Science.gov

Sample records for active vsg expression

  1. Consequences of telomere shortening at an active VSG expression site in telomerase-deficient Trypanosoma brucei.

    PubMed

    Dreesen, Oliver; Cross, George A M

    2006-12-01

    Trypanosoma brucei evades the host immune response by sequential expression of a large family of variant surface glycoproteins (VSG) from one of approximately 20 subtelomeric expression sites (ES). VSG transcription is monoallelic, and little is known about the regulation of antigenic switching. To explore whether telomere length could affect antigenic switching, we created a telomerase-deficient cell line, in which telomeres shortened at a rate of 3 to 6 bp at each cell division. Upon reaching a critical length, short silent ES telomeres were stabilized by a telomerase-independent mechanism. The active ES telomere progressively shortened and frequently broke. Upon reaching a critical length, the short active ES telomere stabilized, but the transcribed VSG was gradually lost from the population and replaced by a new VSG through duplicative gene conversion. We propose a model in which subtelomeric-break-induced replication-mediated repair at a short ES telomere leads to duplicative gene conversion and expression of a new VSG.

  2. Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes.

    PubMed

    Stanne, Tara M; Rudenko, Gloria

    2010-01-01

    African trypanosomes regulate transcription differently from other eukaryotes. Most of the trypanosome genome is constitutively transcribed by RNA polymerase II (Pol II) as large polycistronic transcription units while the genes encoding the major surface proteins are transcribed by RNA polymerase I (Pol I). In bloodstream form Trypanosoma brucei, the gene encoding the variant surface glycoprotein (VSG) coat is expressed in a monoallelic fashion from one of about 15 VSG bloodstream form expression sites (BESs). Little is known about the chromatin structure of the trypanosome genome, and the chromatin state of active versus silent VSG BESs remains controversial. Here, we determined histone H3 occupancy within the genome of T. brucei, focusing on active versus silent VSG BESs in the bloodstream form. We found that histone H3 was most enriched in the nontranscribed 50-bp and 177-bp repeats and relatively depleted in Pol I, II, and III transcription units, with particular depletion over promoter regions. Using two isogenic T. brucei lines containing marker genes in different VSG BESs, we determined that histone H3 is 11- to 40-fold depleted from active VSG BESs compared with silent VSG BESs. Quantitative PCR analysis of fractionated micrococcal nuclease-digested chromatin revealed that the active VSG BES is depleted of nucleosomes. Therefore, in contrast to earlier views, nucleosome positioning appears to be involved in the monoalleleic control of VSG BESs in T. brucei. This may provide a level of epigenetic regulation enabling bloodstream form trypanosomes to efficiently pass on the transcriptional state of active and silent BESs to daughter cells.

  3. PARP promoter-mediated activation of a VSG expression site promoter in insect form Trypanosoma brucei.

    PubMed

    Urményi, T P; Van der Ploeg, L H

    1995-03-25

    In trypanosomes the rRNA, PARP and VSG gene promoters mediate alpha-amanitin-resistant transcription of protein coding genes, presumably by RNA polymerase (pol) I. We compared the activity of PARP and VSG promoters integrated at one of the alleles of the largest subunit of pol II genes in insect form trypanosomes. Even though both promoters are roughly equally active in transient transformation assays in insect form trypanosomes, only the PARP promoter functioned effectively when integrated at the pol II largest subunit or other loci. Promoter activity in transient transformation assays is therefore not necessarily predictive of transcriptional activity once integrated into the trypanosome genome. The integrated fully active PARP promoter could upregulate in cis an otherwise poorly active integrated VSG promoter. The PARP promoter nucleotide sequence elements responsible for VSG promoter activation coincided with most of the important PARP promoter elements mapped previously by linker scanning mutagenesis, indicating that it is not a single unique promoter element that was responsible for VSG promoter activation. The data suggest that PARP promoter-mediated activation of the VSG promoter does not result from complementation of the VSG promoter with a single insect form-specific transcription factor whose binding site is missing from the VSG promoter and present in the PARP promoter. We favor a model in which chromatin structure at the locus is altered by the PARP promoter, allowing VSG promoter activation in insect form trypanosomes. We discuss the significance of these observations for the control of VSG promoters in insect form trypanosomes.

  4. Cohesin regulates VSG monoallelic expression in trypanosomes.

    PubMed

    Landeira, David; Bart, Jean-Mathieu; Van Tyne, Daria; Navarro, Miguel

    2009-07-27

    Antigenic variation allows Trypanosoma brucei to evade the host immune response by switching the expression of 1 out of approximately 15 telomeric variant surface glycoprotein (VSG) expression sites (ESs). VSG ES transcription is mediated by RNA polymerase I in a discrete nuclear site named the ES body (ESB). However, nothing is known about how the monoallelic VSG ES transcriptional state is maintained over generations. In this study, we show that during S and G2 phases and early mitosis, the active VSG ES locus remains associated with the single ESB and exhibits a delay in the separation of sister chromatids relative to control loci. This delay is dependent on the cohesin complex, as partial knockdown of cohesin subunits resulted in premature separation of sister chromatids of the active VSG ES. Cohesin depletion also prompted transcriptional switching from the active to previously inactive VSG ESs. Thus, in addition to maintaining sister chromatid cohesion during mitosis, the cohesin complex plays an essential role in the correct epigenetic inheritance of the active transcriptional VSG ES state.

  5. VSG gene expression site control in insect form Trypanosoma brucei.

    PubMed

    Rudenko, G; Blundell, P A; Taylor, M C; Kieft, R; Borst, P

    1994-11-15

    When the African trypanosome Trypanosoma brucei is taken up from mammals by a tse-tse fly, it replaces its variant surface glycoprotein (VSG) coat by a procyclin coat. Transcription of VSG genes stops in the fly, but transcription of sequences derived from the promoter area of the VSG expression site(s) remains high. Whether this is due to continuing high activity of one promoter or to low activity of many promoters was unclear. We have used the small differences between the sequences of different expression sites to show that multiple expression site promoters are active in insect form trypanosomes. This is confirmed by the low expression of single copy marker genes introduced into the transcribed area. However, if the expression site promoter is removed from the genomic location of the expression site and inserted in the non-transcribed spacer of the ribosomal DNA (rDNA), it is derepressed. Derepression of transcription can also be accomplished by replacing the promoter of an expression site by an rDNA promoter. We conclude that the down-regulation of VSG gene expression site promoters in insect form trypanosomes is affected by both the DNA sequence of the promoter and the genomic context in which it resides.

  6. SUMOylation by the E3 ligase TbSIZ1/PIAS1 positively regulates VSG expression in Trypanosoma brucei.

    PubMed

    López-Farfán, Diana; Bart, Jean-Mathieu; Rojas-Barros, Domingo I; Navarro, Miguel

    2014-12-01

    Bloodstream form trypanosomes avoid the host immune response by switching the expression of their surface proteins between Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Monoallelic transcription of the telomeric VSG Expression Site (ES) by RNA polymerase I (RNA pol I) localizes to a unique nuclear body named the ESB. Most work has focused on silencing mechanisms of inactive VSG-ESs, but the mechanisms involved in transcriptional activation of a single VSG-ES remain largely unknown. Here, we identify a highly SUMOylated focus (HSF) in the nucleus of the bloodstream form that partially colocalizes with the ESB and the active VSG-ES locus. SUMOylation of chromatin-associated proteins was enriched along the active VSG-ES transcriptional unit, in contrast to silent VSG-ES or rDNA, suggesting that it is a distinct feature of VSG-ES monoallelic expression. In addition, sequences upstream of the active VSG-ES promoter were highly enriched in SUMOylated proteins. We identified TbSIZ1/PIAS1 as the SUMO E3 ligase responsible for SUMOylation in the active VSG-ES chromatin. Reduction of SUMO-conjugated proteins by TbSIZ1 knockdown decreased the recruitment of RNA pol I to the VSG-ES and the VSG-ES-derived transcripts. Furthermore, cells depleted of SUMO conjugated proteins by TbUBC9 and TbSUMO knockdown confirmed the positive function of SUMO for VSG-ES expression. In addition, the largest subunit of RNA pol I TbRPA1 was SUMOylated in a TbSIZ-dependent manner. Our results show a positive mechanism associated with active VSG-ES expression via post-translational modification, and indicate that chromatin SUMOylation plays an important role in the regulation of VSG-ES. Thus, protein SUMOylation is linked to active gene expression in this protozoan parasite that diverged early in evolution.

  7. A trypanosome metacyclic VSG gene promoter with two functionally distinct, life cycle stage-specific activities.

    PubMed

    Graham, S V; Wymer, B; Barry, J D

    1998-04-15

    In the mammalian bloodstream, African trypanosomes express the variant surface glycoprotein (VSG), continual switching of which allows evasion of the host immune response. Bloodstream VSG genes are transcribed from polycistronic bloodstream expression sites with promoters which are located 45-60 kb upstream. These promoters are not exclusively stage-regulated, being active in the insect midgut stage where VSG is not expressed. However, the metacyclic VSG (M-VSG) genes, a small subset activated when VSG synthesis begins in the metacyclic stage in the tsetse fly salivary glands, are transcriptionally activated specifically in that stage from promoters <3 kb upstream. Using deletion mapping and transient transfection, we show that the entire 1.22 M-VSG gene promoter region (171 bp) is required for full activity in metacyclic-derived trypanosomes. However, a subsidiary, bloodstream stage-specific activity is present in its 5' half which directs transcription initiation very close to the initiation site used in metacyclic-derived trypanosomes. Our results imply that the M-VSG gene promoter is longer and more complex than other VSG gene promoters.

  8. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control.

    PubMed

    Glover, Lucy; Hutchinson, Sebastian; Alsford, Sam; McCulloch, Richard; Field, Mark C; Horn, David

    2013-12-01

    African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub-telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol-I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol-I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub-nuclear context.

  9. Localization of the modified base J in telomeric VSG gene expression sites of Trypanosoma brucei.

    PubMed

    van Leeuwen, F; Wijsman, E R; Kieft, R; van der Marel, G A; van Boom, J H; Borst, P

    1997-12-01

    African trypanosomes such as Trypanosoma brucei undergo antigenic variation in the bloodstream of their mammalian hosts by regularly changing the variant surface glycoprotein (VSG) gene expressed. The transcribed VSG gene is invariably located in a telomeric expression site. There are multiple expression sites and one way to change the VSG gene expressed is by activating a new site and inactivating the previously active one. The mechanisms that control expression site switching are unknown, but have been suggested to involve epigenetic regulation. We have found previously that VSG genes in silent (but not active) expression sites contain modified restriction endonuclease cleavage sites, and we have presented circumstantial evidence indicating that this is attributable to the presence of a novel modified base beta-D-glucosyl-hydroxymethyluracil, or J. To directly test this, we have generated antisera that specifically recognize J-containing DNA and have used these to determine the precise location of this modified thymine in the telomeric VSG expression sites. By anti J-DNA immunoprecipitations, we found that J is present in telomeric VSG genes in silenced expression sites and not in actively transcribed telomeric VSG genes. J was absent from inactive chromosome-internal VSG genes. DNA modification was also found at the boundaries of expression sites. In the long 50-bp repeat arrays upstream of the promoter and in the telomeric repeat arrays downstream of the VSG gene, J was found both in silent and active expression sites. This suggests that silencing results in a gradient of modification spreading from repetitive DNA flanks into the neighboring expression site sequences. In this paper, we discuss the possible role of J in silencing of expression sites.

  10. Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends?

    PubMed

    Günzl, Arthur; Kirkham, Justin K; Nguyen, Tu N; Badjatia, Nitika; Park, Sung Hee

    2015-02-01

    Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.

  11. Controls of the expression of the Vsg in Trypanosoma brucei.

    PubMed

    Vanhamme, L; Pays, E

    1998-03-01

    We present an overview of the regulation of vsg expression, focusing on initiation and elongation of transcription as well as processing and stabilization of the transcripts. We propose a model where common factors are involved in the reverse controls of the genes for the two main stage-specific antigens, the Vsg and procyclin: a cross-talk between the two transcription units would allow a fast rerouting of limiting factors at differentiation, thereby allowing the expression of only one type of antigen at a time. A similar mechanism would ensure that only one vsg ES is fully expressed at a time in bloodstream forms.

  12. A detailed mutational analysis of the VSG gene expression site promoter.

    PubMed

    Pham, V P; Qi, C C; Gottesdiener, K M

    1996-01-01

    The African trypanosome Trypanosoma brucei is a protozoan parasite that causes the disease African sleeping sickness. The parasite avoids the host's immune response by the process of antigenic variation, or by sequentially expressing antigenically different cell-surface coat proteins. These proteins, called variant surface glycoproteins (VSGs), are expressed from a specific locus, the VSG gene expression site (ES). In an attempt to understand expression of VSG genes, we expanded on earlier investigations of the promoter that controls the large VSG gene expression site transcription unit. We studied VSG ES promoter function both in transient transfection assays, and after stable integration at a chromosomal locus. Analysis of closely spaced deletion mutants showed that the minimum VSG ES promoter fragment that gives full activity is extremely small, and mapped precisely to a fragment that contains no more than -67 bp 5' to the putative transcription initiation site. The promoter lacked an upstream control element, or UCE, an element found at the PARP promoter, and at most eukaryotic Pol I promoters. Furthermore, linker scanning mutagenesis demonstrated that the VSG ES promoter contains at least two essential regulatory elements, including sequences within the region -67/-60 and the region -35/-20, both numbered relative to the initiation site. An altered promoter with mutated nucleotides surrounding the transcription initiation site still directed wild-type levels of expression. In this study, the results were similar for both insect and bloodstream form trypanosomes, suggesting that the same basic machinery for expression from the VSG ES promoter is found in both stages of the parasite.

  13. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity.

    PubMed

    Jehi, Sanaa E; Li, Xiaohua; Sandhu, Ranjodh; Ye, Fei; Benmerzouga, Imaan; Zhang, Mingjie; Zhao, Yanxiang; Li, Bibo

    2014-11-10

    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation.

  14. Duplicative activation mechanisms of two trypanosome telomeric VSG genes with structurally simple 5' flanks.

    PubMed

    Matthews, K R; Shiels, P G; Graham, S V; Cowan, C; Barry, J D

    1990-12-25

    In the mammalian bloodstream, African trypanosomes express variant surface glycoprotein (VSG) genes from a family of long and complex telomeric expression sites. VSG switching generally occurs by the duplication of different VSG genes into these sites by gene conversion involving a series of 70 base pair (70bp) repeats in the 5' flank. In contrast, when VSG is first synthesised by trypanosomes in the tsetse fly at the metacyclic stage, a separate set of telomeric expression sites is activated. These latter telomeres appear not to act as recipients in gene conversion. We have found that the structure of two such expression sites is simple, with very short 70bp repeat regions and very little other sequence in common with bloodstream expression sites. However, the two telomeres readily act as donors in VSG gene conversion in the bloodstream and we show for one a consistent association of the conversion 5' end point with the short 70bp repeat region. These findings help explain why a very predictable set of VSGs is expressed in the tsetse fly and have implications for VSG gene conversion mechanisms.

  15. NLP is a novel transcription regulator involved in VSG expression site control in Trypanosoma brucei.

    PubMed

    Narayanan, Mani Shankar; Kushwaha, Manish; Ersfeld, Klaus; Fullbrook, Alexander; Stanne, Tara M; Rudenko, Gloria

    2011-03-01

    Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.

  16. Early expression of a Trypanosoma brucei VSG gene duplicated from an incomplete basic copy.

    PubMed

    Aline, R F; Myler, P J; Gobright, E; Stuart, K D

    1994-01-01

    Intrachromosomal variant surface glycoprotein (VSG) genes in Trypanosoma brucei are expressed by a mechanism involving gene conversion. The 3' boundary of gene conversion is usually within the last 130 bp of the VSG gene, a region of partially conserved sequences. We report here the loss of the predominant telomeric A VSG gene in the cloned variant antigenic type (VAT) 5A3, leaving only an intrachromosomal A VSG gene (the A-B gene). The nucleotide sequence of the A-B VSG gene reveals that it lacks the normal VSG 3' sequence. Surprisingly, we find cells expressing this A-B VSG gene in relapse populations arising from VAT 5A3. Since the A VSG mRNAs from these cells have a normal 3' sequence, the incomplete A-B VSG gene must be expressed via a partial gene conversion that supplies the functional 3' end. Although the A-B VSG gene is no longer predominant like the telomeric A VSG gene, it is still expressed more frequently than other intrachromosomal VSG genes, suggesting that factors other than a telomeric location determine whether a VSG gene is expressed early in a serodeme.

  17. Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes.

    PubMed

    Wang, Qiao-Ping; Kawahara, Taemi; Horn, David

    2010-09-01

    African trypanosomes evade the host immune response through antigenic variation, which is achieved by periodically expressing different variant surface glycoproteins (VSGs). VSG expression is monoallelic such that only one of approximately 15 telomeric VSG expression sites (ESs) is transcribed at a time. Epigenetic regulation is involved in VSG control but our understanding of the mechanisms involved remains incomplete. Histone deacetylases are potential drug targets for diseases caused by protozoan parasites. Here, using recombinant expression we show that the essential Trypanosoma brucei deacetylases, DAC1 (class I) and DAC3 (class II) display histone deacetylase activity. Both DAC1 and DAC3 are nuclear proteins in the bloodstream stage parasite, while only DAC3 remains concentrated in the nucleus in insect-stage cells. Consistent with developmentally regulated localization, DAC1 antagonizes SIR2rp1-dependent telomeric silencing only in the bloodstream form, indicating a conserved role in the control of silent chromatin domains. In contrast, DAC3 is specifically required for silencing at VSG ES promoters in both bloodstream and insect-stage cells. We conclude that DAC1 and DAC3 play distinct roles in subtelomeric gene silencing and that DAC3 represents the first readily druggable target linked to VSG ES control in the African trypanosome.

  18. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei.

    PubMed

    Navarro, M; Gull, K

    2001-12-13

    In the mammalian host, African trypanosomes generate consecutive waves of parasitaemia by changing their antigenic coat. Because this coat consists of a single type of variant surface glycoprotein (VSG), the question arises of how a trypanosome accomplishes the transcription of only one of a multi-allelic family of VSG expression site loci to display a single VSG type on the surface at any one time. No major differences have been detected between the single active expression site and the cohort of inactive expression sites. Here we identify an extranucleolar body containing RNA polymerase I (pol I) that is transcriptionally active and present only in the bloodstream form of the parasite. Visualization of the active expression site locus by tagging with green fluorescent protein shows that it is specifically located at this unique pol I transcriptional factory. The presence of this transcriptional body in postmitotic nuclei and its stability in the nucleus after DNA digestion provide evidence for a coherent structure. We propose that the recruitment of a single expression site and the concomitant exclusion of inactive loci from a discrete transcriptional body define the mechanism responsible for VSG mono-allelic expression.

  19. Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei.

    PubMed

    Nguyen, Tu N; Müller, Laura S M; Park, Sung Hee; Siegel, T Nicolai; Günzl, Arthur

    2014-03-01

    Monoallelic expression within a gene family is found in pathogens exhibiting antigenic variation and in mammalian olfactory neurons. Trypanosoma brucei, a lethal parasite living in the human bloodstream, expresses variant surface glycoprotein (VSG) from 1 of 15 bloodstream expression sites (BESs) by virtue of a multifunctional RNA polymerase I. The active BES is transcribed in an extranucleolar compartment termed the expression site body (ESB), whereas silent BESs, located elsewhere within the nucleus, are repressed epigenetically. The regulatory mechanisms, however, are poorly understood. Here we show that two essential subunits of the basal class I transcription factor A (CITFA) predominantly occupied the promoter of the active BES relative to that of a silent BES, a phenotype that was maintained after switching BESs in situ. In these experiments, high promoter occupancy of CITFA was coupled to high levels of both promoter-proximal RNA abundance and RNA polymerase I occupancy. Accordingly, fluorescently tagged CITFA-7 was concentrated in the nucleolus and the ESB. Because a ChIP-seq analysis found that along the entire BES, CITFA-7 is specifically enriched only at the promoter, our data strongly indicate that monoallelic BES transcription is activated by a mechanism that functions at the level of transcription initiation.

  20. The FACT subunit TbSpt16 is involved in cell cycle specific control of VSG expression sites in Trypanosoma brucei.

    PubMed

    Denninger, Viola; Fullbrook, Alexander; Bessat, Mohamed; Ersfeld, Klaus; Rudenko, Gloria

    2010-10-01

    The African trypanosome Trypanosoma brucei monoallelically expresses one of more than 1000 Variant Surface Glycoprotein (VSG) genes. The active VSG is transcribed from one of about 15 telomeric VSG expression sites (ESs). It is unclear how monoallelic expression of VSG is controlled, and how inactive VSG ESs are silenced. Here, we show that blocking synthesis of the T. brucei FACT subunit TbSpt16 triggers a G2/early M phase cell cycle arrest in both bloodstream and insect form T. brucei. Segregation of T. brucei minichromosomes in these stalled cells is impaired, implicating FACT in maintenance of centromeres. Strikingly, knock-down of TbSpt16 results in 20- to 23-fold derepression of silent VSG ES promoters in bloodstream form T. brucei, with derepression specific to the G2/M cell cycle stage. In insect form T. brucei TbSpt16 knock-down results in 16- to 25-fold VSG ES derepression. Using chromatin immunoprecipitation (ChIP), TbSpt16 was found to be particularly enriched at the promoter region of silent but not active VSG ESs in bloodstream form T. brucei. The chromatin remodeler FACT is therefore implicated in maintenance of repressed chromatin present at silent VSG ES promoters, but is also essential for chromosome segregation presumably through maintenance of functional centromeres.

  1. TOPO3alpha influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei.

    PubMed

    Kim, Hee-Sook; Cross, George A M

    2010-07-08

    Homologous recombination (HR) mediates one of the major mechanisms of trypanosome antigenic variation by placing a different variant surface glycoprotein (VSG) gene under the control of the active expression site (ES). It is believed that the majority of VSG switching events occur by duplicative gene conversion, but only a few DNA repair genes that are central to HR have been assigned a role in this process. Gene conversion events that are associated with crossover are rarely seen in VSG switching, similar to mitotic HR. In other organisms, TOPO3alpha (Top3 in yeasts), a type IA topoisomerase, is part of a complex that is involved in the suppression of crossovers. We therefore asked whether a related mechanism might suppress VSG recombination. Using a set of reliable recombination and switching assays that could score individual switching mechanisms, we discovered that TOPO3alpha function is conserved in Trypanosoma brucei and that TOPO3alpha plays a critical role in antigenic switching. Switching frequency increased 10-40-fold in the absence of TOPO3alpha and this hyper-switching phenotype required RAD51. Moreover, the preference of 70-bp repeats for VSG recombination was mitigated, while homology regions elsewhere in ES were highly favored, in the absence of TOPO3alpha. Our data suggest that TOPO3alpha may remove undesirable recombination intermediates constantly arising between active and silent ESs, thereby balancing ES integrity against VSG recombination.

  2. A novel ISWI is involved in VSG expression site downregulation in African trypanosomes.

    PubMed

    Hughes, Katie; Wand, Matthew; Foulston, Lucy; Young, Rosanna; Harley, Kate; Terry, Stephen; Ersfeld, Klaus; Rudenko, Gloria

    2007-05-02

    African trypanosomes show monoallelic expression of one of about 20 telomeric variant surface glycoprotein (VSG) gene-expression sites (ESs) while multiplying in the mammalian bloodstream. We screened for genes involved in ES silencing using flow cytometry and RNA interference (RNAi). We show that a novel member of the ISWI family of SWI2/SNF2-related chromatin-remodelling proteins (TbISWI) is involved in ES downregulation in Trypanosoma brucei. TbISWI has an atypical protein architecture for an ISWI, as it lacks characteristic SANT domains. Depletion of TbISWI by RNAi leads to 30-60-fold derepression of ESs in bloodstream-form T. brucei, and 10-17-fold derepression in insect form T. brucei. We show that although blocking synthesis of TbISWI leads to derepression of silent VSG ES promoters, this does not lead to fully processive transcription of silent ESs, or an increase in ES-activation rates. VSG ES activation in African trypanosomes therefore appears to be a multistep process, whereby an increase in transcription from a silent ES promoter is necessary but not sufficient for full ES activation.

  3. VSG 117 gene is conservatively present and early expressed in Trypanosma evansi YNB stock.

    PubMed

    Jia, Yonggen; Guo, Liang; Zhao, Xinxin; Suo, Xun

    2012-05-01

    African trypanosomes, including Trypanosoma brucei and the closely related species Trypanosoma evansi, are flagellated unicellular parasites that proliferate extracellularly in the mammalian bloodstream and tissue spaces. They evade host immune system by periodically switching their variant surface glycoprotein (VSG) coat. Each trypanosome possesses a vast archive of VSGs with distinct sequence identity and different strains contain different archive of VSGs. VSG 117 was reported as a widespread VSG detected in the genomes of all the T. brucei strains. In this study, the presence and expression of VSG 117 gene was observed in T. evansi YNB stock by RT-PCR with VSG-specific primers. We further confirmed that this VSG tends to be expressed in the early stage of T. evansi infections (on day 12-15) by immuno-screening the previously isolated infected blood samples. It is possible that the VSG 117 gene evolved and spread through the African trypanosome population via genetic exchange, before T. evansi lost its ability to infect tsetse fly. Our finding provided an evidence of the close evolutionary relationship between T. evansi and T. brucei, in the terms of VSG genes.

  4. Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes.

    PubMed

    Conway, Colin; McCulloch, Richard; Ginger, Michael L; Robinson, Nicholas P; Browitt, Alison; Barry, J David

    2002-06-14

    Trypanosome antigenic variation, involving differential expression of variant surface glycoprotein (VSG) genes, has a strong association with telomeres and with DNA recombination. All expressed VSGs are telomeric, and differential activation involves recombination into the telomeric environment or silencing/activation of subtelomeric promoters. A number of pathogen contingency gene systems associated with immune evasion involve telomeric loci, which has prompted speculation that chromosome ends provide conditions conducive for the operation of rapid gene switching mechanisms. Ku is a protein associated with eukaryotic telomeres that is directly involved in DNA recombination and in gene silencing. We have tested the hypothesis that Ku in trypanosomes is centrally involved in differential VSG expression. We show, via the generation of null mutants, that trypanosome Ku is closely involved in telomere length maintenance, more so for a transcriptionally active than an inactive telomere, but exhibits no detectable influence on DNA double strand break repair. The absence of Ku and the consequent great shortening of telomeres had no detectable influence either on the rate of VSG switching or on the silencing of the telomeric promoters of the VSG subset that is expressed in the tsetse fly.

  5. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei.

    PubMed

    Denninger, Viola; Rudenko, Gloria

    2014-11-01

    Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.

  6. Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes.

    PubMed

    Figueiredo, Luisa M; Cross, George A M

    2010-01-01

    In most eukaryotes, RNA polymerase I (Pol I) exclusively transcribes long arrays of identical rRNA genes (ribosomal DNA [rDNA]). African trypanosomes have the unique property of using Pol I to also transcribe the variant surface glycoprotein VSG genes. VSGs are important virulence factors because their switching allows trypanosomes to escape the host immune system, a mechanism known as antigenic variation. Only one VSG is transcribed at a time from one of 15 bloodstream-form expression sites (BESs). Although it is clear that switching among BESs does not involve DNA rearrangements and that regulation is probably epigenetic, it remains unknown why BESs are transcribed by Pol I and what roles are played by chromatin structure and histone modifications. Using chromatin immunoprecipitation, micrococcal nuclease digestion, and chromatin fractionation, we observed that there are fewer nucleosomes at the active BES and that these are irregularly spaced compared to silent BESs. rDNA coding regions are also depleted of nucleosomes, relative to the rDNA spacer. In contrast, genes transcribed by Pol II are organized in a more compact, regularly spaced, nucleosomal structure. These observations provide new insight on antigenic variation by showing that chromatin remodeling is an intrinsic feature of BES regulation.

  7. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts.

    PubMed

    Pays, E; Lips, S; Nolan, D; Vanhamme, L; Pérez-Morga, D

    2001-04-25

    The variant surface glycoprotein (VSG) genes of Trypanosoma brucei are transcribed in telomeric loci termed VSG expression sites (ESs). Despite permanent initiation of transcription in most if not all of these multiple loci, RNA elongation is abortive except in bloodstream forms where full transcription up to the VSG occurs only in a single ES at a time. The ESs active in bloodstream forms are polycistronic and contain several genes in addition to the VSG, named ES-associated genes (ESAGs). So far 12 ESAGs have been identified, some of which are present only in some ESs. Most of these genes encode surface proteins and this list includes different glycosyl phosphatidyl inositol (GPI)-anchored proteins such as the heterodimeric receptor for the host transferrin (ESAG7/6), integral membrane proteins such as the receptor-like transmembrane adenylyl cyclase (ESAG4) and a surface transporter (ESAG10). An interesting exception is ESAG8, which may encode a cell cycle regulator involved in the differentiation of long slender into short stumpy bloodstream forms. Several ESAGs belong to multigene families including pseudogenes and members transcribed out of the ESs, named genes related to ESAGs (GRESAGs). However, some ESAGs (7, 6 and 8) appear to be restricted to the ESs. Most of these genes can be deleted from the active ES without apparently affecting the phenotype of bloodstream form trypanosomes, probably either due to the expression of ESAGs from 'inactive' ESs (ESAG7/6) or due to the expression of GRESAGs (in particular, GRESAGs4 and GRESAGs1). At least three ESAGs (ESAG7, ESAG6 and SRA) share the evolutionary origin of VSGs. The presence of these latter genes in ESs may confer an increased capacity of the parasite for adaptation to various mammalian hosts, as suggested in the case of ESAG7/6 and proven for SRA, which allows T. brucei to infect humans. Similarly, the existence of a collection of slightly different ESAG4s in the multiple ESs might provide the parasite

  8. VSG switching in Trypanosoma brucei: antigenic variation analysed using RNAi in the absence of immune selection.

    PubMed

    Aitcheson, Niall; Talbot, Suzanne; Shapiro, Jesse; Hughes, Katie; Adkin, Carl; Butt, Thomas; Sheader, Karen; Rudenko, Gloria

    2005-09-01

    Trypanosoma brucei relies on antigenic variation of its variant surface glycoprotein (VSG) coat for survival. We show that VSG switching can be efficiently studied in vitro using VSG RNAi in place of an immune system to select for switch variants. Contrary to models predicting an instant switch after inhibition of VSG synthesis, switching was not induced by VSG RNAi and occurred at a rate of 10(-4) per division. We find a highly reproducible hierarchy of VSG activation, which appears to be capable of resetting, whereby more than half of the switch events over 12 experiments were to one of two VSGs. We characterized switched clones according to switch mechanism using marker genes in the active VSG expression site (ES). Transcriptional switches between ESs were the preferred switching mechanism, whereby at least 10 of the 17 ESs identified in T. brucei 427 can be functionally active in vitro. We could specifically select for switches mediated by DNA rearrangements by inducing VSG RNAi in the presence of drug selection for the active ES. Most of the preferentially activated VSGs could be activated by multiple mechanisms. This VSG RNAi-based procedure provides a rapid and powerful means for analysing VSG switching in African trypanosomes entirely in vitro.

  9. Expressed truncated N-terminal variable surface glycoprotein (VSG) of Trypanosoma evansi in E. coli exhibits immuno-reactivity.

    PubMed

    Sengupta, P P; Balumahendiran, M; Balamurugan, V; Rudramurthy, G R; Prabhudas, K

    2012-06-08

    The variant surface glycoprotein (VSG) of trypanosome is an important part of its body surface coat, which is expressed in early, middle and late stages of infection contributing a major diagnostic value. In the present study, the 5' end of the partial VSG gene sequences (681 bp) encoding N-terminal protein of RoTat 1.2 VSG (227 amino acid) was amplified, cloned into pET32a vector, and expressed in prokaryotic system. The fused His-tagged expressed VSG protein (43 kDa) of the Trypanosoma evansi was characterized in SDS-PAGE and immunoblotting using hyperimmune/immune sera raised against buffalo, dog, lion and leopard isolates of T. evansi. The expressed protein remained immunoreactive with all the sera combinations. The animals immunized with whole cell lysate or recombinant protein showed similar antibody reactions in ELISA and CATT (Card Agglutination Test for Trypanosomiasis). This study suggests the expressed recombinant truncated VSG is having its importance for its possible use in sero-diagnosis of surra.

  10. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity.

    PubMed

    Cordon-Obras, Carlos; Cano, Jorge; González-Pacanowska, Dolores; Benito, Agustin; Navarro, Miguel; Bart, Jean-Mathieu

    2013-01-01

    Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting

  11. Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure.

    PubMed

    Marcello, Lucio; Barry, J David

    2007-09-01

    Trypanosoma brucei evades host acquired immunity through differential activation of its large archive of silent variant surface glycoprotein (VSG) genes, most of which are pseudogenes in subtelomeric arrays. We have analyzed 940 VSGs, representing one half to two thirds of the arrays. Sequence types A and B of the VSG N-terminal domains were confirmed, while type C was found to be a constituent of type A. Two new C-terminal domain types were found. Nearly all combinations of domain types occurred, with some bias to particular combinations. One-third of encoded N-terminal domains, but only 13% of C-terminal domains, are intact, indicating a particular need for silent VSGs to gain a functional C-terminal domain to be expressed. About 60% of VSGs are unique, the rest occurring in subfamilies of two to four close homologs (>50%-52% peptide identity). We found a subset of VSG-related genes, differing from VSGs in genomic environment and expression patterns, and predict they have distinct function. Almost all (92%) full-length array VSGs have the partially conserved flanks associated with the duplication mechanism that activates silent genes, and these sequences have also contributed to archive evolution, mediating most of the conversions of segments, containing >/=1 VSG, within and between arrays. During infection, intact array genes became activated by duplication after two weeks, and mosaic VSGs assembled from pseudogenes became expressed by week three and predominated by week four. The small subfamily structure of the archive appears to be fundamental in providing the interacting donors for mosaic formation.

  12. Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in Trypanosoma brucei.

    PubMed

    Povelones, Megan L; Gluenz, Eva; Dembek, Marcin; Gull, Keith; Rudenko, Gloria

    2012-01-01

    The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ∼1500 VSGs, only one VSG is expressed at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes. However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T. brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1 knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6-8 fold derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-mediated chromatin functions in antigenic variation in T. brucei.

  13. Ex vivo and in vitro identification of a consensus promoter for VSG genes expressed by metacyclic-stage trypanosomes in the tsetse fly.

    PubMed

    Ginger, Michael L; Blundell, Patricia A; Lewis, Alyson M; Browitt, Alison; Günzl, Arthur; Barry, J David

    2002-12-01

    The trypanosome variant surface glycoprotein (VSG) is first expressed during differentiation to the infective, metacyclic population in tsetse fly salivary glands. Unlike the VSG genes expressed by bloodstream form trypanosomes, metacyclic VSGs (MVSGs) have their own promoters. The scarcity of metacyclic cells has meant that only indirect approaches have been used to study these promoters, and not even their identities have been agreed on. Here, we isolated trypanosomes by dissection from salivary glands and used an approach involving 5' rapid amplification of cDNA ends to identify the transcription start site of three MVSGs. This shows that the authentic start site is that proposed for the MVAT series of MVSGs (K. S. Kim and J. E. Donelson, J. Biol. Chem. 272:24637-24645, 1997). In the more readily accessible procyclic trypanosome stage, where MVSGs are normally silent, we used reporter gene assays and linker scanning analysis to confirm that the 67 bp upstream of the start site is a promoter. This is confirmed further by accurate initiation in a homologous in vitro transcription system. We show also that MVSG promoters become derepressed when tested outwith their endogenous, subtelomeric loci. The MVSG promoters are only loosely conserved with bloodstream VSG promoters, and our detailed analysis of the 1.63 MVSG promoter reveals that its activity depends on the start site itself and sequences 26 to 49 bp and 56 to 60 bp upstream. These are longer than those necessary for the bloodstream promoter.

  14. Loss of the mono-allelic control of the VSG expression sites during the development of Trypanosoma brucei in the bloodstream.

    PubMed

    Amiguet-Vercher, Amelia; Pérez-Morga, David; Pays, Annette; Poelvoorde, Philippe; Van Xong, Huang; Tebabi, Patricia; Vanhamme, Luc; Pays, Etienne

    2004-03-01

    Transcription of the variant surface glycoprotein (VSG) gene of Trypanosoma brucei occurs in a single of multiple polycistronic expression sites (ESs). Analysis of RNA from proliferative long slender (LS) bloodstream forms demonstrated that initiation of transcription occurs in different ESs, but inefficient RNA processing and elongation is linked to RNA polymerase arrest in all except one unit at a time. The pattern of ES transcripts was analysed during the transformation of dividing LS forms into quiescent short stumpy (SS) forms. The results demonstrated that the mono-allelic control allowing preferential RNA production from a given ES stops during this process. Accordingly, the steady-state ES transcripts, particularly the VSG mRNA, were strongly reduced. However, transcripts from the beginning of different ESs were still synthesized, and in vitro run-on transcription analysis indicated that RNA polymerase was still fully associated with the promoter-proximal half of the 'active' ES. Analysis of transcripts from two central tandem genes confirmed the existence of a residual decreasing transcriptional gradient in the 'active' ES of SS forms. Thus, in these forms the RNA polymerase of the ES is inactivated in situ. This inactivation is accompanied by a strong overall reduction of nuclear DNA transcription. Although cAMP is involved in the LS to SS transformation, no direct effect of cAMP was observed on the VSG ES control.

  15. Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast.

    PubMed

    Becker, Marion; Aitcheson, Niall; Byles, Elaine; Wickstead, Bill; Louis, Edward; Rudenko, Gloria

    2004-11-01

    Trypanosoma brucei switches between variant surface glycoproteins (VSGs) allowing immune escape. The active VSG is in one of many telomeric bloodstream form VSG expression sites (BESs), also containing expression site-associated genes (ESAGs) involved in host adaptation. The role of BES sequence diversity in parasite virulence can best be understood through analysis of the full repertoire of BESs from a given T. brucei strain. However, few BESs have been cloned, as telomeres are highly underrepresented in standard libraries. We devised a strategy for isolating the repertoire of T. brucei 427 BES-containing telomeres in Saccaromyces cerevisiae by using transformation-associated recombination (TAR). We isolated 182 T. brucei 427 BES TAR clones, 167 of which could be subdivided into minimally 17 BES groups. This set gives us the first view of the breadth and diversity of BESs from one T. brucei strain. Most BESs ranged between 40 and 70 kb (average, 57 +/- 17 kb) and contained most identified ESAGs. Phylogenetic comparison of the cohort of BES promoter and ESAG6 sequences did not show similar trees, indicating rapid evolution most likely mediated by sequence exchange between BESs. This cloning strategy could be used for any T. brucei strain, facilitating research on the biodiversity of telomeric gene families and host-pathogen interactions.

  16. Cell-cycle-regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in Trypanosoma brucei.

    PubMed

    Alsford, Sam; Horn, David

    2012-11-01

    Antigenic variation in African trypanosomes involves monoallelic expression and reversible silencing of variant surface glycoprotein (VSG) genes found adjacent to telomeres in polycistronic expression sites (ESs). We assessed the impact on ES silencing of five candidate essential chromatin-associated factors that emerged from a genome-wide RNA interference viability screen. Using this approach, we demonstrate roles in VSG ES silencing for two histone chaperones. Defects in S-phase progression in cells depleted for histone H3, or either chaperone, highlight in particular the link between chromatin assembly and DNA replication control. S-phase checkpoint arrest was incomplete, however, allowing G2/M-specific VSG ES derepression following knockdown of histone H3. In striking contrast, knockdown of anti-silencing factor 1A (ASF1A) allowed for derepression at all cell cycle stages, whereas knockdown of chromatin assembly factor 1b (CAF-1b) revealed derepression predominantly in S-phase and G2/M. Our results support a central role for chromatin in maintaining VSG ES silencing. ASF1A and CAF-1b appear to play constitutive and DNA replication-dependent roles, respectively, in the recycling and assembly of chromatin. Defects in these functions typically lead to arrest in S-phase but defective cells can also progress through the cell cycle leading to nucleosome depletion and derepression of telomeric VSG ESs.

  17. Delineation of the regulated Variant Surface Glycoprotein gene expression site domain of Trypanosoma brucei.

    PubMed

    Sheader, Karen; Berberof, Magali; Isobe, Tomoko; Borst, Piet; Rudenko, Gloria

    2003-05-01

    The African trypanosome Trypanosoma brucei is protected in the bloodstream of the mammalian host by a dense Variant Surface Glycoprotein (VSG) coat. Although an individual cell has hundreds of VSG genes, the active VSG is transcribed in a mutually exclusive fashion from one of about twenty telomeric VSG expression sites. Expression sites are regulated domains flanked by 50 bp repeat arrays and extensive tracts of repetitive elements. We have integrated exogenous rDNA and expression site promoters upstream of the 50 bp repeats of the VO2 VSG expression site. Transcription from both types of exogenous promoter is downregulated and comparable to promoters targeted into the VSG Basic Copy arrays. We show that the upstream exogenous rDNA promoter escapes VSG expression site control, as switching the downstream VO2 VSG expression site on and off does not affect its activity. Therefore, the 50 bp repeat arrays appear to be the boundary of the regulated expression site domain.

  18. Developmental regulation and extracellular release of a VSG expression-site-associated gene product from Trypanosoma brucei bloodstream forms.

    PubMed

    Barnwell, Eleanor M; van Deursen, Frederick J; Jeacock, Laura; Smith, Katherine A; Maizels, Rick M; Acosta-Serrano, Alvaro; Matthews, Keith

    2010-10-01

    Trypanosomes evade host immunity by exchanging variant surface glycoprotein (VSG) coats. VSG genes are transcribed from telomeric expression sites, which contain a diverse family of expression-site-associated genes (ESAGs). We have discovered that the mRNAs for one ESAG family, ESAG9, are strongly developmentally regulated, being enriched in stumpy forms, a life-cycle stage in the mammalian bloodstream that is important for the maintenance of chronic parasite infections and for tsetse transmission. ESAG9 gene sequences are highly diverse in the genome and encode proteins with weak similarity to the massively diverse MASP proteins in Trypanosoma cruzi. We demonstrate that ESAG9 proteins are modified by N-glycosylation and can be shed to the external milieu, this being dependent upon coexpression with at least one other family member. The expression profile and extracellular release of ESAG9 proteins represents a novel and unexpected aspect of the transmission biology of trypanosomes in their mammalian host. We suggest that these molecules might interact with the external environment, with possible implications for infection chronicity or parasite transmission.

  19. Bloodstream form-specific up-regulation of silent vsg expression sites and procyclin in Trypanosoma brucei after inhibition of DNA synthesis or DNA damage.

    PubMed

    Sheader, Karen; te Vruchte, Daniëlle; Rudenko, Gloria

    2004-04-02

    The African trypanosome Trypanosoma brucei transcribes the active variant surface glycoprotein (VSG) gene from one of about 20 VSG expression sites (ESs). In order to study ES control, we made reporter lines with a green fluorescent protein gene inserted behind the promoter of different ESs. We attempted to disrupt the silencing machinery, and we used fluorescence-activated cell sorter analysis for the rapid and sensitive detection of ES up-regulation. We find that a range of treatments that either block nuclear DNA synthesis, like aphidicolin, or modify DNA-like cisplatin and 1-methyl-3-nitro-1-nitrosoguanidine results in up-regulation of silent ESs. Aphidicolin treatment was the most effective, with almost 80% of the cells expressing green fluorescent protein from a silent ES. All of these treatments blocked the cells in S phase. In contrast, a range of toxic chemicals had little or no effect on expression. These included berenil and pentamidine, which selectively cleave the mitochondrial kinetoplast DNA, the metabolic inhibitors suramin and difluoromethylornithine, and the mitotic inhibitor rhizoxin. Up-regulation also affected other RNA polymerase I (pol I) transcription units, as procyclin genes were also up-regulated after cells were treated with either aphidicolin or DNA-modifying agents. Strikingly, this up-regulation of silent pol I transcription units was bloodstream form-specific and was not observed in insect form T. brucei. We postulate that the redistribution of a limiting bloodstream form-specific factor involved in both silencing and DNA repair results in the derepression of normally silenced pol I transcription units after DNA damage.

  20. Trypanosoma brucei TIF2 and TRF Suppress VSG Switching Using Overlapping and Independent Mechanisms.

    PubMed

    Jehi, Sanaa E; Nanavaty, Vishal; Li, Bibo

    2016-01-01

    Trypanosoma brucei causes debilitating human African trypanosomiasis and evades the host's immune response by regularly switching its major surface antigen, VSG, which is expressed exclusively from subtelomeric loci. We previously showed that two interacting telomere proteins, TbTRF and TbTIF2, are essential for cell proliferation and suppress VSG switching by inhibiting DNA recombination events involving the whole active VSG expression site. We now find that TbTIF2 stabilizes TbTRF protein levels by inhibiting their degradation by the 26S proteasome, indicating that decreased TbTRF protein levels in TbTIF2-depleted cells contribute to more frequent VSG switching and eventual cell growth arrest. Surprisingly, although TbTIF2 depletion leads to more subtelomeric DNA double strand breaks (DSBs) that are both potent VSG switching inducers and detrimental to cell viability, TbTRF depletion does not increase the amount of DSBs inside subtelomeric VSG expression sites. Furthermore, expressing an ectopic allele of F2H-TbTRF in TbTIF2 RNAi cells allowed cells to maintain normal TbTRF protein levels for a longer frame of time. This resulted in a mildly better cell growth and partially suppressed the phenotype of increased VSG switching frequency but did not suppress the phenotype of more subtelomeric DSBs in TbTIF2-depleted cells. Therefore, TbTIF2 depletion has two parallel effects: decreased TbTRF protein levels and increased subtelomeric DSBs, both resulting in an acute increased VSG switching frequency and eventual cell growth arrest.

  1. Trypanosoma brucei TIF2 and TRF Suppress VSG Switching Using Overlapping and Independent Mechanisms

    PubMed Central

    Jehi, Sanaa E.; Nanavaty, Vishal; Li, Bibo

    2016-01-01

    Trypanosoma brucei causes debilitating human African trypanosomiasis and evades the host’s immune response by regularly switching its major surface antigen, VSG, which is expressed exclusively from subtelomeric loci. We previously showed that two interacting telomere proteins, TbTRF and TbTIF2, are essential for cell proliferation and suppress VSG switching by inhibiting DNA recombination events involving the whole active VSG expression site. We now find that TbTIF2 stabilizes TbTRF protein levels by inhibiting their degradation by the 26S proteasome, indicating that decreased TbTRF protein levels in TbTIF2-depleted cells contribute to more frequent VSG switching and eventual cell growth arrest. Surprisingly, although TbTIF2 depletion leads to more subtelomeric DNA double strand breaks (DSBs) that are both potent VSG switching inducers and detrimental to cell viability, TbTRF depletion does not increase the amount of DSBs inside subtelomeric VSG expression sites. Furthermore, expressing an ectopic allele of F2H-TbTRF in TbTIF2 RNAi cells allowed cells to maintain normal TbTRF protein levels for a longer frame of time. This resulted in a mildly better cell growth and partially suppressed the phenotype of increased VSG switching frequency but did not suppress the phenotype of more subtelomeric DSBs in TbTIF2-depleted cells. Therefore, TbTIF2 depletion has two parallel effects: decreased TbTRF protein levels and increased subtelomeric DSBs, both resulting in an acute increased VSG switching frequency and eventual cell growth arrest. PMID:27258069

  2. Nuclear repositioning of the VSG promoter during developmental silencing in Trypanosoma brucei.

    PubMed

    Landeira, David; Navarro, Miguel

    2007-01-15

    Interphase nuclear repositioning of chromosomes has been implicated in the epigenetic regulation of RNA polymerase (pol) II transcription. However, little is known about the nuclear position-dependent regulation of RNA pol I-transcribed loci. Trypanosoma brucei is an excellent model system to address this question because its two main surface protein genes, procyclin and variant surface glycoprotein (VSG), are transcribed by pol I and undergo distinct transcriptional activation or downregulation events during developmental differentiation. Although the monoallelically expressed VSG locus is exclusively localized to an extranucleolar body in the bloodstream form, in this study, we report that nonmutually exclusive procyclin genes are located at the nucleolar periphery. Interestingly, ribosomal DNA loci and pol I transcription activity are restricted to similar perinucleolar positions. Upon developmental transcriptional downregulation, however, the active VSG promoter selectively undergoes a rapid and dramatic repositioning to the nuclear envelope. Subsequently, the VSG promoter region was subjected to chromatin condensation. We propose a model whereby the VSG expression site pol I promoter is selectively targeted by temporal nuclear repositioning during developmental silencing.

