carbon paste electrode biosensor.

    PubMed

    Zaib, M; Saeed, A; Hussain, I; Athar, M M; Iqbal, M

    2014-12-15

    A novel biosensor based on carbon paste electrode modified with Porphyridium cruentum biomass was developed for the determination of As(III) in contaminated water. As(III) was first biosorbed-accumulated on the electrode surface at open circuit potential and then stripped off by applying anodic scan range of -0.8 to +0.8 V using differential pulse anodic stripping voltammetric technique. The best result was obtained at pH 6.0 with 0.1M HNO3 solution as stripping medium, allowing biosorption-accumulation time of 8 min using 5% P. cruentum biomass in graphite-mineral oil paste. Linear range for As(III) detection with the modified electrode-biosensor was observed between 2.5 and 20 µg L(-1). The FTIR spectrum of P. cruentum biomass confirmed the presence of active functional groups that participate in the binding of As(III). Scanning Electron Microscopy (SEM) indulged the surface morphology of modified electrode-biosensor before and after As(III) adsorption. Similarly, Atomic Force Microscopy (AFM) showed that the average roughness of the modified electrode decreased indicating the successful incorporation of P. cruentum biomass. Efficiency of the biosensor in the presence of different interfering metal (Na(+), K(+), Ca(2+), and Mg(2+)) ions were also evaluated. The application of P. cruentum modified biosensor was successfully used for the detection of As(III) in the binary metal (Fe(3+), Mn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), and Pb(2+)) contaminated system. The accuracy of application of biosorption based biosensor for the detection of As(III) is as low as 2.5 µg L(-1).

  1. Structural and electrochemical properties of lutetium bis-octachloro-phthalocyaninate nanostructured films. Application as voltammetric sensors.

    PubMed

    Alessio, P; Apetrei, C; Rubira, R J G; Constantino, C J L; Medina-Plazal, C; De Saja, J A; Rodríguez-Méndez, M L

    2014-09-01

    Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The π-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L.

  2. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  3. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  4. Real-time monitoring of macromolecular biosensing probe self-assembly and on-chip ELISA using impedimetric microsensors.

    PubMed

    Zang, Faheng; Gerasopoulos, Konstantinos; Fan, Xiao Zhu; Brown, Adam D; Culver, James N; Ghodssi, Reza

    2016-07-15

    This paper presents a comprehensive study of the self-assembly dynamics and the biosensing efficacy of Tobacco mosaic virus-like particle (TMV VLP) sensing probes using an impedimetric microsensor platform. TMV VLPs are high surface area macromolecules with nanorod structures constructed from helical arrangements of thousands of identical coat proteins. Genetically modified TMV VLPs express both surface attachment-promoting cysteine residues and FLAG-tag antibody binding peptides on their coat protein outer surfaces, making them selective biosensing probes with self-assembly capability on sensors. The VLP self-assembly dynamics were studied by the continuous monitoring of impedance changes at 100Hz using interdigitated impedimetric microsensors. Electrical impedance spectroscopy revealed VLP saturation on impedance sensor surface with the coverage of 68% in self-assembly process. The VLP-functionalized impedance sensors responded to 12ng/ml to 1.2μg/ml of target anti-FLAG IgG antibodies in the subsequent enzyme-linked immunosorbent assays (ELISA), and yielded 18-35% total impedance increases, respectively. The detection limit of the target antibody is 9.1ng/ml using the VLP-based impedimetric microsensor. These results highlight the significant potential of genetically modified VLPs as selective nanostructured probes for autonomous sensor functionalization and enhanced biosensing. PMID:26995286

  5. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors (Final Report)

    SciTech Connect

    S. Semancik; R. E. Cavicchi; D. L. DeVoe; T. J. McAvoy |

    2001-12-21

    This Final Report describes efforts and results for a 3-year DoE/OST-EMSP project centered at NIST. The multidisciplinary project investigated scientific and technical concepts critical for developing tunable, MEMS-based, gas and vapor microsensors that could be applied for monitoring the types of multiple analytes (and differing backgrounds) encountered at DoE waste sites. Micromachined ''microhotplate'' arrays were used as platforms for fabricating conductometric sensor prototypes, and as microscale research tools. Efficient microarray techniques were developed for locally depositing and then performance evaluating thin oxide films, in order to correlate gas sensing characteristics with properties including composition, microstructure, thickness and surface modification. This approach produced temperature-dependent databases on the sensitivities of sensing materials to varied analytes (in air) which enable application-specific tuning of microsensor arrays. Mechanistic studies on adsorb ate transient phenomena were conducted to better understand the ways in which rapid temperature programming schedules can be used to produce unique response signatures and increase information density in microsensor signals. Chemometric and neural network analyses were also employed in our studies for recognition and quantification of target analytes.

  6. Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

    SciTech Connect

    Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.; Pohl, Phillip Isabio; Hughes, Robert Clark; Wang, Yifeng; McGrath, Lucas K.; Ho, Clifford Kuofei; Gao, Huizhen

    2004-09-01

    Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring

  7. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  8. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen.

    PubMed

    Ahmadpour-Mobarakeh, Leila; Nezamzadeh-Ejhieh, Alireza

    2015-04-01

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (Ks) of 0.44s(-1) and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190μmolL(-1) of acetaminophen [r(2)=0.9979, r=0.9989 (n=10)] with a detection limit of 0.04μmolL(-1). The method was successfully applied to the analysis of acetaminophen in some drugs.

  9. The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor.

    PubMed

    Wu, Junjun; Wang, Lu; Wang, Qinqin; Zou, Lina; Ye, Baoxian

    2016-04-01

    A highly sensitive voltammetric sensor, based on reduced graphene oxide on SWCNTs modified glassy carbon electrode (GCE), was constructed and used for sensitive detection of hesperetin. The electrochemical behavior of hesperetin at this sensor was investigated systematically and a novel voltammetric method for determination of hesperetin was proposed. The redox characters of hesperetin was discussed in detail and a reasonable reaction mechanism was proposed also. As the analytical method, the response currents were linear relationship with the hesperetin concentrations in the range of 5.0 × 10(-8) to 3.0 × 10(-6) mol L-(1), with a detection limit of 2.0 × 10(-8) mol L(-1) (S/N=3). The method was also applied successfully to detect hesperetin in biological samples and Chinese herbal medicine Flos buddlejae with satisfactory results.

  10. Adsorptive Cathodic Stripping Voltammetric Determination of Cefoperazone in Bulk Powder, Pharmaceutical Dosage Forms, and Human Urine

    PubMed Central

    Hoang, Vu Dang; Huyen, Dao Thi; Phuc, Phan Hong

    2013-01-01

    The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3–6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from −0.7 to −0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect. PMID:24109542

  11. Influence of magnetic fields on the voltammetric response of microelectrodes in highly concentrated organic redox solutions

    SciTech Connect

    Lee, J.; Gao, X.; Hardy, L.D.A.; White, H.S.

    1995-06-01

    The voltammetric response of Au and Pt microdisk electrodes (6.4, 12.5, and 25 {micro}m) in concentrated solutions of organic redox species (nitrobenzene, acetophenone, and benzophenone) has been measured as a function of the orientation and magnitude of an externally applied magnetic field (0--1 Tesla). A magnetic field effect on voltammetric currents is observed for redox concentrations greater than ca. 0.01 M, and is a strong function of the orientation of the field. Large enhancements (+100%) or diminishments ({minus}15%) of limiting currents can be induced by application of the magnetic field. The observed phenomena are discussed in terms of magnetic field-induced transport of electrogenerated products.

  12. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  13. Microsensor Analysis of Oxygen in the Rhizosphere of the Aquatic Macrophyte Littorella uniflora (L.) Ascherson.

    PubMed Central

    Christensen, P. B.; Revsbech, N. P.; Sand-Jensen, K.

    1994-01-01

    Oxygen released by the roots of submerged plants may oxidize organic compounds from the roots and reduced substances continuously supplied by diffusion from the surrounding anoxic hydrosoil. We provide here the first visualization of this gradient environment obtained by microsensor analysis of oxygen in the rhizosphere of the freshwater plant Littorella uniflora (L.) Ascherson. The plants were rooted in an agar medium, in which amorphous FeS provided the main oxygen sink. The oxygen concentration at the root surface ranged from 20 to 450 [mu]M (atmospheric saturation = 280 [mu]M) between darkness and saturating light, and the oxic shell surrounding the roots varied from about 0.5 to 5 mm in thickness. The oxygen flux from the roots was a saturating function of the incident light intensity on the leaves, and the oxygen released was consumed mainly at the fluctuating oxic/anoxic interface. The oxic zones around individual roots are under dynamic control by light, root morphology, root density, and sediment reducing capacity, and, therefore, oxygen concentrations should be subject to substantial diurnal fluctuations in dense Littorella populations in nutrient-poor sediments. PMID:12232247

  14. Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system

    PubMed Central

    Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.

    2014-01-01

    Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor. PMID:25338965

  15. Design and implementation of a wireless passive microsensor for methanol detection

    NASA Astrophysics Data System (ADS)

    Sanz, Diego; Rosas, Walter; Unigarro, Edgar; Vargas, Watson; Segura-Quijano, Fredy

    2013-03-01

    Methanol is a public health concern due to its toxicity, characterized by metabolic acidosis and blindness, among others. The third world population affected by the exposure to this compound is increasing, mainly due to the consumption of illicit distilled or adulterated alcoholic beverages. Although methanol is naturally present in some alcoholic drinks, the maximum allowed concentration cannot exceed 10 g of methanol per liter of anhydrous alcohol (0.4% (v/v) at 40% of ethanol) according to the general EU limit. A wireless passive microsensor was designed to detect small amounts of methanol at 40% of alcoholic dissolutions. The sensor consists of a planar inductor in series with an interdigital capacitor that changes its capacitance with the solution's dielectric constant. An antenna is used to readout the real part of the impedance to obtain the resonant frequencies for different amounts of methanol in the solution. The aim of this work was to develop a low cost wireless sensor with the capability to detect concentrations of at least 0.4% (v/v) of methanol in a 40% of alcoholic solution. The results obtained show variations of 403 kHz in the resonant frequency for changes of 0.2% (v/v) on the concentration of methanol in a 40% alcoholic ethanol-based solution. This project was possible thanks to the collaboration of the Department of Electrical and Electronics Engineering and the Department of Chemical Engineering of Universidad de los Andes.

  16. Pattern recognition of estradiol, testosterone and dihydrotestosterone in children's saliva samples using stochastic microsensors

    NASA Astrophysics Data System (ADS)

    Staden, Raluca-Ioana Stefan-Van; Gugoaşă, Livia Alexandra; Calenic, Bogdan; Legler, Juliette

    2014-07-01

    Stochastic microsensors based on diamond paste and three types of electroactive materials (maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P)) were developed for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in children's saliva. The main advantage of utilization of such tools is the possibility to identify and quantify all three hormones within minutes in small volumes of childen's saliva. The limits of quantification obtained for DHT, T2, and E2 (1 fmol/L for DHT, 1 pmol/L for T2, and 66 fmol/L for E2) determined using the proposed tools allows the utilization of these new methods with high reliability for the screening of saliva samples from children. This new method proposed for the assay of the three hormones overcomes the limitations (regarding limits of determination) of ELISA method which is the standard method used in clinical laboratories for the assay of DHT, T2, and E2 in saliva samples. The main feature of its utilization for children's saliva is to identify earlier problems related to early puberty and obesity.

  17. Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors.

    PubMed

    Viret, H; Pringault, O; Duran, R

    2006-08-15

    In this study, the effect of zinc and nickel on oxygen consumption in sediments was determined using oxygen microsensors. Sediments from the southwest lagoon of New Caledonia, in the vicinity of the city of Nouméa, were incubated nearby in situ conditions and exposed to Zn and Ni concentrations of 20 and 60 mg l(-1). The depth distribution of oxygen consumption was estimated from the steady-state oxygen microprofiles, and the effects of metal were compared on the distributions before and after spiking. In most cases, metal had a strong effect on oxygen consumption at the surface. After 6 h exposure, oxygen consumption was only 10-40% of the initial value. However, the strong decrease in oxygen consumption observed at the sediment surface was counterbalanced by an increase of oxygen consumption deeper in the sediment. This is probably due to (i) a downward migration of aerobic microbial microorganisms living at the surface in order to escape the toxic effect of metal or/and (ii) a switch of the facultative aerobes from the low efficiency fermentation mode to the high-energy aerobic respiration mode.

  18. Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core techniques

    SciTech Connect

    Nielsen, L.P.; Christensen, P.B.; Revsbech, N.P.; Soerensen, J. )

    1990-07-01

    The effect of light on benthic photosynthesis, denitrification, and assimilation of NH{sub 4}{sup +} and NO{sub 3}{sup {minus}} in stream sediments was studied with whole-core techniques and with O{sub 2} and N{sub 2}O microsensors. Photosynthetic oxygen production increased the thickness of the aerobic surface layer from 1.5 mm in the dark to {approximately} 3.5 mm at a light intensity saturating photosynthesis. The O{sub 2} flux change concurrently from net uptake to net release and the overall rate of denitrification was reduced by 70%. Denitrification was always restricted to a narrow zone immediately below the aerobic-anaerobic interface. Calculated NO{sub 3}{sup {minus}} microprofiles showed that overall denitrification was primarily dependent on the thickness of the aerobic layer which acted as a barrier for diffusion of NO{sub 3}{sup {minus}} from the overlying water. In the light, algal NO{sub 3}{sup {minus}} assimilation could exceed NO{sub 3}{sup {minus}} consumption by denitrification when availability of NH{sub 4}{sup +} was low. Assimilation of NO{sub 3}{sup {minus}}, however, had no influence on the flux of NO{sub 3}{sup {minus}} to the denitrification zone, since assimilation occurred relatively close to the sediment surface.

  19. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms

    PubMed Central

    Kühl, Michael; Jørgensen, Bo Barker

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively. PMID:16348687

  20. Sensitive thermal microsensor with pn junction for heat measurement of a single cell

    NASA Astrophysics Data System (ADS)

    Yamada, Taito; Inomata, Naoki; Ono, Takahito

    2016-02-01

    A sensitive thermal microsensor based on a pn junction diode for heat measurements of biological single cells is developed and evaluated. Using a fabricated device, we demonstrated the heat measurement of a single brown fat cell. The principle of the sensor relies on the temperature dependence of the pn junction diode resistance. This method has a capability of the highly thermal sensitivity by downsizing and the advantage of a simple experimental setup using electrical circuits without any special equipment. To achieve highly sensitive heat measurement of single cells, downsizing of the sensor is necessary to reduce the heat capacity of the sensor itself. The sensor with the pn junction diode can be downsized by microfabrication. A bridge beam structure with the pn junction diode as a thermal sensor is placed in vacuum using a microfludic chip to decrease the heat loss to the surroundings. A temperature coefficient of resistance of 1.4%/K was achieved. The temperature and thermal resolutions of the fabricated device are 1.1 mK and 73.6 nW, respectively. The heat measurements of norepinephrine stimulated and nonstimulated single brown fat cells were demonstrated, and different behaviors in heat generation were observed.

  1. Fiber optic microsensor hydrogen leak detection system on Delta IV launch vehicle

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.

    2008-04-01

    This paper describes the successful development and test of a multipoint fiber optic hydrogen microsensors system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta's common booster core (CBC) rocket engine at NASA's Stennis Space Center. The hydrogen sensitive chemistry is fully reversible and has demonstrated a response to hydrogen gas in the range of 0% to 10% with a resolution of 0.1% and a response time of <=5 seconds measured at a gas flow rate of 1 cc/min. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.

  2. Fiber optic microsensor hydrogen leak detection system on Aerospike X-33

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.

    2007-09-01

    Commercial and military launch vehicles are designed to use cryogenic hydrogen as the main propellant, which is very volatile, extremely flammable, and highly explosive. Current detection system uses Teflon transfer tubes at small number of vehicle location through which gas samples are drawn and stream analyzed by a mass spectrometer. A concern with this approach is the high cost of the system. Also, the current system does not provide leak location and is not in real time. This system is very complex and cumbersome for production and ground support measurement personnel. This paper describes the successful test of a multipoint fiber optic hydrogen microsensors system on the Linear Aerospike X-33 rocket engine at NASA's Stennis Flight Center. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.

  3. Tackle and impact detection in elite Australian football using wearable microsensor technology.

    PubMed

    Gastin, Paul B; McLean, Owen C; Breed, Ray V P; Spittle, Michael

    2014-01-01

    The effectiveness of a wearable microsensor device (MinimaxX(TM) S4, Catapult Innovations, Melbourne, VIC, Australia) to automatically detect tackles and impact events in elite Australian football (AF) was assessed during four matches. Video observation was used as the criterion measure. A total of 352 tackles were observed, with 78% correctly detected as tackles by the manufacturer's software. Tackles against (i.e. tackled by an opponent) were more accurately detected than tackles made (90% v 66%). Of the 77 tackles that were not detected at all, the majority (74%) were categorised as low-intensity. In contrast, a total of 1510 "tackle" events were detected, with only 18% of these verified as tackles. A further 57% were from contested ball situations involving player contact. The remaining 25% were in general play where no contact was evident; these were significantly lower in peak Player Load™ than those involving player contact (P < 0.01). The tackle detection algorithm, developed primarily for rugby, was not suitable for tackle detection in AF. The underlying sensor data may have the potential to detect a range of events within contact sports such as AF, yet to do so is a complex task and requires sophisticated sport and event-specific algorithms.

  4. Determination of solvents permeating through chemical protective clothing with a microsensor array.

    PubMed

    Park, J; Zellers, E T

    2000-08-01

    The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.

  5. Tackle and impact detection in elite Australian football using wearable microsensor technology.

    PubMed

    Gastin, Paul B; McLean, Owen C; Breed, Ray V P; Spittle, Michael

    2014-01-01

    The effectiveness of a wearable microsensor device (MinimaxX(TM) S4, Catapult Innovations, Melbourne, VIC, Australia) to automatically detect tackles and impact events in elite Australian football (AF) was assessed during four matches. Video observation was used as the criterion measure. A total of 352 tackles were observed, with 78% correctly detected as tackles by the manufacturer's software. Tackles against (i.e. tackled by an opponent) were more accurately detected than tackles made (90% v 66%). Of the 77 tackles that were not detected at all, the majority (74%) were categorised as low-intensity. In contrast, a total of 1510 "tackle" events were detected, with only 18% of these verified as tackles. A further 57% were from contested ball situations involving player contact. The remaining 25% were in general play where no contact was evident; these were significantly lower in peak Player Load™ than those involving player contact (P < 0.01). The tackle detection algorithm, developed primarily for rugby, was not suitable for tackle detection in AF. The underlying sensor data may have the potential to detect a range of events within contact sports such as AF, yet to do so is a complex task and requires sophisticated sport and event-specific algorithms. PMID:24499311

  6. Determination of the antihyperlipidemic simvastatin by various voltammetric techniques in tablets and serum samples.

    PubMed

    Coruh, O; Ozkan, S A

    2006-04-01

    The electrochemical behavior and determination of simvastatin (SMV), a lipid-lowering drug, were studied in aqueous alcohol medium at a stationary glassy carbon electrode. Cyclic voltammetry studies showed one main, well-defined, sharp oxidation peak between pH 2 and 8. The oxidation was irreversible and exhibited a diffusion controlled mechanism. Differential pulse and square wave voltammetric methods for the quantitative determination of SMV in pharmaceutical dosage forms and spiked serum samples were developed based on the linear relationship between the peak current and the concentration. Differential pulse and square wave voltammetric techniques for the determination of SMV in 0.1 M H2SO4 and a constant amount of methanol (20%), which allow quantitation over the 2 x 10(-6)-1 x 10(-4) M range in supporting electrolyte with a detection limit of 2.71 x 10(-7) M and 5.50 x 10(-7) M for differential pulse and square wave voltammetric methods, respectively, are proposed. The repeatability and reproducibility of the methods were determined. Precision and accuracy were also checked. These methods were used for the determination of SMV in tablets. The standard addition method was used in biological media. No electroactive interferences from endogenous substances and excipients were found in biological fluids and pharmaceutical dosage forms, respectively.

  7. Voltammetric determination of Δ9-THC in glassy carbon electrode: An important contribution to forensic electroanalysis.

    PubMed

    Balbino, Marco Antonio; de Menezes, Matheus Manoel Teles; Eleotério, Izabel Cristina; Saczk, Adelir Aparecida; Okumura, Leonardo Luiz; Tristão, Heloísa Maria; de Oliveira, Marcelo Firmino

    2012-09-10

    A new voltammetric method for the determination of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is described. The voltammetric experiments were accomplished in N-N dimethylformamide/water (9:1, v/v), using tetrabutylammonium tetrafluoroborate (TBATFB) 0.1mol/L as supporting electrolyte and a glassy carbon disk electrode as the working electrode. The anodic peak current was observed at 0.0V (vs. Ag/AgCl) after a 30s pre-concentration step under an applied potential of -1.2V (vs. Ag/AgCl). A linear dependence of Δ(9)-THC detection was obtained in the concentration range 2.4-11.3ng/mL, with a linear correlation coefficient of 0.999 and a detection limit of 0.34ng/mL. The voltammetric method was used to measure the content of Δ(9)-THC in samples (hemp and hashish) confiscated by the police. The elimination of chemical interferences from the samples was promptly achieved through prior purification using the TLC technique, by employing methanol/water (4:1, v/v) as the mobile phase. The results showed excellent correlation with results attained by HPLC.

  8. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  9. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus.

    PubMed

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Hashemi, Parastoo

    2016-08-01

    Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated. PMID:27167463

  10. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.

    PubMed

    Strasser, Peter; Koh, Shirlaine; Greeley, Jeff

    2008-07-01

    Voltammetric dealloying of bimetallic platinum-copper (Pt-Cu) alloys has been shown to be an effective strategy to modify the surface electrocatalytic reactivity of Pt bimetallic nanoparticles (S. Koh and P. Strasser, J. Am. Chem. Soc., 2007, 129, 12624). Using cyclic voltammetry and structural XRD studies, we systematically characterize the Pt-Cu precursor compounds as well as the early stages of the selective Cu surface dissolution (dealloying) process for Pt(25)Cu(75), Pt(50)Cu(50), and Pt(75)Cu(25) alloy nanoparticles annealed at both low and high temperature. We also assess the impact of the synthesis conditions on the electrocatalytic reactivity for the oxygen reduction reaction (ORR). To gain atomistic insight into the observed voltammetric profiles, we compare our experimental results with periodic DFT calculations of trends in the thermodynamics of surface Cu dissolution potentials from highly stepped and kinked Pt(854) single crystal surfaces. The modeling suggests a dependence of the electrochemical Cu dissolution potentials on the detailed atomic environment (coordination number, nature of coordinating atoms) of the bimetallic Pt-Cu surfaces. The DFT-predicted shifts in electrochemical Cu dissolution potentials are shown to qualitatively account for the observed voltammetric profiles during Cu dealloying. Our study suggests that metal-specific energetics have to be taken into account to explain the detailed dealloying behavior of bimetallic surfaces. PMID:18563228

  11. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus.

    PubMed

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Hashemi, Parastoo

    2016-08-01

    Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated.

  12. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.

    PubMed

    Patel, Anisha N; Tan, Sze-yin; Miller, Thomas S; Macpherson, Julie V; Unwin, Patrick R

    2013-12-17

    The electro-oxidation of dopamine (DA) is investigated on the unmodified surfaces of five different classes of carbon electrodes: glassy carbon (GC), oxygen-terminated polycrystalline boron-doped diamond (pBDD), edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG), and the basal surface of highly oriented pyrolytic graphite (HOPG), encompassing five distinct grades with step edge density and coverage varying by more than 2 orders of magnitude. Surfaces were prepared carefully and characterized by a range of techniques, including atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and Raman spectroscopy. Although pBDD was found to be the least susceptible to surface fouling (even at relatively high DA concentrations), the reaction showed sluggish kinetics on this electrode. In contrast, DA electro-oxidation at pristine basal plane HOPG at concentrations ≤100 μM in 0.15 M PBS, pH 7.2, showed fast kinetics and only minor susceptibility toward surface fouling from DA byproducts, although the extent of HOPG surface contamination by oxidation products increased substantially at higher concentrations (with the response similar on all grades, irrespective of step edge coverage). EPPG also showed a fast response, with little indication of passivation with repeated voltammetric cycling but a relatively high background signal due to the high capacitance of this graphite surface termination. Of all five carbon electrode types, freshly cleaved basal plane HOPG showed the clearest signal (distinct from the background) at low concentrations of DA (<10 μM) as a consequence of the low capacitance. Studies of the electrochemical oxidation of DA in the presence of the common interferents ascorbic acid (AA) and serotonin (5-HT), of relevance to neurochemical analysis, showed that the signals for DA were still clearly and easily resolved at basal plane HOPG surfaces. In the presence of AA, repetitive voltammetry caused

  13. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  14. Surface acoustic wave (SAW) microsensor array for measuring VOCs in drinking water.

    PubMed

    Groves, W A; Grey, A B; O'Shaughnessy, P T

    2006-09-01

    Exposure to volatile organic chemicals (VOCs) in drinking water has been linked to a number of adverse health effects including cancer, liver, and kidney damage. However, the large number of potential contaminants and the cost and complexity of existing analytical methods limits the extent to which water quality is routinely characterized. This project focused on the laboratory development and evaluation of an instrument for field analysis of VOCs in drinking water. The instrument is based on an array of six polymer-coated surface-acoustic-wave microsensors. A test-set consisting of dichloromethane, chloroform, 1,1,1-trichloroethane, perchloroethylene, and m-xylene was used in a series of experiments designed to optimize the purge-trap preconcentration system, calibrate the instrument over the concentration range of 0.2-2 times the USEPA maximum contaminant levels (MCLs), and compare results to those of a reference laboratory. The primary goal was to develop a cost-effective alternative for on-site evaluation of VOCs in water. Calibration and evaluation test results for spiked water samples demonstrate adequate sensitivity for 19 of the 21 regulated VOCs considered using a ten minute sampling and analysis cycle. Monte Carlo simulations characterized the performance of trained artificial neural networks (ANNs) which had correct classification rates of 99%, 90%, and 80% for the five individual test-set vapors and their binary and ternary mixtures, respectively. These results demonstrate the excellent potential of this technology for addressing the need for improved VOC field-screening methods for water supplies.

  15. Microsensors to the Model Forecasts: Multiscale Embedded Networked Sensing of Nutrients in the Watershed

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.

    2005-12-01

    Hydrologic and water quality observatories are being planned with a vision of enhancing our ability to better understand, forecast and adaptively manage both water quantity and quality. To adequately cover these spatially and temporally variable systems, distributed, embedded sensor networks must be designed with the proper mix (multimodality) of sensors to quantify key system properties, including temperature and chemical distributions, as well as mass and energy fluxes, and to do so across multiple scales. Given resource limitations, process models need to be coupled to the sensor network to interpolate between sensor data. This work focuses on the spatially distributed flux of nutrients, specifically nitrate, in surface-subsurface environments. It begins at the sensor level, describing the development and testing of nitrate microsensors that are scaleable to large, dense sensor networks required to cover heterogeneous watersheds, including associated soil and sediment systems. First and second generation miniature and inexpensive nitrate sensors (ion selective electrodes) fabricated by depositing conducting polymers on carbon substrates are presented in the context of laboratory and field tests. While these sensors are limited to relatively short deployments (4-8 weeks), there are potential strategies for overcoming this problem. Scale-up to one- and three-dimensional soil/sediment sensor arrays is discussed in the context of two deployments: (1) a groundwater quality protection network, where recycled wastewater that is potentially high in nitrate is being used for agricultural irrigation, and (2) nonpoint source nitrate pollution in rivers and groundwater in agricultural watersheds. Recent hardware (wireless transceivers) and software advancements (e.g., network topology design and debugging, energy management) intended for networks spanning 100s of m in space are outlined in these examples. The discussion extends to sensor form factor, in situ calibration

  16. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  17. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms

    SciTech Connect

    Kuehl, M.; Joergensen, B.B. )

    1992-04-01

    The microzonation of O{sub 2} respiration, H{sub 2}S oxidation, and SO{sub 4}{sup 2{minus}} reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 {mu}m) with microsensors for O{sub 2}, S{sup 2{minus}}, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H{sub 2}S produced from sulfate reduction was reoxidized by O{sub 2} in a narrow reaction zone, and no H{sub 2}S escaped to the overlying water. Turnover times of H{sub 2}S and O{sub 2} in the reaction zone were only a few seconds owing to rapid bacterial H{sub 2}S oxidation. Anaerobic H{sub 2}S oxidation with NO{sub 3}{sup {minus}} could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO{sub 4}{sup 2{minus}} or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively.

  18. Laboratory and field evaluation of a SAW microsensor array for measuring perchloroethylene in breath.

    PubMed

    Groves, William A; Achutan, Chandran

    2004-12-01

    This article describes the laboratory and field performance evaluation of a small prototype instrument employing an array of six polymer-coated surface acoustic wave (SAW) sensors and a thermal desorption preconcentration unit for rapid analysis of perchloroethylene in breath. Laboratory calibrations were performed using breath samples spiked with perchloroethylene to prepare calibration standards spanning a concentration range of 0.1-10 ppm. A sample volume of 250 mL was preconcentrated on 40 mg of Tenax GR at a flow rate of 100 mL/min, followed by a dry air purge and thermal desorption at a temperature of 200 degrees C. The resulting pulse of vapor was passed over the sensor array at a flow rate of 20 mL/min and sensor responses were recorded and displayed using a laptop computer. The total time per analysis was 4.5 min. SAW sensor responses were linear, and the instrument's limit of detection was estimated to be 50 ppb based on the criterion that four of the six sensors show a detectable response. Field performance was evaluated at a commercial dry-cleaning operation by comparing prototype instrument results for breath samples with those of a portable gas chromatograph (NIOSH 3704). Four breath samples were collected from a single subject over the course of the workday and analyzed using the portable gas chromatograph (GC) and SAW instruments. An additional seven spiked breath samples were prepared and analyzed so that a broader range of perchloroethylene concentrations could be examined. Linear regression analysis showed excellent agreement between prototype instrument and portable GC breath sample results with a correlation coefficient of 0.99 and a slope of 1.04. The average error for the prototype instrument over a perchloroethylene breath concentration range of 0.9-7.2 ppm was 2.6% relative to the portable GC. These results demonstrate the field capabilities of SAW microsensor arrays for rapid analysis of organic vapors in breath.

  19. O2, pH, and redox potential microprofiles around Potamogeton malaianus measured using microsensors.

    PubMed

    Dong, Bin; Han, Ruiming; Wang, Guoxiang; Cao, Xun

    2014-01-01

    This study aimed to elucidate the effects of periphyton on the microprofiles of oxygen (O2), pH, and oxidation-reduction potential around the stems and leaves of a submerged macrophyte Potamogeton malaianus and on the plant growth in the eutrophic shallow Taihu Lake, China. The microprofiles were measured using a motorized microprofiling system equipped with microsensors. The leaf age of the macrophyte and periphyton exerted significant effects on the microprofiles of O2, pH, and oxidation-reduction potential. O2 concentration and pH increased whereas the oxidation-reduction potential decreased with decreasing distance to the stem/leaf surface. The fluctuation amplitudes of O2, pH, and oxidation-reduction potential were the largest in the microprofiles of mature leaves and the lowest in senescent leaves. The periphyton increased the thickness of the broad diffusive boundary layer and fluctuation amplitudes of O2, pH, and oxidation-reduction potential. When the periphyton was removed, the thickness of the broad diffusive boundary layer in the microprofiles of stems, senescent leaves, and mature leaves reduced by 29.0%, 49.72%, and 70.34%, and the O2, pH, and oxidation-reduction potential fluctuation amplitudes also declined accordingly. Our results suggest that a thick periphyton exerted negative effects on the growth of macrophytes by providing extensive shading and creating a barrier that hindered the transport of dissolved substances such as O2, and led to premature decline in macrophytes in the eutrophic Taihu Lake. The consequent implications can help to elucidate the control mechanism of the broad diffusive boundary layer around macrophytes on nutrient cycling in eutrophic waters and to better understand the role of this layer in the Taihu Lake and other similar eutrophic waters. PMID:25004129

  20. O2, pH, and Redox Potential Microprofiles around Potamogeton malaianus Measured Using Microsensors

    PubMed Central

    Dong, Bin; Han, Ruiming; Wang, Guoxiang; Cao, Xun

    2014-01-01

    This study aimed to elucidate the effects of periphyton on the microprofiles of oxygen (O2), pH, and oxidation-reduction potential around the stems and leaves of a submerged macrophyte Potamogeton malaianus and on the plant growth in the eutrophic shallow Taihu Lake, China. The microprofiles were measured using a motorized microprofiling system equipped with microsensors. The leaf age of the macrophyte and periphyton exerted significant effects on the microprofiles of O2, pH, and oxidation-reduction potential. O2 concentration and pH increased whereas the oxidation-reduction potential decreased with decreasing distance to the stem/leaf surface. The fluctuation amplitudes of O2, pH, and oxidation-reduction potential were the largest in the microprofiles of mature leaves and the lowest in senescent leaves. The periphyton increased the thickness of the broad diffusive boundary layer and fluctuation amplitudes of O2, pH, and oxidation-reduction potential. When the periphyton was removed, the thickness of the broad diffusive boundary layer in the microprofiles of stems, senescent leaves, and mature leaves reduced by 29.0%, 49.72%, and 70.34%, and the O2, pH, and oxidation-reduction potential fluctuation amplitudes also declined accordingly. Our results suggest that a thick periphyton exerted negative effects on the growth of macrophytes by providing extensive shading and creating a barrier that hindered the transport of dissolved substances such as O2, and led to premature decline in macrophytes in the eutrophic Taihu Lake. The consequent implications can help to elucidate the control mechanism of the broad diffusive boundary layer around macrophytes on nutrient cycling in eutrophic waters and to better understand the role of this layer in the Taihu Lake and other similar eutrophic waters. PMID:25004129

  1. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system.

    PubMed

    Lu, C J; Zellers, E T

    2001-07-15

    The development and testing of a miniature dual-adsorbent preconcentrator for a microsensor-based analytical system designed to determine complex volatile organic chemical (VOC) mixtures encountered in indoor working environments at low part-per-billion levels is described. Candidate adsorbents were screened for thermal-desorption bandwidth and breakthrough volume against 20 volatile organic vapors and subsets thereof as a function of several relevant variables. A glass capillary (1.1 mm i.d.) packed with 3.4 mg of Carbopack X and 1.2 mg of Carboxen 1000 provides sufficient capacity for a 1-L dry-air sample containing all 20 vapors at concentrations of 100 ppb as well as providing a composite half-height peak width of <3 s at a desorption temperature of 300 degrees C and a flow rate of 4 mL/min. Required adsorbent masses increase to 7.0 and 1.5 mg, respectively, for the same mixture at component concentrations of 1 ppm. Vapor breakthrough volumes for the Carbopack X are unaffected by humidity from 0 to 100%RH, but those for the Carboxen 1000 are significantly reduced, requiring an additional 0.9 mg of the latter to avoid premature breakthrough at the 100 ppb level. Good peak shapes, efficient chromatographic separation of preconcentrated sample mixture components, and detection limits in the low-parts-per-billion range using an integrated surface-acoustic-wave (SAW) sensor are achieved. Preconcentrator design and operating parameters are considered in terms of the vapor bed-residence times and breakthrough volumes in the context of the modified Wheeler equation.

  2. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system.

    PubMed

    Lu, C J; Zellers, E T

    2001-07-15

    The development and testing of a miniature dual-adsorbent preconcentrator for a microsensor-based analytical system designed to determine complex volatile organic chemical (VOC) mixtures encountered in indoor working environments at low part-per-billion levels is described. Candidate adsorbents were screened for thermal-desorption bandwidth and breakthrough volume against 20 volatile organic vapors and subsets thereof as a function of several relevant variables. A glass capillary (1.1 mm i.d.) packed with 3.4 mg of Carbopack X and 1.2 mg of Carboxen 1000 provides sufficient capacity for a 1-L dry-air sample containing all 20 vapors at concentrations of 100 ppb as well as providing a composite half-height peak width of <3 s at a desorption temperature of 300 degrees C and a flow rate of 4 mL/min. Required adsorbent masses increase to 7.0 and 1.5 mg, respectively, for the same mixture at component concentrations of 1 ppm. Vapor breakthrough volumes for the Carbopack X are unaffected by humidity from 0 to 100%RH, but those for the Carboxen 1000 are significantly reduced, requiring an additional 0.9 mg of the latter to avoid premature breakthrough at the 100 ppb level. Good peak shapes, efficient chromatographic separation of preconcentrated sample mixture components, and detection limits in the low-parts-per-billion range using an integrated surface-acoustic-wave (SAW) sensor are achieved. Preconcentrator design and operating parameters are considered in terms of the vapor bed-residence times and breakthrough volumes in the context of the modified Wheeler equation. PMID:11476247

  3. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker.

    PubMed

    Havran, Ludek; Vacek, Jan; Cahová, Katerina; Fojta, Miroslav

    2008-07-01

    This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.

  4. Surface crystallographic dependence of voltammetric oxidation of polyhydric alcohols and related systems at monocrystalline gold-acidic aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Hamelin, Antoinette; Ho, Yeunghaw; Chang, Si-Chung; Gao, Xiaoping; Weaver, Michael J.

