Science.gov

Sample records for active water cooling

  1. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Mutagenic activity associated with cooling tower waters treated with a biocide containing 5-chloro-2-methyl-4-isothiazolin-3-one

    SciTech Connect

    Woodall, G.M.; Pancorbo, O.C.; Blevins, R.D.; Ferslew, K.E.

    1987-08-01

    With the Ames Salmonella-mammalian microsome test, significant mutagenic activity was detected in cooling tower water shortly (same day) after treatment with a biocide (CL2150) containing 5-chloro-2-methyl-4-isothiazolin-3-one(5-chloro-IT). Dose-related mutagenic responses with TA97 (-S9) and TA100 (-S9) were produced with the acid fraction (extracted at pH <2 with methylene chloride) of this cooling water sample (specific mutagenic activities of 281,000 and 188,000 net revertants/L equiv of water, respectively). This mutagenic activity detected in cooling water sampled in mid-summer did not persist beyond the first day of CL2150 treatment. The mutagenic activity displayed by the cooling waters with TA97 (-S9) exceeded that associated with the extractable 5-chloro-IT concentration (determined by capillary gas chromatography-mass spectrometry). 24 references, 6 figures, 3 tables.

  3. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  4. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  5. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  6. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  7. Experiments on FTU with an actively water cooled liquid lithium limiter

    NASA Astrophysics Data System (ADS)

    Mazzitelli, G.; Apicella, M. L.; Apruzzese, G.; Crescenzi, F.; Iannone, F.; Maddaluno, G.; Pericoli-Ridolfini, V.; Roccella, S.; Reale, M.; Viola, B.; Lyublinski, I.; Vertkov, A.

    2015-08-01

    In order to prevent the overheating of the liquid Li surface and the consequent Li evaporation for T > 500 °C, an advanced version of the liquid lithium limiter has been realized and installed on FTU. This new system, named Cooled Lithium Limiter (CLL), has been optimized to demonstrate the lithium limiter capability to sustain thermal loads as high as 10 MW/m2 with up to 5 s of plasma pulse duration. The CLL operates with an actively cooled system with water circulation at the temperature of about 200 °C, for heating lithium up to the melting point and for the heat removal during the plasma discharges. To characterize CLL during discharges, a fast infrared camera and the spectroscopic signals from Li and D atom emission have been used. The experiments analyzed so far and simulated by ANSYS code, point out that heat loads as high as 2 MW/m2 for 1.5 s have been withstood without problems.

  8. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  9. Cooling apparatus for water-cooled engines

    SciTech Connect

    Fujikawa, T.; Tamba, S.

    1986-05-20

    A cooling apparatus is described for a water-cooled internal combustion engine including a shaft that rotates when the engine is running, the apparatus comprising a centrifugal fan adapted to be connected to and rotated by the shaft, the fan having an intake air port and a discharge air opening, a rotary screen adapted to be operatively connected to and rotated by the shaft, the screen being disposed in the intake air port, a cooling radiator, a spiral-shaped duct connecting the radiator with the discharge air opening, and separating means on the duct, the separating means comprising an opening formed in the outer wall of the duct.

  10. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  11. AHA! A Cool Salt Water/Density Activity--The Joy of Designing a Simple Experiment.

    ERIC Educational Resources Information Center

    Carlson, Gaylen R.

    1998-01-01

    Describes two science activities concerning water density and shares an idea for combining these activities into a third, completely new activity. Demonstrates the joy of rekindling the spirit of scientific thinking in a typical classroom. (PVD)

  12. Regional and total body active heating and cooling of a resting diver in water of varied temperatures

    NASA Astrophysics Data System (ADS)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2008-02-01

    Passive insulations alone are not sufficient for maintaining underwater divers in thermal balance or comfort. The purpose of this study was to experimentally determine the active heating and cooling requirements to keep a diver at rest in thermal balance and comfort in water temperatures between 10 and 40 °C. A diver wearing a prototype tubesuit and a wetsuit (3 or 6.5 mm foam neoprene) was fully submersed (0.6 m) in water at a specified temperature (10, 20, 30 and 40 °C). During immersion, the tubesuit was perfused with 30 °C water at a flow rate of 0.5 L min-1 to six individual body regions. An attempt was made to keep skin temperatures below 42 °C in hot water (>30 °C) and elevated but below 32 °C in cold water (<20 °C). A skin temperature of 32 °C is the threshold for maximal body thermal resistance due to vasoconstriction. Skin temperatures and core temperature were monitored during immersion to ensure they remained within set thermal limits. In addition skin heat flux, oxygen consumption and the thermal exchange of the tubesuit were measured. In both wetsuit thicknesses there was a linear correlation between the thermal exchange of the tubesuit and ambient water temperature. In the 6.5 mm wetsuit -214 W to 242 W of heating (-) and cooling (+) was necessary in 10 °C to 40 °C water, respectively. In the 3 mm wetsuit -462 to 342 W was necessary in 10 °C to 40 °C water, respectively. It was therefore concluded that a diver at rest can be kept in thermal balance in 10-40 °C water with active heating and cooling.

  13. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  14. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    SciTech Connect

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  15. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water...

  16. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water...

  17. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water...

  18. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water...

  19. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water...

  20. Passive containment cooling water distribution device

    DOEpatents

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  1. District cooling in Stockholm using sea water

    SciTech Connect

    Fermbaeck, G.

    1995-12-31

    In May this year Stockholm Energi started supplying properties in central Stockholm with cooling for comfort and for various processes from its new district cooling system. The project is unique in that most of the cooling energy is produced using cold water from the Baltic Sea. The following article describes the system and provides a summary of the considerations that resulted in venturing to invest in sea-water cooling for such a large project. There is also a description of the hydrological conditions that made the system feasible in Stockholm and some speculations about the possibilities to use cooled sea water elsewhere in the world.

  2. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  3. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  4. Mycobacteria in Finnish cooling tower waters.

    PubMed

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. PMID:23937212

  5. "Hot" for Warm Water Cooling

    SciTech Connect

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  6. Heat dissipation in water-cooled reflectors

    NASA Technical Reports Server (NTRS)

    Kozai, Toyoki

    1994-01-01

    The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.

  7. Electrochemistry of Water-Cooled Nuclear Reactors

    SciTech Connect

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  8. Using ozone to treat cooling tower water

    SciTech Connect

    Webster, L.

    1995-07-01

    Ozone is a controversial but promising alternative to chemicals for treating water in cooling towers. A powerful disinfectant, ozone can prevent biofouling of heat exchange surfaces, and may mitigate scale and corrosion. Ozone treatment of cooling towers can cut costs for energy, water, sewage, and regulatory compliance. Ozone treatment is an electrotechnology, but ozone equipment represents only a small electric load. Although ozone has provided excellent results in some cooling tower applications, its effectiveness has not been proven conclusively. Less than 1,000 cooling towers use ozone water treatment in the United States. Acceptance of this technology is increasing, however, as indicated by its use by such large firms as IBM, AT and T, DuPont, and Xerox, and by its adoption by some chemical water treatment suppliers. The energy efficiency implications of ozone treatment are being researched. Southern California Edison found that in some systems, ozone treatment improved chiller efficiency up to 20 percent due to cleaner heat exchange surfaces.

  9. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  10. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  11. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  12. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    SciTech Connect

    Doyle, R.E.

    1989-10-20

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems. (LSP)

  13. INFORMATION SOURCE ON COOLING WATER INTAKE

    EPA Science Inventory

    Resource Purpose:Supports the technical and financial analysis for the cooling water intake structure rule under Section 316(b) of the CWA.
    Legislation/Enabling Authority:Section 308
    Supported Program:Water permits - implementation of Section 316(b) of ...

  14. Water-Cooled Total-Temperature Probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Reece, Garland D.

    1992-01-01

    Water-cooled supersonic total-pressure, static-pressure, and total-temperature probes developed to study high-temperature jet plumes. Total-temperature probe tested up to 2,000 degrees F incorporates annular cooling system up to thermocouple lead. Lead extends into test chamber to sense temperature of supersonic external flow. Design novel and significant. Applicable in development of jet engines and in research on fast flows of hot gases.

  15. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  16. Salt water cooling tower retrofit experience

    SciTech Connect

    Rittenhouse, R.C.

    1994-06-01

    This article describes the experience of engineers at Atlantic Electric Co. with a recent cooling tower fill retrofit at the company's B.L. England Station, Unit 3. Note that this tower is unique. It is the first natural draft salt water tower to be built in the United States. Unit 3's closed-loop saltwater cooling system features a double condenser and two 50% capacity horizontal circulating water pumps. A natural draft cooling tower rejects heat to the atmosphere through evaporation and sensible heat transfer. The tower is 180 ft in diameter at the base and 208 ft high, and features a counterflow design. It was designed to cool 63,500 gpm of circulating salt water through a range of 26 F with an approach of 19.2 degrees at an ambient wet bulb temperature of 76 F and 60% relative humidity. A drift rate of 0.002% of circulating water flow was specified to avoid excessive salt water carryover.

  17. Diagnostics for the NBETF actively cooled beamdump

    SciTech Connect

    Theil, E.; Jacobson, V.

    1984-09-01

    Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility is currently testing multi-megawatt beams with pulse durations of up to 30 seconds. For this purpose, an actively cooled beam dump composed of heat-absorbing panels tht dissipate the beam energy via high speed water flow has been installed and tested. The panels are mounted in a complex assembly necessary to accommodate the variety of ion sources to be tested. The beam dump required new diagnostics of two kinds: beam diagnostics that provide graphic and quantitative information about the beam, as inferred from energy transferred to the water, and panel diagnostics that provide graphic and quantitative information about the beam dump itself. In this paper we describe our response to these requirements, including new algorithms for beam profiles, and we compare this work to our earlier results for inertial beam dumps. Principal differences are that the power densities on the water-cooled panels can be only indirectly inferred from measurements of the transferred beam energy, and that the acquisition and preparation of raw data is much more complex.

  18. Evaporative cooling of speleothem drip water.

    PubMed

    Cuthbert, M O; Rau, G C; Andersen, M S; Roshan, H; Rutlidge, H; Marjo, C E; Markowska, M; Jex, C N; Graham, P W; Mariethoz, G; Acworth, R I; Baker, A

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ(18)O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  19. Evaporative cooling of speleothem drip water

    PubMed Central

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  20. Cooling tower water conditioning study. [using ozone

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  1. Water-conserving cooling tower treatment

    SciTech Connect

    Mathie, A.J.

    1996-12-31

    Water conservation in cooling towers and evaporative coolers can finally become a reality. Also, fouled closed hot and chilled water systems can be restored to near original efficiency using the same technology. The barrier limiting the traditional water treatment industry from serious involvement in water conservation is the lack of a really good chemical to control scale. Poor scale inhibitors are the reason for a heavy bleed. Minerals concentrated by evaporation is wasted to the sewer while low solids make-up water fills the tower. Water conservation is important because of the increasing usable water shortage, the cost to add infrastructure to deliver increasing amounts of water to accommodate growth and the limitations imposed on disposal to the sewer. Now, due to innovations in chemical treatment, users of cooling towers and evaporative coolers can conserve water. In this presentation the author assumes the audience has some knowledge of traditional water treatment. Except for a few general references to establish common understanding, the author confines his remarks to discussing an advanced technology developed by DIAS, Inc., and the economics of its use.

  2. A cooling water system copper corrosion study

    SciTech Connect

    Pulkrabek, J.W.

    1998-07-01

    The plant has four units that have been operating normally for 12--33 years. Two of the units are 70 MW sister units that have copper alloy once-through condensers. The other two units are 350 MW and 500 MW units with copper alloy condensers and cooling towers. No cooling water related tube leaks had been experienced. Until 1993, the only chemicals used were sulfuric acid for pH control of the cooling tower systems and chlorine for biological control. The units were chlorinated for one hour per day per condenser. In early July 1992, their copper grab sample at the plant discharge to the river exceeded the weekly environmental limit. In fact, it was so high that there was a slim chance of coming in under their monthly average copper limit unless something was done quickly. The result of this incident was an extensive study of their plant wastewater and cooling systems. The study revealed that the elevated copper problem had existed sporadically for several years. Initially, copper control was achieved by altering the wastewater treatment processes and cooling tower blowdown flow path. Two extended trials, one with tolyltriazole (TTA) and one with a chemically modified benzotriazole (BZT) were performed. Optimal control of copper corrosion was eventually achieved by the application of a TTA treatment program in which the feed rates are adjusted based on on-line corrosion monitoring measurements. This report documents experiences and results over the past six years.

  3. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  4. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Cooling water intake structures. 401... GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard...

  5. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard...

  6. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard...

  7. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard...

  8. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard...

  9. Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Rotter, Hank A.; Easton, Myriam; Lince, Jeffrey; Park, Woonsup; Stewart, Thomas; Speckman, Donna; Dexter, Stephen; Kelly, Robert

    2005-01-01

    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life.

  10. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  11. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  12. Modelling an actively-cooled CPV system

    NASA Astrophysics Data System (ADS)

    Buonomano, A.; Mittelman, G.; Faiman, D.; Biryukov, S.; Melnichak, V.; Bukobza, D.; Kabalo, S.

    2012-10-01

    We have constructed a 7-node, 1-dimensional model of the heat flow in a water-cooled CPV receiver. The model is validated against data from a module exposed to solar irradiance at various concentrations up to 1,000X at the PETAL solar dish facility at Sede Boqer.

  13. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  14. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  15. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  16. Water Cooled TJ Dense Array Modules for Parabolic Dishes

    NASA Astrophysics Data System (ADS)

    Löckenhoff, Rüdiger; Kubera, Tim; Rasch, Klaus Dieter

    2010-10-01

    AZUR SPACE Solar Power GmbH has developed a novel type of dense array module for use in parabolic dishes. Such dishes never produce a perfectly homogeneous, rectangular light spot but an inhomogeneous light distribution. A regular module would use this light distribution very inefficiently. Therefore AZUR SPACE developed a dense array module concept which can be adapted to inhomogeneous light spots. It is populated with state of the art triple junction solar cells. The modules are designed for light intensities in the range of 50-100 W/cm2 and are actively water cooled. Prototypes are installed in 11 m2 parabolic dishes produced by Zenith Solar. A peak output of 2.3 kW electrical and 5.5 kW thermal power could be demonstrated. The thermal power may be used for solar heating, solar cooling or warm water.

  17. Multiphysics Simulation of Active Hypersonic Lip Cooling

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Wang, Wen-Ping

    1999-01-01

    This article describes the application of the Multidisciplinary Analysis (MDA) solver, Spectrum, in analyzing a hydrogen-cooled hypersonic cowl leading-edge structure. Spectrum, a multiphysics simulation code based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling, as well as the interactions between these disciplines. Fluid-solid-thermal interactions in a hydrogen impingement-cooled leading edge are predicted using Spectrum. Two- and semi-three-dimensional models are considered for a leading edge impingement coolant, concept under either specified external heat flux or aerothermodynamic heating from a Mach 5 external flow interaction. The solution accuracy is demonstrated from mesh refinement analysis. With active cooling, the leading edge surface temperature is drastically reduced from 1807 K of the adiabatic condition to 418 K. The internal coolant temperature profile exhibits a sharp gradient near channel/solid interface. Results from two different cooling channel configurations are also presented to illustrate the different behavior of alternative active cooling schemes.

  18. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A.

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  19. Selective Brain Cooling Reduces Water Turnover in Dehydrated Sheep

    PubMed Central

    Strauss, W. Maartin; Hetem, Robyn S.; Mitchell, Duncan; Maloney, Shane K.; Meyer, Leith C. R.; Fuller, Andrea

    2015-01-01

    In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls. PMID:25675092

  20. Effect of cooling water impurities on deposit control polymer performance

    SciTech Connect

    Amjad, Z.; Zuhl, R.W.; Zibrida, J.F.

    2000-05-01

    The performance of polymeric inhibitors in treating recirculating cooling water systems is influenced by many factors, including pH, temperature, makeup water quality, and heat exchanger metallurgy. Impurities such as metal ions and suspended matter impact the performance of polymeric inhibitors used in phosphate-based treatment cooling water programs.

  1. The role of water in cooling ignimbrites

    NASA Astrophysics Data System (ADS)

    Keating, Gordon N.

    2005-04-01

    A summary of observational literature on ignimbrites provides the basis for the development of a two-dimensional numerical model of ignimbrite cooling processes. Factors include emplacement conditions, post-emplacement processes, and the nature and timing of interactions with water during cooling. The model uses the multiphase finite element heat and mass transfer (FEHM) code, which has been enhanced to handle conditions up to 1500 °C. The instantaneous emplacement of a 750 °C ignimbrite with internal gas pressures of up to 0.5 MPa (lithostatic) has a great effect on the variably saturated substrate. A water table present within a few tens of meters of the base of the ignimbrite produces a region of high pressure and temperature that exists for about 20 years, driving vapor upward through the ignimbrite as diffuse flow and in gas escape structures and enhancing cooling at the base of the ignimbrite. Variations in initial gas pressure between atmospheric and lithostatic conditions have little effect on the thermal evolution. The results of the numerical modeling of 20- and 40-m-thick ignimbrites indicate that, even for moderate pore water saturations in the substrate, vaporization and resultant pressurization may exceed lithostatic confining pressures in the upper substrate and basal ignimbrite, and explosive pressure release may occur, resulting in the development of discrete fumarole conduits or phreatic explosions. The likelihood for explosive pressure release appears to be greater when the nominal ignimbrite thickness is on the order of the depth of a buried valley. The pressure buildup is enhanced by the geometry of the ignimbrite-substrate interface, especially at convex corners such as on the edges of a buried valley. The boiling zones at the top and bottom of a cooling ignimbrite involve the development of a heat-pipe, which provides an efficient means of transporting heat from the superheated tephra out tens of meters into the ambient environment. The

  2. Water distribution characteristics of spray nozzles in a cooling tower

    NASA Astrophysics Data System (ADS)

    Vitkovic, Pavol

    2015-05-01

    Water distribution characteristics of spray nozzles with spray plates used to distribute cooling water to the cooling fills in a cooling tower is one of the important parameters for the selection of nozzles. Water distribution characteristic describes the distribution of water from the axis of the nozzle along a fill. One of the parameters affecting the water distribution characteristic of the nozzle is airflow velocity of counter flow airstream. Water distribution characteristics are commonly measured using by a set of containers. The problem with this method of the measurement of characteristics is block of the airflow with collections of containers. Therefore, this work is using the visualization method.

  3. PCM Passive Cooling System Containing Active Subsystems

    NASA Technical Reports Server (NTRS)

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  4. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  5. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  6. Water cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    A broad line of absorption chillers designed to operate with hot fluids at as low a temperature as practical while rejecting heat to a stream of water was developed. A packaging concept for solar application in which controls, pumps, valves and other system components could be factor assembled into a unitary solar module was investigated.

  7. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  8. Successful water reuse in open recirculating cooling systems

    SciTech Connect

    Vaska, M.; Lee, B.

    1994-12-31

    Water reuse in open recirculating cooling water systems is becoming increasingly prevalent in industry. Reuse can incorporate a number of varied approaches with the primary goal being water conservation. Market forces driving this trend include scarcity of fresh water makeup sources and higher costs associated with pretreatment of natural waters. Utilization of reuse water for cooling tower makeup has especially detrimental effects on corrosion and deposit rates. Additionally, once the reuse water is cycled and treated with inhibitors, dispersants and microbiocides, acceptability for discharge to a public waterway can be a concern. The task for water treatment suppliers is to guide industry in the feasibility and procedures for successfully achieving these goals. This paper focuses particularly on reuse of municipal wastewater for cooling tower makeup and explores techniques which have been found especially effective. Case histories are described where these concepts have been successfully applied in practice.

  9. Microbiological corrosion control in a cooling water system

    SciTech Connect

    Honneysett, D.G.; vanden Bergh, W.D.; O'Brien, P.F.

    1985-10-01

    The failure of a corrosion control program in a closed cooling water system coincided with the use of reclaimed sewage water and the contamination of the system with oil. Other problems were increased corrosion rates, downward pH excursions, increased fouling by corrosion by-products, and increased microbiological activity in the system. The major cause of corrosion was microbiological in origin. The unsuccessful use of a biocide led to the initiation of a full-scale microbiological investigation. The nature of the microflora was determined, biocide selection tests made, and an effective control treatment program initiated. Chromate corrosion treatment was replaced by a coordinated program using an organic filming corrosion inhibitor, a polyacrylate/phosphonate dispersant, and a combination of biocides.

  10. Section A, view of cooling water pipes and parking garage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section A, view of cooling water pipes and parking garage entrance/exit on west slurry wall, looking west. (BH) - World Trade Center Site, Bounded by Vesey, Church, Liberty Streets, & Route 9A, New York County, NY

  11. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  13. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include

  15. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings

    NASA Technical Reports Server (NTRS)

    Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  16. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  17. Enumeration of Legionella pneumophila in cooling tower water systems.

    PubMed

    Türetgen, Irfan; Sungur, Esra Ilhan; Cotuk, Aysin

    2005-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is known to colonise and frequently grow in cooling tower waters. Disease is acquired by inhaling aerosol contaminated by legionellae. Determination of the count of Legionella pneumophila in cooling tower waters may, therefore, be useful for risk assessment. In our survey, 103 water samples from 50 cooling towers were examined over a five-year period to indicate the seasonal distribution and the ecology of L. pneumophila, as regards temperature and pH. L. pneumophila serogroup 1 was found in 44% of the isolated strains, which is primarily responsible for the majority of Legionnaires' disease. The large majority of examined towers had levels of L. pneumophila in the high-risk category. These cooling towers have been linked to many outbreaks of Legionnaires' disease. PMID:15727299

  18. Water-lithium bromide double-effect absorption cooling analysis

    NASA Astrophysics Data System (ADS)

    Vliet, G. C.; Lawson, M. B.; Lithgow, R. A.

    1980-12-01

    A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine and was used to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The variables considered include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicates that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

  19. Use of reclaimed water for power plant cooling.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those

  20. Improving of the photovoltaic / thermal system performance using water cooling technique

    NASA Astrophysics Data System (ADS)

    Hussien, Hashim A.; Numan, Ali H.; Abdulmunem, Abdulmunem R.

    2015-04-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%).