  3. The 3'-terminal region of the mRNAs for VSG and procyclin can confer stage specificity to gene expression in Trypanosoma brucei.

    PubMed

    Berberof, M; Vanhamme, L; Tebabi, P; Pays, A; Jefferies, D; Welburn, S; Pays, E

    1995-06-15

    The variant surface glycoprotein (VSG) and procyclin are the respective major surface antigens of the bloodstream and the procyclic forms of Trypanosoma brucei. These proteins and their mRNAs are both the most abundant and absolutely characteristic of their respective life cycle stages. We show that the 3'-terminal region of these mRNAs regulates expression of a reporter gene in an inverse manner, depending on the developmental form of the parasite. In the case of VSG mRNA, the 97 nt sequence upstream from the polyadenylation site is responsible for these effects. The regulation occurs through a variation of mRNA abundance which is not due to a change in primary transcription. In the bloodstream form this effect is manifested by an increase in RNA stability, whereas in the procyclic form it seems to be related to a reduction in the efficiency of mRNA maturation. The 3'-end of VSG mRNA can obviate the 5- to 10-fold stimulation of transcription driven by the procyclin promoter during differentiation from the bloodstream to the procyclic form. The predominance of posttranscriptional over transcriptional controls is probably linked to the organization of the trypanosome genome in polycistronic transcription units.

  4. Mapping of VSG similarities in Trypanosoma brucei.

    PubMed

    Weirather, Jason L; Wilson, Mary E; Donelson, John E

    2012-02-01

    The protozoan parasite Trypanosoma brucei switches its variant surface glycoprotein (VSG) to subvert its mammalian hosts' immune responses. The T. brucei genome contains as many as 1600 VSG genes (VSGs), but most are silent noncoding pseudogenes. Only one functional VSG, located in a telomere-linked expression site, is transcribed at a time. Silent VSGs are copied into a VSG expression site through gene conversion. Truncated gene conversion events can generate new mosaic VSGs with segments of sequence identity to other VSGs. To examine the VSG family sub-structure within which these events occur, we combined the available VSG sequences and annotations with scripted BLAST searches to map the relationships among VSGs in the T. brucei genome. Clusters of related VSGs were visualized in 2- and 3-dimensions for different N- and C-terminal regions. Five types of N-termini (N1-N5) were observed, within which gene recombinational events are likely to occur, often with fully-coding 'functional' or 'atypical'VSGs centrally located between more dissimilar VSGs. Members of types N1, N3 and N4 are most closely related in the middle of the N-terminal region, whereas type N2 members are more similar near the N-terminus. Some preference occurs in pairing between specific N- and C-terminal types. Statistical analyses indicated no overall tendency for more related VSGs to be located closer in the genome than less related VSGs, although exceptions were noted. Many potential mosaic gene formation events within each N-terminal type were identified, contrasted by only one possible mosaic gene formation between N-terminal types (N1 and N2). These data suggest that mosaic gene formation is a major contributor to the overall VSG diversity, even though gene recombinational events between members of different N-terminal types occur only rarely.

  5. Leaky transcription of variant surface glycoprotein gene expression sites in bloodstream african trypanosomes.

    PubMed

    Alarcon, C M; Pedram, M; Donelson, J E

    1999-06-11

    Trypanosoma brucei undergoes antigenic variation by periodically switching the expression of its variant surface glycoprotein (VSG) genes (vsg) among an estimated 20-40 telomere-linked expression sites (ES), only one of which is fully active at a given time. We found that in bloodstream trypanosomes one ES is transcribed at a high level and other ESs are expressed at low levels, resulting in organisms containing one abundant VSG mRNA and several rare VSG RNAs. Some of the rare VSG mRNAs come from monocistronic ESs in which the promoters are situated about 2 kilobases upstream of the vsg, in contrast to the polycistronic ESs in which the promoters are located 45-60 kilobases upstream of the vsg. The monocistronic ES containing the MVAT4 vsg does not include the ES-associated genes (esag) that occur between the promoter and the vsg in polycistronic ESs. However, bloodstream MVAT4 trypanosomes contain the mRNAs for many different ESAGs 6 and 7 (transferrin receptors), suggesting that polycistronic ESs are partially active in this clone. To explain these findings, we propose a model in which both mono- and polycistronic ESs are controlled by a similar mechanism throughout the parasite's life cycle. Certain VSGs are preferentially expressed in metacyclic versus bloodstream stages as a result of differences in ESAG expression and the proximity of the promoters to the vsg and telomere.

  6. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense.

    PubMed

    Xong, H V; Vanhamme, L; Chamekh, M; Chimfwembe, C E; Van Den Abbeele, J; Pays, A; Van Meirvenne, N; Hamers, R; De Baetselier, P; Pays, E

    1998-12-11

    Infectivity of Trypanosoma brucei rhodesiense to humans is due to its resistance to a lytic factor present in human serum. In the ETat 1 strain this character was associated with antigenic variation, since expression of the ETat 1.10 variant surface glycoprotein was required to generate resistant (R) clones. In addition, in this strain transcription of a gene termed SRA was detected in R clones only. We show that the ETat 1.10 expression site is the one selectively transcribed in R variants. This expression site contains SRA as an expression site-associated gene (ESAG) and is characterized by the deletion of several ESAGs. Transfection of SRA into T.b. brucei was sufficient to confer resistance to human serum, identifying this gene as one of those responsible for T.b. rhodesiense adaptation to humans.

  7. What has DNA sequencing revealed about the VSG expression sites of African trypanosomes?

    PubMed

    McCulloch, Richard; Horn, David

    2009-08-01

    Antigenic variation is crucial for the survival of African trypanosomes in mammals and involves switches in expression of variant surface glycoprotein genes, which are co-transcribed with a number of expression-site-associated genes (ESAGs) from loci termed 'bloodstream expression sites' (BESs). Trypanosomes possess multiple BESs, although the reason for this (and why ESAGs are resident in these loci) has remained a subject of debate. The genome sequence of Trypanosoma brucei, released in 2005, did not include the BESs because of their telomeric disposition. This gap in our knowledge has now been bridged by two new studies, which we discuss here, asking what has been revealed about the biological significance of BES multiplicity and ESAG function and evolution.

  8. Are there two classes of VSG gene in Trypanosoma brucei?

    PubMed

    Young, J R; Miller, E N; Williams, R O; Turner, M J

    Antigenic variation in the African trypanosomes involves the sequential expression of genes coding for different variant surface glycoproteins (VSGs) (reviewed in refs 1-3). When expression of some VSG genes is switched on, a newly duplicated copy of the expressed gene has been observed within the trypanosome genome, which is not found after the gene's expression is switched off again. The duplicated copy has therefore been called an expression-linked copy (ELC). The expression of the gene appears to be strictly coupled to the presence of the ELC. This has led to the hypothesis that the duplicative transposition generating the ELC may itself be responsible for the control of VSG expression. With other VSG genes, expression-linked duplication has not been observed, and expression is clearly not controlled in this way. Data are presented here which demonstrate that either of these observations may be obtained with a single VSG gene, depending on the chance selection of particular clones from antigenically switched populations. Thus, the different observations do not imply the existence of two distinct classes of VSG gene controlled by different mechanisms, but different aspects of processes common to all VSG genes.

  9. The anatomy and transcription of a monocistronic expression site for a metacyclic variant surface glycoprotein gene in Trypanosoma brucei.

    PubMed

    Pedram, M; Donelson, J E

    1999-06-11

    African trypanosomes evade the immune response of their mammalian hosts by switching the expression of their variant surface glycoprotein genes (vsg). The bloodstream trypanosome clone MVAT4 of Trypanosoma brucei rhodesiense expresses a metacyclic vsg as a monocistronic RNA from a promoter located 2 kilobases (kb) upstream of its start codon. Determination of 23 kb of sequence at the metacyclic variant antigen type 4 (MVAT) vsg expression site (ES) revealed an ES-associated gene (esag) 1 preceded by an ingi retroposon and an inverted region containing an unrelated vsg, short stretches of 70-bp repeats and a pseudo esag 3. Nuclear run-on experiments indicate that the 18-kb region upstream of the MVAT4 vsg promoter is transcriptionally silent. However, multiple members of different esag families are expressed from elsewhere in the genome. The MVAT4 vsg promoter is highly repressed in the procyclic stage, in contrast to the known polycistronic vsg ESs which undergo abortive transcription. Activation of the MVAT4 vsg ES occurs in situ without nucleotide sequence changes, although this monocistronic ES undergoes a pattern of base J modifications similar to that reported for the polycistronic ESs. The relative simplicity of the MVAT4 vsg ES and the uncoupled expression of the vsg and esags provide a unique opportunity for investigating the molecular mechanisms responsible for antigenic variation in African trypanosomes.

  10. Trypanosoma brucei TIF2 suppresses VSG switching by maintaining subtelomere integrity.

    PubMed

    Jehi, Sanaa E; Wu, Fan; Li, Bibo

    2014-07-01

    Subtelomeres consist of sequences adjacent to telomeres and contain genes involved in important cellular functions, as subtelomere instability is associated with several human diseases. Balancing between subtelomere stability and plasticity is particularly important for Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major variant surface antigen, variant surface glycoprotein (VSG), to evade the host immune response, and VSGs are expressed exclusively from subtelomeres in a strictly monoallelic fashion. Telomere proteins are important for protecting chromosome ends from illegitimate DNA processes. However, whether they contribute to subtelomere integrity and stability has not been well studied. We have identified a novel T. brucei telomere protein, T. brucei TRF-Interacting Factor 2 (TbTIF2), as a functional homolog of mammalian TIN2. A transient depletion of TbTIF2 led to an elevated VSG switching frequency and an increased amount of DNA double-strand breaks (DSBs) in both active and silent subtelomeric bloodstream form expression sites (BESs). Therefore, TbTIF2 plays an important role in VSG switching regulation and is important for subtelomere integrity and stability. TbTIF2 depletion increased the association of TbRAD51 with the telomeric and subtelomeric chromatin, and TbRAD51 deletion further increased subtelomeric DSBs in TbTIF2-depleted cells, suggesting that TbRAD51-mediated DSB repair is the underlying mechanism of subsequent VSG switching. Surprisingly, significantly more TbRAD51 associated with the active BES than with the silent BESs upon TbTIF2 depletion, and TbRAD51 deletion induced much more DSBs in the active BES than in the silent BESs in TbTIF2-depleted cells, suggesting that TbRAD51 preferentially repairs DSBs in the active BES.

  11. In silico identification of novel protective VSG antigens expressed by Trypanosoma brucei and an effort for designing a highly immunogenic DNA vaccine using IL-12 as adjuvant.

    PubMed

    Akhoon, Bashir Akhlaq; Slathia, Parvez Singh; Sharma, Preeti; Gupta, Shishir Kumar; Verma, Vijeshwar

    2011-01-01

    African trypanosomiasis continues to be a major health problem, with more adults dying from this disease world-wide. As the sequence diversity of Trypanosoma brucei is extreme, with VSGs having 15-25% identity with most other VSGs, hence it displays a huge diversity of adaptations and host specificities. Therefore the need for an improved vaccine has become an international priority. The highly conserved and specific epitopes acting as both CD8+ and CD4+ T-cell epitopes (FLINKKPAL and FTALCTLAA) were predicted from large bunch of VSGs of T. brucei. Besides, some other potential epitopes with very high affinity for MHC I and II molecules were also determined while taking consideration on the most common HLA in the general population which accounts for major ethnicities. The vaccine candidates were found to be effective even for non-african populations as predicted by population coverage analysis. Hence the migrating travelers acting as a spread means of the infection can probably also be treated successfully after injection of such a multiepitopic vaccine. Exploiting the immunoinformatics approaches, we designed a potential vaccine by using the consensus epitopic sequence of 388 VSG proteins of T. brucei and performed in silico cloning of multiepitopic antigenic DNA sequence in pBI-CMV1 vector. Moreover, various techniques like codon adaptation, CpG optimization, removal of self recognized epitopes, use of adjuvant and co-injection with plasmids expressing immune-stimulatory molecules were implemented to enhance the immunogenicity of the proposed in silico vaccine.

  12. Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching.

    PubMed

    Benmerzouga, Imaan; Concepción-Acevedo, Jeniffer; Kim, Hee-Sook; Vandoros, Anthula V; Cross, George A M; Klingbeil, Michele M; Li, Bibo

    2013-01-01

    Binding of the Origin Recognition Complex (ORC) to replication origins is essential for initiation of DNA replication, but ORC has non-essential functions outside of DNA replication, including in heterochromatic gene silencing and telomere maintenance. Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis, uses antigenic variation as a major virulence mechanism to evade the host's immune attack by expressing its major surface antigen, the Variant Surface Glycoprotein (VSG), in a monoallelic manner. An Orc1/Cdc6 homologue has been identified in T. brucei, but its role in DNA replication has not been directly confirmed and its potential involvement in VSG repression or switching has not been thoroughly investigated. In this study, we show that TbOrc1 is essential for nuclear DNA replication in mammalian-infectious bloodstream and tsetse procyclic forms (BF and PF). Depletion of TbOrc1 resulted in derepression of telomere-linked silent VSGs in both BF and PF, and increased VSG switching particularly through the in situ transcriptional switching mechanism. TbOrc1 associates with telomere repeats but appears to do so independently of two known T. brucei telomere proteins, TbRAP1 and TbTRF. We conclude that TbOrc1 has conserved functions in DNA replication and is also required to control telomere-linked VSG expression and VSG switching.

  13. Life and times: synthesis, trafficking, and evolution of VSG.

    PubMed

    Manna, Paul T; Boehm, Cordula; Leung, Ka Fai; Natesan, Senthil Kumar; Field, Mark C

    2014-05-01

    Evasion of the acquired immune response in African trypanosomes is principally mediated by antigenic variation, the sequential expression of distinct variant surface glycoproteins (VSGs) at extremely high density on the cell surface. Sequence diversity between VSGs facilitates escape of a subpopulation of trypanosomes from antibody-mediated killing. Significant advances have increased understanding of the mechanisms underpinning synthesis and maintenance of the VSG coat. In this review, we discuss the biosynthesis, trafficking, and turnover of VSG, emphasising those unusual mechanisms that act to maintain coat integrity and to protect against immunological attack. We also highlight new findings that suggest the presence of unique or highly divergent proteins that may offer therapeutic opportunities, as well as considering aspects of VSG biology that remain to be fully explored.

  14. Carbohydrate-binding agents act as potent trypanocidals that elicit modifications in VSG glycosylation and reduced virulence in Trypanosoma brucei.

    PubMed

    Castillo-Acosta, Víctor M; Vidal, Antonio E; Ruiz-Pérez, Luis M; Van Damme, Els J M; Igarashi, Yasuhiro; Balzarini, Jan; González-Pacanowska, Dolores

    2013-11-01

    The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.

  15. The expression of RoTat 1.2 variable surface glycoprotein (VSG) in Trypanosoma evansi and T. equiperdum.

    PubMed

    Claes, F; Verloo, D; De Waal, D T; Majiwa, P A O; Baltz, T; Goddeeris, B M; Büscher, P

    2003-10-20

    In order to define whether the variable antigenic type RoTat 1.2 is restricted to Trypansoma evansi and could be used as antigen in serological tests to differentiate T. evansi from Trypansoma equiperdum, the appearance of RoTat 1.2-specific antibodies in rabbits, experimentally infected with T. evansi and T. equiperdum, respectively, was analyzed. Ten strains of T. evansi and 11 strains of T. equiperdum originating from Asia, Europe, Africa and Latin America were tested. Rabbit pre-infection sera and sera of days 7, 14, 25, 35 post-infection (p.i.) were analyzed for the presence of antibodies reactive with RoTat 1.2 in immune trypanolysis, ELISA/T. evansi and CATT/T. evansi. Within the duration of the infection (maximum 35 days), all T. evansi as well as 9 out of 11 T. equiperdum infected rabbits became positive in all these tests. The rabbits infected with T. equiperdum OVI (South Africa) and BoTat 1.1 (Morocco) remained negative in the immune trypanolysis test although the latter rabbit became positive in the CATT/T. evansi and ELISA/T. evansi. On the contrary, both rabbits were positive in immune trypanolysis when tested against their respective infecting population. From these data, we conclude that most T. equiperdum strains express isoVATs of RoTat 1.2. This explains, in part, why antibody tests based on T. evansi RoTat 1.2 cannot reliably distinguish between infections caused by T. evansi and those caused by T. equiperdum unless it can be proven that most described T. equiperdum are actually misclassified T. evansi.

  16. Identification of a tryptophan-like epitope borne by the variable surface glycoprotein (VSG) of African trypanosomes.

    PubMed

    Semballa, S; Okomo-Assoumou, M C; Holzmuller, P; Büscher, P; Magez, S; Lemesre, J L; Daulouede, S; Courtois, P; Geffard, M; Vincendeau, P

    2007-02-01

    Antibodies (Ab) directed against a tryptophan-like epitope (WE) were previously detected in patients with human African trypanosomiasis (HAT). We investigated whether or not these Ab resulted from immunization against trypanosome antigen(s) expressing a WE. By Western blotting, we identified an antigen having an apparent molecular weight ranging from 60 to 65 kDa, recognized by purified rabbit anti-WE Ab. This antigen, present in trypomastigote forms, was absent in procyclic forms and Trypanosoma cruzi trypomastigotes. Using purified variable surface glycoproteins (VSG) from various trypanosomes, we showed that VSG was the parasite antigen recognized by these rabbit Ab. Anti-WE and anti-VSG Ab were purified from HAT sera by affinity chromatography. Immunoreactivity of purified antibodies eluted from affinity columns and of depleted fractions showed that WE was one of the epitopes borne by VSG. These data underline the existence of an invariant WE in the structure of VSG from several species of African trypanosomes.

  17. PCR amplification of RoTat 1.2 VSG gene in Trypanosoma evansi isolates in Kenya.

    PubMed

    Ngaira, J M; Njagi, E N M; Ngeranwa, J J N; Olembo, N K

    2004-02-26

    A direct card agglutination test for Trypanosoma evansi, CATT/T. evansi based on the predominant variable antigen-type (pVAT) RoTat 1.2 was evaluated previously in the field in Isiolo District, Kenya. Sixteen out of 51 (31.4%) parasitologically positive camels were negative by the antibody detection test. In the present study, trypanosomes isolated from the camels were analysed in an attempt to determine the cause of the false negative results of CATT/T. evansi. A total of 20 field isolates comprised 16 stocks from camels that were negative by CATT/T. evansi, and 4 from CATT/T. evansi-positive camels. In addition, 15 known T. evansi and four T. brucei were used as reference. Purified DNA samples were tested using an established RoTat 1.2-based polymerase chain reaction (PCR) that yields a 488 bp product for the specific detection of T. evansi. Antibodies to RoTat 1.2 variant surface glycoprotein (VSG) were used in Western blotting to detect RoTat 1.2 VSG linear epitopes. Results of PCR and Western blot showed that the 16 stocks isolated from CATT/T. evansi-negative camels fell into three groups. In Group 1, both the RoTat 1.2 VSG gene and the VSG were absent in three stocks. In five trypanosome stocks in Group 2, the RoTat 1.2 VSG gene was detected, but Western blot was negative indicating absence of the expressed VSG. Five other stocks containing the RoTat 1.2 VSG gene were also in this group. The RoTat 1.2 VSG gene was detected and Western blot was positive in all four trypanosome stocks in Group 3. All four stocks from CATT/T. evansi-positive camels contained the RoTat 1.2 VSG gene and the expressed VSG. The reference T. evansi KETRI 2479 lacked the RoTat 1.2 VSG gene and there was no immune reactivity detected by Western blot. The rest of the reference T. evansi stocks examined contained the RoTat 1.2 VSG gene. All the four T. brucei samples examined were negative by PCR and Western blot. In conclusion, this study showed that the RoTat 1.2 VSG gene was absent

  18. The putative promoter for a metacyclic VSG gene in African trypanosomes.

    PubMed

    Nagoshi, Y L; Alarcon, C M; Donelson, J E

    1995-06-01

    During their metacyclic developmental stage, African trypanosomes are coated with one of 12-15 variant surface glycoproteins (VSGs) that define different metacyclic variant antigen types (MVATs). The MVAT VSG genes are located near telomeres of large chromosomes and are expressed without rearrangement in the metacyclic stage. We have cloned and examined the telomere-linked MVAT5 VSG gene and its upstream expression site associated gene (ESAG I) which are separated by 4.5 kb. Within this 4.5-kb intergenic region is an 87-bp sequence that serves as a strong promoter for a luciferase reporter gene in transient transfection assays. This 87-bp sequence is similar, but not identical, to the promoter for another MVAT VSG gene. UV irradiation experiments were used to detect RNA synthesis from this MVAT5 promoter in bloodstream trypanosomes expressing an unrelated VSG. We propose that this sequence is a specific promoter for the MVAT5 VSG mRNA that occurs in about 10% of the trypanosome population during the metacyclic stage of the parasites' life cycle.

  19. Mammalian African trypanosome VSG coat enhances tsetse's vector competence.

    PubMed

    Aksoy, Emre; Vigneron, Aurélien; Bing, XiaoLi; Zhao, Xin; O'Neill, Michelle; Wu, Yi-Neng; Bangs, James D; Weiss, Brian L; Aksoy, Serap

    2016-06-21

    Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission.

  20. Stable variant-specific transcripts of the variant cell surface glycoprotein gene 1. 8 expression site in Trypanosoma brucei

    SciTech Connect

    Shea, C.; Van der Ploeg, L.H.T.

    1988-02-01

    The structure and transcriptional regulation of the 1.8 variant cell surface glycoproteins (VSG) gene expression site located on a 430-kilobase (kb) chromosome was examined in a 430-kb-chromosome-specific library. Using /sup 32/P-labeled nascent transcripts generated by nuclear run-on, the authors selected recombinant clones derived from the 430-kb chromosome which were coordinately activated with the 1.8 VSG gene. The results show that a repetitive region with a minimum size of 27 kb is coordinately activated with the 1.8 VSG gene. As with the 1.8 VSG gene, transcription is by RNA polymerases that are insensitive to the drug alpha-amanitin at concentrations up to 1 mgml. Transcription results in the generation of several stable variant-specific mRNAs. These mRNAs most likely belong to a family of repetitive expression-site-associated genes.

  1. Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes.

    PubMed

    Cestari, Igor; Stuart, Ken

    2015-05-26

    African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing.

  2. Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes

    PubMed Central

    Cestari, Igor; Stuart, Ken

    2015-01-01

    African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing. PMID:25964327

  3. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis.

    PubMed

    Stijlemans, Benoît; Caljon, Guy; Natesan, Senthil Kumar A; Saerens, Dirk; Conrath, Katja; Pérez-Morga, David; Skepper, Jeremy N; Nikolaou, Alexandros; Brys, Lea; Pays, Etienne; Magez, Stefan; Field, Mark C; De Baetselier, Patrick; Muyldermans, Serge

    2011-06-01

    The African trypanosome Trypanosoma brucei, which persists within the bloodstream of the mammalian host, has evolved potent mechanisms for immune evasion. Specifically, antigenic variation of the variant-specific surface glycoprotein (VSG) and a highly active endocytosis and recycling of the surface coat efficiently delay killing mediated by anti-VSG antibodies. Consequently, conventional VSG-specific intact immunoglobulins are non-trypanocidal in the absence of complement. In sharp contrast, monovalent antigen-binding fragments, including 15 kDa nanobodies (Nb) derived from camelid heavy-chain antibodies (HCAbs) recognizing variant-specific VSG epitopes, efficiently lyse trypanosomes both in vitro and in vivo. This Nb-mediated lysis is preceded by very rapid immobilisation of the parasites, massive enlargement of the flagellar pocket and major blockade of endocytosis. This is accompanied by severe metabolic perturbations reflected by reduced intracellular ATP-levels and loss of mitochondrial membrane potential, culminating in cell death. Modification of anti-VSG Nbs through site-directed mutagenesis and by reconstitution into HCAbs, combined with unveiling of trypanolytic activity from intact immunoglobulins by papain proteolysis, demonstrates that the trypanolytic activity of Nbs and Fabs requires low molecular weight, monovalency and high affinity. We propose that the generation of low molecular weight VSG-specific trypanolytic nanobodies that impede endocytosis offers a new opportunity for developing novel trypanosomiasis therapeutics. In addition, these data suggest that the antigen-binding domain of an anti-microbial antibody harbours biological functionality that is latent in the intact immunoglobulin and is revealed only upon release of the antigen-binding fragment.

  4. Quantitative sequencing confirms VSG diversity as central to immune evasion by Trypanosoma brucei.

    PubMed

    McCulloch, Richard; Field, Mark C

    2015-08-01

    Antigenic variation is central to the virulence of African trypanosomes, where the VSG coat is used to evade the host immune system. Recent advances in technology have now allowed more secrets of this system to emerge, with the surprising insight that a broad repertoire of VSGs is rapidly expressed. This has major implications for how the parasite must evade the host immune response.

  5. GPI anchor transamidase of Trypanosoma brucei: in vitro assay of the recombinant protein and VSG anchor exchange.

    PubMed

    Kang, Xuedong; Szallies, Alexander; Rawer, Marc; Echner, Hartmut; Duszenko, Michael

    2002-06-15

    GPI8 from Trypanosoma brucei was cloned and expressed in Escherichia coli. TbGPI8 encodes a 37 kDa protein (35 kDa after removal of the putative signal sequence) with a pI of 5.5. It contains one potential N-glycosylation site near the N-terminus but no C-terminal hydrophobic region. Enzyme activity assays using trypanosomal lysates or recombinant TbGpi8 exhibited cleavage of the synthetic peptide acetyl-S-V-L-N-aminomethyl-coumarine, indicating that TbGpi8 is indeed directly involved in the proteolytic processing of the GPI anchoring signal. Intracellular localization of TbGpi8 within tubular structures, such as the endoplasmic reticulum, was observed by using specific anti-TbGpi8 antibodies. The transamidase mechanism of GPI anchoring was studied in bloodstream forms of Trypanosoma brucei using media containing hydrazine or biotinylated hydrazine. In the presence of the latter nucleophile, part of the newly formed VSG was linked to this instead of the GPI anchor and was not transferred to the cell surface. VSG-hydrazine-biotin was detected by streptavidin in western blots and intracellularly in Golgi-like compartments.

  6. Testing promoter activity in the trypanosome genome: isolation of a metacyclic-type VSG promoter, and unexpected insights into RNA polymerase II transcription.

    PubMed

    McAndrew, M; Graham, S; Hartmann, C; Clayton, C

    1998-09-01

    In trypanosomes, most genes are arranged in polycistronic transcription units. Individual mRNAs are generated by 5'-trans splicing and 3' polyadenylation. Remarkably, no regulation of RNA polymerase II transcription has been detected although many RNAs are differentially expressed during kinetoplastid life cycles. Demonstration of specific class II promoters is complicated by the difficulty in distinguishing between genuine promoter activity and stimulation of trans splicing. Using vectors that were designed to allow the detection of low promoter activities in a transcriptionally silent chromosomal context, we isolated a novel trypanosome RNA polymerase I promoter. We were however unable to detect class II promoter activity in any tested DNA fragment. We also integrated genes which were preceded by a T3 promoter into the genome of cells expressing bacteriophage T3 polymerase: surprisingly, transcription was alpha-amanitin sensitive. One possible interpretation of these results is that in trypanosomes, RNA polymerase II initiation is favored by genomic accessibility and double-strand melting.

  7. The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes.

    PubMed

    Schwede, Angela; Jones, Nicola; Engstler, Markus; Carrington, Mark

    2011-02-01

    In the mammalian host, the Trypanosoma brucei cell surface is covered with a densely packed protein coat of a single protein, the variant surface glycoprotein (VSG). The VSG is believed to shield invariant surface proteins from host antibodies but there is limited information on how far antibodies can penetrate into the VSG monolayer. Here, the VSG surface coat was probed to determine whether it acts as a barrier to binding of antibodies to the membrane proximal VSG C-terminal domain. The binding of C-terminal domain antibodies to VSG221 or VSG118 was compared with antibodies recognising the cognate whole VSGs. The C-terminal VSG domain was inaccessible to antibodies on live cells but not on fixed cells. This provides further evidence that the VSG coat acts as a barrier and protects the cell from antibodies that would otherwise bind to some of the other externally disposed proteins.

  8. Mammalian African trypanosome VSG coat enhances tsetse’s vector competence

    PubMed Central

    Aksoy, Emre; Vigneron, Aurélien; Bing, XiaoLi; Zhao, Xin; O’Neill, Michelle; Wu, Yi-neng; Bangs, James D.; Weiss, Brian L.; Aksoy, Serap

    2016-01-01

    Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse’s midgut. One critical factor influencing this bottleneck is the fly’s peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse’s gut, VSG molecules released from trypanosomes are internalized by cells of the cardia—the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology—that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse’s vector competence and disease transmission. PMID:27185908

  9. Analysis of a donor gene region for a variant surface glycoprotein and its expression site in African trypanosomes.

    PubMed

    LaCount, D J; El-Sayed, N M; Kaul, S; Wanless, D; Turner, C M; Donelson, J E

    2001-05-15

    African trypanosomes evade the immune response of their mammalian hosts by sequentially expressing genes for different variant surface glycoproteins (VSGs) from telomere-linked VSG expression sites. In the Trypanosoma brucei clone whose genome is being sequenced (GUTat 10.1), we show that the expressed VSG (VSG 10.1) is duplicated from a silent donor VSG located at another telomere-linked site. We have determined two 130 kb sequences representing the VSG 10.1 donor and expression sites. The telomere-linked donor VSG 10.1 resembles metacyclic VSG expression sites, and is preceded by a cluster of 35 or more tandem housekeeping genes, all of which are transcribed away from the telomere. The 45 kb telomere-linked VSG 10.1 expression site contains a promoter followed by seven expression site-associated genes (ESAGs), three pseudo ESAGs, two pseudo VSGs and VSG 10.1. The 80 kb preceding the expression site has few, if any, functional ORFs, but contains 50 bp repeats, INGI retrotransposon-like elements, and novel 4-12 kb repeats found near other telomeres. This analysis provides the first look over a 130 kb range of a telomere-linked donor VSG and its corresponding telomere-linked VSG expression site and forms the basis for studies on antigenic variation in the context of a completely sequenced genome.

  10. Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Sukumaran, V

    2012-06-01

    The effects of dietary Pseudomonas aeruginosa VSG-2 supplementation on innate immunity and protection against Aeromonas hydrophila infection were evaluated in Labeo rohita. Fish were fed for 60 days with control diet or 3 experimental diets containing P. aeruginosa VSG-2 at 10(5), 10(7), and 10(9) cfu g(-l), respectively. Various innate immune parameters were examined at 30 and 60 days post-feeding. Fish were challenged with A. hydrophila 60 days post-feeding and mortalities were recorded over 10 days post-infection. Dietary supplementation of P. aeruginosa VSG-2 significantly increased serum lysozyme and alternative complement pathway (ACP) activities, phagocytosis, and respiratory burst activity in head kidney macrophages of L. rohita throughout the experimental period. Superoxide dismutase (SOD) activity significantly increased after 60 days in the groups fed diets containing 10(7) and 10(9) cfu g(-1) P aeruginosa. Serum IgM levels were significantly higher in the treatment groups than in the control group after 30 days of feeding; however, the opposite result was observed at 60 days. Moreover, fish fed diets containing 10(7) and 10(9) cfu g(-1)P. aeruginosa had significantly higher post-challenge survival rates against A. hydrophila infection. Further, P. aeruginosa VSG-2 was found to be safe for mammals. These results indicate that dietary P. aeruginosa VSG-2 supplementation at 10(7) cfu g(-1) can effectively improve innate immunity and disease resistance in L. rohita.

  11. Myristate exchange in glycolipid A and VSG of African trypanosomes.

    PubMed

    Buxbaum, L U

    1994-02-01

    The variant surface glycoprotein (VSG) of T. brucei is anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor which is unique in that its fatty acids are exclusively myristate (a fourteen carbon saturated fatty acid). We showed that the myristate is added to the GPI precursor in a remodeling reaction involving deacylation and reacylation. We now demonstrate that trypanosomes have a second pathway of myristoylation for GPI anchors that we call "myristate exchange" which is distinct from the fatty acid remodeling pathway. We propose that this is an exchange of [3H]myristate into both sn-1 and sn-2 positions of glycolipid A, which already contains myristate, and have demonstrated this using inhibitors and a variety of other methods. We have partially characterized myristate exchange with respect to specificity and susceptibility to some inhibitors. The apparent Km for myristoyl CoA is 7 nM. This myristate-specific process may represent a proof-reading system to ensure that the fatty acids on VSG are exclusively myristate. Although myristate exchange was first discovered for glycolipid A, we now believe that VSG is the true substrate of this reaction. VSG is efficiently labeled by exchange in the presence of cycloheximide, which prevents anchoring of newly synthesized protein. Although its location is not yet known, we have evidence that exchange does not localize to either the endoplasmic reticulum or the plasma membrane. We will present data indicating that surface VSG may be internalized and undergo myristate exchange.

  12. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  13. PCR-based diagnosis of surra-targeting VSG gene: experimental studies in small laboratory rodents and buffalo.

    PubMed

    Sengupta, P P; Balumahendiran, M; Suryanaryana, V V S; Raghavendra, A G; Shome, B R; Gajendragad, M R; Prabhudas, K

    2010-07-15

    Trypanosoma evansi, the causative organism of 'surra' expresses its variable surface glycoprotein (VSG) at early, middle and late stages of infection in animals. The variable antigenic nature of VSG caused by switching its expression type favours evasion from the host immune response and leads to chronic and persistent infection. Developing a polymerase chain reaction (PCR)-based diagnostic tool targeting the VSG gene is expected to be highly specific and sensitive for diagnosis of surra. Hence, in the present study, we have designed EXP3F/4R primer pair and amplified the 1.4 kb of VSG gene of T. evansi and studied the phylogenetic relationship by in silico analysis. The PCR method was standardised using another set of primer, DITRYF/R, and 400 bp was amplified from blood and tissue samples of experimentally infected animals. Applying the PCR method, we were able to detect as low as 0.15 trypanosomeml(-1). Considering the number of parasite-to-DNA concentration, the PCR method has a sensitivity of 0.015 pg ml(-1). The PCR could detect the presence of the parasite as early as 24h post-infection (p.i.) and 72 h p.i., respectively, in experimentally infected rats and buffalo. No amplification was observed with DNA of Babesia bigemina and Theileria annulata, indicating the primers are specific for T. evansi. The PCR method could detect the dog, lion and leopard isolates of T. evansi. Similarly, amplifying the DNA from the experimentally infected tissues was also found to be sensitive. Thus, the findings of this study favour the application of PCR over the parasitological methods for the detection of the early and/or chronic stage of surra in domestic and wild animals.

  14. Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil.

    PubMed

    Giri, Sib Sankar; Sukumaran, V; Sen, Shib Sankar; Oviya, M; Banu, B Nazeema; Jena, Prasant Kumar

    2011-06-01

    An extracellular detergent tolerant protease producing strain VSG-4 was isolated from tropical soil sample and identified as Bacillus subtilis based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The VSG-4 protease was purified to homogeneity using ammonium sulphate precipitation, dialysis and sephadex G-200 gel permeation chromatography with a 17.4 purification fold. The purified enzyme was active and stable over a broad range of pH (8.0-11.0, optimum at 9.0) and temperature (40°C to 60°C, optimum at 50°C). The thermostability of the enzyme was significantly increased by the addition CaCl(2). This enzyme was strongly inhibited by PMSF and DFP, suggesting that it belongs to the serine protease superfamily. The purified VSG-4 alkaline protease showed remarkable stability in anionic (5 mM SDS) and ionic (1% Trion X-100 and 1% Tween 80) detergents. It retained 97±2% and 83.6±1.1% of its initial activity after 1 h preincubation in the presence of 1 % H(2)O(2) and 1 % sodium perborate, respectively. Furthermore, the purified enzyme showed excellent stability and compatibility with some commercial laundry detergents besides its stain removal capacity. Considering these promising properties, VSG-4 protease may find tremendous application in laundry detergent formulations.

  15. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    PubMed

    Schwede, Angela; Macleod, Olivia J S; MacGregor, Paula; Carrington, Mark

    2015-12-01

    Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.

  16. Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE

    SciTech Connect

    Mukherjee, S K; Emig, J A; Griffith, L V; Heeter, R F; House, F A; James, D L; Schneider, M B; Sorce, C M

    2010-01-25

    The Variable Spaced Grating (VSG) is a spectrometer snout mounted to an X-Ray Framing Camera (XRFC) through the Unimount flange. This equipment already exists and is used at the University of Rochester, Laboratory for Laser Energetics (LLE) facility. The XRFC and the Unimount flange are designed by LLE. The Tilt Rotator fixture that mounts next to the XRFC and the cart rails are designed by LLNL, and are included in this safety note. The other related components, such as the TIM rails and the Unimount flange, are addressed in a separate safety note, EDSN09-500005-AA. The Multipurpose Spectrometer (MSPEC) and VSG are mounted on the TIM Boat through the cart rails that are very similar in design. The tilt rotator combination with the Unimount flange is also a standard mounting procedure. The later mounting system has been included in this safety note. Figure-1 shows the interface components and the VSG snout. Figure-2 shows the VSG assembly mounted on the Unimount flange. The calibration pointer attachment is shown in place of the snout. There are two types of VSG, one made of 6061-T6 aluminum, weighing approximately 3 pounds, and the other made of 304 stainless steel, weighing approximately 5.5 pounds. This safety note examines the VSG steel design. Specific experiments may require orienting the VSG snout in 90 degrees increment with respect to the Unimount flange. This is done by changing the bolts position on the VSG-main body adapter flange to the Unimount adapter plate. There is no hazard involved in handling the VSG during this procedure as it is done outside the target chamber on the cart rail before installing on the TIM. This safety note addresses the mechanical integrity of the VSG structure, the tilt rotating fixture, the cart rails with handle and their connections. Safety Factors are also calculated for the MSPEC in place of the VSG.

  17. Identification of a variant surface glycoprotein (VSG) glycolipid precursor in Trypanosoma brucei

    SciTech Connect

    Krakow, J.; Hereld, D.; Hart, G.; Englund, P.

    1986-05-01

    The VSG coat protein of T. brucei has a glycolipid covalently attached to its C terminus which anchors it to the cell membrane. Compositional analyses of VSG, reported by several laboratories, indicate that the glycolipid contains myristic acid, glycerol, phosphate, inositol, several sugars, and ethanolamine. This glycolipid is found on the VSG polypeptide within 1 minute after translation, suggesting that prior to incorporation, it may exist in the cell as a preformed precursor. The authors have isolated a molecule which has properties consistent with being a VSG lipid precursor: it is highly polar and can be labelled by (/sup 3/H)myristate but not by (/sup 3/H)palmitate. It reaches steady-state during continuous labelling and shows rapid turnover in pulse-chase experiments, suggesting that it is a metabolic intermediate rather than an end product. When treated with HNO/sub 2/ it liberates phophatidylinositol, as does VSG, and, like VSG, releases dimyristylglycerol when treated with purified endogenous phospholipase C from trypanosomes. These data provide strong evidence that the glycolipid is a preformed precursor which is transferred to the VSG polypeptide en bloc.

  18. Recessed source concept in nanoscale vertical surrounding gate (VSG) MOSFETs for controlling short-channel effects

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, B.; Jagadesh Kumar, M.

    2009-02-01

    In the recent past, vertical surrounding gate (VSG) MOSFETs have gained importance since defining their nanoscale channel length no longer depends on lithographic limitations and since they can lead to high packing densities. However, as the channel lengths decrease below 100 nm, VSG MOSFETs too suffer from short-channel effects due to the coupling between the drain and source side charges. In this paper, we demonstrate that using a recessed source, the short-channel effects in nanoscale VSG MOSFETs can be effectively controlled.

  19. Biological variation among african trypanosomes: I. Clonal expression of virulence is not linked to the variant surface glycoprotein or the variant surface glycoprotein gene telomeric expression site.

    PubMed

    Inverso, Jill A; Uphoff, Timothy S; Johnson, Scott C; Paulnock, Donna M; Mansfield, John M

    2010-05-01

    The potential association of variant surface glycoprotein (VSG) gene expression with clonal expression of virulence in African trypanosomes was addressed. Two populations of clonally related trypanosomes, which differ dramatically in virulence for the infected host, but display the same apparent VSG surface coat phenotype, were characterized with respect to the VSG genes expressed as well as the chromosome telomeric expression sites (ES) utilized for VSG gene transcription. The VSG gene sequences expressed by clones LouTat 1 and LouTat 1A of Trypanosoma brucei rhodesiense were identical, and gene expression in both clones occurred precisely by the same gene conversion events (duplication and transposition), which generated an expression-linked copy (ELC) of the VSG gene. The ELC was present on the same genomic restriction fragments in both populations and resided in the telomere of a 330-kb chromosome; a single basic copy of the LouTat 1/1A VSG gene, present in all variants of the LouTat 1 serodeme, was located at an internal site of a 1.5-Mb chromosome. Restriction endonuclease mapping of the ES telomere revealed that the VSG ELC of clones LouTat 1 and 1A resides in the same site. Therefore, these findings provide evidence that the VSG gene ES and, potentially, any cotranscribed ES-associated genes do not play a role in the clonal regulation of virulence because trypanosome clones LouTat 1 and 1A, which differ markedly in their virulence properties, both express identical VSG genes from the same chromosome telomeric ES.

  20. Immobilization of carbonic anhydrase enzyme purified from Bacillus subtilis VSG-4 and its application as CO(2) sequesterer.

    PubMed

    Oviya, M; Giri, Sib Sankar; Sukumaran, V; Natarajan, P

    2012-01-01

    The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan-alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co(2+), Cu(2+), and Fe(3+), increased the enzyme activity, whereas CA activity was inhibited by Pb(2+), Hg(2+), ethylenediamine tetraacetic acid (EDTA), 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO(2) to CaCO(3). The maximum CO(2) sequestration potential was achieved with immobilized CA (480 mg CaCO(3)/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO(2) sequestration.

  1. Sero-diagnosis of surra exploiting recombinant VSG antigen based ELISA for surveillance.

    PubMed

    Sengupta, P P; Rudramurthy, G R; Ligi, M; Roy, M; Balamurugan, V; Krishnamoorthy, P; Nagalingam, M; Singh, L; Rahman, H

    2014-10-15

    Trypanosoma evansi, a haemoflagellate, causes "surra" an important chronic wasting disease of a wide range of wild and domestic herbivorous and carnivorous animals including cattle, buffaloes, camels, horses, etc. The untreated recovered animal can act as a carrier without exhibiting the disease symptoms and can be a source of infection to healthy animals. The diagnosis and subsequent treatment of the carrier animals is helpful to curb the disease. As the parasitaemia in carrier animals is very scanty, the conventional blood smear examination, which is widely practiced in the field, cannot detect such condition. For this purpose improved diagnostics are very much useful for mass sero-screening test such as ELISA. In the present study, the VSG of T. evansi was expressed in prokaryotic system (E. coli) and thereafter its immunoreactivity has been evaluated in immuno blot and enzyme immuno assay. The expressed protein showed 95.6% sensitivity, 98.0% specificity and 0.93 Cohen's kappa value, when compared with standard antigens. The developed antigen has also been validated with field serum samples from bovine, camel and horse collected from different states of India. The data showed that the developed recombinant antigen can be a diagnostic tool to detect carrier animals as well as control of the disease.

  2. Anti-VSG antibodies induce an increase in Trypanosoma evansi intracellular Ca2+ concentration.

    PubMed

    Mendoza, M; Uzcanga, G L; Pacheco, R; Rojas, H; Carrasquel, L M; García-Marchan, Y; Serrano-Martín, X; Benaím, G; Bubis, J; Mijares, A

    2008-09-01

    Trypanosoma evansi and Trypanosoma vivax have shown a very high immunological cross-reactivity. Anti-T. vivax antibodies were used to monitor changes in the T. evansi intracellular Ca2+ concentration ([Ca2+]i) by fluorometric ratio imaging from single parasites. A short-time exposure of T. evansi parasites to sera from T. vivax-infected bovines induced an increase in [Ca2+]i, which generated their complete lysis. The parasite [Ca2+]i boost was reduced but not eliminated in the absence of extracellular Ca2+ or following serum decomplementation. Decomplemented anti-T. evansi VSG antibodies also produced an increase in the parasite [Ca2+]i, in the presence of extracellular Ca2+. Furthermore, this Ca2+ signal was reduced following blockage with Ni2+ or in the absence of extracellular Ca2+, suggesting that this response was a combination of an influx of Ca2+ throughout membrane channels and a release of this ion from intracellular stores. The observed Ca2+ signal was specific since (i) it was completely eliminated following pre-incubation of the anti-VSG antibodies with the purified soluble VSG, and (ii) affinity-purified anti-VSG antibodies also generated an increase in [Ca2+]i by measurements on single cells or parasite populations. We also showed that an increase of the T. evansi [Ca2+]i by the calcium A-23187 ionophore led to VSG release from the parasite surface. In addition, in vivo immunofluorescence labelling revealed that anti-VSG antibodies induced the formation of raft patches of VSG on the parasite surface. This is the first study to identify a ligand that is coupled to calcium flux in salivarian trypanosomes.

  3. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei.

    PubMed

    Wang, Jun; Böhme, Ulrike; Cross, George A M

    2003-05-01

    The glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) of Trypanosoma brucei is the most abundant GPI-anchored protein expressed on any cell, and is an essential virulence factor. To determine what structural features affect efficient expression of VSG, we made a series of mutations in two VSGs. Inserting 18 amino acids, between the amino- and carboxy-terminal domains, reduced the expression of VSG 221 to about 3% of the wild-type level. When this insertion was combined with deletion of the single carboxy-terminal subdomain, expression was reduced a further three-fold. In VSG 117, which contains two carboxy-terminal subdomains, point mutation of the intervening N-glycosylation site reduced expression about 15-fold. Deleting the most carboxy-terminal subdomain and intervening region, including the N-glycosylation site, reduced expression to 15-20% of wild type VSG, and deletion of both subdomains reduced expression to <1%. Despite their low abundance, all VSG mutants were GPI anchored on the cell surface. Our results suggest that, for a protein to be efficiently displayed on the surface of bloodstream-form T. brucei, it is essential that it contains the conserved structural motifs of a T. brucei VSG. Serum resistance-associated protein (SRA), which confers human infectivity on T. brucei, strongly resembles a VSG deletion mutant. Expression of three epitope-tagged versions of SRA in T. brucei conferred total resistance to human serum. SRA possesses a canonical GPI signal sequence, but we were unable to obtain unequivocal evidence for the presence of a GPI anchor. SRA was not released during osmotic lysis, indicating that it is not GPI anchored on the cell surface.