    1992-02-01

    The voltammetric oxidation in aqueous 0.1 Molar perchloric acid of four polyhydric alcohols, ethylene glycol, glycerol, meso-erythritol, and d-mannitol, on seven oriented gold surfaces is reported with the objective of assessing the role of surface crystallographic orientation on the catalytic electrooxidation of such poly-functional reactants. The automatically well-ordered nature of these gold surfaces has been scrutinized by in-situ scanning tunneling microscopy. In particular, the Au(221) and (533) faces were selected since they provide stepped surfaces, 4(111)-(111) and 4(111)-(100), respectively. The results are compared with corresponding data for simple unifunctional reactants, specifically for formic acid oxidation and with results reported previously for carbon monoxide oxidation. In contrast to the last reaction, the electrooxidation rates for both the polyhydric alcoholic and formic acid are greatest on Au(111), with Au(110) displaying unusually low activity. While formic acid electrooxidation is insensitive to the presence of monoatomic surface steps, the polyhydric alcohols (especially mannitol) are substantially less reactive on AU(221) and (533) relative to Au(111).

  5. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  6. Fusion of Potentiometric & Voltammetric Electronic Tongue for Classification of Black Tea Taste based on Theaflavins (TF) Content

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Nabarun; Legin, Andrey; Papieva, Irina; Sarkar, Subrata; Kirsanov, Dmitry; Kartsova, Anna; Ghosh, Arunangshu; Bandyopadhyay, Rajib

    2011-09-01

    Black tea is an extensively consumed beverage worldwide with an expanding market. The final quality of black tea depends upon number of chemical compounds present in the tea. Out of these compounds, theaflavins (TF), which is responsible for astringency in black tea, plays an important role in determining the final taste of the finished black tea. The present paper reports our effort to correlate the theaflavins contents with the voltammetric and potentiometric electronic tongue (e-tongue) data. Noble metal-based electrode array has been used for collecting data though voltammetric electronic tongue where as liquid filled membrane based electrodes have been used for potentiometric electronic tongue. Black tea samples with tea taster score and biochemical results have been collected from Tea Research Association, Tocklai, India for the analysis purpose. In this paper, voltammetric and potentiometric e-tongue responses are combined to demonstrate improvement of cluster formation among tea samples with different ranges of TF values.

  7. Voltammetric detection of anti-HIV replication drug based on novel nanocomposite gold-nanoparticle-CaCO3 hybrid material.

    PubMed

    Narang, Jagriti; Malhotra, Nitesh; Singh, Gajendra; Pundir, C S

    2015-05-01

    A novel bionanocomposite, horse radish peroxidase- gold-nanoparticle-Calcium carbonate (HRP-AuNPs-CaCO3), hybrid material was encapsulated by silica sol on a glassy carbon electrode (GCE). The fabricated modified electrode was used as a novel voltammetric sensor for electrochemical sensing of anti-HIV replication drug i.e. deferiprone. The surface morphology of the modified electrode was characterized by scanning electron microscopy (SEM). Results obtained from the voltammetric measurements show that HRP-AuNPs-CaCO3 modified GCE offers a selective and sensitive electrochemical sensor for the determination of deferiprone. Under experimental conditions, the proposed voltammetric sensor has a linear response range from 0.01 to 10,000 μM with a detection limit of 0.01 μM. Furthermore, the fabricated sensor was successfully applied to determine deferiprone level in spiked urine and serum samples. PMID:25416586

  8. A direct in situ fingerprinting method for acid rock drainage using voltammetric techniques with a single renewable gold microelectrode.

    PubMed

    Nuzzio, Donald B; Zettler, Erik R; Aguilera, Angeles; Amaral-Zettler, Linda A

    2011-04-15

    Electrochemistry allows for rapid identification of multiple metals and other chemical complexes common in acid rock drainage (ARD) systems. Voltammetric scans using a single gold microelectrode of water samples from geochemically distinct areas of the Río Tinto (RT) in southwestern Spain were clearly recognizable in the field and in samples stored at room temperature for over 6 months. Major voltammetric peaks of iron(III) and copper(II) were identified on a single constantly renewable gold microelectrode. Confirmation of these peaks was performed by spiking with standard metal solutions in the laboratory. This voltammetric technique is a rapid, direct and inexpensive in situ method for identification of water sources and their chemical characteristics, as well as an economical way to monitor environmental changes and remediation efforts.

  9. Voltammetric and spectrophotometric techniques for the determination of the antihypertensive drug Prazosin in urine and formulations.

    PubMed

    Arranz, A; de Betoño, S F; Echevarria, C; Moreda, J M; Cid, A; Valentín, J F

    1999-12-01

    A sensitive method was developed to determine Prazosin using a nafion modified carbon paste electrode (NMCPE). Prazosin was accumulated at a potential of 750 mV in Britton-Robinson buffer (pH 6.0) and then a negative sweep was made obtaining a cathodic peak close to 0 V. Cyclic voltammetric studies indicated that the process was quasi-reversible, and fundamentally controlled by adsorption. To obtain a good sensitivity, the instrumental and accumulation variables were studied using differential pulse voltammetry (DPV). Adsorptive voltammetric peak currents showed a linear response for Prazosin concentrations in the range between 4.0 x 10(-11) and 4.0 x 10(-8) M with two different slopes, and a detection limit (LOD) of 3.1 x 10(-11)M was obtained. The variation coefficient (CV) for a 8.0 x 10(-10) M solution (n = 10) was 4.08%. A spectrophotometric study of Prazosin was also carried out and two absorption bands were obtained at 246 and 329 nm (pH 1.8). The band at 329 nm was pH-dependent and its height and position changed with the pH values, so this allowed the pK'a determination (7.14 +/- 0.20) using different methods. The detection limit reached by means of UV-spectrophotometry was 0.9 x 10(-7) M, and the variation coefficient for 1.5 x 10(-5) M Prazosin solutions was 1.14% (n = 10). Although the sensitivity of the UV-spectrophotometric method was lower than that obtained using adsorptive stripping-differential pulse voltammetry (AdS-DPV), it could be applied to the determination of Prazosin in Minipres tablets. The voltammetric method was used for the determination of the drug in human urine samples at trace levels with good recoveries.

  10. Electrochemical Behavior and Voltammetric Determination of a Manganese(II) Complex at a Carbon Paste Electrode

    PubMed Central

    Karastogianni, Sophia; Girousi, Stella

    2016-01-01

    Investigation of the electrochemical behavior using cyclic voltammetry and detection of [Mn2+(thiophenyl-2-carboxylic acid)2 (triethanolamine)] with adsorptive stripping differential pulse voltammetry. The electrochemical behavior of a manganese(II) complex [Mn2+(thiophenyl-2-carboxylic acid)2(triethanolamine)] (A) was investigated using cyclic and differential pulse voltammetry in an acetate buffer of pH 4.6 at a carbon paste electrode. Further, an oxidation–reduction mechanism was proposed. Meanwhile, an adsorptive stripping differential pulse voltammetric method was developed for the determination of manganese(II) complex. PMID:26819548

  11. Voltammetric and RP-LC assay for determination of benidipine HCl.

    PubMed

    Karadas, Nurgul; Sanli, Senem; Gumustas, Mehmet; Ozkan, Sibel A

    2012-07-01

    The detailed electrooxidative behavior of benidipine (BEN) has been studied by using glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Using cyclic voltammetry, depending on the pH values and the working electrodes, BEN showed one or two sharp and irreversible oxidation responses. The voltammetric experiments on some model compounds allowed elucidation of the oxidation mechanism of BEN. Highly sensitive, selective, rapid, and fully validated voltammetric methods for the determination of BEN in tablet dosage form were also presented. Under optimized conditions, the peak current showed a linear dependence with concentration in the range between 3.25 μg mL(-1) and 54.20 μg mL(-1) for GC and 1.08 μg mL(-1) and 54.20 μg mL(-1) for BDD electrodes by using differential pulse (DPV) and square wave (SWV) voltammetric techniques. In this study, acid dissociation constant (pK(a)) value of BEN was determined by using the dependence of the retention factor on the pH of the mobile phase using reverse phase-liquid chromatographic (RP-LC) method. The effect of the composition of the mobile phase on the ionization constant was studied by measuring the pK(a) at different acetonitrile-water mixtures, ranging between 50 and 65% (v/v). Also simple, accurate, precise and fully validated RP-LC method for the assay of BEN in dosage form has been developed. XTerra RP-18 column at 25 °C with the mobile phase of acetonitrile:water 55:45 (v/v) adjusted to pH 3.0 with 15 mM o-phosphoric acid was used. Isocratic elution was performed in less than 5.0 min with a flow rate of 1.0 mL min(-1). The RP-LC method allowed quantitation over the 0.25-15.00 μg mL(-1) range for BEN. The proposed voltammetric and RP-LC methods allow a number of cost and time saving benefits. BEN was also exposed to thermal, photolytic, oxidative stress, acid-base catalyzed hydrolyses, and the stressed samples were detected by the proposed RP-LC method.

  12. Measurement and wireless transmission of embedded capacitive microsensor's output using ΣΔ conversion and radio frequency identification (RFID) technology

    NASA Astrophysics Data System (ADS)

    Neuzil, Pavel; Krenek, Oskar; Serry, F. Michael; Maclay, G. Jordan

    1997-05-01

    This article concerns the design and post-fabrication testing of a CMOS integrated circuit (IC) for the Remote- Queried Embedded Microsensor (RQEM) system. The IC may be coupled to capacitive microsensors to measure the output of the sensors, to digitize this measured output, and to condition and encode the digital data. Wireless transmission of the code to a commercial Radio Frequency Identification (RFID) system reader is implemented using Differential Phase Shift Keying of a low-frequency signal, which inductively couples the RQEM antenna coil to the receiving antenna of the RFID reader. The IC extracts its own operating power and digital clock signal from the interrogating signal, which is transmitted by the RFID reader. The IC uses switched- capacitor techniques for acquisition and for A/D conversion of data. A first-order Sigma-Delta ((Sigma) (Delta) ) A/D converter is used with an output transconductance amplifier (OTA) in the balancing integrator and the comparator. The same OTA is also used in the acquisition circuit, which is a sample-and-hold offset-free circuit. Several fabricated chips were tested with on-chip test capacitors, used to calibrate the IC's output.

  13. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    NASA Astrophysics Data System (ADS)

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Hsu, Chia-Hsien; Huang, Yu-Fen; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin

    2014-09-01

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  14. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    SciTech Connect

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin; Hsu, Chia-Hsien; Huang, Yu-Fen

    2014-09-15

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  15. Voltammetric and drift spectroscopy investigation in dithiophosphinate-chalcopyrite system.

    PubMed

    Güler, Taki; Hiçyilmaz, Cahit; Gökağaç, Gülsün; Ekmekçi, Zafir

    2004-11-01

    The mechanism of dithiophosphinate (DTPI) adsorption on chalcopyrite was investigated by diffuse reflectance Fourier transformation (DRIFT) spectroscopy and by cyclic voltammetry (CV) at various pHs. CV experiments showed that the redox reactions occurred at a certain degree of irreversibility on the chalcopyrite surface in the absence of a collector due to preferential dissolution of iron ions in slightly acid solution and irreversible surface coverage by iron oxyhydroxides in neutral and alkaline solutions. In the presence of DTPI, CV experiments failed to identify the type of the adsorbed DTPI species and electrochemical processes occurring on chalcopyrite due to formation of an electrochemically passive surface layer preventing electron transfer. However, DRIFT spectroscopy tests showed this passive layer to be mainly CuDTPI + (DTPI)2. Both CV and DRIFT spectroscopy established that the activity of collector species decreased with increasing pH due to formation of stable hydrophilic metal oxyhydroxides on the chalcopyrite surface. PMID:15380410

  16. Voltammetric Determination of the Herbicide Linuron Using a Tricresyl Phosphate-Based Carbon Paste Electrode

    PubMed Central

    Đorđević, Jelena; Papp, Zsigmond; Guzsvány, Valéria; Švancara, Ivan; Trtić-Petrović, Tatjana; Purenović, Milovan; Vytřas, Karel

    2012-01-01

    This paper summarises the results of voltammetric studies on the herbicide 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (Linuron), using a carbon paste electrode containing tricresyl phosphate (TCP-CPE) as liquid binder. The principal experimental conditions, such as the pH effect, investigated in Britton-Robinson buffer solutions (pH 2.0–7.0), the peak characteristics for the analyte of interest, or instrumental parameters for the differential pulse voltammetric mode were optimized for the method. As found out, the best electroanalytical performance of the TCP-CPE was achieved at pH 2.0, whereby the oxidation peak of Linuron appeared at ca. +1.3 V vs. SCE. The analytical procedure developed offers good linearity in the concentration range of 1.25–44.20 μg mL−1 (1.77 × 10−4–5.05 × 10−6 mol L−1), showing—for the first time—the applicability of the TCP-CPE for anodic oxidations in direct voltammetry (without accumulation). The method was then verified by determining Linuron in a spiked river water sample and a commercial formulation and the results obtained agreed well with those obtained by the reference HPLC/UV determination. PMID:22368461

  17. Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode.

    PubMed

    Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S

    2015-12-01

    The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode.

  18. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    PubMed

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples.

  19. Electrooxidation of New Synthetic Cannabinoids: Voltammetric Determination of Drugs in Seized Street Samples and Artificial Saliva.

    PubMed

    Dronova, Marina; Smolianitski, Evgeny; Lev, Ovadia

    2016-04-19

    The electrochemical sensing of new psychoactive substances, synthetic cannabinoids (SCs), commonly marketed under the trade name "Spice" is explored for the first time. The electrooxidative transformations of 11 new indole and indazole SCs which are currently the predominant illicit smoking mixtures on the drug market is performed using cyclic and differential pulse voltammetry with various commercially available electrodes (Pt, GC, Bdd). It is found that SCs exhibit voltammetric responses that can be used for their detection in smoking mixtures and artificial saliva with limits of detection in the nanomolar range. The indole-based SCs exhibited an anodic peak at ∼1.5 V (vs Ag/Ag(+)) and ∼1.2 V (vs Ag/AgCl) in acetonitrile and artificial saliva, respectively, and the indazoles exhibited corresponding peaks at ∼1.7 V and ∼1.5 V. The voltammetric procedure was evaluated by prescreening of SCs in 12 confiscated street samples that were also independently analyzed by GC-MS and LC-MS techniques. A good agreement between the three analytical protocols was found. Voltammetry provides a tool for the prescreening of synthetic cannabinoid derivatives in seized materials and biological samples. PMID:26905258

  20. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    PubMed

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 μmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance. PMID:26952405

  1. Contrasting voltammetric behavior of different forms of vitamin A in aprotic organic solvents.

    PubMed

    Tan, Ying Shan; Urbančok, Dejan; Webster, Richard D

    2014-07-24

    Six of the major vitamers and provitamins comprising vitamin A (β-carotene, retinoic acid, retinol, retinyl palmitate, retinyl acetate, and retinal) were examined using voltammetric and controlled potential electrolysis techniques in the aprotic organic solvents acetonitrile and dichloromethane at glassy carbon and platinum electrodes. All of the compounds underwent oxidation and reduction processes and displayed a number of similarities and differences in terms of the number of redox processes and chemical reversibility of the voltammetric responses. The electrochemical properties of the compounds were strongly influenced by the functional groups on the unsaturated phytyl chains (carboxylic acid, alcohol, ester, or aldehyde groups), and not only on the fully conjugated hydrocarbon unit which is common to all forms of vitamin A. The compounds were reduced at potentials between approximately -1.7 and -2.6 vs (Fc/Fc(+))/V (Fc = ferrocene) and oxidized at potentials between approximately +0.2 and +0.7 vs (Fc/Fc(+))/V. The average number of electrons transferred per molecule under long time scale electrolysis experiments were found to vary between 0.4 and 4 electrons depending on the exact molecular structure and experimental conditions. PMID:24984099

  2. Voltammetric determination of copper in selected pharmaceutical preparations--validation of the method.

    PubMed

    Lutka, Anna; Maruszewska, Małgorzata

    2011-01-01

    It were established and validated the conditions of voltammetric determination of copper in pharmaceutical preparations. The three selected preparations: Zincuprim (A), Wapń, cynk, miedź z wit. C (B), Vigor complete (V) contained different salts and different quantity of copper (II) and increasing number of accompanied ingredients. For the purpose to transfer copper into solution, the samples of powdered tablets of the first and second preparation were undergone extraction and of the third the mineralization procedures. The concentration of copper in solution was determined by differential pulse voltammetry (DP) using comparison with standard technique. In the validation process, the selectivity, accuracy, precision and linearity of DP determination of copper in three preparations were estimated. Copper was determined within the concentration range of 1-9 ppm (1-9 microg/mL): the mean recoveries approached 102% (A), 100% (B), 102% (V); the relative standard deviations of determinations (RSD) were 0.79-1.59% (A), 0.62-0.85% (B) and 1.68-2.28% (V), respectively. The mean recoveries and the RSDs of determination satisfied the requirements for the analyte concentration at the level 1-10 ppm. The statistical verification confirmed that the tested voltammetric method is suitable for determination of copper in pharmaceutical preparation.

  3. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode.

    PubMed

    Dilgin, Didem Giray; Karakaya, Serkan

    2016-06-01

    In this study, a new selective and sensitive voltammetric procedure for determination of acyclovir (ACV) was proposed using a disposable electrode, pencil graphite electrode (PGE). Cyclic and differential pulse voltammograms of ACV were recorded in Britton-Robinson buffer solution containing 0.10 M KCl with pH of 4.0 at PGE. The PGE displayed a very good electrochemical behavior with significant enhancement of the peak current compared to a glassy carbon electrode (GCE). Under experimental conditions, the PGE had a linear response range from 1.0 μM to 100.0 μM ACV with a detection limit of 0.3 μM (based on 3 Sb). Relative standard deviations of 4.8 and 3.6% were obtained for five successive determinations of 10.0 and 50.0 μM ACV, respectively, which indicate acceptable repeatability. This voltammetric method was successfully applied to the direct determination of ACV in real pharmaceutical samples. The effect of various interfering compounds on the ACV peak current was studied. PMID:27040252

  4. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    PubMed

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 μmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance.

  5. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode.

    PubMed

    Dilgin, Didem Giray; Karakaya, Serkan

    2016-06-01

    In this study, a new selective and sensitive voltammetric procedure for determination of acyclovir (ACV) was proposed using a disposable electrode, pencil graphite electrode (PGE). Cyclic and differential pulse voltammograms of ACV were recorded in Britton-Robinson buffer solution containing 0.10 M KCl with pH of 4.0 at PGE. The PGE displayed a very good electrochemical behavior with significant enhancement of the peak current compared to a glassy carbon electrode (GCE). Under experimental conditions, the PGE had a linear response range from 1.0 μM to 100.0 μM ACV with a detection limit of 0.3 μM (based on 3 Sb). Relative standard deviations of 4.8 and 3.6% were obtained for five successive determinations of 10.0 and 50.0 μM ACV, respectively, which indicate acceptable repeatability. This voltammetric method was successfully applied to the direct determination of ACV in real pharmaceutical samples. The effect of various interfering compounds on the ACV peak current was studied.

  6. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.

    PubMed

    Chiu, Shih-Wen; Wu, Hsiang-Chiu; Chou, Ting-I; Chen, Hsin; Tang, Kea-Tiong

    2014-06-01

    This article introduces a power-efficient, miniature electronic nose (e-nose) system. The e-nose system primarily comprises two self-developed chips, a multiple-walled carbon nanotube (MWNT)-polymer based microsensor array, and a low-power signal-processing chip. The microsensor array was fabricated on a silicon wafer by using standard photolithography technology. The microsensor array comprised eight interdigitated electrodes surrounded by SU-8 "walls," which restrained the material-solvent liquid in a defined area of 650 × 760 μm(2). To achieve a reliable sensor-manufacturing process, we used a two-layer deposition method, coating the MWNTs and polymer film as the first and second layers, respectively. The low-power signal-processing chip included array data acquisition circuits and a signal-processing core. The MWNT-polymer microsensor array can directly connect with array data acquisition circuits, which comprise sensor interface circuitry and an analog-to-digital converter; the signal-processing core consists of memory and a microprocessor. The core executes the program, classifying the odor data received from the array data acquisition circuits. The low-power signal-processing chip was designed and fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-μm 1P6M standard complementary metal oxide semiconductor process. The chip consumes only 1.05 mW of power at supply voltages of 1 and 1.8 V for the array data acquisition circuits and the signal-processing core, respectively. The miniature e-nose system, which used a microsensor array, a low-power signal-processing chip, and an embedded k-nearest-neighbor-based pattern recognition algorithm, was developed as a prototype that successfully recognized the complex odors of tincture, sorghum wine, sake, whisky, and vodka.

  7. A VOLTAMMETRIC FLAVIN MICROELECTRODE FOR USE IN BIOFILMS

    PubMed Central

    Nguyen, Hung Duc; Renslow, Ryan; Babauta, Jerome; Ahmed, Bulbul; Beyenal, Haluk

    2011-01-01

    Biofilms used in bioelectrochemical systems are expected to transfer electrons using electron transfer mediators. One mediator type, flavins, which includes flavin mononucleotide, riboflavin, and flavin adenine dinucleotide, has been found to be endogenously produced by Shewanella oneidensis MR-1. However, the presence and concentration of flavins inside a S. oneidensis MR-1 biofilm have never been reported. The goal of this study was to develop a flavin microelectrode capable of measuring flavins inside a living biofilm and apply it to a biofilm which produces flavins. Because flavins are electrochemically active molecules, the flavin microelectrode was based on detection via square-wave voltammetry. The microelectrode consisted of a carbon working electrode with a 10–30 μm tip diameter, a built-in platinum counter electrode, and a Ag/AgCl reference electrode, all enclosed in a glass outer case. The microelectrode was calibrated between 0.1 μM and 10 μM flavins and showed a linear correlation between flavin concentration and peak currents located at −424 mVAg/AgCl on a square-wave voltammogram. We also developed a model to explain the electrochemical mechanism of flavin detection, and to determine the effective surface area of the microelectrode, the standard reduction potential, and the transfer coefficient. We found that the effective surface area of the microelectrode was close to 100 times the projected surface area. The model predicted a standard reduction potential for RF/RFH2 of −419 mVAg/AgCl at 20 °C and a transfer coefficient of 0.45. Lastly, we measured flavin concentration inside a S. oneidensis MR-1 biofilm grown on a glass surface using oxygen as the electron acceptor. The flavin concentration reached 0.7 μM, increasing near the bottom of the biofilm, where no oxygen was present. This shows the possibility that flavins are produced in the anaerobic zone to act as intermediate electron acceptors in the deeper parts of the biofilm, where

  8. Technological Barriers in the Use of Electrochemical Microsensors and Microbiosensors for in vivo Analysis of Neurological Relevant Substances

    PubMed Central

    Bucur, Bogdan

    2012-01-01

    In this paper is presented an overview of the technological barriers faced by the in vivo brain analysis with microelectrodes. Numerous microsensors and enzymatic microbiosensors have been developed for the real time monitoring of neurotransmitters, neuromodulators, drugs and diverse other biological relevant substances. A clear understanding of the working principle, advantages and limitations is essential for the acquisition of valid data in neurological investigations. Some of the aspects presented here refer to: microelectrode insertion and positioning related to possibilities to minimize tissue damage, spatial and temporal resolution of the measurements, actual controversies in data interpretation and sensor calibration, simultaneous detection of multiple analytes, interferences and state of the art in the development of wireless devices. PMID:23449399

  9. Carbon Paste Electrode Modified With Cuo–Nanoparticles as a Probe for Square Wave Voltammetric Determination of Atrazine

    PubMed Central

    Rahbar, Nadereh; Parham, Hooshang

    2013-01-01

    Background Atrazine (ATZ) is a widely used herbicide in most countries because of its low cost and good selectivity. The concentration of ATZ that the EPA considers safe to consume in drinking water is 3 ppb. Therefore, recently, there have been concerns about its determination in trace levels. This compound is not electro-active, so in this research indirect electrochemical method for its detection in low levels was proposed. Objectives The main aim of this study is the indirect determination of ATZ in water samples by voltammetry using nano-particle modified electrode. Materials and Methods A nano-CuO modified carbon paste electrode (NMCPE) is constructed and its application for indirect square wave voltammetric (SWV) detection of ATZ is reported. The sensing performance mechanism of the nano-CuO modified carbon paste electrode toward atrazine is due to complexation of the analyte with Cu (II) ion. The peak current for copper (II) reduction decreases with increase in the ATZ concentration and is monitored for its determination. Instrumental and chemical parameters influencing the detection of ATZ were optimized. Results The results revealed that decrease in peak current was proportional to ATZ concentration over the range of 5-75 ng/mL. The limit of detection (LOD) and limit of quantification (LOQ) were 2 ng/mL and 5.6 ng/mL (n = 20), respectively. The relative standard deviation (n = 10) for the determination of 10 and 50 ng/mL of ATZ solution was estimated as 4.9% and 4.2 %, respectively. Conclusions This easily fabricated electrode together with the fast and sensitive SW voltammetry was successfully applied for the determination of concentration of ATZ at trace levels, in different water samples. PMID:24624200

  10. Unsupervised pattern recognition methods in ciders profiling based on GCE voltammetric signals.

    PubMed

    Jakubowska, Małgorzata; Sordoń, Wanda; Ciepiela, Filip

    2016-07-15

    This work presents a complete methodology of distinguishing between different brands of cider and ageing degrees, based on voltammetric signals, utilizing dedicated data preprocessing procedures and unsupervised multivariate analysis. It was demonstrated that voltammograms recorded on glassy carbon electrode in Britton-Robinson buffer at pH 2 are reproducible for each brand. By application of clustering algorithms and principal component analysis visible homogenous clusters were obtained. Advanced signal processing strategy which included automatic baseline correction, interval scaling and continuous wavelet transform with dedicated mother wavelet, was a key step in the correct recognition of the objects. The results show that voltammetry combined with optimized univariate and multivariate data processing is a sufficient tool to distinguish between ciders from various brands and to evaluate their freshness. PMID:26948640

  11. Voltammetric study of the anodic oxidation of sulfide ions in molten fluorides

    SciTech Connect

    Minh, N.Q.; Yao, N.P.

    1983-05-01

    Information regarding the electrochemical behavior of sulfide ions in molten salts is important for questions of battery technology in the case of high-temperature secondary batteries, and for metallurgical molten-salt processes. The present investigation is concerned with the electrochemical behavior of sulfide in molten LiF-NaF. The investigation has the objective to evaluate the feasibility of the LiF-NaF melt as solvent for the electrolysis of Al2S3. The results are presented of a voltammetric study of the electrochemical oxidation of sulfide in LiF-NaF eutectic at 1023 K. It is found that the anodic oxidation of sulfide ions in LiF-NaF eutectic is reversible and diffusion controlled. The obtained experimental data correspond to the reaction mechanism 2S(2-) yields reversibly S2(2-) + 2e(-).

  12. Cathodic adsorptive stripping voltammetric determination of uranium with potassium hydrogen phthalate.

    PubMed

    Farghaly, O A; Ghandour, M A

    1999-06-01

    The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer. PMID:18967571

  13. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach.

    PubMed

    Alves, Rita C; Pimentel, Filipa B; Nouws, Henri P A; Correr, Wagner; González-García, María Begoña; Oliveira, M Beatriz P P; Delerue-Matos, Cristina

    2015-09-01

    A voltammetric biosensor for Ara h 6 (a peanut allergen) detection in food samples was developed. Gold nanoparticle-modified screen-printed carbon electrodes were used to develop a sandwich-type immunoassay using two-monoclonal antibodies. The antibody-antigen interaction was detected through the electrochemical detection of enzymatically deposited silver. The immunosensor presented a linear range between 1 and 100 ng/ml, as well as high precision (inter-day RSD ≤9.8%) and accuracy (recoveries ≥96.7%). The detection and quantification limits were 0.27 and 0.88 ng/ml, respectively. It was possible to detect small levels of Ara h 6 in complex food matrices. PMID:26164307

  14. Anodic adsorptive stripping voltammetric determination of the anesthetic drug: methohexital sodium.

    PubMed

    Farghaly, O A; El-Wadood, H M; Ghandour, M A

    1999-11-01

    Methohexital (MS) determination is based on the formation of insoluble mercury salt on a hanging mercury drop electrode after preaccumulation by adsorption. This property was exploited in developing a highly sensitive stripping voltammetric procedure for the determination of the drug. The anodic current of adsorbed compound is measured by linear sweep anodic stripping voltammetry (LSASV), preceded by a period of preconcentration. The effect of various parameters such as supporting electrolyte composition, pH, initial potential, scan rate, accumulation time and ionic strength are discussed to characterize the interfacial and redox behavior. The detection limit was found to be 2x10(-7) M (56.8 ppb) with 180-s accumulation time. The interference of some amino acids, ascorbic acid and some metal ions was investigated. The application of this method was tested in the determination of methohexital in spiked urine samples. The precision of the method is satisfactory with a relative standard deviation of 2.5%.

  15. Cathodic adsorptive stripping voltammetric determination of uranium with potassium hydrogen phthalate.

    PubMed

    Farghaly, O A; Ghandour, M A

    1999-06-01

    The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer.

  16. A self-polishing platinum ring voltammetric sensor and its application to complex media.

    PubMed

    Cavanillas, Santiago; Winquist, Fredrik; Eriksson, Mats

    2015-02-15

    A self-polishing voltammetric sensor was recently developed and has been applied to samples of urea, milk and sewage water. The polishing device continuously grinds a platinum ring electrode, offering a reproducible and clean electrode surface. Principal component analysis (PCA) and partial least squares (PLS) techniques were applied to interpret the data and to build prediction models. In an evaluation of samples with different urea concentrations, the grinding step allows for repeatable measurements, similar to those after electrochemical cleaning. Furthermore, for the determination of sewage water concentrations in drinking water and for the evaluation of different fat contents in milk samples, the polishing eliminates sensor drift produced by electrode fouling. The results show that the application of a self-polishing unit offers a promising tool for electrochemical studies of difficult analytes and complex media.

  17. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  18. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries

    PubMed Central

    Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu

    2015-01-01

    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future. PMID:25996509

  19. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries.

    PubMed

    Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu

    2015-01-01

    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future. PMID:25996509

  20. Development of a voltammetric assay, using screen-printed electrodes, for clonazepam and its application to beverage and serum samples.

    PubMed

    Honeychurch, Kevin C; Brooks, Joshua; Hart, John P

    2016-01-15

    This paper describes the development of an electrochemical assay based on screen-printed carbon sensors for the determination of clonazepam in serum and in wine. The cyclic voltammetric behaviour of the drug was investigated and the effects of pH and scan rate on the peak current and peak potential determined. Two reduction peaks were recorded on the initial negative going scan, which were considered to result from the 2e(-), 2 H(+) reduction of the 4,5-azomethine and from the 4e(-), 4 H(+) reduction of the 7-NO2 to a hydroxylamine. On the return positive going scan an oxidation peak was seen, which was considered to result from the 2e(-), 2 H(+) oxidation (O1) of the hydroxylamine to the corresponding nitroso species. At pH 11 the solution of clonazepam was found to turn from clear to yellow in colour and the voltammetric signal of the O1 oxidation process was found to be adsorptive in nature, this was exploited in the development of an adsorptive stripping voltammetric assay. Experimental conditions were then optimised for the differential pulse adsorptive voltammetric measurement of clonazepam in wine and serum samples. It was shown that these analyses could be performed on only 100µL of sample which was deposited on the sensor surface. Mean recoveries of 79.53% (%CV=9.88%) and 88.22% (%CV=14.1%) were calculated for wine fortified with 3.16µg/mL and serum fortified with 12.6µg/mL. PMID:26592640

  1. Development of Voltammetric Double-Polymer-Modified Electrodes for Nanomolar Ion Detection for Environmental and Biological Applications

    NASA Astrophysics Data System (ADS)

    Kim, Yushin

    Qualitative and quantitative electrochemical methods for trace ion analysis of organic and inorganic species with environmental and biological attention have been developed and reported during past decades. The development of fast and accurate electrochemical methods is critical for field applications with various blocking contaminants. Voltammetric method is attractive not only to analyze selective ion species due to its characteristic based on ion lipophilicity, but also to lower the limit of detection by combining with stripping analysis. In my PhD work, I have developed and studied a highly selective and sensitive electrochemical method that can be used to characterize fundamental transport dynamics and to develop electrochemical sensors at liquid/liquid interfaces based on electrochemically-controlled ion transfer and recognition. The understanding of the kinetic and thermodynamic properties of the voltammetric ion transfer through polymer-modified ion-selective electrodes leads to realize the highly selective and sensitive analytical method. The ultrathin polymer membrane is used to maximize a current response by complete exhaustion of preconcentrated ions. Therefore, nanomolar detection is achieved and confirmed by a thermodynamic mechanism that controls the detection limit. It was also demonstrated experimentally and theoretically that more lipophilic ionic species gives a significantly lower detection limit. The voltammetric method was expanded into inexpensive and disposable applications based on pencil lead modified with the thin polymer membrane. In the other hand, micropipet/nanopipet voltammetry as an artificial cell membrane was used to study the interface between two immiscible solutions for environmental and biomedical applications. It is very useful to get quantitative kinetic and thermodynamic information by studying numerical simulations of ion transfer and diffusion. Molecular recognition and transport of heparin and low

  2. A new method based on the Butler-Volmer formalism to evaluate voltammetric cation and anion sensors.

    PubMed

    Cano, Manuel; Rodríguez-Amaro, Rafael; Fernández Romero, Antonio J

    2008-12-11

    A new method based on the Butler-Volmer formalism is applied to assess the capability of two voltammetric ion sensors based on polypyrrole films: PPy/DBS and PPy/ClO4 modified electrodes were studied as voltammetric cation and anion sensors, respectively. The reversible potential versus electrolyte concentrations semilogarithm plots provided positive calibration slopes for PPy/DBS and negative ones for PPy/ClO4, as was expected from the proposed method and that based on the Nernst equation. The slope expressions deduced from Butler-Volmer include the electron-transfer coefficient, which allows slope values different from the ideal Nernstian value to be explained. Both polymeric films exhibited a degree of ion-selectivity when they were immersed in mixed-analyte solutions. Selectivity coefficients for the two proposed voltammetric cation and anion sensors were obtained by several experimental methods, including the separated solution method (SSM) and matched potential method (MPM). The K values acquired by the different methods were very close for both polymeric sensors. PMID:19367868

  3. A new method based on the Butler-Volmer formalism to evaluate voltammetric cation and anion sensors.

    PubMed

    Cano, Manuel; Rodríguez-Amaro, Rafael; Fernández Romero, Antonio J

    2008-12-11

    A new method based on the Butler-Volmer formalism is applied to assess the capability of two voltammetric ion sensors based on polypyrrole films: PPy/DBS and PPy/ClO4 modified electrodes were studied as voltammetric cation and anion sensors, respectively. The reversible potential versus electrolyte concentrations semilogarithm plots provided positive calibration slopes for PPy/DBS and negative ones for PPy/ClO4, as was expected from the proposed method and that based on the Nernst equation. The slope expressions deduced from Butler-Volmer include the electron-transfer coefficient, which allows slope values different from the ideal Nernstian value to be explained. Both polymeric films exhibited a degree of ion-selectivity when they were immersed in mixed-analyte solutions. Selectivity coefficients for the two proposed voltammetric cation and anion sensors were obtained by several experimental methods, including the separated solution method (SSM) and matched potential method (MPM). The K values acquired by the different methods were very close for both polymeric sensors.

  4. Electrochemical properties of silver-copper alloy microelectrodes for use in voltammetric field apparatus.

    PubMed

    Skogvold, Silje M; Mikkelsen, Oyvind; Billon, Gabriel; Garnier, Cedric; Lesven, Ludovic; Barthe, Jean-Francois

    2006-04-01

    Microelectrodes of silver-copper alloys have been evaluated for use in voltammetric analyses. Increased overpotential towards the hydrogen overvoltage reaction (HER) was found as a function of increased copper content in the silver. A study of oxidizing products by cyclic voltammetry (CV) in NaOH solution showed ten anodic and eight cathodic peaks which are described in the present paper. The behaviour of these alloy electrodes is somewhere between pure silver and pure copper electrodes. Differential pulse anodic stripping voltammetry (DPASV) was used to measure zinc, cadmium and lead in ultrapure water only (18 MOmegacm), and good linearity was found for all metals (r (2)=0.998) in the range of 0.5 to 5 ppb with a 600- to 1,200-s plating time. It was additionally found that cadmium and lead were better separated on the alloy electrodes compared to pure silver electrodes. Measurements of nickel were carried out on alloy electrodes by use of adsorptive differential pulse cathodic stripping voltammetry (Ad-DPCSV), and good linearity (r (2)=1.000) was found in the range from 0.5 to 5 ppb with an adsorption time of 120 s. The alloy electrodes were also found to be sensitive to nitrate, and good linearity (r (2)=0.997) was found in the range from 1 mg L(-1) to 100 mg L(-1) using differential pulse voltammetry (DPV) scanning from -450 mV to -1,500 mV. Addition of nitrate in ultrapure water afforded two different peaks related to the successive reductions of nitrate and nitrite. In ammonium buffer solution (pH 8.6) only one peak resulting from reduction of nitrate was observed. Furthermore, the use of alloy electrodes containing 17% Cu was tested in real samples, by installing it in a voltammetric system for monitoring of zinc and lead in a polluted river, the river Deûle, near the town of Douai in northern France. Results were found to be in agreement with parallel measurements carried out by ICP-MS. PMID:16550424

  5. Thermoelectric infrared microsensors based on a periodically suspended thermopile integrating nanostructured Ge/SiGe quantum dots superlattice

    SciTech Connect

    Ziouche, K. E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Bougrioua, Z. E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Lejeune, P.; Lasri, T.; Leclercq, D.; Savelli, G.; Hauser, D.; Michon, P.-M.