  1. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  2. Research of a Supercritical Pressure Water Cooled Reactor in Korea

    SciTech Connect

    Bae, Yoon-Yeong; Joo, Hyung-Kook; Jang, Jinsung; Jeong, Yong-Hwan; Song, Jin-ho; Yoon, Han-Young; Yoo, Jung-Yul

    2004-07-01

    In this paper the activities on the supercritical pressure water-cooled reactor (SCWR) in Korea are briefly introduced. Four projects on a SCWR are being conducted in Korea. Three of them are supported by the I-NERI program while one is by KAERI. Two of the I-NERI-supported projects concern suitable materials for supercritical pressure and temperature, and radiation environment. The other I-NERI-supported project surveys numerically and experimentally the proper turbulence modeling for the numerical calculation of heat transfer phenomena at a supercritical condition. Heat transfer at a supercritical condition is being studied at KAERI experimentally using carbon dioxide as a coolant. The test loop is to be completed by the end of 2004. (authors)

  3. Flow-induced vibration of component cooling water heat exchangers

    SciTech Connect

    Yeh, Y.S.; Chen, S.S. . Nuclear Engineering Dept.; Argonne National Lab., IL )

    1990-01-01

    This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

  4. Air-cooled condensers eliminate plant water use

    SciTech Connect

    Wurtz, W.; Peltier, R.

    2008-09-15

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  5. Code System for Supercritical Water Cooled Reactor LOCA Analysis.

    1999-10-13

    Version 00 The new SCRELA code was developed to analyze the LOCA of the supercritical water cooled reactor. Since the currently available LWR codes for LOCA analysis could not analyze the significant differences in reactor characteristics between the supercritical-water cooled reactor and the current LWR, the first objective of this code development was to analyze the uniqueness of this reactor. The behavior of the supercritical water in the blowdown phase and the reflood phase ismore » modeled.« less

  6. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  7. Water-cooled units in ultrapower electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Kuz'min, M. G.; Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, M. V.

    2014-12-01

    The thermophysical processes that occur in the skull-metallic pipe-water system under quasistationary and dynamic conditions, when shock heat flows appear, are analyzed. The limiting conditions of water cooling of panels, which are accompanied by the appearance of boiling crisis and pre-emergency and emergency thermophysical processes, are considered.

  8. Water-cooled insulated steam-injection wells

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Jaffe, L. D.

    1980-01-01

    Water is used as insulated coolant and heat-transfer medium for steam-injection oil wells. Approach is somewhat analogous to cooling system in liquid-propellant rocket. In addition to trapping and delivering heat to steam-injection point, water will also keep casing cooler, preventing or reducing casing failures caused by thermal stresses.

  9. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  10. Heat-activated cooling devices: A guidebook for general audiences

    SciTech Connect

    Wiltsee, G.

    1994-02-01

    Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

  11. Factors stimulating propagation of legionellae in cooling tower water

    SciTech Connect

    Yamamoto, Hiroyuki; Sugiura, Minoru; Kusunoki, Shinji; Ezaki, Takayuki; Ikedo, Masanari; Yabuuchi, Eiko )

    1992-04-01

    The authors survey of cooling tower water demonstrated that the highest density of legionellae, {ge}10{sup 4} CFU/100 ml, appeared in water containing protozoa, {ge}10{sup 2} MPN/100 ml, and heterotrophic bacteria, {ge}10{sup 6} CFU/100 ml, at water temperatures between 25 and 35C. Viable counts of legionellae were detected even in the winter samples, and propagation, up to 10{sup 5} CFU/100 ml, occurs in summer. The counts of legionellae correlated positively with increases in water temperature, pH, and protozoan counts, but not with heterotrophic bacterial counts. The water temperature of cooling towers may promote increases in the viable counts of legionellae, and certain microbes, e.g., protozoa or some heterotrophic bacteria, may be a factor stimulating the propagation of legionellae.

  12. Cool-Water Carbonates, SEPM Special Publication No. 56

    NASA Astrophysics Data System (ADS)

    Hallock, Pamela

    Doesn't field work on modern carbonates mean scuba diving on spectacular coral reefs in gin-clear water teeming with brightly colored fish? Not if you are one of the researchers that Jonathan Clarke of the Western Mining Corporation Ltd., in Preston, Victoria, Australia, assembled at a workshop in Geelong, Victoria, in January 1995. Their field work involves research cruises in high-latitude oceans, where mal de mer and chilling winds are constant companions. Many braved 10-m seas in modest-sized research vessels to sample shelves stripped of fine sediments by storm waves whose effects can reach to depths exceeding 200 m. Noel James of Queen's University in Kingston, Ontario, carefully lays the groundwork for the book in a paper titled, “The Cool-Water Carbonate Depositional Realm,” which will assuredly become a standard reading assignment in advanced undergraduate-and graduate-level courses in carbonate sedimentology. James skillfully shows how cool-water carbonates are part of the greater carbonate depositional spectrum. By expanding recognition of the possible range of carbonate environments, sedimentologists expand their ability to understand and interpret ancient carbonates, particularly Paleozoic limestones that often show striking similarities to modern cool-water sediments. James' paper is followed by nine papers on modern cool-water carbonates, seven on Tertiary environments, and seven examples from Mesozoic and Paleozoic limestones

  13. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  14. Water spray cooling during handling of feedlot cattle

    NASA Astrophysics Data System (ADS)

    Brown-Brandl, Tami M.; Eigenberg, Roger A.; Nienaber, John A.

    2010-11-01

    Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental to the well-being and performance of the animals. Sprinkle cooling of animals has been successfully employed within the pen; however, added moisture to the pens' surface increases odor generation from the pen. A study was conducted to investigate the effectiveness of a single instance of wetting an animal within the working facility instead of in the pen, which could potentially provide extra evaporative cooling to offset the added heat produced by activity. Sixty-four cross-bred heifers were assigned to one of eight pens on the basis of weight. On four separate occasions during hot conditions (average temperature 28.2 ± 1.9°C, 29.1 ± 2.0°C, 28.9 ± 3.0°C, and 26.8 ± 1.6°C; with the temperature ranging from 22.6 to 32.5°C during the trials), the heifers were moved from their pens to and from the working facility (a building with a scale and squeeze chute located 160-200 m away). While in the squeeze chute, four of the pens of heifers were sprinkle cooled and the remaining four pens were worked as normal. The heifers that were treated had a body temperature that peaked sooner (31.9 ± 0.63 min compared to 37.6 ± 0.62) with a lower peak body temperature (39.55 ± 0.03°C compared to 39.74 ± 0.03°C), and recovered sooner (70.5 ± 2.4 min compared to 83.2 ± 2.4 min). The treated animals also had a lower panting score, a visual assessment of level of cattle heat stress (1.1 ± 0.2 compared to 1.16 ± 0.2). The behavior measurements that were taken did not indicate a change in behavior. It was concluded that while a single instance of wetting an animal within the working facility did not completely offset the increase in body temperature, it was beneficial to the

  15. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  16. Cenozoic cool-water limestones, Eucla platform, Southern Australia

    SciTech Connect

    James, N.P. ); Bone, Y. )

    1990-05-01

    Evidence is accumulating that modern and Cenozoic cool-water (temperate water) carbonate sediments may be the best facies analogs for many open-shelf, middle to late Paleozoic carbonates; yet there are comparatively few studies of such deposits. One important example is the extensive Eucla platform, a 350,000-km{sup 2} Eocene to Miocene shelf that caps the southern Australian miogeocline. Only the inner part, which lies beneath the Nullarbor Plain, has been examined in any detail. Sediments are of the bryomol assemblage - mainly bryozoan, echinoid, mollusk, and foraminifera remains with local concentrations of brachiopods. Most deposits formed by the spontaneous postmortem disintegration of erect, flexible cellariiform cheilostome and crisiform cyclostome bryozoans, cool-water analogs of codiacean algae. Facies range from incipiently drowned deep-shelf muddy sediments to ubiquitous open-shelf skeletal wackestones and packstones to local shallow-water, high-energy sand shoals. Because of accumulation rates an order of magnitude less than tropical shelf carbollates, eustasy is expressed as hardgrounds and karst surfaces; there are no muddy tidal flats. The cool-water platform sequence is capped by warmer water facies rich in aragonitic mollusks and calcareous algae with local concentrations of hermatypic corals. This change, which takes place across a bedding plane and reflects a shift in oceanic circulation patterns, highlights the fact that subtle changes in water temperature can result in the formation of dramatically different carbonate facies.

  17. Improved water-cooled cyclone constructions in CFBs

    SciTech Connect

    Alliston, M.G.; Luomaharju, T.; Kokko, A.

    1999-07-01

    The construction of CFB boilers has advanced in comparison with early designs. One improvement has been the use of water or steam cooled cyclones, which allows the use of thin refractories and minimizes maintenance needs. Cooled cyclones are also tolerant of wide load variations when the main fuel is biologically based, and coal or some other fuel is used as a back-up. With uncooled cyclones, load changes with high volatile fuels can mean significant temperature transients in the refractory, due to post-combustion phenomena in the cyclone. Kvaerner's development of water-cooled cyclones for CFBs began in the early 1980s. The first boiler with this design was delivered in 1985 in Sweden. Since then, Kvaerner Pulping has delivered over twenty units with cooled cyclones, in capacity ranging from small units up to 400 MW{sub th}. Among these units, Kvaerner has developed unconventional solutions for CFBs, in order to simplify the constructions and to increase the reliability for different applications. The first of them was CYMIC{reg{underscore}sign}, which has its water-cooled cyclone built inside the boiler furnace. There are two commercial CYMIC boilers in operation and one in project stages. The largest CYMIC in operation is a 185 MW{sub th} industrial boiler burning various fuels. For even larger scale units Kvaerner developed the Integrated Cylindrical Cyclone and Loopseal (ICCL) assembly. One of these installations is in operation in USA, having steaming capacity of over 500 t/h. The design bases of these new solutions are quite different in comparison with conventional cyclones. Therefore, an important part of the development has been cold model testing and mathematical modeling of the cyclones. This paper reviews the state-of-the-art in water-cooled cyclone construction. The new solutions, their full-scale experience, and a comparison of the actual experience with the preliminary modeling work are introduced.

  18. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  19. Computational Simulation of a Water-Cooled Heat Pump

    NASA Technical Reports Server (NTRS)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  20. Deep water source cooling: An un-tapped resource

    SciTech Connect

    Burford, H.E.; Wiedemann, L.; Joyce, W.S.; McCabe, R.E.

    1995-12-31

    Deep water source cooling (DWSC) refers to the renewable use of a large body of naturally cold water as a heat sink for process and comfort space cooling. Water at a constant 40-50{degrees}F or less is withdrawn from deep areas within lakes, oceans, aquifers and rivers and is pumped through the primary side of a heat exchanger. On the secondary side, clean chilled water is produced with one tenth the average energy required by conventional, chiller based systems. Coincident with significant energy and operating cost savings, DWSC offers reductions in air-borne pollutants and the release of environmentally harmful refrigerants. This paper discusses the basic design concepts, environmental considerations and performance related to the application of lake and ocean DWSC systems.

  1. Active feedback cooling of massive electromechanical quartz resonators

    SciTech Connect

    Jahng, Junghoon; Lee, Manhee; Stambaugh, Corey; Bak, Wan; Jhe, Wonho

    2011-08-15

    We present a general active feedback cooling scheme for massive electromechanical quartz resonators. We cool down two kinds of macrosized quartz tuning forks and find several characteristic constants for this massive quartz-resonator feedback cooling, in good agreement with theoretical calculations. When combined with conventional cryogenic techniques and low-noise devices, one may reach the quantum sensitivity for macroscopic sensors. This may be useful for high sensitivity measurements and for quantum information studies.

  2. Active cooling from the sixties to NASP

    NASA Technical Reports Server (NTRS)

    Kelly, H. Neale; Blosser, Max L.

    1992-01-01

    Vehicles, such as the X-15 or National Aero-Space Plane, traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of this paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years--from early engine structures, which were intended to be tested on the X-15, to structural--are described. Many of the lessons learned from these research efforts are presented.

  3. Active cooling from the sixties to NASP

    NASA Technical Reports Server (NTRS)

    Kelly, H. Neale; Blosser, Max L.

    1994-01-01

    Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.

  4. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  5. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  6. Gasifier waste water treatment: Phase I cooling tower assessment

    SciTech Connect

    Mann, M.D.; Willson, W.G.; Hendrikson, J.G.; Winton, S.L.

    1985-02-01

    Details of an advanced study of the treatability of waste waters from the fixed-bed gasification of lignite describe the test equipment and results at a pilot plant in North Dakota using stripped-gas liquor (SGL) as cooling tower makeup. Ammonia, alkalinity, phenol, and other non-hydantoin organics were removed from the cooling water by stripping and/or biological degradation, with the phenol concentration in the exhaust air exceeding the odor threshold. It will be necessary to control foaming of the circulating water, but both glycol and silicon based agents performed well during the test. It will also be necessary to reduce the high level of biofouling on heat transfer surfaces, although stainless steel fouling was not a major problem. The conclusion is that SGL is limited by potentially serious operating problems without additional treatment. 5 references, 4 figures, 7 tables.

  7. Thermal hydraulic modeling of integrated cooling water systems

    SciTech Connect

    Niyogi, K.K.; Rathi, J.S.; Phan, T.Q.; Chaudhary, A.

    1994-12-31

    Thermal hydraulic modeling of cooling water systems has been extended to multiple system configurations with heat exchangers as interface components between systems. The computer program PC-TRAX has been used as the basic tool for the system simulation. Additional heat exchanger modules have been incorporated to accurately predict the thermal performance of systems for the design as well as off-design conditions. The modeling accommodates time-dependent changes in conditions, temperature and pressure controllers, and detailed physical parameters of the heat exchangers. The modeling has been illustrated with examples from actual plant systems. An integrated system consisting of Spent Fuel Pool, Primary Component Cooling Water, and Service Water System has been successfully modeled to predict their performance under normal operations and emergency conditions. System configurations are changed from the base model by using a command module.

  8. Cool, elevated chlorophyll-a waters off northern Mozambique

    NASA Astrophysics Data System (ADS)

    Malauene, B. S.; Shillington, F. A.; Roberts, M. J.; Moloney, C. L.

    2014-02-01

    Direct in-situ observations from a shallow underwater temperature recorder on the continental shelf and from a shipboard oceanographic survey, were combined with MODIS satellite data (sea surface temperature and chlorophyll-a) to assess the temporal and spatial variability of temperature and chlorophyll-a in the Mozambique Channel near the coastal town of Angoche, 16°S. Intermittent, relatively cool surface water and elevated chlorophyll-a signatures were found, indicating upwelling near Angoche over an area between 15°S and 18°S. A 5-year (2002-2007) analysis of temperature (from both in-situ and satellite) revealed two distinct periods: (1) the August-March period with highly variable intermittent "cool water" events and (2) the April-July period with little temperature variability. Generally, periods of cooling occurred at about 2 months intervals, but shorter period occurrences (8-30 days) of cool coastal events were also observed. Two possible forcing mechanisms are discussed: (1) wind derived coastal upwelling (using satellite blended sea surface wind derived from NOAA/NCDC) and (2) the effect of passing transient southward moving eddies (using sea level anomalies from AVISO altimetry). It is suggested that the cool surface, elevated chlorophyll-a waters are primed and formed by favourable wind-driven Ekman-type coastal upwelling, responding to alongshore northeasterly monsoon winds prevailing between August and March. These waters are then enhanced in chlorophyll-a and advected further offshore by anti-cyclonic/cyclonic eddy pairs interacting with the shelf.

  9. C-SiC Composite Structures for Active Cooling

    NASA Technical Reports Server (NTRS)

    Marshall, D. B.; Cox, B. N.; Berbon, M. Z.; Porter, J. R.

    2003-01-01

    This viewgraph presentation provides an overview of research being conducted on the use of C-SiC composite structures for actively cooling rocket nozzles. Potential payoffs and design constraints are discussed. Other topics covered include: testing parameters, material selection, thermal analysis of joined tube structure, pressure containment, H2O2 combustion testing, and cooled re-entry.

  10. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank

  11. Computation of infrared cooling rates in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, M. D.; Arking, A.

    1978-01-01

    A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the far wing approximation to scale transmission along an inhomogeneous path to an equivalent homogeneous path. Rather than using standard conditions for scaling, the reference temperatures and pressures are chosen in this study to correspond to the regions where cooling is most significant. This greatly increased the accuracy of the new method. Compared to line by line calculations, the new method has errors up to 4% of the maximum cooling rate, while a commonly used method based upon the Goody band model (Rodgers and Walshaw, 1966) introduces errors up to 11%. The effect of temperature dependence of transmittance has also been evaluated; the cooling rate errors range up to 11% when the temperature dependence is ignored. In addition to being more accurate, the new method is much faster than those based upon the Goody band model.

  12. Effect of methylchloro/methylisothiazolone on bacterial respiration in cooling water

    SciTech Connect

    Shaw, D.A.; Williams, T.M.; Holz, J.W.

    1998-12-31

    Cooling water systems provide a suitable environment for the growth of bacteria, algae and occasionally fungi. The efficacy of industrial biocides is typically determined by monitoring reduction in viable cell counts. An alternative approach is to measure a parameter of microbial activity such as respiration. The effect of methylchloro/ methylisothiazolone biocide (MCMI) on bacterial respiration was determined using an enriched synthetic cooling water and actual cooling water samples. Addition of MCMI resulted in rapid inhibition of oxygen uptake ( 5--10 minutes) by the mixed population of bacteria, whereas reduction in viable counts (two to six-log decrease) was generally not observed until four to six hours. These studies demonstrated MCMI as a fast-acting biocide and supported the current mode of action model for isothiazolone biocides.

  13. State waste discharge permit application: 400 Area secondary cooling water

    SciTech Connect

    Not Available

    1992-12-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by the Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered in to Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges.

  14. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect

    Mardiansah, Deby; Takaki, Naoyuki

    2010-06-22

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  15. USE of mine pool water for power plant cooling.

    SciTech Connect

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  16. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  17. Effect of cooling water on stability of NLC linac components

    SciTech Connect

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  18. A practical application for the chemical treatment of Southern California`s reclaimed, Title 22 water for use as makeup water for recirculating cooling water systems

    SciTech Connect

    Zakrzewski, J.; Cosulich, J.; Bartling, E.

    1998-12-31

    Pilot cooling water studies conducted at a Southern California landfill/cogeneration station demonstrated a successful chemical treatment program for recirculating cooling water that used unnitrified, reclaimed, Title 22 water as the primary makeup water source. The constituents in the reclaimed water are supplied by variety of residential and waste water sources resulting in a water quality that may vary to a greater degree than domestic water supplies. This water contains high concentrations of orthophosphate, ammonia, chlorides and suspended solids. The impact of which, under cycled conditions is calcium orthophosphate scaling, high corrosion of yellow metal and mild steel, stress cracking of copper alloys and stainless steel and rapidly growing biological activity. A mobile cooling water testing laboratory with two pilot recirculating water systems modeled the cogeneration station`s cooling tower operating conditions and parameters. The tube and shell, tube side cooling heat exchangers were fitted with 443 admiralty, 90/10 copper nickel, 316 stainless steel and 1202 mild steel heat exchanger tubes. Coupons and Corrater electrodes were also installed. A chemical treatment program consisting of 60/40 AA/AMPS copolymer for scale, deposits and dispersion, sodium tolyltriazole for yellow metal corrosion, and a bromination program to control the biological activity was utilized in the pilot systems. Recirculating water orthophosphate concentrations reached levels of 70 mg/L as PO, and ammonia concentrations reached levels of 35 mg/L, as total NH3. The study successfully demonstrated a chemical treatment program to control scale and deposition, minimize admiralty, 90/10 copper nickel and carbon steel corrosion rates, prevent non-heat transfer yellow metal and stainless steel stress cracking, and control the biological activity in this high nutrient water.

  19. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  20. Water cooling system using a piezoelectrically actuated flow pump for a medical headlight system

    NASA Astrophysics Data System (ADS)

    Pires, Rogério F.; Vatanabe, Sandro L.; de Oliveira, Amaury R.; Nakasone, Paulo H.; Silva, Emílio C.

    2007-04-01

    The microchips inside modern electronic equipment generate heat and demand, each day, the use of more advanced cooling techniques as water cooling systems, for instance. These systems combined with piezoelectric flow pumps present some advantages such as higher thermal capacity, lower noise generation and miniaturization potential. The present work aims at the development of a water cooling system based on a piezoelectric flow pump for a head light system based on LEDs. The cooling system development consists in design, manufacturing and experimental characterization steps. In the design step, computational models of the pump, as well as the heat exchanger were built to perform sensitivity studies using ANSYS finite element software. This allowed us to achieve desired flow and heat exchange rates by varying the frequency and amplitude of the applied voltage. Other activities included the design of the heat exchanger and the dissipation module. The experimental tests of the cooling system consisted in measuring the temperature difference between the heat exchanger inlet and outlet to evaluate its thermal cooling capacity for different values of the flow rate. Comparisons between numerical and experimental results were also made.

  1. Water spray cooling during handling of feedlot cattle.

    PubMed

    Brown-Brandl, Tami M; Eigenberg, Roger A; Nienaber, John A

    2010-11-01

    Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental to the well-being and performance of the animals. Sprinkle cooling of animals has been successfully employed within the pen; however, added moisture to the pens' surface increases odor generation from the pen. A study was conducted to investigate the effectiveness of a single instance of wetting an animal within the working facility instead of in the pen, which could potentially provide extra evaporative cooling to offset the added heat produced by activity. Sixty-four cross-bred heifers were assigned to one of eight pens on the basis of weight. On four separate occasions during hot conditions (average temperature 28.2 ± 1.9°C, 29.1 ± 2.0°C, 28.9 ± 3.0°C, and 26.8 ± 1.6°C; with the temperature ranging from 22.6 to 32.5°C during the trials), the heifers were moved from their pens to and from the working facility (a building with a scale and squeeze chute located 160-200 m away). While in the squeeze chute, four of the pens of heifers were sprinkle cooled and the remaining four pens were worked as normal. The heifers that were treated had a body temperature that peaked sooner (31.9 ± 0.63 min compared to 37.6 ± 0.62) with a lower peak body temperature (39.55 ± 0.03°C compared to 39.74 ± 0.03°C), and recovered sooner (70.5 ± 2.4 min compared to 83.2 ± 2.4 min). The treated animals also had a lower panting score, a visual assessment of level of cattle heat stress (1.1 ± 0.2 compared to 1.16 ± 0.2). The behavior measurements that were taken did not indicate a change in behavior. It was concluded that while a single instance of wetting an animal within the working facility did not completely offset the

  2. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  3. Collisional cooling investigation of THz rotational transitions of water

    SciTech Connect

    Dick, Michael J.; Drouin, Brian J.; Pearson, John C.

    2010-02-15

    An investigation of the pressure broadening by helium and hydrogen of six rotational transitions of water has been completed. The six transitions studied included two para water transitions (0{sub 00}-1{sub 11} and 1{sub 11}-2{sub 02}) and four ortho water transitions (1{sub 01}-1{sub 10}, 2{sub 21}-3{sub 12}, 3{sub 03}-3{sub 12} and 3{sub 12}-3{sub 21}) in the frequency region 0.55-1.17 THz. This survey was accomplished using the collisional cooling technique which allowed the broadening of each transition to be studied below the water condensation temperature. For each of the transitions studied, the temperature dependence of the pressure broadening by helium showed little dependence on temperature, while the broadening by hydrogen showed a sharp decrease at the lowest temperatures. This behavior was modeled, for each transition broadened by helium and hydrogen, with a power law, or a power law modified with a Boltzmann-like step function, and the results of these fits will be presented. In addition, an extensive investigation of the systematic error in the temperature of the water vapor in the collisional cooling experiment will be discussed. Finally, the impact of these new broadening measurements on models of star formation in the interstellar medium will be outlined.