  4. Detection of Trypanosoma brucei Variant Surface Glycoprotein Switching by Magnetic Activated Cell Sorting and Flow Cytometry.

    PubMed

    Schulz, Danae; Mugnier, Monica R; Boothroyd, Catherine E; Papavasiliou, F Nina

    2016-10-19

    Trypanosoma brucei, a protozoan parasite that causes both Human and Animal African Trypanosomiasis (known as sleeping sickness and nagana, respectively) cycles between a tsetse vector and a mammalian host. It evades the mammalian host immune system by periodically switching the dense, variant surface glycoprotein (VSG) that covers its surface. The detection of antigenic variation in Trypanosoma brucei can be both cumbersome and labor intensive. Here, we present a method for quantifying the number of parasites that have 'switched' to express a new VSG in a given population. The parasites are first stained with an antibody against the starting VSG, and then stained with a secondary antibody attached to a magnetic bead. Parasites expressing the starting VSG are then separated from the rest of the population by running the parasites over a column attached to a magnet. Parasites expressing the dominant, starting VSG are retained on the column, while the flow-through contains parasites that express a new VSG as well as some contaminants expressing the starting VSG. This flow-through population is stained again with a fluorescently labeled antibody against the starting VSG to label contaminants, and propidium iodide (PI), which labels dead cells. A known number of absolute counting beads that are visible by flow cytometry are added to the flow-through population. The ratio of beads to number of cells collected can then be used to extrapolate the number of cells in the entire sample. Flow cytometry is used to quantify the population of switchers by counting the number of PI negative cells that do not stain positively for the starting, dominant VSG. The proportion of switchers in the population can then be calculated using the flow cytometry data.

  5. Modelling trypanosome chronicity: VSG dynasties and parasite density.

    PubMed

    MacGregor, Paula; Matthews, Keith R

    2008-01-01

    A new mathematical model developed by Lythgoe et al. shows that the semi-predictable order of trypanosome antigenic variation can be generated by two parasite-intrinsic factors. The first is the different probabilities of antigen-gene activation that result from the different molecular mechanisms by which the genes become expressed. The second is the density-dependent differentiation of slender to stumpy cells. The study has important implications for understanding the dynamics of antigenic variation and for modelling the consequences of therapeutic strategies directed against trypanosomes.

  6. Phosphatase activities analyzed by in vivo expressions.

    PubMed

    Schweighofer, Alois; Ayatollahi, Zahra; Meskiene, Irute

    2009-01-01

    Protein phosphatases act to reverse phosphorylation-related modifications induced by protein kinases. Type 2C protein phosphatases (PP2C) are monomeric Ser/Thr phosphatases that require a metal for their activity and are abundant in prokaryotes and eukaryotes. In plants, such as Medicago and Arabidopsis PP2Cs control several essential processes, including ABA signaling, development, and wound-induced mitogen-activated protein kinase (MAPK) pathways. In vitro assays with recombinant proteins and yeast two-hybrid systems usually provide initial information about putative PP2C substrates; however, these observations have to be verified in vivo. Therefore, a method for transient expression in isolated Arabidopsis suspension cell protoplasts was developed to assay PP2C action in living cells. This system has proven to be very useful in producing active enzymes and their substrates and in performing enzymatic reactions in vivo. Transient gene expression in isolated cells enabled assembly of functional protein kinase cascades and the creation of phosphorylated targets for PP2Cs. The method is based on the co-transformation and transient co-expression of different PP2C proteins with MAPK. It shows that epitope-tagged PP2C and MAPK proteins exhibit high enzymatic activities and produce substantial protein amounts easily monitored by Western blot analysis. Additionally, PP2C phosphatase activities can be directly tested in protein extracts from protoplasts, suggesting a possibility for analysis of activities of new PP2C family members.

  7. Expression and Activity of Metalloproteinases in Depression

    PubMed Central

    Bobińska, Kinga; Szemraj, Janusz; Czarny, Piotr; Gałecki, Piotr

    2016-01-01

    Background Depression is one of the most common mental disorders and often co-exists with somatic diseases. The most probable cause of comorbidity is a generalized inflammatory process that occurs in both depression and somatic diseases. Matrix metalloproteinases MMPs play a role in modulating inflammation and their impact in many inflammatory diseases has been investigated. The purpose of this study was to evaluate gene expression for selected polymorphisms of MMP-2 (C-735T), MMP-7 (A-181G), and MMP-9 (T-1702A, C1562T), which have been confirmed to participate in development of depression, and TIMP-2 (G-418C, tissue inhibitor of MMP). Activity variability of pro-MMP-2 and pro-MMP-9 was measured in a group of people with depression and a group of healthy individuals. Material/Methods The examined population comprised 142 individuals suffering from depression and 100 individuals who formed a control group (CG). Designations were carried out for MMP-2 (C-735T), MMP-7 (A-181G), MMP-9 (T-1702A, C1562T), and TIMP-2 (G-418C). Results For all examined and tested MMPs and for TIMP-2, gene expression at the mRNA level was higher in patients with depression than in the CG. Similar results were recorded for gene expression at the protein level, while expression on the protein level for TIMP-2 was higher in the CG. Change in activity of MMP-2 and pro-MMP-2 was statistically more significant in the group with depression. The opposite result was recorded for MMP-9 and pro-MMP-9, in which the change in activity was statistically more significant in the CG. Conclusions Changes in MMPs and TIMP expression may be a common element in, or perhaps even a marker for, recurrent depressive disorders and somatic diseases. PMID:27098106

  8. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  9. Induction and regulation of Trypanosoma brucei VSG-specific antibody responses.

    PubMed

    Black, S J; Guirnalda, P; Frenkel, D; Haynes, C; Bockstal, V

    2010-12-01

    The review addresses how infection with Trypanosoma brucei affects the development, survival and functions of B lymphocytes in mice. It discusses (1) the contributions of antibodies to trypanosome clearance from the bloodstream, (2) how B lymphocytes, the precursors of antibody producing plasma cells, interact with membrane form variable surface glycoprotein (VSG), i.e. with monovalent antigen that is free to diffuse within the lipid bilayer of the trypanosome plasma membrane and consequently can cross-link B cell antigen specific receptors by indirect processes only and (3) the extent and underlying causes of dysregulation of humoral immune responses in infected mice, focusing on the impact of wild type and GPI-PLC⁻/⁻ trypanosomes on bone marrow and extramedullary B lymphopoiesis, B cell maturation and survival.

  10. Design and optimization of thin film fully depleted vertical surrounding gate (VSG) MOSFETs for enhanced short channel immunity

    NASA Astrophysics Data System (ADS)

    Kranti, Abhinav; Rashmi; Haldar, S.; Gupta, R. S.

    2002-09-01

    A criterion is developed to select the ratio of silicon film thickness to gate oxide thickness between two limits to set the threshold voltage independent of channel length. The concept of short channel immunity factor ( γ) and critical length ( Lcritical) is evolved, which serves as the basic tool for device optimization for enhanced short channel immunity. The model shows new viewpoints for realizing future ULSI circuits with VSG MOSFETs.

  11. Locus-specific control of DNA resection and suppression of subtelomeric VSG recombination by HAT3 in the African trypanosome.

    PubMed

    Glover, Lucy; Horn, David

    2014-11-10

    The African trypanosome, Trypanosoma brucei, is a parasitic protozoan that achieves antigenic variation through DNA-repair processes involving Variant Surface Glycoprotein (VSG) gene rearrangements at subtelomeres. Subtelomeric suppression of DNA repair operates in eukaryotes but little is known about these controls in trypanosomes. Here, we identify a trypanosome histone acetyltransferase (HAT3) and a deacetylase (SIR2rp1) required for efficient RAD51-dependent homologous recombination. HAT3 and SIR2rp1 were required for RAD51-focus assembly and disassembly, respectively, at a chromosome-internal locus and a synthetic defect indicated distinct contributions to DNA repair. Although HAT3 promoted chromosome-internal recombination, it suppressed subtelomeric VSG recombination, and these locus-specific effects were mediated through differential production of ssDNA by DNA resection; HAT3 promoted chromosome-internal resection but suppressed subtelomeric resection. Consistent with the resection defect, HAT3 was specifically required for the G2-checkpoint response at a chromosome-internal locus. HAT3 also promoted resection at a second chromosome-internal locus comprising tandem-duplicated genes. We conclude that HAT3 and SIR2rp1 can facilitate temporally distinct steps in DNA repair. HAT3 promotes ssDNA formation and recombination at chromosome-internal sites but has the opposite effect at a subtelomeric VSG. These locus-specific controls reveal compartmentalization of the T. brucei genome in terms of the DNA-damage response and suppression of antigenic variation by HAT3.

  12. Production of bioethanol from fermented sugars of sugarcane bagasse produced by lignocellulolytic enzymes of Exiguobacterium sp. VSG-1.

    PubMed

    Vijayalaxmi, S; Anu Appaiah, K A; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

    2013-09-01

    Exiguobacterium sp. VSG-1 was isolated from the soil sample and characterized for the production of lignocellulolytic enzymes. Production of these enzymes by the strain VSG-1 was carried out using steam-exploded sugarcane bagasse (SCB) and found to secrete cellulase, pectinase, mannanase, xylanase, and tannase. The growth and enzyme production were found to be optimum at pH 9.0 and 37 °C. Upon steam explosion of SCB, the cellulose increased by 42 %, whereas hemicelluloses and lignin decreased by 40 and 62 %, respectively. Enzymatic hydrolysis of steam-exploded SCB yielded 640 g/l of total sugars. Fermentation of sugars produced from pretreated SCB was carried out by using Saccharomyces cerevisiae at pH 5.0 and 30 °C. The alcohol produced was calculated and found to be 62.24 g/l corresponding to 78 % of the theoretical yield of ethanol. Hence, the strain VSG-1 has an industrial importance for the production of fermentable sugars for biofuels.

  13. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene

    SciTech Connect

    Johnson, P.J.; Kooter, J.M.; Borst, P.

    1987-10-23

    We have used inactivation of transcription by UV irradiation to map transcription units in trypanosomes. The relative inactivation rate of the transcription of mini-exon, 5S, and rRNA genes was inversely proportional to the previously estimated lengths of these transcription units. The telomeric transcription unit containing the gene for variant-specific surface glycoprotein (VSG) 221 was inactivated as a single unit of 60 kb. This long transcription unit comprises at least one other protein-coding gene and yields seven other stable mRNAs. These data thus provide evidence for a multicistronic transcription unit for cellular genes in a eukaryote.

  14. Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei.

    PubMed

    Castillo-Acosta, Víctor M; Aguilar-Pereyra, Fernando; Bart, Jean-Mathieu; Navarro, Miguel; Ruiz-Pérez, Luis M; Vidal, Antonio E; González-Pacanowska, Dolores

    2012-12-01

    Deoxyuridine 5'-triphosphate pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UNG) are key enzymes involved in the control of the presence of uracil in DNA. While dUTPase prevents uracil misincorporation by removing dUTP from the deoxynucleotide pool, UNG excises uracil from DNA as a first step of the base excision repair pathway (BER). Here, we report that strong down-regulation of dUTPase in UNG-deficient Trypanosoma brucei cells greatly impairs cell viability in both bloodstream and procyclic forms, underscoring the extreme sensitivity of trypanosomes to uracil in DNA. Depletion of dUTPase activity in the absence of UNG provoked cell cycle alterations, massive dUTP misincorporation into DNA and chromosomal fragmentation. Overall, trypanosomatid cells that lack dUTPase and UNG activities exhibited greater proliferation defects and DNA damage than cells deficient in only one of these activities. To determine the mutagenic consequences of uracil in DNA, mutation rates and spectra were analyzed in dUTPase-depleted cells in the presence of UNG activity. These cells displayed a spontaneous mutation rate 9-fold higher than the parental cell line. Base substitutions at A:T base pairs and deletion frequencies were both significantly enhanced which is consistent with the generation of mutagenic AP sites and DNA strand breaks. The increase in strand breaks conveyed a concomitant increase in VSG switching in vitro. The low tolerance of T. brucei to uracil in DNA emphasizes the importance of uracil removal and regulation of intracellular dUTP pool levels in cell viability and genetic stability and suggests potential strategies to compromise parasite survival.

  15. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  16. Patterns of activity expressed by juvenile horseshoe crabs.

    PubMed

    Dubofsky, E A; Simpson, S D; Chabot, Christopher C; Watson, Winsor H

    2013-09-01

    Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P < 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks.

  17. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  18. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  19. Heparanase expression upregulates platelet adhesion activity and thrombogenicity

    PubMed Central

    Österholm, Cecilia; Zhang, Xiao; Hedin, Ulf; Vlodavsky, Israel; Li, Jin-Ping

    2016-01-01

    Heparanase is an endo-glucuronidase that specifically cleaves heparan sulfate (HS) and heparin polysaccharides. The enzyme is expressed at low levels in normal tissues, but is often upregulated under pathological conditions such as cancer and inflammation. Normal human platelets express exceptionally high levels of heparanase, but the functional consequences of this feature remain unknown. We investigated functional roles of heparanase by comparing the properties of platelets expressing high (Hpa-tg) or low (Ctr) levels of heparanase. Upon activation, Hpa-tg platelets exhibited a much stronger adhesion activity as compared to Ctr platelets, likely contributing to a higher thrombotic activity in a carotid thrombosis model. Furthermore, we found concomitant upregulated expression of both heparanase and CD62P (P-selectin) upon activation of mouse and human platelets. As platelets play important roles in tumor metastasis, these findings indicate contribution of the platelet heparanase to hyper-thrombotic conditions often seen in patients with metastatic cancer. PMID:27129145

  20. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    PubMed

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification.

  1. Neuronal Activity Regulates Hippocampal miRNA Expression

    PubMed Central

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  2. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  3. Active AU Based Patch Weighting for Facial Expression Recognition

    PubMed Central

    Xie, Weicheng; Shen, Linlin; Yang, Meng; Lai, Zhihui

    2017-01-01

    Facial expression has many applications in human-computer interaction. Although feature extraction and selection have been well studied, the specificity of each expression variation is not fully explored in state-of-the-art works. In this work, the problem of multiclass expression recognition is converted into triplet-wise expression recognition. For each expression triplet, a new feature optimization model based on action unit (AU) weighting and patch weight optimization is proposed to represent the specificity of the expression triplet. The sparse representation-based approach is then proposed to detect the active AUs of the testing sample for better generalization. The algorithm achieved competitive accuracies of 89.67% and 94.09% for the Jaffe and Cohn–Kanade (CK+) databases, respectively. Better cross-database performance has also been observed. PMID:28146094

  4. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms

    PubMed Central

    2014-01-01

    Background Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. Methods In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. Results GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. Conclusions This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms. PMID:24885240

  5. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  6. Expression, purification and characterization of inactive and active forms of ERK2 from insect expression system.

    PubMed

    Yan, Kelly; Merritt, Hanne; Crawford, Kenneth; Pardee, Gwynn; Cheng, Jan Marie; Widger, Stephania; Hekmat-Nejad, Mohammad; Zaror, Isabel; Sim, Janet

    2015-06-01

    Extracellular signal-regulated kinase 2 (ERK2) is a serine/threonine protein kinase involved in many cellular programs, such as cell proliferation, differentiation, motility and programed cell-death. It is therefore considered an important target in the treatment of cancer. In an effort to support biochemical screening and small molecule drug discovery, we established a robust system to generate both inactive and active forms of ERK2 using insect expression system. We report here, for the first time, that inactive ERK2 can be expressed and purified with 100% homogeneity in the unphosphorylated form using insect system. This resulted in a significant 20-fold yield improvement compared to that previously reported using bacterial expression system. We also report a newly developed system to generate active ERK2 in insect cells through in vivo co-expression with a constitutively active MEK1 (S218D S222D). Isolated active ERK2 was confirmed to be doubly phosphorylated at the correct sites, T185 and Y187, in the activation loop of ERK2. Both ERK2 forms, inactive and active, were well characterized by biochemical activity assay for their kinase function. Inactive and active ERK2 were the two key reagents that enabled successful high through-put biochemical assay screen and structural drug discovery studies.

  7. Cloning and Expression of Yak Active Chymosin in Pichia pastoris

    PubMed Central

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-01-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  8. Expression of soluble and active interferon consensus in SUMO fusion expression system in E. coli.

    PubMed

    Peciak, Karolina; Tommasi, Rita; Choi, Ji-won; Brocchini, Steve; Laurine, Emmanuelle

    2014-07-01

    Protein production can be improved if methods for soluble protein expression are developed. Interferon consensus (IFN-con) is used to treat hepatitis C. IFN-con has superior activity compared to other clinically used interferon α subtypes. However IFN-con is a challenging protein to produce in a soluble form using an Escherichia coli expression system. Here we describe the expression of soluble and active recombinant IFN-con in E. coli. The IFN-con gene sequence was optimised for expression in E. coli, which was then cloned into the Champion™ pET SUMO expression vector downstream of the SUMO fusion protein and under strong T7lac promoter. The SUMO-IFN-con fusion protein was efficiently expressed using the SHuffle™ E. coli strain and existed in soluble form as 86-88% of the total IFN-con. After removal of the SUMO fusion partner, approximately 50mg of recombinant IFN-con of at least 98% purity (by RP-HPLC) was obtained from a 1L fermentation culture. Using an A549/EMCV antiviral assay, the specific activity of the recombinant IFN-con was determined to be 960×10(6) IU/mg as calculated to NIBSC standard for IFN-con (3×10(5)pfu/mL virus titre). Comparison of the antiviral activity of the produced IFN-con to IFN α-2a showed that IFN-con displays 2.8 times greater activity, which is in good agreement with what has been reported in the literature for pure protein. IFN-con expression in a soluble form from E. coli allowed us to use a simple, two-step purification process to yield highly pure and active IFN-con which is more efficient than obtaining IFN-con from inclusion bodies.

  9. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity

    PubMed Central

    Phipps-Yonas, Hannah; Semik, Vikki; Hastings, Karen Taraszka

    2013-01-01

    MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4+ T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We sought to determine whether GILT’s reductase activity regulates CatS expression and function. Confocal microscopy confirmed that GILT and CatS colocalized within lysosomes of B cells. GILT expression posttranscriptionally decreased the steady-state protein expression of CatS in primary B cells and B-cell lines. GILT did not substantially alter the expression of other lysosomal proteins, including H2-M, H2-O, or CatL. GILT’s reductase active site was necessary for diminished CatS protein levels, and GILT expression decreased the half-life of CatS, suggesting that GILT-mediated reduction of protein disulfide bonds enhances CatS degradation. GILT expression decreased the proteolysis of a CatS selective substrate. This study illustrates a physiologic mechanism that regulates CatS and has implications for fine tuning MHC class II-restricted Ag processing and for the development of CatS inhibitors, which are under investigation for the treatment of autoimmune disease. PMID:23012103

  10. Expression of protooncogenes during lymphocyte activation by growth factors.

    PubMed

    Bulanova, E G; Budagyan, V M; Yarilin, A A; Mazurenko, N N

    1997-09-01

    Effects of growth factors of non-immune origin including somatotropin (ST) and platelet-derived growth factor (PDGF) on the expression of the proteins encoded by c-fos, c-myc, c-fun, and c-ets family protooncogenes were studied for the first time. The dynamics of the oncoprotein expression in activated CD(3+)-lymphocytes was investigated by immunoblotting. The accumulation of the Fos and Myc proteins was enhanced in T-lymphocytes treated with ST, PDGF, or phytohemagglutinin; the accumulation was maximum at 30-60 min and decreased in 2 h; the data indicate that the oncoproteins participate in the early lymphocyte activation by various growth factors. The Jun protein appears only in 3 h after the onset of lymphocyte activation; this suggests independent participation of Fos in the early stages of lymphocyte activation prior to the appearance of Jun, preceding the joint action of Fos and Jun within the AP-1 transcription complex. The products of the c-ets family are differentially activated by the studied growth factors. Resting lymphocytes actively accumulate the Ets-1 protein; ST and PDGF activation decreases Ets-1 expression in 2 h. The Ets-2 protein is not detected in resting cells and PDGF-activated lymphocytes, whereas lymphocyte activation by ST is associated with accumulation of Ets-2. The data suggest that the product of the c-ets-1 gene is more important in the regulation of resting cells and the product of the c-ets-2 gene is important during activation of lymphocytes by ST. The results indicate that activation of lymphocytes with growth factors of non-immune origin is mediated by several signal transduction pathways.

  11. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    PubMed

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  12. Linking estrogen receptor β expression with inflammatory bowel disease activity

    PubMed Central

    Pierdominici, Marina; Maselli, Angela; Varano, Barbara; Barbati, Cristiana; Cesaro, Paola; Spada, Cristiano; Zullo, Angelo; Lorenzetti, Roberto; Rosati, Marco; Rainaldi, Gabriella; Limiti, Maria Rosaria; Guidi, Luisa

    2015-01-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity. PMID:26497217

  13. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression.

    PubMed

    Courtin, Julien; Chaudun, Fabrice; Rozeske, Robert R; Karalis, Nikolaos; Gonzalez-Campo, Cecilia; Wurtz, Hélène; Abdi, Azzedine; Baufreton, Jerome; Bienvenu, Thomas C M; Herry, Cyril

    2014-01-02

    Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.

  14. Amphioxus allantoicase: molecular cloning, expression and enzymatic activity.

    PubMed

    Wang, Yongjun; Zhang, Shicui; Liu, Zhenhui; Li, Hongyan; Wang, Lei

    2005-06-01

    Allantoicase, one of the purine metabolism enzymes, is progressively truncated during the chordate evolution, yet it is unknown when its activity became phylogenetically extinct. In this study, a cDNA encoding allantoicase was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. It is 2441 bp long, and contains an open reading frame encoding a protein of 392 amino acid residues. RT-PCR analysis showed that amphioxus allantoicase was strongly expressed in the hepatic caecum, and weakly expressed in other tissues including hind-gut, gill, muscle, notochord, testis and ovary. The parallel experiment was performed measuring the allantoicase activity in the same tissues revealed that its activity was high in the hepatic caecum, but low or undetectable in other tissues examined. These suggest that allantoicase remains in action in the primitive chordate amphioxus.

  15. LAG3 expression in active Mycobacterium tuberculosis infections.

    PubMed

    Phillips, Bonnie L; Mehra, Smriti; Ahsan, Muhammad H; Selman, Moises; Khader, Shabaana A; Kaushal, Deepak

    2015-03-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response.

  16. Expression and characterization of a Talaromyces marneffei active phospholipase B expressed in a Pichia pastoris expression system

    PubMed Central

    He, Yan; Li, Linghua; Hu, Fengyu; Chen, Wanshan; Lei, Huali; Chen, Xiejie; Cai, Weiping; Tang, Xiaoping

    2016-01-01

    Phospholipase B is a virulence factor for several clinically important pathogenic fungi, including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, but its role in the thermally dimorphic fungus Talaromyces marneffei remains unclear. Here, we provide the first report of the expression of a novel phospholipase gene, designated TmPlb1, from T. marneffei in the eukaryotic expression system of Pichia pastoris GS115. Sensitive real-time quantitative reverse-transcription PCR (qRT-PCR) demonstrated that the expression of TmPlb1 increased 1.85-fold in the yeast phase compared with the mycelial phase. TmPlb1 contains an open reading frame (ORF) of 732 bp that encodes a protein of 243 amino acids. The conserved serine, aspartate and histidine catalytic triad and the G-X-S-X-G domain of TmPLB1 provide the structural basis for its molecular activity. The ORF of TmPlb1 was successfully cloned into a pPIC9K vector containing an α-mating factor secretion signal that allowed the secretory expression of TmPLB1 in P. pastoris. The heterologous protein expression began 12 h after methanol induction and peaked at 96 h. Through analysis with SDS–polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and mass spectrometry, we confirmed that TmPLB1 was successfully expressed. Through Ni-affinity chromatography, TmPLB1 was highly purified, and its concentration reached 240.4 mg/L of culture medium. With specific substrates, the phospholipase A1 and phospholipase A2 activities of TmPLB1 were calculated to be 5.96 and 1.59 U/mg, respectively. The high purity and activity of the TmPLB1 obtained here lay a solid foundation for further investigation. PMID:27876784

  17. Prokaryotic expression of a constitutively expressed Tephrosia villosa defensin and its potent antifungal activity.

    PubMed

    Vijayan, S; Guruprasad, Lalitha; Kirti, P B

    2008-10-01

    Plant defensins are small, highly stable, cysteine-rich antimicrobial peptides produced by the plants for inhibiting a broad-spectrum of microbial pathogens. Some of the well-characterized plant defensins exhibit potent antifungal activity on certain pathogenic fungal species only. We characterized a defensin, TvD1 from a weedy leguminous herb, Tephrosia villosa. The open reading frame of the cDNA was 228 bp, which codes for a peptide with 75 amino acids. Expression analyses indicated that this defensin is expressed constitutively in T. villosa with leaf, stem, root, and seed showing almost similar levels of high expression. The recombinant peptide (rTvD1), expressed in the Escherichia coli expression system, exhibited potent in vitro antifungal activity against several filamentous soil-borne fungal pathogens. The purified peptide also showed significant inhibition of root elongation in Arabidopsis seedlings, subsequently affecting the extension of growing root hairs indicating that it has the potential to disturb the plant growth and development.

  18. Diverse intracellular pathogens activate type III interferon expression from peroxisomes.

    PubMed

    Odendall, Charlotte; Dixit, Evelyn; Stavru, Fabrizia; Bierne, Helene; Franz, Kate M; Durbin, Ann Fiegen; Boulant, Steeve; Gehrke, Lee; Cossart, Pascale; Kagan, Jonathan C

    2014-08-01

    Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.

  19. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  20. Aryl hydrocarbon receptor activity modulates prolactin expression in the pituitary

    PubMed Central

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T.

    2012-01-01

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotroph and lactotroph adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somato-lactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggests environmental dioxins can exert endocrine disrupting effects at the pituitary. PMID:22975028

  1. Trypanosoma brucei: Enrichment by UV of intergenic transcripts from the variable surface glycoprotein gene expression site

    SciTech Connect

    Coquelet, H.; Tebabi, P.; Pays, A.; Steinert, M.; Pays, E. )

    1989-09-01

    The expression site for the variable surface glycoprotein (VSG) gene AnTat 1.3A of Trypanosoma brucei is 45 kilobases long and encompasses seven expression site-associated genes (ESAGs). After UV irradiation, several large transcripts from the putative promoter region were strongly enriched. We report that one such major transcript starts near the poly(A) addition site of the first gene (ESAG 7), spans the intergenic region, and extends to the poly(A) addition site of the second gene (ESAG 6), thus bypassing the normal 3' splice site of the ESAG 6 mRNA. Since this transcript is spliced, we conclude that UV irradiation does not inhibit splicing but stabilizes unstable processing products. This demonstrates that at least some intergenic regions of the VSG gene expression site are continuously transcribed in accordance with a polycistronic transcription model.

  2. Adaptation of muscle gene expression to changes in contractile activity

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Babij, P.; Thomason, D. B.; Wong, T. S.; Morrison, P. R.

    1987-01-01

    A review of the existing literature regarding the effects of different types of physical activities on the gene expression of adult skeletal muscles leads us to conclude that each type of exercise training program has, as a result, a different phenotype, which means that there are multiple mechanisms, each producing a unique phenotype. A portion of the facts which support this position is presented and interpreted here. [Abstract translated from the original French by NASA].

  3. Expression and activation of proteases in co-cultures.

    PubMed

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2011-01-01

    The present study concerned the expression and activation of metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system in co-cultures of human colon carcinoma cell spheroids (HT29, LS180, SW948) with human normal colon epithelium (CCD 841 CoTr), myofibroblasts (CCD-18Co) and endothelial cells (HUVEC). Additionally, the influence of monensin on the production and function of the proteases was tested. Tumor cells expressed small amounts of MMP-2, MMP-9 and uPA. Normal cells generally produced proportionally higher concentrations of these proteases (especially MMP-2, compared with significantly smaller yields of MMP-9 and significantly lower amounts of uPAR than tumors. In co-cultures of tumor spheroids with normal cell monolayers, the concentration of the proteases was equal to the sum of the enzymes produced in monocultures of both types of cells. The highest activity of uPA, measured as the reduction of the chromogenic substrate (S-2444), was detected in supernatants and lysates of endothelial cells. Interestingly, in normal cells, the higher expression of proteases, mainly uPA, measured as the level of protein concentration, was closely linked with their lower activity and inversely, in tumor cells, the low level of the expression of the enzymes correlated with their high enzymatic activity. In zymography analysis, mainly pro-MMPs were detected both in culture supernatants and cell lysates. The highest amounts of active forms of the MMPs were detected in tumor spheroids co-cultured with endothelial cells. Monensin inhibited MMPs and uPA secretion but significantly increased uPAR release, mainly from normal cells. In conclusion, during direct interactions of tumor cells with normal cells, MMPs and the uPA/uPAR system play an important role in the degradation of ECM and tumor development, but as we found, there is a reverse relationship between the concentration and the

  4. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    PubMed

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  5. Human airway epithelia express catalytically active NEU3 sialidase.

    PubMed

    Lillehoj, Erik P; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Sun, Wenji; Luzina, Irina G; Webb, Tonya J; Atamas, Sergei P; Passaniti, Antonino; Twaddell, William S; Puché, Adam C; Wang, Lai-Xi; Cross, Alan S; Goldblum, Simeon E

    2014-05-01

    Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase.

  6. Expression and Activity of a Novel Cathelicidin from Domestic Cats

    PubMed Central

    Leonard, Brian C.; Chu, Hiutung; Johns, Jennifer L.; Gallo, Richard L.; Moore, Peter F.; Marks, Stanley L.; Bevins, Charles L.

    2011-01-01

    Cathelicidins are small cationic antimicrobial peptides found in many species including primates, mammals, marsupials, birds and even more primitive vertebrates, such as the hagfish. Some animals encode multiple cathelicidins in their genome, whereas others have only one. This report identifies and characterizes feline cathelicidin (feCath) as the sole cathelicidin in domestic cats (Felis catus). Expression of feCath is predominantly found in the bone marrow, with lower levels of expression in the gastrointestinal tract and skin. By immunocytochemistry, feCath localizes to the cytoplasm of neutrophils in feline peripheral blood. Structurally, the mature feCath sequence is most similar to a subgroup of cathelicidins that form linear α-helices. feCath possesses antimicrobial activity against E. coli D31, Salmonella enterica serovar Typhimurium (IR715), Listeria monocytogenes and Staphylococcus pseudintermedius (clinical isolate) similar to that of the human ortholog, LL-37. In contrast, feCath lacks the DNA binding activity seen with LL-37. Given its similarity in sequence, structure, tissue expression, and antimicrobial activity, the cathelicidin encoded by cats, feCath, belongs to the subgroup of linear cathelicidins found not only in humans, but also non-human primates, dogs, mice, and rats. PMID:21533281

  7. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression

    PubMed Central

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  8. CRISPR-mediated Activation of Latent HIV-1 Expression.

    PubMed

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection.

  9. CRISPR-mediated Activation of Latent HIV-1 Expression

    PubMed Central

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection. PMID:26607397

  10. EBNA2 and activated Notch induce expression of BATF.

    PubMed

    Johansen, Lisa M; Deppmann, Christopher D; Erickson, Kimberly D; Coffin, William F; Thornton, Tina M; Humphrey, Sean E; Martin, Jennifer M; Taparowsky, Elizabeth J

    2003-05-01

    The immortalization of human B lymphocytes by Epstein-Barr virus (EBV) requires the virus-encoded transactivator EBNA2 and the products of both viral and cellular genes which serve as EBNA2 targets. In this study, we identified BATF as a cellular gene that is up-regulated dramatically within 24 h following the infection of established and primary human B cells with EBV. The transactivation of BATF is mediated by EBNA2 in a B-cell-specific manner and is duplicated in non-EBV-infected B cells by the expression of mammalian Notch proteins. In contrast to other target genes activated by EBNA2, the BATF gene encodes a member of the AP-1 family of transcription factors that functions as a negative regulator of AP-1 activity and as an antagonist of cell growth. A potential role for BATF in promoting EBV latency is supported by studies in which BATF was shown to negatively impact the expression of a BZLF1 reporter gene and to reduce the frequency of lytic replication in latently infected cells. The identification of BATF as a cellular target of EBV provides important new information on how programs of viral and cellular gene expression may be coordinated to promote viral latency and control lytic-cycle entry.

  11. Osteoprotegerin expression and sensitivity in otosclerosis with different histological activity.

    PubMed

    Karosi, Tamás; Csomor, Péter; Szalmás, Anita; Kónya, József; Petkó, Mihály; Sziklai, István

    2011-03-01

    Otosclerosis is a complex bone dystrophy of the human otic capsule leading to conductive and sensorineural hearing loss. Since otosclerosis may, at least in part, be considered as an autoimmune-inflammatory disease, disturbed balance of TNF-alpha and osteoprotegerin (OPG) expression has been implicated in the pathological bone remodeling. It has been supposed that active otosclerosis is characterized by decreased or missing local OPG production with invariable OPG sensitivity of the otosclerotic foci. Ankylotic stapes footplates (n = 41) removed by stapedectomy were processed to histological examination, OPG-specific RT-PCR, tissue culturing and alkaline-phosphatase (AP) activity assessment, respectively. OPG concentration of serum specimens (n = 41) was measured by ELISA. Cortical bone fragments harvested from the external ear canal were used as negative controls of otosclerosis. Among 41 ankylotic stapes footplates, 22 active and 19 inactive otosclerosis cases were histologically diagnosed. OPG expression was significantly lower (p < 0.001) in active otosclerosis compared to inactive cases. Osteoclast cultures originated from active otosclerotic foci showed a considerable susceptibility against external OPG dosage, which resulted in a significant decrease of AP activity (p < 0.001). In contrast, OPG serum levels were in the normal range (5-100 ng/ml) indicating a non-systemic bone resorption. In conclusion, secondary decreased local OPG production might play an important role in the pathogenesis of otosclerotic bone remodeling disorder. As to previous and current results, decreased OPG sensitivity of lesion-forming cells should be excluded. These observations may indicate the potential role of recombinant OPG treatment in early stages of otosclerosis.

  12. Urokinase type plasminogen activator receptor expression in colorectal neoplasms

    PubMed Central

    Suzuki, S; Hayashi, Y; Wang, Y; Nakamura, T; Morita, Y; Kawasaki, K; Ohta, K; Aoyama, N; Kim, S; Itoh, H; Kuroda, Y; Doe, W

    1998-01-01

    Background—The urokinase type plasminogen activator receptor (uPAR) may play a critical role in cancer invasion and metastasis. 
Aims—To study the involvement of uPAR in colorectal carcinogenesis. 
Methods—The cellular expression and localisation of uPAR were investigated in colorectal adenomas and invasive carcinomas by in situ hybridisation, immunohistochemistry, and northern and western blot analyses. 
Results—uPAR mRNA expression was found mainly in the cytoplasm of dysplastic epithelial cells of 30% of adenomas with mild (19%), moderate (21%), and severe (47%) dysplasia, and in that of carcinomatous cells of 85% of invasive carcinomas: Dukes' stages A (72%), B (93%), and C (91%). Some stromal cells in the adjacent neoplastic epithelium were faintly positive. Immunoreactivity for uPAR was detected in dysplastic epithelial cells of 14% of adenomas and in carcinomatous cells of 49% of invasive carcinomas. uPAR mRNA and protein concentrations were significantly higher in severe than in mild or moderate dysplasia (p<0.05); they were notably higher in Dukes' stage A than in severe dysplasia (p<0.05), and significantly higher in Dukes' stage B than in stage A (p<0.05), but those in stage B were not different from those in stage C or in metastatic colorectal carcinomas of the liver. 
Conclusions—Colorectal adenoma uPAR, expressed essentially in dysplastic epithelial cells, was upregulated with increasing severity of atypia, and increased notably during the critical transition from severe dysplasic adenoma to invasive carcinoma. These findings implicate uPAR expression in the invasive and metastatic processes of colorectal cancer. 

 Keywords: urokinase type plasminogen activator receptor; colorectal adenoma; colorectal cancer; adenoma-carcinoma sequence PMID:9824607

  13. Oxalomalate affects the inducible nitric oxide synthase expression and activity.

    PubMed

    Irace, Carlo; Esposito, Giuseppe; Maffettone, Carmen; Rossi, Antonietta; Festa, Michela; Iuvone, Teresa; Santamaria, Rita; Sautebin, Lidia; Carnuccio, Rosa; Colonna, Alfredo

    2007-03-13

    Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.

  14. Gamma-band activity reflects attentional guidance by facial expression.

    PubMed

    Müsch, Kathrin; Siegel, Markus; Engel, Andreas K; Schneider, Till R

    2017-02-01

    Facial expressions attract attention due to their motivational significance. Previous work focused on attentional biases towards threat-related, fearful faces, although healthy participants tend to avoid mild threat. Growing evidence suggests that neuronal gamma (>30Hz) and alpha-band activity (8-12Hz) play an important role in attentional selection, but it is unknown if such oscillatory activity is involved in the guidance of attention through facial expressions. Thus, in this magnetoencephalography (MEG) study we investigated whether attention is shifted towards or away from fearful faces and characterized the underlying neuronal activity in these frequency ranges in forty-four healthy volunteers. We employed a covert spatial attention task using neutral and fearful faces as task-irrelevant distractors and emotionally neutral Gabor patches as targets. Participants had to indicate the tilt direction of the target. Analysis of the neuronal data was restricted to the responses to target Gabor patches. We performed statistical analysis at the sensor level and used subsequent source reconstruction to localize the observed effects. Spatially selective attention effects in the alpha and gamma band were revealed in parieto-occipital regions. We observed an attentional cost of processing the face distractors, as reflected in lower task performance on targets with short stimulus onset asynchrony (SOA <150ms) between faces and targets. On the neuronal level, attentional orienting to face distractors led to enhanced gamma band activity in bilateral occipital and parietal regions, when fearful faces were presented in the same hemifield as targets, but only in short SOA trials. Our findings provide evidence that both top-down and bottom-up attentional biases are reflected in parieto-occipital gamma-band activity.

  15. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA.

    PubMed

    Pekosz, A; Lamb, R A

    1999-10-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363-369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface.

  16. Altered Activity and Expression of Cytosolic Peptidases in Colorectal Cancer

    PubMed Central

    Perez, Itxaro; Blanco, Lorena; Sanz, Begoña; Errarte, Peio; Ariz, Usue; Beitia, Maider; Fernández, Ainhoa; Loizate, Alberto; Candenas, M Luz; Pinto, Francisco M; Gil, Javier; López, José I.; Larrinaga, Gorka

    2015-01-01

    Background and Objective: The role of peptidases in carcinogenic processes and their potential usefulness as tumor markers in colorectal cancer (CRC) have been classically attributed to cell-surface enzymes. The objective of the present study was to analyze the activity and mRNA expression of three cytosolic peptidases in the CRC and to correlate the obtained results with classic histopathological parameters for tumor prognosis and survival. Methods: The activity and mRNA levels of puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB) and pyroglutamyl-peptidase I (PGI) were measured by fluorimetric and quantitative RT-PCR methods in colorectal mucosa and tumor tissues and plasma samples from CRC patients (n=81). Results: 1) PSA and APB activity was higher in adenomas and carcinomas than in the uninvolved mucosa. 2) mRNA levels of PSA and PGI was lower in tumors. 3) PGI activity in CRC tissue correlated negatively with histological grade, tumor size and 5-year overall suvival of CRC patients. 4) Higher plasmatic APB activity was independently associated with better 5-year overall survival. Conclusions: Data suggest that cytosolic peptidases may be involved in colorectal carcinogenesis and point to the determination of this enzymes as a valuable method in the determination of CRC prognosis. PMID:26078706

  17. Cardiac afferent activity modulates the expression of racial stereotypes

    PubMed Central

    Azevedo, Ruben T.; Garfinkel, Sarah N.; Critchley, Hugo D.; Tsakiris, Manos

    2017-01-01

    Negative racial stereotypes tend to associate Black people with threat. This often leads to the misidentification of harmless objects as weapons held by a Black individual. Yet, little is known about how bodily states impact the expression of racial stereotyping. By tapping into the phasic activation of arterial baroreceptors, known to be associated with changes in the neural processing of fearful stimuli, we show activation of race-threat stereotypes synchronized with the cardiovascular cycle. Across two established tasks, stimuli depicting Black or White individuals were presented to coincide with either the cardiac systole or diastole. Results show increased race-driven misidentification of weapons during systole, when baroreceptor afferent firing is maximal, relative to diastole. Importantly, a third study examining the positive Black-athletic stereotypical association fails to demonstrate similar modulations by cardiac cycle. We identify a body–brain interaction wherein interoceptive cues can modulate threat appraisal and racially biased behaviour in context-dependent ways. PMID:28094772

  18. Brain Activity while Reading Sentences with Kanji Characters Expressing Emotions

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activity associated with kanji characters expressing emotion, which are places at the end of a sentence. Japanese people use a special kanji character in brackets at the end of sentences in text messages such as those sent through e-mail and messenger tools. Such kanji characters plays a role to expresses the sender's emotion (such as fun, laughter, sadness, tears), like emoticons. It is a very simple and effective way to convey the senders' emotions and his/her thoughts to the receiver. In this research, we investigate the effects of emotional kanji characters by using an fMRI study. The experimental results show that both the right and left inferior frontal gyrus, which have been implicated on verbal and nonverbal information, were activated. We found that we detect a sentence with an emotional kanji character as the verbal and nonverval information, and a sentence with emotional kanji characters enrich communication between the sender and the reciever.

  19. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    PubMed

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly.

  20. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma.

    PubMed Central

    De Vos, P; Lefebvre, A M; Miller, S G; Guerre-Millo, M; Wong, K; Saladin, R; Hamann, L G; Staels, B; Briggs, M R; Auwerx, J

    1996-01-01

    The ob gene product, leptin, is a signaling factor regulating body weight and energy balance. ob gene expression in rodents is increased in obesity and is regulated by feeding patterns and hormones, such as insulin and glucocorticoids. In humans with gross obesity, ob mRNA levels are higher, but other modulators of human ob expression are unknown. In view of the importance of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte differentiation, we analyzed whether ob gene expression is subject to regulation by factors activating PPARs. Treatment of rats with the PPARalpha activator fenofibrate did not change adipose tissue and body weight and had no significant effect on ob mRNA levels. However, administration of the thiazolidinedione BRL49653, a PPARgamma ligand, increased food intake and adipose tissue weight while reducing ob mRNA levels in rats in a dose-dependent manner. The inhibitory action of the thiazolidinedione BRL49653 on ob mRNA levels was also observed in vitro. Thiazolidinediones reduced the expression of the human ob promoter in primary adipocytes, however, in undifferentiated 3T3-L1 preadipocytes lacking endogenous PPARgamma, cotransfection of PPARgamma was required to observe the decrease. In conclusion, these data suggest that PPARgamma activators reduce ob mRNA levels through an effect of PPARgamma on the ob promoter. PMID:8770873

  1. Transgenic chickens expressing human urokinase-type plasminogen activator.

    PubMed

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P < 0.05). The expression of huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P < 0.05). Furthermore, adult transgenic rooster showed reduced (P < 0.05) fertility, as revealed by reduced volume of semen ejaculate, sperm concentration, and sperm viability. Taken together, our data suggest that huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  2. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages

    PubMed Central

    Saavedra, Nicolás; Cuevas, Alejandro; Cavalcante, Marcela F.; Dörr, Felipe A.; Saavedra, Kathleen; Zambrano, Tomás; Abdalla, Dulcineia S. P.; Salazar, Luis A.

    2016-01-01

    Polyphenols from diverse sources have shown anti-inflammatory activity. In the context of atherosclerosis, macrophages play important roles including matrix metalloproteinases synthesis involved in degradation of matrix extracellular components affecting the atherosclerotic plaque stability. We prepared a propolis extract and pinocembrin in ethanol solution. Propolis extract was chemically characterized using LC-MS. The effect of treatments on gene expression and proteolytic activity was measured in vitro using murine macrophages activated with LPS. Cellular toxicity associated with both treatments and the vehicle was determined using MTT and apoptosis/necrosis detection assays. MMP-9 gene expression and proteolytic activity were measured using qPCR and zymography, respectively. Thirty-two compounds were identified in the propolis extract, including pinocembrin among its major components. Treatment with either ethanolic extract of propolis or pinocembrin inhibits MMP-9 gene expression in a dose-dependent manner. Similarly, an inhibitory effect was observed in proteolytic activity. However, the effect showed by ethanolic extract of propolis was higher than the effect of pinocembrin, suggesting that MMP-9 inhibition results from a joint contribution between the components of the extract. These data suggest a potential role of polyphenols from Chilean propolis in the control of extracellular matrix degradation in atherosclerotic plaques. PMID:27119082

  3. Diosgenin does not express estrogenic activity: a uterotrophic assay.

    PubMed

    Medigović, Ivana; Ristić, Nataša; Živanović, Jasmina; Šošić-Jurjević, Branka; Filipović, Branko; Milošević, Verica; Nestorović, Nataša

    2014-04-01

    This study assessed the effects of diosgenin on estrogenic activity using a uterotrophic assay. Immature female rats received diosgenin orally at doses of 200, 100, or 20 mg/kg body mass; and 17α ethynylestradiol at doses of 1 or 0.3 μg/kg, daily, for 3 consecutive days from day 19 to day 21. Controls were distributed among 2 groups: an intact control group and a vehicle control group. Animals were sacrificed 24 h after the last application of diosgenin, estradiol, or vehicle (22nd day of life). Uterine wet weight, stereological and histomorphometrical changes, immunohistochemical expression of estrogen receptor alpha (ERα), progesterone receptor (PR), and the expression of lactoferrin (LF) were examined. Diosgenin did not affect the uterine wet weight, epithelium height, volume densities of endometrium, endometrial epithelia, number of endometrial glands, or histological appearance of vaginal epithelia. ERα, PR, and LF immunostaining intensity were not altered in the animals that received diosgenin. High-potency reference ER agonist 17α-ethynylestradiol induced a significant increase in all of the measured parameters, and as expected, decreased ERα immunostaining intensity. Based on these data, it can be concluded that diosgenin, at doses of 20-200 mg/kg, did not act as an estrogen agonist in the immature rat uterotrophic assay.

  4. Exposure of Trypanosoma brucei to an N-acetylglucosamine-Binding Lectin Induces VSG Switching and Glycosylation Defects Resulting in Reduced Infectivity

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Van Damme, Els J. M.; Balzarini, Jan; González-Pacanowska, Dolores

    2015-01-01

    Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents. PMID:25746926

  5. Exposure of Trypanosoma brucei to an N-acetylglucosamine-binding lectin induces VSG switching and glycosylation defects resulting in reduced infectivity.

    PubMed

    Castillo-Acosta, Víctor M; Ruiz-Pérez, Luis M; Van Damme, Els J M; Balzarini, Jan; González-Pacanowska, Dolores

    2015-03-01

    Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents.

  6. Combinatorial saturation mutagenesis of the Myceliophthora thermophila laccase T2 mutant: the connection between the C-terminal plug and the conserved (509)VSG(511) tripeptide.