    2014-07-28

    This paper presents an original integration of polycrystalline SiGe-based quantum dots superlattices (QDSL) into Thermoelectric (TE) planar infrared microsensors (μSIR) fabricated using a CMOS technology. The nanostructuration in QDSL results into a considerably reduced thermal conductivity by a factor up to 10 compared to the one of standard polysilicon layers that are usually used for IR sensor applications. A presentation of several TE layers, QDSL and polysilicon, is given before to describe the fabrication of the thermopile-based sensors. The theoretical values of the sensitivity to irradiance of μSIR can be predicted thanks to an analytical model. These findings are used to interpret the experimental measurements versus the nature of the TE layer exploited in the devices. The use of nanostructured QDSL as the main material in μSIR thermopile has brought a sensitivity improvement of about 28% consistent with theoretical predictions. The impact of QDSL low thermal conductivity is damped by the contribution of the thermal conductivity of all the other sub-layers that build up the device.

  6. A highly sensitive Pb(Zr,Ti)O3 thin film ultrasonic micro-sensor with a grooved diaphragm.

    PubMed

    Matsushima, Tomoaki; Xiong, Sibei; Kawada, Hiroshi; Yamanaka, Hiroshi; Muralt, Paul

    2007-12-01

    A highly sensitive piezoelectric ultrasonic micro-sensor with a grooved multilayer membrane was developed by a Si-based MEMS technique. The groove was located at one-quarter of the distance away from the edge of the membrane and opened into piezoelectric layer. The piezoelectric layer Pb(Zr,Ti)O(3) (PZT) was 2.2 microm thick and was prepared by a sol-gel method. The prepared PZT film was pure perovskite and showed a highly (100) textured structure. The sensitivity of the fabricated piezoelectric ultrasonic sensor without the groove structure was 100 microV/Pa. In comparison, the sensitivity of the ultrasonic sensor with the groove structure was about 500 microV/Pa, which is 5 times that without the groove structure. The diaphragm having grooves showed a corrugate-like structure that was formed by residual stress. The high sensitivity of the membrane with the grooved diaphragm is considered to relate to the corrugate-like structure.

  7. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources.

    PubMed

    van der Horst, C; Silwana, B; Iwuoha, E; Somerset, V

    2012-01-01

    Stripping voltammetry as technique has proved to be very useful in the analysis of heavy and other metal ions due to its excellent detection limits and its sensitivity in the presence of different metal species or interfering ions. Recent assessments of aquatic samples have shown increased levels of platinum group metals (PGMs) in aquatic ecosystems, caused by automobile exhaust emissions and mining activities. The development of an analytical sensor for the detection and characterisation of PGMs were investigated, since there is an ongoing need to find new sensing materials with suitable recognition elements that can respond selectively and reversibly to specific metal ions in environmental samples. The work reported shows the successful application of another mercury-free sensor electrode for the determination of platinum group metals in environmental samples. The work reported in this study entails the use of a glassy carbon electrode modified with a bismuth film for the determination of platinum (Pt(2+)), palladium (Pd(2+)) or rhodium (Rh(2+)) by means of adsorptive cathodic stripping voltammetry. Optimised experimental conditions included composition of the supporting electrolyte, complexing agent concentration, deposition potential, deposition time and instrumental voltammetry parameters for Pt(2+), Pd(2+) and Rh(2+) determination. Adsorptive differential pulse stripping voltammetric measurements for PGMs were performed in the presence of dimethylglyoxime (DMG) as complexing agent. The glassy carbon bismuth film electrode (GC/BiFE) employed in this study exhibit good and reproducible sensor characteristics. Application of GC/BiFE sensor exhibited well-defined peaks and highly linear behaviour for the stripping analysis of the PGMs in the concentration range between 0 and 3.5 μg/L. The detection limit of Pd, Pt and Rh was found to be 0.12 μg/L, 0.04 μg/L and 0.23 μg/L, respectively for the deposition times of 90 s (Pd) and 150 s (for both Pt and Rh). Good

  8. Redox speciation and biogeochemical gradients: Assessing spatial niches and monitoring dynamics in natural systems with voltammetric microelectrodes

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Lorenson, G. W.; Eastmann, D. A.; Macalady, J. L.

    2005-12-01

    Biogeochemical gradients may be described by the spatial distribution of redox species distributed in water, where overlap of electron donors and acceptors out of equilibrium defines available sources of potential energy and essentially determines possible microbial metabolisms. Observed changes in redox speciation along a gradient associated with microbial biofilms may additionally provide some environmental basis for assessing physiology of sampled microorganisms. Voltammetric microelectrodes have been used in a variety of environments to describe the links between ecology and geochemistry (Luther et al., 2001). Recent work in Yellowstone National Park hydrothermal waters, the Frassassi caves in central Italy (a sulfidic cave system), and Green Lake in New York (a meromictic lake) have expanded our abilities to use microelectrodes for assessing As(III) concentrations and uncovering more details of sulfur speciation in a wide range of natural waters. We are using these data to design redox-specific culture media, make inferences about microbial physiology, constrain biogeochemical gradients over very fine scales, and observe dynamics in biogeochemical systems. Describing microbial communities and the geochemical environments that surround them at appropriate scales is of importance to begin assessing the links between microbial activity and geochemical cycling. Diversity in an environment may be better assessed if we first know how many different geochemical environments there are in that environment and if the microbial ecology in those environments is essentially independent from environments neighboring it. Because microelectrodes measure multiple redox species simultaneously and do so in matter of seconds, they are also useful in monitoring the dynamics of a biogeochemical system, which will be of use in studying the response of communities to perturbation. We will present results showing the characterization of lateral and vertical gradients over different

  9. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources.

    PubMed

    van der Horst, C; Silwana, B; Iwuoha, E; Somerset, V

    2012-01-01

    Stripping voltammetry as technique has proved to be very useful in the analysis of heavy and other metal ions due to its excellent detection limits and its sensitivity in the presence of different metal species or interfering ions. Recent assessments of aquatic samples have shown increased levels of platinum group metals (PGMs) in aquatic ecosystems, caused by automobile exhaust emissions and mining activities. The development of an analytical sensor for the detection and characterisation of PGMs were investigated, since there is an ongoing need to find new sensing materials with suitable recognition elements that can respond selectively and reversibly to specific metal ions in environmental samples. The work reported shows the successful application of another mercury-free sensor electrode for the determination of platinum group metals in environmental samples. The work reported in this study entails the use of a glassy carbon electrode modified with a bismuth film for the determination of platinum (Pt(2+)), palladium (Pd(2+)) or rhodium (Rh(2+)) by means of adsorptive cathodic stripping voltammetry. Optimised experimental conditions included composition of the supporting electrolyte, complexing agent concentration, deposition potential, deposition time and instrumental voltammetry parameters for Pt(2+), Pd(2+) and Rh(2+) determination. Adsorptive differential pulse stripping voltammetric measurements for PGMs were performed in the presence of dimethylglyoxime (DMG) as complexing agent. The glassy carbon bismuth film electrode (GC/BiFE) employed in this study exhibit good and reproducible sensor characteristics. Application of GC/BiFE sensor exhibited well-defined peaks and highly linear behaviour for the stripping analysis of the PGMs in the concentration range between 0 and 3.5 μg/L. The detection limit of Pd, Pt and Rh was found to be 0.12 μg/L, 0.04 μg/L and 0.23 μg/L, respectively for the deposition times of 90 s (Pd) and 150 s (for both Pt and Rh). Good

  10. Cobalt dipicolinate complexes with nicotinamide and isonicotinamide ligands: Syntheses, crystal structures, spectroscopic, thermal and voltammetric studies

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Bulut, Ahmet; Karadağ, Ahmet; Kazak, Canan

    2007-06-01

    Two new dipicolinate complexes of cobalt, [Co(dpc)(na)(H 2O) 2]·H 2O ( 1) and [Co(dpc)(ina)(H 2O) 2] ( 2) [dpc is dipicolinate or pyridine-2,6-dicarboxylate, na is nicotinamide and ina is isonicotinamide], have been prepared and characterized by thermal analysis, IR spectroscopy and X-ray diffraction techniques. The complex ( 1) crystallizes in triclinic system, whereas the complex ( 2) crystallizes in monoclinic system. The Co(II) ion in both complexes is bonded to dpc ligand through pyridine N atom together with one O atom of each carboxylate group, two aqua ligands and N pyridine atom of na ( 1) or ina ( 2), forming the distorted octahedral geometry. The complex molecules ( 1) and ( 2) are connected via N sbnd H⋯O and O sbnd H⋯O hydrogen bonds. The voltammetric behaviour of complexes ( 1) and ( 2) was also investigated in DMSO (dimethylsulfoxide) solution by cyclic voltammetry using n-Bu 4NClO 4 supporting electrolyte. The complexes exhibit only metal centered electroactivity in the potential ±1.25 V versus Ag/AgCl reference electrode.

  11. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants.

    PubMed

    Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis

    2012-05-15

    The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk.

  12. Monitoring dissolved orthophosphate in a struvite precipitation reactor with a voltammetric electronic tongue.

    PubMed

    Aguado, Daniel; Barat, Ramón; Soto, Juan; Martínez-Mañez, Ramón

    2016-10-01

    This study demonstrates the feasibility of using a voltammetric electronic tongue to monitor effluent dissolved orthophosphate concentration in a struvite precipitation reactor. The electrochemical response of the electronic tongue to the presence of orthophosphate in samples collected from the effluent of the precipitation reactor is used to predict orthophosphate concentration via a statistical model based on Partial Least Squares (PLS) Regression. PLS predictions were suitable for this monitoring application in which precipitation efficiencies higher than 80% (i.e., effluent dissolved orthophosphate concentrations lower than 40mg P-PO4(3-) L(-1)) could be considered as indicator of good process performance. The electronic tongue consisted of a set of metallic (noble and non-noble) electrodes housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. Fouling problems were prevented via a simple mechanical polishing of the electrodes. The measurement of each sample with the electronic tongue was done in less than 3s. Conductivity of the samples only affected the electronic tongue marginally, being the main electrochemical response due to the orthophosphate concentration in the samples. Copper, silver, iridium and rhodium were the electrodes that exhibited noticeable response correlated with the dissolved orthophosphate concentration variations, while gold, platinum and especially cobalt and nickel were the less useful electrodes for this application. PMID:27474282

  13. Voltammetric trace determination of mercury using plant refuse modified carbon paste electrodes.

    PubMed

    Devnani, Harsha; Satsangee, Soami Piara

    2013-11-01

    Citrus limon peel (kitchen waste) and Leucaena leucocephala seeds (agricultural waste) were used as a modifier for fabrication of modified carbon paste electrode for determination of mercury in aqueous sample using differential pulse anodic stripping voltammetry. Mercury was adsorbed on electrode surface at open circuit and anodic stripping voltammetric scan was run from -0.5 to 0.5 V. Various electrochemical parameters including amount of modifier, supporting electrolyte, accumulating solvent, pH of the accumulating solvent, and accumulation time were investigated. The effect of presence of other metal ions and surfactants was also studied. In comparison C. limon peel proved to be a better modifier than L. leucocephala seed biomass. This was justified by electrode characterization using cyclic voltammetry that indicated decrease in resistance of electrode when C. limon peel was used as modifier and increase when modifier was L. leucocephala seeds. Maximum current response was obtained using 5% C. limon peel biomass, hydrochloric acid as supporting electrolyte, acetate buffer of pH 6 as an accumulating solvent, 10-min accumulation time, and scan rate of 50 mV/s. Linear calibration curves were obtained in the concentration range 100 to 1,000 μg L(-1) of mercury for accumulation time of 10 min with limit of detection of 57.75 μg L(-1) and limit of quantification of 192.48 μg L(-1). This technique does not use mercury as electrode material and, therefore, has a positive environmental benefit. PMID:23709264

  14. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    PubMed Central

    Baciu, Anamaria; Ardelean, Magdalena; Pop, Aniela; Pode, Rodica; Manea, Florica

    2015-01-01

    This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD) electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix. PMID:26102487

  15. Differential pulse voltammetric determination of eugenol at a pencil graphite electrode.

    PubMed

    Sağlam, Özlem; Dilgin, Didem Giray; Ertek, Bensu; Dilgin, Yusuf

    2016-03-01

    In this study, the electrochemical behavior of eugenol, a widely used herbal drug, was investigated at a pencil graphite electrode (PGE). A low-cost, disposable, sensitive and selective electrochemical sensor is proposed for the determination of eugenol by recording its differential pulse voltammograms in Britton-Robinson buffer solution containing 0.1 M KCl with pH of 2.0 at the PGE. The PGE displayed a very good electrochemical behavior with significant enhancement of the peak current compared to a glassy carbon electrode. Under experimental conditions, the PGE had a linear response range from 0.3 μM to 50.0 μM eugenol with a detection limit of 0.085 μM (based on 3S(b)). Relative standard deviations of 2.4 and 4.8% were obtained for five successive determinations of 30.0 and 5.0 μM eugenol, respectively, which indicate acceptable repeatability. This voltammetric method was successfully applied for the direct determination of eugenol in real samples. The effect of various interfering compounds on the eugenol peak current was also studied.

  16. Non-linear multivariate curve resolution analysis of voltammetric pH titrations.

    PubMed

    Díaz Cruz, José Manuel; Sanchís, Josep; Chekmeneva, Elena; Ariño, Cristina; Esteban, Miquel

    2010-07-01

    A new chemometric approach is put forward, dealing with the non-linear behaviour observed in the multivariate curve resolution (MCR) analysis of certain overlapping voltammetric signals obtained in titrations of metal complexes where pH is progressively changed. In such cases, non-reversible reduction signals move along the potential axis as a consequence of the involvement of H(+)-ions in the electrochemical process and cause a dramatic loss of linearity, which hinders accurate MCR analysis. The method proposed is based on the least-squares fitting of peak potential vs. pH datasets to parametric linear and sigmoid functions through the decomposition of the data matrix into both a concentration profile matrix and a unit signal matrix, in a similar way as in the alternating least-squares algorithm of MCR (ALS). Such calculations are carried out through several home-made Matlab programs which are freely available as Supplementary Material of the present work. The fitted parameters, along with the evolution of resolved concentrations and potential shifts with pH, provide valuable information on the complexation/reduction processes. The method is tested first on the relatively simple Cd(II)-NTA system and then applied to the study of the binding of Cd(II)-ions by glutathione (gamma-Glu-Cys-Gly, GSH) and the phytochelatin PC(2) ((gamma-Glu-Cys)(2)-Gly).

  17. Aptamer-based biosensors for label-free voltammetric detection of lysozyme.

    PubMed

    Cheng, Alan K H; Ge, Bixia; Yu, Hua-Zhong

    2007-07-15

    This paper reports a simple electrochemical approach for the detection of the ubiquitous protein lysozyme using aptamer-modified electrodes. Anti-lysozyme DNA aptamers were immobilized on gold surfaces by means of self-assembly, for which the surface density of aptamers was determined by cyclic voltammetric (CV) studies of redox cations (e.g., [Ru(NH3)6]3+) bound to the surface via electrostatic interaction with the DNA phosphate backbone. Upon incubation of the electrode with a solution containing lysozyme, the CV response of surface-bound [Ru(NH3)6]3+ changed substantially, and the relative decrease in the integrated charge of the reduction peak can be tabulated as a quantitative measure of the protein concentration. It is significant that the on-chip protein/aptamer binding constant and the optimized surface density to achieve the best detection limit can be evaluated. This biosensor is label-free and offers an alternative, sensitive, and versatile method for protein detection, which is beneficial to the ever-growing interests of fabricating portable bioanalytical devices with simple electrical readout protocols.

  18. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol.

    PubMed

    Afzali, Daryoush; Zarei, Somaye; Fathirad, Fariba; Mostafavi, Ali

    2014-10-01

    In the present study, a carbon paste electrode chemically modified with gold nanoparticles was used as a sensitive electrochemical sensor for determination of eugenol. The differential pulse voltammetric method was employed to study the behavior of eugenol on this modified electrode. The effect of variables such as percent of gold nanoparticles, pH of solution, accumulation potential and time on voltammogram peak current were optimized. The proposed electrode showed good oxidation response for eugenol in 0.1 mol L(-1) phosphate buffer solution (pH8) and the peak potential was about +285 mV (vs. Ag/AgCl). The peak current increased linearly with the eugenol concentration in the range of 5-250 μmol L(-1). The detection limit was found to be 2.0 μmol L(-1) and the relative standard deviation was 1.2% (n=7). The effect of interferences on the eugenol peak current was studied. The method has been applied to the determination of eugenol in different real samples, spiked recoveries were in the range of 96%-99%.

  19. Improvement of the ultra-trace voltammetric determination of Rh in environmental samples using signal transformation.

    PubMed

    Almécija, C; Cobelo-García, A; Santos-Echeandía, J

    2016-01-01

    Rhodium (Rh) is present at the Earth's surface at ultra-trace concentrations (0.06 ng g(-1)); however, its use in catalytic converters has increased its deposition nearby traffic pressure and therefore the interest in analytical techniques for Rh determination has raised in the recent years. In this study we propose an improvement of Rh measurement by adsorptive voltammetry applying second-derivative signal transformation. The optimization of experimental parameters affecting the voltammetric analysis were carried out using sediment samples; these include the amount of sample digest used, the hydrochloric acid and formaldehyde concentrations, deposition potential and equilibration time. The use of the second derivative transformation provided well-defined peaks due to the minimization of background interferences, leading to a significant decrease in the detection limits. Accordingly, a detection limit of 200 fM Rh in the cell was obtained, which corresponds to 14 pg g(-1) of Rh for 200mg of sediments. The optimized methodology was applied to the analysis of Rh in a sediment core collected close to a motorway bridge from Tagus Estuary (Lisbon, Portugal). Here, Rh concentrations ranged from 0.06 to 0.47 ng g(-1), showing a surface Rh-enrichment linked to traffic, which was consistent with a Pt superficial peak. Reference materials were also analyzed, including road dust (BCR-723) and river sediment (JSD-2), and values obtained were in agreement with certified concentrations and previously values reported in the literature. PMID:26695324

  20. Square Wave Voltammetric Determination of Diclofenac in Pharmaceutical Preparations and Human Serum

    PubMed Central

    Ciltas, Ulvihan; Yilmaz, Bilal; Kaban, Selcuk; Akcay, Bilge Kaan; Nazik, Gulsah

    2015-01-01

    In this study, a simple and reliable square wave voltammetric (SWV) method was developed and validated for determination of diclofenac in pharmaceutical preparations and human serum. The proposed method was based on electrooxidation of diclofenac at platinum electrode in 0.1 M TBAClO4/acetonitrile solution. The well-defined two oxidation peaks were observed at 0.87 and 1.27 V, respectively. Calibration curves that were obtained by using current values measured for second peak were linear over the concentration range of 1.5-17.5 μg mL-1 and 2-20 μg mL-1 in supporting electrolyte and serum, respectively. Precision and accuracy were also checked in all media. Intra- and inter-day precision values for diclofenac were less than 3.64, and accuracy (relative error) was better than 2.49%. Developed method in this study is accurate, precise and can be easily applied to Diclomec, Dicloflam and Voltaren tablets as pharmaceutical preparation. Also, the proposed technique was successfully applied to spiked human serum samples. No electroactive interferences from the endogenous substances were found in human serum. PMID:26330859

  1. Square-wave adsorptive stripping voltammetric determination of danazol in capsules.

    PubMed

    Alghamdi, Ahmed H; Belal, Fatallah F; Al-Omar, Mohamed A

    2006-06-01

    Based on the interfacial adsorptive character of danazol onto the hanging mercury drop electrode (HMDE), a simple and sensitive square-wave adsorptive stripping voltammetric (SW-AdSV) procedure for the electrochemical analysis of this drug in pharmaceutical formulations has been developed and validated. Cyclic and SW-AdSV voltammograms showed a single well-defined irreversible cathodic peak. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for the danazol determination. Under these optimized conditions the SW-AdSV peak current showed a linear dependence on drug concentration over the range 7.5x10(-8)-3.75x10(-7) mol l-1 (r=0.999) with estimated detection limit (at a S/N ratio of 3) of 5.7x10(-9) mol l-1 (1.78 ng ml-1). A mean recovery of 100.9+/-1.2% and relative standard deviation of 1.07% were achieved. Possible interferences by substances usually present in the pharmaceutical tablets and formulations were also evaluated. The proposed electrochemical procedure was successfully applied for the determination of danazol in pharmaceutical capsules (Danol 100 mg) with mean recoveries of 100.48+/-0.87%. Results of the developed SW-AdSV method were comparable with those obtained by reported analytical procedures.

  2. Quantification of histamine in various fish samples using square wave stripping voltammetric method.

    PubMed

    Yilmaz, Ummihan Taskoparan; Inan, Derya

    2015-10-01

    The objective of this study was to describe a new and simple method for the determination of histamine so that it can be used in routine food analysis. A square wave stripping voltammetric (SWSV) method has been used for the indirect determination of histamine. The method is based on accumulation copper (II) - histamine complex onto a hanging mercury drop electrode and reduction of complex. The optimum conditions include an accumulation potential of -420 mV (versus Ag/AgCl), an accumulation time of 10 s. Two linear calibration graphs were obtained with slopes of 0.078 (μM/μA) and 0.014 (μM/μA), respectively. The detection limits were found to be 3 × 10(-7) and 1 × 10(-5) M for histamine (S/N = 3), respectively. The validated SWSV method showed good linearity as well as satisfactory repeatability and immediate precision values, for both instrument and method. The effect of common excipients and metal ions on the peak height of Cu-histamine complex peak was studied. The method was successfully, applied to the determination of histamine in canned anchovy (Engraulis encrasicholus), frozen Tinca tinca (L.) and Cyprinus carpio fish samples. PMID:26396415

  3. Voltammetric Electronic Tongue and Support Vector Machines for Identification of Selected Features in Mexican Coffee

    PubMed Central

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-01-01

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303

  4. Square Wave Voltammetric Determination of Diclofenac in Pharmaceutical Preparations and Human Serum.

    PubMed

    Ciltas, Ulvihan; Yilmaz, Bilal; Kaban, Selcuk; Akcay, Bilge Kaan; Nazik, Gulsah

    2015-01-01

    In this study, a simple and reliable square wave voltammetric (SWV) method was developed and validated for determination of diclofenac in pharmaceutical preparations and human serum. The proposed method was based on electrooxidation of diclofenac at platinum electrode in 0.1 M TBAClO4/acetonitrile solution. The well-defined two oxidation peaks were observed at 0.87 and 1.27 V, respectively. Calibration curves that were obtained by using current values measured for second peak were linear over the concentration range of 1.5-17.5 μg mL(-1) and 2-20 μg mL(-1) in supporting electrolyte and serum, respectively. Precision and accuracy were also checked in all media. Intra- and inter-day precision values for diclofenac were less than 3.64, and accuracy (relative error) was better than 2.49%. Developed method in this study is accurate, precise and can be easily applied to Diclomec, Dicloflam and Voltaren tablets as pharmaceutical preparation. Also, the proposed technique was successfully applied to spiked human serum samples. No electroactive interferences from the endogenous substances were found in human serum.

  5. Synthesis, spectroscopic and voltammetric studies of a novel Schiff-base of cysteine and saccharin

    NASA Astrophysics Data System (ADS)

    Çakır, Semiha; Odabaşoğlu, Mustafa; Biçer, Ender; Yazar, Zehra

    2009-01-01

    In this study, a novel Schiff-base of cysteine and saccharin [( 2R)-2-(1, 1-dioxo-1, 2-dihydro-1λ6-benzo[ d]isothiazol-3-ylideneamino)-3-mercapto-propionic acid] was synthesized and characterized by UV-Vis, FT-IR, 1H NMR and elemental analysis. The voltammetric behaviour of Schiff-base was investigated on the static mercury drop electrode (SMDE) by using Square-Wave voltammetry (SWV) and Cyclic voltammetry (CV). The voltammograms of the Schiff-base gave three reduction waves in Britton-Robinson buffer (pH 5.0-9.0) for the potential range from 0.0 to -1.4 V. The first reversible cathodic peak is due to reduction of the mercury thiolate, produced by the thiol group of Schiff-base which adsorbs at Hg electrode surface, to metallic mercury and free thiol. The second reduction peak may be assigned to the reduction of azomethine center (>C dbnd N sbnd ) in the Schiff-base and the last peak may be related to the catalytic hydrogen reduction.

  6. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates.

    PubMed

    Liu, Lin; Du, Jimin; Li, Sujuan; Yuan, Baiqing; Han, Hongxing; Jing, Min; Xia, Ning

    2013-03-15

    Dopamine (DA) is one of the most important neurotransmitters present in brain tissues and body fluids of mammals. The change in the concentration levels has been associated with various diseases and disorders. Thus, sensitive and selective determination of DA is much preferred. In this work, sandwich-type electrochemical biosensor was developed, in which phenylboronic acid immobilized onto gold electrodes was used to capture DA. The anchored DA was then derivatized with biotin for the attachment of ferrocene-capped gold nanoparticle/streptavidin conjugates. The voltammetric responses were found to be proportional to the concentrations of DA ranging from 0.5 to 50 nM. A detection limit of 0.2 nM was achieved, which is 1~2 orders of magnitude lower than those achievable at various chemically modified electrodes. Analytical merits (e.g., dynamic range, reproducibility, detection level, selectivity and interference) were evaluated. The feasibility of the method for analysis of DA in artificial cerebrospinal fluid and dopamine hydrochloride injection has been demonstrated. PMID:23084758

  7. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode.

    PubMed

    Baciu, Anamaria; Ardelean, Magdalena; Pop, Aniela; Pode, Rodica; Manea, Florica

    2015-01-01

    This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD) electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., -0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix. PMID:26102487

  8. Monitoring dissolved orthophosphate in a struvite precipitation reactor with a voltammetric electronic tongue.

    PubMed

    Aguado, Daniel; Barat, Ramón; Soto, Juan; Martínez-Mañez, Ramón

    2016-10-01

    This study demonstrates the feasibility of using a voltammetric electronic tongue to monitor effluent dissolved orthophosphate concentration in a struvite precipitation reactor. The electrochemical response of the electronic tongue to the presence of orthophosphate in samples collected from the effluent of the precipitation reactor is used to predict orthophosphate concentration via a statistical model based on Partial Least Squares (PLS) Regression. PLS predictions were suitable for this monitoring application in which precipitation efficiencies higher than 80% (i.e., effluent dissolved orthophosphate concentrations lower than 40mg P-PO4(3-) L(-1)) could be considered as indicator of good process performance. The electronic tongue consisted of a set of metallic (noble and non-noble) electrodes housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. Fouling problems were prevented via a simple mechanical polishing of the electrodes. The measurement of each sample with the electronic tongue was done in less than 3s. Conductivity of the samples only affected the electronic tongue marginally, being the main electrochemical response due to the orthophosphate concentration in the samples. Copper, silver, iridium and rhodium were the electrodes that exhibited noticeable response correlated with the dissolved orthophosphate concentration variations, while gold, platinum and especially cobalt and nickel were the less useful electrodes for this application.

  9. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples.

    PubMed

    Kiss, Laszlo; David, Vasile; David, Iulia Gabriela; Lazăr, Paul; Mihailciuc, Constantin; Stamatin, Ioan; Ciobanu, Adela; Ştefănescu, Cristian Dragoş; Nagy, Livia; Nagy, Géza; Ciucu, Anton Alexandru

    2016-11-01

    A simple and reliable method for preparing a selective dopamine (DA) sensor based on a molecularly imprinted polymer of ethacridine was proposed. The molecularly imprinted polymer electrode was prepared through electrodepositing polyethacridine-dopamine film on the glassy carbon electrode and then removing DA from the film via chemical induced elution. The molecular imprinted sensor was tested by cyclic voltammetry as well as by differential pulse voltammetry (DPV) to verify the changes in oxidative currents of DA. In optimized DPV conditions the oxidation peak current was well-proportional to the concentration of DA in the range from 2.0×10(-8)M up to 1×10(-6)M. The limit of detection (3σ) of DA was found to be as low as 4.4nM, by the proposed sensor that could be considered a sensitive marker of DA depletion in Parkinson's disease. Good reproducibility with relative standard deviation of 1.4% and long term stability within two weeks were also observed. The modified sensor was validated for the analysis of DA in deproteinized human serum samples using differential pulse voltammetric technique. PMID:27591643

  10. Application of XRF, XRD, thermal analysis, and voltammetric techniques to the study of ancient ceramics.

    PubMed

    Sánchez Ramos, S; Bosch Reig, F; Gimeno Adelantado, J V; Yusá Marco, D J; Doménech Carbó, A

    2002-04-01

    An in-depth chemical-analytical study has been performed on biscuit and mortar from 17th-18th century tiles from a mediaeval hermitage in the province of Valencia (Spain). Representative samples were chosen from the tile fragments available, using appearance, essentially color and consistency, as the criterion. The chemical composition was analyzed by X-ray fluorescence of the samples in the form of glass disks after a previous qualitative study to choose the standard materials for calibration and the experimental conditions used in the analysis. X-ray diffraction of the samples provided information about the mineralogical composition which was consistent with the firing of the original materials; it also gave information about the range of temperatures used in the firing. From thermal gravimetric analysis of the limestone, and from historical considerations, it was possible to deduce the raw materials used and their approximate composition in the tiles. In the same way it was possible to determine the nature of the mortars used to fix the tiles. Cyclic voltammetric study of the iron(II) and iron(III) system in the biscuit showed the simultaneous presence of both oxidation states, corroborating the results.

  11. Voltammetric sensing of phosphoproteins using a gallium(III) acetylacetonate-modified carbon paste electrode.

    PubMed

    Sugawara, Kazuharu; Yugami, Asako; Kadoya, Toshihiko

    2012-01-01

    The voltammetric detection of phosphoproteins was developed using a gallium(III) acetylacetonate-modified carbon paste electrode. Because phosphate groups of the protein interacted with the gallium(III) ion, the protein was accumulated on the electrode surface. A hexaammine ruthenium(III) ion, which combined with the functional groups, was used to monitor the interaction. When phosvitin and hexaammine ruthenium(III) ions were incubated in 0.1 M acetate buffer (pH 3.2), a reduction peak of hexaammine ruthenium(III) ion at the electrode decreased as the concentration of the protein increased. In contrast, an increase in the peak current was observed with a plain carbon paste electrode. These results were caused by a competitive reaction of the phosphate groups with the hexaammine ruthenium(III) and gallium(III) ions. In the presence of α-, β- and κ-caseins, the electrode response decreased due to the order of the numbers of phosphate groups. This method could be applied to the sensing of phosphoproteins at the 10(-10) M level. PMID:22451365

  12. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    PubMed

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets.

  13. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. PMID:26478378

  14. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility.

  15. Experimental and theoretical study of possible correlation between the electrochemistry of canthin-6-one and the anti-proliferative activity against human cancer stem cells

    NASA Astrophysics Data System (ADS)

    Cebrián-Torrejón, G.; Doménech-Carbó, A.; Scotti, M. T.; Fournet, A.; Figadère, B.; Poupon, E.

    2015-12-01

    This work presents an approach to study the performance of novel targets able to overcome cancer stem cell chemoresistance, based on the voltammetric data for microparticulate films of natural or synthetic alkaloids from the canthin-6-one series. A comparison of this voltammetric technique with conventional solution phase electrochemistry suggests the differences in the anti-proliferative activity of canthin-6-ones could be tentatively correlated to their different capacity to generate semiquinone radical anions. These data also match theoretical calculations.

  16. A square-wave adsorptive stripping voltammetric method for determination of fast green dye.

    PubMed

    Al-Ghamdi, Ali F

    2009-01-01

    Square-wave adsorptive stripping voltammetric (SW-AdSV) determinations of trace concentrations of the coloring agent fast green were described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, and then a negative sweep was initiated. In pH 10 carbonate supporting electrolyte, fast green gave a well-defined and sensitive SW-AdSV peak at -1220 mV. The electroanalytical determination of this dye was found to be optimized in carbonate buffer (pH 10) with the following experimental conditions: accumulation time (120 s); accumulation potential (-0.8 V); scan rate (800 mV/s); pulse amplitude (90 mV); frequency (90 Hz); surface area of the working electrode (0.6 mm2); and the convection rate (2000 rpm). Under these optimized conditions, the AdSV peak current was proportional over the concentration range 2 x 10(-8) -6 x 10(-7) M (r = 0.999), with an LOD of 1.63 x 10(-10) M (0.132 ppb). This analytical approach possessed more enhanced sensitivity than conventional chromatography or spectrophotometry, and was simple and quick. The precision of the method in terms of RSD was 0.17%, whereas the accuracy was evaluated via the mean recovery of 99.6%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102, E123, and E129), natural and artificial sweeteners, and antioxidants were also investigated. Applicability of the developed electroanalysis method was illustrated via the determination of fast green in ice cream and soft drink samples.

  17. Head space voltammetry: a novel voltammetric method for volatile organics and a case study for phenol.

    PubMed

    Volkan Özdokur, K; Pelit, Levent; Ertaş, Hasan; Timur, Suna; Ertaş, F Nil

    2012-08-30

    Present paper describes the results of a novel method which combines the Head space (HS) preconcentration of the analyte on the electrode prior to the voltammetric analysis. Thereafter, the method was called HS-Voltammetry. The performance of the method was tested upon using an electroactive and volatile molecule, phenol molecule, which gives an oxidation peak at conventional electrodes. In this study, a glassy carbon electrode was modified with polypyrrole by electropolymerization and then, the electrode was placed over the solution in a sealed vial heated gently on a hotplate with a stirrer for phenol determination. By controlling the thickness of the polymeric coating and optimizing preconcentration parameters such as vial pH and temperature, stirring rate and exposure time, a very consistent (5.2% at 5.0×10(-7) M) fraction of the analyte can be extracted during a predetermined time. The oxidation peak current at 0.8 V depended linearly on the phenol concentration over a wide range (3 orders of magnitude). The detection limit was estimated as 7.0×10(-8) M at 60 °C (S/N=3) which is well below the limit set by the European Community for phenols in wastewaters (ca. 5×10(-6) M). The effect of other phenolic compounds was also examined and it was shown that head space preconcentration eliminated the interference of non-volatile phenolic acids studied. For volatile phenolic compounds, the selectivity can be maintained in cases when isolated peaks are obtained for each component. The proposed method has been applied successfully for the determination of phenol in artificial wastewater and recovery percentage was calculated as 93%.

  18. Indirect differential pulse voltammetric determination of aluminum by a pyrocatechol violet-modified electrode

    SciTech Connect

    Chen, G.; Bi, S.; Dai, L.; Cao, M.; Chen, Y. Wang, X.

    1999-03-01

    Aluminum is one of the abundant elements in the earth`s crust. It has been considered to be a causative agent for various neurological disorders such as Alzheimer Senile, presenile dementia and amyotrophic lateral sclerosis. It is also very harmful to plants and aquatic organisms. Therefore, the determination of Al is very important. A Pyrocatechol Violet (PCV) modified electrode for the voltammetric determination of aluminum is reported. The modified electrode is simply prepared by dip-coating a pyrolytic graphite electrode in a NaAc-HAc buffer solution of PCV. Optimum experimental conditions for aluminum determination include a 0.2 mol/L NaAc-HAc buffer solution of pH 4.8, a PCV concentration of 0.02 mol/L used to modify the electrode and the use of differential-pulse mode for measurement. The peak currents of differential pulse voltammograms (DPV) decrease with the addition of Al into the buffer solution while the peak potentials remain the same. The decreasing value of peak current {Delta}i{sub p} is linear with Al concentration in the range of 1{times}10{sup {minus}8} to 1{times}10{sup {minus}7} mol/L and 1{times}10{sup {minus}7} to 1{times}10{sup {minus}6} mol/L. The detection limit is 5{times}10{sup {minus}9} mol/L and the relative standard deviation for 4{times}10{sup {minus}8} mol/L Al is 2.9% (n=8). The stability of this electrode is satisfactory. No serious interference is found. This method has been applied to determine Al in drinking water samples.

  19. Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

    PubMed Central

    Bataller, Román; Campos, Inmaculada; Laguarda-Miro, Nicolas; Alcañiz, Miguel; Soto, Juan; Martínez-Máñez, Ramón; Gil, Luís; García-Breijo, Eduardo; Ibáñez-Civera, Javier

    2012-01-01

    A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm−3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm−3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, −2.3 × 10−5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. PMID:23250277

  20. Microsensor studies on Padina from a natural CO2 seep: implications of morphology on acclimation to low pH.

    PubMed

    Hofmann, Laurie C; Fink, Artur; Bischof, Kai; de Beer, Dirk

    2015-12-01

    Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME ) was higher than the external seawater (pHSW ) at all pHSW levels investigated, and the difference (i.e., pHME - pHSW ) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg ) inside the microenvironment increased with decreasing pHSW , but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3 (-) ions during dissolved inorganic carbon uptake at the higher pHSW . In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW . PMID:26987005

  1. Microsensor studies on Padina from a natural CO2 seep: implications of morphology on acclimation to low pH.

    PubMed

    Hofmann, Laurie C; Fink, Artur; Bischof, Kai; de Beer, Dirk

    2015-12-01

    Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME ) was higher than the external seawater (pHSW ) at all pHSW levels investigated, and the difference (i.e., pHME - pHSW ) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg ) inside the microenvironment increased with decreasing pHSW , but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3 (-) ions during dissolved inorganic carbon uptake at the higher pHSW . In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW .

  2. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    PubMed Central

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2010-01-01

    Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365

  3. In vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    NASA Astrophysics Data System (ADS)

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald U.; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2009-03-01

    Environmentally responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material to be integrated in biochemical microsensors and MEMS devices. In this work, micro fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMADMA- TEGDMA) was used as an environmental-sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing the ionic strength. The time-dependent electrical output signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel confinement inside the sensor.

  4. Electro-Oxidation Mechanism and Direct Square-Wave Voltammetric Determination of Lidocaine With a Carbon-Paste Electrode

    PubMed Central

    Rahbar, Nadereh; Ramezani, Zahra; Babapour, Ahmad

    2015-01-01

    Background Lidocaine hydrochloride (LH) is one of the most extensively used local anesthetics and peripheral analgesics. Availability of a simple and sensitive assay method for this analyte in pharmaceutical preparations as well as development of new voltammetric detectors that can be applied in chromatographic systems for determination of this analyte in biological samples are of great importance. Objectives In this study, a square-wave voltammetric (SWV) determination of LH at a bare carbon-paste electrode (CPE) was reported. Moreover, the oxidation mechanism for LH molecule at this electrode was investigated. Materials and Methods The SW voltammogram of LH solution at CPE showed a well-defined peak between +0.80 and +0.88 V depending on a scan rate in potassium nitrate (KNO3) solution. Different chemical and instrumental parameters influencing the voltammetric response, such as the pH level and scan rate were optimized for LH determination. Results A linear range of 8.0 - 1000.0 μmol L-1 (r2 = 0.999) was obtained. The limit of detection (LOD) was 0.29 μmol L-1. The relative standard deviations of 2.1% obtained for 0.8 800 μmol L-1 solution of LH indicated a reasonable reproducibility of the method. Conclusions The results of this study show that LH in different pharmaceutical preparations could be determined with good reliability. In addition, the results reveal that the equal numbers of electrons and protons are involved in the oxidation of LH and the irreversible oxidation of an analyte was performed via amine groups of LH molecule. PMID:25866720

  5. Potential shift correction in multivariate curve resolution of voltammetric data. General formulation and application to some experimental systems.

    PubMed

    Alberich, Arístides; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2008-01-01

    A new mathematical algorithm is proposed to correct the progressive potential shift of some voltammetric signals that decrease the linearity of the data. The corrected data matrix can be further analysed by Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) and the vector including the potential shift corrections can be fitted to specific equations such as that by DeFord-Hume. A detailed discussion is given on the different cases of potential shift correction, and, in some of them, mathematical simulation is made or experimental systems [Cd(ii)-glutathione and Zn(ii)-glycine] are analysed.

  6. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. PMID:26452863

  7. The study and application of four kinds of organic ion-selective microsensors

    NASA Astrophysics Data System (ADS)

    Yu, Bi; Zheng, Xiao; Feng, Chu; Hong, Wen-Bing; Liu, Jun-Tao; Wang, Ru-Jiang

    1991-09-01

    Four kinds of organic ion-selective microelectrodes (two barrels, tip diameter 0.1-0.5 micron) have been developed for the measurement of acetylcholine, histamine, serotonin, and bile acid. Physiological and pathological models on the cellular or sub-cellular level have been established for the purpose of basic and clinical pharmacological research, treatment or diagnosis of certain diseases. The acetylcholine sensitive microelectrode has been applied to the study of acetylcholine activity in single erythrocytes of normal human subjects and patients suffering from manic depressive disorders. The bile acid selective microelectrode has been used for the direct measurement of intracellular bile acid activities both in colorectal cancer and colorectal mucosa in living condition.

  8. Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis.

    PubMed

    Rodeberg, Nathan T; Johnson, Justin A; Cameron, Courtney M; Saddoris, Michael P; Carelli, Regina M; Wightman, R Mark

    2015-11-17

    Principal component regression, a multivariate calibration technique, is an invaluable tool for the analysis of voltammetric data collected in vivo with acutely implanted microelectrodes. This method utilizes training sets to separate cyclic voltammograms into contributions from multiple electroactive species. The introduction of chronically implanted microelectrodes permits longitudinal measurements at the same electrode and brain location over multiple recordings. The reliability of these measurements depends on a consistent calibration methodology. One published approach has been the use of training sets built with data from separate electrodes and animals to evaluate neurochemical signals in multiple subjects. Alternatively, responses to unpredicted rewards have been used to generate calibration data. This study addresses these approaches using voltammetric data from three different experiments in freely moving rats obtained with acutely implanted microelectrodes. The findings demonstrate critical issues arising from the misuse of principal component regression that result in significant underestimates of concentrations and improper statistical model validation that, in turn, can lead to inaccurate data interpretation. Therefore, the calibration methodology for chronically implanted microelectrodes needs to be revisited and improved before measurements can be considered reliable.

  9. Synthesis and application of nano-sized ionic imprinted polymer for the selective voltammetric determination of thallium.

    PubMed

    Nasiri-Majd, Mojtaba; Taher, Mohammad Ali; Fazelirad, Hamid

    2015-11-01

    A simple and selective thallium imprinted polymer was synthesized as a chemical modifier for the stripping voltammetric determination of Tl ions. The polymerization process (bulk polymerization) was performed with ethylene glycol dimethacrylate (crosslinking monomer) and methacrylic acid (functional monomer) in the presence of 2,2'-azobis(isobutyronitrile) (initiator). The electrochemical method was based on the accumulation of thallium ions at the surface of a modified carbon paste electrode with Tl imprinted polymer and multi-walled carbon nanotubes. After preconcentration process, the voltammetric measurements were carried out via electrolysis of the accumulated Tl ions in a closed circuit. Under the optimized conditions, a linear response range from 3.0 to 240 ng mL(-1) was obtained. The detection limit and RSD (100.0 ng mL(-1) of Tl) were calculated as 0.76 ng mL(-1) and ±2.7%, respectively. The suggested modified electrode has good characteristics such as excellent selectivity, high sensitivity and suitable stability. Also, it was successfully applied for the electrochemical determination of trace amounts of Tl in the environmental and biological samples. PMID:26452811

  10. Electrochemical evaluation and adsorptive stripping voltammetric determination of capsaicin or dihydrocapsaicin on a disposable pencil graphite electrode.

    PubMed

    Yardım, Yavuz; Sentürk, Zühre

    2013-08-15

    Capsaicin and dihydrocapsaicin are the two most abundant capsaicinoids in peppers, which are responsible for about 90% of the spiciness. A detailed study of the electrochemical properties of these compounds at pencil graphite (PG) electrode was carried out in the pH range 1.0-12.0 in aqueous solutions. The compounds underwent irreversible oxidation at PG electrode, which was an adsorption-controlled process with two protons and two electrons. The voltammetric data indicated that their oxidation proceeded via an ECE mechanism. Using the square-wave adsorptive stripping voltammetry with accumulation at a fixed potential of -0.1V for 120s, both of them yielded a well-defined voltammetric response at +0.31V (vs. Ag/AgCl) in Britton-Robinson buffer, pH 9.0. Capsaicin and dihydrocapsaicin could be determined with detection limits of 1.12 ng mL(-1) (3.7×10(-9)M) and 0.28 ng mL(-1) (9.1×10(-10)M), respectively. The practical applicability of this methodology was tested in commercial Turkish pepper products. The concentration of total capsaicinoids was determined using capsaicin as standard.

  11. A new voltammetric strategy for sensitive and selective determination of gallium using cupferron as a complexing agent.

    PubMed

    Grabarczyk, Malgorzata; Wardak, Cecylia

    2014-01-01

    This article describes a differential pulse adsorptive stripping voltammetric method for the trace determination of gallium in environmental water samples. It is based on the adsorptive deposition of the complex Ga(III)-cupferron at the hanging mercury drop electrode (HMDE) at -0.4 V (versus Ag/AgCl) and its cathodic stripping during the potential scan. The method was optimized as concerns the main electrochemical parameters that affect the voltammetric determination (supporting electrolyte, pH, cupferron concentration, deposition potential and time). The calibration graph is linear from 5 × 10(-10) to 5 × 10(-7) mol L(-1) with a detection limit calculated as 1.3 × 10(-10) mol L(-1) for deposition time of 30 s. The influence of interfering substances such as surfactants and humic substances present in the matrices of natural water samples on the Ga(III) signal was examined and a satisfying minimization of these interferences was proposed. The procedure was applied to direct determination of gallium in environmental water samples.

  12. Synthesis and application of nano-sized ionic imprinted polymer for the selective voltammetric determination of thallium.

    PubMed

    Nasiri-Majd, Mojtaba; Taher, Mohammad Ali; Fazelirad, Hamid

    2015-11-01

    A simple and selective thallium imprinted polymer was synthesized as a chemical modifier for the stripping voltammetric determination of Tl ions. The polymerization process (bulk polymerization) was performed with ethylene glycol dimethacrylate (crosslinking monomer) and methacrylic acid (functional monomer) in the presence of 2,2'-azobis(isobutyronitrile) (initiator). The electrochemical method was based on the accumulation of thallium ions at the surface of a modified carbon paste electrode with Tl imprinted polymer and multi-walled carbon nanotubes. After preconcentration process, the voltammetric measurements were carried out via electrolysis of the accumulated Tl ions in a closed circuit. Under the optimized conditions, a linear response range from 3.0 to 240 ng mL(-1) was obtained. The detection limit and RSD (100.0 ng mL(-1) of Tl) were calculated as 0.76 ng mL(-1) and ±2.7%, respectively. The suggested modified electrode has good characteristics such as excellent selectivity, high sensitivity and suitable stability. Also, it was successfully applied for the electrochemical determination of trace amounts of Tl in the environmental and biological samples.

  13. Electroanalytical characteristics of piribedil and its differential pulse and square wave voltammetric determination in pharmaceuticals and human serum.

    PubMed

    Uslu, Bengi; Ozkan, Sibel A

    2003-03-10

    The electrochemical oxidative behavior of piribedil (PR) was described. It was investigated by cyclic, linear sweep, differential pulse (DPV) and square wave (SWV) voltammetric techniques. The redox behavior of PR was found irreversible. Different parameters were tested to optimize the conditions for the determination of PR. The dependence of intensities of currents and potential on pH, concentration, scan rate, nature of the buffer was investigated. Two sensitive methods for the measurement of PR were described. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H(2)SO(4) and pH 5.7 acetate buffer. The determination peaks are obtained at 1.27 and 0.95 V for differential pulse and 1.29 and 0.97 V for SWV in 0.1 M H(2)SO(4) and pH 5.7 acetate buffer, respectively. The linear response was obtained in the ranges of 2 x 10(-6)-1 x 10(-3) M in 0.1 M H(2)SO(4) and 2 x 10(-6)-8 x 10(-4) M in pH 5.7 acetate buffer for both techniques. The proposed techniques were successfully applied to the determination of PR in tablet dosage forms and human serum. Excipients did not interfere in the determination. The necessary statistical validation reveals that the proposed methods are free from significant systematic errors.

  14. Second-order advantage maintenance with voltammetric data modeling for quantitation of ethiofencarb in the presence of interferences.

    PubMed

    Diez, Nielene Mora; Cabanillas, Agustina Guiberteau; Silva Rodríguez, Antonio; Goicoechea, Héctor C

    2015-01-01

    This work presents the development of a method based on a voltammetric determination coupled to second-order data modeling with multivariate curve resolution-alternating least-square (MCR-ALS) and unfolded partial least squares regression followed by residual bilinearization (U-PLS/RBL) for the quantitation of the pesticide ethiofencarb in the presence of interferences in tap water. The determination of ethiofencarb by voltammetry is possible on the basis that this pesticide is hydrolysed in alkaline media giving rise to a compound which shows an oxidation peak at Ep=0.80 V. But some other pesticides belonging to the same family can be considered as interferences due to the high overlapping in their signals. The two such interferences are fenobucarb and bendiocarb, which have not been included in the calibration step. The possibility of second-order multivariate calibration was studied by using the hydrolysis time as the third variable, and MCR-ALS and U-PLS/RBL. Good results were obtained in this determination in spite of the high overlapping in voltammetric signals.

  15. In situ copper oxide modified molecularly imprinted polypyrrole film based voltammetric sensor for selective recognition of tyrosine.

    PubMed

    Saumya, Varghese; Prathish, Krishnapillai P; Rao, Talasila P

    2011-08-15

    Organic-inorganic hybrids are promising functional materials as they combine the special characteristics of both organic (polymer) and inorganic phases. Among different existing approaches for the preparation of such polymer-inorganic hybrid coatings, in situ electrochemical methods are very advantageous because of their high sensitivity and simplicity. In the present study, voltammetric sensors for tyrosine are designed and developed via various modifications on glassy carbon electrode such as polypyrrole coated GCE, molecularly imprinted polypyrrole coated GCE (MIPPy) and in situ copper oxide modified MIPPy coated GCE. Of these, in situ copper oxide modified MIPPy coated GCE sensor responds to tyrosine concentrations in the range 1 × 10(-8) to 1 × 10(-6) and 2 × 10(-6) to 8 × 10(-6)M with a very low detection limit of 4.0 × 10(-9)M and by far the most sensitive one. Detailed linear sweep voltammetric and chronoamperometric experiments were undertaken to investigate the electrocatalytic behavior of tyrosine. The electron transfer coefficient, diffusion coefficient and charge transfer rate constants involved in the sensing process using in situ copper oxide modified MIPPy film coated GCE are 0.47, 1.88 × 10(-6)cm(2)s(-1), 4.7 × 10(6) L mol(-1)s(-1), respectively. Furthermore, the designed sensor is highly selective and has been applied successfully for the analysis of synthetic and real samples of human urine.

  16. Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar.

    PubMed

    Agustini, Deonir; Mangrich, Antonio Salvio; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2015-09-01

    A simple and sensitive electroanalytical method was developed for determination of nanomolar levels of Pb(II) based on the voltammetric stripping response at a carbon paste electrode modified with biochar (a special charcoal) and bismuth nanostructures (nBi-BchCPE). The proposed methodology was based on spontaneous interactions between the highly functionalized biochar surface and Pb(II) ions followed by reduction of these ions into bismuth nanodots which promote an improvement on the stripping anodic current. The experimental procedure could be summarized in three steps: including an open circuit pre-concentration, reduction of accumulated lead ions at the electrode surface and stripping step under differential pulse voltammetric conditions (DPAdSV). SEM images revealed dimensions of bismuth nanodots ranging from 20 nm to 70 nm. The effects of main parameters related to biochar, bismuth and operational parameters were examined in detail. Under the optimal conditions, the proposed sensor has exhibited linear range from 5.0 to 1000 nmol L(-1) and detection limit of 1.41 nmol L(-1) for Pb(II). The optimized method was successfully applied for determination of Pb(II) released from overglaze-decorated ceramic dishes. Results obtained were compared with those given by inductively coupled plasma optical emission spectroscopy (ICP-OES) and they are in agreement at 99% of confidence level.

  17. Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar.

    PubMed

    Agustini, Deonir; Mangrich, Antonio Salvio; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2015-09-01

    A simple and sensitive electroanalytical method was developed for determination of nanomolar levels of Pb(II) based on the voltammetric stripping response at a carbon paste electrode modified with biochar (a special charcoal) and bismuth nanostructures (nBi-BchCPE). The proposed methodology was based on spontaneous interactions between the highly functionalized biochar surface and Pb(II) ions followed by reduction of these ions into bismuth nanodots which promote an improvement on the stripping anodic current. The experimental procedure could be summarized in three steps: including an open circuit pre-concentration, reduction of accumulated lead ions at the electrode surface and stripping step under differential pulse voltammetric conditions (DPAdSV). SEM images revealed dimensions of bismuth nanodots ranging from 20 nm to 70 nm. The effects of main parameters related to biochar, bismuth and operational parameters were examined in detail. Under the optimal conditions, the proposed sensor has exhibited linear range from 5.0 to 1000 nmol L(-1) and detection limit of 1.41 nmol L(-1) for Pb(II). The optimized method was successfully applied for determination of Pb(II) released from overglaze-decorated ceramic dishes. Results obtained were compared with those given by inductively coupled plasma optical emission spectroscopy (ICP-OES) and they are in agreement at 99% of confidence level. PMID:26003715

  18. Angularly sensitive wide field of view micro-sensor construction and new processing paradigm: task oriented optical processing

    NASA Astrophysics Data System (ADS)

    Franck, Jerome B.

    2007-04-01

    Discussed is a novel method of manufacturing an Angularly Sensitive Micro-Sensor (ASMS). The process employed utilizes excimer laser ablation to write out the microlens on the curved surface of the master lens. This master lens element is manufactured with fused optical fibers, such that if the registration is maintained, the light from each microlens goes via the fiber to a specific pixel in a focal plane array (FPA). Such a system allows for a field of view greatly in excess of 180 degrees. If local imaging is required for specific tasks the fiber can send the angularly localized image to a pixel set. Image fusing may then be required. Infrared and ultraviolet versions can be manufactured. A more general application allows for a multi-spectral sensor. After one ASMS is constructed, then an inverse mask (mould) can be created and the monolithic sphere, retaining its registration, is covered in liquid plastic and placed into the mould and the exact replica is re-created. The advantage is low cost and rapid manufacture of the ASMS. The paper focuses on this sensor as a Task-Oriented Optical Processing (TOP) system; where the processing is performed primarily by the optics leaving a greatly reduced requirement for an electronic processor. This is a critical issue for micro, insect sized platforms where the weight budget is devoted to the energy and propulsive systems. An important aspect of this approach is that the sensor samples amplitude and angular space rather than amplitude and position space as conventional sensors currently do. This makes the ASMS processing paradigm completely different from conventional image processing. For example using several fiber/pixel elements to comprise a UV polarimeter allows for simple storage and processing of vector elements for simple navigation. The home position may be treated as "Look up table" reference matrix (RM). That base table can be modified to account for the passage of time (and hence change in solar position from

  19. Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals.

    PubMed

    Gupta, Bakul; Mai, Kelly; Lowe, Stuart B; Wakefield, Denis; Di Girolamo, Nick; Gaus, Katharina; Reece, Peter J; Gooding, J Justin

    2015-10-01

    Herein is presented a microsensor technology as a diagnostic tool for detecting specific matrix metalloproteinases (MMPs) at very low concentrations. MMP-2 and MMP-9 are detected using label free porous silicon (PSi) photonic crystals that have been made selective for a given MMP by filling the nanopores with synthetic polymeric substrates containing a peptide sequence for that MMP. Proteolytic cleavage of the peptide sequence results in a shift in wavelength of the main peak in the reflectivity spectrum of the PSi device, which is dependent on the amount of MMP present. The ability to detect picogram amounts of MMP-2 and MMP-9 released by primary retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells stimulated with lipopolysaccharide (LPS) is demonstrated. It was found that both cell types secrete higher amounts of MMP-2 than MMP-9 in their stimulated state, with RPE cells producing higher amounts of MMPs than IPE cells. The microsensor performance was compared to conventional protease detection systems, including gelatin zymography and enzyme linked immunosorbent assay (ELISA). It was found that the PSi microsensors were more sensitive than gelatin zymography; PSi microsensors detected the presence of both MMP-2 and MMP-9 while zymography could only detect MMP-2. The MMP-2 and MMP-9 quantification correlated well with the ELISA. This new method of detecting protease activity shows superior performance to conventional protease assays and has the potential for translation to high-throughput multiplexed analysis.

  20. Solar UV-treatment of water samples for stripping-voltammetric determination of trace heavy metals in Awash river, Ethiopia.

    PubMed

    Woldemichael, Gelaneh; Tulu, Taffa; Flechsig, Gerd-Uwe

    2016-03-01

    We report about testing a new mobile and sustainable water sample digestion method in a preliminary field trial in Ethiopia. In order to determine heavy metals at the ultra-trace level by stripping voltammetric techniques in water samples from Awash River, we applied our new method of solar UV-assisted sample pretreatment to destroy the relevant interfering dissolved organic matter. The field tests revealed that 24 h of solar UV irradiation were sufficient to achieve the same sample pretreatment results as with classic digestion method based on intense and hard UV. Analytical results of this study suggest that both a hydroelectric power station and agrichemical applications at Koka Lake have increased the levels of the investigated metals zinc, cadmium, lead, copper, cobalt, nickel, and uranium. PMID:27441266

  1. Voltammetric sensor for barbituric acid based on a sol-gel derivated molecularly imprinted polymer brush grafted to graphite electrode.

    PubMed

    Patel, Amit Kumar; Sharma, Piyush Sindhu; Prasad, Bhim Bali

    2009-04-17

    A voltammetric sensor based on a molecularly imprinted polymer (MIP) brush grafted to sol-gel film on graphite electrode is reported for the selective and sensitive analysis of barbituric acid (BA) in aqueous, blood plasma, and urine samples. The modified electrode was preanodised at +1.6 V (vs. saturated calomel electrode), where encapsulated BA involved hydrophobically induced hydrogen bondings, in MIP cavities exposed at the film/solution interface, at pH 7.0. Scanning electron microscopy (SEM) was employed to characterise the surface morphology of the resultant imprinted film of MIP brush. The differential pulse, cathodic stripping voltammetry (DPCSV) technique was employed to investigate the binding performance of the sol-gel-modified imprinted polymer brush, which yielded a linear response in the range of 4.95-100.00 microg mL(-1) of BA with a detection limit of 1.6 microg mL(-1) (S/N=3). PMID:19135515

  2. Voltammetric Behavior and Determination of Trace Amounts of Omeprazole Using an Edge-plane Pyrolytic Graphite Electrode

    PubMed Central

    Shahrokhian, Saeed; Ghalkhani, Masoumeh; Bayat, Maryam; Ghorbani-Bidkorbeh, Fatemeh

    2015-01-01

    The voltammetric performance of edge-plane pyrolytic graphite (EPG) electrode via adsorptive stripping voltammetry was investigated for study of the electrochemical behavior of omeprazole (OMZ) in aqueous solution. The results revealed that the oxidation of OMZ is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism. The determination conditions, such as the pH values of the supporting electrolyte, accumulation time and scan rate were optimized. Simplicity, high reproducibility and low detection limit (3 nM) of the electrode response as well as wide linear range (0.01 to 4.0 µM) can be stated as significant features of this electrode. The EPG electrode was successfully applied for the determination of OMZ in pharmaceutical formulations and satisfactory results were obtained. PMID:25901153

  3. The Application of Nafion Metal Catalyst Free Carbon Nanotube Modified Gold Electrode: Voltammetric Zinc Detection in Serum

    PubMed Central

    Yue, Wei; Bange, Adam; Riehl, Bill L.; Johnson, Jay M.; Papautsky, Ian; Heineman, William R.

    2013-01-01

    Metal catalyst free carbon nanotube (MCFCNT) whiskers were first used as an electrode modification material on a gold electrode surface for zinc voltammetric measurements. A composite film of Nafion and MCFCNT whiskers was applied to a gold electrode surface to form a mechanically stable sensor. The sensor was then used for zinc detection in both acetate buffer solution and extracted bovine serum solution. A limit of detection of 53 nM was achieved for a 120 s deposition time. The zinc in bovine serum was extracted via a double extraction procedure using dithizone in chloroform as a zinc chelating ligand. The modified electrode was found to be both reliable and sensitive for zinc measurements in both matrices. PMID:24436574

  4. Voltammetric Detection of Urea on an Ag-Modified Zeolite-Expanded Graphite-Epoxy Composite Electrode

    PubMed Central

    Manea, Florica; Pop, Aniela; Radovan, Ciprian; Malchev, Plamen; Bebeselea, Adriana; Burtica, Georgeta; Picken, Stephen; Schoonman, Joop

    2008-01-01

    In this paper, a modified expanded graphite composite electrode based on natural zeolitic volcanic tuff modified with silver (EG-Ag-Z-Epoxy) was developed. Cyclic voltammetry measurements revealed a reasonably fast electron transfer and a good stability of the electrode in 0.1 M NaOH supporting electrolyte. This modified electrode exhibited moderate electrocatalytic effect towards urea oxidation, allowing its determination in aqueous solution. The linear dependence of the current versus urea concentration was reached using square-wave voltammetry in the concentrations range of urea between 0.2 to 1.4 mM, with a relatively low limit of detection of 0.05 mM. A moderate enhancement of electroanalytical sensitivity for the determination of urea at EG-Ag-Z-Epoxy electrode was reached by applying a chemical preconcentration step prior to voltammetric/amperometric quantification.

  5. Stripping voltammetric and polarographic techniques for the determination of anti-fungal ketoconazole on the mercury electrode.

    PubMed

    Arranz, Pablo; Arranz, Adela; Moreda, José María; Cid, Adolfo; Arranz, Juan Francisco

    2003-11-24

    The electroanalytical behaviour of ketoconazole in Britton-Robinson buffer is described. The reduction process on the hanging mercury drop electrode (HMDE) gives rise to one peak over -1.6 V (vs. Ag/AgCl/sat.KCl), within the pH range studied (4.7-9.6). The results showed that the reduction of ketoconazole is irreversible and the limiting current is adsorption controlled. The dependence of the peak current on the concentration was studied by means of different polarographic and voltammetric techniques. Using adsorptive stripping differential pulse voltammetry (AdS-DPV), the detection limit (DL) reached was 5.3 x 10(-11) mol l(-1). Two procedures, based on differential pulse polarography (DPP) and AdS-DPV in aqueous medium were developed for the determination of ketoconazole in a gel formulation and spiked urine samples, respectively.

  6. Voltammetric iodometric titration of ascorbic acid with dead-stop end-point detection in fresh vegetables and fruit samples.

    PubMed

    Verdini, R A; Lagier, C M

    2000-07-01

    The present work describes a method for determining ascorbic acid, which combines iodometry with a voltammetric technique to detect the end point of the titration. In addition, the validity of the method applied to natural vegetable or fruit samples was assessed. The results were compared with those obtained by an accurate method such as HPLC using UV detection. Similar values of ascorbic acid for different natural samples were obtained by means of this approach (p > 0.05). The limit of quantification was 0.1 mg. This technique presents the advantage of other electroanalytical methods such as avoiding filtration or ultracentrifugation steps, with the additional benefit of using the platinum electrodes, which are routinely used in the laboratory. These facts allow a rapid and efficient quantification of ascorbic acid with very low cost of reagents and equipment.

  7. Cadmium binding in mixtures of phytochelatins and their fragments: a voltammetric study assisted by multivariate curve resolution and mass spectrometry.

    PubMed

    Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2010-01-01

    Phytochelatins (PC(n), (gamma-Glu-Cys)(n)Gly) are cysteine-rich peptides synthesized by plants which are involved in metal bioregulation and phytoremediation. Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) is applied to voltammetric data obtained from the analysis of the competitive binding of Cys or Cys-Gly with PC(2) or PC(3) by Cd(2+). The displacements between ligands, the chain length dependence on the competitive binding to PC(n) and the possible existence of mixed ligand metal-complexes are investigated. The shape analysis of the resulting pure voltammograms and concentration profiles of the components resolved by MCR-ALS suggests that ligands containing more thiol groups are able to displace the shorter chain ligands from their metal complexes, whereas the opposite does not happen. Electrochemical results are compared with ESI-MS measurements.

  8. Voltammetric and electrochemical ESR studies of oxidation reactions mediated by tris(4-bromophenyl)amine in acetonitrile.

    PubMed

    Wain, Andrew J; Streeter, Ian; Thompson, Mary; Fietkau, Nicole; Drouin, Ludovic; Fairbanks, Antony J; Compton, Richard G

    2006-02-16

    The electrochemical oxidation of tris(4-bromophenyl)amine in the presence of 2,6-lutidine is examined in acetonitrile. Voltammetric and spectroscopic investigations suggest that the electrogenerated triaryl aminium radical cation oxidizes 2,6-lutidine in an EC' mechanism, and an equilibrium constant for this homogeneous electron transfer is estimated. The mediated oxidation of a protected phenyl selenoglycoside by this reaction mixture is studied by the use of electrochemical ESR, employing a tubular flow cell, and signal intensity data is found to be consistent with the proposed mechanism, allowing the determination of kinetic parameters by computational simulation. Products of the mediated glycoside oxidation are determined by proton NMR and mass spectrometry. PMID:16471872

  9. Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode.

    PubMed

    Medeiros, Roberta A; Lourencao, Bruna C; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2012-08-15

    Differential pulse voltammetry (DPV) and a cathodically pretreated boron-doped diamond (BDD) electrode were used to simultaneously determine two pairs of synthetic food colorants commonly found mixed in food products: tartrazine (TT) and sunset yellow (SY) or brilliant blue (BB) and sunset yellow (SY). In the DPV measurements using the BDD electrode, the reduction peak potentials of TT and SY or BB and SY were separated by about 150 mV. The detection limit values obtained for the simultaneous determination of TT and SY or BB and SY were 62.7 nmol L(-1) and 13.1 nmol L(-1) or 143 nmol L(-1) and 25.6 nmol L(-1), respectively. The novel proposed voltammetric method was successfully applied in the simultaneous determination of these synthetic colorants in food products, with results similar to those obtained using a HPLC method at 95% confidence level.

  10. Voltammetric extraction of heparin and low-molecular-weight heparin across 1,2-dichloroethane/water interfaces.

    PubMed

    Jing, Ping; Kim, Yushin; Amemiya, Shigeru

    2009-12-01

    Heparin and low-molecular-weight heparin are voltammetrically extracted across 1,2-dichloroethane/water interfaces for the detection of these highly sulfated polysaccharides widely used as anticoagulants/antithrombotics in many medical procedures. A new heparin ionophore, 1-[4-(dioctadecylcarbamoyl)butyl]guanidinium, is the first to enable the voltammetric extraction of various polyanionic heparins with average molecular weights of up to approximately 20 kDa including those in commercial preparations (i.e., Arixtra (1.5 kDa), Lovenox (4.5 kDa), and unfractionated heparin (15 kDa), as well as chromatographically fractionated heparins (7, 9, 15, and 20 kDa)). Facilitated Arixtra extraction is fully and quantitatively characterized by micropipet voltammetry to propose that cooperative effects from strong heparin-binding capability and high lipophilicity of this ionophore are required for the formation of an electrically neutral and highly lipophilic complex of a heparin molecule with multiple ionophore molecules to be extracted into the nonpolar organic phase. At the same time, the participation of multiple ionophore molecules in interfacial complexation with a heparin molecule slows down its extraction across the interface. This kinetic limitation is enhanced by fast mass transfer at a micropipet-supported interface to compromise thermodynamically favorable selectivity for heparin and an important contaminant, oversulfated chondroitin sulfate, thereby requiring a macroscopic interface for sensing applications. Another highly lipophilic guanidinium ionophore, N,N-dioctadecylguanidinium, cannot completely extract even Arixtra, which indicates the importance of elaborate ionophore design for heparin extraction.

  11. A novel differential pulse voltammetric (DPV) method for measuring the antioxidant capacity of polyphenols-reducing cupric neocuproine complex.

    PubMed

    Tufan, Ayşe Nur; Baki, Sefa; Güçlü, Kubilay; Özyürek, Mustafa; Apak, Reşat

    2014-07-23

    A novel differential pulse voltammetric (DPV) method is presented, using a chromogenic oxidizing reagent, cupric neocuproine complex (Cu(Nc)2(2+)), for the assessment of antioxidant capacity of polyphenolic compounds (i.e., flavonoids, simple phenolic acids, and hydroxycinnamic acids), ascorbic acid, and real samples for the first time. The electrochemical behavior of the Cu(Nc)2(2+) complex was studied by cyclic voltammetry at a glassy carbon (GC) electrode. The electroanalytical method was based on the reduction of Cu(Nc)2(2+) to Cu(Nc)2(+) by antioxidants and electrochemical detection of the remaining Cu(II)-Nc (unreacted complex), the difference being correlated to antioxidant capacity of the analytes. The calibration curves of individual compounds comprising polyphenolics and vitamin C were constructed, and their response sensitivities and linear concentration ranges were determined. The reagent on the GC electrode retained its reactivity toward antioxidants, and the measured trolox equivalent antioxidant capacity (TEAC) values of various antioxidants suggested that the reactivity of the Cu(II)-Nc reagent is comparable to that of the solution-based spectrophotometric cupric ion reducing antioxidant capacity (CUPRAC) assay. This electroanalytical method better tolerated sample turbidity and provided higher sensitivity (i.e., lower detection limits) in antioxidant determination than the spectrophotometric assay. The proposed method was successfully applied to the measurement of total antioxidant capacity (TAC) in some herbal tea samples such as green tea, sage, marjoram, and alchemilla. Results demonstrated that the proposed voltammetric method has precision and accuracy comparable to those of the spectrophotometric CUPRAC assay.

  12. Subnanomolar detection limit of stripping voltammetric Ca²⁺-selective electrode: effects of analyte charge and sample contamination.

    PubMed

    Kabagambe, Benjamin; Garada, Mohammed B; Ishimatsu, Ryoichi; Amemiya, Shigeru

    2014-08-01

    Ultrasensitive ion-selective electrode measurements based on stripping voltammetry are an emerging sensor technology with low- and subnanomolar detection limits. Here, we report on stripping voltammetry of down to 0.1 nM Ca(2+) by using a thin-polymer-coated electrode and demonstrate the advantageous effects of the divalent charge on sensitivity. A simple theory predicts that the maximum concentration of an analyte ion preconcentrated in the thin membrane depends exponentially on the charge and that the current response based on exhaustive ion stripping from the thin membrane is proportional to the square of the charge. The theoretical predictions are quantitatively confirmed by using a thin ionophore-doped polymer membrane spin-coated on a conducting-polymer-modified electrode. The potentiostatic transfer of hydrophilic Ca(2+) from an aqueous sample into the hydrophobic double-polymer membrane is facilitated by an ionophore with high Ca(2+) affinity and selectivity. The resultant concentration of the Ca(2+)-ionophore complex in the ~1 μm-thick membrane can be at least 5 × 10(6) times higher than the aqueous Ca(2+) concentration. The stripping voltammetric current response to the divalent ion is enhanced to achieve a subnanomolar detection limit under the condition where a low-nanomolar detection limit is expected for a monovalent ion. Significantly, charge-dependent sensitivity is attractive for the ultrasensitive detection of multivalent ions with environmental and biomedical importance such as heavy metal ions and polyionic drugs. Importantly, this stripping voltammetric approach enables the absolute determination of subnanomolar Ca(2+) contamination in ultrapure water containing 10 mM supporting electrolytes, i.e., an 8 orders of magnitude higher background concentration. PMID:24992261

  13. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate.

    PubMed

    Gholizadeh, Azam; Shahrokhian, Saeed; zad, Azam Iraji; Mohajerzadeh, Shamsoddin; Vosoughi, Manouchehr; Darbari, Sara; Sanaee, Zeinab

    2012-01-15

    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate. PMID:22040749

  14. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    PubMed

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-03-15

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  15. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    PubMed Central

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  16. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    PubMed Central

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-01-01

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385

  17. Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier.

    PubMed

    Beitollahi, Hadi; Ivari, Susan Ghofrani; Torkzadeh-Mahani, Masoud

    2016-12-01

    ZnO-CuO nanoplates and 2-chlorobenzoyl ferrocene, were synthesized and used to construct a modified carbon paste electrode. The electrooxidation of 6-thioguanine at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of 6-thioguanine increased linearly in the concentration range 0.05 to 200.0μM and detection limit of 25±2nM was obtained for 6-thioguanine. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of 6-thioguanine and folic acid which makes it suitable for the detection of 6-thioguanine in the presence of folic acid in real samples. PMID:27612697

  18. Microfabricated tin-film electrodes for protein and DNA sensing based on stripping voltammetric detection of Cd(II) released from quantum dots labels.

    PubMed

    Kokkinos, Christos; Economou, Anastasios; Petrou, Panagiota S; Kakabakos, Sotirios E

    2013-11-19

    A novel disposable microfabricated tin-film electrochemical sensor was developed for the detection of proteins and DNA. The sensor was fabricated on a silicon wafer through photolithography to define the sensor geometry followed by tin sputtering. A sandwich-type immunoassay with biotinylated reporter antibody was employed for the determination of prostate-specific antigen (PSA) in human serum samples. For the detection of C533G mutation of the RET gene, biotinylated oligonucleotide probes were used. The biotinylated biomolecular probes were labeled with streptavidin (STV)-conjugated CdSe/ZnS quantum dots (QDs); quantification of the analytes was performed through acidic dissolution of the QDs and stripping voltammetric detection of the Cd(II) released. The proposed QD-based electrochemical sensor overcomes the limitations of existing voltammetric sensors and provides a mercury-free sensing platform with scope for mass-production and further potential for application in clinical diagnostics.

  19. Influence of magnetic fields on the voltammetric response of microelectrodes in highly concentrated organic redox solutions. Technical interim report No. 7, June-December 1994

    SciTech Connect

    Lee, J.; Gao, X.; Hardy, L.D.; White, H.S.