  4. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  5. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... FORMING POINT SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges...

  6. Active cooling requirements for propellant storage

    NASA Technical Reports Server (NTRS)

    Klein, G. A.

    1984-01-01

    Recent NASA and DOD mission models have indicated future needs for orbital cryogenic storage and supply systems. Two thermal control systems which show the greatest promise for improving propellant storage life were evaluated. One system was an open cycle thermodynamic vent type with a refrigeration system for partial hydrogen reliquefaction located at the LH2 tank and a vapor cooled shield for integrated and non-integrated tank designs to reduce boiloff. The other was a closed system with direct refrigeration at the LH2 tank. A reversed Brayton cycle unit was baselined for the propellant processor. It is concluded that: (1) reliquefaction systems are not attractive for minimizing propellant boiloff; (2) open cycle systems may not be economically attractive for long term storage; (3) a number of refrigeration systems are available to assist in the long term storage of cryogenic propellants; and (4) shields can significantly improve the performance of mechanical coolers.

  7. What causes cooling water temperature gradients in forested stream reaches?

    NASA Astrophysics Data System (ADS)

    Garner, G.; Malcolm, I. A.; Sadler, J. P.; Hannah, D. M.

    2014-06-01

    Previous studies have suggested that shading by riparian vegetation may reduce maximum water temperature and provide refugia for temperature sensitive aquatic organisms. Longitudinal cooling gradients have been observed during the daytime for stream reaches shaded by coniferous trees downstream of clear cuts, or deciduous woodland downstream of open moorland. However, little is known about the energy exchange processes that drive such gradients, especially in semi-natural woodland contexts, and in the absence of potentially confounding cool groundwater inflows. To address this gap, this study quantified and modelled variability in stream temperature and heat fluxes along an upland reach of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) where riparian landuse transitions from open moorland to semi-natural forest. Observations were made along a 1050 m reach using a spatially-distributed network of ten water temperature micro-loggers, three automatic weather stations and >200 hemispherical photographs, which were used to estimate incoming solar radiation. These data parameterised a high-resolution energy flux model, incorporating flow-routing, which predicted spatio-temporal variability in stream temperature. Variability in stream temperature was controlled largely by energy fluxes at the water column-atmosphere interface. Predominantly net energy gains occurred along the reach during daylight hours, and heat exchange across the bed-water column interface accounted for <1% of the net energy budget. For periods when daytime net radiation gains were high (under clear skies), differences between water temperature observations decreased in the streamwise direction; a maximum difference of 2.5 °C was observed between the upstream reach boundary and 1050 m downstream. Furthermore, daily maximum water temperature at 1050 m downstream was ≤1°C cooler than at the upstream reach boundary and lagged the occurrence of daily maximum water temperature

  8. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    SciTech Connect

    Kim, Seokho H; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  9. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  10. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  11. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  12. Comparison of active cooling devices to passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: A report from the Fireground Rehab Evaluation (FIRE) trial

    PubMed Central

    Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe

    2010-01-01

    Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868

  13. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Youn, B.; Mills, A. F.

    1995-01-01

    Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.

  14. Physical model studies of cooling pond water quality

    SciTech Connect

    Frediani, H.A. Jr.; Ondler, W.C.; Palmer, P.K.

    1995-12-31

    Under the Florida Electrical Power Plant Siting Act, Florida Power & Light Company (FPL) licensed their Martin Site for a total ultimate capacity of 3200 megawatts, When the ultimate capacity is installed, the heat dissipated from the Martin 6500 acre closed cycle cooling pond will cause so much evaporation that the pond`s dissolved solids will be hydraulically concentrated (about 3.5 times that of the makeup water added to it to replace that evaporation). Because water quality-based effluent limits are relatively low (often lower than detection limits), the conservative assumption, that undetected constituents were present at 99% of the detection limit, led to simple mass balance estimates that such constituents would be concentrated so as to exceed limits,even though some of the constituents were never detected in the makeup water. Mathematical metal specification modeling predicted reduction in concentrations due to precipitation and/or sorption only for some constituents. Because of the chain of conservative assumptions required for that modeling, FPL decided to attempt a physical simulation of the concentration effect of the cooling pond.

  15. Cardiovascular response to apneic immersion in cool and warm water

    NASA Technical Reports Server (NTRS)

    Folinsbee, L.

    1974-01-01

    The influence of prior exposure to cool water and the influence of lung volume on the responses to breath holding were examined. The bradycardia and vasoconstriction that occur during breath-hold diving in man are apparently the resultant of stimuli from apnea, relative expansion of the thorax, lung volume, esophageal pressure, face immersion, and thermal receptor stimulation. It is concluded that the bradycardia and vasoconstriction associated with breath holding during body immersion are not attenuated by a preexisting bradycardia and vasoconstriction due to cold.

  16. Polymer performance in cooling water: The influence of process variables

    SciTech Connect

    Amjad, Z.; Pugh, J.; Zibrida, J.; Zuhl, B.

    1997-01-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this article, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  17. Polymer performance in cooling water: The influence of process variables

    SciTech Connect

    Amjad, Z.; Pugh, J.; Zibrida, J.; Zuhl, B.

    1996-12-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this paper, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  18. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  19. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality. PMID:22380105

  20. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  1. Shade, water and mass: Passive cooling in Andalucia

    SciTech Connect

    Carrasco, V.; Reynolds, J.S.

    1996-10-01

    A thermally massive, ancient patio (courtyard) house in Bornos Spain was monitored for 25 days in summer 1995. Data for light, relative humidity and air temperature were recorded at the floor`s center in the 3-story deep patio. Temperatures were also recorded in one ground floor and one second floor room adjacent to the patio, and on the roof terrace. Victor Carrasco (the owner) kept a daily record of his actions of shading (with a toldo), of watering the patio`s absorbent floor, and of opening windows for night ventilation. The data show the effects of shading, watering and night ventilation. The cycles of temperature and relative humidity in the center of the patio floor reveal a pattern of thermal sailing where skillful manipulations of shading, evaporative cooling, radiation and night ventilation result in indoor comfort despite the highest outside temperatures of this century that occurred in late July 1995.

  2. Towards development of an ozone compatible cooling water treatment

    SciTech Connect

    Rao, N.M.

    1994-12-31

    The use of ozone as a biocide in conjunction with conventional chemical treatment for corrosion, scale and deposit control was investigated using bench top and process simulation experiments. Aspects of aqueous ozone chemistry relevant to cooling water operation were discussed. For a given water chemistry, the degradation kinetics of a given chemical vs. microbial kill rate was identified as the parameter of interest. A relatively ozone resistant phosphonate CaCO{sub 3} scale inhibitor and a calcium phosphate dispersant were identified. None of the commercially available yellow metal corrosion inhibitors, including tolyltriazole (TT) and butylbenzotriazole (BBT) were found to be ozone compatible. Results from a field application where ozone is used in conjunction with an identified ozone compatible treatment are presented.

  3. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  4. Topical report : NSTF facilities plan for water-cooled VHTR RCCS : normal operational tests.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C. P.; Lomperski, S.; Aeschlimann, R. W.; Nuclear Engineering Division

    2006-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the gas-cooled Very High Temperature Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept.

  5. Actively Cooled SLMS(TM) Technology for HEL Applications

    NASA Technical Reports Server (NTRS)

    Jacoby, Marc T.; Goodman, William A.; Reily, Jack C.; Kegley, Jeffrey R.; Haight, Harlan J.; Tucker, John; Wright, Ernest R.; Hogue, William D.

    2005-01-01

    Mr. Jacoby is the Chief Scientist for Schafer's Lightweight Optical Systems business area with twenty four years experience in laser and optical systems for space and military applications. He and colleague Dr. Goodman conceived and developed Silicon Lightweight Mirrors (SLMS(TM)) technologies for space applications from the extreme UV to FAR IR wavelengths. Schafer has demonstrated two different methods for actively cooling our Silicon Lightweight Mirrors (SLMS(TM)) technology. Direct internal cooling was accomplished by flowing liquid nitrogen through the continuous open cell core of the SLMS(TM) mirror. Indirect external cooling was accomplished by flowing liquid nitrogen through a CTE matched Cesic square-tube manifold that was bonded to the back of the mirror in the center. Testing was done in the small 4-foot thermal/vacuum chamber located at the NASA/MSFC X-Ray Calibration Facility. Seven thermal diodes were located over the front side of the 5 inch diameter mirror and one was placed on the outlet side of the Cesic manifold. Results indicate that the mirror reaches steady state at 82K in less than four minutes for both cooling methods. The maximum temperature difference of the eight diodes was less than 200 mK when the mirror was internally cooled and covered with MLI to insulate it from the large 300 K aluminum plate that was used to mount it.

  6. Evaporative cooling and water balance during flight in birds.

    PubMed

    Torre-Bueno, J R

    1978-08-01

    The rate of evaporative cooling was calculated from the rate of mass loss in starlings (Sturnus vulgaris) during 90 min flights in a wind-tunnel. Evaporative heat loss ranged from 5% of the metabolic rate at -5 degrees C to 19% of the metabolic rate at 29 degrees C. Radiation and convection accounted for the balance of the heat loss. On average, starlings dehydrated during flights at all temperatures above 7 degrees C. The comparison of these results with data from field studies, which indicate that long-distance migrants do not dehydrate, suggests that migrants may maintain water balance by ascending to colder air in which convection carries off most of the heat produced. PMID:702042

  7. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat.

    PubMed

    Barr, D; Gregson, W; Sutton, L; Reilly, T

    2009-04-01

    The aim of this study was to establish whether a practical cooling strategy reduces the physiological strain during simulated firefighting activity in the heat. On two separate occasions under high ambient temperatures (49.6 +/- 1.8 degrees C, relative humidity (RH) 13 +/- 2%), nine male firefighters wearing protective clothing completed two 20-min bouts of treadmill walking (5 km/h, 7.5% gradient) separated by a 15-min recovery period, during which firefighters were either cooled (cool) via application of an ice vest and hand and forearm water immersion ( approximately 19 degrees C) or remained seated without cooling (control). There was no significant difference between trials in any of the dependent variables during the first bout of exercise. Core body temperature (37.72 +/- 0.34 vs. 38.21 +/- 0.17 degrees C), heart rate (HR) (81 +/- 9 vs. 96 +/- 17 beats/min) and mean skin temperature (31.22 +/- 1.04 degrees C vs. 33.31 +/- 1 degrees C) were significantly lower following the recovery period in cool compared with control (p < 0.05). Core body temperature remained consistently lower (0.49 +/- 0.02 degrees C; p < 0.01) throughout the second bout of activity in cool compared to control. Mean skin temperature, HR and thermal sensation were significantly lower during bout 2 in cool compared with control (p < 0.05). It is concluded that this practical cooling strategy is effective at reducing the physiological strain associated with demanding firefighting activity under high ambient temperatures. PMID:19401892

  8. Shuttle active thermal control system development testing. Volume 5: Integrated radiator/expendable cooling system tests

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1974-01-01

    Tests were conducted to gather data on a space shuttle active control system (ATCS) incorporating both radiators and an expendable cooling device to provide vehicle heat removal. Two systems were tested and design information was provided for both nominal and limit conditions. The tests verified the concept that an integrated radiator/expendable cooling system can adequately maintain desired water quantities while responding to variations in heat loads and environments. In addition, the need for duct heating was demonstrated, while exhaust nozzle heating was also shown to be unnecessary.

  9. Fouling characteristics of cooling tower water containing corrosion inhibitors

    SciTech Connect

    Santoso, E.

    1987-01-01

    Corrosion inhibitors investigated included zinc-chromate and phosphates. In addition, additives including polyacrylate and phosphonate (HEDP and AMP) were used to determine their effectiveness as antifoulants. The tests were conducted in a simulated cooling tower water system. The parameters investigated were: test section surface temperature 130, 145 and 160{degree}F, velocity in test section 3.0, 5.5 and 8.5 ft/sec, pH 6.0 -8.0, and material of the fouling surface (stainless steel, carbon steel, 90/10 copper/nickel, and admiralty brass). The water bulk temperature in all tests was 115{degree}F. The water had a total hardness of 800-1000 ppm as CaCO{sub 3}, total sulfate of 800-1000 ppm as SO{sub 4} and silica of 40-45 ppm as SiO{sub 2}. For each test, a fouling resistance - time curve was obtained. This curve was fitted to the equation Rf = Rf (1-exp(-({theta}-{theta}d)/{theta}c)) to yield the values of {theta}c and Rf{sup *}. Rf is the fouling resistance predicted by the regression equation, Rf{sup *} is the asymptotic fouling resistance, {theta} is time, {theta}d is dead time and {theta}c is the time constant for the asymptotic decay. The values of {theta}c and Rf{sup *} from regression analysis have been correlated with the various parameters by the Heat Transfer Research, Inc., (HTRI) fouling model. For the range of conditions studied, the correlation equations relate the fouling resistance, Rf, to the surface temperature, wall shear stress and water quality. Seventeen different water qualities were investigated to determine the values of 5 parameters, which are specific for each water quality. For each of the seventeen water qualities studied threshold curves for three threshold values of Rf{sup *} have been developed as a function of velocity and surface temperature. These curves are useful to obtain the conditions required to maintain a desired value of Rf{sup *} in a heat exchanger.

  10. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  11. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  12. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    SciTech Connect

    1996-01-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

  13. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  14. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  15. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    NASA Astrophysics Data System (ADS)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  16. Simulation of cooling-water discharges from power plants.

    PubMed

    Wu, J; Buchak, E M; Edinger, J E; Kolluru, V S

    2001-01-01

    Accurate simulation of the temperature distribution in a cooling lake or reservoir is often required for feasibility studies of engineering options that increase the cooling capacity of the waterbody. A three-dimensional hydrodynamic and temperature model has been developed and applied to several cooling lakes in the south-eastern United States. In this paper, the details of the modeling system are presented, along with the application to the Flint Creek Lake. PMID:11381460

  17. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cooling water using any method listed in 40 CFR part 136. Use the same method for both entrance and exit samples. You may validate 40 CFR part 136 methods for the HAP listed in Table 1 to this subpart according... monitored substance in the cooling water using any method listed in 40 CFR part 136, as long as the...

  18. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cooling water using any method listed in 40 CFR part 136. Use the same method for both entrance and exit samples. You may validate 40 CFR part 136 methods for the HAP listed in Table 1 to this subpart according... monitored substance in the cooling water using any method listed in 40 CFR part 136, as long as the...

  19. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  20. Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum

    ERIC Educational Resources Information Center

    Velasco, S.; White, J. A.; Roman, F. L.

    2010-01-01

    The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…

  1. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs (ITPs) for light water cooled nuclear power...

  2. Methodology for predicting cooling water effects on fish

    SciTech Connect

    Cakiroglu, C.; Yurteri, C.

    1998-07-01

    The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact.

  3. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  4. The use of water cooling during the continuous casting of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Sengupta, J.; Thomas, B. G.; Wells, M. A.

    2005-01-01

    In both continuous casting of steel slabs and direct chill (DC) casting of aluminum alloy ingots, water is used to cool the mold in the initial stages of solidification, and then below the mold, where it is in direct contact with the newly solidified surface of the metal. Water cooling affects the product quality by (1) controlling the heat removal rate that creates and cools the solid shell and (2) generating thermal stresses and strains inside the solidified metal. This work reviews the current state-of-the-art in water cooling for both processes, and draws insights by comparing and contrasting the different practices used in each process. The heat extraction coefficient during secondary cooling depends greatly on the surface temperature of the ingot, as represented by boiling water-cooling curves. Thus, the heat extraction rate varies dramatically with time, as the slab/ingot surface temperature changes. Sudden fluctuations in the temperature gradients within the solidifying metal cause thermal stresses, which often lead to cracks, especially near the solidification front, where even small tensile stresses can form hot tears. Hence, a tight control of spray cooling for steel, and practices such as CO2 injection/pulse water cooling for aluminum, are now used to avoid sudden changes in the strand surface temperature. The goal in each process is to match the rate of heat removal at the surface with the internal supply of latent and sensible heat, in order to lower the metal surface temperature monotonically, until cooling is complete.

  5. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  6. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    SciTech Connect

    Yamada, K.; Aksan, S. N.

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  7. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  8. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  9. Extending the life of water-cooled copper cooling fingers for furnace refractories

    NASA Astrophysics Data System (ADS)

    Plascencia, Gabriel; Utigard, Torstein A.; Plascencia, Gabriel; Jaramillo, David

    2005-10-01

    To extend the service life of refractory linings in high-temperature furnaces, it is becoming common to embed copper cooling devices in the lining. These devices extract enough heat from the hearth of the furnace to freeze a protective thin layer of slag onto the surface of the lining. However, the cooling devices may lose their efficiency over time. It is believed that high-temperature oxidation of copper is responsible for the loss in heat-extraction capacity. To test coolers under severe conditions, immersion tests were carried out in molten matte and slag of laboratory-scale cooling elements protected by various means. A composite cooler was developed that consists of a copper core shielded by a Cu-4 wt.% Al alloy sheet. Although the rate of heat extraction is not as high as that of the un-alloyed copper, this cooler still extracts heat at a very high rate.

  10. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    SciTech Connect

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  11. Electrophysiological and behavioural responses of turbot (Scophthalmus maximus) cooled in ice water.

    PubMed

    Lambooij, Bert; Bracke, Marc; Reimert, Henny; Foss, Atle; Imsland, Albert; van de Vis, Hans

    2015-10-01

    Behavioural, neural and physiological aspects related to pre-slaughter cooling of turbot habituated to two environmental temperatures (18.7 and 12.0°C) were investigated. Six fish in both treatments were immersed in ice water for 75 min. For control, four fish were immersed in water under their habituated environmental temperature. Turbot did not show a quick reduction of overall power in the EEG (electroencephalogram) to less than 10%, nor did the turbot show a shift in brain wave predominance from high to low frequency waves. At 15 min after immersion in ice water at least 7 out of 12 fish still showed total power values over 10% of pre-immersion values. Significant reductions in responsiveness to needle scratches and reduced breathing after immersion in ice water were observed, but none of these parameters had dropped to 0 even after 75 min in ice water. A significant reduction in gill score was found at 2 and 5 min after immersion in ice water compared to the control fish (p<0.05). Heart rates significantly increased immediately after immersion in ice water and then decreased to a low basal value 30 min after immersion. The heart beat did not show major changes in regularity over time. Finally, at 15 and 75 min the turbot in ice water were significantly more responsive to vibration than to needle scratches. From these results we conclude that immersion in ice water may not induce unconsciousness, however, the brain activity does decrease to a lower level. The implication of this low brain activity with respect to welfare is not clear. Increased heart rates and maintained low brain activity and response to needle scratches during early immersion in ice water are indicative of a stress response appearing to affect welfare negatively. PMID:26003496

  12. Optimal Environmental Performance of Water-cooled Chiller System with All Variable Speed Configurations

    NASA Astrophysics Data System (ADS)

    Yu, Fu Wing; Chan, Kwok Tai

    This study investigates how the environmental performance of water-cooled chiller systems can be optimized by applying load-based speed control to all the system components. New chiller and cooling tower models were developed using a transient systems simulation program called TRNSYS 15 in order to assess the electricity and water consumption of a chiller plant operating for a building cooling load profile. The chiller model was calibrated using manufacturer's performance data and used to analyze the coefficient of performance when the design and control of chiller components are changed. The NTU-effectiveness approach was used for the cooling tower model to consider the heat transfer effectiveness at various air-to-water flow ratios and to identify the makeup water rate. Applying load-based speed control to the cooling tower fans and pumps could save an annual plant operating cost by around 15% relative to an equivalent system with constant speed configurations.

  13. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    NASA Astrophysics Data System (ADS)

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  14. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  15. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  16. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  17. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  18. 75 FR 52734 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Cooling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... FR 35022), EPA sought comments on this ICR pursuant to 5 CFR 1320.8(d). EPA received 1 comment during... information about the electronic docket, go to www.regulations.gov . Title: Cooling Water Intake Structure... transmission, use a cooling water intake structure (CWIS) that uses at least 25 percent of the water...

  19. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  20. Holocene sediment dynamics on a cool-water carbonate shelf: Otway, southeastern Australia

    SciTech Connect

    Boreen, T.D.; James, N.P. )

    1993-07-01

    The Otway Shelf is covered by cool waters and veneered by bryozoan-dominated carbonate sediments. Radiocarbon dating and stratigraphy of shelf vibracores and slope gravity cores document late Pleistocene/Holocene deposition. Shelf sediments of the late Pleistocene high-stand are rare, either never having been deposited or having been removed during the following sea-level fall. During the subsequent lowstand the shelf was exposed, facies shifted basinward, and beach/dune complexes were constructed near the shelf edge. The deep shelf was characterized by nondeposition and hardground formation, and the shelf margin became locally erosional. Upper-slope bryozoan/sponge assemblages continued to grow actively, and lower-slope foraminifera and nannofossil ooze was increasingly enriched in hemipelagic terrigenous mud swept off the wide shelf. Coarse shelf debris and lowstand dune sands were erosively reworked and transported onto the upper slope and redistributed to deep-slope aprons during early transgression. The late Quaternary shelf record resembles that of flat-topped, warm-water platforms with Holocene sediment overlying Pleistocene/Tertiary limestone, but for different reasons. The slow growth potential, uniform profile of sediment production and distribution, and inability of constituent organisms to construct rigid frameworks favor maintenance of a shallow ramp profile and makes the cool-water carbonate system an excellent modern analog for interpretation of many ancient ramp successions.

  1. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  2. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    PubMed

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions. PMID:25560260

  3. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  4. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  5. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    NASA Astrophysics Data System (ADS)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  6. Comparison of solar panel cooling system by using dc brushless fan and dc water

    NASA Astrophysics Data System (ADS)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  7. Brazing of the Tore Supra actively cooled Phase III Limiter

    SciTech Connect

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-12-31

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary.

  8. WET/DRY COOLING SYSTEMS FOR FOSSIL-FUELED POWER PLANTS: WATER CONSERVATION AND PLUME ABATEMENT

    EPA Science Inventory

    The report gives results of a study of technical and economic feasibilities of wet/dry cooling towers for water conservation and vapor plume abatement. Results of cost optimizations of wet/dry cooling for 1000-MWe fossil-fueled power plants are presented. Five sites in the wester...

  9. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  10. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  11. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information and cooling water intake information must accompany the EP? 250.217 Section 250.217 Mineral... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water...

  12. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information and cooling water intake information must accompany the DPP or DOCD? 550.248 Section 550.248... liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and cooling water...