    PubMed

    Zumárraga, Miren; Vaz Domínguez, Cristina; Camarero, Susana; Shleev, Sergey; Polaina, Julio; Martínez-Arias, Arturo; Ferrer, Manuel; De Lacey, Antonio L; Fernández, Victor M; Ballesteros, Antonio; Plou, Francisco J; Alcalde, Miguel

    2008-12-01

    A mutant laccase from the Ascomycete Myceliophthora thermophila has been submitted to iterative cycles of combinatorial saturation mutagenesis through in vivo overlap extension in Saccharomyces cerevisiae. Over 180,000 clones were explored, among which the S510G mutant revealed a direct interaction between the conserved (509)VSG(511) tripeptide, located in the neighborhood of the T1 site, and the C-terminal plug. The K(m)(O)(2) value of the mutant increased 1.5-fold, and the electron transfer pathway between the reducing substrate and the T1 copper ion was altered, improving the catalytic efficiency towards non-phenolic and phenolic substrates by about 3- and 8-fold. Although the geometry at the T1 site was perturbed by the mutation, paradoxically the laccase redox potential was not significantly altered. Together, the results obtained in this study suggest that the (509)VSG(511) tripeptide may play a hitherto unrecognized role in regulating the traffic of oxygen through the C-terminal plug, the latter blocking access to the T2/T3 copper cluster in the native enzyme.

  7. Expression of Active Human Tissue-Type Plasminogen Activator in Escherichia coli

    PubMed Central

    Qiu, Ji; Swartz, James R.; Georgiou, George

    1998-01-01

    The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding. PMID:9835579

  8. Active Learning of Regular Expressions for Entity Extraction.

    PubMed

    Bartoli, Alberto; De Lorenzo, Andrea; Medvet, Eric; Tarlao, Fabiano

    2017-03-24

    We consider the automatic synthesis of an entity extractor, in the form of a regular expression, from examples of the desired extractions in an unstructured text stream. This is a long-standing problem for which many different approaches have been proposed, which all require the preliminary construction of a large dataset fully annotated by the user. In this paper, we propose an active learning approach aimed at minimizing the user annotation effort: the user annotates only one desired extraction and then merely answers extraction queries generated by the system. During the learning process, the system digs into the input text for selecting the most appropriate extraction query to be submitted to the user in order to improve the current extractor. We construct candidate solutions with genetic programming (GP) and select queries with a form of querying-by-committee, i.e., based on a measure of disagreement within the best candidate solutions. All the components of our system are carefully tailored to the peculiarities of active learning with GP and of entity extraction from unstructured text. We evaluate our proposal in depth, on a number of challenging datasets and based on a realistic estimate of the user effort involved in answering each single query. The results demonstrate high accuracy with significant savings in terms of computational effort, annotated characters, and execution time over a state-of-the-art baseline.

  9. Cloning, expression and biological activity of equine interleukin (IL)-5.

    PubMed

    Cunningham, F M; Vandergrifft, E; Bailey, S R; Sepulveda, M F; Goode, N T; Horohov, D W

    2003-09-15

    The cytokine, interleukin (IL)-5 stimulates eosinophil differentiation, activation and survival and can prime these cells, increasing the response to other mediators. In view of its many effects on eosinophils, IL-5 has been implicated in the pathogenesis of allergic disease in man. Here we report the cloning of equine IL-5 and expression of the recombinant protein by transfection of Chinese hamster ovary (CHO) cells. The cloned cDNA sequence consisted of 405 nucleotides and encoded a protein of 135 amino acids. There is >85% identity with feline, bovine, ovine, canine, and human IL-5 sequences at the nucleotide and protein level. Supernatants containing equine IL-5 were also examined for biological activity. CHO supernatant containing equine recombinant (eqr) IL-5, like the human ortholog (hrIL-5), induced concentration dependent equine eosinophil adherence to autologous serum-coated plastic (9.7+/-1.5% with a 1:100 dilution of eqrIL-5 and 9.1+/-1.6% adherence with 1 nM hrIL-5; n = 4). The eqr protein also caused concentration dependent superoxide production (11.9+/-2.4 nmol (reduced cytochrome (cyt) C)/10(6) cells at a 1:50 dilution, n = 4). In contrast, hrIL-5 only caused significant superoxide production when diluted in conditioned CHO medium, an effect that was inhibited by the anti-human mAb, TRFK5 (4.4+/-0.3 versus 0.3+/-0.4 nmol/10(6) cells for 0.5 nM hrIL-5 in the presence of the isotype matched IgG1 control (10 microM) and TRFK5 (10 microM), respectively). TRFK5 also significantly inhibited hrIL-5 induced adherence at concentrations of 0.3 microg/ml and above but had no significant inhibitory effect on either superoxide or adherence caused by eqrIL-5. These results demonstrate that equine IL-5 expressed by CHO cells stimulates equine eosinophils, suggesting that this cytokine could play a role in eosinophil recruitment and activation in equine allergic disease. The anti-human and murine moAb TRFK5 does not appear to recognise the equine protein.

  10. GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression.

    PubMed

    Tatham, Amy L; Crabtree, Mark J; Warrick, Nicholas; Cai, Shijie; Alp, Nicholas J; Channon, Keith M

    2009-05-15

    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r(2) = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r(2) = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression.

  11. Expression of Active Tectonics in Erosional Landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Whipple, K. X.; McDermott, J. A.; Adams, B. A.

    2010-12-01

    Landform analysis has become a standard tool in neotectonic studies. Most commonly the offset, tilting, and warping of abandoned depositional landforms is used to infer deformation rates and patterns. The timescales recorded in deformed landforms importantly bridge the gap between geodetic and geologic methods. Whereas such analyses of static landforms has become well developed, complementary approaches to extract quantitative information about tectonics from erosional landscapes are relatively new, rapidly evolving, and can provide powerful insight. Over the last decade, some useful general rules about the expression of rock uplift rate in erosional landscapes have been developed that can guide and augment studies of the spatial distribution of active rock uplift. At catchment scale, the relationship between landscape form and rock uplift is dictated largely by the response of stream profiles to rock uplift (particularly in rocky landscapes where uplift exceeds soil production), which is largely one of changing channel steepness (gradient adjusted for drainage area). Changes in channel steepness along stream can be either abrupt (discrete slope-break knickpoints) or gradual (expressed as zones of enhanced or reduced river profile concavity) depending on the deformation pattern. Landforms can record information about both spatial and temporal patterns in rock uplift rate. Landscapes in various parts of the Himalaya exemplify both spatial and temporal influences. The Siwalik Hills in the Himalayan foreland are a type locality for the topographic expression of spatial patterns in rock uplift rate. Here an independently known pattern of rock uplift rate over a fault-bend fold affords an opportunity to study landscape response and test landscape evolution models. Once calibrated, such models can be used to evaluate along-strike variability in the rate and pattern of rock uplift far more effectively and efficiently than can be achieved with other methods. Applying these

  12. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    PubMed

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  13. Regulation of Nox and Duox Enzymatic Activity and Expression

    PubMed Central

    Lambeth, J. David; Kawahara, Tsukasa; Diebold, Becky

    2007-01-01

    Summary In recent years, it has become clear that reactive oxygen species (ROS, which include superoxide, hydrogen peroxide and other metabolites) are produced in biological systems. Rather than being simply a byproduct of aerobic metabolism, it is now recognized that specific enzymes --- the Nox (NADPH-oxidase) and Duox (Dual oxidase) enzymes ---- seem to have the sole function of generating ROS in a carefully regulated manner, and key roles in signal transduction, immune function, hormone biosynthesis and other normal biological functions are being uncovered. The prototypical Nox is the respiratory burst oxidase or phagocyte oxidase, which generates large amounts of superoxide and other reactive species in the phagosomes of neutrophils and macrophages, playing a central role in innate immunity by killing microbes. This enzyme system has been extensively studied over the past two decades, and provides a basis for comparison with the more recently described Nox and Duox enzymes, which generate ROS in a variety of cells and tissues. This review first considers the structure and regulation of the respiratory burst oxidase, and then reviews recent studies relating to the regulation of the activity of the novel Nox/Duox enzymes. The regulation of Nox and Duox expression in tissues and by specific stimuli is also considered here. An accompanying review considers biological and pathological roles of the Nox family of enzymes. PMID:17602947

  14. Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection

    PubMed Central

    Nair, Madhavan; Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh

    2016-01-01

    Interplay between lncRNAs and mRNAs is rapidly emerging as a key epigenetic mechanism in controlling various cell functions. HIV can actively infect and/or can persist latently for years by manipulating host epigenetics; however, its molecular essence remains undiscovered in entirety. Here for the first time, we delineate the influence of HIV on global lncRNAs expression in monocytic cells lines. Our analysis revealed the expression modulation of nearly 1060 such lncRNAs which are associated with differentially expressed mRNAs in active and latent infection. This suggests a greater role of lncRNAs in regulating transcriptional and post-transcriptional gene expression during HIV infection. The differentially expressed mRNAs were involved in several different biological pathways where immunological networks were most enriched. Importantly, we discovered that HIV induces expression reversal of more than 150 lncRNAs between its active and latent infection. Also, hundreds of unique lncRNAs were identified in both infection conditions. The pathology specific “gene-expression reversal” and “on-and-off” switching of lncRNAs and associated mRNAs may lead to establish the relationship between active and HIV infection. PMID:27756902

  15. Arabidopsis TTG2 regulates TRY expression through enhancement of activator complex-triggered activation.

    PubMed

    Pesch, Martina; Dartan, Burcu; Birkenbihl, Rainer; Somssich, Imre E; Hülskamp, Martin

    2014-10-01

    Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex.

  16. Network activity-independent coordinated gene expression program for synapse assembly.

    PubMed

    Valor, Luis M; Charlesworth, Paul; Humphreys, Lawrence; Anderson, Chris N G; Grant, Seth G N

    2007-03-13

    Global biological datasets generated by genomics, transcriptomics, and proteomics provide new approaches to understanding the relationship between the genome and the synapse. Combined transcriptome analysis and multielectrode recordings of neuronal network activity were used in mouse embryonic primary neuronal cultures to examine synapse formation and activity-dependent gene regulation. Evidence for a coordinated gene expression program for assembly of synapses was observed in the expression of 642 genes encoding postsynaptic and plasticity proteins. This synaptogenesis gene expression program preceded protein expression of synapse markers and onset of spiking activity. Continued expression was followed by maturation of morphology and electrical neuronal networks, which was then followed by the expression of activity-dependent genes. Thus, two distinct sequentially active gene expression programs underlie the genomic programs of synapse function.

  17. Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation.

    PubMed Central

    Boussiotis, V A; Freeman, G J; Gribben, J G; Daley, J; Gray, G; Nadler, L M

    1993-01-01

    Signaling via the T-cell receptor complex is necessary but not sufficient to induce antigen-specific T lymphocytes to expand clonally. To proliferate, T cells must receive one or more costimulatory signals provided by antigen presenting cells (APCs). One such critical costimulatory signal is delivered by the CD28/CTLA-4 counterreceptor, B7, expressed on APCs. B7 costimulation induces CD28 signaling, resulting in interleukin 2 (IL-2) secretion, and T-cell proliferation. Conversely, T-cell receptor signaling in the absence of B7 costimulation results in induction of antigen-specific tolerance. Here, we show that activated human B lymphocytes express two additional CTLA-4 counterreceptors also capable of providing T-cell costimulation. At 24 hr postactivation, B cells express a CTLA-4 counterreceptor not recognized by anti-B7 or -BB-1 monoclonal antibodies (mAbs), which induces detectable IL-2 secretion and T-cell proliferation. At 48 and 72 hr postactivation, B cells express both B7 and a third CTLA-4 counterreceptor identified by the anti-BB-1 mAb. BB-1 appears to be a molecule distinct from B7 by its expression on B7- cells and its capacity to induce T cells to proliferate without significant accumulation of IL-2. As observed for B7, costimulatory signals mediated by these alternative CTLA-4/CD28 counterreceptors are likely to be essential for generation of an immune response and their absence may result in antigen-specific tolerance. We propose the following terminology for these CTLA-4 counterreceptors: (i) B7, B7-1; (ii) early CTLA-4 binding counterreceptor, B7-2; and (iii) BB-1, B7-3. PMID:7504293

  18. The molecular size of the extra-membrane domain influences the diffusion of the GPI-anchored VSG on the trypanosome plasma membrane.

    PubMed

    Hartel, Andreas J W; Glogger, Marius; Guigas, Gernot; Jones, Nicola G; Fenz, Susanne F; Weiss, Matthias; Engstler, Markus

    2015-06-11

    A plethora of proteins undergo random and passive diffusion in biological membranes. While the contribution of the membrane-embedded domain to diffusion is well established, the potential impact of the extra-membrane protein part has been largely neglected. Here, we show that the molecular length influences the diffusion coefficient of GPI-anchored proteins: smaller proteins diffuse faster than larger ones. The distinct diffusion properties of differently sized membrane proteins are biologically relevant. The variant surface glycoprotein (VSG) of African trypanosomes, for example, is sized for an effective diffusion-driven randomization on the cell surface, a process that is essential for parasite virulence. We propose that the molecular sizes of proteins dominating the cell surfaces of other eukaryotic pathogens may also be related to diffusion-limited functions.

  19. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  20. Effects of Intensity of Facial Expressions on Amygdalar Activation Independently of Valence.

    PubMed

    Lin, Huiyan; Mueller-Bardorff, Miriam; Mothes-Lasch, Martin; Buff, Christine; Brinkmann, Leonie; Miltner, Wolfgang H R; Straube, Thomas

    2016-01-01

    For several stimulus categories (e.g., pictures, odors, and words), the arousal of both negative and positive stimuli has been shown to modulate amygdalar activation. In contrast, previous studies did not observe similar amygdalar effects in response to negative and positive facial expressions with varying intensity of facial expressions. Reasons for this discrepancy may be related to analytical strategies, experimental design and stimuli. Therefore, the present study aimed at re-investigating whether the intensity of facial expressions modulates amygdalar activation by circumventing limitations of previous research. Event-related functional magnetic resonance imaging was used to assess brain activation while participants observed a static neutral expression and positive (happy) and negative (angry) expressions of either high or low intensity from an ecologically valid, novel stimulus set. The ratings of arousal and intensity were highly correlated. We found that amygdalar activation followed a u-shaped activation pattern with highest activation to high intense facial expressions as compared to low intensity facial expressions and to the neutral expression irrespective of valence, suggesting a critical role of the amygdala in valence-independent arousal processing of facial expressions. Additionally, consistent with previous studies, intensity effects were also found in visual areas and generally increased activation to angry versus happy faces were found in visual cortex and insula, indicating enhanced visual representations of high arousing facial expressions and increased visual and somatosensory representations of threat.

  1. Effects of Intensity of Facial Expressions on Amygdalar Activation Independently of Valence

    PubMed Central

    Lin, Huiyan; Mueller-Bardorff, Miriam; Mothes-Lasch, Martin; Buff, Christine; Brinkmann, Leonie; Miltner, Wolfgang H. R.; Straube, Thomas

    2016-01-01

    For several stimulus categories (e.g., pictures, odors, and words), the arousal of both negative and positive stimuli has been shown to modulate amygdalar activation. In contrast, previous studies did not observe similar amygdalar effects in response to negative and positive facial expressions with varying intensity of facial expressions. Reasons for this discrepancy may be related to analytical strategies, experimental design and stimuli. Therefore, the present study aimed at re-investigating whether the intensity of facial expressions modulates amygdalar activation by circumventing limitations of previous research. Event-related functional magnetic resonance imaging was used to assess brain activation while participants observed a static neutral expression and positive (happy) and negative (angry) expressions of either high or low intensity from an ecologically valid, novel stimulus set. The ratings of arousal and intensity were highly correlated. We found that amygdalar activation followed a u-shaped activation pattern with highest activation to high intense facial expressions as compared to low intensity facial expressions and to the neutral expression irrespective of valence, suggesting a critical role of the amygdala in valence-independent arousal processing of facial expressions. Additionally, consistent with previous studies, intensity effects were also found in visual areas and generally increased activation to angry versus happy faces were found in visual cortex and insula, indicating enhanced visual representations of high arousing facial expressions and increased visual and somatosensory representations of threat. PMID:28066216

  2. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  3. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  4. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21.

    PubMed

    Cyphert, Holly A; Ge, Xuemei; Kohan, Alison B; Salati, Lisa M; Zhang, Yanqiao; Hillgartner, F Bradley

    2012-07-20

    Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.

  5. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    SciTech Connect

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.

    2016-07-01

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomic analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.

  6. Ino80 promotes cervical cancer tumorigenesis by activating Nanog expression

    PubMed Central

    Hu, Jing; Liu, Jie; Chen, Aozheng; Lyu, Jia; Ai, Guihai; Zeng, Qiongjing; Sun, Yi; Chen, Chunxia; Wang, Jinbo; Qiu, Jin; Wu, Yi; Cheng, Jiajing; Shi, Xiujuan; Song, Liwen

    2016-01-01

    Ino80 ATPase is an integral component of the INO80 ATP-dependent chromatin-remodeling complex, which regulates transcription, DNA repair and replication. We found that Ino80 was highly expressed in cervical cancer cell lines and tumor samples. Ino80 knockdown inhibited cervical cancer cell proliferation, induced G0/G1 phase cell cycle arrest in vitro and suppressed tumor growth in vivo. However, Ino80 knockdown did not affect cell apoptosis, migration or invasion in vitro. Ino80 overexpression promoted proliferation in the H8 immortalized cervical epithelial cell line, which has low endogenous Ino80 expression as compared to cervical cancer cell lines. Ino80 bound to the Nanog transcription start site (TSS) and enhanced its expression in cervical cancer cells. Nanog overexpression in Ino80 knockdown cell lines promoted cell proliferation. This study demonstrated for the first time that Ino80 was upregulated in cervical cancer and promoted cell proliferation and tumorigenesis. Our findings suggest that Ino80 may be a potential therapeutic target for the treatment of cervical cancer. PMID:27750218

  7. Lack of correlation between telomere length and telomerase activity and expression in leukemic cells.

    PubMed

    Januszkiewicz, Danuta; Wysoki, Jacek; Lewandowski, Krzysztof; Pernak, Monika; Nowicka, Karina; Rembowska, Jolanta; Nowak, Jerzy

    2003-12-01

    The expression of three components of telomerase complex (hTR, hTERT, TP1) along with telomerase activity and telomere length in leukemic cells was investigated. Cells were isolated from peripheral blood and/or bone marrow of children with acute lymphoblastic (ALL) and non-lymphoblastic (ANLL) leukemia. Expression of three components of telomerase as well as telomerase activity was found in all leukemic cells. Chemiluminescent detection of terminal restriction fragments (TRF) from DNA isolated from ALL cells showed variable patterns expressing considerable heterogeneity of telomere length. The ALL cells appeared to have both long and short telomere lengths, in contrast to normal peripheral lymphocytes, which produced limited pattern of TRF. The ANLL cells produced predominantly short telomere pattern despite high telomerase activity and expression. It can be concluded that high telomerase activity and expression in leukemic cells is not always correlated with long telomeres (TRF pattern).

  8. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation.

  9. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression.

  10. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat

    PubMed Central

    Elmes, Matthew; Szyszka, Alexandra; Pauliat, Caroline; Clifford, Bethan; Daniel, Zoe; Cheng, Zhangrui; Wathes, Claire; McMullen, Sarah

    2015-01-01

    Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways. PMID:25876907

  11. Intricate regulation of tyrosine hydroxylase activity and gene expression.

    PubMed

    Kumer, S C; Vrana, K E

    1996-08-01

    Tyrosine hydroxylase catalyzes the rate-limiting step in the biosynthesis of the catecholamines dopamine, norepinephrine, and epinephrine. Therefore, the regulation of tyrosine hydroxylase enzyme number and intrinsic enzyme activity represents the central means for controlling the synthesis of these important biogenic amines. An intricate scheme has evolved whereby tyrosine hydroxylase activity is modulated by nearly every documented form of regulation. Beginning with the genomic DNA, evidence exists for the transcriptional regulation of tyrosine hydroxylase mRNA levels, alternative RNA processing, and the regulation of RNA stability. There is also experimental support for the role of both translational control and enzyme stability in establishing steady-state levels of active tyrosine hydroxylase protein. Finally, mechanisms have been proposed for feedback inhibition of the enzyme by catecholamine products, allosteric modulation of enzyme activity, and phosphorylation-dependent activation of the enzyme by various different kinase systems. Given the growing literature suggesting that different tissues regulate tyrosine hydroxylase mRNA levels and activity in different ways, regulatory mechanisms provide not only redundancy but also diversity in the control of catecholamine biosynthesis.

  12. Expression of Trypanosoma brucei gambiense Antigens in Leishmania tarentolae. Potential for Use in Rapid Serodiagnostic Tests (RDTs)

    PubMed Central

    Rooney, Barrie; Piening, Turid; Büscher, Philippe; Rogé, Stijn; Smales, C. Mark

    2015-01-01

    The development of rapid serodiagnostic tests for sleeping sickness and other diseases caused by kinetoplastids relies on the affordable production of parasite-specific recombinant antigens. Here, we describe the production of recombinant antigens from Trypanosoma brucei gambiense (T.b. gambiense) in the related species Leishmania tarentolae (L. tarentolae), and compare their diagnostic sensitivity and specificity to native antigens currently used in diagnostic kits against a panel of human sera. A number of T.b. gambiense protein antigen candidates were chosen for recombinant expression in L. tarentolae based on current diagnostics in field use and recent findings on immunodiagnostic antigens found by proteomic profiling. In particular, the extracellular domains of invariant surface glycoprotein 65 (ISG65), variant surface glycoproteins VSG LiTat 1.3 and VSG LiTat 1.5 were fused with C-terminal histidine tags and expressed as soluble proteins in the medium of cultured, recombinant L. tarentolae. Using affinity chromatography, on average 10 mg/L of recombinant protein was purified from cultures and subsequently tested against a panel of sera from sleeping sickness patients from controls, i.e. persons without sleeping sickness living in HAT endemic countries. The evaluation on sera from 172 T.b. gambiense human African trypanosomiasis (HAT) patients and from 119 controls showed very high diagnostic potential of the two recombinant VSG and the rISG65 fragments with areas under the curve between 0.97 and 0.98 compared to 0.98 and 0.99 with native VSG LiTat 1.3 and VSG LiTat 1.5 (statistically not different). Evaluation on sera from 78 T.b. rhodesiense HAT patients and from 100 controls showed an acceptable diagnostic potential of rISG65 with an area under the curve of 0.83. These results indicate that a combination of these recombinant antigens has the potential to be used in next generation rapid serodiagnostic tests. In addition, the L. tarentolae expression system

  13. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

    PubMed Central

    Peng, Yaqin; Liu, Jiane; Miao, Fengqin; Zhang, Jianqiong

    2015-01-01

    MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade. PMID:26263390

  14. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  15. MIF family members cooperatively inhibit p53 expression and activity.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Xin, Dan; Yaddanapudi, Kavitha; Mitchell, Robert A

    2014-01-01

    The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.

  16. Gene activation properties of a mouse DNA sequence isolated by expression selection.

    PubMed Central

    von Hoyningen-Huene, V; Norbury, C; Griffiths, M; Fried, M

    1986-01-01

    The MES-1 element was previously isolated from restricted total mouse cellular DNA by "expression selection"--the ability to reactivate expression of a test gene devoid of its 5' enhancer sequences. Mes-1 has been tested in long-term transformation and short-term CAT expression assays. In both assays MES-1 is active independent of orientation and at a distance when placed 5' to the test gene. The element is active with heterologous promoters and functions efficiently in both rat and mouse cells. MES-1 activates expression by increasing transcription from the test gene's own start (cap) site. Thus the expression selection technique can be used for the isolation of DNA sequences with enhancer-like properties from total cellular DNA. Images PMID:3016657

  17. Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy.

    PubMed

    Teng, Chun-Bo; Diao, Hong-Lu; Ma, Hong; Cong, Jing; Yu, Hao; Ma, Xing-Hong; Xu, Li-Bin; Yang, Zeng-Ming

    2004-08-01

    Signal transducer and activator of transcription 3 (Stat3), a member of the Stat family, is specifically activated during mouse embryo implantation. The aim of this study was to investigate the expression, activation and regulation of Stat3 in rat uterus during early pregnancy, pseudopregnancy, delayed implantation and artificial decidualization. Stat3 mRNA was highly expressed in the luminal epithelium on day 5 and in the luminal epithelium and underlying stromal cells at implantation sites on day 6 of pregnancy. There was a strong level of Stat3 protein expression and phosphorylation in the stromal cells near the lumen and in the luminal epithelium on day 5 of pregnancy, which was similar to day 5 of pseudopregnancy. In the afternoon of day 6, the strong level of Stat3 phosphorylation was detected only in the luminal epithelium. Stat3 was highly expressed and activated in the decidual cells from days 7 to 9 of pregnancy and under artificial decidualization in the present study. Our results suggest that the strong level of Stat3 activation in the luminal epithelium and underlying stromal cells during the pre-implantation period may be important for establishing uterine receptivity as in mice, and the high level of Stat3 expression and activation in decidual cells may play a role during decidualization.

  18. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval

    PubMed Central

    Morikawa, Shota; Ikegaya, Yuji; Narita, Minoru; Tamura, Hideki

    2017-01-01

    Perineuronal nets (PNNs), proteoglycan-rich extracellular matrix structures, are thought to be expressed around inhibitory neurons and contribute to critical periods of brain function and synaptic plasticity. However, in some specific brain regions such as the amygdala, PNNs were predominantly expressed around excitatory neurons. These neurons were recruited during auditory fear conditioning and memory retrieval. Indeed, the activation of PNN-expressing excitatory neurons predicted cognitive performance. PMID:28378772

  19. Activation of Six1 Expression in Vertebrate Sensory Neurons

    PubMed Central

    Sato, Shigeru; Yajima, Hiroshi; Furuta, Yasuhide; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development. PMID:26313368

  20. Telomerase activity, estrogen receptors (α, β), Bcl-2 expression in human breast cancer and treatment response

    PubMed Central

    Murillo-Ortiz, Blanca; Astudillo-De la Vega, Horacio; Castillo-Medina, Sebastian; Malacara, JM; Benitez-Bribiesca, Luis

    2006-01-01

    Background The mechanism for maintaining telomere integrity is controlled by telomerase, a ribonucleoprotein enzyme that specifically restores telomere sequences, lost during replication by means of an intrinsic RNA component as a template for polymerization. Among the telomerase subunits, hTERT (human telomerase reverse transcriptase) is expressed concomitantly with the activation of telomerase. The role of estrogens and their receptors in the transcriptional regulation of hTERT has been demonstrated. The current study determines the possible association between telomerase activity, the expression of both molecular forms of estrogen receptor (ERα and ERβ) and the protein bcl-2, and their relative associations with clinical parameters. Methods Tissue samples from 44 patients with breast cancer were used to assess telomerase activity using the TRAP method and the expression of ERα, ERβ and bcl-2 by means of immunocytochemical techniques. Results Telomerase activity was detected in 59% of the 44 breast tumors examined. Telomerase activity ranged from 0 to 49.93 units of total product generated (TPG). A correlation was found between telomerase activity and differentiation grade (p = 0.03). The only significant independent marker of response to treatment was clinical stage. We found differences between the frequency of expression of ERα (88%) and ERβ (36%) (p = 0.007); bcl-2 was expressed in 79.5% of invasive breast carcinomas. We also found a significant correlation between low levels of telomerase activity and a lack of ERβ expression (p = 0.03). Conclusion Lower telomerase activity was found among tumors that did not express estrogen receptor beta. This is the first published study demonstrating that the absence of expression of ERβ is associated with low levels of telomerase activity. PMID:16911782

  1. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  2. Exploring metrics to express energy expenditure of physical activity in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determin...

  3. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    SciTech Connect

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia . E-mail: lombardi@pharm.unipmn.it

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.

  4. Expression of activated Ras during Dictyostelium development alters cell localization and changes cell fate.

    PubMed

    Jaffer, Z M; Khosla, M; Spiegelman, G B; Weeks, G

    2001-03-01

    There is now a body of evidence to indicate that Ras proteins play important roles in development. Dictyostelium expresses several ras genes and each appears to perform a distinct function. Previous data had indicated that the overexpression of an activated form of the major developmentally regulated gene, rasD, caused a major aberration in morphogenesis and cell type determination. We now show that the developmental expression of an activated rasG gene under the control of the rasD promoter causes a similar defect. Our results indicate that the expression of activated rasG in prespore cells results in their transdifferentiation into prestalk cells, whereas activated rasG expression in prestalk causes gross mislocalization of the prestalk cell populations.

  5. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  6. Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle.

    PubMed

    Carvalho, Robson Francisco; Dariolli, Rafael; Justulin Junior, Luis Antonio; Sugizaki, Mário Mateus; Politi Okoshi, Marina; Cicogna, Antonio Carlos; Felisbino, Sérgio Luis; Dal Pai-Silva, Maeli

    2006-12-01

    Heart failure is associated with a skeletal muscle myopathy with cellular and extracellular alterations. The hypothesis of this investigation is that extracellular changes may be associated with enhanced mRNA expression and activity of matrix metalloproteinases (MMP). We examined MMP mRNA expression and MMP activity in Soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) muscles of young Wistar rat with monocrotaline-induced heart failure. Rats injected with saline served as age-matched controls. MMP2 and MMP9 mRNA contents were determined by RT-PCR and MMP activity by electrophoresis in gelatin-containing polyacrylamide gels in the presence of SDS under non-reducing conditions. Heart failure increased MMP9 mRNA expression and activity in SOL, EDL and DIA and MMP2 mRNA expression in DIA. These results suggest that MMP changes may contribute to the skeletal muscle myopathy during heart failure.

  7. Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation

    PubMed Central

    Wang, Qingding; Zhou, Yuning; Jackson, Lindsey N.; Johnson, Sara M.; Chow, Chi-Wing; Evers, B. Mark

    2011-01-01

    The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27kip1 expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27kip1 expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation. PMID:21148296

  8. Expression and Activation of STAT Transcription Factors in Breast Cancer

    DTIC Science & Technology

    1998-05-08

    several other studies suggest that estrogen given in low doses to relieve menopausal symptoms probably does not increase the incidence of breast cancer...breast cancer. ’It was recently demonstrated that, while .overall STAT DNA-bindinq activity is low in normal breast and benign lesions, it is...adjuvant anticancer treatment, particularly in chronic myelogenous leukemia, maliqnant melanoma, low · grade lymphoma, multiple myeloma, and midgut

  9. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.

  10. Expression of T-cell-activating protein in peripheral lymphocyte subsets.

    PubMed Central

    Yeh, E T; Reiser, H; Benacerraf, B; Rock, K L

    1986-01-01

    T-cell-activating protein (TAP) is an allelic 12-kDa membrane protein that participates in T-cell activation. Soluble anti-TAP monoclonal antibodies can trigger antigen-specific, major histocompatibility complex-restricted T-cell hybridomas to produce interleukin 2 and are mitogenic for normal T cells and thymocytes. TAP is expressed on 10% of thymocytes, which are mainly cortisone-resistant and mature. In the periphery, TAP is expressed on 70% of resting T cells but not on resting B cells. In this report, we analyze in detail the nature of TAP expression on peripheral lymphocyte subsets by immunofluorescence techniques. We show that all inducer (L3T4+) T cells are TAP+. In contrast, only 50% of Lyt-2+ T cells express detectable TAP. Functional studies demonstrated that at least part of the heterogeneity of TAP expression is present in the Lyt-2+ cytolytic T-cell (CTL) subset. Unstimulated CTL precursors are TAP- but are induced to express TAP in the effector state. Furthermore, this reflects actual synthesis of TAP, as TAP is detectable on activated Lyt-2+ CTLs passaged in vitro under conditions where passive acquisition can be ruled out. To extend this observation, we have studied the expression of TAP on activated T and B cells. Upon activation, all T and B cells became TAP+. Furthermore, the TAP molecules on B and T cells are indistinguishable by NaDodSO4/polyacrylamide gel electrophoresis. This suggests that TAP expression defines further heterogeneity of lymphocytes, with activation being one parameter influencing its expression. Images PMID:3020545

  11. Activation of class I major histocompatibility complex gene expression by hepatitis B virus.

    PubMed Central

    Zhou, D X; Taraboulos, A; Ou, J H; Yen, T S

    1990-01-01

    Normal hepatocytes express very few class I major histocompatibility complex (MHC I) molecules, but MHC I expression is elevated in hepatitis B virus (HBV) infection. We report here that hepatoblastoma cells with replicating HBV genomes express three- to fourfold-higher levels of MHC I protein and mRNA than do parent cells without HBV DNA. Transient transfection assays demonstrated that the HBV X protein trans activated transcription from an MHC I promoter and allowed identification of cis elements important for trans activation. Images PMID:2164611

  12. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  13. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  14. Constitutive expression and activity of cytochrome P450 in conventional pigs.

    PubMed

    Nielsen, Søren Drud; Bauhaus, Yvonne; Zamaratskaia, Galia; Junqueira, Matheus Antunes; Blaabjerg, Karoline; Petrat-Melin, Bjørn; Young, Jette Feveile; Rasmussen, Martin Krøyer

    2017-04-01

    Pigs have often been suggested to be a useful model for humans, when investigating CYP dependent events, like drug metabolism. However, comprehensive knowledge about the constitutive expression of the major CYP and corresponding transcription factors is limited. We compared the constitutive mRNA expression of aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor and CYP1A1, CYP1A2, CYP2A, CYP2E1 and CYP3A in liver, adipose tissue, muscle and small intestine in pigs, as well as the expression along the length of the small intestine and colon. Tissue samples were taken from female pigs, and analyzed for gene expression, as well as CYP dependent activity using qPCR and specific probe substrates, respectively. For all investigated transcription factors and CYPs the mRNA expression and activity was highest in the liver. CYP1A1 and CYP3A mRNA expression and activity was shown in all investigated tissues. Along the small intestine and colon the mRNA expression and activity of CYP1A1 and CYP3A was gradually decreased. The results demonstrated, similarity to that reported for humans, and hence adds to the use of pigs as a model for humans.

  15. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    PubMed Central

    van Deursen, Diederik; van Leeuwen, Marije; Akdogan, Deniz; Adams, Hadie; Jansen, Hans; Verhoeven, Adrie J.M.

    2009-01-01

    Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL). We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp). Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells. PMID:22253973

  16. Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns.

    PubMed

    Lee, Youngseok

    2013-01-01

    In both vertebrates and invertebrates, Transient Receptor Potential (TRP) channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs), which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.

  17. Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts

    PubMed Central

    Xu, Qing-Fang; Zheng, Yue; Chen, Jian; Xu, Xin-Ya; Gong, Zi-Jian; Huang, Yun-Fen; Lu, Chun; Maibach, Howard I; Lai, Wei

    2016-01-01

    Background: Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs). Methods: Primary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance. Results: UVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity. Conclusions: UVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These

  18. Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator.

    PubMed Central

    Sheehan, B; Klarsfeld, A; Msadek, T; Cossart, P

    1995-01-01

    PrfA is a pleiotropic activator of virulence gene expression in the pathogenic bacterium Listeria monocytogenes. Several lines of evidence have suggested that a hierarchy of virulence gene activation by PrfA exists. This hypothesis was investigated by assessing the ability of PrfA to activate the expression of virulence gene fusions to lacZ in Bacillus subtilis. Expression of PrfA in this heterologous host was sufficient for activation of transcription at the hly, plcA, mpl, and actA promoters. Activation was most efficient at the divergently transcribed hly and plcA promoters. The putative PrfA binding site shared by these promoters is perfectly symmetrical and appears to represent the optimum sequence for target gene activation by PrfA. The activation of actA and mpl expression was considerably weaker and occurred more slowly than that observed at the hly and plcA promoters, suggesting that greater quantities of PrfA are required for productive interaction at these promoters. Interestingly, expression of an inlA-lacZ transcriptional fusion was very poorly activated by PrfA in B. subtilis, suggesting that other Listeria factors, in addition to PrfA, are required for PrfA-mediated activation at this promoter. Further support for the involvement of such factors was obtained by constructing and analyzing a prfA deletion mutant of L. monocytogenes. We observed that, in contrast to that of the other genes of the PrfA regulon, expression of inlA is only partially dependent on PrfA. PMID:7592422

  19. TNFα Increases RANKL Expression via PGE2-Induced Activation of NFATc1

    PubMed Central

    Park, Hyun-Jung; Baek, Kyunghwa; Baek, Jeong-Hwa; Kim, Hyung-Ryong

    2017-01-01

    Tumor necrosis factor α (TNFα) is known to upregulate the expression of receptor activator of NF-κB ligand (RANKL). We investigated the role of the calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway in TNFα-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. TNFα-induced RANKL expression was blocked by the calcineurin/NFAT pathway inhibitors. TNFα increased NFAT transcriptional activity and subsequent RANKL promoter binding. Mutations in the NFAT-binding element (MT(N)) suppressed TNFα-induced RANKL promoter activity. TNFα increased prostaglandin E2 (PGE2) production, which in turn enhanced NFAT transcriptional activity and binding to the RANKL promoter. MT(N) suppressed PGE2-induced RANKL promoter activity. TNFα and PGE2 increased the expression of RANKL, NFAT cytoplasmic-1 (NFATc1), cAMP response element-binding protein (CREB), and cyclooxygenase 2 (COX2); which increment was suppressed by indomethacin, a COX inhibitor. Mutations in the CRE-like element blocked PGE2-induced RANKL promoter activity. PGE2 induced the binding of CREB to the RANKL promoter, whereas TNFα increased the binding of both CREB and NFATc1 to this promoter through a process blocked by indomethacin. The PGE2 receptor antagonists AH6809 and AH23848 blocked TNFα-induced expression of RANKL, NFATc1, and CREB; transcriptional activity of NFAT; and binding of NFATc1 or CREB to the RANKL promoter. These results suggest that TNFα-induced RANKL expression depends on PGE2 production and subsequent transcriptional activation/enhanced binding of NFATc1 and CREB to the RANKL promoter. PMID:28245593

  20. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  1. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2006-03-01

    Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.

  2. Integration of Structured Expressive Activities within a Humanistic Group Play Therapy Format for Preadolescents

    ERIC Educational Resources Information Center

    Bratton, Sue C.; Ceballos, Peggy L.; Ferebee, Kelly Webb

    2009-01-01

    The integration of expressive activities in play groups with preadolescents encourages them to reach more deeply into their own resources, enabling them to handle future challenges more effectively. Developmental and therapeutic rationale, along with research support, is given for the integration of creative activities into a humanistic play group…

  3. Improved expression of halorhodopsin for light-induced silencing of neuronal activity.

    PubMed

    Zhao, Shengli; Cunha, Catarina; Zhang, Feng; Liu, Qun; Gloss, Bernd; Deisseroth, Karl; Augustine, George J; Feng, Guoping

    2008-08-01

    The ability to control and manipulate neuronal activity within an intact mammalian brain is of key importance for mapping functional connectivity and for dissecting the neural circuitry underlying behaviors. We have previously generated transgenic mice that express channelrhodopsin-2 for light-induced activation of neurons and mapping of neural circuits. Here we describe transgenic mice that express halorhodopsin (NpHR), a light-driven chloride pump that can be used to silence neuronal activity via light. Using the Thy-1 promoter to target NpHR expression to neurons, we found that neurons in these mice expressed high levels of NpHR-YFP and that illumination of cortical pyramidal neurons expressing NpHR-YFP led to rapid, reversible photoinhibition of action potential firing in these cells. However, NpHR-YFP expression led to the formation of numerous intracellular blebs, which may disrupt neuronal function. Labeling of various subcellular markers indicated that the blebs arise from retention of NpHR-YFP in the endoplasmic reticulum. By improving the signal peptide sequence and adding an ER export signal to NpHR-YFP, we eliminated the formation of blebs and dramatically increased the membrane expression of NpHR-YFP. Thus, the improved version of NpHR should serve as an excellent tool for neuronal silencing in vitro and in vivo.

  4. Expression of a Deschampsia antarctica Desv. polypeptide with lipase activity in a Pichia pastoris vector.

    PubMed

    Rabert, Claudia; Gutiérrez-Moraga, Ana; Navarrete, Alejandro; Navarrete-Campos, Darío; Bravo, León; Gidekel, Manuel

    2014-02-07

    The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed.

  5. Expression of a Deschampsia antarctica Desv. Polypeptide with Lipase Activity in a Pichia pastoris Vector

    PubMed Central

    Rabert, Claudia; Gutiérrez-Moraga, Ana; Navarrete-Gallegos, Alejandro; Navarrete-Campos, Darío; Bravo, León A.; Gidekel, Manuel

    2014-01-01

    The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed. PMID:24514564

  6. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli.

    PubMed

    Svensson, Johan; Andersson, Christer; Reseland, Janne E; Lyngstadaas, Petter; Bülow, Leif

    2006-07-01

    Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.

  7. Conserved Overlapping Gene Arrangement, Restricted Expression, and Biochemical Activities of DNA Polymerase ν (POLN)*

    PubMed Central

    Takata, Kei-ichi; Tomida, Junya; Reh, Shelley; Swanhart, Lisa M.; Takata, Minoru; Hukriede, Neil A.; Wood, Richard D.

    2015-01-01

    DNA polymerase ν (POLN) is one of 16 DNA polymerases encoded in vertebrate genomes. It is important to determine its gene expression patterns, biological roles, and biochemical activities. By quantitative analysis of mRNA expression, we found that POLN from the zebrafish Danio rerio is expressed predominantly in testis. POLN is not detectably expressed in zebrafish embryos or in mouse embryonic stem cells. Consistent with this, injection of POLN-specific morpholino antisense oligonucleotides did not interfere with zebrafish embryonic development. Analysis of transcripts revealed that vertebrate POLN has an unusual gene expression arrangement, sharing a first exon with HAUS3, the gene encoding augmin-like complex subunit 3. HAUS3 is broadly expressed in embryonic and adult tissues, in contrast to POLN. Differential expression of POLN and HAUS3 appears to arise by alternate splicing of transcripts in mammalian cells and zebrafish. When POLN was ectopically overexpressed in human cells, it specifically coimmunoprecipitated with the homologous recombination factors BRCA1 and FANCJ, but not with previously suggested interaction partners (HELQ and members of the Fanconi anemia core complex). Purified zebrafish POLN protein is capable of thymine glycol bypass and strand displacement, with activity dependent on a basic amino acid residue known to stabilize the primer-template. These properties are conserved with the human enzyme. Although the physiological function of pol ν remains to be clarified, this study uncovers distinctive aspects of its expression control and evolutionarily conserved properties of this DNA polymerase. PMID:26269593

  8. DNA sequences that activate isocitrate lyase gene expression during late embryogenesis and during postgerminative growth.

    PubMed Central

    Zhang, J Z; Santes, C M; Engel, M L; Gasser, C S; Harada, J J

    1996-01-01

    We analyzed DNA sequences that regulate the expression of an isocitrate lyase gene from Brassica napus L. during late embryogenesis and during postgerminative growth to determine whether glyoxysomal function is induced by a common mechanism at different developmental stages. beta-Glucuronidase constructs were used both in transient expression assays in B. napus and in transgenic Arabidopsis thaliana to identify the segments of the isocitrate lyase 5' flanking region that influence promoter activity. DNA sequences that play the principal role in activating the promoter during post-germinative growth are located more than 1,200 bp upstream of the gene. Distinct DNA sequences that were sufficient for high-level expression during late embryogenesis but only low-level expression during postgerminative growth were also identified. Other parts of the 5' flanking region increased promoter activity both in developing seed and in seedlings. We conclude that a combination of elements is involved in regulating the isocitrate lyase gene and that distinct DNA sequences play primary roles in activating the gene in embryos and in seedlings. These findings suggest that different signals contribute to the induction of glyoxysomal function during these two developmental stages. We also showed that some of the constructs were expressed differently in transient expression assays and in transgenic plants. PMID:8934622

  9. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  10. Substance P induces CCN1 expression via histone deacetylase activity in human colonic epithelial cells.

    PubMed

    Koon, Hon Wai; Shih, David Q; Hing, Tressia C; Chen, Jeremy; Ho, Samantha; Zhao, Dezheng; Targan, Stephan R; Pothoulakis, Charalabos

    2011-11-01

    We have shown that substance P (SP) and its neurokinin-1 receptor (NK-1R) regulate intestinal angiogenesis by increasing expression of protein CYR61 (the cysteine-rich angiogenic inducer 61, or CCN1) in colonic epithelial cells. However, the mechanism involved in SP-induced CCN1 expression has not been studied, and the outcome of increased CCN1 expression in the development of colitis is not fully understood. Because histone deacetylase (HDAC) modulates transcription of several genes involved in inflammation, we investigated participation of HDAC in SP-induced CCN1 expression in human colonic epithelial NCM460 cells overexpressing NK-1R (NCM460-NK-1R) and in primary colonocytes. SP increased HDAC activity with deacetylation and dephosphorylation of nucleosome protein histone H3 in NCM460-NK-1R and/or primary colonocytes. Histone deacetylation and dephosphorylation was observed in colonic mucosa from irritable bowel disease patients. Similarly, colonic mucosal tissues from mice exposed to dextran sulfate sodium showed histone H3 deacetylation and dephosphorylation and increased HDAC activity that was reversed by the NK-1R antagonist CJ-12255. SP-induced increased CCN1 expression in NCM460-NK-1R cells was abolished by pharmacological HDAC inhibition. HDAC overexpression activated basal and SP-induced CCN1 promoter activity. Intracolonic CCN1 overexpression significantly ameliorated dextran sulfate sodium-induced colitis, with reduction of proinflammatory cytokine expression in mice. Thus, SP-mediated CCN1 expression in the inflamed human and mouse colon involves increased HDAC activity. Our results strongly suggest that increased CCN1 expression may be involved in mucosal healing during colitis.

  11. Modeling notch signaling in normal and neoplastic hematopoiesis: global gene expression profiling in response to activated notch expression.

    PubMed

    Ganapati, Uma; Tan, Hongying Tina; Lynch, Maureen; Dolezal, Milana; de Vos, Sven; Gasson, Judith C

    2007-08-01

    In normal hematopoiesis, proliferation is tightly linked to differentiation in ways that involve cell-cell interaction with stromal elements in the bone marrow stem cell niche. Numerous in vitro and in vivo studies strongly support a role for Notch signaling in the regulation of stem cell renewal and hematopoiesis. Not surprisingly, mutations in the Notch gene have been linked to a number of types of malignancies. To better define the function of Notch in both normal and neoplastic hematopoiesis, a tetracycline-inducible system regulating expression of a ligand-independent, constitutively active form of Notch1 was introduced into murine E14Tg2a embryonic stem cells. During coculture, OP9 stromal cells induce the embryonic stem cells to differentiate first to hemangioblasts and subsequently to hematopoietic stem cells. Our studies indicate that activation of Notch signaling in flk+ hemangioblasts dramatically reduces their survival and proliferative capacity and lowers the levels of hematopoietic stem cell markers CD34 and c-Kit and the myeloid marker CD11b. Global gene expression profiling of day 8 hematopoietic progenitors in the absence and presence of activated Notch yield candidate genes required for normal hematopoietic differentiation, as well as putative downstream targets of oncogenic forms of Notch including the noncanonical Wnts Wnt4 and 5A. Disclosure of potential conflicts of interest is found at the end of this article.

  12. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  13. Expression of Fibroblast Activating Protein and Correlation with Histological Grade, Mitotic Index and Ki67 Expression in Canine Mast Cell Tumours.