    1995-03-31

    The voltammetric response of Au and Pt microdisk electrodes (6.4, 12.5, and 25 micrometers) in concentrated solutions of organic redox species (nitrobenzene, acetophenone and benzophenone) has been measured as a function of the orientation and magnitude of an externally applied magnetic field (0 - 1 Tesla). A magnetic field effect on voltammetric currents is observed for redox concentrations greater than approx. 0.01 M, and is a strong function of the orientation of the field. Large enhancements (+100%) or diminishments ({minus}15%) of limiting currents can be induced by application of the magnetic field. The observed phenomena are discussed in terms of magnetic field-induced transport of electrogenerated products.

  20. Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode.

    PubMed

    David, Iulia Gabriela; Bizgan, Ana-Maria Cristina; Popa, Dana Elena; Buleandra, Mihaela; Moldovan, Zenovia; Badea, Irinel Adriana; Tekiner, Tuğçe Ayça; Basaga, Huveyda; Ciucu, Anton A

    2015-04-15

    The present paper describes the voltammetric behaviour and the quantitative determination of caffeic acid (CA) on a disposable pencil graphite electrode (PGE). The anodic peak current of CA recorded by differential pulse voltammetry (DPV) varies linearly with CA concentration in the range 1×10(-7)-3×10(-3) M. The detection and quantification limits were 8.83×10(-8) M and 2.94×10(-7) M caffeic acid, respectively. The mean recoveries of CA from Turkish green, white and black teas were 98.30%, 99.57% and 91.46%. For these three tea types the corresponding total polyphenolic contents (TPCs) evaluated by DPV on PGE were 35.81, 34.59 and 31.21 mg caffeic acid equivalent/g tea, respectively. These TPC values were in good accordance with those obtained by the Folin-Ciocalteu method. The developed DPV on PGE method constitutes a simple and inexpensive tool for the rapid assessment of TPC of tea samples.

  1. A batch injection analysis system with square-wave voltammetric detection for fast and simultaneous determination of naphazoline and zinc.

    PubMed

    Oliveira, Thiago da Costa; Freitas, Jhonys Machado; Munoz, Rodrigo Alejandro Abarza; Richter, Eduardo Mathias

    2016-05-15

    In this work, a batch-injection analysis system with square-wave voltammetric (BIA-SWV) detection was applied for the first time to the simultaneous determination of inorganic (zinc) and organic (naphazoline) species. Both compounds were detected in a single run (70 injections h(-1)) with a small injection volume (∼100 µL). The calibration curves exhibited linear response range between 3.0 and 21.0 μmol L(-1) (r=0.999) for naphazoline and between 10.0 and 60.0 μmol L(-1) (r=0.992) for zinc. The detection limits were 0.13 and 0.04 μmol L(-1) for zinc and naphazoline, respectively. Good reproducibility was achieved for multiple measurements of a solution containing both species (RSD<1.0%; n=20). The results obtained with the BIA-SWV method for the simultaneous determination of naphazoline and zinc were compared to those obtained by HPLC (naphazoline) and by FAAS (zinc); no statistically significant differences were observed (95% confidence level).

  2. Simultaneous square-wave voltammetric determination of aspartame and cyclamate using a boron-doped diamond electrode.

    PubMed

    Medeiros, Roberta Antigo; de Carvalho, Adriana Evaristo; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2008-07-30

    A simple and highly selective electrochemical method was developed for the simultaneous determination of aspartame and cyclamate in dietary products at a boron-doped diamond (BDD) electrode. In square-wave voltammetric (SWV) measurements, the BDD electrode was able to separate the oxidation peak potentials of aspartame and cyclamate present in binary mixtures by about 400 mV. The detection limit for aspartame in the presence of 3.0x10(-4) mol L(-1) cyclamate was 4.7x10(-7) mol L(-1), and the detection limit for cyclamate in the presence of 1.0x10(-4) mol L(-1) aspartame was 4.2x10(-6) mol L(-1). When simultaneously changing the concentration of both aspartame and cyclamate in a 0.5 mol L(-1) sulfuric acid solution, the corresponding detection limits were 3.5x10(-7) and 4.5x10(-6) mol L(-1), respectively. The relative standard deviation (R.S.D.) obtained was 1.3% for the 1.0x10(-4) mol L(-1) aspartame solution (n=5) and 1.1% for the 3.0x10(-3) mol L(-1) cyclamate solution. The proposed method was successfully applied in the determination of aspartame in several dietary products with results similar to those obtained using an HPLC method at 95% confidence level.

  3. Sensitive voltammetric determination of thymol in essential oil of Carum copticum seeds using boron-doped diamond electrode.

    PubMed

    Stanković, Dalibor M

    2015-10-01

    Essential oil of Carum copticum seeds, obtained from a local shop, was extracted and content of thymol was analyzed using square-wave voltammetry at boron-doped diamond electrode. The effect of various parameters, such as pH of supporting electrolyte and square-wave voltammetric parameters (modulation amplitude and frequency), was examined. In Britton-Robinson buffer solution (pH 4), thymol provided a single and oval-shaped irreversible oxidation peak at +1.13 V versus silver/silver chloride potassium electrode (3M). Under optimal experimental conditions, a plot of peak height against concentration of thymol was found to be linear over the range of 4 to 100μM consisting of two linear ranges: from 4 to 20μM (R(2)=0.9964) and from 20 to 100μM (R(2)=0.9993). The effect of potential interferences such as p-cymene and γ-terpinene (major components in essential oil of C. copticum seeds) was evaluated. Thus, the proposed method displays a sufficient selectivity toward thymol with a detection limit of 3.9μM, and it was successfully applied for the determination of thymol in essential oil of C. copticum seeds. The Prussian blue method was used for validation of the proposed electroanalytical method.

  4. Novel voltammetric and impedimetric sensor for femtomolar determination of lysozyme based on metal-chelate affinity immobilized onto gold nanoparticles.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2015-12-15

    In this study, we reported iminodiacetic acid-copper ion complex (IDA-Cu) immobilized onto gold nanoparticles (GNPs)-modified glassy carbon electrode as a novel electrochemical platform for selective and sensitive determination of lysozyme (Lys). IDA-Cu complex acted as an efficient recognition element capable of capturing Lys molecules. GNPs acts as a substrate to immobilize IDA-Cu coordinative complex and its interaction with Lys leds to a great signal amplification through measuring changes in differential pulse voltammetric (DPV) peak current of [Fe(CN)6](3-/4-) redox probe. Upon the recognition of the Lys to the IDA-Cu, the peak current decreased due to the hindered electron transfer reaction on the electrode surface. Under optimum condition, it was found that the proposed method could detect Lys at wide linear concentration range (0.1 pM to 0.10 mM) with detection limit of 60 fM. Furthermore, electrochemical impedance spectroscopy (EIS) detection of Lys was demonstrated as a simple and rapid alternative analytical technique with detection limit of 80 fM at concentration range up to 0.1mM. In addition, the proposed sensor was satisfactorily applied to the determination of Lys in real samples such as hen egg white. The proposed modified electrode showing the high selectivity, good sensitivity and stability toward Lys detection may hold a great promise in developing other electrochemical sensors based on metal-chelate affinity complexes.

  5. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    PubMed

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples.

  6. Square wave voltammetric detection by direct electroreduction of paranitrophenol (PNP) using an organosmectite film-modified glassy carbon electrode.

    PubMed

    Ngassa, Guy B P; Tonlé, Ignas K; Ngameni, Emmanuel

    2016-01-15

    This work describes the development of a low-cost and reliable adsorptive stripping voltammetric method for the detection of PNP in water. Organoclays were prepared by intercalation in various loading amounts of cetyltrimethylammonium ions (CTA(+)) in the interlayer space of a smectite-type clay mineral. Their structural characterization was achieved using several techniques including X-ray diffraction (XRD), N2 adsorption-desorption (BET method) and Fourier Transform Infrared spectroscopy (FTIR) that confirmed the intercalation process and the presence of the surfactant ions within the clay mineral layers. Using [Fe(CN)6](3-) and [Ru(NH3)6](3+) as redox probes, the surface charge and the permeability of the starting clay mineral and its modified counterparts were assessed by multisweep cyclic voltammetry, when these materials were coated on the surface of a glassy carbon electrode (GCE). In comparison with the bare GCE, the organoclay modified electrodes exhibited more sensitive response towards the reduction of paranitrophenol (PNP). Under optimized conditions, a calibration curve was obtained in the concentration range from 0.2 to 5.2µmolL(-1); leading to a detection limit of 3.75×10(-8)molL(-1) (S/N=3). After the study of some interfering species on the electrochemical response of PNP, the developed sensor was successfully applied to the electroanalytical quantification of the same pollutant in spring water.

  7. Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode.

    PubMed

    Zhang, Huajie

    2006-05-01

    The electrochemical behavior of colchicine at an acetylene black-dihexadecyl hydrogen phosphate (denoted as AB-DHP) composite film coated glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of colchicine at the AB-DHP film modified GCE was greatly improved, as confirmed from the significant peak current enhancement. The remarkable peak current enhancement indicates that the AB-DHP modified GCE has great potential in the sensitive determination of colchicine. Thus, all the experimental conditions, which influence the electrochemical response of colchicine, were studied and the optimum conditions were achieved. Finally, a sensitive and simple voltammetric method with a good linear relationship in the range of 1.0 x 10(-7) approximately 4.0 x 10(-5) mol/L, was developed for the determination of colchicine. The detection limit of colchicine was also examined and a low value of 4.0 x 10(-8) mol/L for 4-min accumulation was obtained (S/N=3). This electrode was successfully applied to detect colchicine in human urine samples.

  8. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles.

    PubMed

    Asadian, Elham; Iraji Zad, Azam; Shahrokhian, Saeed

    2016-01-01

    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10(-7) to 1 × 10(-4)mol L(-1) with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations.

  9. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin).

    PubMed

    Gholivand, Mohammad-Bagher; Akbari, Arezoo

    2016-05-01

    Multi-walled carbon nanotube (MWCNTS) coated with poly p-aminobenzene sulfonic acid/β-cyclodextrin (p-ABSA/β-CD) film was used as an effective strategy for modification of the surface of glassy carbon electrode (GCE). Electrochemical study and determination of citalopram (CT) were investigated at the p (p-ABSA)/β-CD/MWCNT/GC using cyclic and differential pulse anodic stripping voltammetric techniques. The results indicate that the p (p-ABSA)/β-CD/MWCNT/GC significantly enhanced the oxidation peak current of CT. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy(SEM) and cyclic voltammetry (CV).The fabricated electrochemical sensor exhibits a fast and reversible linear response toward CT within the concentration ranges of 90 nM-1 μM, 1-11 μM and 11-100 μM with correlation coefficients greater than 0.99 and detection limit of 44 nM. The resulting functionalized polymer film features interesting electrochemical properties such good recovery, reproducibility and selectivity toward CT. The applicability of the proposed sensor was tested by determination of CT in pharmaceutical combinations and human body fluids.

  10. Flexible microfabricated film sensors for the in situ quantum dot-based voltammetric detection of DNA hybridization in microwells.

    PubMed

    Kokkinos, Christos; Economou, Anastasios; Speliotis, Thanasis; Petrou, Panagiota; Kakabakos, Sotirios

    2015-01-20

    A new flexible miniaturized integrated device was microfabricated for the in situ ultrasensitive voltammetric determination of DNA mutation in a microwell format, using quantum dots (QDs) labels. The integrated device consisted of thin Bi, Ag, and Pt films (serving as the working, reference, and counter electrode, respectively) deposited by sputtering on a flexible polyimide substrate. A DNA assay was employed in microwell format, where an immobilized complementary oligonucleotide probe hybridized with the biotinylated target oligonucleotide followed by reaction with streptavidin-conjugated PbS QDs. After the acidic dissolution of the QDs, the flexible sensor was rolled and inserted into the microwell and the Pb(II) released was determined in situ by anodic stripping voltammetry. Since the analysis took place directly in the microwell, the volume of the working solution was only 100 μL and the target DNA could be detected at a concentration down to 1.1 fmol L(-1). The proposed flexible microdevice addresses the restrictions of conventional rigid electrodes while it provides a low cost integrated transducer for the ultrasensitive detection of important biomolecules. PMID:25514352

  11. Sensitive voltammetric determination of thymol in essential oil of Carum copticum seeds using boron-doped diamond electrode.

    PubMed

    Stanković, Dalibor M

    2015-10-01

    Essential oil of Carum copticum seeds, obtained from a local shop, was extracted and content of thymol was analyzed using square-wave voltammetry at boron-doped diamond electrode. The effect of various parameters, such as pH of supporting electrolyte and square-wave voltammetric parameters (modulation amplitude and frequency), was examined. In Britton-Robinson buffer solution (pH 4), thymol provided a single and oval-shaped irreversible oxidation peak at +1.13 V versus silver/silver chloride potassium electrode (3M). Under optimal experimental conditions, a plot of peak height against concentration of thymol was found to be linear over the range of 4 to 100μM consisting of two linear ranges: from 4 to 20μM (R(2)=0.9964) and from 20 to 100μM (R(2)=0.9993). The effect of potential interferences such as p-cymene and γ-terpinene (major components in essential oil of C. copticum seeds) was evaluated. Thus, the proposed method displays a sufficient selectivity toward thymol with a detection limit of 3.9μM, and it was successfully applied for the determination of thymol in essential oil of C. copticum seeds. The Prussian blue method was used for validation of the proposed electroanalytical method. PMID:26119334

  12. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin).

    PubMed

    Gholivand, Mohammad-Bagher; Akbari, Arezoo

    2016-05-01

    Multi-walled carbon nanotube (MWCNTS) coated with poly p-aminobenzene sulfonic acid/β-cyclodextrin (p-ABSA/β-CD) film was used as an effective strategy for modification of the surface of glassy carbon electrode (GCE). Electrochemical study and determination of citalopram (CT) were investigated at the p (p-ABSA)/β-CD/MWCNT/GC using cyclic and differential pulse anodic stripping voltammetric techniques. The results indicate that the p (p-ABSA)/β-CD/MWCNT/GC significantly enhanced the oxidation peak current of CT. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy(SEM) and cyclic voltammetry (CV).The fabricated electrochemical sensor exhibits a fast and reversible linear response toward CT within the concentration ranges of 90 nM-1 μM, 1-11 μM and 11-100 μM with correlation coefficients greater than 0.99 and detection limit of 44 nM. The resulting functionalized polymer film features interesting electrochemical properties such good recovery, reproducibility and selectivity toward CT. The applicability of the proposed sensor was tested by determination of CT in pharmaceutical combinations and human body fluids. PMID:26952450

  13. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2015-10-01

    The first examples of halogen bonding redox-active ferrocene receptors and their anion electrochemical sensing properties are reported. Halogen bonding was found to significantly amplify the magnitude of the receptor's metallocene redox-couple's voltammetric responses for halide sensing compared to their hydrogen bonding analogues in both acetonitrile and aqueous-acetonitrile solvent media.

  14. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2015-10-01

    The first examples of halogen bonding redox-active ferrocene receptors and their anion electrochemical sensing properties are reported. Halogen bonding was found to significantly amplify the magnitude of the receptor's metallocene redox-couple's voltammetric responses for halide sensing compared to their hydrogen bonding analogues in both acetonitrile and aqueous-acetonitrile solvent media. PMID:26289779

  15. A square-wave adsorptive stripping voltammetric method for the determination of Amaranth, a food additive dye.

    PubMed

    Alghamdi, Ahmad H

    2005-01-01

    Square-wave adsorptive stripping voltammetric (AdSV) determinations of trace concentrations of the azo coloring agent Amaranth are described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, followed by initiation of a negative sweep. In a pH 10 carbonate supporting electrolyte, Amaranth gave a well-defined and sensitive AdSV peak at -518 mV. The electroanalytical determination of this azo dye was found to be optimal in carbonate buffer (pH 10) under the following experimental conditions: accumulation time, 120 s; accumulation potential, 0.0 V; scan rate, 600 mV/s; pulse amplitude, 90 mV; and frequency, 50 Hz. Under these optimized conditions the AdSV peak current was proportional over the concentration range 1 x 10(-8)-1.1 x 10(-7) mol/L (r = 0.999) with a detection limit of 1.7 x 10(-9) mol/L (1.03 ppb). This analytical approach possessed enhanced sensitivity, compared with conventional liquid chromatography or spectrophotometry and it was simple and fast. The precision of the method, expressed as the relative standard deviation, was 0.23%, whereas the accuracy, expressed as the mean recovery, was 104%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102), gelatin, natural and artificial sweeteners, preservatives, and antioxidants were also investigated. The developed electroanalyticals method was applied to the determination of Amaranth in soft drink samples, and the results were compared with those obtained by a reference spectrophotometric method. Statistical analysis (paired t-test) of these data showed that the results of the 2 methods compared favorably.

  16. Anomalous cyclic voltammetric response from pores smaller than ion size by voltage-induced force.

    PubMed

    Yang, Cheol-Min; Jung, Hwan Jung; Kim, Yong Jung

    2015-05-15

    Nanoporous carbons, with different micropore size distributions, were prepared based on waste coffee grounds by a chemical activation process in order to elucidate the correlation between desolvated ions and pores smaller than the sizes of ions using an organic electrolyte. The pore structure of the coffee-based nanoporous carbon was strongly dependent on the heat-treatment temperature prior to the activation process. Cyclic voltammograms of the nanoporous carbons mainly dominated by the smaller pore relative to that of the bare ion size clearly showed deviation from an ideal feature of the current response. It was clearly envisaged that even a bare ion of a size larger than the pore size can penetrate into the pore by voltage-induced force. PMID:25668782

  17. Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products.

    PubMed

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-01-01

    Melatonin can be sensitively detected in pharmaceuticals by cyclic voltammetry and fixed-potential amperometry using a graphene-based sensor. The sensor characterization of cyclic voltammetry constantly provides high values of electrode active area and heterogeneous rate constant. In optimal conditions, the sensor was applied for the determination of melatonin in different pharmaceutical samples. The sensitivity to melatonin was 0.0371 A M(-1), and the limit of detection was 0.87×10(-6) M. The data obtained by using the graphene-based sensor for the detection of melatonin in pharmaceutical products were in good agreement with the data provided by the producer. Since no interferences from the excipients were found, using a separation technique was not necessary. Additionally, the low price, ease of handling, small amount of sample, short time per analysis, and possibility of automation are the important advantages that recommend this methodology for quality control of pharmaceuticals.

  18. Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-01-01

    Melatonin can be sensitively detected in pharmaceuticals by cyclic voltammetry and fixed-potential amperometry using a graphene-based sensor. The sensor characterization of cyclic voltammetry constantly provides high values of electrode active area and heterogeneous rate constant. In optimal conditions, the sensor was applied for the determination of melatonin in different pharmaceutical samples. The sensitivity to melatonin was 0.0371 A M−1, and the limit of detection was 0.87×10−6 M. The data obtained by using the graphene-based sensor for the detection of melatonin in pharmaceutical products were in good agreement with the data provided by the producer. Since no interferences from the excipients were found, using a separation technique was not necessary. Additionally, the low price, ease of handling, small amount of sample, short time per analysis, and possibility of automation are the important advantages that recommend this methodology for quality control of pharmaceuticals. PMID:27194909

  19. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode.

    PubMed

    Shang, Lei; Zhao, Faqiong; Zeng, Baizhao

    2014-05-15

    In this work, graphene oxide was reduced to graphene with an endogenous reducing agent from dimethylformamide, and then AuPd alloy nanoparticles were electrodeposited on the graphene film. The obtained AuPd-graphene hybrid film was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and voltammetry. The electrochemical behavior of vanillin was studied using the AuPd-graphene hybrid based electrode. It presented high electrocatalytic activity and vanillin could produce a sensitive oxidation peak at it. Under the optimal conditions, the peak current was linear to the concentration of vanillin in the ranges of 0.1-7 and 10-40 μM. The sensitivities were 1.60 and 0.170 mA mM(-1) cm(-2), respectively; the detection limit was 20 nM. The electrode was successfully applied to the detection of vanillin in vanilla bean, vanilla tea and biscuit samples.

  20. A highly selective voltammetric sensor for nanomolar detection of mercury ions using a carbon ionic liquid paste electrode impregnated with novel ion imprinted polymeric nanobeads.

    PubMed

    Bahrami, Azam; Besharati-Seidani, Abbas; Abbaspour, Abdolkarim; Shamsipur, Mojtaba

    2015-03-01

    This work reports the preparation of a voltammetric sensor for selective recognition and sensitive determination of mercury ions using a carbon ionic liquid paste electrode (CILE) impregnated with novel Hg(2+)-ion imprinted polymeric nanobeads (IIP) based on dithizone, as a suitable ligand for complex formation with Hg(2+) ions. The differential pulse anodic stripping voltammetric technique was employed to investigate the performance of the prepared IIP-CILE for determination of hazardous mercury ions. The designed modified electrode revealed linear responses in the ranges of 0.5nM-10nM and 0.08μM-2μM with a limit of detection of 0.1nM (S/N=3). It was found that the peak currents of the modified electrode for Hg(2+) ions were at a maximum value in phosphate buffer of pH4.5. The optimized preconcentration potential and accumulation time were to be -0.9V and 35s, respectively. The applicability of the proposed sensor to mercury determination in waste water samples is reported. PMID:25579915

  1. Effect of concentration of lithium ions on the voltammetric responses of nitro-substituted aromatic sulfides in dimethylformamide on glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    Chellammal, S.; Noel, M.; Anantharaman, P. N.

    Lithium salts are used as supporting electrolytes and ion-pair forming reagents during voltammetric investigations in aprotic solvents. In the present work, these ions are found to have a significant influence on the voltammetric responses of aromatic sulfides in dimethylformamide given their concentration and the cathodic potential limits applied. At very low concentrations (< 4 mM) and cathodic potential limits (- 1.4 V), lithium ions form ion-pairs with the anion radicals generated by the reduction of nitro groups on the electrode surface. This is the conventional lithium ion-pair formation effect reported in the literature. With increasing lithium ion concentration and increasing cathodic limit, the ion-pairs tend to form an insoluble salt film on the electrode surface. This leads to inhibition of further electron transfer. The inhibiting effect does not seem to correlate with the size of the reactant organic molecule involved. At cathodic potential limits exceeding - 2 V, lithium ions appear to undergo direct reduction and subsequent reaction with trace levels of water in the solvent to produce a passive LiOH layer. This inhibits all further electron transfer.

  2. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples.

    PubMed

    Bagheri, Hasan; Afkhami, Abbas; Panahi, Yunes; Khoshsafar, Hosein; Shirzadmehr, Ali

    2014-04-01

    Multi-walled carbon nanotubes decorated with Fe3O4 nanoparticles were prepared to construct a novel sensor for the determination of haloperidol (Hp) by voltammetric methods. The morphology and properties of electrode surface were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. This modified sensor was used as a selective electrochemical sensor for the determination of trace amounts of Hp. The peak currents of differential pulse and square wave voltammograms of Hp increased linearly with its concentration in the ranges of 1.2×10(-3)-0.52 and 6.5×10(-4)-0.52μmol L(-1), respectively. The detection limits for Hp were 7.02×10(-4) and 1.33×10(-4)μmol L(-1) for differential pulse and square wave voltammetric methods, respectively. The results show that the combination of multi-walled carbon nanotubes and Fe3O4 nanoparticles causes a dramatic enhancement in the sensitivity of Hp quantification. This sensor was successfully applied to determine Hp in pharmaceutical samples and biological fluids. The fabricated electrode showed excellent reproducibility, repeatability and stability.

  3. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  4. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples.

  5. Square wave adsorptive stripping voltammetric determination of diazinon in its insecticidal formulations.

    PubMed

    Guziejewski, Dariusz; Skrzypek, Sławomira; Ciesielski, Witold

    2012-11-01

    The pesticide diazinon was determined in its insecticidal formulations by square wave adsorptive stripping voltammetry. The method of its determination is based on the irreversible reduction reaction at the hanging mercury drop electrode. The optimal signal was detected at -1.05 V vs. Ag/AgCl in Britton-Robinson buffer at pH 4.4. Various parameters such as pH, buffer concentration, frequency, amplitude, step potential, accumulation time, and potential were investigated to enhance the sensitivity of the determination. The highest response was recorded at an accumulation potential -0.4 V, accumulation time 60 s, amplitude 75 mV, frequency 100 Hz, and step potential 5 mV. The pesticide electrochemical behavior was considered under experimental conditions. The electroanalytical procedure enabled diazinon determination in the concentration range 4.0 × 10(-8)-3.9 × 10(-7) mol L(-1) in supporting electrolyte. The detection and quantification limit were found to be 1.1 × 10(-8) and 3.7 × 10(-8) mol L(-1), respectively. The method was applied successfully in the determination of the active ingredients in the insecticidal formulations Diazinon 10GR and Beaphar 275.

  6. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    PubMed

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  7. Multiwall carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime.

    PubMed

    Ensafi, Ali A; Allafchian, Ali R

    2013-02-01

    Multiwall carbon nanotubes were decorated with synthesized NiFe(2)O(4) magnetic nanoparticles. The new materials were characterized with different techniques such as transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. The multiwall carbon nanotubes decorated with NiFe(2)O(4) magnetic nanoparticles was used as a new mediator for the voltammetric determination of cefixime. Under the optimum conditions at pH 8.0, the oxidation of cefixime was occurred at 850 mV at the surface of the modified electrode. Linear sweep voltammetry exhibited two wide linear dynamic ranges of 0.1-100 and 100-600 μmol L(-1) cefixime. The detection limit was found to be 0.02 μmol L(-1) cefixime. Finally, the modified electrode showed good sensitivity, selectivity and stability for the determination of cefixime in real samples.

  8. A Voltammetric Biosensor Based on Glassy Carbon Electrodes Modified with Single-Walled Carbon Nanotubes/Hemoglobin for Detection of Acrylamide in Water Extracts from Potato Crisps

    PubMed Central

    Krajewska, Agnieszka; Radecki, Jerzy; Radecka, Hanna

    2008-01-01

    The presence of toxic acrylamide in a wide range of food products such as potato crisps, French fries or bread has been confirmed by Swedish scientists from Stockholm University. The neurotoxicity, possible carcinogenicity of this compound and its metabolites compels us to control them by quantitative and qualitative assays. Acrylamide forms adduct with hemoglobin (Hb) as a result of the reaction the -NH2 group of the N-terminal valine with acrylamide. In this work we present the use of glassy carbon electrodes coated with single-walled carbon nanotubes (SWCNTs) and Hb for voltammetric detection of acrylamide in water solutions. The electrodes presented a very low detection limit (1.0×10-9 M). The validation made in the matrix obtained by water extraction of potato crisps showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.

  9. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples.

  10. Differential pulse anodic voltammetric determination of lithium ions in pharmaceutical formulations using a carbon paste electrode modified with spinel-type manganese oxide.

    PubMed

    Teixeira, Marcos F S; Moraes, Fernando C; Cavalheiro, Eder T G; Bocchi, Nerilso

    2003-03-10

    The use of the differential pulse voltammetry for the determination of lithium ions in pharmaceutical samples using a carbon paste electrode modified with spinel-type manganese oxide has been examined. The best voltammetric response was reached for a modified electrode in borate buffer solution of pH 9.0 and submitted to a scan rate of 5 mV s(-1) and a pulse amplitude of 50 mV. This electroanalytical procedure was able to determine lithium ions in the concentration range of 8.0 x 10(-5)-1.0 x 10(-2) mol l(-1) even in the presence of several alkali metals (1.0 x 10(-3) mol l(-1)) with a detection limit of 7.1 x 10(-7) mol l(-1). Rapidity, precise and good selectivity were also found for the determination of lithium ions in pharmaceutical formulations.

  11. Sensor Fusion of Position- and Micro-Sensors (MEMS) integrated in a Wireless Sensor Network for movement detection in landslide areas

    NASA Astrophysics Data System (ADS)

    Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig

    2010-05-01

    technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool

  12. Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response?

    PubMed

    Cumba, Loanda R; Foster, Christopher W; Brownson, Dale A C; Smith, Jamie P; Iniesta, Jesus; Thakur, Bhawana; do Carmo, Devaney R; Banks, Craig E

    2016-04-25

    The mechanical activation (polishing) of screen-printed electrodes (SPEs) is explored and shown to exhibit an improved voltammetric response (in specific cases) when polished with either commonly available alumina slurry or diamond spray. Proof-of-concept is demonstrated for the electrochemical sensing of nitrite where an increase in the voltammetric current is found using both polishing protocols, exhibiting an improved limit of detection (3σ) and a two-fold increase in the electroanalytical sensitivity compared to the respective un-polished counterpart. It is found that mechanical activation/polishing increases the C/O ratio which significantly affects inner-sphere electrochemical probes only (whereas outer-sphere systems remain unaffected). Mechanical activation/polishing has the potential to be a simple pre-treatment technique that can be extended and routinely applied towards other analytes for an observable improvement in the electroanalytical response.

  13. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    PubMed

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. PMID:23202346

  14. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes.

    PubMed

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2014-06-01

    Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection.

  15. Synthesis, crystal structure, Cu2+ doped EPR and voltammetric studies of bis[N-(2-hydroxyethyl)ethylenediamine]zinc(II) squarate monohydrate

    NASA Astrophysics Data System (ADS)

    Uçar, Ibrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan

    2007-01-01

    Crystal structure of [Zn(hydet-en)2]·C4O4·H2O (ZHES) (hydet-en is N-(2-hydroxyethyl)ethylenediamine) complex has been synthesized and characterized by analytical, spectroscopic (IR, UV/Vis) and voltammetric techniques. After doping Cu2+ ion, its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystalizes in monoclinic system with space group P21/c and with Z=4. Each hydet-en ligand acts as a tridentate ligand through the two N atoms and the hydroxyl O atom, resulting in a six coordinate Zn(II) ion. The EPR spectra were recorded in three perpendicular planes of Cu2+ doped ZHES single crystal. The calculated g and A values indicated that the paramagnetic center is rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The molecular orbital bond coefficients of the Cu(II) ion in d9 state is also calculated by using EPR and optical absorption parameters. The dianion SQ2- is oxidized reversibly in two consecutive steps to the corresponding radical monoanion and neutral form.

  16. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin.

    PubMed

    Zhou, Yanli; Dong, Hui; Liu, Lantao; Hao, Yuanqiang; Chang, Zhu; Xu, Maotian

    2015-02-15

    A voltammetric sensor for determination of glycated hemoglobin (HbA1c) was developed based on the composites of phenylboronic acid-modified pyrroloquinoline quinine (PBA-PQQ) and reduced graphene oxide. After the electrodeposition of reduced graphene oxide (ERGO) on the glassy carbon (GC) electrode, PQQ multilayer was decorated on the surface of the ERGO/GC electrode via potential cycling. Further modification with PBA would lead to the formation of the working electrode, namely PBA-PQQ/ERGO/GC electrode. PQQ on the electrode exhibited a quasi-reversible electrode process with 2-electron transfer and 2-proton participation, and the electron transfer efficiency was further enhanced by the introduction of ERGO layer. The complexation of PBA with HbA1c through specific boronic acid-diol recognition could cause the change of the oxidation peak current of PQQ on the electrode, which was utilized for HbA1c detection. Under the optimized conditions, the PBA-PQQ/ERGO/GC electrode provided high selectivity and high sensitivity for HbA1c detection with a linear range of 9.4-65.8 μg mL(-1) and a low detection limit of 1.25 μg mL(-1). The fabricated sensor was also successfully applied to determine the percentages of HbA1c in whole blood of healthy individuals.

  17. Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper.

    PubMed

    Louis, Yoann; Cmuk, Petra; Omanović, Dario; Garnier, Cédric; Lenoble, Véronique; Mounier, Stéphane; Pizeta, Ivanka

    2008-01-01

    The influence of an adsorbed layer of the natural organic matter (NOM) on voltammetric behaviour of copper on a mercury drop electrode in natural water samples was studied. The adsorption of NOM strongly affects the differential pulse anodic stripping voltammogram (DPASV) of copper, leading to its distortion. Phase sensitive ac voltammetry confirmed that desorption of adsorbed NOM occurs in general at accumulation potentials more negative than -1.4V. Accordingly, an application of negative potential (-1.6V) for a very short time at the end of the accumulation time (1% of total accumulation time) to remove the adsorbed NOM was introduced in the measuring procedure. Using this protocol, a well-resolved peak without interferences was obtained. It was shown that stripping chronopotentiogram of copper (SCP) in the depletive mode is influenced by the adsorbed layer in the same manner as DPASV. The influence of the adsorbed NOM on pseudopolarographic measurements of copper and on determination of copper complexing capacity (CuCC) was demonstrated. A shift of the peak potential and the change of the half-peak width on the accumulation potential (for pseudopolarography) and on copper concentration in solution (for CuCC) were observed. By applying a desorption step these effects vanished, yielding different final results.

  18. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.

    PubMed

    Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao

    2007-07-16

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.

  19. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    PubMed Central

    Couto, Rosa A. S.; Quinaz, Maria Beatriz

    2016-01-01

    Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs) for the voltammetric detection of the anti-tuberculosis (anti-TB) drug ethambutol (ETB). The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples. PMID:27376291

  20. A novel nanostructured composite formed by interaction of copper octa(3-aminopropyl)octasilsesquioxane with azide ligands: Preparation, characterization and a voltammetric application

    SciTech Connect

    Ribeiro do Carmo, Devaney; Paim, Leonardo Lataro; Dias Filho, Newton Luiz; Stradiotto, Nelson Ramos

    2010-09-15

    This study presents the preparation, characterization and application of copper octa(3-aminopropyl)octasilsesquioxane following its subsequent reaction with azide ions (ASCA). The precursor (AC) and the novel compound (ASCA) were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analyses and voltammetric technique. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E{sub 1/2}{sup ox}) = 0.30 V and an irreversible process at 1.1 V (vs. Ag/AgCl; NaCl 1.0 M; v=20mVs{sup -1}). The material is very sensitive to nitrite concentrations. The modified graphite paste electrode (GPE-ASCA) gives a linear range from 1.0 x 10{sup -4} to 4.0 x 10{sup -3} mol L{sup -1} for the determination of nitrite, with a detection limit of 2.1 x 10{sup -4} mol L{sup -1} and the amperometric sensitivity of 8.04 mA/mol L{sup -1}.

  1. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir.

    PubMed

    Shahrokhian, Saeed; Azimzadeh, Mahnaz; Amini, Mohammad K

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03-10.0μ M) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations.

  2. A Fast Strategy for Determination of Vitamin B₉ in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor.

    PubMed

    Khaleghi, Fatemeh; Irai, Abolfazl Elyasi; Sadeghi, Roya; Gupta, Vinod Kumar; Wen, Yangping

    2016-01-01

    Vitamin B₉ or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B₉ using a carbon paste electrode (CPE) modified with 1,3-dipropylimidazolium bromide (1,3-DIBr) as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B₉ at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B₉ by square wave voltammetry (SWV) increased linearly with its concentration in the range of 0.08-650 μM. The detection limit for vitamin B₉ was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B₉ in food and pharmaceutical samples.

  3. Cyclic voltammetric determination of free and total sulfite in muscle foods using an acetylferrocene-carbon black-poly(vinyl butyral) modified glassy carbon electrode.

    PubMed

    Wang, Li; Xu, Lei

    2014-10-22

    A novel method for the selective extraction of free (pH 8.4) and total sulfite (pH 11.0) from muscle foods and the following determination by a voltammetric sensor was reported. The proposed method was based on the eletrocatalytic oxidation of sulfite at modified glassy carbon electrode (GCE) fabricated by immobilizing 9 μg of acetylferrocene on the surface of GCE along with 35 μg of carbon black to improve the electron transfer within poly(vinyl butyral) membrane matrix. The external standard calibration curve was linear in the range of 0.03-4.0 mmol L(-1) with a detection limit of 15 μmol L(-1). This method had been applied to the determination of free and total sulfite in shrimp muscle fortified samples and compared with an ion chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate, and rapid and exhibited very good reproducibility and stability under the used conditions.

  4. Nanogold-penetrated poly(amidoamine) dendrimer for enzyme-free electrochemical immunoassay of cardiac biomarker using cathodic stripping voltammetric method.

    PubMed

    Zhang, Bo; Zhang, Yi; Liang, Wenbin; Cui, Bin; Li, Jiabei; Yu, Xuejun; Huang, Lan

    2016-01-21

    Methods based on immunoassays have been developed for cardiac biomarkers, but most involve the low sensitivity and are unsuitable for early disease diagnosis. Herein we design an electrochemical immunoassay for sensitive detection of myoglobin (a cardiac biomarker for acute myocardial infarction) by using nanogold-penetrated poly(amidoamine) dendrimer (AuNP-PAMAM) for signal amplification without the need of natural enzymes. The assay was carried out on the monoclonal mouse anti-myoglobin (capture) antibody-anchored glassy carbon electrode using polyclonal rabbit anti-myoglobin (detection) antibody-labeled AuNP-PAMAM as the signal tag. In the presence of target myoglobin, the sandwiched immunocomplex could be formed between capture antibody and detection antibody. Accompanying AuNP-PAMAM, the carried gold nanoparticles could be directly determined via stripping voltammetric method under acidic conditions. Under optimal conditions, the detectable electrochemical signal increased with the increasing target myoglobin in the sample within a dynamic working range from 0.01 to 500 ng mL(-1) with a detection limit of 3.8 pg mL(-1). The electrochemical immunoassay also exhibited high specificity and good precision toward target myoglobin. Importantly, our strategy could be applied for quantitative monitoring of myoglobin in human serum specimens, giving well matched results with those obtained from commercialized enzyme-linked immunosorbent assay (ELISA) method.