  13. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information... cooling water intake information must accompany your DPP or DOCD: (a) Projected wastes. A table...

  14. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248... and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and cooling water intake information...

  15. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information and cooling water intake information must accompany the EP? 550.217 Section 550.217 Mineral... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water...

  16. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information and cooling water intake information must accompany the EP? 250.217 Section 250.217 Mineral... cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water intake information must accompany your EP: (a) Projected wastes....

  17. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  18. The efficiency index of mechanical-draft and chimney-type water cooling towers operation

    NASA Astrophysics Data System (ADS)

    Sosnovskii, S. K.; Kravchenko, V. P.

    2014-09-01

    It is shown that the water temperature ranges in cooling towers given in the regulatory documents are not consistent with the standardized heat loads. It is also demonstrated that the existing criteria for estimating the effect from retrofitting of cooling towers are far from being perfect. The notions of cooling tower efficiency index and their operating characteristics with the nominal values of the main parameters are introduced. A procedure for determining these quantities is developed. An algorithm for directly calculating the economic effect from reconstruction of cooling towers is proposed.

  19. NUCLEAR CHEMISTRY OF WATER-COOLED FUSION REACTORS: ISSUES AND SOLUTIONS

    SciTech Connect

    Petrov, Andrei Y; Flanagan, George F

    2010-01-01

    ITER is an experimental Tokamak fusion energy reactor that is being built in Cadarache, France, in collaboration with seven agencies representing China, the European Union, India, Japan, Republic of Korea, the Russian Federation, and the United States. The main objective of ITER is to demonstrate the scientific and technical feasibility of a controlled fusion reaction An important U.S. contribution is the design, fabrication, and delivery of the Tokamak Cooling Water System (TCWS). This paper describes the main sources of radioactivity in TCWS water, which are the nitrogen isotopes 16N and 17N, tritium, activated corrosion products, and the carbon isotope 14C; the relative contribution of each of these sources to the total radioactive contamination of water; issues related to excess accumulation of these species; and methods to control TCWS radioactivity within acceptable limits. Among these methods are: (1) water purification to minimize corrosion of materials in contact with TCWS water; (2) monitoring of vital chemistry parameters and control of water chemistry; (3) design of proper building structure and/or TCWS loop/geometry configuration; and (4) design of an ITER liquid radwaste facility tailored to TCWS operational requirements. Design of TCWS nuclear chemistry control is crucial to ensuring that the inventory of radioactive species is consistent with the principle of 'As Low as Reasonably Achievable.'

  20. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  1. Reply to 'Comment on 'Collisional cooling investigation of THz rotational transitions of water''

    SciTech Connect

    Drouin, Brian J.; Pearson, John C.; Dick, Michael J.

    2010-09-15

    This response describes the authors' reaction to a critique of recent work on the ultracold physics of water. The possibility of spin-selective adsorption occurring in the context of the collisional cooling experiment is discussed.

  2. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  3. Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor

    SciTech Connect

    Zhang Zuoyi; Dong Yujie; Scherer, Winfried

    2005-03-15

    Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was <0.3 kg/(m{sup 3}s). The water vaporization in the steam generator and characteristics of water transport from the steam generator to the reactor core would reduce the rate of water ingress into the reactor core. The analysis of a full cavitation of the feedwater pump showed that if the secondary circuit could be depressurized, the feedwater pump would be stopped by the full cavitation. This limits the water transported from the deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to {approx}3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged.

  4. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  5. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  6. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    SciTech Connect

    Not Available

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  7. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC

  8. Cooling and condensing of sulfur and water from claus process gas

    SciTech Connect

    Palm, J. W.; Kunkel, L. V.

    1985-07-02

    The Claus process gas is cooled in a condenser to condense most of the sulfur vapor in solid form. The gas leaving the condenser is then further cooled to condense water without producing substantially any sulfur in an undesirable form. The resulting gas of reduced water content is useful in Claus reaction, particularly the low temperature Claus reaction in which the product sulfur is adsorbed on the catalyst.

  9. Repair of a water-cooled field coil for a hydroelectric motor/generator

    SciTech Connect

    Miller, L.J. III

    1983-01-01

    Four reversible pump/turbine units at TVA's Raccoon Mountain Pumped-Storage Plant were placed in service in 1978 to 1979. The stator and rotor windings for the motor/generators are direct water cooled. This paper describes repairs to a water-cooled coil of one of the 24 field poles of Unit No. 3 motor/generator placed in service in February 1979.

  10. The impact of water use fees on dispatching and water requirements for water-cooled power plants in Texas.

    PubMed

    Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E

    2014-06-17

    We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions. PMID:24832169

  11. Ecological effects of density-independent mortality: application to cooling-water withdrawals.

    PubMed

    Newbold, Stephen C; Iovanna, Rich

    2007-03-01

    A wide variety of environmental stresses can cause density-independent mortality in species populations. One example is cooling-water withdrawals, which kill or injure many aquatic organisms near power plants and other industrial facilities. In the United States alone, hundreds of facilities withdraw trillions of gallons from inland and coastal waters every year to cool turbines and other manufacturing equipment. A number of detailed, site-specific studies of the effects of such cooling-water withdrawals have been conducted over the last 30 years, but only a few generalizations have been proposed in the peer-reviewed literature. In this paper we use a series of basic theoretical models to investigate the potential effects of density-independent mortality on species populations and ecosystems, with particular focus on the effects of cooling-water withdrawals on fish populations, fisheries, and aquatic communities. Among other results, we show that the effects of cooling-water withdrawals on a species will depend on the magnitude of other co-occurring stressors, environmental variability, the nature of the management regime in the associated fisheries, and the position of the species in the food web. The general models in this paper can provide a starting point for further empirical case studies and some preliminary conceptual guidance for decision makers who must choose between alternative policy options for controlling cooling-water withdrawals. PMID:17489247

  12. Simultaneous corrosion and fouling monitoring under heat transfer in cooling water systems

    SciTech Connect

    Winters, M.A.; Stokes, P.S.N.; Nichols, H.F.

    1996-12-31

    Corrosion and fouling in cooling water systems can potentially reduce heat-transfer capability, increase maintenance costs, reduce plant availability, and contaminate process lines. Conventional monitoring systems have measured corrosion and fouling separately. Fouling monitors alone are not able to indicate real-time corrosion activity beneath surface deposits. Traditionally, corrosion information has been derived from destructive evaluation of heat exchanger tubes, weight loss coupons, and probes under nonheat flux conditions. To overcome these shortcomings, a monitoring system has been developed that measures corrosion and fouling simultaneously. By using electrochemical noise measurement technology, the system is particularly sensitive to detecting localized corrosion beneath a fouled surface, a major and frequent mode of corrosion failure in heat exchangers. Development of the system has progressed from field trials with a prototype unit to a commercially available system. This paper reports and discusses the most recent evaluation of the system at Amoco`s Corporate Research facility in Naperville, Illinois, focusing on the sensitivity of electrochemical noise measurement in detecting localized corrosion (pitting and so forth) on a heat transfer surface in a cooling water environment.

  13. Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water

    SciTech Connect

    Englehardt, J.D.; Peng, C.

    1995-12-31

    Laboratory studies to investigate the feasibility of one- and two-step processes for precipitation/coprecipitating radionuclides from nuclear reactor cooling water, filtering with pozzolanic filter aid, and solidifying, are reported in this paper. In the one-step process, ferrocyanide salt and excess lime are added ahead of the filter, and the resulting filter cake solidifies by a pozzolanic reaction. The two-step process involves addition of solidifying agents subsequent to filtration. It was found that high surface area diatomaceous synthetic calcium silicate powders, sold commercially as functional fillers and carriers, adsorb nickel isotopes from solution at neutral and slightly basic pH. Addition of the silicates to cooling water allowed removal of the tested metal isotopes (nickel, iron, manganese, cobalt, and cesium) simultaneously at neutral to slightly basic pH. Lime to diatomite ratio was the most influential characteristic of composition on final strength tested, with higher lime ratios giving higher strength. Diatomaceous earth filter aids manufactured without sodium fluxes exhibited higher pozzolanic activity. Pozzolanic filter cake solidified with sodium silicate and a ratio of 0.45 parts lime to 1 part diatomite had compressive strength ranging from 470 to 595 psi at a 90% confidence level. Leachability indices of all tested metals in the solidified waste were acceptable. In light of the typical requirement of removing iron and desirability of control over process pH, a two-step process involving addition of Portland cement to the filter cake may be most generally applicable.

  14. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    SciTech Connect

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  15. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  16. Performance of active solar space-cooling systems: The 1980 cooling season

    NASA Astrophysics Data System (ADS)

    Blum, D.; Frock, S.; Logee, T.; Missal, D.; Wetzel, P.

    1980-12-01

    Solar cooling by an absorption chiller is not a cost effective method to use solar heat. This statement is substantiated by careful analysis of each subsystem and equipment component. Good designs and operating procedures are identified. The problems which reduce cost effectiveness are pointed out. There are specific suggestions for improvements. Finally, there is a comparison of solar cooling by absorption chilling and using photovoltaic cells.

  17. Design and fabrication of an actively cooled Langmuir probe for long pulse applications

    SciTech Connect

    Paterson, J.A.; Biagi, L.A.; Ehlers, K.W.; Koehler, G.W.

    1985-11-01

    The details of the mechanical design and fabrication for a Langmuir Probe for the continuous monitoring of plasma density are given. The probe was designed for use as a diagnostic tool in the development of long pulse positive ion plasma sources for use on neutral beam systems. The essential design feature of this probe is the incorporation of two electrically isolated cooling water circuits which actively cool the probe tip and probe jacket. The electrical isolation is required to prevent drain currents from the probe body disturbing the measurement of the probe tip current and thereby the plasma density measurement. The successful realization of the design requires precision components and vacuum tight ceramic to refractory metal brazes. To date this design has successfully operated in steady-state in plasma densities up to 250 mA/cmS and surface heat fluxes of 25 W/cmS.

  18. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy. PMID:27077957

  19. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  20. Emergency makeup flow model for the K-reactor cooling water basin

    SciTech Connect

    Barbour, K.L.

    1994-12-31

    The Savannah River site installed the K-reactor cooling tower in 1993 to replace river water supplied to a 25-million-gal cooling basin with cooling tower recirculation. The reactor accident safety analysis assumes that cooling water recirculation is lost during the accident and basin level will drop. Emergency river water supply makeup valves will be opened manually to restore basin makeup and level and maintain shutdown safety. A hydraulic model scopes out valve flow response as the valves are opened. Scoping objectives are (a) valve flow rate response, (b) volumetric makeup with time, and (c) total volumetric makeup effect on basin emergency operating operating procedures. Model results could influence basin emergency operating procedures development before actual field test data are obtained.

  1. Summary of research and development effort on air and water cooling of gas turbine blades

    SciTech Connect

    Fraas, A.P.

    1980-03-01

    The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

  2. Water-lithium bromide double-effect absorption cooling analysis. Final report

    SciTech Connect

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01

    This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

  3. Lightweight, Actively Cooled Ceramic Matrix Composite Thrustcells Successfully Tested in Rocket Combustion Lab

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Elam, Sandra K.; Effinger, Michael R.

    2002-01-01

    hot-fire test of an actively cooled carbon-fiber-reinforced carbon matrix composite thrustcell is also shown. This composite thrustcell, which was fabricated by CCI, Inc., was wound with copper cooling coils to contain the water coolant. The tests were run with oxygen fuel ratios up to seven with chamber pressures of 200 psia.

  4. Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre

    NASA Astrophysics Data System (ADS)

    Daniel, Jae M. O.; Simakov, Nikita; Hemming, Alexander; Clarkson, W. Andrew; Haub, John

    2016-03-01

    We present a novel metal coated triple clad active fibre design, utilising an all glass inner cladding structure and aluminium outer coating. This metal coated active fibre enables a number of benefits to high power laser design, such as increase robustness and extended operating temperature range. As a demonstration of the advantages of this design a passively cooled ytterbium fibre laser is presented. A 20 m length of active fibre was coiled into a planar arrangement and mounted onto a high emissivity heatsink. Up to 405 W of output power was achieved without the need for active water or forced air cooling. The slope efficiency of this source was 74 % and maximum outer heat sink temperature was ~140°C. This arrangement allowed for significant weight and size savings to be achieved with the active fibre laser head weighing less than 100 g. We will discuss the design choices and trade-offs of metal coated active fibre on high power fibre laser systems as well as the prospects for further power scaling to the kW level.

  5. Cool Active Binaries Recently Studied in the CAAM Stellar Program

    NASA Astrophysics Data System (ADS)

    Ciçek, C.; Erdem, A.; Soydugan, F.; Doǧru, D.; Özkardeş, B.; Erkan, N.; Budding, E.; Demircan, O.

    2010-12-01

    We summarize recent work on cool active stars in our programme. We carried out photometry at the Çanakkale Onsekiz Mart University (COMU) observatory, and high-resolution spectroscopy at Mt John University Observatory, as well as collecting data from other facilties. A combination of analysis methods, including our information limit optimization technique (ILOT) with physically realistic fitting functions, as well as other public-domain software packages, have been used to find reliable parameters. Stars in our recent programme include V1430 Aql, V1034 Her, V340 Gem, SAO 62042, FI Cnc, V2075 Cyg, FG UMa and BM CVn. Light variations, sometimes over numerous consecutive cycles, were analysed. For AB Dor and CF Tuc, we compared broadband (B and V) maculation effects with emission features in the Ca II K and Hα lines. Broadband light curves typically show one or two outstanding maculae. These appear correlated with the main chromospheric activity sites (‘faculae’), that occur at similar latitudes and with comparable size to the photometric umbrae, but sometimes with significant displacements in longitude. The possibility of large-scale bipolar surface structure is considered, keeping in mind solar analogies. Such optical work forms part of broader multiwavelength studies, involving X-ray and microwave observations, also mentioned.

  6. Investigation of x ray variability in highly active cool stars

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1989-01-01

    Ginga x ray observations of highly active cool star coronae were obtained and analyzed in an effort to better understand the nature of their time variability. The possible types of variability studied included x ray occultations via eclipses in a binary system, rotational modulation of x ray emission, flares, and a search for microflaring. Observation of both sigma(sup 2) CrB and Algol were performed successfully by Ginga. The sigma(sup 2) CrB observations occurred on 27 to 30 June 1988, and the Algol observations on 12 to 14 January 1989. In the sigma(sup 2) CrB observation, simultaneous IUE and Very Large Array (VLA) observations were obtained during part of the Ginga observation. Flaring activity was detected on sigma(sup 2) CrB in the Ginga 1.7 to 11 KeV band and in the IUE microwave region. A large flare on Algol which lasted well over 12 hours was detected, began with a maximum temperature of 65 MK which gradually decayed to 36 MK, and evidence was shown of highly ionized Fe line emission.

  7. Temperatures Achieved in Human and Canine Neocortex During Intraoperative Passive or Active Focal Cooling

    PubMed Central

    Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo

    2015-01-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  8. Temperatures achieved in human and canine neocortex during intraoperative passive or active focal cooling.

    PubMed

    Smyth, Matthew D; Han, Rowland H; Yarbrough, Chester K; Patterson, Edward E; Yang, Xiao-Feng; Miller, John W; Rothman, Steven M; D'Ambrosio, Raimondo

    2015-06-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6-2°C was achieved both actively and passively to a depth of 10-15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  9. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  10. Three African antelope species with varying water dependencies exhibit similar selective brain cooling.

    PubMed

    Strauss, W Maartin; Hetem, Robyn S; Mitchell, Duncan; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2016-05-01

    The use of selective brain cooling, where warm arterial blood destined for the brain is cooled in the carotid rete via counter-current heat exchange when in close proximity to cooler venous blood, contributes to the conservation of body water. We simultaneously measured carotid blood and hypothalamic temperature in four gemsbok, five red hartebeest and six blue wildebeest to assess the extent to which these free-living animals, with varying water dependency, routinely rely on selective brain cooling. We investigated the hypothesis that innate differences in selective brain cooling exist in large, sympatric artiodactyls with varying water dependency. All three species used selective brain cooling, without any discernible differences in three selective brain cooling indices. GLMMs revealed no species differences in the threshold temperature for selective brain cooling (z = 0.79, P = 0.43), the magnitude (z = -0.51, P = 0.61), or the frequency of selective brain cooling use (z = -0.47, P = 0.64), after controlling for carotid blood temperature and black globe temperature. Comparison of anatomical attributes of the carotid retes of the three species revealed that the volume (F 2,9 = 5.54, P = 0.03) and height (F 2,9 = 5.43, P = 0.03) of the carotid rete, per kilogram body mass, were greater in the red hartebeest than in the blue wildebeest. Nevertheless, intraspecific variability in the magnitude, the frequency of use, and the threshold temperature for selective brain cooling exceeded any interspecific variability in the three indices of selective brain cooling. We conclude that the three species have similar underlying ability to make use of selective brain cooling in an environment with freely available water. It remains to be seen to what extent these three species would rely on selective brain cooling, as a water conservation mechanism, when challenged by aridity, a condition likely to become prevalent throughout much of southern Africa under

  11. Cooling crystallization of aluminum sulfate in pure water

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxue; Sun, Yuzhu; Yu, Jianguo

    2015-06-01

    This study investigated the cooling crystallization of aluminum sulfate to explore the basic data for the recovery of aluminum resources from coal spoil. First, the metastable zone width (MSZW) of aluminum sulfate was reported. A parallel synthesis platform (CrystalSCAN) was used to determine the solubility from 10 °C to 70 °C, and an automatic lab reactor (LabMax) equipped with focused beam reflectance measurement (FBRM) was adopted to determine the supersolubility. The effects of operating variables on MSZW were experimentally explored. Results show that the MSZW of aluminum sulfate decreases with increasing stirring speed, while it increases with increasing cooling rate. Second, the continuous crystallization kinetics of aluminum sulfate was investigated in a laboratory-scale mixed-suspension mixed-product removal (MSMPR) crystallizer at a steady state. Growth kinetics presented size-dependent growth rate, which was well fitted with the MJ3 model. Both the growth rate (G) and the total nucleation rate (BTOT) were correlated in the power law kinetic expressions with good correlation coefficients. Third, aluminum sulfate products were modified by sodium dodecylbenzenesulfonate (SDBS). Crystals with large sizes and regular hexagonal plate morphologies were obtained. These crystals reveal that SDBS can inhibit crystal nucleation and promote crystal growth.

  12. Control solids in cooling water to cut makeup requirements

    SciTech Connect

    Osantowski, R.; Kane, J.

    1984-07-01

    A pilot program demonstrates effectiveness of reverse osmosis and electrodialysis in increasing the cycles of concentration of recirculating-water systems. The team performed its study with the help of the Department of Interior's mobile demineralization treatment system, which houses both a reverse-osmosis and an electrodialysis desalting system. Their results indicate that both systems can produce product water of higher quality than makeup water drawn from the Colorado River. Capital cost of a full-scale treatment system with 75% product-water recovery is estimated at $3.6 million. Annual operating cost would be about $822,000.

  13. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect

    Colborn, Robert

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  14. Corrosion evaluation of cooling-water treatments for gas centrifuge facilities

    SciTech Connect

    Schmidt, C. R.; Meredith, P. F.

    1980-11-24

    The corrosion resistance of six different types of weighted metal coupons was evaluated at 29/sup 0/C (84/sup 0/F) in flowing water containing nitrite-borate-silicate corrosion inhibitors. The question for evaluation was whether it would be more advantageous: (1) to drain the treated cooling water from the centrifuge machine and to expose them to moisture-laden air over an assumed shop downtime and repair perid of 1 month; or (2) to let the treated cooling water remain stagnant in the machines during this downtime. The moisture-laden-air exposure was more detrimental.

  15. Cool-down and frozen start-up behavior of a grooved water heat pipe

    SciTech Connect

    Jang, J.H.

    1990-12-01

    A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was investigated under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.

  16. Cool-down and frozen start-up behavior of a grooved water heat pipe

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1990-01-01

    A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was studied under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.

  17. Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems

    SciTech Connect

    Watzlaf, G.R.; Ackman, T.E.

    2006-03-01

    In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

  18. Releases from the cooling water system in the Waste Tank Farm

    SciTech Connect

    Perkins, W.C.; Lux, C.R.

    1991-12-31

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  19. Releases from the cooling water system in the Waste Tank Farm

    SciTech Connect

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  20. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND... cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming....

  1. CALL-FOR-ABSTRACTS: SYMPOSIUM ON TECHNOLOGIES FOR PROTECTING AQUATIC ORGANISMS FROM COOLING WATER INTAKE STRUCTURES

    EPA Science Inventory

    Section 316(b) of the Clean Water Act requires EPA to ensure that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts. In February 2002, the EPA approved a proposed ...

  2. PH adjustment of power plant cooling water with flue gas/fly ash

    DOEpatents

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  3. Legionella oakridgensis: unusual new species isolated from cooling tower water.

    PubMed Central

    Orrison, L H; Cherry, W B; Tyndall, R L; Fliermans, C B; Gough, S B; Lambert, M A; McDougal, L K; Bibb, W F; Brenner, D J

    1983-01-01

    We describe a new species of Legionella represented by 10 strains isolated from industrial cooling towers. Legionella oakridgensis differed genetically from the other seven species of Legionella in DNA hybridization studies and differed serologically in direct fluorescent-antibody tests. The new species, unlike all other species except L. jordanis, did not require added L-cysteine for growth in serial transfer on charcoal-yeast extract agar. L. oakridgensis, as well as three other species tested, required L-cysteine for primary isolation from animal tissues. L. oakridgensis was the only species of Legionella that failed to produce alkaline phosphatase at pH 8.5. In all other respects, it resembled other species of Legionella, including having a high content of branched-chain cellular fatty acids and being pathogenic for guinea pigs. These bacteria have not yet been associated with human disease, but they are potential causes of legionellosis. PMID:6830217

  4. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  5. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  6. Oxygen isotope diffusion and zoning in diopside: The importance of water fugacity during cooling

    SciTech Connect

    Edwards, K.J.; Valley, J.W.

    1998-07-01

    The oxygen isotope ratio of diopside correlates with crystal size in many high grade marbles, permitting the intracrystalline self-diffusion rate of oxygen in diopside to be empirically evaluated. Small (75--300 {micro}m) and large (1.2--1.5 mm) diopside grains were analyzed in bulk for their oxygen isotope ratios by laser extraction. Cooling histories were calculated using the Fast Grain Boundary diffusion model, assuming equilibrium at peak metamorphic temperatures (700--800 C), slow cooling of 1.5--4 C/Ma, and experimentally determined diffusion coefficients for oxygen in minerals. Measurements and calculations to predict differences in {delta}{sup 18}O between large and small diopside grains lead to the following conclusions. (1) Natural diopsides in this study exhibit variations in oxygen isotope ratios between grains of different size, which are related to the peak temperature, cooling rate, and water fugacity during cooling. Diffusion distances are properly modeled by the size of an entire grain; there is no evidence for subdomains. (2) In slowly cooled high grade metamorphic terrains, water fugacity can be highly variable from rock to rock during cooling. For many rocks, water fugacity is the most important constraint on the degree of oxygen isotope retrograde exchange.