    PubMed

    Giuliano, A; Dos Santos Horta, R; Constantino-Casas, F; Hoather, T; Dobson, J

    2017-01-01

    Fibroblast activating protein (FAP) is a membrane serine protease expressed by activated fibroblasts, particularly tumour associated fibroblasts (TAFs). FAP expression has not been reported in canine mast cell tumours (MCTs). The objective of this study was to evaluate the expression of FAP in TAFs and its correlation with histological grade, mitotic index and Ki67 expression in canine MCTs. FAP expression was evaluated by immunohistochemistry (IHC) in 30 canine MCTs. Twenty-eight (90%) of the MCTs expressed FAP in the stroma, 16 cases showed low to intermediate FAP score and 14 cases had a high FAP score. FAP was correlated positively with both Patnaik (P = 0.007) and Kiupel (P = 0.008) grading systems, mitotic index (P = 0.0008) and Ki67 expression (P = 0.009). High stromal FAP expression could be a potential negative prognostic factor in canine MCTs.

  14. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    PubMed

    Marathe, Himangi G; Mehta, Gaurav; Zhang, Xiaolu; Datar, Ila; Mehrotra, Aanchal; Yeung, Kam C; de la Serna, Ivana L

    2013-01-01

    SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to

  15. Platelet activating factor-induced expression of p21 is correlated with histone acetylation.

    PubMed

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M; Liu, Jingwei; Neelapu, Sattva S; Ullrich, Stephen E

    2017-02-03

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome.

  16. Platelet activating factor-induced expression of p21 is correlated with histone acetylation

    PubMed Central

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M.; Liu, Jingwei; Neelapu, Sattva S.; Ullrich, Stephen E.

    2017-01-01

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome. PMID:28157211

  17. Differential expression and activity of matrix metalloproteinases 2 and 9 in canine early placenta.

    PubMed

    Diessler, M; Ventureira, M; Hernandez, R; Sobarzo, C; Casas, L; Barbeito, C; Cebral, E

    2017-02-01

    The zonary and endotheliochorial dog placenta is the most invasive placenta of carnivores. The importance of matrix metalloproteinases (MMP) in placenta invasiveness has been determined in several mammals including species with haemochorial, epitheliochorial and endotheliochorial placentation. Regarding the latter, the expression of MMP enzymes has been studied in the cat and the mature canine placenta. The aim of this study was to analyse the expression and activity of MMP-2 and MMP-9 in the early dog placenta. Placentae from 18 to 30 days of pregnancy were collected from four bitches. Two placentae from each bitch were analysed. Placental tissue from one uterine horn was fixed in formaldehyde for immunohistochemistry, while marginal haematoma, labyrinth, non-implantative and implantative endometrium from the contralateral horn were immediately frozen in dry ice for the analysis of MMP expression (Western blot [WB]) and activity (zymography). MMP-2 and MMP-9 were evidenced in the labyrinth, maternal glands and marginal haematoma; this finding was directly correlated with levels of MMP expression by WB, and with the activity of MMP-2, mainly in the haematoma (the area of major remodelling of tissues). Thus, although MMP-9 is well expressed in the early canine placenta, it is not active. Given the important role of MMPs for invasiveness, maternal-foetal angiogenesis and the establishment of a correct foetal nutrition, the results are consistent with the findings in other species in which the MMP-2 activation precedes the MMP-9 one in early placentation.

  18. NF-κB activity is inversely correlated to RNF11 expression in Parkinson's disease.

    PubMed

    Pranski, Elaine; Van Sanford, Carson D; Dalal, Nirjari; Orr, Adam L; Karmali, Dipan; Cooper, Deborah S; Gearing, Marla; Lah, James J; Levey, Allan I; Betarbet, Ranjita

    2013-06-28

    RING finger protein 11 (RNF11), a negative regulator of NF-κB signaling pathway, colocalizes with α-synuclein and is sequestered in Lewy bodies in Parkinson's disease (PD). Since persistent NF-κB activation is reported in PD, in this report we investigated if RNF11 expression level is correlated to activated NF-κB in PD. We examined RNF11 expression levels in correlation to phospho-p65, a marker for activated NF-κB, in control and PD brain tissue from cerebral cortex. In addition we performed double immunofluorescence labeling experiments to confirm this correlation. Our investigations demonstrated that the neuronal RNF11 expression was down-regulated in PD and was usually associated with increased expression of phospho-p65. Double labeling confirmed that loss of neuronal RNF11 was linked to increased phospho-p65 expression, suggesting that persistent presence of NF-κB activation could be due to decreased levels of its negative regulator. Our data exemplifies the relevance of RNF11 and persistent NF-κB activation in PD.

  19. Phytochemicals Mediate the Expression and Activity of OCTN2 as Activators of the PPARγ/RXRα Pathway

    PubMed Central

    Luo, Jian; Qu, Jian; Yang, Rui; Ge, Meng-Xue; Mei, Yin; Zhou, Bo-Ting; Qu, Qiang

    2016-01-01

    Many phytochemicals exert activities as agonists of peroxisome proliferator-activated receptor gamma (PPARγ). This study aims to investigate whether phytochemicals are agonists of the PPARγ/RXRα pathway and modulate the target gene OCTN2. In this study, a luciferase reporter gene system was used to screen novel OCTN2 activators from 39 phytochemicals. Kaempferol, curcumin, and puerarin were found to show the significant PPRE-mediated luciferase activities (>150%) at 20 μM and showed a dose-dependent manner. Phytochemicals also elevated the mRNA and protein expression of OCTN2 in a dose-dependent fashion in colorectal cancer SW480 cells. These induction effects were gradually inhibited by PPARγ antagonist GW9662 in the luciferase reporter gene system and in SW480 cells. Moreover, the results of cell viability assay imply that three phytochemicals probably induce OCTN2 expression leading to the enhanced uptake of its substrate, oxaliplatin, thereby making cells more sensitive to oxaliplatin. The molecular docking study showed the possible binding sites of phytochemicals in PPARγ protein, and all of the docked phytochemicals fitted the same active pocket in PPARγ as troglitazone. All three phytochemicals exhibited hydrogen bonds between their polar moieties and the amino acid residues. Thus, we identified three phytochemicals as PPARγ ligands, which potentiated the expression and activity of OCTN2. PMID:27445823

  20. Effects of Metallicity and AGN Activity on the Mid-Infrared Dust Emission of Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Zhu, Yi-Nan; Cao, Chen; Qin, Bo

    2007-10-01

    Using a sample of the Spitzer SWIRE-field galaxies whose optical spectra are taken from Data Release 4 of the Sloan Digital Sky Survey, we study possible correlations between the mid-infrared (MIR) dust emission from these galaxies and both their metallicities and AGN activities. We find that both metallicity and AGN activity are well correlated with the following ratios: PAH-to-star, VSG-to-star, and PAH-to-VSG, which can be characterized by νLν[8 μm(dust)]/νLν[3.6 μm], νLν[24 μm]/νLν[3.6 μm], and νLν[8 μm(dust)]/νLν[24 μm], respectively. We argue that our MIR-metallicity correlation could be explained by either the amount of dust (ongoing dust formation) or dust destruction (PAHs and VSGs could be destroyed by hard and intense radiation fields), and that the MIR-AGN correlation could arise due to either PAH destruction or an enhanced VSG continuum by the central AGN.

  1. Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines

    PubMed Central

    Zaremba, T; Ketzer, P; Cole, M; Coulthard, S; Plummer, E R; Curtin, N J

    2009-01-01

    Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme activated by DNA breaks and involved in DNA repair and other cellular processes. Poly(ADP-ribose) polymerase activity can be higher in cancer than in adjacent normal tissue, but cancer predisposition is reported to be greater in individuals with a single-nucleotide polymorphism (SNP) V762A (T2444C) in the catalytic domain that reduces PARP-1 activity. Methods: To resolve these divergent observations, we determined PARP-1 polymorphisms, PARP-1 protein expression and activity in a panel of 19 solid and haematological, adult and paediatric human cancer cell lines. Results: There was a wide variation in PARP activity in the cell line panel (coefficient of variation, CV=103%), with the lowest and the highest activity being 2460 pmol PAR/106 (HS-5 cells) and 85 750 pmol PAR/106 (NGP cells). Lower variation (CV=32%) was observed in PARP-1 protein expression with the lowest expression being 2.0 ng μg−1 (HS-5 cells) and the highest being 7.1 ng μg−1 (ML-1 cells). The mean activity in the cancer cells was 45-fold higher than the mean activity in normal human lymphocytes and the PARP-1 protein levels were 23-fold higher. Conclusions: Surprisingly, there was no significant correlation between PARP activity and PARP-1 protein level or the investigated polymorphisms, T2444C and CA. PMID:19568233

  2. Integrating Circadian Activity and Gene Expression Profiles to Predict Chronotoxicity of Drosophila suzukii Response to Insecticides

    PubMed Central

    Hamby, Kelly A.; Kwok, Rosanna S.; Zalom, Frank G.; Chiu, Joanna C.

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as

  3. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    PubMed Central

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  4. Reduced Duodenal Cytochrome P450 3A Protein Expression and Catalytic Activity in Patients with Cirrhosis

    PubMed Central

    McConn, Donavon J.; Lin, Yvonne S.; Mathisen, Terri L.; Blough, David K.; Xu, Yang; Hashizume, Takanori; Taylor, Shari L.; Thummel, Kenneth E.; Shuhart, Margaret C.

    2009-01-01

    The small intestine and liver express high levels of cytochrome P450 3A (CYP3A), an enzyme subfamily contributing significantly to drug metabolism. In patients with cirrhosis, reduced metabolism of drugs is typically attributed to decreased liver function, but it is unclear whether intestinal drug metabolism is also compromised. In this study, we compared CYP3A protein expression and in vitro midazolam hydroxylation in duodenal mucosal biopsies from subjects with normal liver function (controls; n=20) and subjects with varying severity of cirrhosis (n=23). Compared to samples from controls, duodenal CYP3A expression and total midazolam hydroxylation was reduced by 47% and 34%, respectively in samples from subjects with cirrhosis. Greater decreases in CYP3A expression were seen in subjects with increasing severity of cirrhosis. Thus, patients with advanced cirrhosis may have increased drug exposure following oral dosing as a result of both impaired liver function and decreased intestinal CYP3A expression and activity. PMID:19212316

  5. Modulation of perception and brain activity by predictable trajectories of facial expressions.

    PubMed

    Furl, N; van Rijsbergen, N J; Kiebel, S J; Friston, K J; Treves, A; Dolan, R J

    2010-03-01

    People track facial expression dynamics with ease to accurately perceive distinct emotions. Although the superior temporal sulcus (STS) appears to possess mechanisms for perceiving changeable facial attributes such as expressions, the nature of the underlying neural computations is not known. Motivated by novel theoretical accounts, we hypothesized that visual and motor areas represent expressions as anticipated motion trajectories. Using magnetoencephalography, we show predictable transitions between fearful and neutral expressions (compared with scrambled and static presentations) heighten activity in visual cortex as quickly as 165 ms poststimulus onset and later (237 ms) engage fusiform gyrus, STS and premotor areas. Consistent with proposed models of biological motion representation, we suggest that visual areas predictively represent coherent facial trajectories. We show that such representations bias emotion perception of subsequent static faces, suggesting that facial movements elicit predictions that bias perception. Our findings reveal critical processes evoked in the perception of dynamic stimuli such as facial expressions, which can endow perception with temporal continuity.

  6. Peroxisome proliferator-activated receptor gamma regulates expression of signal transducer and activator of transcription 5A

    SciTech Connect

    Olsen, Hanne; Haldosen, Lars-Arne . E-mail: Lars-Arne.Haldosen@mednut.ki.se

    2006-05-01

    Signal transducer and activator of transcription 5A (STAT5A) has been shown to be important for terminal differentiation of mammary epithelial cells. In order to understand regulation of expression of STAT5A, the 5' end of the mouse Stat5a gene was isolated. Putative regulatory elements was searched for and several peroxisome proliferator response elements (PPREs) were found, one with high (12/13 nucleotides) and three with less (8-10/13) similarity to the reported consensus sequence. Mouse mammary epithelial HC11 cells were treated with peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligand, the thiazolidinedione (TZD) troglitazone, and an increase in STAT5A protein expression was seen. The 5' flank of Stat5a gene was cloned in a luciferase reporter vector. A concentration dependent activation of the STAT5A-luciferase reporter was detected, when transiently transfected HC11 cells were treated with TZD. The activation could be inhibited by treatment with a PPAR{gamma} antagonist. It has earlier been shown that epidermal growth factor (EGF) induces MAPK phosphorylation of PPAR{gamma} resulting in a less transcriptionally active receptor. In HC11 cells, EGF inhibited TZD induced STAT5A-reporter activity suggesting that our previously reported EGF-mediated suppression of STAT5A expression is mediated in all or partly through inhibition of PPAR{gamma} activity. Furthermore, the MEK inhibitor PD98059 inhibited the EGF effect. All together, data presented suggest that PPAR{gamma} participates in regulation of STAT5A expression.

  7. Effect of A-769662, a direct AMPK activator, on Tlr-4 expression and activity in mice heart tissue

    PubMed Central

    Rameshrad, Maryam; Maleki-Dizaji, Nasrin; Soraya, Hamid; Toutounchi, Negisa Seyed; Barzegari, Abolfazl; Garjani, Alireza

    2016-01-01

    Objective(s):: TLR-4 activates a number of inflammatory signaling pathways. Also, AMPK could be involved in anti-inflammatory signaling. The aim of this study was to identify whether stimulation of AMPK could inhibit LPS-induced Tlr-4 gene expression in mice hearts. Materials and methods: Heart AMPK activity and/or Tlr-4 expression was stimulated in different mice groups, using respectively IP injection of A-769662 (10 mg/kg) and LPS (2 mg/kg) or a combination of both agents. Moreover, compound-C (20 mg/kg), as an AMPK antagonist, was intraperitoneally co-administrated with both A-769662 and LPS in another group to investigate the role of AMPK activity on Tlr-4 regulation. After 8 hr, in addition to peripheral neutrophil cell count, myocardial p-AMPK, p-ACC as well as MyD88 protein contents and Tlr-4 expression was assessed by Western blotting and real-time qRT-PCR, respectively. TNF-α and IL-6 expression levels were also determined by ELISA. Results: LPS induced heart Tlr-4 expression (P<0.001) associating with an increase in the myocardial MyD88 protein content (P<0.001), elevation of heart TNF-α (P<0.01) and IL-6 (P<0.05) concentrations, and rise in the peripheral neutrophil cell count (P<0.001). Administration of A-769662 decreased LPS-induced Tlr-4 expression (P<0.01) and alleviated peripheral neutrophil cell count (P<0.01). The inhibitory effect of A-769662 on LPS-induced Tlr-4 expression was reversed by antagonizing AMPK with compound-C (P<0.001) which reduced p-AMPK (P<0.05) and p-ACC (P<0.01) myocardial protein contents in the LPS+A-769662 group. Conclusion: This study demonstrated that activation of AMPK, by A-769662 agent, could inhibit Tlr-4 expression and activity, suggesting a link between AMPK and Tlr-4 in heart tissue. PMID:28096963

  8. Surface expression of Mo3e antigen by activated human monocytes and U-937 cells

    SciTech Connect

    Todd R.F. III; Bury, M.J.; Liu, D.Y.

    1986-03-05

    The surface expression of a protease-sensitive antigen, Mo3e, by activated human monocytes and U-937 cells is a plasma membrane feature of the activated state. Mo3e, which is an 80 kD protein on Western blot analysis, may represent the surface receptor for migration inhibitory factor (MIF), as evidenced by inhibition of MIF responsiveness produced by anti-Mo3e monoclonal antibody. Mo3e is barely detectable (by surface immunofluorescence) on freshly isolated monocytes but becomes expressed in high antigen density during 18-24 hrs culture in medium containing E. coli lipopolysaccharide (> 1 ng/ml), 4..beta..-phorbol 12-myristate 13-acetate (PMA) (5-10 nM), or muramyl dipeptide (0.1-1 ..mu..M). In U-937 cells, Mo3e surface expression is detectable after 24 hrs exposure to PMA and other pharmacological activators of protein kinase C: 4..beta..-phorbol 12, 13 dibutyrate, 4..beta..-phorbol 12, 13 didecanoate, mezerein, or Sn-1,2-dioctanoylglycerol. The biologically-inactivate phorbol compounds, 4..cap alpha..-phorbol 12, 13 didecanoate and 4/sub ..beta../-phorbol do not stimulate Mo3e expression. The calcium ionophore, ionomycin, has a synergistic effect on Mo3e expression stimulated by PMA; conversely, calcium antagonists block PMA-induced Mo3e expression. These results suggest the involvement of protein kinase C activation and intracellular calcium mobilization in the stimulated expression of Mo3e by activated human mononuclear phagocytes.

  9. A novel baculovirus-derived promoter with high activity in the baculovirus expression system

    PubMed Central

    Martínez-Solís, María; Gómez-Sebastián, Silvia; Escribano, José M.; Jakubowska, Agata K.

    2016-01-01

    The baculovirus expression vector system (BEVS) has been widely used to produce a large number of recombinant proteins, and is becoming one of the most powerful, robust, and cost-effective systems for the production of eukaryotic proteins. Nevertheless, as in any other protein expression system, it is important to improve the production capabilities of this vector. The orf46 viral gene was identified among the most highly abundant sequences in the transcriptome of Spodoptera exigua larvae infected with its native baculovirus, the S. exigua multiple nucleopolyhedrovirus (SeMNPV). Different sequences upstream of the orf46 gene were cloned, and their promoter activities were tested by the expression of the GFP reporter gene using the Autographa californica nucleopolyhedrovirus (AcMNPV) vector system in different insect cell lines (Sf21, Se301, and Hi5) and in larvae from S. exigua and Trichoplusia ni. The strongest promoter activity was defined by a 120 nt sequence upstream of the ATG start codon for the orf46 gene. On average, GFP expression under this new promoter was more than two fold higher than the expression obtained with the standard polyhedrin (polh) promoter. Additionally, the orf46 promoter was also tested in combination with the polh promoter, revealing an additive effect over the polh promoter activity. In conclusion, this new characterized promoter represents an excellent alternative to the most commonly used baculovirus promoters for the efficient expression of recombinant proteins using the BEVS. PMID:27375973

  10. RXRα and LXR activate two promoters in placenta- and tumor-specific expression of PLAC1

    PubMed Central

    Chen, Yaohui; Moradin, Adi; Schlessinger, David; Nagaraja, Ramaiah

    2011-01-01

    PLAC1 expression, first characterized as restricted to developing placenta among normal tissues, is also found in a wide range of tumors and transformed cell lines. To understand the basis for its unusual expression profile, we have analyzed the gene structure and its mode of transcription. We find that the gene has a hitherto unique feature, with two promoters, P1 and P2, separated by 105 kb. P2 has been described before. Here we define P1 and show that it and P2 are activated by RXRα in conjunction with LXRα or LXRβ. In placenta, P2 is the preferred promoter, whereas various tumor cell lines tend to express predominantly either one or the other promoter. Furthermore, when each promoter is fused to a luciferase reporter gene and transfected into cancer cell lines, the promoter corresponding to the more active endogenous promoter is preferentially transcribed. Joint expression of activating nuclear receptors can partially account for the restricted expression of PLAC1 in placenta, and may be co-opted for preferential P1 or P2 PLAC1 expression in various tumor cells. PMID:21937108

  11. FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation*

    PubMed Central

    Geerling, Joel C; Stein, Matthew K; Miller, Rebecca L; Shin, Jung-Won; Gray, Paul A; Loewy, Arthur D

    2010-01-01

    Two specific groups of neurons in the dorsolateral pons are activated by dietary sodium deprivation. These two groups are the pre-locus coeruleus (pre-LC) and the inner subdivision of the external lateral parabrachial nucleus (PBel-inner). In each site, after rats are fed an extremely low-sodium diet for over a week, neurons increase their expression of an activity-induced transcription factor, c-Fos. Here, we confirm this observation and extend it by demonstrating that these two groups of neurons express a common marker gene, the constitutively-expressed transcription factor Forkhead box protein 2 (FoxP2). That is, virtually all of the c-Fos activated neurons in both regions also express FoxP2. The expression of FoxP2 by both these groups of neurons suggests that they are developmentally-related subsets derived from the same basic population. Given that FoxP2, unlike c-Fos, is expressed independent of sodium deprivation, this marker may be useful in future studies of the pre-LC and PBel-inner. The molecular definition of these neurons, which project to circuits in the forebrain that influence visceral, appetitive, and hedonic functions, may allow direct experimental exploration of the functional role of these circuits using genetic tools. PMID:21108936

  12. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity

    PubMed Central

    Ding, Yuemin; Li, Yuying; Lu, Lingchao; Zhang, Ruyi; Zeng, Linghui; Wang, Linlin; Zhang, Xiong

    2015-01-01

    Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons. PMID:26670864

  13. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  14. Modulation of activation-associated host cell gene expression by the apicomplexan parasite Theileria annulata

    PubMed Central

    Durrani, Zeeshan; Weir, William; Pillai, Sreerekha; Kinnaird, Jane; Shiels, Brian

    2012-01-01

    Summary Infection of bovine leucocytes by Theileria annulata results in establishment of transformed, infected cells. Infection of the host cell is known to promote constitutive activation of pro-inflammatory transcription factors that have the potential to be beneficial or detrimental. In this study we have compared the effect of LPS activation on uninfected bovine leucocytes (BL20 cells) and their Theileria-infected counterpart (TBL20). Gene expression profiles representing activated uninfected BL20 relative to TBL20 cells were also compared. The results show that while prolonged stimulation with LPS induces cell death and activation of NF-κB in BL20 cells, the viability of Theileria-infected cells was unaffected. Analysis of gene expression networks provided evidence that the parasite establishes tight control over pathways associated with cellular activation by modulating reception of extrinsic stimuli and by significantly altering the expression outcome of genes targeted by infection-activated transcription factors. Pathway analysis of the data set identified novel candidate genes involved in manipulation of cellular functions associated with the infected transformed cell. The data indicate that the T. annulata parasite can irreversibly reconfigure host cell gene expression networks associated with development of inflammatory disease and cancer to generate an outcome thatis beneficial to survival and propagation of the infected leucocyte. PMID:22533473

  15. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis.

    PubMed

    Canady, Johanna; Arndt, Stephanie; Karrer, Sigrid; Bosserhoff, Anja K

    2013-03-01

    Fibrotic disorders of the skin share the characteristic features of increased production and deposition of extracellular matrix components by activated fibroblasts. Their clinical course ranges from benign with localized cutaneous involvement to a systemic, life-threatening disease. The molecular cause for fibroblast activation remains unknown, yet epithelial-mesenchymal interactions draw mounting attention in the research field of fibrogenesis. We examined keratinocyte growth factor (KGF), a crucial molecule in fibroblast-keratinocyte cross talk, exemplarily in keloid and scleroderma, and found its expression to be increased in disease-derived fibroblasts and tissues compared with healthy controls. This overexpression induces fibroblast activation through a double paracrine mode of action. Upon KGF stimulation, the keratinocytes produced and secreted OSM (oncostatin M). Fibroblasts were in turn activated by OSM reacting with the increased expression of collagen type I-α1, fibroblast activation protein, and enhanced migration. The observed increase in collagen expression and fibroblast migration can be traced back to OSM-regulated STAT3 phosphorylation, leading to enhanced urokinase plasminogen activator expression. Hence, we propose a causative loop in the pathogenesis of fibrosing disorders of the skin mediated by the overexpression of KGF in mesenchymal cells.

  16. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity.

    PubMed

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G

    1987-06-30

    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  17. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction.

    PubMed

    Zielinski, M R; Kim, Y; Karpova, S A; Winston, S; McCarley, R W; Strecker, R E; Gerashchenko, D

    2013-09-05

    Non-rapid eye movement (NREM) sleep electroencephalographic (EEG) delta power (~0.5-4 Hz), also known as slow wave activity (SWA), is typically enhanced after acute sleep deprivation (SD) but not after chronic sleep restriction (CSR). Recently, sleep-active cortical neurons expressing neuronal nitric oxide synthase (nNOS) were identified and associated with enhanced SWA after short acute bouts of SD (i.e., 6h). However, the relationship between cortical nNOS neuronal activity and SWA during CSR is unknown. We compared the activity of cortical neurons expressing nNOS (via c-Fos and nNOS immuno-reactivity, respectively) and sleep in rats in three conditions: (1) after 18-h of acute SD; (2) after five consecutive days of sleep restriction (SR) (18-h SD per day with 6h ad libitum sleep opportunity per day); (3) and time-of-day matched ad libitum sleep controls. Cortical nNOS neuronal activity was enhanced during sleep after both 18-h SD and 5 days of SR treatments compared to control treatments. SWA and NREM sleep delta energy (the product of NREM sleep duration and SWA) were positively correlated with enhanced cortical nNOS neuronal activity after 18-h SD but not 5days of SR. That neurons expressing nNOS were active after longer amounts of acute SD (18h vs. 6h reported in the literature) and were correlated with SWA further suggest that these cells might regulate SWA. However, since these neurons were active after CSR when SWA was not enhanced, these findings suggest that mechanisms downstream of their activation are altered during CSR.

  18. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements

    PubMed Central

    Hannula, Deborah E.; Ranganath, Charan

    2009-01-01

    Although there is widespread agreement that the hippocampus is critical for explicit episodic memory retrieval, it is controversial whether this region can also support indirect expressions of relational memory when explicit retrieval fails. Here, using functional magnetic resonance imaging (fMRI) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when explicit, conscious retrieval failed. Additionally, activity in the lateral prefrontal cortex, and functional connectivity between the hippocampus and prefrontal cortex was greater for correct than for incorrect trials. Together, these results suggest that hippocampal activity can support the expression of relational memory even when explicit retrieval fails, and that recruitment of a broader cortical network may be required to support explicit associative recognition. PMID:19755103

  19. The eyes have it: hippocampal activity predicts expression of memory in eye movements.

    PubMed

    Hannula, Deborah E; Ranganath, Charan

    2009-09-10

    Although there is widespread agreement that the hippocampus is critical for explicit episodic memory retrieval, it is controversial whether this region can also support indirect expressions of relational memory when explicit retrieval fails. Here, using functional magnetic resonance imaging (fMRI) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when explicit, conscious retrieval failed. Additionally, activity in the lateral prefrontal cortex and functional connectivity between the hippocampus and prefrontal cortex were greater for correct than for incorrect trials. Together, these results suggest that hippocampal activity can support the expression of relational memory even when explicit retrieval fails and that recruitment of a broader cortical network may be required to support explicit associative recognition.

  20. Different Gene Expression and Activity Pattern of Antioxidant Enzymes in Bladder Cancer.

    PubMed

    Wieczorek, Edyta; Jablonowski, Zbigniew; Tomasik, Bartlomiej; Gromadzinska, Jolanta; Jablonska, Ewa; Konecki, Tomasz; Fendler, Wojciech; Sosnowski, Marek; Wasowicz, Wojciech; Reszka, Edyta

    2017-02-01

    The aim of this study was to evaluate the possible role in and contribution of antioxidant enzymes to bladder cancer (BC) etiology and recurrence after transurethral resection (TUR). We enrolled 40 patients with BC who underwent TUR and 100 sex- and age-matched healthy controls. The analysis was performed at diagnosis and recurrence, taking into account the time of recurrence. Gene expression of catalase (CAT), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (SOD2) was determined in peripheral blood leukocytes. The activity of glutathione peroxidase 3 (GPX3) was examined in plasma, and GPX1 and copper-zinc containing superoxide dismutase 1 (SOD1) in erythrocytes. SOD2 and GPX1 expression and GPX1 and SOD1 activity were significantly higher in patients at diagnosis of BC in comparison to controls. In patients who had recurrence earlier than 1 year from TUR, CAT and SOD2 expression was lower (at diagnosis p=0.024 and p=0.434, at recurrence p=0.022 and p=0.010), while the GPX1 and GPX3 activity was higher (at diagnosis p=0.242 and p=0.394, at recurrence p=0.019 and p=0.025) compared to patients with recurrence after 1 year from TUR. This study revealed that the gene expression and activity of the antioxidant enzymes are elevated in blood of patients with BC, although a low expression of CAT might contribute to the recurrence of BC, in early prognosis.

  1. Expression of biologically active human interferon alpha 2 in Aloe vera.

    PubMed

    Lowther, William; Lorick, Kevin; Lawrence, Susan D; Yeow, Wen-Shuz

    2012-12-01

    Methods necessary for the successful transformation and regeneration of Aloe vera were developed and used to express the human protein, interferon alpha 2 (IFNα2). IFNα2 is a secreted cytokine that plays a vital role in regulating the cellular response to viral infection. Transgenic plants were regenerated from callus cultures initiated from zygotic embryos. Expression of the IFNA2 transgene in transformed plants was confirmed by RT-PCR and IFNα2 protein was detected by immunoblot analysis. Human A549 cells treated with transgenic aloe extracts for 6 h induced expression of the interferon stimulated gene 54, indicating activation of the IFN signaling pathway. The biological activity of the aloe produced IFNα2 was assessed using an antiviral assay with A549 cells treated with extracts from both the rind and pulp fractions of the shoot and subsequently infected with the lytic encephalomyocarditis virus. The highest level of activity attributable to recombinant IFNα2 was determined to be 625 IU/mg of total soluble protein (TSP) in the rind and 2,108 IU/mg TSP in the pulp. Two daughter plants that vegetatively budded during the course of this study were also confirmed to express IFNα2. These results confirm that Aloe vera is capable of expressing a human protein with biological activity, and that a secreted protein targeting the apoplast can be detected in the pulp fraction of the plant.

  2. Changes in cathepsin gene expression and relative enzymatic activity during gilthead sea bream oogenesis.

    PubMed

    Carnevali, O; Cionna, C; Tosti, L; Cerdà, J; Gioacchini, G

    2008-01-01

    The aim of this study was to provide evidence on the modulation of lysosomal enzymes in terms of both gene expression and enzymatic activity during follicle maturation. For this purpose three lysosomal enzymes, cathepsins B, D, and L, were studied in relation to yolk formation and degradation, during the main phases of ovarian follicle growth in the pelagophil species, the sea bream Sparus aurata. Specific attention was focused on the gene expression quantification method, on the assay of enzymatic activities, and on the relationship between the proteolytic cleavage of yolk proteins (YPs), cathepsin gene expression and cathepsin activities. For the gene expression study, the cathepsins B-like and L-like mRNAs were isolated and partially or fully characterized, respectively; the sequences were used as design specific primers for the quantification of cathepsin gene expression by real-time PCR, in follicles at different stages of maturation. The enzymatic assays for cathepsins B, D, and L were optimized in terms of specificity, sensitivity and reliability, using specific substrates and inhibitors. In ovulated eggs, the lipovitellin I (LV I) was degraded and the changes in electrophoretic pattern were preceded by an increase in the activity of a cysteine proteinase, cathepsin L, and its mRNA. Cathepsin B did not appear to be involved in YP changes during the final maturation stage.

  3. Chicoric acid suppresses BAFF expression in B lymphocytes by inhibiting NF-κB activity.

    PubMed

    Chen, Lingxi; Huang, Gang; Gao, Min; Shen, Xiaodong; Gong, Wei; Xu, Zhizhen; Zeng, Yijun; He, Fengtian

    2017-03-01

    B cell activating factor belonging to the TNF family (BAFF) plays a critical role in the pathogenesis of autoimmune diseases. The inhibition of BAFF expression is an emerging therapeutic approach for these disorders. Chicoric acid (CA), a bioactive phytochemical found in several widely used traditional medicinal plants, has significant anti-inflammatory activity and anti-arthritic effects. However, the role of CA in modulation of BAFF expression remains unknown. In this study, we demonstrated that CA reduced BAFF expression in human B lymphocyte cell lines and decreased the DNA-binding activity of nuclear factor-κB (NF-κB) in the BAFF promoter region. Furthermore, CA inhibited both the nuclear translocation of p65 (the subunit of NF-κB) and the phosphorylation of IκBα (inhibitor of NF-κB). These results suggest that CA suppresses BAFF expression by inhibiting NF-κB activity, and CA may serve as a novel therapeutic agent to down-regulate excessive BAFF expression in autoimmune diseases.

  4. Blood group ABO and Lewis antigens in bladder tumors: correlation between glycosyltransferase activity and antigen expression.

    PubMed

    Orntoft, T F; Wolf, H

    1988-01-01

    Pronounced changes in the expression of ABO and Lewis antigens have been observed in transitional cell carcinomas compared with normal urothelium. These changes are associated with changes in the activity of blood-group gene-encoded glycosyltransferases. This paper describes the correlation between blood-group antigen expression and the activity of glycosyltransferases in transitional cell carcinomas. Examined individuals were A1A2BO, Lewis, and secretor typed by the use of blood and saliva. The activity of alpha-2-, and alpha-4-L-fucosyltransferases as well as the alpha-3-N-acetyl-D-galactosaminyltransferase were determined as p-moles of labelled sugar incorporated by Lacto-N-biose I and 2'-fucosyllactose, respectively, per 100,000 carcinoma cells. In 3 non-secretors whose erythrocytes types as Le(a+b-), the alpha-2-L-fucosyltransferase activity was similar to that in 3 secretors, and the Leb antigen could be demonstrated to be present by monoclonal antibodies, both by immunohistological and immunochemical means. In 11 tumors from A individuals, the A1-transferase was severely reduced in 9 individuals who showed a loss of A antigen expression, and present in 2 individuals with A antigen expression in cytoplasmic vesicles. In conclusion, we demonstrate a good correlation between individual glycosyltransferase activity and expression of blood group Leb and loss of expression of blood group A in transitional cell carcinomas. Immunostaining of neutral glycolipids separated by TLC showed the Leb-active glycolipids to be simple hexa-saccharides in both secretors and non-secretors.

  5. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    PubMed Central

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  6. Enhancement of glucocorticoid receptor-mediated gene expression by constitutively active heat shock factor 1.

    PubMed

    Jones, Thomas J; Li, Dapei; Wolf, Irene M; Wadekar, Subhagya A; Periyasamy, Sumudra; Sánchez, Edwin R

    2004-03-01

    To further define the role of heat shock factor 1 (HSF1) in the stress potentiation of glucocorticoid receptor (GR) activity, we placed a constitutively active mutant of human HSF1 (hHSF1-E189) under the control of a doxycycline (DOX)-inducible vector. In mouse L929 cells, DOX-induced expression of hHSF1-E189 correlated with in vivo occupancy of the human heat shock protein 70 (hHsp70) promoter (chromatin-immunoprecipitation assay) and with increased activity under nonstress conditions at the hHsp70 promoter controlling expression of chloramphenicol acetyl transferase (CAT) (p2500-CAT). Comparison of hHSF1-E189 against stress-activated, endogenous HSF1 for DNA-binding, p2500-CAT, and Hsp70 protein expression activities showed the mutant factor to have lower, but clearly detectable, activities as compared with wild-type factor. Thus, the hHSF1-E189 mutant is capable of replicating these key functions of endogenous HSF1, albeit at reduced levels. To assess the involvement of hHSF1-E189 in GR activity, DOX-induced expression of hHSF1-E189 was performed in L929 cells expressing the minimal pGRE(2)E1B-CAT reporter. hHSF1-E189 protein expression in these cells was maximal at 24 h of DOX and remained constant up to 72 h. hHSF1-E189 expressed under these conditions was found both in the cytosolic and nuclear compartments, in a state capable of binding DNA. More importantly, GR activity at the pGRE(2)E1B-CAT promoter was found to increase after DOX-induced expression of hHSF1-E189. The potentiation of GR by hHSF1-E189 occurred at saturating concentrations of hormone and was dependent on at least 48 h of hHSF1-E189 up-regulation, suggesting that time was needed for an HSF1-induced factor to accumulate to a threshold level. Initial efforts to characterize how hHSF1-E189 controls GR signaling showed that it does not occur through alterations of GR protein levels or changes in GR hormone binding capacity. In summary, our observations provide the first molecular evidence for the

  7. The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes.

    PubMed

    Sato, Hiromi; Sugai, Hana; Kurosaki, Hiroshi; Ishikawa, Momoko; Funaki, Asami; Kimura, Yuki; Ueno, Koichi

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ plays a major role in the regulation of lipid and carbohydrate metabolism. Pioglitazone is a PPARγ agonist that is widely used for the treatment of type 2 diabetes mellitus. However, female patients have been reported to experience stronger efficacy and adverse effects than male patients. This study evaluated the effects of sex hormones on PPARγ expression and activity in adipocytes. Mouse 3T3-L1 preadipocytes were used after being grown into matured adipocytes. The sex hormones 17β-estradiol (E2), testosterone (T), or 5α-androstan-17β-ol-3-one (dihydrotestosterone; DHT) were added to the matured adipocytes and the cells were then maintained for short (24-72 h) or long (1- or 2-weeks) periods. E2 significantly upregulated PPARγ protein expression in a concentration-dependent manner after extended exposure, whereas T and DHT did not have such an effect. When cells were co-treated with pioglitazone and E2, PPARγ protein expression significantly increased in an E2-dependent manner, whereas this expression seemed to be reduced by pioglitazone mono-treatment and co-treatment with DHT at higher concentrations. The secretion levels of adiponectin protein, a major indicator of PPARγ activity, were significantly decreased by DHT, but were not affected by E2. Finally a luciferase assay was performed using a PPAR response element-Luk reporter gene. Transcriptional activity was not changed by any of single sex hormone treatment, but was significantly downregulated by co-treatment with pioglitazone and DHT. Taken together, our results suggest that sex hormones may influence PPARγ expression and function, which may explain the observed sex-specific different effect of pioglitazone.

  8. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  9. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  10. Coordinative modulation of human zinc transporter 2 gene expression through active and suppressive regulators.

    PubMed

    Lu, Yu-Ju; Liu, Ya-Chuan; Lin, Meng-Chieh; Chen, Yi-Ting; Lin, Lih-Yuan

    2015-04-01

    Zinc transporter 2 (ZnT2) is one of the cellular factors responsible for Zn homeostasis. Upon Zn overload, ZnT2 reduces cellular Zn by transporting it into excretory vesicles. We investigated the molecular mechanism that regulates human ZnT2 (hZnT2) gene expression. Zn induces hZnT2 expression in dose- and time-dependent manners. Overexpression of metal-responsive transcription factor 1 (MTF-1) increases hZnT2 transcription, whereas depletion of MTF-1 reduces hZnT2 expression. There are five putative metal response elements (MREs) within 1kb upstream of the hZnT2 gene. A serial deletion of the hZnT2 promoter region (from 5' to 3') shows that the two MREs proximal to the gene are essential for Zn-induced promoter activity. Further mutation analysis concludes that the penultimate MRE (MREb) supports the metal-induced promoter activity. The hZnT2 promoter has also a zinc finger E-box binding homeobox (ZEB) binding element. Mutation or deletion of this ZEB binding element elevates the basal and Zn-induced hZnT2 promoter activities. Knockdown of ZEB1 mRNA enhances the hZnT2 transcript level in HEK-293 cells. In MCF-7 (ZEB-deficient) cells, expression of ZEB proteins attenuates the Zn-induced hZnT2 expression. However, expressions of MTF-1 target genes such as human ZnT1 and metallothionein IIA were not affected. Our study shows the expression of the hZnT2 gene is coordinately regulated via active and suppressive modulators.

  11. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes

    PubMed Central

    Bauer, Stefan; Jendro, Michael C; Wadle, Andreas; Kleber, Sascha; Stenner, Frank; Dinser, Robert; Reich, Anja; Faccin, Erica; Gödde, Stefan; Dinges, Harald; Müller-Ladner, Ulf; Renner, Christoph

    2006-01-01

    Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells. PMID:17105646

  12. Effect of iron concentration on the expression and activity of catalase-peroxidases in mycobacteria.

    PubMed

    Yeruva, Veena C; Sundaram, C A S Sivagami; Sritharan, Manjula

    2005-02-01

    Mycobacterial catalases are known to exist in different isoforms. We studied the influence of iron concentration on the expression and activity of the different isoforms in Mycobacterium bovis BCG, M. smegmatis, M. fortuitum, M. kansasii and M. vaccae by growing them under iron-sufficient (4 microg Fe/mL) and iron-deficient (0.02 microg Fe/ml) conditions. Upon iron deprivation, significant differences were observed in the catalase/peroxidase activities in both quantitative spectrophotometric assays and in the activity staining in native gels. Notable feature was that the peroxidase activity showed a significant decrease upon iron deprivation in all the mycobacteria, except M. vaccae. Peroxidase activity in all the mycobacteria, irrespective of the iron status was susceptible to heat inactivation. However, the isoforms of catalase showed differences in their heat stability, indicating possible structural differences in these proteins. For example, M. bovis BCG expressed a heat labile catalase under iron-sufficient conditions, while a heat stable catalase band of similar mobility was expressed under iron-deprivation conditions. The study clearly indicates that iron plays an important role in the regulation of expression of the different isoforms of the catalase-peroxidases.

  13. Individual Differences in Neural Activity During A Facial Expression vs. Identity Working Memory Task

    PubMed Central

    Neta, Maital; Whalen, Paul J.

    2011-01-01

    Facial expressions of emotion constitute a critical portion of our non-verbal social interactions. In addition, the identity of the individual displaying this expression is critical to these interactions as they embody the context in which these expressions will be interpreted. To identify any overlapping and/or unique brain circuitry involved in the processing of these two information streams in a laboratory setting, participants performed a working memory (WM) task (i.e., N-back) in which they were instructed to monitor either the expression (EMO) or the identity (ID) of the same set of face stimuli. Consistent with previous work, during both the EMO and ID tasks, we found a significant increase in activity in dorsolateral prefrontal cortex (DLPFC) supporting its generalized role in WM. Further, individuals that showed greater DLPFC activity during both tasks also showed increased amygdala activity during the EMO task and increased lateral fusiform gyrus activity during the ID task. Importantly, the level of activity in these regions significantly correlated with performance on the respective tasks. These findings provide support for two separate neural circuitries, both involving the DLPFC, supporting working memory for these two distinct aspects of face processing/memory. PMID:21349341

  14. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  15. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    SciTech Connect

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-05-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and /sup 32/P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells.

  16. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice.

    PubMed

    Magez, Stefan; Schwegmann, Anita; Atkinson, Robert; Claes, Filip; Drennan, Michael; De Baetselier, Patrick; Brombacher, Frank

    2008-08-08

    African trypanosomes are extracellular parasitic protozoa, predominantly transmitted by the bite of the haematophagic tsetse fly. The main mechanism considered to mediate parasitemia control in a mammalian host is the continuous interaction between antibodies and the parasite surface, covered by variant-specific surface glycoproteins. Early experimental studies have shown that B-cell responses can be strongly protective but are limited by their VSG-specificity. We have used B-cell (microMT) and IgM-deficient (IgM(-/-)) mice to investigate the role of B-cells and IgM antibodies in parasitemia control and the in vivo induction of trypanosomiasis-associated anemia. These infection studies revealed that that the initial setting of peak levels of parasitemia in Trypanosoma brucei-infected microMT and IgM(-/-) mice occurred independent of the presence of B-cells. However, B-cells helped to periodically reduce circulating parasites levels and were required for long term survival, while IgM antibodies played only a limited role in this process. Infection-associated anemia, hypothesized to be mediated by B-cell responses, was induced during infection in microMT mice as well as in IgM(-/-) mice, and as such occurred independently from the infection-induced host antibody response. Antigenic variation, the main immune evasion mechanism of African trypanosomes, occurred independently from host antibody responses against the parasite's ever-changing antigenic glycoprotein coat. Collectively, these results demonstrated that in murine experimental T. brucei trypanosomiasis, B-cells were crucial for periodic peak parasitemia clearance, whereas parasite-induced IgM antibodies played only a limited role in the outcome of the infection.

  17. Contactin-1 reduces E-cadherin expression via activating AKT in lung cancer.

    PubMed

    Yan, Judy; Wong, Nicholas; Hung, Claudia; Chen, Wendy Xin-Yi; Tang, Damu

    2013-01-01

    Contactin-1 has been shown to promote cancer metastasis. However, the underlying mechanisms remain unclear. We report here that knockdown of contactin-1 in A549 lung cancer cells reduced A549 cell invasion and the cell's ability to grow in soft agar without affecting cell proliferation. Reduction of contactin-1 resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. In an effort to investigate the mechanisms whereby contactin-1 reduces E-cadherin expression, we observed that contactin-1 plays a role in AKT activation, as knockdown of contactin-1 attenuated AKT activation. Additionally, inhibition of AKT activation significantly enhanced E-cadherin expression, an observation that mimics the situation observed in contactin-1 knockdown, suggesting that activation of AKT plays a role in contactin-1-mediated downregulation of E-cadherin. In addition, we were able to show that knockdown of contactin-1 did not further reduce A549 cell's invasion ability, when AKT activation was inhibited by an AKT inhibitor. To further support our findings, we overexpressed CNTN-1 in two CNTN-1 null breast cancer cell lines expressing E-cadherin. Upon overexpression, CNTN-1 reduced E-cadherin levels in one cell line and increased AKT activation in the other. Furthermore, in our study of 63 primary lung cancers, we observed 65% of primary lung cancers being contactin-1 positive and in these carcinomas, 61% were E-cadherin negative. Collectively, we provide evidence that contactin-1 plays a role in the downregulation of E-cadherin in lung cancer and that AKT activation contributes to this process. In a study of mechanisms responsible for contactin-1 to activate AKT, we demonstrated that knockdown of CNTN-1 in A549 cells did not enhance PTEN expression but upregulated PHLPP2, a phosphatase that dephosphorylates AKT. These observations thus suggest that contactin-1 enhances AKT activation in part by preventing PHLPP2-mediated AKT

  18. Complement expression in retinal pigment epithelial cells is modulated by activated macrophages.

    PubMed

    Luo, Chang; Zhao, Jiawu; Madden, Angelina; Chen, Mei; Xu, Heping

    2013-07-01

    Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1β, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2-3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10-30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b

  19. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles.

    PubMed

    Hokari, Fumi; Kawasaki, Emi; Sakai, Atsushi; Koshinaka, Keiichi; Sakuma, Kunihiro; Kawanaka, Kentaro

    2010-08-01

    Sirt3, a member of the sirtuin family, is known to control cellular mitochondrial function. Furthermore, because sirtuins require NAD for their deacetylase activity, nicotinamide phosphoribosyltransferase (Nampt), which is a rate-limiting enzyme in the intracellular NAD biosynthetic pathway, influences their activity. We examined the effects of exercise training and normal postural contractile activity on Sirt3 and Nampt protein expression in rat skeletal muscles. Male rats were trained by treadmill running at 20 m/min, 60 min/day, 7 days/wk for 4 wk. This treadmill training program increased the Sirt3 protein expression in the soleus and plantaris muscles by 49% and 41%, respectively (P < 0.05). Moreover, a 4-wk voluntary wheel-running program also induced 66% and 95% increases in Sirt3 protein in the plantaris and triceps muscles of rats, respectively (P < 0.05). Treadmill-running and voluntary running training induced no significant changes in Nampt protein expression in skeletal muscles. In resting rats, the soleus muscle, which is recruited during normal postural activity, possessed the greatest expression levels of the Sirt3 and Nampt proteins, followed by the plantaris and triceps muscles. Furthermore, the Sirt3, but not Nampt, protein level was reduced in the soleus muscles from immobilized hindlimbs compared with that shown in the contralateral control muscle. These results demonstrated that 1) Sirt3 protein expression is upregulated by exercise training in skeletal muscles and 2) local postural contractile activity plays an important role in maintaining a high level of Sirt3 protein expression in postural muscle.

  20. Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System.

    PubMed

    Bradshaw, Marite; Tepp, William H; Whitemarsh, Regina C M; Pellett, Sabine; Johnson, Eric A

    2014-12-01

    Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.