  5. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid.

    PubMed

    Sharifian, Samira; Nezamzadeh-Ejhieh, Alireza

    2016-01-01

    A novel carbon paste electrode (CPE) modified with Fe(III)-exchanged clinoptilolite nano-particles (Fe(III)-NClino/CPE) was constructed and used for simultaneous voltammetric (CV, SqW and chronoamperometry) determination of ascorbic acid and acetaminophen. Raw and modified zeolites were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The square wave peak current was linearly increased in the concentration ranges of 1.0 × 10(-9)-1.0 × 10(-2) mol L(-1) for ascorbic acid and 1.0 × 10(-10-)1.0 × 10(-2) mol L(-1) for acetaminophen with detection limits of 1.8 × 10(-9) mol L(-1) and 9.9 × 10(-10) mol L(-1), respectively. The detection limits of 2.4 × 10(-10) mol L(-1) and 2.5 × 10(-11) mol L(-1) were also obtained for AA and AC in chronoamperometric measurements, respectively. The diffusion coefficients of 7.5 × 10(-5) cm(2) s(-1) and 2.4 × 10(-5) cm(2) s(-1) were respectively calculated for the oxidation of AC and AA by chronoamperometry. The proposed electrode exhibited high sensitivity and good stability, and would be valuable for the clinical assay of ascorbic acid and acetaminophen.

  6. A Fast Strategy for Determination of Vitamin B₉ in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor.

    PubMed

    Khaleghi, Fatemeh; Irai, Abolfazl Elyasi; Sadeghi, Roya; Gupta, Vinod Kumar; Wen, Yangping

    2016-01-01

    Vitamin B₉ or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B₉ using a carbon paste electrode (CPE) modified with 1,3-dipropylimidazolium bromide (1,3-DIBr) as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B₉ at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B₉ by square wave voltammetry (SWV) increased linearly with its concentration in the range of 0.08-650 μM. The detection limit for vitamin B₉ was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B₉ in food and pharmaceutical samples. PMID:27231909

  7. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. PMID:27469040

  8. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer.

    PubMed

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Heydari, Abolfazl; Ghanei-Motlagh, Reza; Gupta, Vinod K

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2'-((9E,10E)-1,4-dihydroxyanthracene-9,10-diylidene) bis(hydrazine-1-carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO-IIP was characterized by means of Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO-IIP. The prepared RGO-IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO-IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L(-1). The limit of detection (LOD) was found to be 0.02 μg L(-1) (S/N=3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. PMID:27040231

  9. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films.

    PubMed

    Tyszczuk-Rotko, Katarzyna; Bęczkowska, Ilona; Wójciak-Kosior, Magdalena; Sowa, Ireneusz

    2014-11-01

    The paper describes the fabrication and application of a novel sensor (a boron-doped diamond electrode modified with Nafion and lead films) for the simultaneous determination of paracetamol and ascorbic acid by differential pulse voltammetry. The main advantage of the lead film and polymer covered boron-doped diamond electrode is that the sensitivity of the stripping responses is increased and the separation of paracetamol and ascorbic acid signals is improved due to the modification of the boron-doped diamond surface by the lead layer. Additionally, the repeatability of paracetamol and ascorbic acid signals is improved by the application of the Nafion film coating. In the presence of oxygen, linear calibration curves were obtained in a wide concentration range from 5×10(-7) to 2×10(-4) mol L(-1) for paracetamol and from 1×10(-6) to 5×10(-4) mol L(-1) for ascorbic acid. The analytical utility of the differential pulse voltammetric method elaborated was tested in the assay of paracetamol and ascorbic acid in commercially available pharmaceutical formulations and the method was validated by high performance liquid chromatography coupled with diode array detector.

  10. A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor

    PubMed Central

    Khaleghi, Fatemeh; Irai, Abolfazl Elyasi; Sadeghi, Roya; Gupta, Vinod Kumar; Wen, Yangping

    2016-01-01

    Vitamin B9 or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B9 using a carbon paste electrode (CPE) modified with 1,3-dipropylimidazolium bromide (1,3-DIBr) as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B9 at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B9 by square wave voltammetry (SWV) increased linearly with its concentration in the range of 0.08–650 μM. The detection limit for vitamin B9 was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B9 in food and pharmaceutical samples. PMID:27231909

  11. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir.

    PubMed

    Shahrokhian, Saeed; Azimzadeh, Mahnaz; Amini, Mohammad K

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03-10.0μ M) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations. PMID:26042700

  12. Ion-transfer voltammetric determination of the beta-blocker propranolol in a physiological matrix at silicon membrane-based liquid|liquid microinterface arrays.

    PubMed

    Collins, Courtney J; Arrigan, Damien W M

    2009-03-15

    In this work, the ion-transfer voltammetric detection of the protonated beta-blocker propranolol in artificial saliva is presented. Cyclic voltammetry, differential pulse voltammetry, and differential pulse stripping voltammetry (DPSV) were employed in the detection of the cationic drug based on ion-transfer voltammetry across arrays of microinterfaces between artificial saliva and an organogel phase. It was found that the artificial saliva matrix decreased the available potential window for ion-transfer voltammetry at this liquid|liquid interface but transfer of protonated propranolol was still achieved. The DPSV method employed a preconditioning step as well as a preconcentration step followed by analytical signal generation based on the back-transfer of the drug across the array of microinterfaces. The DPSV peak current response was linear with drug concentration in the artificial saliva matrix over the concentration range of 0.05-1 microM (i(p) = -8.13 (nA microM(-1))(concentration) + 0.07 (nA), R = 0.9929, n = 7), and the calculated detection limit (3s(b)) was 0.02 microM. These results demonstrate that DPSV at arrays of liquid|liquid microinterfaces is a viable analytical approach for pharmaceutical determinations in biomimetic matrixes.

  13. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively.

  14. Magnetic vector sensors based on the Hall effect

    NASA Astrophysics Data System (ADS)

    Roumenin, Ch. S.

    Integrated two- and three-dimensional vector versions of the parallel-field Hall microsensor proposed by Roumenin (1987) are presented. The characteristics of Roumenin's microsensor, which is activated by the external magnetic field parallel to the IC plane, are reviewed. The configurations of the magnetic two- and three-dimensional vector microsensors are illustrated and the operation of the microsensors is discussed.

  15. The Use of Silver Solid Amalgam Electrodes for Voltammetric and Amperometric Determination of Nitrated Polyaromatic Compounds Used as Markers of Incomplete Combustion

    PubMed Central

    Yosypchuk, Oksana; Karásek, Jindřich; Vyskočil, Vlastimil; Barek, Jiří; Pecková, Karolina

    2012-01-01

    Genotoxic nitrated polycyclic aromatic hydrocarbons (NPAHs) are formed during incomplete combustion processes by reaction of polycyclic aromatic hydrocarbons (PAHs) with atmospheric nitrogen oxides. 1-Nitropyrene, 2-nitrofluorene, and 3-nitrofluoranthene as the dominating substances are used as markers of NPAHs formation by these processes. In the presented study, voltammetric properties and quantification of these compounds and of 5-nitroquinoline (as a representative of environmentally important genotoxic heterocyclic compounds) have been investigated using a mercury meniscus modified silver solid amalgam electrode (m-AgSAE), which represent a nontoxic alternative to traditional mercury electrodes. Linear calibration curves over three orders of magnitude and limits of determination mostly in the 10−7 mol L−1 concentration range were obtained using direct current and differential pulse voltammetry. Further, satisfactory HPLC separation of studied analytes in fifteen minutes was achieved using 0.01 mol L−1 phosphate buffer, pH 7.0 : methanol (15 : 85, v/v) mobile phase, and C18 reversed stationary phase. Limits of detection of around 1 · 10−5 mol L−1 were achieved using amperometric detection at m-AgSAE in wall-jet arrangement for all studied analytes. Practical applicability of this technique was demonstrated on the determination of 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, and 5-nitroquinoline in drinking water after their preliminary separation and preconcentration using solid phase extraction with the limits of detection around 1 · 10−6 mol L−1. PMID:22619628

  16. Salts purification and voltammetric study of the electroreduction of U(IV) to U(III) in molten LiF-ThF 4

    NASA Astrophysics Data System (ADS)

    Afonichkin, V.; Bovet, A.; Shishkin, V.

    2011-12-01

    Introduction of molten fluorides as reactor coolants and fuels (both as actinide burner and Th-U breeder) is one of the promising ways to sustainable development of these reactors. Special attention should be paid to the on-line control of the redox condition of the circulating molten fluorides mixtures, in particular, of the U(IV)/U(III) ratio by voltammetry. A "dry" technique for production and purification of metal fluorides, their mixtures, and fusion cakes without gaseous HF has been developed. The experimental studies confirmed that solid NH 4HF 2 can be efficiently used instead of the HF gas for conversion of UO 2 and ThO 2 to anhydrous tetrafluorides and for removal of oxygen-containing impurities from fluoride salts. The electrochemical behavior of UF 4 in a 77LiF-23ThF 4 (mole%) melt was studied by cyclic voltammetry at temperatures up to 800 °C. The studies have revealed that well reproducible voltammograms can only be obtained in partially reduced LiF-ThF 4-UF 4 melts containing UF 3, which are free from electropositive impurity ions. Processing of the experimental dependences shows that the basic calculated characteristics of the stage U(IV) electroreduction to U(III) considerably differ from the theoretical values corresponding to the one-electron process governed by a diffusion-controlled charge transfer. This points to quasi-reversibility of the electrode reaction studied. Since the Nernst equation can be used for processing voltammograms only reversible electroreduction U(IV), quasi-reversibility will lead to errors in voltammetric determination of the equilibrium relations U(IV)/U(III) in the melt studied. The results have to be considered as estimates or semiquantitative values.

  17. Development of a rotary disc voltammetric sensor system for semi-continuous and on-site measurements of Pb(II).

    PubMed

    Lee, Yong-Gu; Han, Jungyoup; Kwon, Soondong; Kang, Seoktae; Jang, Am

    2016-01-01

    Atomic absorption spectrometry and inductively coupled plasma-mass spectrometry are widely used for determination of heavy metals due to their low detection limits. However, they are not applicable to on-site measurements of heavy metals as bulky equipment, and highly skilled laboratory staffs are needed as well. In this study, a novel analytical method using a rotary disc voltammetric (RDV) sensor has been successfully designed, fabricated and characterized for semi-continuous and on-site measurements of trace levels of Pb(II) in non-deoxygenating solutions. The square wave anodic stripping voltammetry was used to improve the sensitivity of the Pb(II) detection level with less than 10nM (2μgL(-1)). The RDV sensor has 24-sensing holes to measure concentrations of Pb(II) semi-continuously at sampling sites. Each sensing hole consists of a silver working electrode, an integrated silver counter, and a quasi-reference electrode, which requires only a small amount of samples (<30μL) for measurement of Pb(II) without disturbing and/or clogging the sensing environment. In addition, the RDV sensor showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 10nM-10μM at the deposition time of 180s and its low detection limit was 6.19nM (1.3μgL(-1)). These results indicated that the advanced monitoring technique using a RDV sensor might provide environmental engineers with a reliable way for semi-continuous and on-site measurements of Pb(II).

  18. Voltammetric behavior of uric acid on carbon paste electrode modified with salmon sperm dsDNA and its application as label-free electrochemical sensor.

    PubMed

    Mohamadi, Maryam; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2014-04-15

    A simple and sensitive label-free electrochemical DNA biosensor was proposed for the rapid determination of uric acid (UA) using a carbon nano tube paste electrode (CNTPE) modified with salmon sperm dsDNA. At first, the interaction between UA and the DNA was studied using differential pulse voltammetry (DPV). The addition of the DNA to UA solution resulted in a decrease in the peak current of UA and at the same time, a positive shift in the peak potential indicating an intercalative interaction. Then, the voltammetric response of a DNA-immobilized CNTPE was investigated for the determination of UA. The immobilization of the DNA was carried out using acid-functionalized carbon nanotubes and studied using Fe(CN)6(3-)/Fe(CN)6(4-) redox indicator. Compared with unmodified CNTPE, the oxidation signal of UA showed a significant increase at the DNA-coated electrode, and shifted to more positive potentials attributed to the pre-concentration of UA at the electrode surface due to interaction with the surface-confined DNA layer. This interaction was used for the fabrication of a simple and sensitive biosensor for determining UA. After the optimization of operational parameters, a linear dependence of the peak current on the UA concentration was observed in the range of 7.0×10(-7) to 1.1×10(-4) mol L(-1), with the detection and quantification limits of 1.8×10(-7) and 5.8×10(-7) mol L(-1), respectively. The proposed biosensor was successfully applied to validate its capability for the analysis of UA in human serum and urine samples.

  19. Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II)

    PubMed Central

    Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results. PMID:27657083

  20. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    PubMed

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  1. The use of silver solid amalgam electrodes for voltammetric and amperometric determination of nitrated polyaromatic compounds used as markers of incomplete combustion.

    PubMed

    Yosypchuk, Oksana; Karásek, Jindřich; Vyskočil, Vlastimil; Barek, Jiří; Pecková, Karolina

    2012-01-01

    Genotoxic nitrated polycyclic aromatic hydrocarbons (NPAHs) are formed during incomplete combustion processes by reaction of polycyclic aromatic hydrocarbons (PAHs) with atmospheric nitrogen oxides. 1-Nitropyrene, 2-nitrofluorene, and 3-nitrofluoranthene as the dominating substances are used as markers of NPAHs formation by these processes. In the presented study, voltammetric properties and quantification of these compounds and of 5-nitroquinoline (as a representative of environmentally important genotoxic heterocyclic compounds) have been investigated using a mercury meniscus modified silver solid amalgam electrode (m-AgSAE), which represent a nontoxic alternative to traditional mercury electrodes. Linear calibration curves over three orders of magnitude and limits of determination mostly in the 10(-7) mol L(-1) concentration range were obtained using direct current and differential pulse voltammetry. Further, satisfactory HPLC separation of studied analytes in fifteen minutes was achieved using 0.01 mol L(-1) phosphate buffer, pH 7.0 : methanol (15 : 85, v/v) mobile phase, and C(18) reversed stationary phase. Limits of detection of around 1 · 10(-5) mol L(-1) were achieved using amperometric detection at m-AgSAE in wall-jet arrangement for all studied analytes. Practical applicability of this technique was demonstrated on the determination of 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, and 5-nitroquinoline in drinking water after their preliminary separation and preconcentration using solid phase extraction with the limits of detection around 1 · 10(-6) mol L(-1). PMID:22619628

  2. Development of a rotary disc voltammetric sensor system for semi-continuous and on-site measurements of Pb(II).

    PubMed

    Lee, Yong-Gu; Han, Jungyoup; Kwon, Soondong; Kang, Seoktae; Jang, Am

    2016-01-01

    Atomic absorption spectrometry and inductively coupled plasma-mass spectrometry are widely used for determination of heavy metals due to their low detection limits. However, they are not applicable to on-site measurements of heavy metals as bulky equipment, and highly skilled laboratory staffs are needed as well. In this study, a novel analytical method using a rotary disc voltammetric (RDV) sensor has been successfully designed, fabricated and characterized for semi-continuous and on-site measurements of trace levels of Pb(II) in non-deoxygenating solutions. The square wave anodic stripping voltammetry was used to improve the sensitivity of the Pb(II) detection level with less than 10nM (2μgL(-1)). The RDV sensor has 24-sensing holes to measure concentrations of Pb(II) semi-continuously at sampling sites. Each sensing hole consists of a silver working electrode, an integrated silver counter, and a quasi-reference electrode, which requires only a small amount of samples (<30μL) for measurement of Pb(II) without disturbing and/or clogging the sensing environment. In addition, the RDV sensor showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 10nM-10μM at the deposition time of 180s and its low detection limit was 6.19nM (1.3μgL(-1)). These results indicated that the advanced monitoring technique using a RDV sensor might provide environmental engineers with a reliable way for semi-continuous and on-site measurements of Pb(II). PMID:26058555

  3. Novel homo-bimetallic complexes of [N 10] macrocyclic ligand modified with tetrapeptide function: Biological activities, spectral and cyclic voltammetric studies

    NASA Astrophysics Data System (ADS)

    Siddiqi, Zafar A.; Kumar, Sarvendra; Khalid, Mohd.; Shahid, M.

    2009-06-01

    The bimetallic complexes [M 2LCl 4] (M = Cr, Co, Ni, Cu) prepared via metal template cyclization reactions were characterized by physico-chemical and spectroscopic methods. L is a 30-membered [N 10] macrocycle with tetraamide functions bind metal ions through aza donors forming hexa-coordinate geometry. The perspective view and important structural parameters have been computed from the molecular model (MOPAC) method. The electrochemical studies indicate existence of quasi-reversible redox couples in solution. The metal complexes were screened (in vitro) against a few pathogenic fungi and bacteria to assess their growth inhibiting potential.

  4. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine.

    PubMed

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electronmicroscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes.

  5. Study of kinetic parameters and development of a voltammetric sensor for the determination of butylated hydroxyanisole (BHA) in oil samples.

    PubMed

    Thomas, Divya; Rasheed, Zafna; Jagan, Jesny Siri; Kumar, Krishnapillai Girish

    2015-10-01

    Electrochemical behavior of artificial antioxidant, butylated hydroxyanisole (BHA), was investigated at a glassy carbon electrode modified with poly L- cysteine [poly (L- Cys/GCE)]. BHA exhibits a pair of well - defined redox peak on L- cysteine modified GCE with Epa = 69 mV and Epc = 4 mV. The modified electrode showed good electrocatalytic activity towards the oxidation of BHA under optimal conditions and exhibited a linear response in the range from 1.0 × 10(-5) to 1.0 × 10(-6) M with a correlation coefficient of 0.998. The limit of detection was found to be 4.1 × 10(-7) M. The kinetics parameters of the proposed sensor such as heterogeneous electron transfer rate, k s , and charge transfer coefficient,α, was calculated and found to be 1.20 s(-1) and 0.575 respectively. The average surface concentration of BHA on the surface of poly (L- Cys/GCE) was calculated to be 3.18 × 10(-4) mol cm(-2). The analytical utility of the proposed sensor was evaluated by the successful determination of BHA in coconut oil and sesame oil samples. PMID:26396421

  6. Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection.

    PubMed

    Wang, Jianxiu; Yi, Xinyao; Tang, Hailin; Han, Hongxing; Wu, Minghua; Zhou, Feimeng

    2012-08-01

    MicroRNAs (miRNAs), acting as oncogenes or tumor suppressors in humans, play a key role in regulating gene expression and are believed to be important for developing novel therapeutic treatments and clinical prognoses. Due to their short lengths (17-25 nucleotides) and extremely low concentrations (typically < picomolar) in biological samples, quantification of miRNAs has been challenging to conventional biochemical methods, such as Northern blotting, microarray, and quantitative polymerase chain reaction (qPCR). In this work, a biotinylated miRNA (biotin-miRNA) whose sequence is the same as that of a miRNA target is introduced into samples of interest and allowed to compete with the miRNA target for the oligonucleotide (ODN) probe preimmobilized onto an electrode. Voltammetric quantification of the miRNA target was accomplished after complexation of the biotin-miRNA with ferrocene (Fc)-capped gold nanoparticle/streptavidin conjugates. The Fc oxidation current was found to be inversely proportional to the concentration of target miRNA between 10 fM and 2.0 pM. The method is highly reproducible (relative standard deviation (RSD) < 5%), regenerable (at least 8 regeneration/assay cycles without discernible signal decrease), and selective (with sequence specificity down to a single nucleotide mismatch). The low detection levels (10 fM or 0.1 attomoles of miRNA in a 10 μL solution) allow the direct quantification of miRNA-182, a marker correlated to the progression of glioma in patients, to be performed in serum samples without sample pretreatment and RNA extraction and enrichment. The concentration of miRNA-182 in glioma patients was found to be 3.1 times as high as that in healthy persons, a conclusion in excellent agreement with a separate qPCR measurement of the expression level. The obviations of the requirement of an internal reference in qPCR, simplicity, and cost-effectiveness are other additional advantages of this method for detection of nucleic acids in

  7. Potential heating caused by intraparenchymal intracranial pressure transducers in a 3-tesla magnetic resonance imaging system using a body radiofrequency resonator: assessment of the Codman MicroSensor Transducer.

    PubMed

    Newcombe, Virginia F J; Hawkes, Robert C; Harding, Sally G; Willcox, Roslyn; Brock, Sarah; Hutchinson, Peter J; Menon, David K; Carpenter, T Adrian; Coles, Jonathan P

    2008-07-01

    Magnetic resonance imaging and spectroscopy may provide important clinical information in the acute stages of brain injury. For this to occur it must be ensured that intracranial pressure (ICP) monitoring devices are safe to bring into the MR imaging suite. The authors tested a Codman MicroSensor ICP Transducer (Codman & Shurtleff, Inc.) within a 3-T MR imaging system using the transmit body coil and receive-only coils and the transmit-and-receive head coil. Extreme and rapid heating of 64 degrees C was noted with the transducer wire in certain positions when using the transmit body coil and receive-only head coil. This is consistent with the phenomenon of resonance, and the probe was shown to have a distinct resonant response when coupled to HP 4195A Network Analyzer (Hewlett Packard). Coiling some of the transducer wire outside of the receive-only head coil reduced the generated current and so stopped the thermogenesis. This may be due to the introduction of a radiofrequency choke. The ICP transducer performed within clinically acceptable limits in both the static magnetic field and during imaging with high radiofrequency power when the excess wire was in this configuration. No heating was observed when a transmit-and-receive head coil was used. This study has shown when using a high-field magnet, the Codman ICP probe is MR conditional. That is, in the authors' system, it can be safely used with the transmit-and-receive head coil, but when using the transmit body coil the transducer wire must be coiled into concentric loops outside of the receive-only head coil.

  8. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge

    SciTech Connect

    Schramm, A.; Santegoeds, C.M.; Nielsen, H.K.; Ploug, H.; Wagner, M.; Pribyl, M.; Wanner, J.; Amann, R.; De Beer, D.

    1999-09-01

    A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O{sub 2}, NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, and H{sub 2}S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with {sup 15}NO{sub 3}{sup {minus}} and {sup 35}SO{sub 4}{sup 2{minus}} were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges.

  9. Voltammetric analysis apparatus and method

    DOEpatents

    Almon, A.C.

    1993-06-08

    An apparatus and method is described for electrochemical analysis of elements in solution. An auxiliary electrode, a reference electrode, and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and the auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between the auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in the sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  10. Periodic silicon nanostructures for spectroscopic microsensors

    NASA Astrophysics Data System (ADS)

    Wehrspohn, Ralf B.; Gesemann, Benjamin; Pergande, Daniel; Geppert, Torsten M.; Schweizer, Stefan L.; Moretton, Susanne; Lambrecht, Armin

    2011-09-01

    Periodic silicon nanostructures can be used for different kinds of gas sensors depending on the analyte concentration. First we present an optical gas sensor based on the classical non-dispersive infrared technique for ppm-concentration using ultra-compact photonic crystal gas cells. It is conceptually based on low group velocities inside a photonic crystal gas cell and anti-reflection layers coupling light into the device. Experimentally, an enhancement of the CO2 infrared absorption by a factor of 2.6 to 3.5 as compared to an empty cell, due to slow light inside a 2D silicon photonic crystal gas cell, was observed; this is in excellent agreement with numerical simulations. In addition we report on silicon nanotip arrays, suitable for gas ionization in ion mobility microspectrometers (micro-IMS) having detection ranges in principle down to the ppt-range. Such instruments allow the detection of explosives, chemical warfare agents, and illicit drugs, e.g., at airports. We describe the fabrication process of large-scale-ordered nanotips with different tip shapes. Both silicon microstructures have been fabricated by photoelectrochemical etching of silicon.

  11. Optofluidic Approaches for Enhanced Microsensor Performances

    PubMed Central

    Testa, Genni; Persichetti, Gianluca; Bernini, Romeo

    2015-01-01

    Optofluidics is a relatively young research field able to create a tight synergy between optics and micro/nano-fluidics. The high level of integration between fluidic and optical elements achievable by means of optofluidic approaches makes it possible to realize an innovative class of sensors, which have been demonstrated to have an improved sensitivity, adaptability and compactness. Many developments in this field have been made in the last years thanks to the availability of a new class of low cost materials and new technologies. This review describes the Italian state of art on optofluidic devices for sensing applications and offers a perspective for further future advances. We introduce the optofluidic concept and describe the advantages of merging photonic and fluidic elements, focusing on sensor developments for both environmental and biomedical monitoring. PMID:25558989

  12. Versatile electrochemical microsensors for environmental monitoring

    SciTech Connect

    Glass, R.S.; Hong, K.C. . Chemistry and Materials Science Dept.); Ashley, K. . Dept. of Chemistry); Granstaff, V.E. )

    1991-10-01

    The fabrication of novel multielement microelectrode array sensors is reported. With regard to individual array elements, two main concepts are pursued. One involves the use of relatively non-selective microelectrode elements, coupled with pattern recognition methods, for data analysis. This strategy is most applicable when prior knowledge about the chemical environment is limited, or when mainly qualitative information is sought. The second concept involves the development of arrays containing intrinsically more selective microelectrode elements. Our main concern here is the determination of specific contaminants. Most of our current emphasis is in the selection and development of appropriate elements for microelectrode arrays of this type, with a goal of quantitative analysis for a variety of compounds and elements. Other efforts are concerned with defining the behavior of microelectrodes and devising mass fabrication methods for these sensors. Two designs for the arrays are discussed, one employing photolithographic fabrication methods and another in which individual microelectrodes are encased in glass. Potential applications for these sensors include monitoring for toxic contaminants in natural waters, monitoring waste streams, and process control. 35 refs., 16 figs., 3 tabs.

  13. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  14. Hydrogel-based piezoresistive biochemical microsensors

    NASA Astrophysics Data System (ADS)

    Guenther, Margarita; Schulz, Volker; Gerlach, Gerald; Wallmersperger, Thomas; Solzbacher, Florian; Magda, Jules J.; Tathireddy, Prashant; Lin, Genyao; Orthner, Michael P.

    2010-04-01

    This work is motivated by a demand for inexpensive, robust and reliable biochemical sensors with high signal reproducibility and long-term-stable sensitivity, especially for medical applications. Micro-fabricated sensors can provide continuous monitoring and on-line control of analyte concentrations in ambient aqueous solutions. The piezoresistive biochemical sensor containing a special biocompatible polymer (hydrogel) with a sharp volume phase transition in the neutral physiological pH range near 7.4 can detect a specific analyte, for example glucose. Thereby the hydrogel-based biochemical sensors are useful for the diagnosis and monitoring of diabetes. The response of the glucosesensitive hydrogel was studied at different regimes of the glucose concentration change and of the solution supply. Sensor response time and accuracy with which a sensor can track gradual changes in glucose was estimated. Additionally, the influence of various recommended sterilization methods on the gel swelling properties and on the mechano-electrical transducer of the pH-sensors has been evaluated in order to choose the most optimal sterilization method for the implantable sensors. It has been shown that there is no negative effect of gamma irradiation with a dose of 25.7 kGy on the hydrogel sensitivity. In order to achieve an optimum between sensor signal amplitude and sensor response time, corresponding calibration and measurement procedures have been proposed and evaluated for the chemical sensors.

  15. Sensing Movement: Microsensors for Body Motion Measurement

    PubMed Central

    Zeng, Hansong; Zhao, Yi

    2011-01-01

    Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics. PMID:22346595

  16. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  17. Activities.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1982

    1982-01-01

    The material presented is designed to help students explore geometric patterns involving Fibonnaci numbers and the golden ratio, and to aid in review of basic geometry skills. Worksheet masters intended for duplication are provided. Suggestions are made of possible classroom extensions to the initial activities. (MP)

  18. Dynamics of electron transport by elastic bending of short DNA duplexes. Experimental study and quantitative modeling of the cyclic voltammetric behavior of 3'-ferrocenyl DNA end-grafted on gold.

    PubMed

    Anne, Agnès; Demaille, Christophe

    2006-01-18

    The dynamics of electron transport within a molecular monolayer of 3'-ferrocenylated-(dT)(20) strands, 5'-thiol end-grafted onto gold electrode surfaces via a short C2-alkyl linker, is analyzed using cyclic voltammetry as the excitation/measurement technique. It is shown that the single-stranded DNA layer behaves as a diffusionless system, due to the high flexibility of the ss-DNA chain. Upon hybridization by the fully complementary (dA)(20) target, the DNA-modified gold electrode displays a highly unusual voltammetric behavior, the faradaic signal even ultimately switching off at a high enough potential scan rate. This remarkable extinction phenomenon is qualitatively and quantitatively justified by the model of elastic bending diffusion developed in the present work which describes the motion of the DNA-borne ferrocene moiety as resulting from the elastic bending of the duplex DNA toward and away from the electrode surface. Its use allows us to demonstrate that the dynamics of electron transport within the hybridized DNA layer is solely controlled by the intrinsic bending elasticity of ds-DNA. Fast scan rate cyclic voltammetry of end-grafted, redox-labeled DNA layers is shown to be an extremely efficient method to probe the bending dynamics of short-DNA fragments in the submillisecond time range. The persistence length of the end-anchored ds-DNA, a parameter quantifying the flexibility of the nanometer-long duplex, can then be straightforwardly and accurately determined from the voltammetry data.

  19. Voltammetric Determination of Cocaine in Confiscated Samples Using a Carbon Paste Electrode Modified with Different [UO2(X-MeOsalen)(H2O)] · H2O Complexes

    PubMed Central

    de Oliveira, Laura Siqueira; dos Santos Poles, Ana Paula; Balbino, Marco Antonio; Teles de Menezes, Matheus Manoel; de Andrade, José Fernando; Dockal, Edward Ralph; Tristão, Heloísa Maria; de Oliveira, Marcelo Firmino

    2013-01-01

    A fast and non-destructive voltammetric method to detect cocaine in confiscated samples based on carbon paste electrode modified with methoxy-substituted N,N'-ethylene-bis(salcylideneiminato)uranyl(VI)complexes, [UO2(X-MeOSalen)(H2O)].H2O, where X corresponds to the positions 3, 4 or 5 of the methoxy group on the aromatic ring, is described. The electrochemical behavior of the modified electrode and the electrochemical detection of cocaine were investigated using cyclic voltammetry. Using 0.1 mol·L−1 KCl as supporting-electrolyte, a concentration-dependent, well-defined peak current for cocaine at 0.62 V, with an amperometric sensitivity of 6.25 × 104 μA·mol·L−1 for cocaine concentrations ranging between 1.0 × 10−7 and 1.3 × 10−6 mol·L−1 was obtained. Chemical interference studies using lidocaine and procaine were performed. The position of the methoxy group affects the results, with the 3-methoxy derivative being the most sensitive. PMID:23771156

  20. Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2014-12-14

    The first examples of redox-active ferrocene-functionalised neutral [2]rotaxanes have been synthesised via chloride anion templation. (1)H NMR spectroscopic titrations reveal that these [2]rotaxane host systems recognize chloride selectively over other halides and oxoanions in highly-competitive aqueous media. By replacing the hydrogen bonding prototriazole units of the rotaxane axle component with iodotriazole halogen bond-donor groups, the degree of chloride selectivity of the [2]rotaxanes is modulated. Electrochemical voltammetric experiments demonstrate that the rotaxanes can sense chloride via cathodic perturbations of the respective rotaxanes' ferrocene-ferrocenium redox-couple upon anion addition.

  1. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments.

    PubMed

    Lee, Chong-Yong; Bond, Alan M

    2009-01-15

    The level of edge plane defect sites present in highly ordered pyrolytic graphite (HOPG) electrodes has been evaluated via analysis of dc, ac fundamental, and higher-order ac harmonics available from a single large-amplitude Fourier transformed (FT) ac voltammetric experiment. Deliberate introduction of a low level of edge plane defect was achieved by polishing, with a higher level being introduced via electrochemical pretreatment. Kinetics regimes associated with fast electron transfer on the edge plane defect sites and slow electron transfer on the basal plane surface are resolved under ac conditions when using the surface-sensitive [Fe(CN)(6)](3-/4-) redox probe. However, because of their insensitivity to slow electron transfer, higher-order ac faradaic harmonics almost exclusively detect only the much faster processes that emanate from edge plane defect sites. Thus, detection of fourth- and higher-order ac Faradaic harmonic components that are devoid of background capacitive current is possible at freshly cleaved HOPG in the region near the reversible potential for the [Fe(CN)(6)](3-/4-) process. Under these circumstances, dc cyclic voltammograms exhibit only reduction and oxidation peaks separated by more than 1 V. The fundamental ac harmonic provides detailed information on the capacitive current, which increases with the level of edge plane defect sites. Apparent charge transfer rate constants also can be derived from peak-to-peak separations obtained from the dc aperiodic component. Estimates of the percentage of edge plane defect sites based on ac higher harmonics, capacitance, and dc aperiodic component that are available from a single experiment have been compared. The edge plane defect levels deduced from capacitance (fundamental harmonic ac component) and higher harmonic Faradaic currents are considered to be more reliable than estimations based on apparent rate constants derived from the dc aperiodic component or conventional dc cyclic voltammogram.

  2. Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.

    2013-12-01

    Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.

  3. Redox-Active Star Molecules Incorporating the 4-Benzolypyridinium Cation: Implications for the Charge Transfer Efficiency Along Branches versus Across the Perimeter in Dendrimers

    NASA Technical Reports Server (NTRS)

    Yang, Jin-Hua; Rawashdeh, Abdel Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2003-01-01

    We report the redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches, but remains constant at fixed radii. Voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that only two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers of a branch are accessible electrochemically within the same time frame. These results are discussed in terms of slow through-space charge transfer and the globular 3-D folding of the molecules.

  4. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction

    NASA Astrophysics Data System (ADS)

    Lu, Yizhong; Chen, Wei

    2012-01-01

    Two different sized silver nanoclusters are prepared by two different synthetic routs. First, a small nanocluster (NC) which is 0.7 nm in diameter was synthesized by using meso-2, 3-dimercapto-succinic acid (DMSA) as a capping ligand, and second a larger nanoparticle (NP) which is 3.3 nm in diameter was prepared by chemical reduction and coated with DMSA. The as-prepared silver nanoclusters or nanoparticles are then loaded onto a glassy carbon electrode and the size effect on their electrocatalytic activity toward oxygen reduction reaction (ORR) is investigated with electrochemical techniques in alkaline electrolyte. The cyclic voltammetric (CV) studies show that the onset potential of ORR on 0.7 nm silver nanoclusters is 150 mV more positive than that from 3.3 nm silver nanoparticles. And compared to the larger nanoparticles, five times higher current density of ORR at -0.80 V is obtained from the 0.7 nm silver nanoclusters. These CV results indicate that the smaller Ag nanoclusters exhibit higher catalytic performance for ORR. Rotating disk voltammetric studies show ORR on both DMSA monolayer-protected silver clusters is dominated first by a two-electron transfer pathway to produce H2O2 and then peroxide is reduced by 2 more electrons to produce water.

  5. Voltammetric detection of S100B protein using His-tagged receptor domains for advanced glycation end products (RAGE) immobilized onto a gold electrode surface.

    PubMed

    Mikuła, Edyta; Wysłouch-Cieszyńska, Aleksandra; Zhukova, Liliya; Puchalska, Monika; Verwilst, Peter; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2014-06-17

    In this work we report on an electrochemical biosensor for the determination of the S100B protein. The His-tagged VC1 domains of Receptors for Advanced Glycation End (RAGE) products used as analytically active molecules were covalently immobilized on a monolayer of a thiol derivative of pentetic acid (DPTA) complex with Cu(II) deposited on a gold electrode surface. The recognition processes between the RAGE VC1 domain and the S100B protein results in changes in the redox activity of the DPTA-Cu(II) centres which were measured by Osteryoung square-wave voltammetry (OSWV). In order to verify whether the observed analytical signal originates from the recognition process between the His6-RAGE VC1 domains and the S100B protein, the electrode modified with the His6-RAGE C2 and His6-RAGE VC1 deleted domains which have no ability to bind S100B peptides were applied. The proposed biosensor was quite sensitive, with a detection limit of 0.52 pM recorded in the buffer solution. The presence of diluted human plasma and 10 nM Aβ(1-40) have no influence on the biosensor performance.