  7. UV Observations of Prominence Activation and Cool Loop Dynamics

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Landi, Enrico

    2006-01-01

    In this paper we investigate the thermal and dynamic properties of dynamic structures in and around a prominence channel observed on the limb on 17 April 2003. Observations were taken with the Solar and Heliospheric Observatory's Solar Ultraviolet Measurements of Emitted Radiation (SOHO/SUMER) in lines formed at temperatures from 80,000 to 1.6 MK. The instrument was pointed to a single location and took a series of 90 s exposures. Two-dimensional context was provided by the Transition Region and Coronal Explorer (TRACE) in the UV and EUV and the Kanzelhohe Solar Observatory in H-alpha. Two dynamic features were studied in depth: an activated prominence and repeated motions in a loop near the prominence. We calculated three-dimensional geometries and trajectories, differential emission measure, and limits on the mass, pressure, average density, and kinetic and thermal energies. These observations provide important tests for models of dynamics in prominences and cool (approx. 10(exp 5) K)loops, which will ultimately lead to a better understanding the mechanism(s) leading to energy and mass flow in these solar features.

  8. Using water to cool cattle: behavioral and physiological changes associated with voluntary use of cow showers.

    PubMed

    Legrand, A; Schütz, K E; Tucker, C B

    2011-07-01

    Water is commonly used to cool cattle in summer either at milking or over the feed bunk, but little research has examined how dairy cows voluntarily use water separate from these locations. The objectives were to describe how and when dairy cattle voluntarily used an overhead water source separate from other resources, such as feed, and how use of this water affected behavioral and physiological indicators of heat stress. Half of the 24 nonlactating cattle tested had access to a "cow shower" composed of 2 shower heads activated by a pressure-sensitive floor. All animals were individually housed to prevent competition for access to the shower. Over 5 d in summer (air temperature=25.3±3.3°C, mean ± standard deviation), cattle spent 3.0±2.1 h/24h in the shower, but considerable variability existed between animals (individual daily values ranged from 0.0 to 8.2 h/24h). A portion of this variation can be explained by weather; shower use increased by 0.3h for every 1°C increase in ambient temperature. Cows preferentially used the shower during the daytime, with 89±12% of the time spent in the shower between 1000 and 1900 h. Respiration rate and skin temperature did not differ between treatments [53 vs. 61 breaths/min and 35.0 vs. 35.4°C in shower and control cows, respectively; standard error of the difference (SED)=5.6 breaths/min and 0.49°C]. In contrast, body temperature of cows provided with a shower was 0.2°C lower than control cows in the evening (i.e., 1800 to 2100h; SED=0.11°C). Cows with access to a shower spent half as much time near the water trough than control animals, and this pattern became more pronounced as the temperature-humidity index increased. In addition, cattle showed other behavioral changes to increasing heat load; they spent less time lying when heat load index increased, but the time spent lying, feeding, and standing without feeding did not differ between treatments. Cows had higher respiration rate, skin temperature, and body

  9. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling.

    PubMed

    Stillwell, Ashlynn S; Webber, Michael E

    2014-04-15

    Use of reclaimed water-municipal wastewater treatment plant effluent-in nonpotable applications can be a sustainable and efficient water management strategy. One such nonpotable application is at thermoelectric power plants since these facilities require cooling, often using large volumes of freshwater. To evaluate the geographic, technologic, and economic feasibility of using reclaimed water to cool thermoelectric power plants, we developed a spatially resolved model of existing power plants. Our model integrates data on power plant and municipal wastewater treatment plant operations into a combined geographic information systems and optimization approach to evaluate the feasibility of cooling system retrofits. We applied this broadly applicable methodology to 125 power plants in Texas as a test case. Results show that sufficient reclaimed water resources exist within 25 miles of 92 power plants (representing 61% of capacity and 50% of generation in our sample), with most of these facilities meeting both short-term and long-term water conservation cost goals. This retrofit analysis indicates that reclaimed water could be a suitable cooling water source for thermoelectric power plants, thereby mitigating some of the freshwater impacts of electricity generation. PMID:24625241

  10. Heat exchanger and water tank arrangement for passive cooling system

    DOEpatents

    Gillett, James E.; Johnson, F. Thomas; Orr, Richard S.; Schulz, Terry L.

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  11. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    NASA Astrophysics Data System (ADS)

    Plevacova, K.; Journeau, C.; Piluso, P.; Zhdanov, V.; Baklanov, V.; Poirier, J.

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U x, Zr y)O 2-z water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO 2, the zirconium carbide coating keeps its role of protective barrier with UO 2-Al 2O 3 below 2000 °C but does not resist to a UO 2-Eu 2O 3 mixture.

  12. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  13. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  14. Aerothermal performance of radiatively and actively cooled panel at Mach 6.6

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Weinstein, I.

    1979-01-01

    A flight-weight radiative and actively cooled honeycomb sandwich panel (RACP) was subjected to multiple cycles of both radiant and aerothermal heating. The 0.61 m by 1.22 m test specimen incorporated essential features of a full scale 0.61 m by 6.10 m RACP designed to withstand a heat flux of 136 kW/sq m. The panel consisted of heat shields, a thin layer of high temperature insulation, and an aluminum honeycomb sandwich panel with coolant tubes next to the sandwich skin. A 60/40 mass solution of ethylene glycol/water was used to cool the panel which successfully withstood a total of 3.5 hr of radiant heating and 137 sec exposure to an M = 6.6 test stream. Heat shield temperatures reached 1080 K (1945 deg R), and cooled-panel temperatures reached 382 K (687 deg R) midway between coolant tubes. Simulation of the full scale panel indicated that the full scale RACP would perform as expected. The tests revealed no evidence of coolant leakage or hot gas ingress which would seriously degrade the RACP performance.

  15. Experimental and Numerical Analysis of the Cooling Performance of Water Spraying Systems during a Fire

    PubMed Central

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  16. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    PubMed

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  17. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  18. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure constraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  19. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure contraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  20. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Chang; Ouyang, Hua-Fu

    2008-04-01

    At least two bunchers are needed in the 3 MeV H- Medium Energy Beam Transport (MEBT) line located between RFQ and DTL for the CSNS (China Spallation Neutron Source). A nose-cone geometry has been adopted as the type of buncher cavity for its simplicity, higher impedance and lower risk of multipacting. By making use of the results got from the simulations on the buncher with two-dimension code SUPERFISH, the thermal and structural analyses have been carried out, the process and results to determine the resulting frequency shift due to thermal and structural distortion of the cavity are presented, the water-cooling channel position and the optimum cooling water temperature as well as the tuning method by adjusting the cooling water temperature when the cavity is out of resonance are also determined through the analyses.

  1. Data input needs for selection of ozonation equipment for treatment of cooling waters

    SciTech Connect

    Rice, R.G.

    1994-12-31

    To select ozonation equipment wisely for application to cooling water treatment, a number of parameters must be considered so that the potential user of ozone can choose between the different kinds of ozone equipment available from numerous vendors. An Ozone Equipment Data Sheet has been developed by NACE International Task Group T-7A-17a which provides ozone equipment vendors the opportunity to submit for consideration pertinent information regarding the capabilities of their individual items of ozone generation and ancillary equipment to perform in the cooling water treatment field. With this information in hand, the potential user of ozone for cooling water treatment can make a knowledgeable comparison between the various types of ozonation equipment being marketed. This new Ozone Equipment Data Sheet and its applicability will be described.

  2. Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Seiner, John M.

    1991-01-01

    The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.

  3. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  4. An exact calculation of infrared cooling rate due to water vapor

    NASA Astrophysics Data System (ADS)

    Xu, Li; Shi, Guangyu

    1985-11-01

    The longwave (0-2380 cm-1) cooling rate due to water vapor in the troposphere and the stratosphere has been calculated by a new infrared transmission model in this paper. An exact scheme is used for treating the integration over wavenumber and the inhomogeneous path in the atmosphere. It is shown that the atmospheric window region (730-1200 cm-1) (mainly water vapor continuum) plays an important role in the total cooling near the surface, about 72% of the total cooling lying in this region at the height of 1 km; the CG approximation used for an inhomogeneous path is fairly applicable for calculating the cooling rate due to water vapor, with a maximum error of 0.16 K/day throughout the troposhere and the stratosphere; on the other hand, the error due to the diffusivity factor of 1.66 appears to be slightly larger near the surface. In this study, the influences on the calculation of above infrared cooling rate, of the temperature-dependence of the absorption coefficients of water vapor, the upper level cutoff and the integration step for altitude, and the substitution of the quasi-grey approximation for the exact integration over wavenumber, are also examined.

  5. Ice water submersion for rapid cooling in severe drug-induced hyperthermia

    PubMed Central

    Laskowski, Larissa K.; Landry, Adaira; Vassallo, Susi U.; Hoffman, Robert S.

    2015-01-01

    Context The optimal method of cooling hyperthermic patients is controversial. Although controlled data support ice water submersion, many authorities recommend a mist and fan technique. We report two patients with drug-induced hyperthermia, to demonstrate the rapid cooing rates of ice water submersion. Case details Case 1. A 27-year-old man presented with a sympathomimetic toxic syndrome and a core temperature of 41.4°C after ingesting 4-fluoroamphetamine. He was submerged in ice water and his core temperature fell to 38°C within 18 minutes (a mean cooling rate of 0.18°C/min). His vital signs stabilized, his mental status improved and he left on hospital day 2. Case 2. A 32-year-old man with a sympathomimetic toxic syndrome after cocaine use was transported in a body bag and arrived with a core temperature of 44.4°C. He was intubated, sedated with IV benzodiazepines, and submerged in ice water. After 20 minutes his temperature fell to 38.8°C (a cooling rate of 0.28°C/min). He was extubated the following day, and discharged on day 10. Discussion In these two cases, cooling rates exceeded those reported for mist and fan technique. Since the priority in hyperthermia is rapid cooling, clinical data need to be collected to reaffirm the optimal approach. PMID:25695144

  6. Activity and Kinematics of Cool and Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah Jane

    The ages of cool and ultracool dwarfs are particularly important. For cool M dwarfs, accurate ages combined with their ubiquity in the stellar disk could lead to a new level of precision in age dating the Galaxy. A better understanding of the chromospheres of M dwarfs could provide important clues about the relationship between activity and age in these low mass stars. Ultracool (late-M and L) dwarfs have the distinction of including both warm, young brown dwarfs and stars with mean ages more representative of the stellar disk. Kinematics are a source of mean ages and could provide or confirm discriminating features between stars and brown dwarfs. This thesis is composed of several different projects, each investigating the activity or kinematics of cool or ultracool dwarfs. First, a sample of nearly 500 L dwarfs selected from SDSS DR7 photometry and spectroscopy is examined; we discovered 200 new L dwarfs and found evidence of a bias towards red J - KS colors in the entire population of previously known L dwarfs. Using the three-dimensional kinematics of 300 SDSS DR7 L dwarfs, we find that their kinematics are consistent with those of the stellar disk and include a previously undetected thick disk component. We also confirmed a relationship between age and J - KS color (due to our large sample of UVW motions and unbiased J - KS colors), with blue L dwarfs having hotter kinematics (consistent with older ages) and redder L dwarfs having colder, younger kinematics. The DR7 L dwarf sample showed no distinct kinematic difference between young brown dwarfs and disk-age stars, perhaps due to a bias towards early spectral types. In order to probe the kinematic distribution of L dwarfs in a volume-limited sample, we began a survey of radial velocities of nearby (d<20pc) L dwarfs using the TripleSpec instrument on the ARC 3.5-m telescope at APO. While several reduction packages were tested on the TripleSpec data, none were found to provide reductions of sufficient quality

  7. Heat exchanger and water tank arrangement for passive cooling system

    DOEpatents

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  8. Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating

    NASA Astrophysics Data System (ADS)

    Sarkar, Jahar; Bhattacharyya, Souvik

    2013-02-01

    The effects of water-side operating conditions (mass flow rates and inlet temperatures) of both evaporator and gas cooler on the experimental as well as simulated performances (cooling and heating capacities, system coefficient of performance (COP) and water outlet temperatures) of the transcritical CO2 heat pump for simultaneous water cooling and heating the are studied and revised. Study shows that both the water mass flow rate and inlet temperature have significant effect on the system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases by 0.6 for 1 kg/min) compared to that of gas cooler water mass flow rate (COP increases by 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases by 0.48 for given range) compared to that of evaporator water inlet temperature (COP increases by 0.43 for given range). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity and 16% for system COP.

  9. Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating

    NASA Astrophysics Data System (ADS)

    Sarkar, Jahar; Bhattacharyya, Souvik

    2011-11-01

    The effects of water-side operating conditions (mass flow rates and inlet temperatures) of both evaporator and gas cooler on the experimental as well as simulated performances (cooling and heating capacities, system coefficient of performance (COP) and water outlet temperatures) of the transcritical CO2 heat pump for simultaneous water cooling and heating the are studied and revised. Study shows that both the water mass flow rate and inlet temperature have significant effect on the system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases by 0.6 for 1 kg/min) compared to that of gas cooler water mass flow rate (COP increases by 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases by 0.48 for given range) compared to that of evaporator water inlet temperature (COP increases by 0.43 for given range). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity and 16% for system COP.

  10. Silver bonded, internally water-cooled monochromators for CHESS wiggler beamlines

    SciTech Connect

    Smolenski, Karl W.; Shen Qun; Doing, Park

    1997-07-01

    Intense synchrotron radiation from high power wiggler sources has long been a difficult high-heat-load problem to the design of properly cooled x-ray optics. Large, high power and very intense beams thermally distort crystal optics, reducing throughput and broadening rocking curves. An internally cooled silicon monochromator has been fabricated which demonstrated the capability of diffracting wiggler radiation of unprecedented power without significant degradation of the beam. Cooling water flows through rectangular cooling channels 1 mm wide, 1 mm below the diffracting surface, fed by a manifold bonded to the underside of the diffracting crystal. A novel silver diffusion bond was used to ensure leak-tight UHV performance. Recent test results at wiggler station F2 show a linear behavior of the x-ray flux with increasing storage ring current up to a total power of 3 kW and a peak surface power density of 5 W/mm{sup 2}. The improved monochromator has led to an increase of x-ray flux by a factor of six over previous contact-cooled designs and shows that internal water-cooling can be an effective solution to high-heat-load problems at high power wiggler stations.

  11. [Forecasting heat and functional state of human exposed to cooling in water medium].

    PubMed

    Afanas'eva, R F; Losik, T K; Bobrov, A F; Azhaev, A N; Ivanov, I V

    2005-01-01

    Based on mathematic and statistic analysis of results obtained in studies of human heat exchange with cooling water medium, the authors represented canonical correlational patterns to determine integral parameter of cooling conditions (IPCC) referred to naked human and with various clothes on, both with and without additional heat releasing sources. Mathematic and statistic analysis helped to present correlational patterns for predicting levels of changes in human functional state according to IPCC comprising complex of factors that determine heat exchange in water medium, including safe time for stay in it. PMID:16048063

  12. Why Do Objects Cool More Rapidly in Water Than in Still Air?

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2011-12-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different thermophysical properties of the two fluids. The correct ratio for humans is closer to 2 than to 10, and if this were not so, swimming in cool water could be fatal.

  13. Solid water phantom heat conduction: Heating and cooling rates.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2008-01-01

    Solid water is often the phantom material of choice for dosimetry procedures in radiotherapy high-energy X-ray and electron beam radiation calibration and quality assurance. This note investigates variation in heat conduction that can occur for a common commercially available solid water stack phantom when a temperature differential occurs between the phantom and ambient temperature. These variations in temperature can then affect radiation measurements and thus the accuracy of radiation dosimetry. In this manuscript, we aim to investigate the variations in temperature which can occur in radiation measurement incorporated (RMI) solid water phantoms, their thermal properties and the effects on radiation dosimetry which can occur because of temperature differentials. Results have shown that the rate of temperature change at a phantom center is a complex function but appears relatively proportional to the surface area of the phantom in normal clinical usage. It is also dependent on the thermal conductivity of any material in contact with the phantom; and the nature of the phantom construction, i.e., the number and thickness of slices within the phantom. A thermal time constant of approximately 20 min was measured for a 2-cm solid water phantom slice when located on a steel workbench in comparison to 60 min when located on a wooden workbench (linac couch insert). It is found that for larger solid water stack phantoms, a transient (within 1 degrees C) thermal equilibrium exists at the center for up to 2 h, before the temperature begins to change. This is assumed to be due to the insulating properties of multiple slices within the stack, whereby very small air spaces are introduced inhibiting the heat conduction through the phantom material. It is therefore recommended that the solid water/phantom material is kept within the treatment room for closest thermal accuracy conditions or at least placed within the room approximately 10 h before dosimetry measurements. If these

  14. State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.

    PubMed

    Grambow, B; Mostafavi, M

    2014-11-01

    It is still difficult to assess the risk originating from the radioactivity inventory remaining in the damaged Fukushima nuclear reactors. Here we show that cooling water analyses provide a means to assess source terms for potential future releases. Until now already about 34% of the inventories of (137)Cs of three reactors has been released into water. We found that the release rate of (137)Cs has been constant for 2 years at about 1.8% of the inventory per year indicating ongoing dissolution of the fuel debris. Compared to laboratory studies on spent nuclear fuel behavior in water, (137)Cs release rates are on the higher end, caused by the strong radiation field and oxidant production by water radiolysis and by impacts of accessible grain boundaries. It is concluded that radionuclide analyses in cooling water allow tracking of the conditions of the damaged fuel and the associated risks. PMID:25245528

  15. Corrosion inhibitor evaluation for materials used in closed cooling water systems

    SciTech Connect

    Moccari, A.A.

    1999-09-01

    Electrochemical tests were conducted to evaluate the inhibition effects of a commercial sodium nitrite (NaNO{sub 2})/sodium tolyltriazole (nitrite/TTA)-based corrosion inhibitor added to deionized water at 50 C. General and pitting corrosion of materials commonly used in closed cooling water systems were examined. Tests also were performed in deionized water to which Cl{sup {minus}} had been added. At the tested concentrations, nitrite/TTA was found to be an effective corrosion inhibitor for all of the materials tested in plain deionized water and Cl{sup {minus}}-containing water.

  16. Safety Issues and Approach to Meet the Safety Requirements in Tokamak Cooling Water System of ITER

    SciTech Connect

    Flanagan, George F; Reyes, Susana; Chang, Keun Pack; Berry, Jan; Kim, Seokho H

    2010-01-01

    The ITER (Latin for 'the way') tokamak cooling water system (TCWS) consists of several separate systems to cool the major ITER components - the divertor/limiter, the first wall blanket, the neutral beam injector and the vacuum vessel. The ex-vessel part of the TCWS systems provides a confinement function for tritium and activated corrosion products in the cooling water. The Vacuum Vessel System also has a functional safety requirement regarding the residual heat removal from in-vessel components. A preliminary hazards assessment (PHA) was performed for a better understanding of the hazards, initiating events, and defense in depth mechanisms associated with the TCWS. The PHA was completed using the following steps. (1) Hazard Identification. Hazards associated with the TCWS were identified including radiological/chemical/electromagnetic hazards and physical hazards (e.g., high voltage, high pressure, high temperature, falling objects). (2) Hazard Categorization. Hazards identified in step (1) were categorized as to their potential for harm to the workers, the public, and/or the environment. (3) Hazard Evaluation. The design was examined to determine initiating events that might occur and that could expose the public, environment, or workers to the hazard. In addition the system was examined to identify barriers that prevent exposure. Finally, consequences to the public or workers were qualitatively assessed, should the initiating event occur and one or more of the barriers fail. Frequency of occurrence of the initiating event and subsequent barrier failure was qualitatively estimated. (4) Accident Analysis. A preliminary hazards analysis was performed on the conceptual design of the TCWS. As the design progresses, a detailed accident analysis will be performed in the form of a failure modes and effects analysis. The results of the PHA indicated that the principal hazards associated with the TCWS were those associated with radiation. These were low compared to

  17. The dynamics of cooling water discharge in a shallow, non-tidal embayment

    NASA Astrophysics Data System (ADS)

    Hofmeister, Richard; Bolding, Karsten; Hetland, Robert D.; Schernewski, Gerald; Siegel, Herbert; Burchard, Hans

    2013-12-01

    The dynamics of cooling water spreading in a non-tidal embayment is subject of a modelling-based study of Greifswald Bay, a shallow embayment at the south-western coast of the Baltic Sea. Potential cooling water spreading due to a possible power plant at Greifswald Bay is evaluated as differences between a realistic hind-cast simulation and a similar simulation but including the cooling water pumping. The model results are confirmed with satellite imagery of the embayment during operation of a nuclear power plant in the 1980s. The effect of cooling water pumping on the residual circulation, additional stratification and the heating of near-bed waters in the herring spawning areas is evaluated from the simulation. The model results for an idealised embayment and the realistic scenario, as well as the satellite images, show a clear dependence of the plume spreading on the wind direction. Although the surface plume affects a large area of the embayment, the results show a localised impact on residual circulation, bulk stratification and heating of the waterbody.

  18. Ultimate Heat Sink Thermal Performance and Water Utilization: Measurements on Cooling and Spray Ponds

    SciTech Connect

    Athey, G. F.; Hadlock, R. K.; Abbey, O. B.

    1982-02-01

    A data acquisition research program, entitled "Ultimate Heat Sink Performance Field Experiments," has been brought to completion. The primary objective is to obtain the requisite data to characterize thermal performance and water utilization for cooling ponds and spray ponds at elevated temperature. Such data are useful for modeling purposes, but the work reported here does not contain modeling efforts within its scope. The water bodies which have been studied are indicative of nuclear reactor ultimate heat sinks, components of emergency core cooling systems. The data reflect thermal performance and water utilization for meteorological and solar influences which are representative of worst-case combinations of conditions. Constructed water retention ponds, provided with absolute seals against seepage, have been chosen as facilities for the measurement programs; the first pond was located at Raft River, Idaho, and the second at East Mesa, California. The data illustrate and describe, for both cooling ponds and spray ponds, thermal performance and water utilization as the ponds cool from an initially elevated temperature. To obtain the initial elevated temperature, it has been convenient to conduct the measurements at geothermal sites having large supplies and delivery rates of hot geothermal fluid. The data are described and discussed in the text, and presented in the form of data volumes as appendices.

  19. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    PubMed

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized. PMID:21280850

  20. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  1. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost

  2. Active Control of Jets in Cross-Flow for Film Cooling Applications

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, Dimitris E.

    2003-01-01

    Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.