  1. Leukocyte CD11a expression and granulocyte activation during experimental myocardial ischemia and long lasting reperfusion

    PubMed Central

    Lantos, János; Grama, László; Orosz, Tamás; Temes, Gyula; Rőth, Elizabeth

    2001-01-01

    BACKGROUND: Myocardial ischemia and reperfusion are accompanied by leukocyte activation and expression of surface adhesion molecules, which induce pathological interactions between endothelial cells and circulating neutrophils, leading to tissue damage. While the dynamics of these processes have been well defined during acute reperfusion, there is very little information regarding long lasting reperfusion. OBJECTIVES: To investigate neutrophil granulocyte (PMN) activation and the CD11a expression of leukocytes during myocardial ischemia and reperfusion for four weeks. ANIMALS AND METHODS: The left anterior descending coronary artery was occluded for 1 h in six dogs, followed by reperfusion for four weeks. Peripheral blood samples were collected before the operation, at the end of ischemia, at 5 and 60 min of reperfusion, and on postoperative days 1, 2, 3, 7, 14, 21 and 28. Sham operation on four dogs served as control. Leukocyte expression of CD11a was measured by flow cytometry. Superoxide radical production of isolated PMNs was determined spectrophotometrically. RESULTS: Granulocyte CD11a expression increased while the superoxide radical-producing capacity decreased significantly by the third postoperative day. Sham operation produced similar alterations in these parameters during the first postoperative week. From the second postoperative week, however, granulocyte radical production and adhesion molecule expression were higher in the ischemic animals. CONCLUSIONS: The exhaustion of PMN radical production and maximal CD11a expression during the first postoperative week are probably due to the surgical trauma caused by thoracotomy, but increased granulocyte function during later reperfusion indicates prolonged healing of injured myocardium. PMID:20428266

  2. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons

    PubMed Central

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson’s disease. PMID:26886559

  3. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans

    PubMed Central

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed. PMID:28139692

  4. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells.

    PubMed

    Redfern, Rachel L; Reins, Rose Y; McDermott, Alison M

    2011-03-01

    The ability of the ocular surface to respond to pathogens is in part attributed to toll-like receptors (TLRs) that recognize conserved motifs on various microbes. This study examines TLR expression on various ocular surface cells, if TLR agonists can modulate the expression of antimicrobial peptides (AMPs), human beta defensins (hBD) and cathelicidin (hCAP-18/LL-37) which maybe functionally active against Pseudomonas aeruginosa (PA) and if TLR agonists or AMPs can modulate TLR mRNA expression. TLR1-10 mRNA expression was examined in corneal epithelial, corneal stromal cells and conjunctival epithelial cells by RT-PCR. To confirm protein expression flow cytometry or immunostaining was performed for selected TLRs on some cell cultures. Ocular surface cells were cultured with a range of TLR agonists and then hBD-1, 2, 3, or hCAP-18 mRNA and protein expression was determined by RT-PCR and immunoblotting. In some experiments, cells were cultured with a cocktail of agonists for TLR3, 5 and 6/2 and the antimicrobial activity of the culture media was tested against PA. TLR mRNA expression was also examined in primary human corneal epithelial cells (HCEC) treated with either 3 μg/ml of hBD-2, 5 μg/ml of LL-37 or TLR4, 5 and 9 agonists. Overall, the ocular surface cells expressed mRNA for most of the TLRs but some differences were found. TLR2 was not detected in corneal fibroblasts, TLR4 was not detected in primary cultured or freshly isolated HCEC, TLR5 was not detected in conjunctival epithelial cells (IOBA-NHC) and corneal fibroblasts, TLR7 was not detected in freshly isolated HCEC and TLR10 was not detected in HCEC and IOBA-NHC. TLR8 mRNA was not expressed by any of the samples tested. Immunostaining of cadaver corneas revealed TLR5 and 9 expression throughout the cornea while TLR3 was significantly expressed only in the epithelium. Flow cytometry and immunostaining revealed cultured fibroblasts expressed TLR9 but had no significant TLR3 expression. hBD-2 expression

  5. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus

    PubMed Central

    Sun, Ren; Lin, Su-Fang; Gradoville, Lyndle; Yuan, Yan; Zhu, Fanxiu; Miller, George

    1998-01-01

    Herpesviruses exist in two states, latency and a lytic productive cycle. Here we identify an immediate-early gene encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus eight (HHV8) that activates lytic cycle gene expression from the latent viral genome. The gene is a homologue of Rta, a transcriptional activator encoded by Epstein–Barr virus (EBV). KSHV/Rta activated KSHV early lytic genes, including virus-encoded interleukin 6 and polyadenylated nuclear RNA, and a late gene, small viral capsid antigen. In cells dually infected with Epstein–Barr virus and KSHV, each Rta activated only autologous lytic cycle genes. Expression of viral cytokines under control of the KSHV/Rta gene is likely to contribute to the pathogenesis of KSHV-associated diseases. PMID:9724796

  6. [High throughput screening atrazine chlorohydrolase mutants with enhanced activity through Haematococcus pluvialis expression system].

    PubMed

    Wang, Huizhuan; Chen, Xiwen; Hao, Xiaohua; Chen, Defu

    2011-04-01

    Developing a high-throughput screening method is of great importance for directed evolution of atrazine chlorohydrolase. A mutagenesis library of atzA from Pseudomonas sp. ADP and Arthrobacter sp. AD1 was constructed using error-prone PCR and DNA shuffling. Candidate mutants were screened through Haematococcus pluvialis expression system, using atrazine as selection pressure. Sequence analysis showed that mutations in the obtained 12 mutants with enhanced activity were all point-substitutions and scattered throughout the gene. Enzymatic activity analysis showed that the mutants all had higher activities than that of the wild type. The activities were 1.8-3.6 fold of the wild-type enzyme when cultured in BBM medium with 1 mg/L atrazine, whereas 1.8-2.6 fold with 2 mg/L atrazine. These results indicated that Haematococcus pluvialis expression system is an ideal high throughput screening system for directed evolution of atrazine chlorohydrolase.

  7. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells

    PubMed Central

    Wong, Tsz Yan; Lin, Shu-mei; Leung, Lai K.

    2015-01-01

    High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. Attenuating SREBP-2 activity could potentially minimize the expression of HMGCR. Luteolin is a flavone that is commonly detected in plant foods. In the present study, Luteolin suppressed the expression of SREBP-2 at concentrations as low as 1 μM in the hepatic cell lines WRL and HepG2. This flavone also prevented the nuclear translocation of SREBP-2. Post-translational processing of SREBP-2 protein was required for nuclear translocation. Luteolin partially blocked this activation route through increased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and protein expression of SREBP-2 were reduced through luteolin. A reporter gene assay also verified that the transcription of SREBF2 was weakened in response to this flavone. The reduced expression and protein processing of SREBP-2 resulted in decreased nuclear translocation. Thus, the transcription of HMGCR was also decreased after luteolin treatment. In summary, the results of the present study showed that luteolin modulates HMGCR transcription by decreasing the expression and nuclear translocation of SREBP-2. PMID:26302339

  8. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  9. Constitutive expression of zif268 in neocortex is regulated by synaptic activity.

    PubMed Central

    Worley, P F; Christy, B A; Nakabeppu, Y; Bhat, R V; Cole, A J; Baraban, J M

    1991-01-01

    Transcription factors are rapidly and transiently induced in brain by excitatory stimuli and may be important in coordinating changes in gene expression underlying neuronal plasticity. In contrast to their transient induction after stimulation, certain transcription factors display stable, relatively high basal levels of expression in brain. Here we demonstrate that this "constitutive" expression of the transcription factor zif268 in cortex is driven by natural synaptic activity. Blockade of afferent visual activity with intraocular injections of tetrodotoxin results in rapid, dramatic reductions of Zif268 mRNA and immunoreactivity in visual cortex. Moreover, dark-adaptation for several days lowers zif268 expression in visual cortex, and expression rapidly returns to control levels upon subsequent light exposure. Several other transcription factors, which are induced in cortical neurons by excitatory stimuli, appear less responsive to changes in natural sensory input. These studies suggest that transcription factors play a role not only in responses to artificial stimuli but also in the normal maintenance of cortical physiology. Anatomic markers for zif268 may be useful in mapping normal cortical activity in brain. Images PMID:1828891

  10. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  11. Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli.

    PubMed

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Pande, Abhay H

    2015-11-01

    Human PON1 (h-PON1) is a Ca(2+)-dependent serum enzyme and can hydrolyze (and inactivate) a wide range of substrates. It is a multifaceted enzyme and exhibit anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial, and organophosphate (OP)-detoxifying properties. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against these conditions in humans. Insufficient hydrolyzing activity of native h-PON1 against desirable substrate affirms the urgent need to develop improved variant(s) of h-PON1 having enhanced activity. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop such variant(s). However, generation of rh-PON1 using E. coli expression system has been elusive until now because of the aggregation of over-expressed rh-PON1 protein in inactive form as inclusion bodies (IBs) in the bacterial cells. In this study, we have over-expressed rh-PON1(wt) and rh-PON1(H115W;R192K) proteins as IBs in E. coli, and refolded the inactive enzymes present in the IBs to their active form using in vitro refolding. The active enzymes were isolated from the refolding mixture by ion-exchange chromatography. The catalytic properties of the refolded enzymes were similar to their soluble counterparts. Our results show that the pure and the active variant of rh-PON1 enzyme having enhanced hydrolyzing activity can be produced in large quantities using E. coli expression system. This method can be used for the industrial scale production of rh-PON1 enzymes and will aid in developing h-PON1 as a therapeutic candidate.

  12. Cellular prion protein in the bovine mammary gland is selectively expressed in active lactocytes.

    PubMed

    Didier, Andrea; Dietrich, Richard; Steffl, Martin; Gareis, Manfred; Groschup, Martin H; Müller-Hellwig, Simone; Märtlbauer, Erwin; Amselgruber, Werner M

    2006-11-01

    The cellular prion protein (PrP(c)) is a highly conserved glycoprotein with a still enigmatic physiological function. It is mainly expressed in the central nervous system but accumulating data suggest that PrP(c) is also found in a broad spectrum of non-neuronal tissue. Here we investigated the cell-type-related PrP(c) expression in the bovine mammary gland by using immunohistochemistry (IHC), ELISA, Western blot, and real-time RT-PCR. Specific immunostaining of serial sections revealed that PrP(c) is selectively localized in mammary gland epithelial cells. Particularly strong expression was found at the basolateral surface of those cells showing active secretion. Results obtained by RT-PCR and ELISA complemented IHC findings. No correlation was found between the level of PrP(c) expression and other parameters such as age of the animals under study or stage of lactation.

  13. Expression of Active Subunit of Nitrogenase via Integration into Plant Organelle Genome

    PubMed Central

    Groat, Jeanna; Staub, Jeffrey M.; Stephens, Michael

    2016-01-01

    Nitrogen availability is crucial for crop yield with nitrogen fertilizer accounting for a large percentage of farmers’ expenses. However, an untimely or excessive application of fertilizer can increase risks of negative environmental effects. These factors, along with the environmental and energy costs of synthesizing nitrogen fertilizer, led us to seek out novel biotechnology-driven approaches to supply nitrogen to plants. The strategy we focused on involves transgenic expression of nitrogenase, a bacterial multi-subunit enzyme that can capture atmospheric nitrogen. Here we report expression of the active Fe subunit of nitrogenase via integration into the tobacco plastid genome of bacterial gene sequences modified for expression in plastid. Our study suggests that it will be possible to engineer plants that are able to produce their own nitrogen fertilizer by expressing nitrogenase genes in plant plastids. PMID:27529475

  14. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    PubMed Central

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana; Gritsenko, Natalia; Rask, Lene; Mainbakh, Yuli; Zilberstein, Yael; Yagil, Ezra; Kolot, Mikhail

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system. PMID:27117628

  15. Expression of Active Subunit of Nitrogenase via Integration into Plant Organelle Genome.

    PubMed

    Ivleva, Natalia B; Groat, Jeanna; Staub, Jeffrey M; Stephens, Michael

    2016-01-01

    Nitrogen availability is crucial for crop yield with nitrogen fertilizer accounting for a large percentage of farmers' expenses. However, an untimely or excessive application of fertilizer can increase risks of negative environmental effects. These factors, along with the environmental and energy costs of synthesizing nitrogen fertilizer, led us to seek out novel biotechnology-driven approaches to supply nitrogen to plants. The strategy we focused on involves transgenic expression of nitrogenase, a bacterial multi-subunit enzyme that can capture atmospheric nitrogen. Here we report expression of the active Fe subunit of nitrogenase via integration into the tobacco plastid genome of bacterial gene sequences modified for expression in plastid. Our study suggests that it will be possible to engineer plants that are able to produce their own nitrogen fertilizer by expressing nitrogenase genes in plant plastids.

  16. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  17. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans

    PubMed Central

    Peckol, Erin L.; Troemel, Emily R.; Bargmann, Cornelia I.

    2001-01-01

    Changes in the environment cause both short-term and long-term changes in an animal's behavior. Here we show that specific sensory experiences cause changes in chemosensory receptor gene expression that may alter sensory perception in the nematode Caenorhabditis elegans. Three predicted chemosensory receptor genes expressed in the ASI chemosensory neurons, srd-1, str-2, and str-3, are repressed by exposure to the dauer pheromone, a signal of crowding. Repression occurs at pheromone concentrations below those that induce formation of the alternative dauer larva stage, suggesting that exposure to pheromones can alter the chemosensory behaviors of non-dauer animals. In addition, ASI expression of srd-1, but not str-2 and str-3, is induced by sensory activity of the ASI neurons. Expression of two receptor genes is regulated by developmental entry into the dauer larva stage. srd-1 expression in ASI neurons is repressed in dauer larvae. str-2 expression in dauer animals is induced in the ASI neurons, but repressed in the AWC neurons. The ASI and AWC neurons remodel in the dauer stage, and these results suggest that their sensory specificity changes as well. We suggest that experience-dependent changes in chemosensory receptor gene expression may modify olfactory behaviors. PMID:11572964

  18. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  19. Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    PubMed

    Gelmedin, Verena; Delaney, Angela; Jennelle, Lucas; Hawdon, John M

    2015-07-01

    When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock

  20. Express

    Integrated Risk Information System (IRIS)

    Express ; CASRN 101200 - 48 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  1. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression.

    PubMed

    Hicks, Mellissa J; Hu, Qiuping; Macrae, Erin; DeWille, James

    2015-05-01

    The mitogen-activated protein kinase (MAPK) pathway is aberrantly activated in many human cancers, including breast cancer. Activation of MAPK signaling is associated with the increased expression of a wide range of genes that promote cell survival, proliferation, and migration. This report investigated the influence of MAPK signaling on the regulation and expression of JUNB in human breast cancer cell lines. JUNB has been associated with tumor suppressor and oncogenic functions, with most reports describing JUNB as an oncogene in breast cancer. Our results indicated that JUNB expression is elevated in MCF10A(met), SKBR3, and MDA-MB-231 human breast cancer cell lines compared to nontransformed MCF10A mammary epithelial cells. Increased RAS/MAPK signaling in MCF10A(met) cells correlates with the increased association of RNA polymerase II (Pol II) phosphorylated on serine 5 (Pol IIser5p) with the JUNB proximal promoter. Pol IIser5p is the "transcription initiating" form of Pol II. Treatment with U0126, a MAPK pathway inhibitor, reduces Pol IIser5p association with the JUNB proximal promoter and reduces JUNB expression. Oncostatin M (OSM) enhances MAPK and STAT3 signaling and significantly induces JUNB expression. U0126 treatment reduces OSM-induced Pol IIser5p binding to the JUNB proximal promoter and JUNB expression, but does not reduce pSTAT3 levels or the association of pSTAT3 with the JUNB proximal promoter. These results demonstrate that the MAPK pathway plays a primary role in the control of JUNB gene expression by promoting the association of Pol IIser5p with the JUNB proximal promoter.

  2. Signal transduction-associated and cell activation-linked antigens expressed in human mast cells.

    PubMed

    Valent, Peter; Ghannadan, Minoo; Hauswirth, Alexander W; Schernthaner, Gerit-Holger; Sperr, Wolfgang R; Arock, Michel

    2002-05-01

    Mast cells (MCs) are multifunctional hematopoietic effector cells that produce and release an array of biologically active mediator substances. Growth and functions of MCs are regulated by cytokines, other extracellular factors, surface and cytoplasmic receptors, oncogene products, and a complex network of signal transduction cascades. Key regulators of differentiation of MCs appear to be stem cell factor (SCF) and its tyrosine kinase receptor KIT (c-kit proto-oncogene product=CD117), downstream-acting elements, and the mi transcription factor (MITF). Signaling through KIT is negatively regulated by the signal regulatory protein (SIRP)-alpha (CD172a)-SHP-1-pathway that is disrupted in neoplastic MCs in MC proliferative disorders. Both KIT and FcepsilonRI are involved in MC activation and mediator release. Activation of MCs through FcepsilonRI is associated with increased expression of activation-linked membrane antigens as well as with signaling events involving Lyn and Syk kinases, the phosphatidylinositol-3-kinase-pathway, Ras pathway, and the phospholipase C-protein kinase C pathway. A similar network of signaling is found in SCF-activated MCs. The current article gives an overview on signal transduction-associated and activation-linked antigens expressed in human MCs. Wherever possible the functional implication of signaling pathways and antigen expression are discussed.

  3. Physical activity-associated gene expression signature in nonhuman primate motor cortex.

    PubMed

    Mitchell, Amanda C; Leak, Rehana K; Garbett, Krassimira; Zigmond, Michael J; Cameron, Judy L; Mirnics, Károly

    2012-03-01

    It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.

  4. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages

    PubMed Central

    Ehlting, Christian; Thomas, Maria; Zanger, Ulrich M.; Sawodny, Oliver; Häussinger, Dieter; Bode, Johannes G.

    2016-01-01

    Macrophages are cells with remarkable plasticity. They integrate signals from their microenvironment leading to context-dependent polarization into classically (M1) or alternatively (M2) activated macrophages, representing two extremes of a broad spectrum of divergent phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals towards injured tissue but, depending on the eliciting damage, may also be responsible for the generation and aggravation of tissue injury. Although incompletely understood, there is emerging evidence that macrophage polarization is critical for these antagonistic roles. To identify activation-specific expression patterns of chemokines and cytokines that may confer these distinct effects a systems biology approach was applied. A comprehensive literature-based Boolean model was developed to describe the M1 (LPS-activated) and M2 (IL-4/13-activated) polarization types. The model was validated using high-throughput transcript expression data from murine bone marrow derived macrophages. By dynamic modeling of gene expression, the chronology of pathway activation and autocrine signaling was estimated. Our results provide a deepened understanding of the physiological balance leading to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1 or Akt2 that may be important for directing macrophage polarization. PMID:27464342

  5. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

    PubMed

    Schmitt, Anja; Grondona, Paula; Maier, Tabea; Brändle, Marc; Schönfeld, Caroline; Jäger, Günter; Kosnopfel, Corinna; Eberle, Franziska C; Schittek, Birgit; Schulze-Osthoff, Klaus; Yazdi, Amir S; Hailfinger, Stephan

    2016-04-01

    The protease activity of the paracaspase mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor nuclear factor-κB and is thus essential for the expression of inflammatory target genes. MALT1 is not only present in cells of the hematopoietic lineage, but is ubiquitously expressed. Here we report that stimulation with zymosan or Staphylococcus aureus induced MALT1 protease activity in human primary keratinocytes. Inhibition of the Src family of kinases or novel protein kinase C isoforms as well as silencing of CARMA2 or BCL10 interfered with activation of MALT1 protease. Silencing or inhibition of MALT1 protease strongly decreased the expression of important inflammatory genes such as TNFα, IL-17C, CXCL8 and HBD-2. MALT1-inhibited cells were unable to mount an antimicrobial response upon zymosan stimulation or phorbolester/ionomycin treatment, demonstrating a central role of MALT1 protease activity in keratinocyte immunity and suggesting MALT1 as a potential target in inflammatory skin diseases.

  6. Effects of gaze direction, head orientation and valence of facial expression on amygdala activity.

    PubMed

    Sauer, Andreas; Mothes-Lasch, Martin; Miltner, Wolfgang H R; Straube, Thomas

    2014-08-01

    There is increasing evidence for a role of the amygdala in processing gaze direction and emotional relevance of faces. In this event-related functional magnetic resonance study we investigated amygdala responses while we orthogonally manipulated head direction, gaze direction and facial expression (angry, happy and neutral). This allowed us to investigate effects of stimulus ambiguity, low-level factors and non-emotional factors on amygdala activation. Averted vs direct gaze induced increased activation in the right dorsal amygdala regardless of facial expression and head orientation. Furthermore, valence effects were found in the ventral amygdala and strongly dependent on head orientation. We observed enhanced activation to angry and neutral vs happy faces for observer-directed faces in the left ventral amygdala while the averted head condition reversed this pattern resulting in increased activation to happy as compared to angry and neutral faces. These results suggest that gaze direction drives specifically dorsal amygdala activation regardless of facial expression, low-level perceptual factors or stimulus ambiguity. The role of the amygdala is thus not restricted to the detection of potential threat, but has a more general role in attention processes. Furthermore, valence effects are associated with activation of the ventral amygdala and strongly influenced by non-emotional factors.

  7. Identification of a novel gene expressed in activated natural killer cells and T cells

    SciTech Connect

    Dahl, C.A.; Schall, R.P.; He, H.; Cairns, J.S. )

    1992-01-15

    The authors have isolated a cDNA clone from a human activated NK cell-derived cDNA library that identifies a transcript [NK4] that is selectively expressed in lymphocytes. The expression of this transcript is increased after activation of T cells by mitogens or activation of NK cells by IL-2 (lymphokine-activated killer cells). The transcript levels demonstrated by Northern blot analysis increase by 12 h after activation, remain high for at least 48 h, and require protein synthesis for expression. Southern blot analysis of B lymphoblastoid lines derived from 18 unrelated individuals reveal variable banding patterns suggestive of polymorphism within the NK4 gene. No homology was found between the sequence of the coding region of this transcript and any sequences in the GenBank data base. Sequence homology to the U1 small nuclear RNA was found within the 3[prime] untranslated region immediately upstream of the site of polyadenylation, suggesting a possible role for U1 in the polyadenylation process. Sequence analysis indicates the transcript would encode a protein having a mass of 27 kDa. The presence of a signal sequence and lack of a transmembrane region suggests that the protein is secreted. In addition, the protein contains an RGD sequence that may be involved in cellular adhesion. This transcript appears to encode a novel product common to the activation pathways of both NK cells and T cells. 50 refs., 8 figs.

  8. Calcium-activated chloride current expression in axotomized sensory neurons: what for?

    PubMed Central

    Boudes, Mathieu; Scamps, Frédérique

    2012-01-01

    Calcium-activated chloride currents (CaCCs) are activated by an increase in intracellular calcium concentration. Peripheral nerve injury induces the expression of CaCCs in a subset of adult sensory neurons in primary culture including mechano- and proprioceptors, though not nociceptors. Functional screenings of potential candidate genes established that Best1 is a molecular determinant for CaCC expression among axotomized sensory neurons, while Tmem16a is acutely activated by inflammatory mediators in nociceptors. In nociceptors, such CaCCs are preferentially activated under receptor-induced calcium mobilization contributing to cell excitability and pain. In axotomized mechano- and proprioceptors, CaCC activation does not promote electrical activity and prevents firing, a finding consistent with electrical silencing for growth competence of adult sensory neurons. In favor of a role in the process of neurite growth, CaCC expression is temporally correlated to neurons displaying a regenerative mode of growth. This perspective focuses on the molecular identity and role of CaCC in axotomized sensory neurons and the future directions to decipher the cellular mechanisms regulating CaCC during neurite (re)growth. PMID:22461766

  9. Application of Protein Expression Profiling to Screen Chemicals for Androgenic Activity.

    EPA Science Inventory

    Protein expression changes can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In this study, Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) coupled with a s...

  10. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  11. Regulation of hepatic drug transporter activity and expression by organochlorine pesticides.

    PubMed

    Bucher, Simon; Le Vee, Marc; Jouan, Elodie; Fardel, Olivier

    2014-03-01

    Organochlorine (OC) pesticides constitute a major class of persistent and toxic organic pollutants, known to modulate drug-detoxifying enzymes. In the present study, OCs were demonstrated to also alter the activity and expression of human hepatic drug transporters. Activity of the sinusoidal influx transporter OCT1 (organic cation transporter 1) was thus inhibited by endosulfan, chlordane, heptachlor, lindane, and dieldrine, but not by dichlorodiphenyltrichloroethane isomers, whereas those of the canalicular efflux pumps MRP2 (multidrug resistance-associated protein 2) and BCRP (breast cancer resistance protein) were blocked by endosulfan, chlordane, heptachlor, and chlordecone; this latter OC additionally inhibited the multidrug resistance gene 1 (MDR1)/P-glycoprotein (P-gp) activity. OCs, except endosulfan, were next found to induce MDR1/P-gp and MRP2 mRNA expressions in hepatoma HepaRG cells; some of them also upregulated BCRP. By contrast, expression of sinusoidal transporters was not impaired (organic anion-transporting polypeptide (OATP) 1B1 and OATP2B1) or was downregulated (sodium taurocholate co-transporting polypeptide (NTCP) and OCT1). Such regulations of drug transporter activity and expression, depending on the respective nature of OCs and transporters, may contribute to the toxicity of OC pesticides.

  12. Cellulase variants with improved expression, activity and stability, and use thereof

    SciTech Connect

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  13. Expression and activity of recombinant proaerolysin derived from Aeromonas hydrophila cultured from diseased channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proaerolysin-coding gene was cloned from the genomic DNA of A. hydrophila and heterologously expressed in E. coli. The purified recombinant proaerolysin was inactive and could be activated by treatment with proteases, furin and trypsin, and extra-cellular proteins (ECPs, the cell-free supernatant of...

  14. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  15. Expressive Morality in a Collaborative Learning Activity: A Case Study in the Creation of Moral Meaning.

    ERIC Educational Resources Information Center

    Johnston, Bill; Buzzelli, Cary A.

    2002-01-01

    Considers the way moral meanings are created, Expressed, and negotiated in the actions and words of participants as they engage in a collaborative science activity. Offers an analysis of two excerpts from a video recording of a third grade classroom in which two students work with each other and with a visiting teacher on an experiment that…

  16. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    PubMed

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  17. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  18. Activation of TIM1 induces colon cancer cell apoptosis via modulating Fas ligand expression.

    PubMed

    Wang, Hao; Zhang, Xueyan; Sun, Wenjing; Hu, Xiaocui; Li, Xiaolin; Fu, Songbin; Liu, Chen

    2016-04-29

    The pathogenesis of colon cancer is unclear. It is proposed that TIM1 has an association with human cancer. The present study aims to investigate the role of TIM1 activation in the inhibition of human colon cancer cells. In this study, human colon cancer cell line, HT29 and T84 cells were cultured. The expression of TIM1 was assessed by real time RT-PCR and Western blotting. The TIM1 on the cancer cells was activated in the culture by adding recombinant TIM4. The chromatin structure at the FasL promoter locus was assessed by chromatin immunoprecipitation. The apoptosis of the cancer cells was assessed by flow cytometry. The results showed that human colon cancer cell lines, HT29 cells and T84 cells, expressed TIM1. Activation of TIM1 by exposing the cells to TIM4 significantly increased the frequency of apoptotic colon cancer cells. The expression of FasL was increased in the cancer cells after treating by TIM4. Blocking Fas or FasL abolished the exposure to TIM4-induced T84 cell apoptosis. In conclusion, HT29 cells and T84 cells express TIM1; activation TIM1 can induce the cancer cell apoptosis. TIM1 may be a novel therapeutic target of colon cancer.

  19. Persistent Prelimbic Cortex Activity Contributes to Enhanced Learned Fear Expression in Females

    ERIC Educational Resources Information Center

    Fenton, Georgina E.; Pollard, Amelia K.; Halliday, David M.; Mason, Rob; Bredy, Timothy W.; Stevenson, Carl W.

    2014-01-01

    Anxiety disorders, such as post-traumatic stress, are more prevalent in women and are characterized by impaired inhibition of learned fear and medial prefrontal cortex (mPFC) dysfunction. Here we examined sex differences in fear extinction and mPFC activity in rats. Females showed more learned fear expression during extinction and its recall, but…

  20. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  1. Cellulase variants with improved expression, activity and stability, and use thereof

    SciTech Connect

    Aehle, Wolfgang; Bott, Richard R.; Bower, Benjamin S.; Caspi, Jonathan; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus Joannes; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Van Lieshout, Johannes Franciscus Thomas; Nikolaev, Igor; Wallace, Louise; Van Stigt Thans, Sander; Vogtentanz, Gudrun; Sandgren, Mats

    2016-12-20

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  2. Age-Dependent Hepatic UDP-Glucuronosyltransferase Gene Expression and Activity in Children

    PubMed Central

    Neumann, Elizabeth; Mehboob, Huma; Ramírez, Jacqueline; Mirkov, Snezana; Zhang, Min; Liu, Wanqing

    2016-01-01

    UDP-glucuronosyltransferases (UGTs) are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17) and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3) in liver tissue of donors (n = 38) ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19) of children donors. We found a statistically significant increase (nominal p < 0.05) in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7, and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 and pregnane X receptor, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05). These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children. PMID:27899892

  3. Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding.

    PubMed

    Soengas, José L; Polakof, Sergio; Chen, Xi; Sangiao-Alvarellos, Susana; Moon, Thomas W

    2006-09-01

    The expression and activities of glucokinase (GK) and hexokinase (HK) were assessed in different tissues of rainbow trout (Oncorhynchus mykiss) under different feeding conditions (fed, fasted for 14 days, and refed for 7 days). Two different HK-I cDNAs were identified with different tissue distributions. One transcript named heart or H-HK-I was observed in the four brain regions assessed, white muscle, kidney, and gills but not in liver or erythrocytes. A second transcript named liver or L-HK-I was found in all tissues surveyed. GK mRNA was identified only in liver and the four brain regions. GK expression was altered by feeding conditions, especially in liver and hypothalamus where food deprivation decreased and re-feeding increased expression; changes in expression reflected activity changes and changes in tissue glycogen levels. In contrast, feeding conditions did not alter expression of either HK-I transcript but did alter tissue HK activities. The reduced phosphorylating capacity noted with food deprivation correlates primarily with changes in tissue HK, whereas increased capacity, as with refeeding, was associated with changes in GK; these changes fit with the different K(m) values of the GK and HK enzymes. These results provide evidence for the hypothalamus acting as a glucosensor in trout, as hyperglycemia produced increased GK expression and activity, as well as increased glycogen levels. Thus, even though trout use glucose poorly, none of the parameters tested here relate to this inability to use glucose and suggest that, at least, rainbow trout, if given an appropriate carbohydrate diet, could metabolically adjust to such a diet.

  4. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy.

  5. Skeletal muscle regeneration is delayed by reduction in Xin expression: consequence of impaired satellite cell activation?

    PubMed

    Nissar, Aliyah A; Zemanek, Bart; Labatia, Rita; Atkinson, Daniel J; van der Ven, Peter F M; Fürst, Dieter O; Hawke, Thomas J

    2012-01-01

    Xin is a striated muscle-specific actin-binding protein whose mRNA expression has been observed in damaged skeletal muscle. Here we demonstrate increased Xin protein expression early postinjury (≤ 12 h) and localization primarily to the periphery of damaged myofibers. At 1 day postinjury, Xin is colocalized with MyoD, confirming expression in activated satellite cells (SCs). By 5 days postinjury, Xin is evident in newly regenerated myofibers, with a return to preinjury levels by 14 days of regeneration. To determine whether the increased Xin expression is functionally relevant, tibialis anterior muscles of wild-type mice were infected with Xin-short hairpin RNA (shRNA) adenovirus, whereas the contralateral tibialis anterior received control adenovirus (Control). Four days postinfection, muscles were harvested or injured with cardiotoxin and collected at 3, 5, or 14 days thereafter. When compared with Control, Xin-shRNA infection attenuated muscle regeneration as demonstrated by Myh3 expression and fiber areas. Given the colocalization of Xin and MyoD, we isolated single myofibers from infected muscles to investigate the effect of silencing Xin on SC function. Relative to Control, SC activation, but not proliferation, was significantly impaired in Xin-shRNA-infected muscles. To determine whether Xin affects the G0-G1 transition, cell cycle reentry was assessed on infected C2C12 myoblasts using a methylcellulose assay. No difference in reentry was noted between groups, suggesting that Xin contributes to SC activation by means other than affecting G0-G1 transition. Together these data demonstrate a critical role for Xin in SC activation and reduction in Xin expression results in attenuated skeletal muscle repair.

  6. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression.

    PubMed

    Kauffmann, Hans Martin; Pfannschmidt, Sylvia; Zöller, Heike; Benz, Anke; Vorderstemann, Birgit; Webster, Jeanette I; Schrenk, Dieter

    2002-02-28

    In the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells. However, only tBHQ and quercetin acted as inducers, but not the other compounds investigated. Reporter gene assays demonstrated that proximal promoter regions of the genes contribute to the induction by tBHQ, quercetin (MRP1) and clotrimazol (MRP2). However, the deletion of binding sites supposed to mediate the induction process (a PXR-binding element-like sequence for the clotrimazol effect and an ARE (antioxidative response element) for the tBHQ/quercetin effect) did not result in a significant decrease in the induction factor indicating that other parts of the promoter are probably involved in the induction process. In summary, expression of both genes can be up-regulated by redox-active compounds, while the other compounds tested induced only MRP2 but not MRP1 expression.

  7. Gene expression profiling in Ishikawa cells: A fingerprint for estrogen active compounds

    SciTech Connect

    Boehme, Kathleen; Simon, Stephanie

    2009-04-01

    Several anthropogenous and naturally occurring substances, referred to as estrogen active compounds (EACs), are able to interfere with hormone and in particular estrogen receptor signaling. EACs can either cause adverse health effects in humans and wildlife populations or have beneficial effects on estrogen-dependent diseases. The aim of this study was to examine global gene expression profiles in estrogen receptor (ER)-proficient Ishikawa plus and ER-deficient Ishikawa minus endometrial cancer cells treated with selected well-known EACs (Diethylstilbestrol, Genistein, Zearalenone, Resveratrol, Bisphenol A and o,p'-DDT). We also investigated the effect of the pure antiestrogen ICI 182,780 (ICI) on the expression patterns caused by these compounds. Transcript levels were quantified 24 h after compound treatment using Illumina BeadChip Arrays. We identified 87 genes with similar expression changes in response to all EAC treatments in Ishikawa plus. ICI lowered the magnitude or reversed the expression of these genes, indicating ER dependent regulation. Apart from estrogenic gene regulation, Bisphenol A, o,p'-DDT, Zearalenone, Genistein and Resveratrol displayed similarities to ICI in their expression patterns, suggesting mixed estrogenic/antiestrogenic properties. In particular, the predominant antiestrogenic expression response of Resveratrol could be clearly distinguished from the other test compounds, indicating a distinct mechanism of action. Divergent gene expression patterns of the phytoestrogens, as well as weaker estrogenic gene expression regulation determined for the anthropogenous chemicals Bisphenol A and o,p'-DDT, warrants a careful assessment of potential detrimental and/or beneficial effects of EACs. The characteristic expression fingerprints and the identified subset of putative marker genes can be used for screening chemicals with an unknown mode of action and for predicting their potential to exert endocrine disrupting effects.

  8. Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex

    PubMed Central

    Yekhlef, Latefa; Breschi, Gian Luca; Taverna, Stefano

    2017-01-01

    We investigated whether an anti-epileptic effect is obtained by selectively activating excitatory neurons expressing ChR2 under the promoter for the synaptic vesicular glutamate transporter 2 (VGLUT2). VGLUT2-expressing cells were optically stimulated while local field potential and whole-cell patch-clamp recordings were performed in mouse entorhinal cortical slices perfused with the proconvulsive compound 4-aminopyridine (4-AP). In control conditions, blue light flashes directly depolarized the majority of putative glutamatergic cells, which in turn synaptically excited GABAergic interneurons. During bath perfusion with 4-AP, photostimuli triggered a fast EPSP-IPSP sequence which was often followed by tonic-clonic seizure-like activity closely resembling spontaneous ictal discharges. The GABAA-receptor antagonist gabazine blocked the progression of both light-induced and spontaneous seizures. Surprisingly, prolonged photostimuli delivered during ongoing seizures caused a robust interruption of synchronous discharges. Such break was correlated with a membrane potential depolarization block in principal cells, while putative GABAergic interneurons changed their firing activity from a burst-like to an irregular single-spike pattern. These data suggest that photostimulation of glutamatergic neurons triggers seizure-like activity only in the presence of an intact GABAergic transmission and that selectively activating the same glutamatergic cells robustly interrupts ongoing seizures by inducing a strong depolarization block, resulting in the disruption of paroxysmal burst-like firing. PMID:28230208

  9. NEU1 and NEU3 Sialidase Activity Expressed in Human Lung Microvascular Endothelia

    PubMed Central

    Cross, Alan S.; Hyun, Sang Won; Miranda-Ribera, Alba; Feng, Chiguang; Liu, Anguo; Nguyen, Chinh; Zhang, Lei; Luzina, Irina G.; Atamas, Sergei P.; Twaddell, William S.; Guang, Wei; Lillehoj, Erik P.; Puché, Adam C.; Huang, Wei; Wang, Lai-Xi; Passaniti, Antonino; Goldblum, Simeon E.

    2012-01-01

    The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2′-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not. PMID:22403397

  10. Enhanced calcium cycling and contractile function in transgenic hearts expressing constitutively active G alpha o* protein.

    PubMed

    Zhu, Ming; Gach, Agnieszka A; Liu, GongXin; Xu, Xiaomei; Lim, Chee Chew; Zhang, Julie X; Mao, Lan; Chuprun, Kurt; Koch, Walter J; Liao, Ronglih; Koren, Gideon; Blaxall, Burns C; Mende, Ulrike

    2008-03-01

    In contrast to the other heterotrimeric GTP-binding proteins (G proteins) Gs and Gi, the functional role of G o is still poorly defined. To investigate the role of G alpha o in the heart, we generated transgenic mice with cardiac-specific expression of a constitutively active form of G alpha o1* (G alpha o*), the predominant G alpha o isoform in the heart. G alpha o expression was increased 3- to 15-fold in mice from 5 independent lines, all of which had a normal life span and no gross cardiac morphological abnormalities. We demonstrate enhanced contractile function in G alpha o* transgenic mice in vivo, along with increased L-type Ca2+ channel current density, calcium transients, and cell shortening in ventricular G alpha o*-expressing myocytes compared with wild-type controls. These changes were evident at baseline and maintained after isoproterenol stimulation. Expression levels of all major Ca2+ handling proteins were largely unchanged, except for a modest reduction in Na+/Ca2+ exchanger in transgenic ventricles. In contrast, phosphorylation of the ryanodine receptor and phospholamban at known PKA sites was increased 1.6- and 1.9-fold, respectively, in G alpha o* ventricles. Density and affinity of beta-adrenoceptors, cAMP levels, and PKA activity were comparable in G alpha o* and wild-type myocytes, but protein phosphatase 1 activity was reduced upon G alpha o* expression, particularly in the vicinity of the ryanodine receptor. We conclude that G alpha o* exerts a positive effect on Ca2+ cycling and contractile function. Alterations in protein phosphatase 1 activity rather than PKA-mediated phosphorylation might be involved in hyperphosphorylation of key Ca2+ handling proteins in hearts with constitutive G alpha o activation.

  11. The Androgen Receptor Regulates PPARγ Expression and Activity in Human Prostate Cancer Cells

    PubMed Central

    Olokpa, Emuejevoke; Bolden, Adrienne

    2016-01-01

    The peroxisome proliferator activated receptor gamma (PPARγ) is a ligand‐activated transcription factor that regulates growth and differentiation within normal prostate and prostate cancers. However the factors that control PPARγ within the prostate cancers have not been characterized. The goal of this study was to examine whether the androgen receptor (AR) regulates PPARγ expression and function within human prostate cancer cells. qRT‐PCR and Western blot analyses revealed nanomolar concentrations of the AR agonist dihydrotestosterone (DHT) decrease PPARγ mRNA and protein within the castration‐resistant, AR‐positive C4‐2 and VCaP human prostate cancer cell lines. The AR antagonists bicalutamide and enzalutamide blocked the ability of DHT to reduce PPARγ levels. In addition, siRNA mediated knockdown of AR increased PPARγ protein levels and ligand‐induced PPARγ transcriptional activity within the C4‐2 cell line. Furthermore, proteasome inhibitors that interfere with AR function increased the level of basal PPARγ and prevented the DHT‐mediated suppression of PPARγ. These data suggest that AR normally functions to suppress PPARγ expression within AR‐positive prostate cancer cells. To determine whether increases in AR protein would influence PPARγ expression and activity, we used lipofectamine‐based transfections to overexpress AR within the AR‐null PC‐3 cells. The addition of AR to PC‐3 cells did not significantly alter PPARγ protein levels. However, the ability of the PPARγ ligand rosiglitazone to induce activation of a PPARγ‐driven luciferase reporter and induce expression of FABP4 was suppressed in AR‐positive PC‐3 cells. Together, these data indicate AR serves as a key modulator of PPARγ expression and function within prostate tumors. J. Cell. Physiol. 231: 2664–2672, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26945682

  12. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  13. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    PubMed

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

  14. Expression, purification and characterization of active untagged recombinant human leukemia inhibitory factor from E coli.

    PubMed

    Xi, Xueyan; Li, Xiaolu; Wu, Fan; Guan, Xin; Jin, Lan; Guo, Yang; Song, Wei; Du, Boyu

    2017-03-24

    Leukemia inhibitory factor (LIF), a member of IL-6 cytokine family, is considered to be a pleiotropic cytokine and function both in cellular proliferation and differentiation. It had been widely used in biomedical research. The large requirement for this cytokine led to the continuing development of its efficient production methods. Due to its low expression and purification yields when it was produced in eukaryotic cells, recombinant human LIF had always been expressed either as inclusion body or as fusion protein in E coli. But these methods had already been proved to be tedious and low-efficiency. Here we introduced a simple method to express LIF in soluble form in E coli and a subsequent purification method. LIF was induced at low temperature and most of the expressed LIF was observed to be shifted from insoluble to soluble form. Then by using three steps of chromatography, which could be easily scaled-up for industrial purpose, active untagged LIF was purified with similar activity as compared to the commercialized product. The endotoxin level of purified LIF protein in our method was determined to be as low as < 1EU/μg, which was also comparable to those commercial products. Furthermore, as LIF was expressed in a soluble form, there was no need to develop the denaturation and renaturation methods. The yield for LIF protein was evaluated to be approximately 1 mg LIF from 1 g wet weight of E coli in our method.

  15. [Expression of angiogenin in COS-7 cells and analysis of its biological activity].

    PubMed

    Wang, Yuan-Yuan; Zou, Min-Jig; Cai, Xin; Liu, Shen; Wang, Jin-Feng; Xu, Tao; Wang, Jia-Xi; Su, Hang; Xu, Dong-Gan

    2008-06-01

    This study was purposed to investigate the angiogenin (ANG) expression in COS-7 cells and its biological activity. The gene of angiogenin was obtained from mononuclear cells of peripheral blood by using RT-PCR and inserted into eukaryotic expression vector of pcDNA3.1. After being transfected into COS-7 cells, the recombinant ANG was identified by Western blot assay. The function of promoting proliferation of ANG to ECV304 cells was detected by MTT method, and its activity of vascularization was analyzed by chick embryo chorioallantois treated by the culture supernatant after transfection with pcDNA3.1-ang. The result showed that recombinant ANG was expressed in COS-7 cells after transfection for 24 to 36 hours. It could specifically react with monoclonal antibody against ANG. The recombinant ANG could obviously promote the proliferation of ECV304 cells. In contrast with the control group, the culture supernatant of pcDNA3.1-ang transfected group could stimulate the angiogenesis in embryo chorioallantois. It is concluded that the ang transiently expresses in COS-7 cells, and its expression product obviously stimulates the cell proliferation and angiogenesis.

  16. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    SciTech Connect

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-02-13

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  17. 2-Deoxy Glucose Modulates Expression and Biological Activity of VEGF in a SIRT-1 Dependent Mechanism.

    PubMed

    Kunhiraman, Haritha; Edatt, Lincy; Thekkeveedu, Sruthi; Poyyakkara, Aswini; Raveendran, Viji; Kiran, Manikantan Syamala; Sudhakaran, Perumana; Kumar, Sameer V B

    2017-02-01

    Reprogramming of energy metabolism particularly switching over of cells to aerobic glycolysis leading to accumulation of lactate is a hallmark of cancer. Lactate can induce angiogenesis, an important process underlying tumor growth and metastasis. VEGF is one of the most important cytokines which regulate this process and the present study was designed to examine if blocking glycolytic pathway in tumor cells can affect its angiogenic potency with respect to VEGF. For this, the expression and biological activity of VEGF synthesized and secreted by tumor derived cell lines in the presence or absence of 2-deoxy glucose (2-DG), an inhibitor of glycolysis was determined. The results suggested that inhibition of glycolysis using sub-lethal doses of 2-DG down-regulated the expression of VEGF and also significantly reduced its biological activity. Further mechanistic studies revealed that the down regulation of VEGF gene expression by 2-DG was due to an increase in SIRT-1 activity and the reduced biological activity was found to be due to an increase in the PAR modification of VEGF. Activity of SIRT-1 and PAR modification of VEGF in turn, was found to be correlated to the cellular NAD(+) levels. The results presented here therefore suggest that treatment of cancer cells with 2-DG can significantly reduce its overall angiogenic potency through transcriptional and post-translational mechanisms. J. Cell. Biochem. 118: 252-262, 2017. © 2016 Wiley Periodicals, Inc.

  18. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    PubMed

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior.

  19. Soluble expression and enzymatic activity evaluation of protease from reticuloendotheliosis virus.

    PubMed

    Hu, Feng; Zhao, Yan; Qi, Xiaole; Cui, Hongyu; Gao, Yulong; Gao, Honglei; Liu, Changjun; Wang, Yongqiang; Zhang, Yanping; Li, Kai; Wang, Xiaomei; Wang, Yunfeng

    2015-10-01

    The protease (PR) encoded by most retroviruses is deeply involved in the lifecycle and infection process of retroviruses by possessing the specificity necessary to correctly cleave the viral polyproteins and host cell proteins. However, as an important representative of avian retroviruses, the enzymatic properties of PR from reticuloendotheliosis virus (REV) have not been clearly documented. The recombinant PR, its mutant fused with a His-tag, and its substrate p18-p30 fused with a GST-tag were expressed in the Escherichia coli system as soluble enzymes. The soluble PR and p18-p30 were purified using Ni-NTA His Bind Resin and Glutathione Sepharose 4B, respectively. The enzymatic activity of PR was analyzed using the substrate of p18-p30. The expressed prokaryotic protease has enzyme activity that is dependent on such conditions as temperature, pH, and ions, and its activity can be inhibited by caspase inhibitor and the divalent metal ions Ca(2+) and Ni(2+). In addition, the key role of the residue Thr (amino acids 28) for the enzymatic activity of PR was identified. Furthermore, the caspase inhibitor Z-VAD-FMK was confirmed to inhibit the PR enzymatic activity of REV. For the first time, the PR of REV was expressed in the soluble form, and the optimal enzymatic reaction system in vitro was developed and preliminarily used. This study provides essential tools and information for further understanding the infection mechanism of REV and for the development of antiviral drugs treating retroviruses.