  6. Voltammetric Detection of S100B Protein Using His-Tagged Receptor Domains for Advanced Glycation End Products (RAGE) Immobilized onto a Gold Electrode Surface

    PubMed Central

    Mikuła, Edyta; Wysłouch-Cieszyńska, Aleksandra; Zhukova, Liliya; Puchalska, Monika; Verwilst, Peter; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2014-01-01

    In this work we report on an electrochemical biosensor for the determination of the S100B protein. The His-tagged VC1 domains of Receptors for Advanced Glycation End (RAGE) products used as analytically active molecules were covalently immobilized on a monolayer of a thiol derivative of pentetic acid (DPTA) complex with Cu(II) deposited on a gold electrode surface. The recognition processes between the RAGE VC1 domain and the S100B protein results in changes in the redox activity of the DPTA-Cu(II) centres which were measured by Osteryoung square-wave voltammetry (OSWV). In order to verify whether the observed analytical signal originates from the recognition process between the His6–RAGE VC1 domains and the S100B protein, the electrode modified with the His6–RAGE C2 and His6–RAGE VC1 deleted domains which have no ability to bind S100B peptides were applied. The proposed biosensor was quite sensitive, with a detection limit of 0.52 pM recorded in the buffer solution. The presence of diluted human plasma and 10 nM Aβ1-40 have no influence on the biosensor performance. PMID:24940866

  7. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  8. Spectrophotometric, voltammetric and cytotoxicity studies of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives: A combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Akgemci, Emine Guler; Saf, Ahmet Ozgur; Tasdemir, Halil Ugur; Türkkan, Ercan; Bingol, Haluk; Turan, Suna Ozbas; Akkiprik, Mustafa

    2015-02-01

    In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.

  9. Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol.

    PubMed

    Xiao, Lili; Yin, Jiao; Li, Yingchun; Yuan, Qunhui; Shen, Hangjia; Hu, Guangzhi; Gan, Wei

    2016-10-01

    Nitrogen (N) and sulfur (S) co-doped activated graphene (N,S-AGR) was prepared by the one-pot pyrolysis of a mixture of graphene oxide (GO), thiourea, and potassium hydroxide (KOH), where thiourea acts as the source of N and S dopants and KOH is the activator for porosity. N,S-AGR with a dopant abundance of 2.8 at% N and 2.3 at% S was then used as a high-activity electrocatalyst in the fabrication of an electrochemical sensor for simultaneous determination of dihydroxybenzene isomers, hydroquinone (HQ) and catechol (CC), in aqueous solution. Compared with the bare glassy carbon electrode (GCE), the electrodes modified with N,S-AGR showed enhanced electrochemical performance toward HQ and CC in both cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements because of their enlarged surface area, enhanced electron-transfer rate and increased active sites. Compared with some recently reported electrochemical sensors based on graphene composites, the N,S-AGR modified electrode exhibits higher sensitivity, a much lower detection limit and a comparable linear range for the simultaneous determination of HQ and CC. Moreover, the proposed sensor is promising in practical application for the satisfactory recoveries obtained in real water sample analyses.

  10. Sensitive voltammetric sensor based on isopropanol-Nafion-PSS-GR nanocomposite modified glassy carbon electrode for determination of clenbuterol in pork.

    PubMed

    Wang, Ling; Yang, Ran; Chen, Jing; Li, Jianjun; Qu, Lingbo; de B Harrington, Peter

    2014-12-01

    In the present study, poly(sodium 4-styrenesulfonate) (PSS) functionalized graphene (GR) was synthesised via a simple one-step chemical reduction of exfoliated graphite oxides in the presence of PSS. Characterisation of as-made nanocomposite using Fourier transform infrared spectroscopy (FT-IR) and ultraviolet and visible spectroscopy (UV-vis) clearly demonstrate the successful attachment of PSS to graphene sheets. A novel clenbuterol (CLB) electrochemical sensor was fabricated based on isopropanol-Nafion-PSS-GR composite film modified glassy carbon electrode. In the Britton-Robinson buffer (pH 1.2), the sensor exhibited superior electrocatalytic activity towards the oxidation of CLB. Applying linear sweep voltammetry, a good linear relationship of the oxidation peak current with respect to concentrations of CLB cross the range of 7.5 × 10(-8)-2.5 × 10(-5)mol L(-1) and a detection limit of 2.2 × 10(-8) mol L(-1) were achieved. The proposed method was successfully applied for the determination of CLB in pork.

  11. Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater.

    PubMed

    Sosa, Velia; Serrano, Núria; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2014-02-01

    A commercially available sputtered bismuth screen-printed electrode (BispSPE) has been pioneeringly applied for the simultaneous determination of Cd(II) and Pb(II) ions in a certified groundwater sample by means of differential pulse anodic stripping voltammetry (DPASV) as an alternative to more conventional bismuth screen-printed carbon electrodes (BiSPCEs). BispSPEs can be used for a large set of measurements without any previous plating or activation. The obtained detection and quantification limits suggest that BispSPEs produce a better analytical performance as compared to In-situ BiSPCE for Pb(II) and Cd(II) determination, but also to Ex-situ BiSPCE for Cd(II) determination. The results confirm the applicability of these devices for the determination of low level concentrations of these metal ions in natural samples with very high reproducibility (0.7% and 2.5% for Pb(II) and Cd(II) respectively), and good trueness (0.3% and 2.4% for Pb(II) and Cd(II) respectively). PMID:24401424

  12. Compact program resolves overlapping voltammetric peaks.

    PubMed

    Dimitrov, Jordan D

    2004-05-01

    A simple self-contained program designed to separate overlapping peaks from electrochemical analyses is presented. Combining an original interactive way to define initial parameter estimates with nonlinear curve fitting based on the simplex method of optimization, it allows the user to resolve voltammograms consisting of 2 to 5 analytical peaks raised on a straight base line. The program provides highly intuitive interface, easy operation, and straightforward result documentation. A free package including the program, three data files and user instructions is available on request.

  13. Quantification of organic acids using voltammetric tongues.

    PubMed

    Escobar, Juan David; Alcaniz, Miguel; Masot, Rafael; Fuentes, Ana; Bataller, Roman; Soto, Juan; Barat, Jose Manuel

    2013-06-01

    Recently, electronic tongues (ET) have appeared as an excellent alternative to traditional techniques for the evaluation of food quality and processes. ET systems are based on arrays of low selectivity sensors that are simultaneously sensitive to several components in a measured sample (cross-sensitivity). The aim of this study was to determine the ability of an ET based on pulse voltammetry to quantify organic acids (ascorbic, citric and malic acids) in simple (SS) and binary solutions (BS) using different electrodes. The most significant electrodes for ascorbic acid prediction were Ni and Ag for SS, and Ag and Ir for BS where positive pulses were more suitable than negative ones. The prediction of citric and malic acids in SS and BS were suitable using Ir, Rh, Pt, Ag and Cu electrodes, using both positive and negative pulses.

  14. [Antioxidant activity of different types of red grape wines].

    PubMed

    Ageeva, N M; Markosov, V A; Avidzba, A M; Ogay, Yu A

    2016-01-01

    This article represented the data about antioxidant activity in the red table and liqueurfaults, prepared from the types of grapes of Cabernet, Merlot and Saperavi. The antioxidant activity of faults in the conversion to TROLOX, the synthetic analog of gallic acid, was determined by voltammetric method. The determination of antioxidant activity was conducted in the young faults (through 2 month after the completion of fermentation) and through half a year the storage without the air inlet. It has been established that the value of antioxidant activity depended on the type of grapes and technology of the production of wine. It was shown that the addition of ethyl alcohol in the production of wines such as Cahors ensured an increase in the extraction of phenol connections from the skin of grapes. This lead to an increase of the antioxidant activity in the Cahors wines in the comparison with the table wine. During the storage of faults the value of antioxidant activity decreased. In the fault cahors wine it remained at the higher level. PMID:27228712

  15. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity.

    PubMed

    Chandra, Rashmi; Venkata Subhash, G; Venkata Mohan, S

    2012-04-01

    Electrogenic activity of photo-bioelectrocatalytic /photo-biological fuel cell (PhFC) was evaluated in a mixotrophic mode under anoxygenic microenvironment using photosynthetic consortia as biocatalyst. An acetate rich wastewater was used as anolyte for harnessing energy along with additional treatment. Mixotrophic operation facilitated good electrogenic activity and wastewater treatment associated with biomass growth. PhFC operation documented feasible microenvironment for the growth of photosynthetic bacteria compared to algae which was supported by pigment (total chlorophyll and bacteriochlorophyll) and diversity analysis. Pigment data also illustrated the association between bacterial and algal species. The synergistic interaction between anoxygenic and oxygenic photosynthesis was found to be suitable for PhFC operation. Light dependent deposition of electrons at electrode was relatively higher compared to dark dependent electron deposition under anoxygenic condition. PhFC documented for good volatile fatty acids removal by utilizing them as electron donor. Bioelectrochemical behavior of PhFC was evaluated by voltammetric and chronoamperometry analysis. PMID:22297047

  16. Changes of redox activity during the development of rape.

    PubMed

    Filek, Maria; Mirek, Magdalena; Długolecka, Monika

    2006-01-01

    Redox activity was measured in vegetative and generative apical parts (5 mm of the stem) and youngest leaves of winter (cv. "G6rczański") and spring (cv. "Młochowski") rape. Both genotypes were cultured under the same growth conditions (17/15 degrees C day/night, 16 h photo-period), but winter rape was additionally vernalized (5/2 degrees C day/night, 56 days) in order to induce the generative development. The cyclic voltammetric method was used to measure the redox potential of samples in the presence of Fe3+ ions. Changes in the redox activity were compared with changes in riboflavin content and activities of antioxidative enzymes: superoxide dismutase (SOD) and catalase (CAT). The higher level of Fe3+ ions and riboflavin detected in generative apices and leaves of winter and spring varieties indicated that electrons (and their donors) were present at a lower level in these organs in comparison with the vegetative ones. On the contrary, SOD and CAT activity were lower in generative than in vegetative organs. This confirms changes in the redox balance and involvement of oxygen radicals in the generative development of rape plants. The similarity of the measured parameters between winter and spring varieties indicates that the observed changes are independent of the way of generative induction (vernalization). Riboflavin can serve as one of the electron carriers between other oxidation-reduction substances.

  17. Non-Additive Voltametric Currents From a Mixture of Two, Three and Four Redox-Active Compounds and Electroanalytical Implications

    NASA Technical Reports Server (NTRS)

    Dass, Amala; Oh, Woon Su; Gao, Xue-Rong; Rawashdeh, Abdel M.; Leventis, Nicholas

    2004-01-01

    We have published recently the effect of dissimilar diffusion coefficients on the size of the voltammetric waves from a mixture of two redox-active compounds. Similarly, at the potential range where three redox-active species, decamethylferrocene (dMeFc), ferrocene (Fc) and N-methylphenothiazine (MePTZ), are oxidized simultaneously with rates controlled by linear diffusion, electrogenerated radicals diffusing outwards from the electrode react with the original species diffusing towards the electrode from the bulk; thus, Fc(+) reacts with dMeFc producing Fc and dMeFc(+), while MePTZ(+) reacts both with dMeFc producing MePTZ and dMeFc(+), and with Fc producing MePTZ and Fc(+). These reactions replace dMeFc with Fc at the second plateau, and both dMeFc and Fc with MePTZ at the third plateau. Since the diffusion coefficients of the three species are not equal, the mass-transfer limited currents of the second and the third oxidation wave plateaus change by approx. 10%. Numerical simulations of the experimental voltamograms support this mechanism. Similar results were also obtained for a mixture of four redoxactive compounds. The implications of this non-additive nature of currents on: (a) the use of internal voltammetric standards for quantitative analysis of a mixture of redox-active compounds; and, (b) the half wave potentials (E1/2) of the 2nd, 3rd and 4th waves for qualitative analysis, will be discussed.

  18. Electrochemically active biofilms: facts and fiction. A review

    PubMed Central

    Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2014-01-01

    This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464

  19. Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms.

    PubMed

    Espinosa-Ortiz, Erika J; Pechaud, Yoan; Lauchnor, Ellen; Rene, Eldon R; Gerlach, Robin; Peyton, Brent M; van Hullebusch, Eric D; Lens, Piet N L

    2016-06-01

    The temporal and spatial effects of selenite (SeO3(2-)) on the physical properties and respiratory activity of Phanerochaete chrysosporium biofilms, grown in flow-cell reactors, were investigated using oxygen microsensors and confocal laser scanning microscopy (CLSM) imaging. Exposure of the biofilm to a SeO3(2-) load of 1.67mgSeL(-1)h(-1) (10mgSeL(-1) influent concentration), for 24h, resulted in a 20% reduction of the O2 flux, followed by a ∼10% decrease in the glucose consumption rate. Long-term exposure (4days) to SeO3(2-) influenced the architecture of the biofilm by creating a more compact and dense hyphal arrangement resulting in a decrease of biofilm thickness compared to fungal biofilms grown without SeO3(2-). To the best of our knowledge, this is the first time that the effect of SeO3(2-) on the aerobic respiratory activity on fungal biofilms is described. PMID:26935326

  20. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  1. Chemicapacitive microsensors for detection of explosives and TICs

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.

    2005-10-01

    Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.

  2. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during...

  3. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  4. Circulating MicroRNAs: Molecular Microsensors in Gastrointestinal Cancer

    PubMed Central

    Blanco-Calvo, Moisés; Calvo, Lourdes; Figueroa, Angélica; Haz-Conde, Mar; Antón-Aparicio, Luis; Valladares-Ayerbes, Manuel

    2012-01-01

    MicroRNAs (miRNAs) are small molecules of single strand non-coding RNAs, which are able to regulate gene expression. miRNAs have been involved in multiple cellular processes, such as proliferation, apoptosis and differentiation, thus alterations in miRNA expression have been shown to be directly linked with the pathological origin of multiple diseases, including cancer. In this way, during last few years, an increasing number of exciting advances have contributed to the understanding of miRNA roles in cancer. Moreover, researchers have exploited the special characteristics of miRNAs, such as the tissue and disease specificity or miRNA presence in blood, to explore their use as non-invasive tumour markers. In the present review, we summarize the current data on the potential usefulness of circulating miRNAs as diagnostic and prognostic tools in gastrointestinal tumours. PMID:23012546

  5. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  6. Advanced Opto-Electronics (LIDAR and Microsensor Development)

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.

    2005-01-01

    Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.

  7. Method of Forming Micro-Sensor Thin-Film Anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Purnell, Jr. (Inventor); Cruz, Vincent B. (Inventor)

    2000-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro- sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14 deg half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  8. An overview of film-based microsensors and applications

    SciTech Connect

    Pfeifer, K.B.; Butler, M.A.; Hughes, R.C.

    1995-12-31

    Many chemical analysis problems exist that encourage the development of small, low-cost, low power, chemical sensors in many of these applications, while speciation of the sample is unnecessary due to prior knowledge of the sample constituents, it is necessary to monitor, in near real-time, the concentration of a Particular species of interest, An example of this of problem would be the monitoring of a chemical process such as steam reforming of chemical waste or ground water monitoring where prior laboratory analysis has determined the constituents. In applications such as these, it is worthwhile to trade off the sensitivity and speciation that can be obtained by taking individual samples and analyzing them in a laboratory for the near real-time, low-cost measurements that can be achieved using a solid-state transducer. In this paper, several different types of sensor platforms and applications that require CSFs bonded to the platform will be discussed. Among these are surface acoustic wave (SAW) based sensors, optical fiber-based sensors, and Si-based sensors. Each will be described and applications will be discussed.

  9. Mammalian Odor Information Recognition by Implanted Microsensor Array in vivo

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Dong, Qi; Zhuang, Liujing; Liu, Qingjun; Wang, Ping

    2011-09-01

    The mammalian olfactory system has an exquisite capacity to rapidly recognize and discriminate thousands of distinct odors in our environment. Our research group focus on reading information from olfactory bulb circuit of anethetized Sprague-Dawley rat and utilize artificial recognition system for odor discrimination. After being stimulated by three odors with concentration of 10 μM to rat nose, the response of mitral cells in olfactory bulb is recorded by eight channel microwire sensor array. In 20 sessions with 3 animals, we obtained 30 discriminated individual cells recordings. The average firing rates of the cells are Isoamyl acetate 26 Hz, Methoxybenzene 16 Hz, and Rose essential oil 11 Hz. By spike sorting, we detect peaks and analyze the interspike interval distribution. Further more, principal component analysis is applied to reduce the dimensionality of the data sets and classify the response.

  10. A Novel Microsensor for Measuring Angular Distribution of Radiative Intensity.

    PubMed

    Murphy, Thomas E; Pilorz, Stuart; Prufert-Bebout, Leslie; Bebout, Brad

    2015-01-01

    This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light-absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments. PMID:25763775

  11. Integrated chemiresistor and work function solid state microsensor array

    SciTech Connect

    Domansky, K.; Li, J.; Josowicz, M.; Janata, J.

    1996-12-31

    The conducting polymer, polyaniline, was used in fabricating the polyaniline gate field-effect transistors (PANIFETs). The polymer gate was formed at the wafer level by spin-coating chemically prepared polyaniline (PANIC) from a solution of formic acid, patterning photolithographically, and etching in oxygen plasma. Contact to the gate was realized through two platinum lines positioned on both sides of the polyaniline gate. This sensor design allowed the simultaneous measurement of work function and impedance changes.

  12. Antioxidant activity of betanidin: electrochemical study in aqueous media.

    PubMed

    Wybraniec, Sławomir; Stalica, Paweł; Spórna, Aneta; Nemzer, Boris; Pietrzkowski, Zbigniew; Michałowski, Tadeusz

    2011-11-23

    The antioxidative mechanism of action of betalains is of significant interest because these pigments are recently emerging as highly bio-active natural compounds with potential benefits to human health. Betanidin, the basic betacyanin, comprises the 5,6-dihydroxyl moiety, which results in its high antioxidant activity. Oxidation of betanidin by voltammetric techniques and chro matographic identification of the oxidation products with spectrophotometric and mass spectrometric detection (LC-DAD-MS/MS) were performed. Two main oxidation peaks for betanidin are observable at pH 3-5. These peaks become merged at higher pH, suggesting a different mechanism of oxidation at higher and lower pH values. The low oxidation potential of betanidin confirms its very strong reduction properties. The presence of two prominent oxidized products, 2-decarboxy-2,3-dehydrobetanidin and 2,17-bidecarboxy-2,3-dehydrobetanidin, indicates their generation through two reaction routes with two different quinonoid intermediates: dopachrome derivative and quinone methide. Both lead to the decarboxylative dehydrogenation of betanidin. Subsequent oxidation and rearrangement of the conjugated chromophoric system results in formation of 14,15-dehydrogenated derivatives. PMID:21913685

  13. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm.

    PubMed

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW.

  14. Phototrophic biofilm activity and dynamics of diurnal Cd cycling in a freshwater stream.

    PubMed

    Beck, Aaron J; Janssen, Felix; Polerecky, Lubos; Herlory, Olivier; De Beer, Dirk

    2009-10-01

    Diel cycles of dissolved cationic metal concentrations commonly occur in freshwater streams in apparent response to coincident cycles in water quality parameters (pH, O2, temperature). Hourly sampling of the Cd-contaminated Riou Mort (France) revealed large diel cycles in "total" dissolved Cd (232-357 nM; < 0.45 microm) and "truly" dissolved Cd (56-297 nM; < 0.02 microm) which were strongly correlated with changes in water pH. Using measured fluxes, a dissolved O2 model was constructed that indicated that benthic metabolic activities, respiration and photosynthesis, were responsible for the diel O2 (and thus, CO2 and pH) variation in the stream. However, microsensor measurements also showed that the pH changes occurred at the biofilm interface earlier than in the bulk water column. This difference in timing was reflected in the Cd dynamics, where pH-controlled sorption effects caused Cd partitioning from the truly dissolved pool onto the biofilm in the morning, and from the truly dissolved pool onto large colloids (0.02-0.45 microm) later in the day. Because this process causes large changes in the bioavailable Cd fraction, it has significant implications for Cd toxicity in freshwater streams. This study demonstrates the profound control of benthic microbiological processes on the cycling of heavy metals in aquatic systems.

  15. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.

    PubMed

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong K; Hensley, Dale K; Grappe, Hippolyte A; Meyer, Harry M; Dai, Sheng; Paranthaman, M Parans; Naskar, A K

    2014-01-28

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  16. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    PubMed

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  17. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL. PMID:26859430

  18. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL.

  19. Influence of H(2) and O(2) on sulphate-reducing activity of a subterranean community and the coupled response in redox potential.

    PubMed

    Pedersen, Karsten

    2012-12-01

    Deep Fennoscandian groundwater is anaerobic, reducing in character and populated by a large diversity of obligate and facultative anaerobic microorganisms. Concentrations of H(2) and carbon monoxide are often 0.01-1 μM and of dissolved organic carbon (DOC) and methane 0.01-1 mM. Microbial activity involving these electron and energy donors may help keep deep groundwater anaerobic and reduced. H(2) was added in concentrations of 0.1-10 mM to a sulphate-reducing community attached to crushed rock in groundwater under a pressure of 2.0 MPa and in situ geochemical conditions. Experiments reported a threshold concentration of approximately 1 μM H(2) at which sulphate reduction ceased, despite the presence of DOC and acetate, suggesting that H(2) was needed for sulphate-reducing activity. δ(13)C values of acetate and DOC data suggested that organic material was degraded to acetate by means of a heterotrophic process. New pressure-resistant micro-sensors for measuring E(h) indicated an H(2)-concentration-dependent decrease in E(h). The investigated community rapidly mitigated the increase in E(h) caused by repeated additions of 0.1-0.2 mM pulses of O(2) as long as H(2) was available. The results imply that sulphate reduction to sulphide with H(2) may dominate sulphate-rich groundwater, which may have implications for metallic underground constructions.

  20. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.

    PubMed

    Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi

    2009-10-01

    Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was

  1. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.

    PubMed

    Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi

    2009-10-01

    Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was

  2. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine.

    PubMed

    Mohammadi-Behzad, Leila; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Gholivand, Khodayar; Barati, Ali; Gholami, Akram

    2016-03-01

    In the present paper, a new bisphosphoramidate derivative compound, 1, 4-bis(N-methyl)-benzene-bis(N-phenyl, N-benzoylphosphoramidate) (BMBPBP), was synthesized and used as a mediator for the electrocatalytic oxidation of olanzapine. The electro-oxidation of olanzapine at the surface of the BMBPBP/CdS-quantum dots/multi-walled carbon nanotubes (BMBPBP/CdS-QDs/MWCNTs) modified gold electrode was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. This sensor showed an excellent electrocatalytic oxidation activity toward olanzapine at less positive potential, pronounced current response, and good sensitivity. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) were determined for olanzapine oxidation, using the electrochemical approaches. Surface morphology and electrochemical properties of the prepared modified electrode were investigated by scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy techniques. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of olanzapine. Under optimized conditions, the calibration plot was linear in the concentration range of 20 nM to 100 μM and detection limit was found to be 6 nM. The proposed method was successfully applied to the determination of olanzapine in pharmaceuticals and human serum samples.

  3. Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: A voltammetric study.

    PubMed

    Narayana, P V; Madhusudana Reddy, T; Gopal, P; Mohan Reddy, M; Ramakrishna Naidu, G

    2015-11-01

    The present paper describes the new strategy for the development of nanosensor based on dropcasting of multi-walled carbon nanotubes (MWCNTs) followed by electropolymerization of serine (ser) onto the glassy carbon electrode (GCE). The developed nanocomposite sensor was abbreviated as poly(ser)/MWCNTs/GCE and was characterized by using electrochemical impedance spectroscopy (EIS) technique. The EIS results confirmed the fast electron transfer rate at the surface of poly(ser)/MWCNTs/GCE. The proposed sensor exhibited good catalytic activity towards the sensing of epinephrine (EP) individually and simultaneously in the presence of serotonin (5-HT) and folic acid (FA) in 0.1M phosphate buffer solution (PBS) at pH7.0. The limit of detection (LOD) and limit of quantification (LOQ) of EP was found to be 6×10(-7)M and 2×10(-6)M respectively. The fabricated sensor showed excellent precision and accuracy with a relative standard deviation (RSD) of 4.86%. The proposed composite sensor was effectively applied towards the determination of EP in human blood serum and pharmaceutical injection sample.

  4. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine.

    PubMed

    Mohammadi-Behzad, Leila; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Gholivand, Khodayar; Barati, Ali; Gholami, Akram

    2016-03-01

    In the present paper, a new bisphosphoramidate derivative compound, 1, 4-bis(N-methyl)-benzene-bis(N-phenyl, N-benzoylphosphoramidate) (BMBPBP), was synthesized and used as a mediator for the electrocatalytic oxidation of olanzapine. The electro-oxidation of olanzapine at the surface of the BMBPBP/CdS-quantum dots/multi-walled carbon nanotubes (BMBPBP/CdS-QDs/MWCNTs) modified gold electrode was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. This sensor showed an excellent electrocatalytic oxidation activity toward olanzapine at less positive potential, pronounced current response, and good sensitivity. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) were determined for olanzapine oxidation, using the electrochemical approaches. Surface morphology and electrochemical properties of the prepared modified electrode were investigated by scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy techniques. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of olanzapine. Under optimized conditions, the calibration plot was linear in the concentration range of 20 nM to 100 μM and detection limit was found to be 6 nM. The proposed method was successfully applied to the determination of olanzapine in pharmaceuticals and human serum samples. PMID:26706508

  5. Activity of dealloyed PtCo 3 and PtCu 3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Oezaslan, Mehtap; Strasser, Peter

    We report a comparative study of the alloy formation and electrochemical activity of dealloyed PtCo 3 and PtCu 3 nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). For the Pt-Co system the maximum annealing temperatures were 650 °C, 800 °C and 900 °C for 7 h to drive the Pt-Co alloy formation and the particle growth. EDS and XRD were employed for the characterization of catalyst powders. The RDE and RRDE experiments were conducted in 0.1 M HClO 4 at room temperature. We demonstrate that the mass and surface area specific ORR activities of Pt-Co and Pt-Cu alloys after voltammetric activation exhibit a considerable improvement compared to those of pure Pt/C. The dealloyed PtCo 3 (800 °C/7 h) electrocatalyst performs 3 times higher in terms of Pt-based mass activity and 4-5 times higher in terms of ECSA-based specific activity than a 28.2 wt.% Pt/C. Dealloyed Pt-Co catalysts (800 °C/7 h) show the most favorable balance between mass and specific ORR activity with a particle size of 2.2 ± 0.1 nm. We hypothesize that geometric strain effects of the dealloyed Pt-Co nanoparticles, similar to those found in dealloyed PtCu 3 nanoparticles, are responsible for the improvement in ORR activity [1].

  6. Microwave activation of electrochemical processes: enhanced electrodehalogenation in organic solvent media.

    PubMed

    Tsai, Yu-Chen; Coles, Barry A; Compton, Richard G; Marken, Frank

    2002-08-21

    The effect of high-intensity microwave radiation focused into a "hot spot" region in the vicinity of an electrode on electrochemical processes with and without coupled chemical reaction steps has been investigated in organic solvent media. First, the electrochemically reversible oxidation of ferrocene in acetonitrile and DMF is shown to be affected by microwave-induced thermal activation, resulting in increased currents and voltammetric wave shape effects. A FIDAP simulation investigation allows quantitative insight into the temperature distribution and concentration gradients at the electrode / solution interface. Next, the effect of intense microwave radiation on electroorganic reactions is considered for the case of ECE processes. Experimental data for the reduction of p-bromonitrobenzene, o-bromonitrobenzene, and m-iodonitrobenzene in DMF and acetonitrile are analyzed in terms of an electron transfer (E), followed by a chemical dehalogenation step (C), and finally followed by another electron-transfer step (E). The presence of the "hot spot" in the solution phase favors processes with high activation barriers.

  7. Synthesis, characterization and antitumor activity of new ferrocene incorporated N,N'-disubstituted thioureas.

    PubMed

    Lal, Bhajan; Badshah, Amin; Altaf, Ataf Ali; Tahir, Muhammad Nawaz; Ullah, Shafiq; Huq, Fazlul

    2012-12-28

    We report herein the synthesis, structural characterization and activity against human ovarian tumour models: A2780 (parent), A2780(cisR) (resistant to cisplatin) and A2780(ZD0473R) (resistant to the cisplatin analogue denoted as ZD0473) of two ferrocene incorporated N,N'-disubstituted thioureas {1-benzoyl-3-(4-ferrocenylphenyl)thiourea, B16, and 1-acetyl-3-(4-ferrocenylphenyl)thiourea, B3}. Structural characterization has been based on FT-IR, multinuclear ((1)H and (13)C) NMR, elemental analysis and single crystal X-ray diffractometry. Ferrocene-incorporated thioureas may present themselves as a new class of metal-based tumour active compounds. The cyclic voltammetric measurements indicate that B16 undergoes partial intercalation with the CT-DNA whereas B3 undergoes only electrostatic interaction with the same. Partial prevention of BamH1 digestion of pBR322 plasmid DNA that has been interacted with high concentrations of both B16 and B3 indicates that even non-covalent interactions can induce significant conformational changes in the DNA.

  8. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Deng, Feng; Hu, Yongyou; Sun, Jian; Yang, Yonggang

    2015-09-01

    To clearly illustrate the antibacterial activity of graphene on anodic exoelectrogen, the growth of a Shewanella oneidensis MR-1 biofilm on graphene-modified anodes (GMAs) and bare graphite anodes (BGs) were compared. The GMAs with different amounts of graphene were obtained by the cyclic voltammetric electrodeposition of 5, 20 and 40 potential cycles (5-G, 20-G and 40-G). Confocal scanning laser microscopy and cyclic voltammetry results demonstrated that graphene exhibited an obvious antibacterial effect for initial Shewanella MR biofilm growth. After 5 h of inoculation, 40-G, 20-G and 5-G had 6.3, 8.8 and 13.9% lower levels of biofilm viability, respectively, compared to BG, and all three exhibited approximately 70% lower electrochemical activity compared to BG. However, 18 h later, the biofilm on the GMAs exhibited much higher viability than that of the BG, and the electrochemical activity increased to a similar level. This study revealed the dual effect of graphene, including the antibacterial activity on biofilms and the enhancement of bacterial attachment and electron transfer.

  9. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model

    PubMed Central

    Tegtmeier, Dorothee; Thompson, Claire L.; Schauer, Christine

    2015-01-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  10. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm

    PubMed Central

    Gieseke, Armin; Purkhold, Ulrike; Wagner, Michael; Amann, Rudolf; Schramm, Andreas

    2001-01-01

    The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O2, NO2−, and NO3− profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 μm at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 μm at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems. PMID:11229931

  11. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process.

    PubMed

    Downing, Leon S; Nerenberg, Robert

    2008-08-01

    The hybrid (suspended and attached growth) membrane biofilm process (HMBP) is a novel method to achieve total nitrogen removal from wastewater. Air-filled hollow-fiber membranes are incorporated into an activated sludge tank, and a nitrifying biofilm develops on the membranes, producing nitrite and nitrate. By suppressing bulk aeration, the bulk liquid becomes anoxic, and the nitrate/nitrite can be reduced with influent BOD. The key feature that distinguishes the HMBP from other membrane-aerated processes is that it is hybrid; heterotrophic bacteria are kept mainly in suspension by maintaining low bulk liquid BOD concentrations. We investigated the HMBP's performance under a variety of BOD and ammonium loadings, and determined the dominant mechanisms of nitrogen removal. Suspended solids increased with the BOD loadings, maintaining low bulk liquid BOD concentrations. As a result, nitrification rates were insensitive to the BOD loadings, remaining at 1gNm(-2)day(-1) for BOD loadings ranging from 4 to 17gBODm(-2)day(-1). Nitrification rates decreased during short-term spikes in bulk liquid BOD concentrations. Shortcut nitrogen removal was confirmed using microsensor measurements, showing that nitrite was the dominant form of oxidized nitrogen produced by the biofilm. Fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) were dominant throughout the biofilm, while nitrite oxidizing bacteria (NOB) were only present in the deeper regions of the biofilm, where the oxygen concentration was above 2mg/L. Denitrification occurred mainly in the suspended phase, instead of in the biofilm, decreasing the potential for biofouling. When influent BOD concentrations were sufficiently high, full denitrification occurred, with total nitrogen (TN) removal approaching 100%. These results suggest that the process is well-suited for achieving concurrent BOD and TN removal in activated sludge.

  12. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2016-02-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  13. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2015-12-04

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.

  14. Screen-printed graphite macroelectrodes for the direct electron transfer of cytochrome c: a deeper study of the effect of pH on the conformational states, immobilization and peroxidase activity.

    PubMed

    Gómez-Mingot, Maria; Montiel, Vicente; Banks, Craig E; Iniesta, Jesús

    2014-03-21

    The direct electron transfer of cytochrome c has been studied at screen-printed graphite macroelectrodes without recourse to mediators or the need for any electrode pre-treatment as is commonly employed within the literature. A wide range of pH values from 2.0 to 11.0 have been explored upon the electrochemical response of cytochrome c and different voltammetric signatures have been observed. The direct electron transfer of the alkaline transition of cytochrome c was found impeded within alkaline media leading to either an irreversible redox process or even no voltammetric responses. In acidic aqueous media the electrochemical process is observed to undergo a mixed diffusion and adsorption controlled process rather than a purely diffusional process of the native conformation as observed at pH 7.0. Interestingly, at pH 3.5 a new conformational state is revealed in cooperation with the native conformation. The immobilization of the protein was satisfactorily obtained using a simple method by cycling the protein at specific solution pH values allowing amperometric responses to be obtained and gives rise to useful pseudo-peroxidase activity for sensing H2O2. Apparent Michaelis-Menten constant values (Km) were calculated via the Lineweaver-Burk method with deduced values of 25 ± 4, 98 ± 12 and 230 ± 30 mM, respectively for pH values of 2.0, 3.0 and 7.0. Such work is important for those utilising cytochrome c in bio-electrochemical and related applications.

  15. Synthesis, characterization, theoretical study and biological activities of oxovanadium (IV) complexes with 2-thiophene carboxylic acid hydrazide.

    PubMed

    Jabeen, Mudassir; Ali, Saqib; Shahzadi, Saira; Sharma, Saroj K; Qanungo, Kushal

    2014-07-01

    Oxovanadium (IV) complexes (1)-(3) have been synthesized by treating 2-thiophene carboxylic acid hydrazide with VOSO4⋅xH2O and VCl3(THF)3 in different M/L ratios. These complexes have been characterized by elemental analysis, UV-vis, FT-IR and mass spectrometry. The FT-IR data predicts the bidentate nature of the ligand which is also confirmed by semi-empirical study. Mass spectrometric data shows that molecular ion peak is only observed for 2-thiophene carboxylic acid hydrazide. The ESP map and thermodynamic parameters shows the presence of partial charge on atoms and stability of synthesized oxovanadium complexes, respectively. DNA binding study of complexes (1)-(3) was carried out by UV-vis and cyclic voltammetric methods which suggests the intercalative binding mode of the complexes with DNA. Cytotoxicity was checked by brine shrimp lethality assay and complex (1) showed greater cytotoxicity towards Artemia salina as compared to free ligand. Immuno-modulatory activity data shows that hydrazide ligand was more active as compared to oxovanadium complexes and standard drug. Complex (2) shows significant urease inhibition activity. The ligand and synthesized complexes were found inactive against all tested bacterial and fungal strains. PMID:24844618

  16. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles.

    PubMed

    Arteaga, Jesús F; Ruiz-Montoya, Mercedes; Palma, Alberto; Alonso-Garrido, Gema; Pintado, Sara; Rodríguez-Mellado, José M

    2012-01-01

    Antioxidant activity of a number of small (low molecular weight) natural compounds found in spices, condiments or drugs (gallic acid, sesamol, eugenol, thymol, carvacrol, vanillin, salicylaldehyde, limonene, geraniol, 4-hexylresorcinol, etc.) has been evaluated using electrochemical and DPPH• radical scavenging measurements. Structural analysis of the tested compound suggest a remarkable activity for phenol derivatives and the importance of the -R groups located on the phenolic ring in the molecule's ability to act as free radical scavenging as well as their influence in the electrochemical behavior. The voltammetric method can be used for the determination of the antioxidant capability in the same manner as the DPPH• radical scavenging because of the correlation found between oxidation potentials and anti-radical power (ARP = 1/EC₅₀). Such electrochemical determination is fast and cheap and allows making measurements under a variety of experimental conditions. The accuracy of the electrochemical measurements is the same for all the compounds, irrespective of their scavenging activity, the opposite of what occurs in the DPPH• test. PMID:22555300

  17. Introducing absorptive stripping voltammetry: wide concentration range voltammetric phenol detection.

    PubMed

    Nissim, Rita; Compton, Richard G

    2014-11-21

    Carbon paste electrodes are developed for the detection of phenols via a procedure in which the phenols are allowed to accumulate in the paste via transfer from an aqueous solution prior to electro-oxidation. Importantly, the use of such paste electrodes is shown to substantially overcome the "self-passivating" behaviour of the phenol oxidation which usually constrains the electrode process to low concentrations and single-shot experiments. In this paper, 4-phenoxyphenol could be detected in the range from 2.5 to 40 μM, phenol from 2.5 μM to 60 mM and 4-methoxyphenol from 5.0 to 40 μM. The electrodes were re-usable without surface renewal for concentrations up to 1.0 mM. The use of a bulk phenol solution for pre-concentration via absorptive uptake into a bulk phase followed by electrochemical quantification represents a new form of electroanalysis, namely "absorptive stripping voltammetry" complementary to "adsorptive stripping voltammetry" where accumulation occurs via adsorption on an electrode surface.

  18. Voltammetric studies on the palladium oxides in alkaline media

    SciTech Connect

    Moo Cheol Jeong; In Hyeong Yeo . Dept. of Chemistry); Chong Hong Pyun . Solid State Chemistry Lab.)