  3. Water spray cooling during handling of feedlot cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimenta...

  4. Water Spray Cooling During Handling of Feedlot Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activities involved in receiving or working (e.g. sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental...

  5. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1990-01-01

    Fabrication of repeat parts for the small area short stack is nearing completion and assembly activities are being initiated. Electrolyte reservoir plates (ERPs) were completed and processed into integral separator plates, and acid fill of parts was initiated. Fabrication of electrodes was also completed, including catalyzation and applications of seals and matrices.

  6. Detection of Legionella pneumophila by PCR-ELISA method in industrial cooling tower water.

    PubMed

    Soheili, Majid; Nejadmoghaddam, Mohammad Reza; Babashamsi, Mohammad; Ghasemi, Jamileh; Jeddi Tehrani, Mahmood

    2007-11-15

    Water supply and Cooling Tower Water (CTW) are among the most common sources of Legionella pneumophila (LP) contamination. A nonradio active method is described to detect LP in industrial CTW samples. DNA was purified and amplified by nested -PCR with amplimers specific for the 16s rRNA gene of LP. The 5' end biotinylated oligomer probe was immobilized on sterptavidin B coated microtiter plates. The nested-PCR product was labeled with digoxigenin and then hybridized with 5'-biotinylated probes. The amplification products were detected by using proxidase-labled anti dioxygenin antibody in a colorimetric reaction. The assay detected LP present in 1 L of 5 CTW samples examined. All of the samples were Legionella positive in both culture and PCR-ELISA methods. The PCR-ELISA assay appears to exhibit high specificity and is a more rapid technique in comparison with bacterial culture method. Thus could prove suitable for use in the routine examination of industrial CTW contamination. PMID:19090273

  7. Evaluation of nonpotable ground water in the desert area of southeastern California for powerplant cooling

    USGS Publications Warehouse

    Steinemann, Anne C.

    1989-01-01

    Powerplant siting is dependent upon many factors; in southern California the prevailing physical constraint is water availability. Increasing land-use and other environmental concerns preclude further sites along the coast. A review of available hydrologic data was made of 142 ground-water basins in the southeast California desert area to ascertain if any could be feasible sources of nonpotable powerplant cooling water. Feasibility implies the capacity to sustain a typical 1,000-megawatt electrical-power generating plant for 30 years with an ample supply of ground water for cooling. Of the 142 basins reviewed, 5 met or exceeded established hydrologic criteria for supplying the water demands of a typical powerplant. These basins are: (1) middle Amargosa valley, (2) Soda Lake valley, (3) Caves Canyon valley, (4) Chuckwalla Valley, and (5) Calzona-Vidal Valley. Geohydrologic evaluations of these five basins assessed the occurrence and suitability of ground water and effects of long-term pumping. An additional six basins met or exceeded hydrologic criteria, with qualifications, for providing powerplant cooling water. The remaining 131 basins either did not meet the criteria, or available data were insufficient to determine if the basins would meet the criteria.

  8. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  9. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    NASA Astrophysics Data System (ADS)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  10. APT cooling water supply make-up trade study. Revision 1

    SciTech Connect

    Reynolds, R.W.; Hink, R.

    1996-08-08

    In the conceptual design of the APT cooling water system, several options exist for the design of the system(s) which serve as the ultimate heat sink. This study will evaluate alternative methods of providing an ultimate heat sink to the APT.

  11. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems and Waste Operations Monitoring Requirements for Heat Exchange Systems § 63.1086 How must I... cooling water using any method listed in 40 CFR part 136. Use the same method for both entrance and exit samples. You may validate 40 CFR part 136 methods for the HAP listed in Table 1 to this subpart...

  12. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems and Waste Operations Monitoring Requirements for Heat Exchange Systems § 63.1086 How must I... cooling water using any method listed in 40 CFR part 136. Use the same method for both entrance and exit samples. You may validate 40 CFR part 136 methods for the HAP listed in Table 1 to this subpart...

  13. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Systems and Waste Operations Monitoring Requirements for Heat Exchange Systems § 63.1086 How must I... cooling water using any method listed in 40 CFR part 136. Use the same method for both entrance and exit samples. You may validate 40 CFR part 136 methods for the HAP listed in Table 1 to this subpart...

  14. Why Do Objects Cool More Rapidly in Water than in Still Air?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different…

  15. EVALUATION OF TWO CONCEPTS FOR PROTECTION OF FISH LARVAE AT COOLING WATER INTAKES

    EPA Science Inventory

    The report gives results of a laboratory evaluation of 'impinge-release' and 'fish-avoidance' concepts for protecting fish larvae at cooling water intakes. Impinge-release requires a vertical-traveling screen that limits impingement time to several minutes, the maximum time depen...

  16. Genetic improvement of rainbow trout at the National Center for Cool and Cold Water Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major constraint to increasing the efficiency of rainbow trout production is the lack of well-characterized, genetically-improved stocks. Scientists at the USDA, ARS, National Center for Center for Cool and Cold Water Aquaculture have developed two resource populations suitable for long-term sele...

  17. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact...

  18. Inquiry-based Science Activities Using The Infrared Zoo and Infrared Yellowstone Resources at Cool Cosmos

    NASA Astrophysics Data System (ADS)

    Daou, D.; Gauthier, A.

    2003-12-01

    Inquiry-based activities that utilize the Cool Cosmos image galleries have been designed and developed by K12 teachers enrolled in The Invisible Universe Online for Teachers course. The exploration activities integrate the Our Infrared World Gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/our_ir_world_gallery.html) with either the Infrared Zoo gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/ir_zoo/index.html) or the Infrared Yellowstone image http://coolcosmos.ipac.caltech.edu/image_galleries/ir_yellowstone/index.html) and video (http://coolcosmos.ipac.caltech.edu/videos/ir_yellowstone/index.html) galleries. Complete instructor guides have been developed for the activities and will be presented by the authors in poster and CD form. Although the activities are written for middle and highschool learners, they can easily be adapted for college audiences. The Our Infrared World Gallery exploration helps learners think critically about visible light and infrared light as they compare sets of images (IR and visible light) of known objects. For example: by taking a regular photograph of a running faucet, can you tell if it is running hot or cold water? What new information does the IR image give you? The Infrared Zoo activities encourage learners to investigate the differences between warm and cold blooded animals by comparing sets of IR and visible images. In one activity, learners take on the role of a pit viper seeking prey in various desert and woodland settings. The main activities are extended into the real world by discussing and researching industrial, medical, and societal applications of infrared technologies. The Infrared Yellowstone lessons give learners a unique perspective on Yellowstone National Park and it's spectacular geologic and geothermal features. Infrared video technology is highlighted as learners make detailed observations about the visible and infrared views of the natural phenomena. The "Cool Cosmos" EPO activities are

  19. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    SciTech Connect

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  20. Design and fabrication of a stringer stiffened discrete-tube actively cooled panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Halenbrook, R. G.

    1981-01-01

    A 0.61 x 1.22 m (2 x 4 ft) test panel was fabricated and delivered to the Langley Research Center for assessment of the thermal and structural features of the optimized panel design. The panel concept incorporated an aluminum alloy surface panel actively cooled by a network of discrete, parallel, redundant, counterflow passage interconnected with appropriate manifolding, and assembled by adhesive bonding. The cooled skin was stiffened with a mechanically fastened conventional substructure of stringers and frames. A 40 water/60 glycol solution was the coolant. Low pressure leak testing, radiography, holography and infrared scanning were applied at various stages of fabrication to assess integrity and uniformity. By nondestructively inspecting selected specimens which were subsequently tested to destruction, it was possible to refine inspection standards as applied to this cooled panel design.

  1. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  2. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  3. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  4. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type

  5. Effect of makeup water properties on the condenser fouling in power planr cooling system

    SciTech Connect

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.

  6. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems.

    PubMed

    Okutsu, Noriya; Morohoshi, Tomohiro; Xie, Xiaonan; Kato, Norihiro; Ikeda, Tsukasa

    2015-01-01

    The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL) are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3-oxo-C8-HSL). AHLs produced by Lysobacter sp. were assigned as N-decanoyl-L-homoserine lactone (C10-HSL) and N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10-HSL). This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system. PMID:26729121

  7. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    PubMed Central

    Okutsu, Noriya; Morohoshi, Tomohiro; Xie, Xiaonan; Kato, Norihiro; Ikeda, Tsukasa

    2015-01-01

    The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL) are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL), and N-(3-oxooctanoyl)-l-homoserine lactone (3-oxo-C8-HSL). AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL) and N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL). This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system. PMID:26729121

  8. Organohalogen products from chlorination of cooling water at nuclear power stations

    SciTech Connect

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few ..mu..g/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 ..mu..g/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables.

  9. Simple strategies for minimization of cooling water usage in binary power plants

    SciTech Connect

    Bliem, C.J.; Mines, G.L. )

    1989-01-01

    The geothermal resources which could be used for the production of electrical power in the United States are located for the most part in the semi-arid western regions of the country. The availability of ground or surface water in the quantity or quality desired for a conventional wet'' heat rejections system represents a barrier to the development of these resources with the binary cycle technology. This paper investigates some simple strategies to minimize the cooling water usage of binary power plants. The cooling water usage is reduced by increasing the thermal efficiency of the plant. Three methods of accomplishing this are considered here: increasing the average source temperature, by increasing the geofluid outlet temperature; decreasing pinch points on the heat rejection heat exchangers, increasing their size; and using internal recuperation within the cycle. In addition to the impact on water usage, the impact on cost-of-electricity is determined. The paper shows that some of these strategies can reduce the cooling water requirements 20 to 30% over that for a plant similar to the Heber Binary Plant, with a net reduction in the cost-of-electricity of about 15%. 13 refs., 4 figs., 3 tabs.

  10. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  11. Investigation of Water-spray Cooling of Turbine Blades in a Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Freche, John C; Stelpflug, William J

    1953-01-01

    An analytical and experimental investigation was made with a J33-A-9 engine to determine the effectiveness of spray cooling as a means of increasing thrust by permitting engine operation at inlet-gas temperatures and speeds above rated. With the assumption of adequate spray cooling at a coolant-to-gas flow ratio of 3 percent, calculations for the sea-level static condition indicated a thrust may be achieved by engine operation at an inlet-gas temperature of 2000 degrees F and an overspeed of 10 percent. Of the water-injection configurations investigated experimentally, those located in the inner ring of the stator diaphragm provided the best cooling at rated engine speed.

  12. Thermohydraulic responses of a water-cooled tokamak fusion DEMO to loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Tobita, K.; Someya, Y.; Utoh, H.; Sakamoto, Y.; Gulden, W.

    2015-11-01

    Major in- and ex-vessel loss-of-coolant accidents (LOCAs) of a water-cooled tokamak fusion DEMO reactor have been analysed. Analyses have identified responses of the DEMO systems to these accidents and pressure loads to confinement barriers for radioactive materials. As for the in-VV LOCA, we analysed the multiple double-ended break of the first wall cooling pipes around the outboard toroidal circumference. As for the ex-VV LOCA, we analysed the double-ended break of the primary cooling pipe. The thermohydraulic analysis results suggest that the in- and ex-vessel LOCAs crucially threaten integrity of the primary and final confinement barriers, respectively. Mitigations of the loads to the confinement barriers are also discussed.

  13. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  14. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  15. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  16. Water chemistry of a combined-cycle power plant's auxiliary equipment cooling system

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Korotkov, A. N.; Oparin, M. Yu.; Larin, A. B.

    2013-04-01

    Results from an analysis of methods aimed at reducing the corrosion rate of structural metal used in heat-transfer systems with water coolant are presented. Data from examination of the closed-circuit system for cooling the auxiliary mechanisms of a combined-cycle plant-based power unit and the results from adjustment of its water chemistry are given. A conclusion is drawn about the possibility of using a reagent prepared on the basis of sodium sulfite for reducing the corrosion rate when the loss of coolant is replenished with nondeaerated water.

  17. Size Dependent Ultrafast Cooling of Water Droplets in Microemulsions by Picosecond Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Patzlaff, T.; Graener, H.

    2002-04-01

    The ultrafast thermal relaxation of reversed micelles in n-octane/AOT/water (where AOT denotes sodium di-2-ethylhexyl sulfosuccinate) microemulsions was investigated by time-resolved infrared pump-probe spectroscopy. This picosecond cooling process can be described in terms of heat diffusion, demonstrating a new method to determine the nanometer radii of the water droplets. The reverse micelles are stable against transient temperatures far above the equilibrium stability range. The amphiphilic interface layer (AOT) seems to provide an efficient heat contact between the water and the nonpolar solvent.

  18. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  19. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2016-03-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  20. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  1. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  2. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  3. Heating and cooling of municipal buildings with waste heat from ground water

    SciTech Connect

    Morgan, D.S.; Hochgraf, J.

    1980-10-01

    The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

  4. Electric chiller buyer`s guide: Water-cooled centrifugal and screw chillers

    SciTech Connect

    Fryer, L.

    1995-06-01

    The phase-out of CFCs at the end of 1995 is driving increasing numbers of building owners to convert or replace their chillers with equipment that uses non-CFC refrigerants. Because chillers last for decades, the efficiency of the replacement equipment will have a lasting effect on the energy use, operating cost, and environmental impact of the over 25 percent of commercial floor space that is cooled by chillers, as well as the need for utility capacity. Each chiller is custom built, and many efficiency options are available. The lowest life cycle costs will be obtained by optimizing the cooling plant (including the cooling tower and chilled water distribution system) to match the year-round load profile of the building, not just its peak load. Careful sizing of replacement chillers can correct the oversizing that is so common, thereby reducing capital and operating costs. Significant savings may also be obtained by designing for the local climate, rather than basing chiller selection on the standard conditions assumed in most analyses. This report covers the models and features available in electric water-cooled centrifugal and screw chillers of 150 to 1,200 tons. In addition to full- and part-load efficiencies, it includes information on sizing, refrigerants, heat exchangers, adjustable-frequency drives, trade-offs between chiller efficiency and pumping power, staging of multiple chillers, maintenance, chiller testing, and utility program opportunities.

  5. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed. PMID:27191579

  6. In situ cooling with ice water for the easier removal of self-expanding nitinol stents

    PubMed Central

    Merkel, Daniel; Brinkmann, Eckhard; Wiens, Daniel; Derwahl, Karl-Michael

    2015-01-01

    Background: It is yet to be determined what effects temperature has on the properties of nitinol in order to simplify the process of removing nitinol self-expanding metal stents (SEMS). Materials and methods: We describe the procedure for removal of SEMS in a total of 11 cases with 9 patients. A study involving cooling of nitinol stents in situ with ice water just before their removal was attempted. Results: All stents were removed successfully. In partially covered and in fully covered stents, the stent rigidity was noticeably reduced following cooling. Stent removal was performed by inversion, which was achieved by pulling on the stent from its distal end. No adverse events were observed during this trial. Conclusion: The higher pliability of the stents after ice-water cooling facilitates stent removal. With this method, a mobilization of all stents by the invagination technique was achieved. The separation of the uncoated stent ends from the intestinal wall by the invagination technique, as well as the mucosal vasoconstriction resulting from the cooling, lead to an easier SEMS removal and may serve to prevent severe bleeding of the mucosal wall during this process. PMID:26134772

  7. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    NASA Technical Reports Server (NTRS)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  8. Prevalence of antibiotic-resistant bacteria in a lake for the storage of reclaimed water before and after usage as cooling water.

    PubMed

    Pang, Yu-Chen; Xi, Jin-Ying; Li, Guo-Qiang; Shi, Xiao-Jie; Hu, Hong-Ying

    2015-06-01

    Wastewater reclamation and reuse is a promising way to relieve water scarcity by substituting for natural water consumption by industrial cooling. However, health concerns regarding cooling water originating from reclaimed water are increasing because an abundance of antibiotic-resistant bacteria (ARB) has been detected in reclaimed water. To assess the potential increase of ARB risks in reclaimed water after reuse for industrial cooling, the prevalence of six types of ARB was investigated in water and sediment samples from Lake Gaobeidian, which serves as an artificial circular storage reservoir for reclaimed water for cooling reuse. The effect of treated wastewater and cooling water drainage on the ARB distribution in water and sediment samples was also studied. The results showed that the concentration levels of six types of ARB in lake water samples were as high as those in treated wastewater. The annual median concentrations of total heterotrophic bacteria (HPC) and ARB in discharged cooling water after usage were 0.6-log and 0.4-log higher than those in treated wastewater and the cooling water intake site, respectively, indicating that the process of cooling water usage enhanced the proliferation of HPC and consequently increased the concentrations of ARB. Furthermore, the percentages of penicillin-, ampicillin-, and cephalothin-resistant bacteria in water were 30-57%, 36-48%, and 23-40% higher than those in sediment, respectively. However, the proportions of chloramphenicol-resistant bacteria in water were 35-85% lower than those in sediment. Quantitative evaluation of antibiotic resistance showed that HPC in water had a significant tolerance to penicillin and chloramphenicol, with 50% inhibitory concentrations reaching 22.90 mg L(-1) and 29.11 mg L(-1), respectively. PMID:25997982

  9. High power cable with internal water cooling 400 kV

    NASA Astrophysics Data System (ADS)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  10. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    NASA Astrophysics Data System (ADS)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  11. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  12. San Diego G and E shows how to make sodium hypochlorite for cooling-water treatment

    SciTech Connect

    Furgerson, S.

    1983-10-01

    There's a trend in power plant cooling water treatment away from gaseous chlorine toward use of a dilute solution of sodium hypochlorite. Some hypochlorite users are finding that savings produced by generating the material on site from seawater instead of purchasing it can pay back the capital costs in two to three years. One of the first plants in the US to generate hypochlorite on site was San Diego Gas and Electric's Encina station. 1 figure.

  13. Genome Sequence of Legionella massiliensis, Isolated from a Cooling Tower Water Sample.

    PubMed

    Pagnier, Isabelle; Croce, Olivier; Robert, Catherine; Raoult, Didier; La Scola, Bernard

    2014-01-01

    We present the draft genome sequence of Legionella massiliensis strain LegA(T), recovered from a cooling tower water sample, using an amoebal coculture procedure. The strain described here is composed of 4,387,007 bp, with a G+C content of 41.19%, and its genome has 3,767 protein-coding genes and 60 predicted RNA genes. PMID:25323728

  14. Water-Cooled Data Center Packs More Power Per Rack | Poster

    Cancer.gov

    By Frank Blanchard and Ken Michaels, Staff Writers Behind each tall, black computer rack in the data center at the Advanced Technology Research Facility (ATRF) is something both strangely familiar and oddly out of place: It looks like a radiator. The back door of each cabinet is gridded with the coils of the Liebert cooling system, which circulates chilled water to remove heat generated by the high-speed, high-capacity, fault-tolerant equipment.

  15. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1992-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  16. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1991-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  17. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y). PMID:22073728

  18. [Cool/Hot target effect of the water fog infrared stealth].

    PubMed

    Du, Yong-cheng; Yang, Li; Zhang, Shi-cheng; Yang, Zhen; Hu, Shuang-xi

    2012-08-01

    Artificial spray fog will come into being cool target because of the strong evaporation and convection but weak radiation heat flux, when it is used for defence of infrared imaging guided missile. Also, when it is the contrary condition, the water fog will come into being hot target. In order to open out the phenomenon particularly, a math model which can account for the cool/hot effect produced by water fog shielding the thermal radiation is established by coupling the calculation of radiation transfer equation and energy conversation equation, based on the Mie theory. This model is proved to be accurate in comparison with the Monte-Carlo method and Lambert-Beer' law. The water fog is seemed as absorbing, emitting and anisotropic scattering medium, and the medium radiation, multiple scattering, target radiation flux, and environment influence such as the conductivity, convection turbulent heat diffusion and evaporation is calculated. The phenomenon of cool/hot target effect can be shown in detail with this model. PMID:23156782

  19. Comprehensive Cooling Water Study: Volume 6, Federally endangered species, Savannah River Plant: Final report

    SciTech Connect

    Mackey, H.E.

    1987-09-01

    The Comprehensive Cooling Water Study (CCWS) was initiated in 1983 to evaluate the environmental effects of the intake and release of cooling water on the structure and function of aquatic ecosystems at the Savannah River Plant. The initial report described the results from the first year of the study. This document is the final report and concludes the program. The report comprises eight volumes. The Endangered Species Act requires that Federal agencies use their authorities to conduct programs for the conservation of endangered and threatened species and to ensure that agency actions do not jeopardize the continued existence of or result in the destruction or adverse modification of critical habitat of protected species. Those Federally endangered or threatened species that occur on the Savannah River Plant (SRP) include the American alligator, the red-cockaded woodpecker, the shortnose sturgeon, the wood stork, and the bald eagle. Of these species, the alligator, sturgeon, wood stork, and the bald eagle are likely to be affected directly and/or indirectly by the intake or release of cooling water at the SRP. 81 refs., 76 figs., 35 tabs.

  20. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  1. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    SciTech Connect

    Ferrada, Juan J; Reiersen, Wayne T

    2011-01-01

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment

  2. Analytical study of a microfludic DNA amplification chip using water cooling effect.

    PubMed

    Chen, Jyh Jian; Shen, Chia Ming; Ko, Yu Wei

    2013-04-01

    A novel continuous-flow polymerase chain reaction (PCR) chip has been analyzed in our work. Two temperature zones are controlled by two external controllers and the other temperature zone at the chip center is controlled by the flow rate of the fluid inside a channel under the glass chip. By employing a water cooling channel at the chip center, the sequence of denaturation, annealing, and extension can be created due to the forced convection effect. The required annealing temperature of PCR less than 313 K can also be demonstrated in this chip. The Poly(methyl methacrylate) (PMMA) cooling channel with the thin aluminum cover is utilized to enhance the temperature uniformity. The size of this chip is 76 mm × 26 mm × 3 mm. This device represents the first demonstration of water cooling thermocycling within continuous-flow PCR microfluidics. The commercial software CFD-ACE+(TM) is utilized to determine the distances between the heating assemblies within the chip. We investigate the influences of various chip materials, operational parameters of the cooling channel and geometric parameters of the chip on the temperature uniformity on the chip surface. Concerning the temperature uniformity of the working zones and the lowest temperature at the annealing zone, the air gap spacing of 1 mm and the cooling channel thicknesses of 1 mm of the PMMA channel with an aluminum cover are recommended in our design. The hydrophobic surface of the PDMS channel was modified by filling it with 20 % Tween 20 solution and then adding bovine serum albumin (BSA) solution to the PCR mixture. DNA fragments with different lengths (372 bp and 478 bp) are successfully amplified with the device. PMID:23179465

  3. Design and analysis of the DII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 {degrees}C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  4. Design and analysis of the DIII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-12-31

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electro-magnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  5. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  6. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  7. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  8. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  9. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  10. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    SciTech Connect

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  11. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  12. Presence of pathogenic amoebae in power plant cooling waters. Final report, October 15, 1977-September 30, 1979. [Naegleria fowleri

    SciTech Connect

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-03-01

    Cooling-water-associated algae and sediments from five northern and five southern or western electric power plants were tested for the presence of pathogenic amoebae. In addition, water algae and sediments from five northern and five southern/western sites not associated with power plants were tested. There was a significant correlation at northern power plants between the presence of thermophilic, pathogenic amoebae in cooling waters and thermal additions. Presence of the pathogenic did not correlate with salinity, pH, conductivity, or a variety of various chemical components of the cooling waters. Selected pathogenic isolates were tested serologically and were classified as Naegleria fowleri. Although thermal additions were shown to be contributing factor in predisposing cooling waters to the growth of pathogenic amoebae, the data suggest the involvement of other currently undefined parameters associated with the presence of the pathogenic amoebae. 35 refs., 21 tabs.