  20. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    PubMed Central

    Ebata, Takahiro; Mitsui, Yasumasa; Sugimoto, Wataru; Maeda, Miho; Machiyama, Hiroaki; Harada, Ichiro; Sawada, Yasuhiro; Fujita, Hideaki; Hirata, Hiroaki

    2017-01-01

    The physical properties of the extracellular matrix (ECM), such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK) 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation. PMID:28191463

  1. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  2. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity.

    PubMed

    Di Cristo, Graziella; Chattopadhyaya, Bidisha; Kuhlman, Sandra J; Fu, Yu; Bélanger, Marie-Claude; Wu, Cai Zhi; Rutishauser, Urs; Maffei, Lamberto; Huang, Z Josh

    2007-12-01

    Functional maturation of GABAergic innervation in the developing visual cortex is regulated by neural activity and sensory inputs and in turn influences the critical period of ocular dominance plasticity. Here we show that polysialic acid (PSA), presented by the neural cell adhesion molecule, has a role in the maturation of GABAergic innervation and ocular dominance plasticity. Concentrations of PSA significantly decline shortly after eye opening in the adolescent mouse visual cortex; this decline is hindered by visual deprivation. The developmental and activity-dependent regulation of PSA expression is inversely correlated with the maturation of GABAergic innervation. Premature removal of PSA in visual cortex results in precocious maturation of perisomatic innervation by basket interneurons, enhanced inhibitory synaptic transmission, and earlier onset of ocular dominance plasticity. The developmental and activity-dependent decline of PSA expression therefore regulates the timing of the maturation of GABAergic inhibition and the onset of ocular dominance plasticity.

  3. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  4. Spatio-temporal expression of peroxisome proliferator-activated receptor α during human prenatal development.

    PubMed

    Cizkova, Katerina; Rajdova, Aneta; Ehrmann, Jiri

    2015-04-01

    Peroxisome proliferator-activated receptor α (PPARα) is a ligand-dependent transcription factor which is activated by various endogenous as well as exogenous compounds. It is involved in the regulation of a variety of biological processes, such as nutrient metabolism, energy homoeostasis, immunological response and xenobiotic metabolism. Little is known about its expression during human prenatal development. We examined the spatio-temporal expression pattern of PPARα in human embryonic/foetal intestines, liver and kidney from the 5th to 20th week of prenatal life by indirect two-step immunohistochemistry. PPARα expression can already be detected in the early stages of prenatal development; as early as the 7th week of intrauterine development (IUD) in the intestines, 5th week of IUD in the liver and 6th week of IUD in the kidney. We found age-dependent changes in the PPARα expression pattern in the intestines and kidney. These events occur approximately at the commencement of function of these organs. In the intestines, we detected an obvious change of the PPARα expression pattern along the crypt-villous axis in the 11th week of IUD. In the kidney, the most apparent change was increased expression of PPARα in glomeruli in the 12th week of IUD. Moreover, in the liver, we detected a strong positivity in part of the developing blood elements. Information about the spatio-temporal expression pattern of PPARα could be the first step in evaluating the potential harmful impact of a wide range of environmental or pharmaceutical compounds which serve as PPARα ligands on the developing human organism.

  5. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.

    PubMed

    Linta, Leonhard; Boeckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2013-07-01

    The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.

  6. Inhibiting AP-1 activity alters cocaine induced gene expression and potentiates sensitization

    PubMed Central

    Paletzki, Ronald F.; Myakishev, Max V.; Polesskaya, Oksana; Orosz, Andras; Hyman, Steven E.; Vinson, Charles

    2008-01-01

    We have expressed A-FOS, an inhibitor of AP-1 DNA binding, in adult mouse striatal neurons. We observe normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and subsequent cocaine administration. These results indicate that AP-1 suppresses this behavioral responses to cocaine. We analyzed mRNA from the striatum before and 4 and 24 hours after a single cocaine injection in both A-FOS and control striata using Affymetrix microarrays (430 2.0 Array) to identify genes mis-regulated by A-FOS that may mediate the increased locomotor sensitization to cocaine. A-FOS expression did not change gene expression in the basal state or 4 hours following cocaine treatment relative to controls. However, 24 hours after an acute cocaine treatment, 84 genes were identified that were differentially expressed between the A-FOS and control mice. 56 gene are down regulated while 28 genes are up regulated including previously identified candidates for addiction including BDNF and Per1. Using a random sample of identified genes, quantitative PCR was used to verify the microarray studies. The chromosomal location of these 84 genes was compared to human genome scans of addiction to identify potential genes in humans that are involved in addiction. PMID:18355967

  7. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  8. SNORD116 and SNORD115 change expression of multiple genes and modify each other's activity.

    PubMed

    Falaleeva, Marina; Surface, Justin; Shen, Manli; de la Grange, Pierre; Stamm, Stefan

    2015-11-10

    The loss of two gene clusters encoding small nucleolar RNAs, SNORD115 and SNORD116 contribute to Prader-Willi syndrome (PWS), the most common syndromic form of obesity in humans. SNORD115 and SNORD116 are considered to be orphan C/D box snoRNAs (SNORDs) as they do not target rRNAs or snRNAs. SNORD115 exhibits sequence complementarity towards the serotonin receptor 2C, but SNORD116 shows no extended complementarities to known RNAs. To identify molecular targets, we performed genome-wide array analysis after overexpressing SNORD115 and SNORD116 in HEK 293T cells, either alone or together. We found that SNORD116 changes the expression of over 200 genes. SNORD116 mainly changed mRNA expression levels. Surprisingly, we found that SNORD115 changes SNORD116's influence on gene expression. In similar experiments, we compared gene expression in post-mortem hypothalamus between individuals with PWS and aged-matched controls. The synopsis of these experiments resulted in 23 genes whose expression levels were influenced by SNORD116. Together our results indicate that SNORD115 and SNORD116 influence expression levels of multiple genes and modify each other activity.

  9. The effects of expression of an activated rasG mutation on the differentiation of Dictyostelium.

    PubMed

    Thiery, R; Robbins, S; Khosla, M; Spiegelman, G B; Weeks, G

    1992-01-01

    Dictyostelium discoideum contains two ras genes, rasG and rasD, that are expressed during growth and differentiation, respectively. It was shown previously that Dictyostelium transformants expressing an activated rasD gene (a mutation producing a change in amino acid 12 from glycine to threonine) developed abnormally. When developed on filters these transformants formed multitipped aggregates, which did not go on to produce final fruiting bodies, but in a submerged culture assay on a plastic surface they either formed small aggregates or did not aggregate. In this study we transformed cells with the rasG gene, mutated to change amino acid 12 from glycine to threonine. The resulting transformants developed normally on filters, but aggregation under other conditions was impaired. In particular, in submerged culture on a plastic surface they either produced very small aggregates or did not aggregate, one of the phenotypes exhibited by the activated rasD transformants. Molecular analysis of the transformants revealed the presence of high copy numbers of the mutated rasG gene, but the level of expression of the mutant gene never exceeded the level of expression of the endogenous gene. These results indicate a powerful dominant effect of a relatively small amount of the activated RasG protein in Dictyostelium.

  10. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  11. Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum.

    PubMed

    Tang, Lei; Yue, Shu; Li, Gui-Yang; Li, Jie; Wang, Xiao-Ran; Li, Shu-Fang; Mo, Zhao-Lan

    2016-10-01

    The type VI secretion system (T6SS) was recently shown to modulate quorum sensing and the stress response in Vibrio anguillarum serotype O1 strain NB10. It is not known whether there is a functionally active T6SS in other serotypes of V. anguillarum. Here, homologues to T6SS cluster VtsEFGH and hemolysin-coregulated protein (Hcp)-encoding genes were found to be prevalent and conserved in clinical isolates of V. anguillarum from fish, including four O1 and five non-O1 serotype strains. Unexpectedly, only the non-O1 serotype strains expressed VtsEFGH and Hcp under laboratory and marine-like conditions, in contrast to the serotype O1 strains. This suggested that the V. anguillarum non-O1 serotype strains tested have constitutive expression of T6SS. Examination of a representative non-O1 strain, MHK3, showed that Hcp production was growth phase dependent and that maximum Hcp production was observed in the exponential growth phase. Moreover, Hcp production by MHK3 was most active under warm marine-like conditions. Further examination revealed a correlation of the constitutive expression of T6SS with bactericidal activity against Escherichia coli and Edwardsiella tarda. The work presented here suggests that the constitutive expression of T6SS provides V. anguillarum with advantage in microbial competition in marine environments.

  12. Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression

    PubMed Central

    Yang, Li; Xu, Ling-Zhi; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Mo, Li-Hua; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The etiology and the underlying mechanism of CD4+ T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4+ T cells. Here we report that CD4+ T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4+ T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4+ T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4+ T cells, and enhanced the frequency of CD4+ T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4+ T cells. PMID:26189367

  13. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression

    PubMed Central

    Zhao, Kai; He, Jialin; Zhang, Yan; Xu, Zhizhen; Xiong, Haojun; Gong, Rujun; Li, Song; Chen, Shan; He, Fengtian

    2016-01-01

    Renal fibrosis is the common pathway of most chronic kidney disease progression to end-stage renal failure. The nuclear receptor FXR (farnesoid X receptor), a multiple functional transcription factor, plays an important role in protecting against fibrosis. The TGFβ-Smad signaling has a central role in kidney fibrosis. However, it remains unclear whether FXR plays direct anti-fibrotic effect in renal fibrosis via regulating TGFβ-Smad pathway. In this study, we found that the level of FXR was negatively correlated with that of Smad3 and fibronectin (a marker of fibrosis) in human fibrotic kidneys. Activation of FXR suppressed kidney fibrosis and downregulated Smad3 expression, which was markedly attenuated by FXR antagonist. Moreover, the FXR-mediated repression of fibrosis was significantly alleviated by ectopic expression of Smad3. Luciferase reporter assay revealed that FXR activation inhibited the transcriptional activity of Smad3 gene promoter. The in vivo experiments showed that FXR agonist protected against renal fibrosis and downregulated Smad3 expression in UUO mice. These results suggested that FXR may serve as an important negative regulator for manipulating Smad3 expression, and the FXR/Smad3 pathway may be a novel target for the treatment of renal fibrosis. PMID:27853248

  14. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  15. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment

    PubMed Central

    Song, Jia; Liu, Qian; Tang, Han; Tao, Aibin; Wang, Hao; Kao, Raymond; Rui, Tao

    2016-01-01

    Background The high mobility group box 1 (HMGB1) protein mediates the cardiomyocyte–cardiac fibroblast interaction that contributes to induction of myocardial fibrosis in diabetes mellitus (DM). In the present study, we aim to investigate the intracellular signaling pathway that leads to cardiomyocyte HMGB1 expression under a diabetic environment. Results HMGB1 expression is increased in high concentration of glucose (HG)-conditioned cardiomyocytes. Challenging cardiomyocytes with HG also increased PI3Kγ and Akt phosphorylation. Inhibition of PI3Kγ (CRISPR/Cas9 knockout plasmid or AS605240) prevented HG-induced Akt phosphorylation and HMGB1 expression by the cardiomyocytes. In addition, inhibition of Akt (Akt1/2/3 siRNA or A6730) attenuated HG-induced HMGB1 production. Finally, challenging cardiomyocytes with HG resulted in increased reactive oxygen species (ROS) production. Treatment of cardiomyocytes with an antioxidant (Mitotempo) abolished HG-induced PI3Kγ and Akt activation, as well as HMGB1 production. Materials and Methods Isolated rat cardiomyocytes were cultured with a high concentration of glucose. Cardiomyocyte phosphatidylinositol 3-kinase gamma (PI3Kγ) and Akt activation were determined by Western blot. Cardiomyocyte HMGB1 production was evaluated with Western blot and enzyme-linked immunosorbent assay (ELISA), while cardiomyocyte oxidative stress was determined with a DCFDA fluorescence probe. Conclusions Our results suggest that the cardiomyocytes incur an oxidative stress under diabetic condition, which subsequently activates the PI3Kγ/Akt cell-signaling pathway and further increases HMGB1 expression. PMID:27821807

  16. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli.

    PubMed Central

    Barnes, H J; Arlotto, M P; Waterman, M R

    1991-01-01

    When the cDNA encoding bovine microsomal 17 alpha-hydroxylase cytochrome P450 (P45017 alpha) containing modifications within the first seven codons which favor expression in Escherichia coli is placed in a highly regulated tac promoter expression plasmid, as much as 16 mg of spectrally detectable P45017 alpha per liter of culture can be synthesized and integrated into E. coli membranes. The known enzymatic activities of bovine P45017 alpha can be reconstituted by addition of purified rat liver NADPH-cytochrome P450 reductase to isolated E. coli membrane fractions containing the recombinant P45017 alpha enzyme. Surprisingly, it is found that E. coli contain an electron-transport system that can substitute for the mammalian microsomal NADPH-cytochrome P450 reductase in supporting both the 17 alpha-hydroxylase and 17,20-lyase activities of P45017 alpha. Thus, not only can E. coli express this eukaryotic membrane protein at relatively high levels, but as evidenced by metabolism of steroids added directly to the cells, the enzyme is catalytically active in vivo. These studies establish E. coli as an efficacious heterologous expression system for structure-function analysis of the cytochrome P450 system. Images PMID:1829523

  17. Tamoxifen induces the development of hernia in mice by activating MMP-2 and MMP-13 expression.

    PubMed

    Ma, Xingzhe; Liu, Ying; Wang, Qixue; Chen, Yuanli; Liu, Mengyang; Li, Xiaoju; Xiang, Rong; Wei, Yuquan; Duan, Yajun; Han, Jihong

    2015-05-01

    Hernia is a disease with defects in collagen synthesis/metabolism. However, the underlying mechanisms for hernia formation have not been fully defined. Tamoxifen is a selective estrogen receptor modulator and used for patients with breast cancer. Tamoxifen also has pleiotropic and side effects. Herein, we report that tamoxifen treatment resulted in an appearance of a large bulge in the low abdomen between the hind legs in male but not in female mice. The autopsy demonstrated that the low abdominal wall was broken and a large amount of intestine herniated out of the abdominal cavity. Histological analysis indicated that tamoxifen caused structural abnormalities in the low abdominal wall which were associated with decreased type II collagen content. Furthermore, we determined increased matrix metalloproteinase-2 (MMP-2) and MMP-13 expression in the tissue. In vitro, tamoxifen induced MMP-2 and MMP-13 expression in fibroblasts. The promoter activity analysis and ChIP assay demonstrate that induction of MMP-13 expression was associated with activation of JNK-AP-1 and ERK1/2 signaling pathways while induction of MMP-2 expression was related to activation of the ERK1/2 signaling pathway. Taken together, our study establishes a novel murine hernia model, defines a severe side effect of tamoxifen, and suggests a caution to male patients receiving tamoxifen treatment.

  18. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  19. Decreased Pregnane X Receptor Expression in Children with Active Crohn’s Disease

    PubMed Central

    Vyhlidal, Carrie; Friesen, Craig; Hildreth, Amber; Singh, Vivekanand; Daniel, James; Kearns, Gregory L.; Leeder, J. Steven

    2016-01-01

    Expression of the pregnane X receptor (PXR) has been reported to be decreased in animal models of inflammatory bowel disease (IBD). To investigate the differential expression of PXR in children with Crohn’s disease, a type of IBD, RNA was extracted from archived intestinal biopsies from 18 children with Crohn’s disease (CD) and 12 age- and sex-matched controls (aged 7–17yrs). The aim of this investigation was to compare the relative mRNA expression of PXR, cytochrome p450 3A4 (CYP3A4), and villin 1 (VIL1) (a marker of epithelial cell integrity) in the inflamed terminal ileum (TI) versus noninflamed duodenum of children with CD. Relative expression was determined via reverse transcription real-time quantitative polymerase chain reaction, data normalized to glyceraldehyde 3-phosphate dehydrogenase, and differences in gene expression explored via paired t tests. PXR expression was decreased in the inflamed TI versus noninflamed duodenum (TI = 1.88 ± 0.89 versus duodenum = 2.5 ± 0.67; P < 0.001) in CD, but not controls (TI = 2.11 ± 0.41 versus duodenum = 2.26 ± 0.61; P = 0.52). CYP3A4 expression was decreased in CD (TI = –0.89 ± 3.11 versus duodenum = 1.90 ± 2.29; P < 0.05), but not controls (TI = 2.46 ± 0.51 versus duodenum = 2.60 ± 0.60; P = 0.61), as was VIL1 (CD TI = 3.80 ± 0.94 versus duodenum = 4.61 ± 0.52; P < 0.001; controls TI = 4.30 ± 0.35 versus duodenum = 4.47 ± 0.40; P = 0.29). PXR expression correlated with VIL1 (r = 0.78, P = 0.01) and CYP3A4 (r = 0.52, P = 0.01) expression. In conclusion, PXR, CYP3A4, and VIL1 expression was decreased only in the actively inflamed small intestinal tissue in children with CD. Our findings suggest that inflammation has the potential to influence expression of genes, and potentially intestinal proteins, important to drug disposition and response. The observed differential patterns of gene expression support further investigation of the role of PXR in the pathogenesis and/or treatment of pediatric Crohn

  20. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression.

    PubMed

    Torres, Rafael Carvalho; Magalhães, Nathalia Santos; E Silva, Patrícia M R; Martins, Marco A; Carvalho, Vinicius F

    2016-10-01

    Increased hypothalamus-pituitary-adrenal axis (HPA) activity in diabetes is strongly associated with several morbidities noted in patients with the disease. We previously demonstrated that hyperactivity of HPA axis under diabetic conditions is associated with up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal and down-regulation of glucocorticoid receptors (GR and MR) in pituitary. This study investigates the role of peroxisome proliferator-activated receptor (PPAR)-γ in HPA axis hyperactivity in diabetic rats. Diabetes was induced by intravenous injection of alloxan into fasted rats. The PPAR-γ agonist rosiglitazone and/or PI3K inhibitor wortmannin were administered daily for 18 consecutive days, starting 3days after diabetes induction. Plasma ACTH and corticosterone were evaluated by radioimmunoassay, while intensities of MC2R, proopiomelanocortin (POMC), GR, MR, PI3K p110α and PPAR-γ were assessed using immunohistochemistry. Rosiglitazone treatment inhibited adrenal hypertrophy and hypercorticoidism observed in diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced increase in the MC2R expression in adrenal cortex. We noted that rosiglitazone reduced the number of corticotroph cells and inhibited both anterior pituitary POMC expression and plasma ACTH levels. Furthermore, rosiglitazone treatment was unable to restore the reduced expression of GR and MR in the anterior pituitary of diabetic rats. Rosiglitazone increased the number of PPAR-γ(+) cells and expression of PI3K p110α in both anterior pituitary and adrenal cortex of diabetic rats. In addition, wortmannin blocked the ability of rosiglitazone to restore corticotroph cell numbers, adrenal hypertrophy and plasma corticosterone levels in diabetic rats. In conclusion, our findings revealed that rosiglitazone down-regulates HPA axis hyperactivity in diabetic rats via a mechanism dependent on PI3K activation in pituitary and adrenal glands.

  1. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    SciTech Connect

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  2. Exploring Metrics to Express Energy Expenditure of Physical Activity in Youth

    PubMed Central

    McMurray, Robert G.; Butte, Nancy F.; Crouter, Scott E.; Trost, Stewart G.; Pfeiffer, Karin A.; Bassett, David R.; Puyau, Maurice R.; Berrigan, David; Watson, Kathleen B.; Fulton, Janet E.

    2015-01-01

    Background Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determine whether one metric can be used for all healthy children. Such a metric could improve our ability to further advance the Compendium of Physical Activities for Youth. Methods A secondary analysis of oxygen uptake (VO2) data obtained from five sites was completed, that included 947 children ages 5 to 18 years, who engaged in 14 different activities. Resting metabolic rate (RMR) was computed based on Schofield Equations [Hum Nutr Clin Nut. 39(Suppl 1), 1985]. Absolute oxygen uptake (ml.min-1), oxygen uptake per kilogram body mass (VO2 in ml.kg-1.min-1), net oxygen uptake (VO2 – resting metabolic rate), allometric scaled oxygen uptake (VO2 in ml.kg-0.75.min-1) and YOUTH-MET (VO2.[resting VO2] -1) were calculated. These metrics were regressed with age, sex, height, and body mass. Results Net and allometric-scaled VO2, and YOUTH-MET were least associated with age, sex and physical characteristics. For moderate-to-vigorous intensity activities, allometric scaling was least related to age and sex. For sedentary and low-intensity activities, YOUTH-MET was least related to age and sex. Conclusions No energy expenditure metric completely eliminated the influence of age, physical characteristics, and sex. The Adult MET consistently overestimated EE. YOUTH-MET was better for expressing energy expenditure for sedentary and light activities, whereas allometric scaling was better for moderate and vigorous intensity activities. From a practical perspective, The YOUTH-MET may be the more feasible metric for improving of the Compendium of Physical Activities for Youth. PMID:26102204

  3. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling

    PubMed Central

    Urban, Bettina C; Collard, Tracey J; Eagle, Catherine J; Southern, Samantha L; Greenhough, Alexander; Hamdollah-Zadeh, Maryam; Ghosh, Anil; Paraskeva, Christos; Silver, Andrew; Williams, Ann C

    2016-01-01

    Objective Colorectal cancer remains the fourth most common cause of cancer-related mortality worldwide. Here we investigate the role of nuclear factor-κB (NF-κB) co-factor B-cell CLL/lymphoma 3 (BCL-3) in promoting colorectal tumour cell survival. Design Immunohistochemistry was carried out on 47 tumour samples and normal tissue from resection margins. The role of BCL-3/NF-κB complexes on cell growth was studied in vivo and in vitro using an siRNA approach and exogenous BCL-3 expression in colorectal adenoma and carcinoma cells. The question whether BCL-3 activated the AKT/protein kinase B (PKB) pathway in colorectal tumour cells was addressed by western blotting and confocal microscopy, and the ability of 5-aminosalicylic acid (5-ASA) to suppress BCL-3 expression was also investigated. Results We report increased BCL-3 expression in human colorectal cancers and demonstrate that BCL-3 expression promotes tumour cell survival in vitro and tumour growth in mouse xenografts in vivo, dependent on interaction with NF-κB p50 or p52 homodimers. We show that BCL-3 promotes cell survival under conditions relevant to the tumour microenvironment, protecting both colorectal adenoma and carcinoma cells from apoptosis via activation of the AKT survival pathway: AKT activation is mediated via both PI3K and mammalian target of rapamycin (mTOR) pathways, leading to phosphorylation of downstream targets GSK-3β and FoxO1/3a. Treatment with 5-ASA suppressed BCL-3 expression in colorectal cancer cells. Conclusions Our study helps to unravel the mechanism by which BCL-3 is linked to poor prognosis in colorectal cancer; we suggest that targeting BCL-3 activity represents an exciting therapeutic opportunity potentially increasing the sensitivity of tumour cells to conventional therapy. PMID:26033966

  4. Spaceflight alters expression of microRNA during T-cell activation

    PubMed Central

    Hughes-Fulford, Millie; Chang, Tammy T.; Martinez, Emily M.; Li, Chai-Fei

    2015-01-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21.—Hughes-Fulford, M., Chang, T. T., Martinez, E. M., Li, C.-F. Spaceflight alters expression of microRNA during T-cell activation. PMID:26276131

  5. Genome-Wide Expression Profiling Identifies Type 1 Interferon Response Pathways in Active Tuberculosis

    PubMed Central

    Ottenhoff, Tom H. M.; Zhang, Mingzi M.; Wong, Hazel E. E.; Sahiratmadja, Edhyana; Khor, Chiea Chuen; Alisjahbana, Bachti; van Crevel, Reinout; Marzuki, Sangkot; Seielstad, Mark; van de Vosse, Esther; Hibberd, Martin L.

    2012-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains the leading cause of mortality from a single infectious agent. Each year around 9 million individuals newly develop active TB disease, and over 2 billion individuals are latently infected with M.tb worldwide, thus being at risk of developing TB reactivation disease later in life. The underlying mechanisms and pathways of protection against TB in humans, as well as the dynamics of the host response to M.tb infection, are incompletely understood. We carried out whole-genome expression profiling on a cohort of TB patients longitudinally sampled along 3 time-points: during active infection, during treatment, and after completion of curative treatment. We identified molecular signatures involving the upregulation of type-1 interferon (α/β) mediated signaling and chronic inflammation during active TB disease in an Indonesian population, in line with results from two recent studies in ethnically and epidemiologically different populations in Europe and South Africa. Expression profiles were captured in neutrophil-depleted blood samples, indicating a major contribution of lymphocytes and myeloid cells. Expression of type-1 interferon (α/β) genes mediated was also upregulated in the lungs of M.tb infected mice and in infected human macrophages. In patients, the regulated gene expression-signature normalized during treatment, including the type-1 interferon mediated signaling and a concurrent opposite regulation of interferon-gamma. Further analysis revealed IL15RA, UBE2L6 and GBP4 as molecules involved in the type-I interferon response in all three experimental models. Our data is highly suggestive that the innate immune type-I interferon signaling cascade could be used as a quantitative tool for monitoring active TB disease, and provide evidence that components of the patient’s blood gene expression signature bear similarities to the pulmonary and macrophage response to mycobacterial infection

  6. Non-canonical NFκB activation promotes chemokine expression in podocytes

    PubMed Central

    Valiño-Rivas, Lara; Gonzalez-Lafuente, Laura; Sanz, Ana B.; Ruiz-Ortega, Marta; Ortiz, Alberto; Sanchez-Niño, Maria D.

    2016-01-01

    TNF-like weak inducer of apoptosis (TWEAK) receptor Fn14 is expressed by podocytes and Fn14 deficiency protects from experimental proteinuric kidney disease. However, the downstream effectors of TWEAK/Fn14 in podocytes are poorly characterized. We have explored TWEAK activation of non-canonical NFκB signaling in cultured podocytes. In cultured podocytes, TWEAK increased the expression of the chemokines CCL21, CCL19 and RANTES in a time-dependent manner. The inhibitor of canonical NFκB activation parthenolide inhibited the CCL19 and the early RANTES responses, but not the CCL21 or late RANTES responses. In this regard, TWEAK induced non-canonical NFκB activation in podocytes, characterized by NFκB2/p100 processing to NFκB2/p52 and nuclear migration of RelB/p52. Silencing by a specific siRNA of NIK, the upstream kinase of the non-canonical NFκB pathway, prevented CCL21 upregulation but did not modulate CCL19 or RANTES expression in response to TWEAK, thus establishing CCL21 as a non-canonical NFκB target in podocytes. Increased kidney Fn14 and CCL21 expression was also observed in rat proteinuric kidney disease induced by puromycin, and was localized to podocytes. In conclusion, TWEAK activates the non-canonical NFκB pathway in podocytes, leading to upregulation of CCL21 expression. The non-canonical NFκB pathway should be explored as a potential therapeutic target in proteinuric kidney disease. PMID:27353019

  7. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    SciTech Connect

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting; Yin, Xin; Xu, Chang-Qing; Sun, Yi-Hua

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  8. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  9. Arabidopsis TTG2 Regulates TRY Expression through Enhancement of Activator Complex-Triggered Activation[C][W

    PubMed Central

    Pesch, Martina; Dartan, Burcu; Birkenbihl, Rainer; Somssich, Imre E.; Hülskamp, Martin

    2014-01-01

    Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex. PMID:25304203

  10. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain.

    PubMed

    Meddle, Simone L; Bishop, Valerie R; Gkoumassi, Effimia; van Leeuwen, Fred W; Douglas, Alison J

    2007-10-01

    Oxytocin plays a pivotal role in rat parturition, acting within the brain to facilitate its own release in the supraoptic nucleus (SON) and paraventricular nucleus, and to stimulate maternal behavior. We investigated oxytocin receptor (OTR) expression and activation perinatally. Using a (35)S-labeled riboprobe complementary to OTR mRNA, OTR expression was quantified in proestrus virgin, 21- and 22-day pregnant, parturient (90 min. from pup 1 birth), and postpartum (4-12 h from parturition) rats. Peak OTR mRNA expression was observed at parturition in the SON, brainstem regions, medial preoptic area (mPOA), bed nucleus of the stria terminalis (BnST), and olfactory bulbs, but there was no change in the paraventricular nucleus and lateral septum. OTR mRNA expression was increased on the day of expected parturition in the SON and brainstem, suggesting that oxytocin controls the pathway mediating input from uterine signals. Likewise, OTR mRNA expression was increased in the mPOA and BnST during labor/birth. In the olfactory bulbs and medial amygdala, parturition induced increased OTR mRNA expression compared with pre-parturition, reflecting their immediate response to new stimuli at birth. Postpartum OTR expression in all brain regions returned to levels observed in virgin rats. Parturition significantly increased the number of double-immunolabeled cells for Fos and OTR within the SON, brainstem, BnST, and mPOA regions compared with virgin rats. Thus, there are dynamic region-dependent changes in OTR-expressing cells at parturition. This altered OTR distribution pattern in the brain perinatally reflects the crucial role oxytocin plays in orchestrating both birth and maternal behavior.

  11. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  12. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  13. Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

    PubMed

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S

    2014-11-12

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.

  14. Diabetes and activation of peroxisome proliferator activated receptor alpha increases mitochondrial thioesterase I protein expression and activity in the heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial thioesterase-I (MTE-I) catalyzes the de-esterification of fattyacyl-CoAs to fatty acid anions in the mitochondrial matrix, which are extruded to the cytosol, thus preventing the accumulation of toxic mitochondrial fattyacyl-CoAs. MTE-I mRNA expression in the heart is regulated by perox...

  15. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons

    PubMed Central

    Palomer, Ernest; Carretero, Javier; Benvegnù, Stefano; Dotti, Carlos G.; Martin, Mauricio G.

    2016-01-01

    It has been recently described that in embryonic stem cells, the expression of some important developmentally regulated genes is repressed, but poised for fast activation under the appropriate stimuli. In this work we show that Bdnf promoters are repressed by Polycomb Complex 2 in mature hippocampal neurons, and basal expression is guaranteed by the coexistence with activating histone marks. Neuronal stimulation triggered by N-methyl-D-aspartate application induces the transcription of these promoters by H3K27Me3 demethylation and H3K27Me3 phosphorylation at Serine 28 leading to displacement of EZH2, the catalytic subunit of Polycomb Repressor Complex 2. Our data show that the fast transient expression of Bdnf promoters II and VI after neuronal stimulation is dependent on acetylation of histone H3K27 by CREB-p/CBP. Thus, regulatory mechanisms established during development seem to remain after differentiation controlling genes induced by different stimuli, as would be the case of early memory genes in mature neurons. PMID:27010597

  16. Altered expression of urokinase-type plasminogen activator and plasminogen activator inhibitor in high-risk soft tissue sarcomas.

    PubMed

    Benassi, M S; Ponticelli, F; Azzoni, E; Gamberi, G; Pazzaglia, L; Chiechi, A; Conti, A; Spessotto, P; Scapolan, M; Pignotti, E; Bacchini, P; Picci, P

    2007-09-01

    In recent years, classification of soft-tissue sarcomas (STS) has improved with cytogenetic analyses, but their clinical behavior is still not easily predictable. The aim of this study was to detect alterations in the urokinase-type plasminogen system, involved in tumor growth and invasion, by comparing mRNA levels of its components with those of paired normal tissues, and relating them with patient clinical course. Real-time PCR was performed on human STS cell lines and tissues from highly malignant STS, including leiomyosarcomas and malignant fibrous histiocytomas, to evaluate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of gene products was also performed. Median mRNA values of all genes studied were higher in tumors than in paired normal tissues. In agreement with data on STS cell lines, significant up-regulation for uPA and PAI-1 genes compared to reference values was seen. Moreover, different levels of expression were related to histotype and metastatic phenotype. There was accordance between uPA mRNA and protein expression, while immunodetection of PAI-1 product was weak and scattered. Clearly, the controversial role of PAI-1 protein requires further biological analyses, but evident involvement of uPA/PAI-1 gene overexpression in STS malignancy may highlight a molecular defect useful in discriminating STS high-risk patients.

  17. Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration.

    PubMed

    Cirilli, Marco; Bellincontro, Andrea; De Santis, Diana; Botondi, Rinaldo; Colao, Maria Chiara; Muleo, Rosario; Mencarelli, Fabio

    2012-05-01

    Clusters of Aleatico wine grape were picked at 18°Brix and placed at 10, 20, or 30°C, 45% relative humidity (RH) and 1.5m/s of air flow to dehydrate the berries up to 40% of loss of initial fresh weight. Sampling was done at 0%, 10%, 20%, 30%, and 40% weight loss (wl). ADH (alcohol dehydrogenase) gene expression, enzyme activity, and related metabolites were analysed. At 10°C, acetaldehyde increased rapidly and then declined, while ethanol continued to rise. At 20°C, acetaldehyde and ethanol increased significantly with the same pattern and declined at 40%wl. At 30°C, acetaldehyde did not increase but ethanol increased rapidly already at 10%wl. At the latter temperature, a significant increase in acetic acid and ethyl acetate occurred, while at 10°C their values were low. At 30°C, the ADH activity (ethanol to acetaldehyde direction), increased rapidly but acetaldehyde did not rise because of its oxidation to acetic acid, which increased together with ethyl acetate. At 10°C, the ADH activity increased at 20%wl and continued to rise even at 40%wl, meaning that ethanol oxidation was delayed. At 20°C, the behaviour was intermediate to the other temperatures. The relative expression of the VvAdh2 gene was the highest at 10°C already at 10%wl in a synchrony with the ADH activity, indicating a rapid response likely due to low temperature. The expression subsequently declined. At 20 and 30°C, the expression was lower and increased slightly during dehydration in combination with the ADH activity. This imbalance between gene expression and ADH activity at 10°C, as well as the unexpected expression of the carotenoid cleavage dioxygenase 1 (CCD1) gene, opens the discussion on the stress sensitivity and transcription event during postharvest dehydration, and the importance of carefully monitoring temperature during dehydration.

  18. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    PubMed Central

    De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054

  19. Positive Regulation of Interleukin-2 Expression by a Pseudokinase, Tribbles 1, in Activated T Cells.

    PubMed

    Miyajima, Chiharu; Itoh, Yuka; Inoue, Yasumichi; Hayashi, Hidetoshi

    2015-01-01

    Tribbles 1 (TRB1), a member of the Tribbles family, is a pseudokinase that is conserved among species and implicated in various human diseases including leukemia, cardiovascular diseases, and metabolic disorders. However, the role of TRB1 in the immune response is not understood. To evaluate this role, we examined regulation of TRB1 expression and the function of TRB1 in interleukin-2 (IL-2) induction in Jurkat cells, a human acute T cell leukemia cell line. We found that TRB1 was strongly induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin in these cells. IL-2 expression was induced in Jurkat cells activated by PMA and ionomycin; however, knockdown of TRB1 resulted in decreased induction of IL-2. TRB1 null Jurkat cells established using the CRISPR/Cas9 system also showed reduction of IL-2 expression on PMA/ionomycin stimulation. TRB1 knockdown also markedly inhibited IL-2 promoter activation. To determine the mechanism of the stimulatory effect on IL-2 induction, we focused on histone deacetylases (HDACs), and found that HDAC1 preferentially interacts with TRB1. TRB1 suppressed the interaction of HDAC1 with nuclear factor of activated T cells 2 (NFAT2), which is a crucial transcription factor for IL-2 induction. These results indicate that TRB1 is a positive regulator of IL-2 induction in activated T cells.

  20. Glutamine synthetase activity and the expression of three glul paralogues in zebrafish during transport.

    PubMed

    Dhanasiri, Anusha K S; Fernandes, Jorge M O; Kiron, Viswanath

    2012-01-01

    The enzyme glutamine synthetase (GS; glutamate-ammonia ligase, EC 6.3.1.2) plays an important role in the nitrogen metabolism of fish. In this study the GS activity and the corresponding genes were examined to understand how they are regulated in zebrafish in response to hyperammonemic stress during a 72 h simulated transport. Whole body ammonia levels, the activity of the enzyme GS and the mRNA expression of the splice variants of three paralogues of glul, glutamine synthetase gene (glula, glulb and glulc) were examined in brain, liver and kidney of zebrafish. Whole body ammonia reached significantly higher levels by 48 h, while brain showed higher levels as early as 24 h, compared to the values at the start of the transport. The GS activities in brain, liver and kidney were significantly higher at the end of 72 h transport than those at the start. However, only the expression of mRNA of glulb-002 and glulb-003 were significantly upregulated during the simulated transport. In silico analysis of the putative promoter regions of glul paralogues revealed glucocorticoid receptor binding sites. However, glucocorticoid response elements of glulb were not different. The up-regulation of GS enzyme activity and hitherto unreported mRNA expression of glul paralogues during zebrafish transport indicate a physiological response of fish to ammonia.

  1. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation

    PubMed Central

    Bright, Amanda S.; Herrera-Garcia, Guadalupe; Moscovitz, Jamie E.; You, Dahea; Guo, Grace L.; Aleksunes, Lauren M.

    2016-01-01

    More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes. PMID:27818994

  2. Positive association between physical activity and PER3 expression in older adults

    PubMed Central

    Takahashi, Masaki; Haraguchi, Atsushi; Tahara, Yu; Aoki, Natsumi; Fukazawa, Mayuko; Tanisawa, Kumpei; Ito, Tomoko; Nakaoka, Takashi; Higuchi, Mitsuru; Shibata, Shigenobu

    2017-01-01

    The circadian clock regulates many physiological functions including physical activity and feeding patterns. In addition, scheduled exercise and feeding themselves can affect the circadian clock. The purpose of the present study was to investigate the relationship between physical/feeding activity and expression of clock genes in hair follicle cells in older adults. Twenty adult men (age, 68 ± 7 years, mean ± SE) were examined in this cross-sectional study. Prior to hair follicle cell collection, the participants were asked to wear a uniaxial accelerometer for one week. The timings of breakfast, lunch, and dinner were also recorded. Hair follicle cells were then collected over a 24 h period at 4 h intervals. The amplitude of PER3 expression was positively correlated with moderate and vigorous physical activity (r = 0.582, p = 0.007) and peak oxygen uptake (r = 0.481, p = 0.032), but these correlations were not observed for NR1D1 or NR1D2. No association was noted between meal times and the amplitude or the acrophase for any of these three clock genes. These findings suggest that rhythmic expression of the circadian clock gene PER3 is associated with the amount of daily physical activity and physical fitness in older adults. PMID:28045078

  3. Expression and localization of urokinase-type plasminogen activator receptor in bovine cumulus-oocyte complexes.

    PubMed

    García, Daniela C; Miceli, Dora C; Rizo, Gabriela; García, Elina V; Valdecantos, Pablo A; Roldán-Olarte, Mariela

    2016-04-01

    Urokinase-type plasminogen activator (uPA) is a serine protease involved in extracellular matrix remodeling through plasmin generation. uPA usually binds to its receptor, uPAR, which is anchored to the plasma membrane through a glycosylphosphatidylinositol anchor. uPA/uPAR binding increases proteolytic activity in the neighborhood of the cells containing uPAR and activates intracellular signaling pathways involved in extracellular matrix remodeling, cell migration and proliferation. The aim of this work was to study the expression of uPA, uPAR and plasminogen activator inhibitor-1 (PAI-1) in immature and in vitro matured bovine cumulus-oocyte complexes (COCs). uPA is only expressed in the cumulus cells of immature and in vitro matured COCs, while uPAR and PAI-1 are expressed in both the cumulus cells and the immature and in vitro matured oocytes. In addition, uPAR protein was localized by confocal microscopy in the plasma membrane of oocytes and cumulus cells of immature COCs. Results from this research led us to hypothesize that the uPA/uPAR interaction could cause the local production of uPA-mediated plasmin over oocyte and cumulus cell surface; plasmin formation could also be regulated by PAI-1.

  4. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity

    PubMed Central

    Trivedi, Palak J.; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M.; Weston, Chris J.; Adams, David H.

    2016-01-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4+) and 30% (CD8+) of tissue-infiltrating T-cells in colitis were identified as CCR9+ effector lymphocytes, compared to <10% of T-cells being CCR9+ in normal colon. Sorted CCR9+ lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9– counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  5. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ.

    PubMed

    Jones, Eleanor R; Jones, Gavin C; Legerlotz, Kirsten; Riley, Graham P

    2013-12-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1Hz for 48h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy.

  6. Circadian Activators Are Expressed Days before They Initiate Clock Function in Late Pacemaker Neurons from Drosophila.

    PubMed

    Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E

    2015-06-03

    Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis.

  7. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity.

    PubMed

    Trivedi, Palak J; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M; Weston, Chris J; Adams, David H

    2016-04-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4(+)) and 30% (CD8(+)) of tissue-infiltrating T-cells in colitis were identified as CCR9(+) effector lymphocytes, compared to <10% of T-cells being CCR9(+) in normal colon. Sorted CCR9(+) lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9(-) counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver.

  8. Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation

    PubMed Central

    Liu, B; Fang, M; He, Z; Cui, D; Jia, S; Lin, X; Xu, X; Zhou, T; Liu, W

    2015-01-01

    Metabolic reprogramming is a hallmark of physiological changes in cancer. Cancer cells primarily apply glycolysis for cell metabolism, which enables the cells to use glycolytic intermediates for macromolecular biosynthesis in order to meet the needs of cell proliferation. Here, we show that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in chronic hepatitis B virus (HBV)-infected human liver and HBV-associated liver cancer, together with an elevated activity of the transcription factor Nrf2. In hepatocytes, HBV stimulates by its X protein (HBx) the expression of G6PD in an Nrf2 activation-dependent pathway. HBx associates with the UBA and PB1 domains of the adaptor protein p62 and augments the interaction between p62 and the Nrf2 repressor Keap1 to form HBx–p62–Keap1 complex in the cytoplasm. The aggregation of HBx–p62–Keap1 complexes hijacks Keap1 from Nrf2 leading to the activation of Nrf2 and consequently G6PD transcription. Our data suggest that HBV upregulates G6PD expression by HBx-mediated activation of Nrf2. This implies a potential effect of HBV on the reprogramming of the glucose metabolism in hepatocytes, which may be of importance in the development of HBV-associated hepatocarcinoma. PMID:26583321

  9. An inducible transcription factor activates expression of human immunodeficiency virus in T cells

    NASA Astrophysics Data System (ADS)

    Nabel, Gary; Baltimore, David

    1987-04-01

    Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines1,2. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III (refs 3-6) and art genes7. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-κB (ref. 8), with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-κB acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).

  10. Telomere length affects the frequency and mechanism of antigenic variation in Trypanosoma brucei.

    PubMed

    Hovel-Miner, Galadriel A; Boothroyd, Catharine E; Mugnier, Monica; Dreesen, Oliver; Cross, George A M; Papavasiliou, F Nina

    2012-01-01

    Trypanosoma brucei is a master of antigenic variation and immune response evasion. Utilizing a genomic repertoire of more than 1000 Variant Surface Glycoprotein-encoding genes (VSGs), T. brucei can change its protein coat by "switching" from the expression of one VSG to another. Each active VSG is monoallelically expressed from only one of approximately 15 subtelomeric sites. Switching VSG expression occurs by three predominant mechanisms, arguably the most significant of which is the non-reciprocal exchange of VSG containing DNA by duplicative gene conversion (GC). How T. brucei orchestrates its complex switching mechanisms remains to be elucidated. Recent work has demonstrated that an exogenous DNA break in the active site could initiate a GC based switch, yet the source of the switch-initiating DNA lesion under natural conditions is still unknown. Here we investigated the hypothesis that telomere length directly affects VSG switching. We demonstrate that telomerase deficient strains with short telomeres switch more frequently than genetically identical strains with long telomeres and that, when the telomere is short, switching preferentially occurs by GC. Our data supports the hypothesis that a short telomere at the active VSG expression site results in an increase in subtelomeric DNA breaks, which can initiate GC based switching. In addition to their significance for T. brucei and telomere biology, the findings presented here have implications for the many diverse pathogens that organize their antigenic genes in subtelomeric regions.

  11. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries.

    PubMed

    Lin, C-L; Wang, F-S; Kuo, Y-R; Huang, Y-T; Huang, H-C; Sun, Y-C; Kuo, Y-H

    2006-05-01

    Although previous studies have demonstrated that diabetic nephropathy is attributable to early extracellular matrix accumulation in glomerular mesangial cells, the molecular mechanism by which high glucose induces matrix protein deposition remains not fully elucidated. Rat mesangial cells pretreated with or without inhibitors were cultured in high-glucose or advanced glycation end product (AGE) conditions. Streptozotocin-induced diabetic rats were given superoxide dismutase (SOD)-conjugated propylene glycol to scavenge superoxide. Transforming growth factor (TGF)-beta1, fibronectin expression, Ras, ERK, p38, and c-Jun activation of glomerular mesangial cells or urinary albumin secretion were assessed. Superoxide, not nitric oxide or hydrogen peroxide, mediated high glucose- and AGE-induced TGF-beta1 and fibronectin expression. Pretreatment with diphenyliodonium, not allopurinol or rotenone, reduced high-glucose and AGE augmentation of superoxide synthesis and fibronection expression. High glucose and AGEs rapidly enhanced Ras activation and progressively increased cytosolic ERK and nuclear c-Jun activation. Inhibiting Ras by manumycin A reduced the stimulatory effects of high glucose and AGEs on superoxide and fibronectin expression. SOD or PD98059 pretreatment reduced high-glucose and AGE promotion of ERK and c-Jun activation. Exogenous SOD treatment in diabetic rats significantly attenuated diabetes induction of superoxide, urinary albumin excretion, 8-hydroxy-2'-deoxyguanosine, TGF-beta1, and fibronectin immunoreactivities in renal glomerular mesangial cells. Ras induction of superoxide activated ERK-dependent fibrosis-stimulatory factor and extracellular matrix gene transcription of mesangial cells. Reduction of oxidative stress by scavenging superoxide may provide an alternative strategy for controlling diabetes-induced early renal injury.

  12. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  13. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    SciTech Connect

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  14. Palmitoylethanolamide inhibits rMCP-5 expression by regulating MITF activation in rat chronic granulomatous inflammation.

    PubMed

    De Filippis, Daniele; Russo, Annapina; De Stefano, Daniela; Cipriano, Mariateresa; Esposito, Davide; Grassia, Gianluca; Carnuccio, Rosa; Russo, Giulia; Iuvone, Teresa

    2014-02-15

    Chronic inflammation, a condition frequently associated with several pathologies, is characterized by angiogenic and fibrogenic responses that may account for the development of granulomatous tissue. We previously demonstrated that the chymase, rat mast cell protease-5 (rMCP-5), exhibits pro-inflammatory and pro-angiogenic properties in a model of chronic inflammation sustained by mast cells (MCs), granuloma induced by the subcutaneous carrageenan-soaked sponge implant in rat. In this study, we investigated the effects of palmitoylethanolamide (PEA), an anti-inflammatory and analgesic endogenous compound, on rMCP-5 mRNA expression and Microphtalmia-associated Transcription Factor (MITF) activation in the same model of chronic inflammation. The levels of rMCP-5 mRNA were detected using semi-quantitative RT-PCR; the protein expression of chymase and extracellular signal-regulated kinases (ERK) were analyzed by western blot; MITF/DNA binding activity and MITF phosphorylation were assessed by electrophoretic mobility shift assay (EMSA) and immunoprecipitation, respectively. The administration of PEA (200, 400 and 800 µg/ml) significantly decreased rMCP-5 mRNA and chymase protein expression induced by λ-carrageenan. These effects were associated with a significant decrease of MITF/DNA binding activity and phosphorylated MITF as well as phosphorylated ERK levels. In conclusion, our results, showing the ability of PEA to inhibit MITF activation and chymase expression in granulomatous tissue, may yield new insights into the understanding of the signaling pathways leading to MITF activation controlled by PEA.