    1993-07-01

    The formation and stripping of palladium oxides on a palladium electrode in a 0.1M LiOH solution was studied by cyclic voltammetry. Cyclic polarization methods were used to form palladium oxides on the surface of the palladium electrode. Three different types of palladium oxides were found to be formed in alkaline solutions. A higher oxidation state of palladium oxide (PdO[sub 3]) can be formed (induced) on the surface of the electrode even at low anodic potential limit, 0.6 V (vs. SCE). Strong evidence that PdO[sub 3] can only be formed in a specific potential range is presented. From the voltammograms obtained after a long cyclic polarization time, the peak in the range of [minus]0.47 to [minus]0.60 V could be attributed to the reduction of dehydrated PdO.

  19. Voltammetric classification of ciders with PLS-DA.

    PubMed

    Górski, Łukasz; Sordoń, Wanda; Ciepiela, Filip; Kubiak, Władysław W; Jakubowska, Małgorzata

    2016-01-01

    Voltammograms recorded on the glassy carbon electrode (GCE) may be a chemical fingerprints of food samples, enabled distinguishing the origin of the considered products. In this work the objects of the study was 5 Polish ciders of various brands. For each sample 10 scans were recorded by DPV in the potential range between -0.2 and 1.0 V in Britton-Robinson buffer at pH 2.0. The signals preprocessing realized by baseline correction with 4-th degree polynomial and normalization (in 0 to 1 interval), performed to reduce problems with insufficient signal's repeatability associated with mechanical renovation of the electrode surface before each measurement. The PLS-DA classification models were built using the training set and then validated using the samples absent in the learning process. The final multi-class model with optimized complexity enables classification of the ciders with 100% sensitivity and specificity, with the exception of one cider, where specificity was 95% (for validation set). PMID:26695257

  20. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours.

  1. Adsorptive stripping voltammetric determination of the antidepressant drug sulpiride.

    PubMed

    Farghaly, O A

    2000-10-01

    The electrochemical behaviour of the antidepressant drug sulpiride (SP) at a hanging mercury drop electrode (HMDE) is investigated. Linear sweep cathodic stripping voltammetry (LSCSV) was used to determine sulpiride in the presence of 0.01 M sodium acetate medium pH 10.5 and 25 +/- 1 degrees C. Different parameters such as, supporting electrolyte, pH, accumulation potential, scan rate, accumulation time and ionic strength, were tested to optimize the conditions for the determination of SP. The adsorbed form is reduced irreversibly. The linear concentration range is from 2 x 10(-9) to 5 x 10(-8) M SP. Experimentally, 2 x 10(-9) M (0.68 ppb) with accumulation time 60 s can be determined successfully. Furthermore, a theoretical detection limit of 2 x 10(-10) M (0.068 ppb) Sp was calculated. The interferences of some metal ions, ascorbic acid and some amino acids were studied. The method was applied to the analysis of tablets and spiked urine, with recoveries of 104 +/- 3 and 101 + 3, and the relative standard deviation of 3.3 and 3.4%, respectively.

  2. Rapid and Sensitive Voltammetric Determination of Aclonifen in Water Samples.

    PubMed

    Guziejewski, Dariusz; Smarzewska, Sylwia; Skowron, Monika; Ciesielski, Witold; Nosal-Wiercinłska, Agnieszka; Skrzypek, Slawomira

    2016-01-01

    This paper presents the use of square wave voltammetry (SWV) and square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) for the determination of aclonifen in spiked water samples. A reduction peak at -0.65 V versus Ag/AgCl was obtained in the selected buffer (borax buffer with pH 9.2), exhibiting the characteristics of an irreversible reaction. The effect of square wave (SW) frequency, SW amplitude and step potential, as well as accumulation parameters (time and potential) were studied to select the optimal experimental conditions. The calibration curve was linear in the aclonifen concentration range from 1.0×10(-7) to 1.0×10(-6) mol L(-1) and from 1.0×10(-8) to1.0×10(-7) mol L(-1) for SWV and SWAdSV, respectively. The detection and quantification limits were found to be 3.1×10(-8) mol L(-1); 1.0×10(-7) mol L(-1) and 2.9×10(-9) mol L(-1); 9.6×10(-9) mol L-1 for SWV and SWAdSV, respectively. The proposed method was applied successfully in the determination of aclonifen in spiked water samples. The developed procedure can be adequate at least for screening purposes, where positive results should be confirmed by more selective method. PMID:26970782

  3. A systematic investigation on biological activities of a novel double zwitterionic Schiff base Cu(II) complex

    NASA Astrophysics Data System (ADS)

    Thalamuthu, S.; Annaraj, B.; Neelakantan, M. A.

    2014-01-01

    Double zwitterionic amino acid Schiff base, o-vanillylidene-L-histidine (OVHIS) and its copper complex (CuOVHIS) have been synthesized and characterized. CuOVHIS has distorted octahedral geometry, and OVHIS coordinates the copper ion in a tetradentate manner (N2O2). The pKa of OVHIS in aqueous solution was studied by potentiometric and spectrophotometric methods. DNA binding behavior of the compounds was investigated using spectrophotometric, cyclic voltammetric, and viscosity methods. The efficacy of DNA cleaving nature was tested on pUC19 DNA. The in vitro biological activity was tested against various micro organisms. The effect of CuOVHIS on the surface feature of Escherichia coli was analyzed by SEM. DPPH assay studies revealed that CuOVHIS has higher antioxidant activity. OVHIS inhibits proliferation of HCT117 cells with half maximal inhibition (IC50) of 71.15 ± 0.67. Chelation of OVHIS with Cu(II) ion enhances the inhibition of proliferation action (IC50 = 53.14 ± 0.67).

  4. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  5. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  6. Relationships between structure and activity of carbon as a multifunctional support for electrocatalysts.

    PubMed

    Stevanović, Sanja I; Panić, Vladimir V; Dekanski, Aleksandar B; Tripković, Amalija V; Jovanović, Vladislava M

    2012-07-14

    We report on new insights into the relationships between structure and activity of glassy carbon (GC), as a model material for electrocatalyst support, during its anodization in acid solution. Our investigation strongly confirms the role of CFGs in promotion of Pt activity by the "spill-over" effect related to CO(ads) for methanol electrooxidation (MEO) on a carbon-supported Pt catalyst. Combined analysis of voltammetric and impedance behaviour as well as changes in GC surface morphology induced by intensification of anodizing conditions reveal an intrinsic influence of the carbon functionalization and the structure of a graphene oxide (GO) layer on the electrical and electrocatalytic properties of activated GC. Although GO continuously grows during anodization, it structurally changes from being a graphite inter-layer within graphite ribbons toward a continuous GO surface layer that deteriorates the native structure of GC. As a consequence of the increased distance between GO-spaced graphite layers, the GC conductivity decreases until the case of profound GO exfoliation under drastic anodizing conditions. This exposes the native, yet abundantly functionalized, GC texture. While GC capacitance continuously increases with intensification of anodizing conditions, the surface nano-roughness and GO resistance reach the highest values at modest anodizing conditions, and then decrease upon drastic anodization due to the onset of GO exfoliation. We found for the first time that the activity of a GC-supported Pt catalyst in MEO, as one of the promising half-reactions in polymer electrolyte fuel cells, strictly follows the changes in GC nano-roughness and GO-induced GC resistance. The highest GC/Pt MEO activity is reached when optimal distance between graphite layers and optimal degree of GC functionalization bring the highest amount of CFGs into intimate contact with the Pt surface. This confirms the promoting role of CFGs in MEO catalysis. PMID:22648036

  7. Active-R filter

    DOEpatents

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  8. Preliminary investigation of anticancer activity by determining the DNA binding and antioxidant potency of new ferrocene incorporated N,N‧,N″-trisubstituted phenylguanidines

    NASA Astrophysics Data System (ADS)

    Gul, Rukhsana; Badshah, Amin; Khan, Azim; Junaid, Asif; Rauf, Muhammad Khawar

    2014-01-01

    Six new bioactive ferrocene based phenylguanidines were successively synthesized and characterized by means of various analytical techniques like elemental analysis, FT-IR, multinuclear (1H and 13C) NMR, UV-Vis spectroscopy and cyclic voltammetry. The interaction of compounds with DNA was investigated by spectroscopic and cyclic voltammetric measurements. The interaction was found to be the electrostatic and the binding constants values were impressively larger. Compounds f-1, f-2, f-3 have slight larger binding constant values ranging from 0.8 × 105 to 2.4 × 105 as compared to g-1, g-2 and g-3 ranging from 7.6 × 104 to 1.1 × 105 which is most probably due to the presence of ferrocene at para position where the delocalization of electrons is maximum. Antioxidant activity was determined by UV-Vis spectrophotometer by using DPPH as a free radical. All the compounds exhibit good antioxidant activity and the results so obtained support the structure activity relationship.

  9. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell.

    PubMed

    Ghadge, Anil N; Jadhav, Dipak A; Pradhan, Harapriya; Ghangrekar, Makarand M

    2015-04-01

    Waste activated sludge was digested in anodic compartment of dual chambered clayware microbial fuel cell (MFC). Performance of MFC was evaluated using oxygen (MFC-1) and hypochlorite (MFC-2) as cathodic electron acceptors. Power production of 8.7 W/m(3) was achieved using hypochlorite as catholyte, which was two times higher than using oxygen (4.2 W/m(3)). Total chemical oxygen demand of sludge was reduced by 65.4% and 84.7% in MFC-1 and MFC-2, respectively. Total and volatile suspended solids reductions were higher in MFC-2 (75.8% and 80.2%, respectively) as compared to MFC-1 (66.7% and 76.4%, respectively). Use of hypochlorite demonstrated 3.8 times higher Coulombic efficiency (13.8%) than oxygen. Voltammetric and impedance analysis revealed increase in reduction peak (from 8 to 24 mA) and decreased polarization resistance (from 42.6 to 26.5 Ω). Hypochlorite proved to be better cathodic electron acceptor, supporting rapid sludge digestion within 8 days of retention time and improved power production in MFC. PMID:25700342

  10. Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese.

    PubMed

    Gumiero, Matteo; Peressini, Donatella; Pizzariello, Andrea; Sensidoni, Alessandro; Iacumin, Lucilla; Comi, Giuseppe; Toniolo, Rosanna

    2013-06-01

    A high density polyethylene (HDPE)/calcium carbonate (CaCO(3)) film containing TiO(2) was prepared via blown film extrusion process. The photocatalytic properties of this film were evaluated by voltammetric, UV-Vis spectrophotometric and gas chromatographic measurements following the decomposition rate of suitably selected molecular probes, such as 4-hydroxybenzoic acid and methylene blue. The film containing 1% w/w of TiO(2) displayed a profitable and reproducible photoinduced degradation activity towards target organic compounds. The effect of packaging photocatalytic activity on the structural and microbiological stability of a short-ripened cheese was studied. Cheese structure was assessed by dynamic, small deformation rheological tests. A container consisting of a multilayer material, where the layer brought in contact with the food, made from the HDPE+CaCO(3)+TiO(2) composite matrix, was able to provide a greater maintenance of the original cheese structure than a rigid container currently used, mainly due to the inhibition of lactic acid bacteria and coliforms. PMID:23411292

  11. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  12. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    NASA Astrophysics Data System (ADS)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  13. Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese.

    PubMed

    Gumiero, Matteo; Peressini, Donatella; Pizzariello, Andrea; Sensidoni, Alessandro; Iacumin, Lucilla; Comi, Giuseppe; Toniolo, Rosanna

    2013-06-01

    A high density polyethylene (HDPE)/calcium carbonate (CaCO(3)) film containing TiO(2) was prepared via blown film extrusion process. The photocatalytic properties of this film were evaluated by voltammetric, UV-Vis spectrophotometric and gas chromatographic measurements following the decomposition rate of suitably selected molecular probes, such as 4-hydroxybenzoic acid and methylene blue. The film containing 1% w/w of TiO(2) displayed a profitable and reproducible photoinduced degradation activity towards target organic compounds. The effect of packaging photocatalytic activity on the structural and microbiological stability of a short-ripened cheese was studied. Cheese structure was assessed by dynamic, small deformation rheological tests. A container consisting of a multilayer material, where the layer brought in contact with the food, made from the HDPE+CaCO(3)+TiO(2) composite matrix, was able to provide a greater maintenance of the original cheese structure than a rigid container currently used, mainly due to the inhibition of lactic acid bacteria and coliforms.

  14. Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin.

    PubMed

    Butera, Daniela; Tesoriere, Luisa; Di Gaudio, Francesca; Bongiorno, Antonino; Allegra, Mario; Pintaudi, Anna Maria; Kohen, Rohn; Livrea, Maria A

    2002-11-01

    Sicilian cultivars of prickly pear (Opuntia ficus indica) produce yellow, red, and white fruits, due to the combination of two betalain pigments, the purple-red betanin and the yellow-orange indicaxanthin. The betalain distribution in the three cultivars and the antioxidant activities of methanolic extracts from edible pulp were investigated. In addition, the reducing capacity of purified betanin and indicaxanthin was measured. According to a spectrophotometric analysis, the yellow cultivar exhibited the highest amount of betalains, followed by the red and white ones. Indicaxanthin accounted for about 99% of betalains in the white fruit, while the ratio of betanin to indicaxanthin varied from 1:8 (w:w) in the yellow fruit to 2:1 (w:w) in the red one. Polyphenol pigments were negligible components only in the red fruit. When measured as 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) equivalents per gram of pulp, the methanolic fruit extracts showed a marked antioxidant activity. Vitamin C did not account for more than 40% of the measured activity. In addition, the extracts dose-dependently inhibited the organic hydroperoxide-stimulated red cell membrane lipid oxidation, as well as the metal-dependent and -independent low-density lipoprotein oxidation. The extract from the white fruit showed the highest protection in all models of lipid oxidation. Purified betanin and indicaxanthin were more effective than Trolox at scavenging the [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] diammonium salt cation radical. Cyclic voltammetric measurements show two anodic waves for betanin and indicaxanthin, and differential pulse voltammetry shows three anodic waves for betanin, with calculated peak potentials of 404, 616, and 998 mV, and two anodic waves for indicaxanthin, with peak potentials of 611 and 895 mV. Betanin underwent complex formation through chelation with Cu(2+), whereas indicaxanthin was not modified. These findings suggest that the above

  15. A new active solder for joining electronic components

    SciTech Connect

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  16. Electrocatalytic oxidation of ethanol in acid medium: Enhancement of activity of vulcan-supported Platinum-based nanoparticles upon immobilization within nanostructured zirconia matrices

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Kulesza, Pawel J.

    2014-09-01

    Composite electrocatalytic materials that utilize carbon (Vulcan) supported Pt or PtRu nanoparticles dispersed within thin films of zirconia (ZrO2) are considered here for oxidation of such a biofuel as ethanol in acid medium. The systems were characterized using electrochemical techniques as well as transmission electron microscopy. The enhancement of activity was clearly evident upon comparison of the respective voltammetric and chronoamperometric current densities recorded (at room temperature in 0.5 mol dm-3H2SO4 containing 0.5 mol dm-3 ethanol) using the Vulcan supported Pt and PtRu catalysts in the presence and absence of zirconia. In all cases, the noble metal loading was the same, 100 μg cm-2. Apparently, the existence of large population of hydroxyl groups (originating from zirconia) in the vicinity of Pt-based catalyst, in addition to possible specific interactions between zirconia and the ruthenium component of PtRu, facilitated the oxidative removal (from Pt) of the passivating (e.g., CO) reaction intermediates (adsorbates). By utilizing carbon supported, rather than bare or unsupported, Pt or PtRu nanoparticles (dispersed within the semiconducting zirconia), the overall charge distribution at the electrocatalytic interface was improved.

  17. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  18. In situ monitoring of the diurnal cycling of dynamic metal species in a stream under contrasting photobenthic biofilm activity and hydrological conditions.

    PubMed

    Tercier-Waeber, Mary-Lou; Hezard, Teddy; Masson, Matthieu; Schäfer, Jörg

    2009-10-01

    The diurnal evolution of the dynamic fraction, i.e., the potentially bioavailable fraction, of Cd, Cu, and Pb in a small river impacted by mining and smelting waste was studied in situ, under contrasting biofilm activity and hydrological conditions, using an automated voltammetric analyzer. The in situ, near real-time measurements revealed persistent dynamic metal species diurnal cycles. These cycles were affected mainly by the biochemical conditions rather than hydrological conditions. The data obtained from the in situ measurements, coupled with complementary laboratory analyses, revealed that various processes control the diurnal dynamic metal species cycles in the studied site; the trends of the diurnal cycles of the dynamic metal species can be different from those observed for the dissolved metal species measured in filtered samples. Moreover, the dynamic fraction of a given cationic metal can show diurnal cycles with opposite trends depending on the environmental conditions. All these findings highlight the interest and importance of automated, continuous measurements of specific relevant environmental metal fractions, compared to punctual weekly or monthly traditional sampling strategies of total dissolved metal analysis, to allow more appropriate water quality control and reliable assessment of metal ecotoxicological impact.

  19. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    NASA Astrophysics Data System (ADS)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed

    2011-07-01

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).

  20. Active turbulence in active nematics

    NASA Astrophysics Data System (ADS)

    Thampi, S. P.; Yeomans, J. M.

    2016-07-01

    Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.

  1. Activity Scale.

    ERIC Educational Resources Information Center

    Kerpelman, Larry C.; Weiner, Michael J.

    This twenty-four item scale assesses students' actual and desired political-social activism in terms of physical participation, communication activities, and information-gathering activities. About ten minutes are required to complete the instrument. The scale is divided into two subscales. The first twelve items (ACT-A) question respondents on…

  2. Proteasome Activators

    PubMed Central

    Stadtmueller, Beth M.; Hill, Christopher P.

    2011-01-01

    Summary Proteasomes degrade a multitude of protein substrates in the cytosol and nucleus, and thereby are essential for many aspects of cellular function. Because the proteolytic sites are sequestered in a closed barrel-shaped structure, activators are required to facilitate substrate access. Structural and biochemical studies of two activator families, 11S and Blm10, have provided insights to proteasome activation mechanisms, although the biological functions of these factors remain obscure. Recent advances have improved our understanding of the third activator family, including the 19S activator, which targets polyubiquitylated proteins for degradation. PMID:21211719

  3. Biocompatibility of common polyimides with human endothelial cells for a cardiovascular microsensor.

    PubMed

    Starr, Peter; Agrawal, C Mauli; Bailey, Steven

    2016-02-01

    The cardiovasculature is an emerging niche for polyimide microdevices, yet the biocompatibility of polyimides with human endothelial cells has not been reported in the literature. In this study, we have evaluated an experimental polyimide-based pressure sensor for biological safety to determine its suitability for intravascular operation by using an in vitro model of human endothelium, following ISO 10993-5 protocols for extract tests and direct contact tests. First, SV-HCEC cells were incubated with extracts derived from common microfabrication polyimides utilized in the transducer (PMDA-ODA, BPDA-PPD, and a proprietary thermoplastic adhesive), and then labeled with selective probes to evaluate the effect of the polyimides on mitochondria and cell viability. Flow cytometry analysis showed that incubation of SV-HCECs with polyimide extracts resulted in no significant change in mitochondrial membrane potential (detected by JC-1) or apoptotic (annexin V) and necrotic (propidium iodide) cell death, when compared to incubation with extracts of high-density polyethylene (HDPE) and untreated cells used as negative controls. Second, primary human endothelial cells were incubated in direct contact with the completed sensor and then labeled with selective probes for live-dead analysis (calcein-AM, ethidium homodimer-1). Endothelial cells showed no loss of viability when compared to negative controls. Combined, the studies show no significant change in early markers of stress or more strict markers of viability in endothelial cells treated with the polyimides tested. We conclude that these common microfabrication polyimides and the derived sensor are not cytotoxic to human endothelial cells, the primary cell type that cardiovascular sensors will contact in vivo. PMID:26418753

  4. Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors

    PubMed Central

    2015-01-01

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874

  5. Application of an evolutionary algorithm in the optimal design of micro-sensor.

    PubMed

    Lu, Qibing; Wang, Pan; Guo, Sihai; Sheng, Buyun; Liu, Xingxing; Fan, Zhun

    2015-01-01

    This paper introduces an automatic bond graph design method based on genetic programming for the evolutionary design of micro-resonator. First, the system-level behavioral model is discussed, which based on genetic programming and bond graph. Then, the geometry parameters of components are automatically optimized, by using the genetic algorithm with constraints. To illustrate this approach, a typical device micro-resonator is designed as an example in biomedicine. This paper provides a new idea for the automatic optimization design of biomedical sensors by evolutionary calculation.

  6. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    SciTech Connect

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.; McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.; Davis, Chad Edward

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field tests addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.

  7. A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds

    NASA Astrophysics Data System (ADS)

    Kumeria, Tushar; Parkinson, Luke; Losic, Dusan

    2011-12-01

    This work presents the use of nanoporous anodic aluminium oxide [AAO] for reflective interferometric sensing of volatile sulphur compounds and hydrogen sulphide [H2S] gas. Detection is based on changes of the interference signal from AAO porous layer as a result of specific adsorption of gas molecules with sulphur functional groups on a gold-coated surface. A nanoporous AAO sensing platform with optimised pore diameters (30 nm) and length (4 µm) was fabricated using a two-step anodization process in 0.3 M oxalic, followed by coating with a thin gold film (8 nm). The AAO is assembled in a specially designed microfluidic chip supported with a miniature fibre optic system that is able to measure changes of reflective interference signal (Fabry-Perrot fringes). When the sensor is exposed to a small concentration of H2S gas, the interference signal showed a concentration-dependent wavelength shifting of the Fabry-Perot interference fringe spectrum, as a result of the adsorption of H2S molecules on the Au surface and changes in the refractive index of the AAO. A practical biomedical application of reflectometric interference spectroscopy [RIfS] Au-AAO sensor for malodour measurement was successfully shown. The RIfS method based on a nanoporous AAO platform is simple, easy to miniaturise, inexpensive and has great potential for development of gas sensing devices for a range of medical and environmental applications.

  8. Measurement of the stray field emanating from magnetic force microscope tips by Hall effect microsensors

    NASA Astrophysics Data System (ADS)

    Thiaville, A.; Belliard, L.; Majer, D.; Zeldov, E.; Miltat, J.

    1997-10-01

    We describe the use of micronic Hall sensors as magnetic-field profilometers with submicron resolution. The procedure involves the deconvolution of Hall voltage maps produced by scanning the field source over the sensor, with a scanning probe microscope. The response function of an infinite Hall cross is calculated analytically in the two-dimensional case, using conformal mapping techniques. Various methods of deconvolution of the Hall voltage maps are presented and compared. The calculated response function is used for the deconvolutions, and different effective sensor sizes are tried. It is shown that the remaining main uncertainties come from the ignorance of the true response function of the sensor, ascribed to the charge depletion phenomenon that is known to occur at the sensor edges. The method is applied to thin-film magnetic force microscope tips for which a precise knowledge of the tips field at sample location proves crucial to image interpretation. Maximum fields in the range 10-100 Oe are found at a distance known to be about 100 nm from the tip contact surface, depending on the tip coating thickness and magnetization direction.

  9. Wireless Subsurface Microsensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.

  10. Thermo-optic design for microwave and millimeter-wave electromagnetic power microsensors.

    PubMed

    Grasso, Salvatore; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G; Lodice, Mario; Rendina, Ivo

    2002-06-20

    Rendina et al. recently proposed the original configuration of an electromagnetic power sensor for microwaves and millimeter waves that is based on an optically interrogated all-silicon chip [Electron. Lett. 35, 1748 (1999)]. Here we theoretically analyze and discuss in detail the performances of such a new class of nonperturbing and wideband probe in terms of sensitivity, resolution, intrinsic detectivity, linearity, and response time. Good agreement between theory and experiments is demonstrated. In particular, minimum resolutions of approximately 1 mW/cm2 are obtained at frequencies beyond 10 GHz. The dependence of response on the geometrical and electromagnetic parameters of the sensing element is analyzed, and on this basis the possibility of achieving optimized configurations is discussed.

  11. Monolithic integration of GaAs SAW chemical microsensor arrays and detection electronics

    SciTech Connect

    CASALNUOVO,STEPHEN A.; HIETALA,VINCENT M.; HELLER,EDWIN J.; ASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-04-17

    The authors describe the integration of an array of surface acoustic wave delay line chemical sensors with the associated RF microelectronics such that the resulting device operates in a DC in/DC out mode. The microelectronics design for on-chip RF generation and detection is presented. Both hybrid and monolithic approaches are discussed. This approach improves system performance, simplifies packaging and assembly, and significantly reduces overall system size. The array design can be readily scaled to include a large number of sensors.

  12. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.

  13. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

    PubMed Central

    Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2010-01-01

    Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663

  14. Hierarchical information fusion for global displacement estimation in microsensor motion capture.

    PubMed

    Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong

    2013-07-01

    This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.

  15. A Wireless Passive Pressure Microsensor Fabricated in HTCC MEMS Technology for Harsh Environments

    PubMed Central

    Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang

    2013-01-01

    A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low. PMID:23917261

  16. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. PMID:27145145

  17. A microsensor array for quantification of lubricant contaminants using a back propagation artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Du, Li; Liu, Bendong; Zhe, Jiang

    2016-06-01

    We present a method based on an electrochemical sensor array and a back propagation artificial neural network for detection and quantification of four properties of lubrication oil, namely water (0, 500 ppm, 1000 ppm), total acid number (TAN) (13.1, 13.7, 14.4, 15.6 mg KOH g‑1), soot (0, 1%, 2%, 3%) and sulfur content (1.3%, 1.37%, 1.44%, 1.51%). The sensor array, consisting of four micromachined electrochemical sensors, detects the four properties with overlapping sensitivities. A total set of 36 oil samples containing mixtures of water, soot, and sulfuric acid with different concentrations were prepared for testing. The sensor array’s responses were then divided to three sets: training sets (80% data), validation sets (10%) and testing sets (10%). Several back propagation artificial neural network architectures were trained with the training and validation sets; one architecture with four input neurons, 50 and 5 neurons in the first and second hidden layer, and four neurons in the output layer was selected. The selected neural network was then tested using the four sets of testing data (10%). Test results demonstrated that the developed artificial neural network is able to quantitatively determine the four lubrication properties (water, TAN, soot, and sulfur content) with a maximum prediction error of 18.8%, 6.0%, 6.7%, and 5.4%, respectively, indicting a good match between the target and predicted values. With the developed network, the sensor array could be potentially used for online lubricant oil condition monitoring.

  18. Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor

    ERIC Educational Resources Information Center

    Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang

    2012-01-01

    There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…

  19. Chemical Microsensor and Micro-Instrument Technology at Sandia National Laboratories

    SciTech Connect

    Butler, M.A.; Frye-Mason, G.C.; Hughes, R.C.; Osbourn, G.C.

    1999-03-26

    Important factors in the application of chemical sensing technology to space applications are low mass, small size, and low power. All of these attributes are enabled by the application of MEMS and micro-fabrication technology to chemical sensing. Several Sandia projects that apply these technologies to the development of new chemical sensing capabilities with the potential for space applications will be described. The Polychromator project is a joint project with Honeywell and MIT to develop an electrically programmable diffraction grating that can be programmed to synthesize the spectra of molecules. This grating will be used as the reference cell in a gas correlation radiometer to enable remote chemical detection of most chemical species. Another area of research where micro-fabrication is having a large impact is the development of a lab on a chip. Sandia's efforts to develop the {mu}ChemLab{trademark} will be described including the development of microfabricated pre-concentrators, chromatographic columns, and detectors. Chemical sensors are evolving in the direction of sensor arrays with pattern recognition methods applied to interpret the pattern of response. Sandia's development of micro-fabricated chemiresistor arrays and the VERI pattern recognition technology to interpret the sensor response will be described.

  20. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    SciTech Connect

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  1. Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; von Jako, Ron

    2008-03-01

    Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.

  2. Microsensors for In-Situ, Real-Time Detection and Characterization of Toxic Organic Substances

    SciTech Connect

    Rajic, S.

    2001-05-14

    We have further developed and demonstrated the novel ORNL micro-calorimetric spectroscopy technique for the detections and characterization of toxic organic substances. In this technique target molecules were allowed to adsorb on the surface of sub-femtojoule sensitive micromechanical thermal detectors. The adsorption of molecules on the thermal detector surface causes a differential surface stress resulting in an initial ''trigger''. By exposing the thermal detector microstructure elements to different photon wavelengths, an extremely sensitive and unique photothermal signature response was obtained. We adsorbed sub-monolayer levels of target chemicals onto the bi-material detector surfaces. We obtained infrared photothermal spectra for trace concentrations of several organics such as diisopropyl methylphosphonate (DIMP), and trinitrotoluene (TNT) over the wavelength region 2.5 to 14.5 {micro}m. We found that in the wavelength region 2.5 to 14.5 {micro}m the photothermal spectra of DIMP and TNT exhibit a number of peaks and are in excellent agreement with traditional infrared absorption spectra found in the literature. Chemical detectors based on micro-calorimetric spectroscopy can be used to sensitively sense a relatively small number of molecules adsorbed on a thermal detector surface. This photothermal signature resulting from photon irradiation and subsequent thermal transfer can be used for improved chemical characterization.

  3. Embedded micro-sensor for monitoring pH in concrete structures

    NASA Astrophysics Data System (ADS)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  4. An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate.

    PubMed

    Cosnier, S; Innocent, C; Allien, L; Poitry, S; Tsacopoulos, M

    1997-03-01

    A novel method of microbiosensor fabrication is described. It is based on the electrochemical polymerization of an enzyme-amphiphilic pyrroleammonium solution on the surface of a microelectrode in the absence of supporting electrolyte. By trapping glutamate oxidase (GMO) or polyphenol oxidase (PPO) in such polypyrrole films, we made microbiosensors for the amperometric determination of glutamate or dopamine, respectively. The response of the GMO microelectrode to glutamate was based on the amperometric detection of the enzymically generated hydrogen peroxide at 0.6 V vs SCE. The detection limit and sensitivity of this microbiosensor were 1 μM and 32 mA M(-1) cm(-2), respectively. The response of the PPO microelectrode to dopamine was based on the amperometric detection of the enzymically generated quinoid product at -0.2 V. The calibration range for dopamine measurement was 5 × 10(-8)-8 × 10(-5) M and the detection limit and sensitivity were 5 × 10(-8) M and 59 mA M(-1) cm(-2), respectively.

  5. A microsensor array for quantification of lubricant contaminants using a back propagation artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Du, Li; Liu, Bendong; Zhe, Jiang

    2016-06-01

    We present a method based on an electrochemical sensor array and a back propagation artificial neural network for detection and quantification of four properties of lubrication oil, namely water (0, 500 ppm, 1000 ppm), total acid number (TAN) (13.1, 13.7, 14.4, 15.6 mg KOH g-1), soot (0, 1%, 2%, 3%) and sulfur content (1.3%, 1.37%, 1.44%, 1.51%). The sensor array, consisting of four micromachined electrochemical sensors, detects the four properties with overlapping sensitivities. A total set of 36 oil samples containing mixtures of water, soot, and sulfuric acid with different concentrations were prepared for testing. The sensor array’s responses were then divided to three sets: training sets (80% data), validation sets (10%) and testing sets (10%). Several back propagation artificial neural network architectures were trained with the training and validation sets; one architecture with four input neurons, 50 and 5 neurons in the first and second hidden layer, and four neurons in the output layer was selected. The selected neural network was then tested using the four sets of testing data (10%). Test results demonstrated that the developed artificial neural network is able to quantitatively determine the four lubrication properties (water, TAN, soot, and sulfur content) with a maximum prediction error of 18.8%, 6.0%, 6.7%, and 5.4%, respectively, indicting a good match between the target and predicted values. With the developed network, the sensor array could be potentially used for online lubricant oil condition monitoring.

  6. Active ratchets

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Costanzo, A.; Di Leonardo, R.

    2011-12-01

    We analyze self-propelling organisms, or active particles, in a periodic asymmetric potential. Unlike standard ratchet effect for Brownian particles requiring external forcing, in the case of active particles asymmetric potential alone produces a net drift speed (active ratchet effect). By using theoretical models and numerical simulations we demonstrate the emergence of the rectification process in the presence of an asymmetric piecewise periodic potential. The broken spatial symmetry (external potential) and time symmetry (active particles) are sufficient ingredients to sustain unidirectional transport. Our findings open the way to new mechanisms to move in directional manner motile organisms by using external periodic static fields.

  7. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  8. Faculty Activism

    ERIC Educational Resources Information Center

    Academe, 2005

    2005-01-01

    Blending scholarship and activism, whether domestic or international, takes some real work. Two scholar-activists reflect on why and how activism can be more than academic labor in this feature of the "Academe" journal. This feature includes the following brief reflections on political work, both local and global that demonstrates how on campus…

  9. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  10. Outdoor Activities.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Twenty-four activities suitable for outdoor use by elementary school children are outlined. Activities designed to make children aware of their environment include soil painting, burr collecting, insect and pond water collecting, studies of insect galls and field mice, succession studies, and a model of natural selection using dyed toothpicks. A…

  11. Activation analysis

    SciTech Connect

    Alfassi, Z.B. . Dept. of Nuclear Engineering)

    1990-01-01

    This volume contains 16 chapters on the application of activation analysis in the fields of life sciences, biological materials, coal and its effluents, environmental samples, archaeology, material science, and forensics. Each chapter is processed separately for the data base.

  12. Novel metal-based pharmacologically dynamic agents of transition metal(II) complexes: Designing, synthesis, structural elucidation, DNA binding and photo-induced DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Raman, N.; Jeyamurugan, R.; Sakthivel, A.; Mitu, L.

    2010-01-01

    Novel Schiff base Cu(II), Ni(II), Co(II) and Zn(II) complexes have been designed and synthesized using the macrocyclic ligand derived from the condensation of diethylphthalate with Schiff base, obtained from benzene-1,2-diamine and 3-benzylidene-pentane-2,4-dione. The ligand and its complexes have been characterized by analytical and spectral techniques. DNA binding properties of these complexes have been investigated by UV-vis, viscosity measurements, cyclic voltammetric and differential pulse voltammogram studies. The intrinsic binding constants for Co(II), Ni(II), Cu(II) and Zn(II) complexes are 1.6 × 10 6, 1.8 × 10 6, 2.0 × 10 6 and 1.5 × 10 6 M -1 respectively which are obtained from electronic absorption experiment. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder (distamycin) suggest the major groove binding tendency for the synthesized complexes. In the presence of a reducing agent like 3-mercaptopropionic acid (MPA), the synthesized complexes show chemical nuclease activity under dark reaction condition. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 360 nm in the presence of inhibitors. Control experiments show inhibition of cleavage in the presence of singlet oxygen quencher like sodium azide and enhancement of cleavage in D 2O, suggesting the formation of singlet oxygen as a reactive species in a type-II process.

  13. Integrin activation

    PubMed Central

    Ginsberg, Mark H.

    2014-01-01

    Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of “inside-out” signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals. [BMB Reports 2014; 47(12): 655-659] PMID:25388208

  14. Active Cytokinins

    PubMed Central

    Mornet, René; Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Moore, F. Hardy; Skoog, Folke

    1979-01-01

    Four series of azidopurines have been synthesized and tested for cytokinin activity in the tobacco callus bioassay: 2- and 8-azido-N6-benzyladenines, -N6-(Δ2-isopentenyl)adenines, and -zeatins, and N6-(2- and 4-azidobenzyl)adenines. The compounds having 2-azido substitution on the adenine ring are as active as the corresponding parent compounds, while those with 8-azido substitution are about 10 or more times as active. The 8-azidozeatin, which is the most active cytokinin observed, exhibited higher than minimal detectable activity at 1.2 × 10−5 micromolar, the lowest concentration tested. The shape of the growth curve indicates that even a concentration as low as 5 × 10−6 micromolar would probably be effective. By comparison, the lowest active concentration ever reported for zeatin has been 5 × 10−5 micromolar, representing a sensitivity rarely attained. All of the azido compounds have been submitted to photolysis in aqueous ethanol, and the photoproducts have been detected and identified by low and high resolution mass spectrometry. They are rationalized as products of abstraction and insertion reactions of the intermediate nitrenes. The potential of the major released products as cytokinins was also assessed by bioassay. 2-Azido-N6-(Δ2-isopentenyl)adenine competed with [14C]kinetin for the cytokinin-binding protein isolated from wheat germ. When the azido compound was photolysed in the presence of this protein, its attachment effectively blocked the binding of [14C]kinetin. PMID:16661017

  15. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  16. Activity report

    SciTech Connect

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  17. Classroom Activities.

    ERIC Educational Resources Information Center

    Stuart, Frances R.

    This pamphlet suggests activities that may be used in the elementary school classroom. Chapter I lists various short plays that children can easily perform which encourage their imagination. Chapter II details a few quiet classroom games such as "I Saw,""Corral the Wild Horse,""Who Has Gone from the Room," and "Six-Man-Football Checkers." A number…

  18. Learning Activities.

    ERIC Educational Resources Information Center

    Tipton, Tom, Ed.

    1983-01-01

    Presents a flow chart for naming inorganic compounds. Although it is not necessary for students to memorize rules, preliminary skills needed before using the chart are outlined. Also presents an activity in which the mass of an imaginary atom is determined using lead shot, Petri dishes, and a platform balance. (JN)

  19. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  20. Get Active

    MedlinePlus

    ... Lifting small weights – you can even use bottled water or cans of food as weights Watch these videos for muscle strengthening exercises to do at home or at the gym. If you do muscle-strengthening activities with weights, check out the do’s and don’ ...