  13. Feasibility of Water Cooled Thorium Breeder Reactor Based on LWR Technology

    SciTech Connect

    Takaki, Naoyuki; Permana, Sidik; Sekimoto, Hiroshi

    2007-07-01

    The feasibility of Th-{sup 233}U fueled, homogenous breeder reactor based on matured conventional LWR technology was studied. The famous demonstration at Shipping-port showed that the Th-{sup 233}U fueled, heterogeneous PWR with four different lattice fuels was possible to breed fissile but its low averaged burn-up including blanket fuel and the complicated core configuration were not suitable for economically competitive reactor. The authors investigated the wide design range in terms of fuel cell design, power density, averaged discharge burn-up, etc. to determine the potential of water-cooled Th reactor as a competitive breeder. It is found that a low moderated (MFR=0.3) H{sub 2}O-cooled reactor with comparable burn-up with current LWR is feasible to breed fissile fuel but the core size is too large to be economical because of the low pellet power density. On the other hand, D{sub 2}O-cooled reactor shows relatively wider feasible design window, therefore it is possible to design a core having better neutronic and economic performance than H{sub 2}O-cooled. Both coolant-type cores show negative void reactivity coefficient while achieving breeding capability which is a distinguished characteristics of thorium based fuel breeder reactor. (authors)

  14. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  15. Investigation of corrosion caused by constituents of refinery wastewater effluent used as circulating cooling water.

    PubMed

    Zhang, Zhongzhi; Song, Shaofu; Huang, Jie; Ji, Lin; Wu, Fangyun

    2003-01-01

    The corrosion rate of steel plate using single-factor, multifactor, and complex water systems was investigated via refinery wastewater effluents used as circulating cooling water. The results show that the primary corrosion factors of steel depend on the characteristics of the ions, the formation of the oxidized coating, the diffusion of dissolved oxygen, and other complex factors, although ions such as chloride, calcium, and carbonate play an important role. The corrosion rate of carbon steel exhibits two trends: The corrosion rate is high at low conductivity, increases to a maximum, and then decreases and becomes stable with increasing conductivity, as is the case with chloride, sulfate, nitrate and calcium ions. On the other hand, the corrosion rate is highest at low conductivity and then decreases and becomes stable with increasing conductivity, as is the case with carbonate, silicate, and sodium nitrate ions. Research results indicate that the anticorrosive ability is minimal at low conductivity; but is excellent at high conductivity. Pretreatment of low-conductivity water using air flotation and clarification to decrease the concentrations of chloride, calcium, and carbonate ions to a suitable level to satisfy the anticorrosion requirements is required. However, it is not necessary to significantly reduce the salt concentration or conductivity of the water by osmosis or ion exchange to obtain an anticorrosion effect when reusing wastewater effluents as circulating cooling water. PMID:12683464

  16. Presence of pathogenic microorganisms in power-plant cooling waters. Final report, October 1, 1981-June 30, 1983

    SciTech Connect

    Tyndall, R.L.

    1983-07-01

    Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, the concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.

  17. Analysis and monitoring of ozone in cooling water systems: A state of the art paper

    SciTech Connect

    McGrane, W.K.

    1994-12-31

    This is a State of the Art paper. This paper includes an overview of the current techniques for liquid and gas phase ozone monitoring. The paper also includes specific techniques for Ozone monitoring, a list of ozone monitor manufacturers, and a bibliography. This paper presents and overview of the current techniques for liquid and gas phase ozone monitoring. If the ozone concentration in cooling water is too high, ozone induced corrosion or off-gassing of ozone can occur. If the dissolved ozone concentration is too low, biological growth can develop. The paper includes an appendix which contains the following summaries: Calibration method for residual ozone by the oxidation of nitrite; Colorimetric method for the determination of residual ozone in water (Indigo-trisulfonate method and ACVK method); Colorimetric method for the determination of traces of ozone in water; Electrochemical method for continuous measurement of residual ozone in water; and Photometric measurement of low ozone concentration in the gas phase.

  18. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    NASA Astrophysics Data System (ADS)

    Stillwell, Ashlynn S.; Clayton, Mary E.; Webber, Michael E.

    2011-07-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights—a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions—a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3—enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  19. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  20. Three-Dimensional Numerical Study of Impinging Water Jets in Runout Table Cooling Processes

    NASA Astrophysics Data System (ADS)

    Cho, Myung Jong; Thomas, Brian G.; Lee, Pil Jong

    2008-07-01

    Cooling from impinging water jets in runout table (ROT) processing depends on the fluid flow and depth of water accumulated in the water pool that forms on the surface of the moving steel strip. This effect is investigated with a three-dimensional (3-D) computational model of fluid flow, pressure, and free surface motion for realistic banks of nozzles within the flow rate region of the ROT process (2400 to 9200 L/min m2). The volume of fluid (VOF) method with the high-resolution interface capturing (HRIC) scheme was implemented to handle the free surface flow of the water jet, and the k-ɛ model was used for turbulence. The governing equations are discretized by a second-order accurate scheme and solved with the computational fluid dynamics (CFD) code Fluent. The model was validated with experimental measurements of free-surface shape and hydraulic jump position for a single water jet impinging onto a moving surface that included turbulent flow and multiphase regions of mixed bubbles and water. For banks of water jets impinging onto the surface of the moving strip in a realistic ROT, the free surface shape, velocity, and pressure distributions have been calculated for various flow rates and surface widths. A deeper water pool is expected on the moving surface with increasing water flow rate and with increasing width. In addition, as the water pool height increases, the pressure variations on the moving surface below the water jets decrease. A simple relation to predict the water pool height from the water flow rate per unit area and strip width has been derived. The predictions agree well with both the 3-D calculations and measurements from water model experiments.

  1. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.

    PubMed

    Ceyhan, Nur; Ozdemir, Guven

    2008-01-01

    The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and characterized biochemically by classic and commercial systems. These were species of Pseudomonas, Burkholderia, Aeromonas, Pasteurella, Pantoea, Alcaligenes and Sphingomonas. EPS of these species were obtained by propan-2-ol precipitation and centrifugation from bacterial cultures in media enriched with glucose, sucrose or galactose. EPS yields were of 1.68-4.95 g l(-1). These EPS materials were characterized for total sugar and protein contents. Their total sugar content ranged from 24 to 56% (g sugar g(-1) EPS), and their total protein content ranged from 10 to 28% (g protein g(-1) EPS). The monosaccharide compositions of EPS were determined by HPLC. Generally, these compositions were enriched in galactose and glucose, with lesser amounts of mannose, rhamnose, fructose and arabinose. All bacteria were investigated in terms of EPS degradation. Eight of the bacteria were able to utilize EPS from Burkholderia cepacia, seven of the bacteria were able to utilize EPS from Pseudomonas sp. and Sphingomonas paucimobilis. The greatest viscosity reduction of B. cepacia was obtained with Pseudomonas sp. The results show that the bacteria in this study are able to degrade EPS from biofilms in cooling towers. PMID:18256966

  2. Solar heating, cooling, and hot water systems installed at Richland, Washington

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  3. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  4. Directly water-cooled crystal development for SPring-8 bending magnet beamlines

    NASA Astrophysics Data System (ADS)

    Takeshita, Kunikazu; Goto, Shunji; Ishikawa, Tetsuya

    2007-09-01

    The directly water-cooled first crystal of the SPring-8 standard monochromator for bending magnet beamlines has been developed. Thanks to the bonding technique, the performance of the new crystal has been improved without decreasing the cooling efficiency. The finite element analyses show the deformation of the crystal by the hydraulic pressure and by the crystal clamping is negligible small, which were dominated for the previous crystal. Both Si(111) and Si(311) crystal were evaluated in SPring-8 beamlines, the deformation induced while the bonding process is comparable to the thermal deformation. and long-term endurance test shows the lifetime of the O-ring becomes long because they are not on the direct path of the SR beam. Although the overall performance is insufficient, much improvement was shown.

  5. Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.

    PubMed

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-21

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis. PMID:25479506

  6. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean

    PubMed Central

    Horikawa, Keiji; Martin, Ellen E.; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka

    2015-01-01

    Warming of high northern latitudes in the Pliocene (5.33–2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling. PMID:26119338

  7. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean.

    PubMed

    Horikawa, Keiji; Martin, Ellen E; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka

    2015-01-01

    Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling. PMID:26119338

  8. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Horikawa, Keiji; Martin, Ellen E.; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka

    2015-06-01

    Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling.

  9. Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.

    PubMed

    Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

    2003-12-15

    A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water. PMID:14717185

  10. Experimental study on active cooling systems used for thermal management of high-power multichip light-emitting diodes.

    PubMed

    Kaya, Mehmet

    2014-01-01

    The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs. PMID:25162058

  11. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U.-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  12. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    The behavior of water near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. Moreover, by monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (alpha(p)) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. Additionally, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated ap peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  13. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    DOE PAGESBeta

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    The behavior of water near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. Moreover, by monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed thatmore » the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (alpha(p)) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. Additionally, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated ap peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.« less

  14. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering.

    PubMed

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface. PMID:26342380

  15. Effect of cooling on supraoptic neurohypophysial neuronal activity and on urine flow in the rat.

    PubMed Central

    Ferguson, A V; Pittman, Q J; Riphagen, C L

    1984-01-01

    The activity of antidromically identified supraoptic neurosecretory neurones was recorded in Sprague-Dawley rats under urethane or sodium pentobarbitone anaesthesia during cooling of the body with a cold pack. Of twelve phasic neurones studied during a complete cooling and rewarming cycle, six displayed an initial increase, followed by a depression in activity during the period of reduced body temperature. The remaining six phasic neurones did not alter their activity during cooling. Non-phasic neurohypophysial neurones displayed a reversible reduction (n = 8), or increase (n = 6) in activity during cooling, while seven neurones were unaffected by changes in body temperature. In four other anaesthetized Sprague-Dawley rats, urine flow was reduced by approximately 50% during cooling; this was followed by a diuresis after removal of the cold pack and return of body temperature to normal. The antidiuresis did not occur in homozygous Brattleboro rats which lack arginine vasopressin. The electrophysiological data from a proportion of the supraoptic neurohypophysial neurones correlate with the observed changes in urine flow. PMID:6747884

  16. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. PMID:26899639

  17. What causes cooling water temperature gradients in a forested stream reach?

    NASA Astrophysics Data System (ADS)

    Garner, G.; Malcolm, I. A.; Sadler, J. P.; Hannah, D. M.

    2014-12-01

    Previous studies have suggested that shading by riparian vegetation may reduce maximum water temperatures and provide refugia for temperature-sensitive aquatic organisms. Longitudinal cooling gradients have been observed during the daytime for stream reaches shaded by coniferous trees downstream of clear cuts or deciduous woodland downstream of open moorland. However, little is known about the energy exchange processes that drive such gradients, especially in semi-natural woodland contexts without confounding cool groundwater inflows. To address this gap, this study quantified and modelled variability in stream temperature and heat fluxes along an upland reach of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) where riparian land use transitions from open moorland to semi-natural, predominantly deciduous woodland. Observations were made along a 1050 m reach using a spatially distributed network of 10 water temperature data loggers, 3 automatic weather stations and 211 hemispherical photographs that were used to estimate incoming solar radiation. These data parameterised a high-resolution energy flux model incorporating flow routing, which predicted spatio-temporal variability in stream temperature. Variability in stream temperature was controlled largely by energy fluxes at the water-column-atmosphere interface. Net energy gains occurred along the reach, predominantly during daylight hours, and heat exchange across the bed-water-column interface accounted for <1% of the net energy budget. For periods when daytime net radiation gains were high (under clear skies), differences between water temperature observations increased in the streamwise direction; a maximum instantaneous difference of 2.5 °C was observed between the upstream reach boundary and 1050 m downstream. Furthermore, daily maximum water temperature at 1050 m downstream was ≤1 °C cooler than at the upstream reach boundary and lagged by >1 h. Temperature gradients were not generated

  18. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    PubMed Central

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  19. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    PubMed

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  20. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant. Comprehensive Cooling Water Study: Final report

    SciTech Connect

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  1. Mpemba effect and phase transitions in the adiabatic cooling of water before freezing

    NASA Astrophysics Data System (ADS)

    Esposito, S.; De Risi, R.; Somma, L.

    2008-02-01

    In this paper, an accurate experimental investigation of the Mpemba effect (that is, of the fact that initially hot water freezes before the colder one) is carried out, showing that, in the adiabatic cooling of water, relevant roles are played by supercooling, and by phase transitions which take place at 6±1 ∘C,3.5±0.5 ∘C and 1.3±0.6 ∘C. The last transition, which occurs with the non-negligible probability of 0.21 with respect to the total number of runs performed, has not been detected earlier. On the basis of our experimental results, we can present a thorough theoretical analysis of supercooling and of such phase transitions, which are interpreted in terms of the different ordering of molecule clusters in water.

  2. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    SciTech Connect

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  3. GALEX Observes Nearby Cool Stars: Constraints on Ultraviolet Coronal Activity

    NASA Astrophysics Data System (ADS)

    Wheatley, Jonathan; Welsh, Barry

    2016-01-01

    The GALEX ultraviolet mission (1350-2800A) has detected many late-type dwarf stars. Numerous M-type dwarf stars exhibit flaring and coronal activity; we use GALEX UV photometry to measure the variability of coronal emission in the GALEX NUV and FUV wavebands.

  4. Thermal design for areas of interference heating on actively cooled hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Herring, R. L.; Stone, J. E.

    1978-01-01

    Numerous actively cooled panel design alternatives for application in regions on high speed aircraft that are subject to interference heating effects were studied. Candidate design concepts were evaluated using mass, producibility, reliability and inspectability/maintainability as figures of merit. Three design approaches were identified as superior within certain regimes of the matrix of design heating conditions considered. Only minor modifications to basic actively cooled panel design are required to withstand minor interference heating effects. Designs incorporating internally finned coolant tubes to augment heat transfer are recommended for moderate design heating conditions. At severe heating conditions, an insulated panel concept is required.

  5. Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  6. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail. PMID:21977648

  7. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  8. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.

    PubMed

    Chen, Jian-Nan; Zhang, Zhen; Xu, Rui-Na; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-09-13

    Numerical investigations of the dynamics and evaporative cooling of water droplets impinging onto heated surfaces can be used to identify spray cooling mechanisms. Droplet impingement dynamics and evaporation are simulated using the presented numerical model. Volume-of-fluid method is used in the model to track the free surface. The contact line dynamics was predicted from a dynamic contact angle model with the evaporation rate predicted by a kinetic theory model. A species transport equation was solved in the gas phase to describe the vapor convection and diffusion. The numerical model was validated by experimental data. The physical effects including the contact angle hysteresis and the thermocapillary effect are analyzed to offer guidance for future numerical models of droplet impingement cooling. The effects of various parameters including surface wettability, surface temperature, droplet velocity, droplet size, and droplet temperature were numerically studied from the standpoint of spray cooling. The numerical simulations offer profound analysis and deep insight into the spray cooling heat transfer mechanisms. PMID:27531256

  9. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect

    Leung, V.T.

    1993-12-01

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  10. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  11. Engineering considerations for the economic design, installation and operation of ozonation equipment for cooling water treatment

    SciTech Connect

    Rice, R.G.

    1994-12-31

    Once it has been decided to install ozone for the treatment of cooling water, the next step is to assure that the equipment is sized and designed for the most reliable and economical operation. Design principles are presented which have proved to be effective for ozonation systems which have been treating municipal water and wastewaters so as to maximize the reliability of equipment performance, constancy of ozone output in a fail-safe mode, minimizing power expenditures, while providing for preventive maintenance. For example, rather than purchase a single ozone generator with a second for standby, the purchaser of ozone equipment might install three ozone generators, each of which is capable of producing 50% of the required quantity of ozone. Two of these are on-line continuously, with the third off-line, allowing for planned maintenance downtime. For periods of unusually high ozone demand, on-site liquid oxygen can be made available to double the output of ozone over that available from dried air. Advantages of generating ozone from oxygen will be discussed, and finally, a novel Japanese method of generating ozone from high purity oxygen, adsorption of ozone onto silica gel or molecular sieves, recycling of the oxygen, and intermittent application of the adsorbed ozone to flowing cooling water will be described.

  12. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    PubMed

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former. PMID:21214028

  13. Water permeation through Nafion membranes: the role of water activity.

    PubMed

    Majsztrik, Paul; Bocarsly, Andrew; Benziger, Jay

    2008-12-25

    The permeation of water through 1100 equivalent weight Nation membranes has been measured for film thicknesses of 51-254 microm, temperatures of 30-80 degrees C, and water activities (a(w)) from 0.3 to 1 (liquid water). Water permeation coefficients increased with water content in Nafion. For feed side water activity in the range 0 < a(w) < 0.8, permeation coefficients increased linearly with water activity and scaled inversely with membrane thickness. The permeation coefficients were independent of membrane thickness when the feed side of the membrane was in contact with liquid water (a(w) = 1). The permeation coefficient for a 127 microm thick membrane increased by a factor of 10 between contacting the feed side of the membrane to water vapor (a(w) = 0.9) compared to liquid water (a(w) = 1). Water permeation couples interfacial transport across the fluid membrane interface with water transport through the hydrophilic phase of Nafion. At low water activity the hydrophilic volume fraction is small and permeation is limited by water diffusion. The volume fraction of the hydrophilic phase increases with water activity, increasing water transport. As a(w) --> 1, the effective transport rate increased by almost an order of magnitude, resulting in a change of the limiting transport resistance from water permeation across the membrane to interfacial mass transport at the gas/membrane interface. PMID:19053672

  14. Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings

    SciTech Connect

    1980-06-01

    These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

  15. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOEpatents

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  16. Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

    SciTech Connect

    Scharf, Curtis R.; Miller, Mark E.

    2003-08-30

    The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

  17. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory.

    PubMed

    Schlesinger, Daniel; Sellberg, Jonas A; Nilsson, Anders; Pettersson, Lars G M

    2016-03-28

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics. PMID:27036456

  18. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    NASA Astrophysics Data System (ADS)

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-01

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  19. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Subhki, Muhamad Nurul; Ismail,

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this

  20. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGESBeta

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  1. Molecular characterization of viable Legionella spp. in cooling tower water samples by combined use of ethidium monoazide and PCR.

    PubMed

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki

    2015-01-01

    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments. PMID:25736979

  2. Molecular Characterization of Viable Legionella spp. in Cooling Tower Water Samples by Combined Use of Ethidium Monoazide and PCR

    PubMed Central

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki

    2015-01-01

    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments. PMID:25736979

  3. Evaluation of active cooling systems for a Mach 6 hypersonic transport airframe, part 2

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. G.; Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Transpiration and convective cooling concepts are examined for the fuselage and tail surface of a Mach 6 hypersonic transport aircraft. Hydrogen, helium, and water are considered as coolants. Heat shields and radiation barriers are examined to reduce heat flow to the cooled structures. The weight and insulation requirements for the cryogenic fuel tanks are examined so that realistic totals can be estimated for the complete fuselage and tail. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy contruction materials. The results of the study are combined with results obtained on the wing structure, obtained in a previous study, to estimate weights for the complete airframe. The concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  4. Design and fabrication of a skin stringer discrete tube actively cooled structural panel

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.

    1978-01-01

    The design optimization and practical implementation of actively cooled structural panel concepts was investigated. The desired actively cooled structural panel consisted of the cooled skin and a substructure. The primary load carrying components were fabricated from 2024-T3 aliminum alloy. The 3003-H14 coolant passage tubing was chosen because of its excellent corrosion resistance, workability needed to obtain the desired cross sectional shape, and strength. The Epon 951 adhesive was selected for its excellent structural properties and is the thinnest of available films, 0.064 mm. The Eccobond 58C silver filled epoxy was chosen because of its high thermal conductivity, and the alumina filled Epon 828 was chosen for structural and expansion characteristics.

  5. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    PubMed

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed. PMID:24105399

  6. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  7. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  8. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  9. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    PubMed

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling. PMID:21929472

  10. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  11. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  12. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  13. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  14. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  15. The progress of the water cooled separator CFB boiler in China

    SciTech Connect

    Lu Junfu; Zhang Jiansheng; Yue Guangxi

    1999-07-01

    Since the first pilot 75 t/h water cooled separator CFB boiler was in operation in 1996, a hot test program has been conducted by Tsinghua University and several boiler works, so as to promote scaling of the CFB boiler. The present paper introduces the test program and the primary results, such as the separator efficiency, material balance, solid bulk density, heat transfer along the height of the furnace, etc. Besides the traditional test technology, some newly developed apparatus was used in the hot test. According to the experience obtained from the boiler, the improvement measure was taken for the second and third boiler, which were in commercial operation in 1998. The first operation experience of the second and third boiler proves the effect of the improvement. Considering the experience and the test program, the scaling up design of water cooled separator was done. The present paper also introduces the design consideration of the 130 t/h and 220 t/h CFB boiler.

  16. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  17. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  18. Comparison of cooling criteria with a cryogen spray and water/air spray

    NASA Astrophysics Data System (ADS)

    Exley, Jonathan; Dickinson, Mark R.; King, Terence A.; Charlton, Andrew; Falder, Sian; Kenealy, John

    1999-06-01

    Skin cooling using a cryogen spray (tetrafluoroethane) has been shown to dramatically reduce the skin surface temperature whilst predictions show that the underlying dermal tissue is unaffected. This technique is repeated with a chilled water spray, along with a continuous airflow to enhance evaporation. Radiometric skin surface temperature measurements are recorded during trials utilizing this technique and the results are compared with theoretical predictions in order to determine the mechanism by which the heat is removed from the skin. The optimum spray conditions are achieved when the water is chilled to around 2 degrees Celsius with a continuous airflow of 50 liters/minute. Under these conditions skin surface temperature reduction is about 8 degrees Celsius - 10 degrees Celsius. The measured radiometric skin surface temperature change indicates that the mechanism by which this process removes heat from the skin is predominantly evaporation. Predictions of skin temperature change with varying skin depth indicate that the optimum spray time is around 100 ms.