  15. Cloning, expression, and pharmacological activity of BmK AS, an active peptide from scorpion Buthus martensii Karsch.

    PubMed

    Shao, Jian-Hua; Wang, Yue-Qiu; Wu, Xiao-Yan; Jiang, Rui; Zhang, Rong; Wu, Chun-Fu; Zhang, Jing-Hai

    2008-01-01

    BmK AS is a beta long-chain scorpion peptide from the venom of Buthus martensii Karsch (BmK). It was efficiently expressed as a soluble and functional peptide in Escherichia coli, and purified by metal chelating chromatography. About 4.2 mg/l purified recombinant BmK AS could be obtained. The recombinant BmK AS maintained a similar analgesic activity to the natural one in both the mouse-twisting test and hot-plate procedure. It also exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria. BmK AS is the first long-chain scorpion peptide reported to have antimicrobial activity, and is a valuable molecular scaffold for pharmacological research.

  16. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization.

    PubMed

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-10-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-GuC)rin) activates disabled naC/ve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-N1), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1N2), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-N2) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

  17. Heat Shock Protein-70 Expression in Vitiligo and its Relation to the Disease Activity

    PubMed Central

    Doss, Reham William; El-Rifaie, Abdel-Aziz A; Abdel-Wahab, Amr M; Gohary, Yasser M; Rashed, Laila A

    2016-01-01

    Background: Vitiligo is a progressive depigmenting disorder characterized by the loss of functional melanocytes from the epidermis. The etiopathogenesis of vitiligo is still unclear. Heat shock proteins (HSPs) are prime candidates to connect stress to the skin. HSPs were found to be implicated in autoimmune diseases such as rheumatoid arthritis and other skin disorders as psoriasis. Aim and Objectives: The aim of this study was to map the level of HSP-70 in vitiligo lesions to declare its role in the pathogenesis and activity of vitiligo. Materials and Methods: The study included thirty patients with vitiligo and 30 age- and sex-matched healthy controls. Vitiligo patients were divided as regards to the disease activity into highly active, moderately active, and inactive vitiligo groups. Skin biopsies were taken from the lesional and nonlesional skin of patients and from the normal skin of the controls. HSP-70 messenger RNA (mRNA) expression was estimated using quantitative real-time polymerase chain reaction. Results: Our analysis revealed a significantly higher expression of HSP-70 mRNA in lesional skin biopsies from vitiligo patients compared to nonlesional skin biopsies from vitiligo patients (P < 0.001) and compared to skin biopsies from healthy controls (P < 0.001). The level of HSP-70 was not found to be correlated with age, sex, or disease duration. The expression of HSP-70 was correlated with the disease activity and patients with active vitiligo showed higher mean HSP-70 level compared to those with inactive disease. Conclusions: HSP-70 plays a role in the pathogenesis of vitiligo and may enhance the immune response in active disease. PMID:27512186

  18. Chemokines derived from soluble fusion proteins expressed in Escherichia coli are biologically active

    SciTech Connect

    Magistrelli, Giovanni; Gueneau, Franck; Muslmani, Machadiya; Ravn, Ulla; Kosco-Vilbois, Marie; Fischer, Nicolas . E-mail: nfischer@novimmune.com

    2005-08-26

    Chemokines are a class of low molecular weight proteins that are involved in leukocytes trafficking. Due to their involvement in recruiting immune cells to sites of inflammation, chemokines, and chemokine receptors have become an attractive class of therapeutic targets. However, when expressed in Escherichia coli chemokines are poorly soluble and accumulate in inclusion bodies. Several purification methods have been described but involve time-consuming refolding, buffer exchange, and purification steps that complicate expression of these proteins. Here, we describe a simple and reliable method to express chemokines as fusions to the protein NusA. The fusion proteins were largely found in the soluble fraction and could be readily purified in a single step. Proteolytic cleavage was used to obtain soluble recombinant chemokines that were found to be very active in a novel in vitro chemotaxis assays. This method could be applied to several {alpha} and {beta} human chemokines, suggesting that it is generally applicable to this class of proteins.

  19. Seizure activity in dogs is associated with enhanced TIMP-2 expression of microglia.

    PubMed

    Stein, Veronika M; Genini, Sem; Puff, Christina; Baumgärtner, Wolfgang; Tipold, Andrea

    2012-04-15

    In the pathogenesis of epilepsy aberrant synaptic plasticity plays an important role. Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are responsible for nervous tissue remodelling resulting in synaptic plasticity in the central nervous system (CNS) and might therefore be crucially involved in epileptogenesis. To assess the potential pathogenetic role of microglial MMPs and TIMPs in seizure induction, twenty-four dogs suffering from different intracranial diseases with and without seizure activity were comparatively examined. Microglial cells were isolated by density gradient centrifugation and their expression profiles of MMP-2, MMP-9, MMP-12, MMP-13, MMP-14, TIMP-1, TIMP-2, and RECK (reversion-inducing cysteine-rich protein with Kazal motifs) were examined via quantitative real-time PCR (qPCR). Interestingly, a significant up-regulation of TIMP-2 expression was found for the first time in dogs suffering from seizures. In conclusion, microglial TIMP expression might be involved in seizure generation.

  20. Mitogen-activated protein kinase in Pfiesteria piscicida and its growth rate-related expression.

    PubMed

    Lin, Senjie; Zhang, Huan

    2003-01-01

    A full-length cDNA (1,434 bp) of mitogen-activated protein kinase (MAPK), a key molecule of a signal transduction cascade, was isolated from the estuarine heterotrophic dinoflagellate Pfiesteria piscicida. This cDNA (Ppmapk1) encoded a protein (PpMAPK1) of 428 amino acid residues that shared about 30 to 40% amino acid similarity with MAPKs in other organisms. Phylogenetic analysis indicated that PpMAPK1 was tightly clustered with MAPK3 in protozoans. Using reverse transcription-PCR, expression of this gene was evaluated for P. piscicida cultures grown under different conditions. While salinity shock, heat shock, starvation, and a subsequent encounter with prey did not appear to affect expression of this gene, Ppmapk1 expression level was correlated with growth rate, suggesting involvement of this gene in the regulation of cell proliferation in the organism.

  1. Chromatin structure implicated in activation of HIV-1 gene expression by ultraviolet light

    SciTech Connect

    Valerie, K.; Rosenberg, M. )

    1990-08-01

    We have investigated the effects of different DNA-damaging agents on HIV-1 gene expression. We find that agents that produce bulky DNA lesions, similar to those induced by ultraviolet light (UV), all dramatically increase HIV-1 gene expression, whereas agents that produce primarily base damage and DNA breakage, such as ionizing radiation, have little or no effect. We show that these effects are independent of DNA synthesis per se and do not require DNA nucleotide excision repair. The drug novobiocin effectively prevents the UV activation process, consistent with the idea that a change in DNA chromatin structure may be required. We suggest that a transient decondensation of chromatin structure, an early step in DNA nucleotide excision repair but not in base excision repair, may be the triggering mechanism. The decondensation may allow the transcriptional machinery better access to the HIV-1 promoter region, thereby increasing gene expression.

  2. Peroxisome Proliferator-Activated Receptor Alpha (PPARa), Beta (PPARI3), and Gamma (PPARy) Expression in Human Fetal Tissues.

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...

  3. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  4. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  5. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation.

    PubMed

    Sashida, Goro; Liu, Yan; Elf, Shannon; Miyata, Yasuhiko; Ohyashiki, Kazuma; Izumi, Miki; Menendez, Silvia; Nimer, Stephen D

    2009-07-01

    Several ETS transcription factors, including ELF4/MEF, can function as oncogenes in murine cancer models and are overexpressed in human cancer. We found that Elf4/Mef activates Mdm2 expression; thus, lack of or knockdown of Elf4/Mef reduces Mdm2 levels in mouse embryonic fibroblasts (mef's), leading to enhanced p53 protein accumulation and p53-dependent senescence. Even though p53 is absent in Elf4(-/-) p53(-/-) mef's, neither oncogenic H-Ras(V12) nor c-myc can induce transformation of these cells. This appears to relate to the INK4a/ARF locus; both p19(ARF) and p16 are increased in Elf4(-/-) p53(-/-) mef's, and expression of Bmi-1 or knockdown of p16 in this context restores H-Ras(V12)-induced transformation. Thus, ELF4/MEF promotes tumorigenesis by inhibiting both the p53 and p16/Rb pathways.

  6. Expression of an activated rasD gene changes cell fate decisions during Dictyostelium development.

    PubMed

    Louis, S A; Spiegelman, G B; Weeks, G

    1997-02-01

    It has been previously demonstrated that the expression of an activated rasD gene in wild-type Dictyostelium cells results in formation of aggregates with multitips, instead of the normal single tips, and a block in further development. In an attempt to better understand the role of activated RasD development, we examined cell-type-specific gene expression in a strain stably expressing high levels of RasD[G12T]. We found that the expression of prestalk cell-specific genes ecmA and tagB was markedly enhanced, whereas the expression of the prespore cell-specific gene cotC was reduced to very low levels. When the fate of cells in the multitipped aggregate was monitored with an ecmA/lacZ fusion, it appeared that most of the cells eventually adopted prestalk gene expression characteristics. When mixtures of the [G12T]rasD cells and Ax3 cells were induced to differentiate, chimeric pseudoplasmodia were not formed. Thus, although the [G12T]rasD transformant had a marked propensity to form prestalk cells, it could not supply the prestalk cell population when mixed with wild-type cells. Both stalk and spore cell formation occurred in low cell density monolayers of the [G12T]rasD strain, suggesting that at least part of the inhibition of stalk and spore formation during multicellular development involved inhibitory cell interactions within the cell mass. Models for the possible role of rasD in development are discussed.

  7. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation

    PubMed Central

    Rodriguez-Jimenez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2015-01-01

    Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi. PMID:26561800

  8. Fine-tuning of nif and fix gene expression by upstream activator sequences in Bradyrhizobium japonicum.

    PubMed

    Gubler, M

    1989-02-01

    The significance of Bradyrhizobium japonicum upstream activator sequences (UASs) for differential NifA-mediated fix and nif gene expression was investigated by two means: (i) hybrid fixA- and fixB-lacZ fusions were constructed by transposing a nifH-UAS cartridge in front of their promoters; and (ii) B. japonicum mutants were generated carrying specific chromosomal deletions or UAS cartridge insertions within the fixA, fixB or nifH promoter-upstream regions. Expression of fixA was not affected, and expression of fixB decreased only to 42%, when the respective fixA and fixB promoter-upstream DNAs were deleted. This shows that in B. japonicum the NifA-dependent activation of at least the fixA promoter does not require the presence of a closely adjacent UAS. Deletion of the UASs in front of the nifH gene not only reduced the expression of nifH down to 2.5% but, surprisingly, also resulted in a reduction of the fixB mRNA level to less than 20%. This suggests that the nifH-UASs may exert a long-range effect on the expression of the 3-kb-distant fixBCX operon in nif cluster I or B. japonicum. Artificial transposition of the nifH-UASs in front of the fixA and fixB promoters strongly enhanced fixA and fixB expression.

  9. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.

    PubMed

    Rodriguez-Jimenez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2015-11-06

    Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.

  10. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with lipopolysaccharide.

    PubMed

    Lo Vasco, Vincenza Rita; Fabrizi, Cinzia; Fumagalli, Lorenzo; Cocco, L

    2010-04-01

    Signal transduction pathways, involved in cell cycle and activities, depend on various components including lipid signalling molecules, such as phosphoinositides and related enzymes. Many evidences support the hypothesis that inositol lipid cycle is involved in astrocytes activation during neurodegeneration. Previous studies investigated the pattern of expression of phosphoinositide-specific phospholipase C (PI-PLC) family isoforms in astrocytes, individuating in cultured neonatal rat astrocytes, supposed to be quiescent cells, the absence of some isoforms, accordingly to their well known tissue specificity. The same study was conducted in cultured rat astrocytoma C6 cells and designed a different pattern of expression of PI-PLCs in the neoplastic counterpart, accordingly to literature suggesting a PI signalling involvement in tumour progression. It is not clear the role of PI-PLC isoforms in inflammation; recent data demonstrate they are involved in cytokines production, with special regard to IL-6. PI-PLCs expression in LPS treated neonatal rat astrocytes performed by using RT-PCR, observed at 3, 6, 18 and 24 h intervals, expressed: PI-PLC beta1, beta4 and gamma1 in all intervals analysed; PI-PLC delta1 at 6, 18 and 24 h; PI-PLC delta3 at 6 h after treatment. PI-PLC beta3, delta4 and epsilon, present in untreated astrocytes, were not detected after LPS treatment. Immunocytochemical analysis, performed to visualize the sub-cellular distribution of the expressed isoforms, demonstrated different patterns of localisation at different times of exposure. These observations suggest that PI-PLCs expression and distribution may play a role in ongoing inflammation process of CNS.

  11. Gestational diabetes mellitus is associated with increased leukocyte peroxisome proliferator-activated receptor γ expression

    PubMed Central

    Mac-Marcjanek, Katarzyna; Nadel, Iwona; Woźniak, Lucyna; Cypryk, Katarzyna

    2015-01-01

    Introduction Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor of the nuclear receptor superfamily that is involved in lipid and carbohydrate metabolism as well as inflammation; thereby it participates in metabolic diseases including diabetes. Although PPARγ expression has been observed in different tissues of diabetic patients, its level in leukocytes from subjects affected by gestational diabetes mellitus (GDM) has not yet been reported. This study aimed to investigate leukocyte PPARG expression in GDM patients at 24–33 weeks of gestation and, in turn, to correlate these alterations with anthropometric and metabolic parameters of patients. Material and methods Leukocytes were isolated from the blood of normal glucose tolerant (NGT; n = 34) and GDM (n = 77) pregnant women between 24 and 33 weeks of gestation. Leukocyte PPARG mRNA expression was determined by semi-quantitative polymerase chain reaction. Univariate correlation analysis was performed to investigate associations between PPARG expression and clinical characteristics of patients. Results Leukocyte PPARG mRNA level was significantly higher in GDM than NGT women (p < 0.05). In the whole study group, PPARG expression positively correlated with plasma glucose concentrations at 1 h (r = 0.222, p = 0.049) and 2 h (r = 0.315, p = 0.020) of 75 g oral glucose tolerance test (OGTT), and negatively correlated with plasma HDL cholesterol concentration (r = -0.351, p = 0.010). Conclusions The correlation between leukocyte PPARG overexpression and hyperglycaemia suggests that PPARG mRNA expression in these cells might be up-regulated in high-glucose conditions in GDM patients at 24–33 weeks of gestation. PMID:26322090

  12. The Light Wavelength Affects the Ontogeny of Clock Gene Expression and Activity Rhythms in Zebrafish Larvae.

    PubMed

    Di Rosa, Viviana; Frigato, Elena; López-Olmeda, José F; Sánchez-Vázquez, Francisco J; Bertolucci, Cristiano

    2015-01-01

    Light plays a key role in synchronizing rhythms and setting the phase of early development. However, to date, little is known about the impact of light wavelengths during the ontogeny of the molecular clock and the behavioural rhythmicity. The aim of this research was to determine the effect of light of different wavelengths (white, blue and red) on the onset of locomotor activity and clock gene (per1b, per2, clock1, bmal1 and dbp) expression rhythms. For this purpose, 4 groups of zebrafish embryo/larvae were raised from 0 to 7 days post-fertilization (dpf) under the following lighting conditions: three groups maintained under light:dark (LD) cycles with white (full visible spectrum, LDW), blue (LDB), or red light (LDR), and one group raised under constant darkness (DD). The results showed that lighting conditions influenced activity rhythms. Larvae were arrhythmic under DD, while under LD cycles they developed wavelength-dependent daily activity rhythms which appeared earlier under LDB (4 dpf) than under LDW or LDR (5 dpf). The results also revealed that development and lighting conditions influenced clock gene expression. While clock1 rhythmic expression appeared in all lighting conditions at 7 dpf, per1b, per2 and dbp showed daily variations already at 3 dpf. Curiously, bmal1 showed consistent rhythmic expression from embryonic stage (0 dpf). Summarizing, the data revealed that daily rhythms appeared earlier in the larvae reared under LDB than in those reared under LDW and LDR. These results emphasize the importance of lighting conditions and wavelengths during early development for the ontogeny of daily rhythms of gene expression and how these rhythms are reflected on the behavioural rhythmicity of zebrafish larvae.

  13. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    PubMed Central

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  14. Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression

    PubMed Central

    Niapour, M; Farr, C; Minden, M; Berger, S A

    2012-01-01

    Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement. PMID:22829235

  15. Variable expression of activation-linked surface antigens on human mast cells in health and disease.

    PubMed

    Valent, P; Schernthaner, G H; Sperr, W R; Fritsch, G; Agis, H; Willheim, M; Bühring, H J; Orfao, A; Escribano, L

    2001-02-01

    Mast cells (MC) are multipotent effector cells of the immune system. They contain an array of biologically active mediator substances in their granules. MC also express a number of functionally important cell surface antigens, including stem cell factor receptor (SCFR=kit=CD117), high affinity IgER (FcepsilonRI), or CSaR (CD88). Respective ligands can induce or promote degranulation, migration, or cytokine production. Other integral surface molecules can mediate adhesion or cell aggregation. Recent data suggest that a number of critical molecules are variably expressed on the surface of human MC. In fact, depending on the environment (organ), stage of cell maturation, type of disease, and other factors, MC express variable amounts of activation-linked antigens (CD25, CD63, CD69, CD88), cell recognition molecules (CD2, CD11, CD18, CD50, CD54), or cytokine receptors. At present, however, little is known about the mechanisms and regulation of expression of such antigens. The present article gives an overview of MC phenotypes in health and disease, and attempts to provide explanations for the phenotypic variability of MC.

  16. Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity.

    PubMed

    Lipman, M L; Panda, D; Bennett, H P; Henderson, J E; Shane, E; Shen, Y; Goltzman, D; Karaplis, A C

    1998-05-29

    Mutations in the PEX gene are responsible for X-linked hypophosphatemic rickets. To gain insight into the role of PEX in normal physiology we have cloned the human full-length cDNA and studied its tissue expression, subcellular localization, and peptidase activity. We show that the cDNA encodes a 749-amino acid protein structurally related to a family of neutral endopeptidases that include neprilysin as prototype. By Northern blot analysis, the size of the full-length PEX transcript is 6.5 kilobases. PEX expression, as determined by semi-quantitative polymerase chain reaction, is high in bone and in tumor tissue associated with the paraneoplastic syndrome of renal phosphate wasting. PEX is glycosylated in the presence of canine microsomal membranes and partitions exclusively in the detergent phase from Triton X-114 extractions of transiently transfected COS cells. Immunofluorescence studies in A293 cells expressing PEX tagged with a c-myc epitope show a predominant cell-surface location for the protein with its COOH-terminal domain in the extracellular compartment, substantiating the assumption that PEX, like other members of the neutral endopeptidase family, is a type II integral membrane glycoprotein. Cell membranes from cultured COS cells transiently expressing PEX efficiently degrade exogenously added parathyroid hormone-derived peptides, demonstrating for the first time that recombinant PEX can function as an endopeptidase. PEX peptidase activity may provide a convenient target for pharmacological intervention in states of altered phosphate homeostasis and in metabolic bone diseases.

  17. The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development.

    PubMed Central

    Izawa, T; Foster, R; Nakajima, M; Shimamoto, K; Chua, N H

    1994-01-01

    Systematic protein-DNA binding studies have shown that plant basic leucine zipper (bZIP) proteins exhibit a differential binding specificity for ACGT motifs. Here, we show that the rice transcription activator-1 (RITA-1) displays a broad binding specificity for palindromic ACGT elements, being able to bind A-, C-, and G-box but not T-box elements. By using gel mobility shift assays with probes differing in sequences flanking the hexameric core, we identified high-affinity A-, C-, and G-box binding sites. Quantitative and competition DNA binding studies confirmed RITA-1 specificity for these sites. Using rice protoplasts as a transient expression system, we demonstrated that RITA-1 can transactivate reporter genes possessing high-affinity but not low-affinity RITA-1 binding sites. Our results established a direct relationship between in vivo transactivation and in vitro binding activity. Transient expression assays that demonstrated the ability of RITA-1 to transactivate a construct containing rita-1 5' flanking sequences suggest that the factor may be autoregulated. Histochemical analysis of transgenic rice plants showed that a rita-1-beta-glucuronidase transgene is expressed in aleurone and endosperm cells of developing rice seeds. We propose that RITA-1 plays a role in the regulation of rice genes expressed in developing rice seeds. PMID:7919992

  18. Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex

    PubMed Central

    Schwarzenberger, Anke; Wacker, Alexander

    2017-01-01

    ABSTRACT We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. PMID:28069588

  19. Heterologous expression and purification of active human phosphoribosylglycinamide formyltransferase as a single domain.

    PubMed

    Kan, C C; Gehring, M R; Nodes, B R; Janson, C A; Almassy, R J; Hostomska, Z

    1992-10-01

    We report here for the first time that the GART domain of the human trifunctional enzyme possessing GARS, AIRS, and GART activities can be expressed independently in Escherichia coli at high levels as a stable protein with enzymatic characteristics comparable to those of native trifunctional protein. Human trifunctional enzyme is involved in de novo purine biosynthesis, and has long been recognized as a target for antineoplastic intervention. The GART domain was expressed in E. coli under the control of bacteriophage T7 promotor and isolated by a three-step chromatographic procedure. Two residues, Asp 951 and His 915, were shown to be catalytically crucial by site-directed mutagenesis and subsequent characterization of purified mutant proteins. The active monofunctional GART protein produced in E. coli can serve as a valuable substitute of trifunctional enzyme for structural and functional studies which have been until now hindered because of insufficient quantity, instability, and size of the trifunctional GART protein.

  20. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells.

    PubMed

    El Meouche, Imane; Siu, Yik; Dunlop, Mary J

    2016-01-13

    Transient resistance can allow microorganisms to temporarily survive lethal concentrations of antibiotics. This can be accomplished through stochastic mechanisms, where individual cells within a population display diverse phenotypes to hedge against the appearance of an antibiotic. To date, research on transient stochastic resistance has focused primarily on mechanisms where a subpopulation of cells enters a dormant, drug-tolerant state. However, a fundamental question is whether stochastic gene expression can also generate variable resistance levels among growing cells in a population. We hypothesized that stochastic expression of antibiotic-inducible resistance mechanisms might play such a role. To investigate this, we focused on a prototypical example of such a system: the multiple antibiotic resistance activator MarA. Previous studies have shown that induction of MarA can lead to a multidrug resistant phenotype at the population level. We asked whether MarA expression also has a stochastic component, even when uninduced. Time lapse microscopy showed that isogenic cells express heterogeneous, dynamic levels of MarA, which were correlated with transient antibiotic survival. This finding has important clinical implications, as stochastic expression of resistance genes may be widespread, allowing populations to hedge against the sudden appearance of an antibiotic.

  1. Cathepsin B differential expression and enzyme processing and activity during Fundulus heteroclitus embryogenesis.

    PubMed

    Tingaud-Sequeira, Angèle; Carnevali, Oliana; Cerdà, Joan

    2011-02-01

    The role of lysosomal proteases such as cathepsin B (Ctsb) and one of the paralogs of cathepsin L (Ctsla) during yolk metabolism in fish oocytes is well established. However, the function of Ctsb during embryogenesis, particularly in marine teleosts, has been poorly documented. In this study, the spatio-temporal expression of Ctsb and Ctsla, their enzymatic activities, and the processing of the Ctsb and its cellular localization, was investigated in developing embryos of the killifish (Fundulus heteroclitus). Both fhctsb and fhctsla transcript levels, as well as cathepsin B- and L-like activities, gradually increased in embryos from the 2-4 cell stage up to 7 days post-fertilization. During the morula to gastrula transition an increase of the active FhCtsb single chain form was followed by a rise in cathepsin B activity, which were apparently regulated by post-transcriptional mechanisms. During neurulation, a 8-fold increase in cathepsin B activity was accompanied by a more moderate increase in cathepsin L activity, which was 6-fold enhanced by 7 dpf. These increased catalytic activities were well-correlated to changes in the electrophoretic pattern of yolk proteins and a strong expression of fhctsb and its protein product in the yolk syncytial layer. The increase of cathepsin B activity was further correlated with an increment of the relative amount of the FhCtsb single and double chain forms, both active forms of FhCtsb. These results suggest that FhCtsb may be involved in the mechanisms underlying the onset of gastrulation in F. heteroclitus embryos, and may play complementary roles with FhCtsla during yolk metabolism.

  2. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    PubMed Central

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  3. [Expression of Chinese sturgeon cystatin in yeast Pichia pastoris and its proteinase inhibitory activity analysis].

    PubMed

    Ma, Dong-Mei; Bai, Jun-Jie; Jian, Qing; Lao, Hai-Hua; Ye, Xing; Luo, Jian-Ren

    2003-09-01

    Cystatin, which widely distributed in both tissues and body fluids of animal and plant, was a superfamily of cysteine proteinase inhibitors. It could form activity-inhibitor complexes with cysteine proteinases to inhibit the hydrolytic activity of proteinases. Cystatin played important roles not only in the inhibition of the proteolytic degradation of fish muscle, but also in biological defense systems against invaders. To explore the functions of fish cystatin and the potential values in fish disease prevention and cure, as well as seafood processing, the recombinant yeast strains which could express Chinese sturgeon cystatin were constructed. First, the cystatin cDNA of Chinese sturgeon, which had been PCR modified, was subcloned into yeast integrated vector pPICZaA. After extracted and purified, the recombinant plasmids were linearized by Sac I. The yeast Pichia pastoris GS115 strain was transformed by use of the Lithium Chloride transformation method, and the recombinant cystatin yeast strains got. After 0.5% methanol induction, SDS-PAGE analysis of the culture supernatant indicated that the yield of recombinant cystatin was about 215mg x L(-1) with the percentage about 73.6%. The recombinant cystatin was purified through Q-Sepharose anion-exchange chromatography, and the purity reached about 94.2%. The inhibitory activity of recombinant cystatin was measured by inhibiting the proteinase activity of papain. The results showed that about 1 microg recombinant cystatin could inhibit the activity of 15 microg papain. Heat stability assay results showed that there was a decrease in inhibitory activity of cystatin with the increasing of temperature. When solution of recombinant cystatin was kept at 70 degrees C for 5min, the inhibitory activity reduced fast. While the recombinant cystatin was heated to 90 degrees C for 5min, the inhibitory activity of recombinant cystatin was undetected. The inhibitory activity for recombinant Chinese sturgeon cystatin was higher

  4. Expression, purification and characterization of recombinant human choline acetyltransferase: phosphorylation of the enzyme regulates catalytic activity.

    PubMed Central

    Dobransky, T; Davis, W L; Xiao, G H; Rylett, R J

    2000-01-01

    Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons and, in humans, may be produced in 82- and 69-kDa forms. In this study, recombinant choline acetyltransferase from baculovirus and bacterial expression systems was used to identify protein isoforms by two-dimensional SDS/PAGE and as substrate for protein kinases. Whereas hexa-histidine-tagged 82- and 69-kDa enzymes did not resolve as individual isoforms on two-dimensional gels, separation of wild-type choline acetyltransferase expressed in insect cells revealed at least nine isoforms for the 69-kDa enzyme and at least six isoforms for the 82-kDa enzyme. Non-phosphorylated wild-type choline acetyltransferase expressed in Escherichia coli yielded six (69 kDa) and four isoforms (82 kDa) respectively. Immunofluorescent labelling of insect cells expressing enzyme showed differential subcellular localization with the 69-kDa enzyme localized adjacent to plasma membrane and the 82-kDa enzyme being cytoplasmic at 24 h. By 64 h, the 69-kDa form was in cytoplasm and the 82-kDa form was only present in nucleus. Studies in vitro showed that recombinant 69-kDa enzyme was a substrate for protein kinase C (PKC), casein kinase II (CK2) and alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaM kinase), but not for cAMP-dependent protein kinase (PKA); phosphorylation by PKC and CK2 enhanced enzyme activity. The 82-kDa enzyme was a substrate for PKC and CK2 but not for PKA or alpha-CaM kinase, with only PKC yielding increased enzyme activity. Dephosphorylation of both forms of enzyme by alkaline phosphatase decreased enzymic activity. These studies are of functional significance as they report for the first time that phosphorylation enhances choline acetyltransferase catalytic activity. PMID:10861222

  5. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity.

    PubMed

    Yu, Jinghua; Lo, Jane-L; Huang, Li; Zhao, Annie; Metzger, Edward; Adams, Alan; Meinke, Peter T; Wright, Samuel D; Cui, Jisong

    2002-08-30

    Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.

  6. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism

    PubMed Central

    Kerridge, Caroline; Kozlova, Daria I.; Nalivaeva, Natalia N.; Turner, Anthony J.

    2015-01-01

    While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD. PMID:26617481

  7. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  8. Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

    PubMed Central

    Kim, Seo Hwa; Baek, Moon Seong; Yoon, Dong Sik; Park, Jong Seol; Yoon, Byoung Wook; Oh, Byoung Su; Park, Jinkyeong

    2014-01-01

    Background Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-1β (IL-1β) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D (1,25(OH)2D) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results IL-1β significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and 1,25(OH)2D (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and 1,25(OH)2D. Conclusion Vitamin D, 25(OH)D, and 1,25(OH)2D play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-1β stimulated MMP-9 production and conversion to its active form but also inhibiting IL-1β inhibition on TIMP-1 and TIMP-2 production. PMID:25237378

  9. Responsibility modulates pain-matrix activation elicited by the expressions of others in pain.

    PubMed

    Cui, Fang; Abdelgabar, Abdel-Rahman; Keysers, Christian; Gazzola, Valeria

    2015-07-01

    Here we examine whether brain responses to dynamic facial expressions of pain are influenced by our responsibility for the observed pain. Participants played a flanker task with a confederate. Whenever either erred, the confederate was seen to receive a noxious shock. Using functional magnetic resonance imaging, we found that regions of the functionally localized pain-matrix of the participants (the anterior insula in particular) were activated most strongly when seeing the confederate receive a noxious shock when only the participant had erred (and hence had full responsibility). When both or only the confederate had erred (i.e. participant's shared or no responsibility), significantly weaker vicarious pain-matrix activations were measured.

  10. Insulin Sensitizing Pharmacology of Thiazolidinediones Correlates with Mitochondrial Gene Expression rather than Activation of PPARγ

    PubMed Central

    Bolten, Charles W.; Blanner, Patrick M.; McDonald, William G.; Staten, Nicholas R.; Mazzarella, Richard A.; Arhancet, Graciela B.; Meier, Martin F.; Weiss, David J.; Sullivan, Patrick M.; Hromockyj, Alexander E.; Kletzien, Rolf F.; Colca, Jerry R.

    2007-01-01

    Insulin sensitizing thiazolidinediones (TZDs) are generally considered to work as agonists for the nuclear receptor peroxisome proliferative activated receptor-gamma (PPARγ). However, TZDs also have acute, non-genomic metabolic effects and it is unclear which actions are responsible for the beneficial pharmacology of these compounds. We have taken advantage of an analog, based on the metabolism of pioglitazone, which has much reduced ability to activate PPARγ. This analog (PNU-91325) was compared to rosiglitazone, the most potent PPARγ activator approved for human use, in a variety of studies both in vitro and in vivo. The data demonstrate that PNU-91325 is indeed much less effective than rosiglitazone at activating PPARγ both in vitro and in vivo. In contrast, both compounds bound similarly to a mitochondrial binding site and acutely activated PI-3 kinase-directed phosphorylation of AKT, an action that was not affected by elimination of PPARγ activation. The two compounds were then compared in vivo in both normal C57 mice and diabetic KKAy mice to determine whether their pharmacology correlated with biomarkers of PPARγ activation or with the expression of other gene transcripts. As expected from previous studies, both compounds improved insulin sensitivity in the diabetic mice, and this occurred in spite of the fact that there was little increase in expression of the classic PPARγ target biomarker adipocyte binding protein-2 (aP2) with PNU-91325 under these conditions. An examination of transcriptional profiling of key target tissues from mice treated for one week with both compounds demonstrated that the relative pharmacology of the two thiazolidinediones correlated best with an increased expression of an array of mitochondrial proteins and with expression of PPARγ coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis. Thus, important pharmacology of the insulin sensitizing TZDs may involve acute actions, perhaps on the

  11. Cloning and expression of a cDNA for the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Palmer, E; Benacerraf, B; Rock, K L

    1988-01-01

    The T-cell-activating protein TAP is a murine phosphatidylinositol-anchored glycoprotein whose expression is controlled by the Ly-6 locus. Previous studies have suggested an important role for this protein in physiological T-cell activation. Using oligonucleotide probes, we have now isolated a cDNA clone whose predicted sequence would encode a protein with an NH2-terminal sequence identical to that of the TAP molecule. Further analysis of the predicted protein sequence revealed a cysteine-rich protein with a hydrophobic domain at the COOH terminus and without N-linked glycosylation sites--all features consistent with our previous analysis of the TAP protein. In Southern blot analysis, the Ly-6.2 cDNA clone detects a multigene family and a restriction fragment length polymorphism that maps precisely to the Ly-6 locus. Expression of the cDNA clone in COS cells demonstrates that it codes for TAP and clarifies the relationship between the epitopes recognized by various alpha Ly-6 monoclonal antibodies. Finally, we have studied the expression of Ly-6 mRNA in a variety of cell lineages. Ly-6 transcripts were detected in all organs examined, including spleen, kidney, lung, brain, and heart. This demonstrates that the Ly-6 locus is transcriptionally active in a wide range of organs and suggests that the role of TAP or TAP-like proteins might extend to other tissues. Images PMID:2895473

  12. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term.

    PubMed

    Collier, Abby C; Thévenon, Audrey D; Goh, William; Hiraoka, Mark; Kendal-Wright, Claire E

    2015-12-01

    Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred.

  13. Prostaglandin F2α regulates the expression of uterine activation proteins via multiple signalling pathways.

    PubMed

    Xu, Chen; You, Xingji; Liu, Weina; Sun, Qianqian; Ding, Xiaoying; Huang, Ying; Ni, Xin

    2015-01-01

    Prostaglandin F2α (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells (HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium. It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-stimulated expression of CX43. The inhibitors of ERK, P38 and NFκB also blocked the effect of PGF2A on CX43 expression, whereas PI3K and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2 and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFκB signalling were not involved. In addition, PGF2A activated NFAT, PI3K, NFκB, ERK and P38 signalling pathways. Our data suggest that PGF2A stimulates CX43, PTGS2 and OTR through divergent signalling pathways.

  14. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression

    PubMed Central

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-01-01

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  15. Physical activity ameliorates cartilage degeneration in a rat model of aging: a study on lubricin expression.

    PubMed

    Musumeci, G; Castrogiovanni, P; Trovato, F M; Imbesi, R; Giunta, S; Szychlinska, M A; Loreto, C; Castorina, S; Mobasheri, A

    2015-04-01

    Osteoarthritis (OA) is a common musculoskeletal disorder characterized by slow progression and joint tissue degeneration. Aging is one of the most prominent risk factors for the development and progression of OA. OA is not, however, an inevitable consequence of aging and age-related changes in the joint can be distinguished from those that are the result of joint injury or inflammatory disease. The question that remains is whether OA can be prevented by undertaking regular physical activity. Would moderate physical activity in the elderly cartilage (and lubricin expression) comparable to a sedentary healthy adult? In this study we used physical exercise in healthy young, adult, and aged rats to evaluate the expression of lubricin as a novel biomarker of chondrocyte senescence. Immunohistochemistry and western blotting were used to evaluate the expression of lubricin in articular cartilage, while enzyme-linked immunosorbent assay was used to quantify lubricin in synovial fluid. Morphological evaluation was done by histology to monitor possible tissue alterations. Our data suggest that moderate physical activity and normal mechanical joint loading in elderly rats improve tribology and lubricative properties of articular cartilage, promoting lubricin synthesis and its elevation in synovial fluid, thus preventing cartilage degradation compared with unexercised adult rats.

  16. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term

    PubMed Central

    Thévenon, Audrey D.; Goh, William; Hiraoka, Mark; Kendal-Wright, Claire E.

    2014-01-01

    Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred. PMID:25465229

  17. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality.

  18. Regulation of Gene33 expression by insulin requires MEK-ERK activation.

    PubMed

    Keeton, Adam B; Xu, Jie; Franklin, J Lee; Messina, Joseph L

    2004-09-17

    Gene33 and its human homologue, mitogen inducible gene-6/receptor-associated late transducer (mig-6, RALT), is a 53-kDa soluble protein that was identified as a hepatic gene regulated by glucocorticoids and insulin. Its mRNA is expressed in numerous tissues in addition to the liver. Mitogen inducibility of Gene33 mRNA has been described in several experimental systems. Recent reports have suggested a role for Gene33 in inhibition of proliferation induced by factors that bind to members of the ErbB family of receptors. In the present work, we examine the regulation of Gene33 protein by insulin in hepatoma cells of rat (H4IIE) and human (HepG2/Hep3B) origin. Inhibition of MEK1 significantly inhibited extracellularly regulated kinase (ERK)1/2 activation and insulin-regulated Gene33 transcription and protein levels in H4IIE cells. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity alone did not significantly alter transcription of Gene33. In Hep3B and HepG2 cells, insulin did not significantly induce either ERK1/2 activation or Gene33 expression. This work suggests that the MEK-ERK, but not the phosphatidylinositol 3-kinase (PI3-K), pathway plays a direct role in insulin regulation of Gene33 transcription and protein expression.

  19. Aryl hydrocarbon receptor modulates NADPH oxidase activity via direct transcriptional regulation of p40phox expression.

    PubMed

    Wada, Taira; Sunaga, Hiroshi; Ohkawara, Reiko; Shimba, Shigeki

    2013-05-01

    A member of the NADPH oxidase subunits, p40(phox) plays an important role in the regulation of NADPH oxidase activity and the subsequent production of reactive oxygen species (ROS). In this study, we show that mouse p40(phox) is a novel transcriptional target of the aryl hydrocarbon receptor (AhR), known as a dioxin receptor or xenobiotic receptor, in the liver. Treatment of mice with 3-methylcholanthrene (3MC) increased p40(phox) gene expression in the liver, but this induction of p40(phox) gene expression was diminished by the deletion of the AhR gene in the liver. Consistent with the in vivo results, the expression of the p40(phox) gene was increased in 3MC-treated Hepa1c1c7 cells in an AhR-dependent manner. In addition, promoter analysis established p40(phox) as a transcriptional target of AhR. Studies using the RNA-interference technique revealed that p40(phox) is involved in the increase of NADPH oxidase activity and the subsequent ROS production in AhR-activated Hepa1c1c7 cells. Consequently, the results obtained here may provide a novel molecular mechanism for ROS production after exposure to dioxins.

  20. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    PubMed Central

    Domínguez-Avila, J. Abraham; González-Aguilar, Gustavo A.; Alvarez-Parrilla, Emilio; de la Rosa, Laura A.

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  1. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis.

    PubMed

    De Leon, Gabriel; Sherry, Tara C; Krucher, Nancy A

    2008-06-01

    There is abundant evidence that Retinoblastoma (Rb) activity is important in the control of cell proliferation and apoptosis. Reversible phosphorylation of the Rb protein that is carried out by cyclin dependent kinases and Protein phosphatase 1 (PP1) regulates its functions. A PP1 interacting protein, PNUTS (Phosphatase Nuclear Targeting Subunit) is proposed to be a regulator of Rb phosphorylation. In this study, PNUTS knockdown in MCF7, SKA and HCT116 cancer cells causes a reduction in viability due to increased apoptosis. However, normal cells (MCF10A breast and CCD-18Co colon) do not exhibit reduced viability when PNUTS expression is diminished. PNUTS knockdown has no effect in Rb-null Saos-2 cells. However, when Rb is stably expressed in Saos-2 cells, PNUTS knockdown reduces cell number. Knockdown of PNUTS in p53-/- HCT116 cells indicates that p53 is dispensable for the induction of apoptosis. Loss of PNUTS expression results in increased Rb-phosphatase activity and Rb dephosphorylation. E2F1 dissociates from Rb in cells depleted of PNUTS and the resulting apoptosis is dependent on caspase-8. These results indicate that Rb phosphorylation state can be manipulated by targeting Rb phosphatase activity and suggest that PNUTS may be a potential target for therapeutic pro-apoptotic strategies.

  2. A bioluminescence reporter mouse that monitors expression of constitutively active β-catenin

    PubMed Central

    Kommagani, Ramakrishna; Peavey, Mary C.; Hai, Lan; Lonard, David M.; Lydon, John P.

    2017-01-01

    This short technical report describes the generation and characterization of a bioluminescence reporter mouse that is engineered to detect and longitudinally monitor the expression of doxycycline-induced constitutively active β-catenin. The new responder transgenic mouse contains the TetO-ΔN89β-CatTMILA transgene, which consists of the tet-operator followed by a bicistronic sequence encoding a stabilized form of active β-catenin (ΔN89β-catenin), an internal ribosome entry site, and the firefly luciferase gene. To confirm that the transgene operates as designed, TetO-ΔN89β-CatTMILA transgenic mouse lines were crossed with an effector mouse that harbors the mouse mammary tumor virus-reverse tetracycline transactivator (MMTV-rtTA) transgene (termed MTB hereon), which primarily targets rtTA expression to the mammary epithelium. Following doxycycline administration, the resultant MTB/CatTMILA bigenic reporter exhibited precocious lobuloalveologenesis, ductal hyperplasia, and mammary adenocarcinomas, which were visualized and monitored by in vivo bioluminescence detection. Therefore, we predict that the TetO-ΔN89β-CatTMILA transgenic responder mouse—when crossed with the appropriate effector transgenic—will have wide-applicability to non-invasively monitor the influence of constitutively active β-catenin expression on cell-fate specification, proliferation, differentiation, and neoplastic transformation in a broad spectrum of target tissues. PMID:28253313

  3. Mice Expressing Activated PI3K Rapidly Develop Advanced Colon Cancer

    PubMed Central

    Leystra, Alyssa A.; Deming, Dustin A.; Zahm, Christopher D.; Farhoud, Mohammed; Paul Olson, Terrah J.; Hadac, Jamie N.; Nettekoven, Laura A.; Albrecht, Dawn M.; Clipson, Linda; Sullivan, Ruth; Washington, Mary Kay; Torrealba, Jose R.; Weichert, Jamey P.; Halberg, Richard B.

    2012-01-01

    Aberrations in the phosphatidylinositide-3-kinase (PI3K) signaling pathway play a key role in the pathogenesis of numerous cancers by altering cellular growth, metabolism, proliferation, and apoptosis (1). Mutations in the catalytic domain of PI3K that generate a dominantly active kinase are commonly found in human colorectal cancers and have been thought to drive tumor progression, but not initiation (2). However, the effects of constitutively activated PI3K upon the intestinal mucosa have not been previously studied in animal models. Here, we demonstrate that the expression of a dominantly active form of the PI3K protein in the mouse intestine results in hyperplasia and advanced neoplasia. Mice expressing constitutively active PI3K in the epithelial cells of the distal small bowel and colon rapidly developed invasive adenocarcinomas in the colon that spread into the mesentery and adjacent organs. The histological characteristics of these tumors were strikingly similar to invasive mucinous colon cancers in humans. Interestingly, these tumors formed without a benign polypoid intermediary, consistent with the lack of aberrant WNT signaling observed. Together, our findings indicate a non-canonical mechanism of colon tumor initiation that is mediated through activation of PI3K. This unique model has the potential to further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification. PMID:22525701

  4. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis.

    PubMed

    Zou, Chun; Duan, Xuguo; Wu, Jing

    2016-08-01

    Addition of MgCl2 to the culture medium has been found to dramatically increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. The specific activity of the pullulanase obtained from medium supplemented with MgCl2 was also higher than that obtained in culture medium without added magnesium ions. In this work, the mechanism of this increase was studied. When cultured in medium without added magnesium ions, B. choshinensis mainly produced a thermolabile, inactive form of pullulanase. The addition of magnesium ions led to the production of a thermostable, active form of pullulanase. Circular dichroism assays revealed considerable differences in secondary structure between the active and inactive pullulanase forms. Transmission electron microscopy suggested that magnesium ion addition inhibits the shedding of cell wall protein (HWP) layers from the cell surface. Quantitative real-time PCR showed that magnesium ion addition represses transcription of HWP. Because the pullulanase gene and HWP have identical promoters, pullulanase gene transcription was also inhibited. These results suggest that when pullulanase is expressed slowly, it tends to fold into an active form.

  5. Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity.

    PubMed Central

    Guy, P M; Platko, J V; Cantley, L C; Cerione, R A; Carraway, K L

    1994-01-01

    Protein kinases share a number of highly conserved or invariant amino acid residues in their catalytic domains, suggesting that these residues are necessary for kinase activity. In p180erbB3, a receptor tyrosine kinase belonging to the epidermal growth factor (EGF) receptor subfamily, three of these residues are altered, suggesting that this protein might have an impaired protein tyrosine kinase activity. To test this hypothesis, we have expressed human EGF receptor and bovine p180erbB3 in insect cells via baculovirus infection and have compared their autophosphorylation and substrate phosphorylation activities. We have found that, while the EGF receptor readily undergoes EGF-stimulated autophosphorylation and catalyzes the incorporation of phosphate into the model substrates (E4Y1)n (random 4:1 copolymer of glutamic acid and tyrosine) and GST-p85 (glutathione S-transferase fusion protein with the 85-kDa subunit of phosphatidylinositol 3-kinase), p180erbB3 autophosphorylation and substrate phosphorylation are at least 2 orders of magnitude less efficient. However, p180erbB3 is capable of binding the ATP analog 5'-p-fluorosulfonylbenzoyladenosine, indicating that the lack of observed kinase activity is probably not due to nonfunctional or denatured receptors expressed by the insect cells. On the basis of these results, we propose that p180erbB3 possesses an impaired intrinsic tyrosine kinase activity. Images PMID:8058768

  6. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩

    PubMed Central

    Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.

    2009-01-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239

  7. Time-resolved rhodopsin activation currents in a unicellular expression system.

    PubMed Central

    Sullivan, J M; Shukla, P

    1999-01-01

    The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions. PMID:10465746

  8. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers

    PubMed Central

    Stern, Josh Lewis; Theodorescu, Dan; Vogelstein, Bert; Papadopoulos, Nickolas; Cech, Thomas R.

    2015-01-01

    Somatic mutations in the promoter of the gene for telomerase reverse transcriptase (TERT) are the most common noncoding mutations in cancer. They are thought to activate telomerase, contributing to proliferative immortality, but the molecular events driving TERT activation are largely unknown. We observed in multiple cancer cell lines that mutant TERT promoters exhibit the H3K4me2/3 mark of active chromatin and recruit the GABPA/B1 transcription factor, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing; only the mutant promoters are transcriptionally active. These results suggest how a single-base-pair mutation can cause a dramatic epigenetic switch and monoallelic expression. PMID:26515115

  9. Aryl‐hydrocarbon receptor activity modulates prolactin expression in the pituitary

    SciTech Connect

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T.

    2012-11-15

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary. -- Highlights: ► AhR signaling suppresses Prl mRNA expression. ► AhR signaling does not influence pituitary proliferation in culture. ► AhR is necessary for Prl, Lhb and Fshb expression at postnatal day 3.

  10. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells.

    PubMed

    Kim, Jeong Hwa; Lee, Jae Kwon

    2015-11-01

    Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.

  11. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    SciTech Connect

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  12. p38 mitogen-activated