  19. Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling

    NASA Technical Reports Server (NTRS)

    Ghosh, Alexander

    2016-01-01

    The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.

  20. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  1. Experimental assessment of on-chip liquid cooling through microchannels with de-ionized water and diluted ethylene glycol

    NASA Astrophysics Data System (ADS)

    Won, Yonghyun; Kim, Sungdong; Eunkyung Kim, Sarah

    2016-06-01

    Recent progress in Si IC devices, which results in an increase in power density and decrease in device size, poses various thermal challenges owing to high heat dissipation. Therefore, conventional cooling techniques become ineffective and produce a thermal bottleneck. In this study, an on-chip liquid cooling module with microchannels and through Si via (TSV) was fabricated, and cooling characteristics were evaluated by IR measurements. Both the microchannels and TSVs were fabricated in a Si wafer by deep reactive ion etching (DRIE) and the wafer was bonded with a glass wafer by a anodic bonding. The fabricated liquid cooling sample was evaluated using two different coolants (de-ionized water and 70 wt % diluted ethylene glycol), and the effect of coolants on cooling characteristics was investigated.

  2. Results from a scaled reactor cavity cooling system with water at steady state

    SciTech Connect

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.; Anderson, M. H.; Corradini, M. L.

    2012-07-01

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representing a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)

  3. Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers

    SciTech Connect

    Loss, W.M.; Dietz, R.N.

    1991-09-01

    Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called ``hi-pot`` (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven`s Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the ``double source`` method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

  4. Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers

    SciTech Connect

    Loss, W.M.; Dietz, R.N.

    1991-09-01

    Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called hi-pot'' (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven's Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the double source'' method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

  5. Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    2001-01-01

    Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without

  6. Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa; Shimizu, Nobtaka; Kawano, Yoshiaki; Kumasaka, Takashi; Yamamoto, Masaki; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2010-06-01

    SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors—thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions un der scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.

  7. Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals

    SciTech Connect

    Yamazaki, Hiroshi; Shimizu, Nobtaka; Kumasaka, Takashi; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji; Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa; Kawano, Yoshiaki; Yamamoto, Masaki; Ishikawa, Tetsuya

    2010-06-23

    SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors--thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions under scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.

  8. Current Status of Joint AFRL/NASA Microgravity Spray Cooling Research Activities

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes,Kirk; McQuillen, John; Golliher, Eric

    2004-01-01

    The Air Force Research Lab and the NASA Glenn Research Center are cooperatively examining spray cooling in a low and a variable gravity environment by conducting experiments principally aboard the NASA Reduced Gravity Aircraft. The objective of these research activities is to examine an effective high-heat flux, high-power thermal management technology using spray cooling for both aircraft and space-based platforms. Previous studies have demonstrated that two phase heat transfer and fluid management are issues that need to be examined. This effort has obtained preliminary results which confirm these concerns. More research is planned.

  9. Life at low water activity.

    PubMed Central

    Grant, W D

    2004-01-01

    Two major types of environment provide habitats for the most xerophilic organisms known: foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (a(w)) of 0.61, the lowest a(w) value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (a(w) 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called 'compatible solutes' (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods. PMID:15306380

  10. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  11. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  12. Cooling-water chlorination: the kinetics of chlorine, bromine, and ammonia in sea water

    SciTech Connect

    Johnson, J.D.; Inman, G.W. Jr.; Trofe, T.W.

    1982-11-01

    The major inorganic reaction pathways for the chlorination of saline waters were measured by a variety of techniques including: (1) amperometric titration, (2) amperometric membrane covered electrode, (3) uv spectrophotometry, (4) conventional kinetics methods for slow reactions, and (5) stopped-flow kinetics measurements with a microcomputer data acquisition system. The major reactions studied were: (1) the competitive reactions of ammonia and bromide ion with hypochlorous acid, (2) bromide oxidation by hypochlorous acid, (3) monochloramine formation in sea water, (4) monobromamine formation and subsequent disproportionation to form dibromamine, and (5) monochloramine oxidation of bromide to form bromochloramine. Reaction rates were determined in sodium chloride and sea water as a function of reactant concentration, pH, salinity, and ammonia concentration. Rate constants and corresponding rate laws and mechanisms were developed for each reaction.

  13. Ice Formation Process for Ice Thermal Energy Storage by Cooling Water-Oil Emulsion with Stirring in a Vessel

    NASA Astrophysics Data System (ADS)

    Nakagawa, Shinji; Okada, Masashi; Tsuchida, Daisuke; Kang, Chaedong; Matsumoto, Koji; Kawagoe, Tetuso

    A water-oil emulsion which is the mixture of silanol-aqueous solution and silicone oil was frozen in a vessel with stirring under various cooling temperatures. The cooling surfaces of the vessels were PTFE or PF A whose critical surface tension is relatively low. The effects of the wall thermal resistance on ice formation process were investigated. The relationship between the state of formed ice and cooling heat flux during freezing was c1arified. When the critical surface tension of the inner wall of the cooling surface is fixed, a smaller thermal resistance of wall enables the ice formation without ice adhesion to the surface at a higher ice formation rate. Ice can be formed without adhesion at the lower cooling temperature by using the vessel with a larger thermal resistance although the maximum cooling heat flux is relatively small. The maximum cooling heat flux decreases when the ratio of wall thermal resistance to overall thermal resistance before freezing is more than one half. It was shown that there were proper conditions to increase the cooling heat flux and that ice could be formed with high IPF under the proper conditions.

  14. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  15. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  16. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  17. Water-Air Spray Cooling of Extruded Profiles: Process Integrated Heat Treatment of the Alloy EN AW-6082

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Golovko, O.; Nürnberger, F.; Frolov, I.; Schaper, M.

    2013-09-01

    Quenching by spray cooling in the press line is a promising way to harden Al-Mg-Si alloys with regard to reducing profile distortion. For alloys such as EN AW-6082, high cooling rates are required. A device for spray cooling by means of water and compressed air was integrated into a 10 MN horizontal, hydraulic, short-stroke extrusion press. Various spray parameters were investigated. By using 32 water-air nozzles having a total water deposition rate of about 15 L/min and extruding with a profile velocity of 2.5 m/min, high mechanical properties were imparted to 30 mm diameter extruded rods. This arrangement ensures the extruded alloy is cooled to almost room temperature. Comparable properties can be achieved by water quenching, although the water consumption will be tenfold higher. The distribution of water deposition density on the profiles' surfaces was determined. It was shown that an adjustment of the water-air pressure ratio allows the final temperature of the profiles to be controlled over a wide range. Minimization of temperature gradients in the cross section of complex profiles allows profile distortions to be reduced.

  18. Definition of the Active Cooling System for the Space Instrument CIVA/Mars

    NASA Astrophysics Data System (ADS)

    Lamartinie, Sujit; Bibring, Jean-Pierre; Soufflot, Alain

    2003-03-01

    CIVA/Mars is a space miniaturized spectral imaging microscope. It is designed to in-situ analyze samples on Mars surface. It requires the use of a double cooling system : a passive cooling for the global instrument which will be maintained at a temperature higher than 160 K and an active cooling system for the IR MCT detector matrix which must be maintained at a temperature lower than 140 K. Taking into account the mission constraints, a trade-off analysis of available active cooling systems led to the choice of a thermoelectrical cooler (TEC). Space validation tests of standard multi-stage TECs were performed. Performances did not meet the technical specifications of the instrument. Two types of customized TEC modules were then designed and manufactured : mechanical prototypes from RMT Ltd. and optimized modules from Marlow Ind. A first RMT prototype passed the vibration &shock qualification tests and a second passed the low temperatures vacuum qualification tests with few margins. A Marlow optimized module passed the low temperatures vacuum qualification tests; its characteristics and performances make it compatible with CIVA/Mars. In this paper, the instrument mission and characteristics are first presented. Then TEC design studies are discussed. Finally, optimized TEC space qualification tests are detailed, and the performances analyzed.

  19. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  20. Prototype of 10 Tesla Water Cooled Bitter-type Magnet System

    NASA Astrophysics Data System (ADS)

    Bates, E. M.; Birmingham, W. J.; Riverva, W. F.; Romero-Talamas, C. A.

    2015-11-01

    A 1 Tesla water cooled Bitter-type magnetic system has been designed and is under construction at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). It is a scaled version of a 10 T Bitter-type magnet that will be used in dusty plasma experiments where dust larger than 500 nm diameter will be strongly magnetized. We present here the design methods used for both magnets, and discuss the design parameters that drive the magnet cooling and power storage bank subsystems. The pressure vessel and plasma vacuum chamber subsystems are then built with the aforementioned subsystems as constraints. To validate our design, magnetic field and temperature measurements within the prototype magnet are compared to finite element analysis (FEA) and analytical methods used for preliminary designing. This knowledge will be used to finalize the 10 T magnet design. Once operational, the 10 T magnet will be programmable to be on for at least ten seconds to several minutes, with up to 20 plasma events planned per day.

  1. Water-cooled, high-intensity ultrasound surgical applicators with frequency tracking.

    PubMed

    Martin, Roy W; Vaezy, Shahram; Proctor, Andrew; Myntti, Terrence; Lee, Janelle B J; Crum, Lawrence A

    2003-10-01

    High-intensity, focused ultrasound (HIFU) applicators have been developed for arresting bleeding with the ultimate intent of use in surgery. The design uses a tapered titanium component for transmission coupling of the ultrasound energy from a spherically curved transducer to biological tissues. The nominal operating frequency is 5.5 MHz, in a highly resonant mode (quality factor of 327 with water load). Liquid cooling is used to remove energy loss important at net applied power greater than 18 W/cm2 at the surface of the piezoelectric element. A downward resonance frequency shift (>20 kHz) occurs, even with cooling, as the applicator warms with normal operation. A feedback technique is used for maintaining the excitation near optimum resonance. Standing wave ratios of the applied power of 1.6 or less are thus sustained. The system and applicators have been found to be highly robust, effective in achieving hemostasis in the hemorrhaging liver, spleen, lung, or blood vessels in rabbit and pig experiments. One unit has been operated for over 1.7 hours in treating organ hemorrhage in blunt trauma experiments with nine swine with electrical net power of up to 158 W (31 W/cm2 across the transducer) and intensity of 2560 W/cm2 at focus. PMID:14609070

  2. Wise Water Ways. Teaching Guide. Activity Book.

    ERIC Educational Resources Information Center

    Crites, Alice; And Others

    To increase student's awareness of the need to conserve water and ways they can become personally involved in developing water-saving habits, a water conservation education program was established. The program described contains a series of activities to be presented in the form of discussions, games, and puzzles. Each activity involves the…

  3. Deactivation of the inferior colliculus by cooling demonstrates intercollicular modulation of neuronal activity

    PubMed Central

    Orton, Llwyd D.; Poon, Paul W. F.; Rees, Adrian

    2012-01-01

    The auditory pathways coursing through the brainstem are organized bilaterally in mirror image about the midline and at several levels the two sides are interconnected. One of the most prominent points of interconnection is the commissure of the inferior colliculus (CoIC). Anatomical studies have revealed that these fibers make reciprocal connections which follow the tonotopic organization of the inferior colliculus (IC), and that the commissure contains both excitatory and, albeit fewer, inhibitory fibers. The role of these connections in sound processing is largely unknown. Here we describe a method to address this question in the anaesthetized guinea pig. We used a cryoloop placed on one IC to produce reversible deactivation while recording electrophysiological responses to sounds in both ICs. We recorded single units, multi-unit clusters and local field potentials (LFPs) before, during and after cooling. The degree and spread of cooling was measured with a thermocouple placed in the IC and other auditory structures. Cooling sufficient to eliminate firing was restricted to the IC contacted by the cryoloop. The temperature of other auditory brainstem structures, including the contralateral IC and the cochlea were minimally affected. Cooling below 20°C reduced or eliminated the firing of action potentials in frequency laminae at depths corresponding to characteristic frequencies up to ~8 kHz. Modulation of neural activity also occurred in the un-cooled IC with changes in single unit firing and LFPs. Components of LFPs signaling lemniscal afferent input to the IC showed little change in amplitude or latency with cooling, whereas the later components, which likely reflect inter- and intra-collicular processing, showed marked changes in form and amplitude. We conclude that the cryoloop is an effective method of selectively deactivating one IC in guinea pig, and demonstrate that auditory processing in the IC is strongly influenced by the other. PMID:23248587

  4. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    SciTech Connect

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development

  5. Models for the water-ice librational band in cool dust: possible observational test

    NASA Astrophysics Data System (ADS)

    Robinson, G.

    2014-01-01

    Of all the water-ice (H2O-ice) bands the librational band, occurring at a wavelength of about 12 μm, has proved to be the most difficult to detect observationally and also to reproduce in radiative transfer models. In fact, the case for the positive identification of the feature is strong in only a few astronomical objects. A previously suggested explanation for this is that so-called radiative transfer effects may mask the feature. In this paper, radiative transfer models are produced which unambiguously reveal the presence of the librational band as a separate resolved feature provided that there is no dust present which radiates significantly in the 10-μm region, specifically silicate-type dust. This means that the maximum dust temperature must be ≲50 K. In this case, the models indicate that the librational band may clearly be observed as an absorption feature against the stellar continuum. This suggests that the feature may be best observed by obtaining the 10-μm spectrum of stars either with very cool circumstellar dust shells, with Tmax ≲ 50 K, or those without circumstellar dust shells at all but with interstellar extinction. The first option might, however, require unrealistically large amounts of dust in the circumstellar shell in order to produce measurable absorption. Thus, the best place to look for the water-ice librational band may not be protostars with the remnants of their dust cloud still present, or evolved objects with ejected dust shells, as one might first think, because of the warm dust (Tmax ≫ 50 K) usually present in the shells of these objects. If objects associated with very cool dust exclusively do show the 3.1-μm water-ice band in deep absorption, but the librational band still does not appear, this may imply that it is not radiative transfer effects which suppress the librational band, and that some other mechanism for its suppression is in play. One possibility is that a low water-ice to silicate abundance may mask the

  6. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    PubMed

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems. PMID:26413079

  7. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  8. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  9. Population level impacts of cooling water withdrawals on harvested fish stocks.

    PubMed

    Newbold, Stephen C; Iovanna, Rich

    2007-04-01

    Trillions of gallons are withdrawn every year from U.S. rivers, estuaries, lakes, and coastal waters to cool the turbines of power plants and other equipment in manufacturing facilities. In the process, large numbers of aquatic organisms die from entrainment into the plant or impingement against the outer portion of the intake structure. In this paper, we develop a generalized age-structured population model with density dependent survival of sub-adult age classes, and we use the model to perform a screening analysis of the effects of entrainment and impingement for 15 harvested fish stocks off the California and Atlantic coasts. Stock sizes are estimated to be depressed by entrainment and impingement by less than 1% in 10 of the 15 cases considered, between 1 and 3% in two cases, and between 20 and 80% in three cases. A variety of sensitivity analyses are conducted to evaluate the influence of several sources of model and parameter uncertainties. PMID:17438750

  10. The first pilot compact CFB boiler with water cooled separator in China

    SciTech Connect

    Yue Guangxi; Li Yan; Lu Xiaoma; Zhang Yanguo; Liu Qing; Lu Junfu; Zhao Xiaoxing

    1997-12-31

    The square cyclone was experimentally investigated in Tsinghua University. The flow field in the cyclone was measured and numerically simulated. The investigation prove that the corner of square cyclone created turbulence to decrease the collection efficiency. The acceleration of solid particles at the inlet of the square cyclone was also a factor for good efficiency. The collection efficiency has been improved by a carefully designed curved inlet of the cyclone which received the patent in China. The patented water cooled cyclone was used in a design of improved 75 T/h CFB boiler. The demonstration of the boiler started test operation in April 1996 at Jianjiang Cement Co. in Sichuan Province. The first operation will be used for adjusting the boiler. Further tests will be done to confirm the performance of the boiler.

  11. A fiber-coupled 9xx module with tap water cooling

    NASA Astrophysics Data System (ADS)

    Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.

    2016-03-01

    A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing

  12. Options for Shielding Tokamak Cooling Water Electrical Components against High Magnetic Fields

    SciTech Connect

    Korsah, Kofi; Michael, Smith; Kim, Seokho H; Charles, Neumeyer

    2011-01-01

    The Tokamak Cooling Water System (TCWS) Instrumentation and Control (I&C) components of ITER will be located in areas of relatively high magnetic fields. Previous tests on electrical and I&C components have indicated that shielding will be required to protect these components from such magnetic fields. To accomplish this, studies were performed by AREVA Federal Services (AFS) in support of the TCWS Design project with the intent of identifying an optimal solution for shielding I&C components. This report presents a summary of these studies and presents design options for providing magnetic shielding to ITER TCWS I&C components and electrical equipment that are susceptible to the magnetic fields present.

  13. Thermal panting in dogs: the lateral nasal gland, a source of water for evaporative cooling.

    PubMed

    Blatt, C M; Taylor, C R; Habal, M B

    1972-09-01

    Two lateral nasal glands appear to provide a large part of the water for evaporative cooling in the panting dog; their function is analogous to that of sweat glands in man. Each gland drains through a single duct which opens about 2 centimeters inside the opening of the nostril. This location may be essential to avoid desiccation of the nasal mucosa during thermal panting. The rate of secretion from one gland increased from 0 to an average of 9.6 g (gland . hour)(-1) as air temperature was increased from 10 degrees to 50 degrees C. Evaporation of the fluid from the paired glands could account for between 19 and 36 percent of the increase in respiratory evaporation associated with thermal panting. The fluid secreted by the gland was hypoosmotic to plasma. PMID:5052734

  14. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  15. A water-cooled x-ray monochromator for using off-axis undulator beam.

    SciTech Connect

    Khounsary, A.; Maser, J.

    2000-12-11

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided.

  16. Cooling water canal improvements to correct structural failures and control Asian clams

    SciTech Connect

    England, W.; Snow, R.E.; Palmer, E.C.

    1995-10-01

    Expansive soils destroyed the floor and impacted the roof support columns of a 600-foot-long concrete cooling water intake canal at the two unit, 700-MW Decker Creek Power Plant in Austin, Texas. These movements exposed clay and silt soils in the canal bottom and provided a habitat for a thriving Asian Clam community which caused operational problems in the plant including unplanned outages. Evaluations were performed to address the structural damages, characterize the clam habitat, and identify concepts to remediate the problem conditions. The various concepts evaluated to eliminate the difficulties are discussed in this paper as well as the basis for selection of the remedial concept. The selected remedial concept consisted of replacing the concrete canal structure with large diameter concrete pipes. The paper also discusses the construction sequence to accomplish the work within a limited outage period.

  17. Comprehensive cooling water study annual report. Volume X: endangered species, Savannah River Plant

    SciTech Connect

    Gladden, J.B.; Lower, M.W.; Mackey, H.E.; Specht, W.L.; Wilde, E.W.

    1985-07-01

    Federally endangered species which occur on the Savannah River Plant (SRP) include the American alligator, red-cockaded woodpecker, the shortnose sturgeon, and the wood stork. Of these species, only the alligator, sturgeon, and wood stork are likely to be affected by the intake or release of cooling water at the SRP. The nearest colony of wood storks to the SRP is the Birdsville Colony, about 40-45 km southwest of potential foraging areas in the SRP Savannah River swamp. In 1983, it contained about six percent of the nesting pairs in the United States and produced about 250 fledglings. Its reproductive success was about the same in 1984. Based on the results of surveys made of foraging areas, both on SRP and offsite in 1983 and 1984, forage fish availability could be reduced by increased water depths in the Steel Creek delta area following L-Reactor restart with once-through cooling. Effluent discharge from SRP facilities probably limits the potential use of the SRP Savannah River swamp by foraging wood storks. The SRP supports a low-to-moderate alligator population. The current information available on the alligators of the SRP suggests that populations in suitable habitats (e.g., Beaver Dam Creek, Steel Creek, and Par Pond) should continue to benefit from the protection provided by the SRP and should remain stable or continue to increase. Based upon information from the literature and fisheries data for the Savannah River, the operations of the SRP do not appear to have adverse effects on the shortnose sturgeon. Based on known life history characteristics, there is no indication that spawning, rearing, or foraging habitats are affected by SRP operations. 64 refs., 20 figs., 12 tabs.

  18. Cool-Water Immersion and High-Voltage Electric Stimulation Curb Edema Formation in Rats

    PubMed Central

    Mychaskiw, Anna M.; Mendel, Frank C.

    2003-01-01

    Objective: Although cryotherapy and high-voltage electric stimulation, both alone and in combination, are commonly applied to curb acute edema, little evidence from randomized controlled studies supports these procedures. Our purpose was to examine the effects of cool-water immersion (CWI) at 12.8°C (55°F), cathodal high-voltage pulsed current (CHVPC) at 120 pulses per second and 90% of visible motor threshold, and the combination of CWI and CHVPC (CWI + CHVPC) on edema formation after impact injury to the hind limbs of rats. Design and Setting: Both feet of 34 rats were traumatized after hind-limb volumes were determined. Animals were randomly assigned to 1 of 3 groups: CWI (n = 10), CHVPC (n = 10), or CWI + CHVPC (n = 14). One randomly selected hind limb of each rat was exposed to four 30-minute treatments, interspersed with four 30-minute rest periods beginning immediately after posttraumatic limb volumes were determined. Contralateral limbs served as controls. Limbs remained dependent during all treatments, rest periods, and volumetric measurements. Subjects: We used 34 anesthetized Zucker Lean rats in this study. Measurements: We measured limb volumes immediately before and after trauma and after each of 4 treatment and rest periods. Results: Volumes of treated limbs of all 3 experimental groups were smaller (P < .05) than those of untreated limbs. No treatment was more effective than another. Conclusions: Cool-water immersion, cathodal high-voltage electric stimulation, and simultaneous application of these treatments were effective in curbing edema after blunt injury. Combining CWI and CHVPC was not more effective than either CWI or CHVPC alone. PMID:14608432

  19. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  20. WATER: Water Activities Teaching Environmental Responsibility: Teacher Resource, Environmental Science.

    ERIC Educational Resources Information Center

    Kramer, Ed, Ed.; And Others

    This activity book was developed as part of an effort to protect water quality of the Stillwater River, Ohio, through a Watershed Protection Project. It is designed to raise teachers' and students' awareness and trigger a sense of stewardship towards the preservation of water resources. The activities are generally appropriate for elementary age…

  1. The Deep Cool Terrestrial Biosphere: Habitability of ancient fracture waters of the Canadian Shield (Invited)

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Ballentine, C. J.; Holland, G.; Li, L.; Slater, G. F.; Moser, D. P.

    2013-12-01

    waters and gases with conservative noble gases (He, Ne, Ar, Kr, Xe) provided bulk residence times on the order of billions of years [3]. These results for the first time suggest a realm of the Earth's hydrosphere that preserves a geochemical (and potentially microbial) environment minimally impacted by hydrogeological mixing with the surface over geologic time scales. Ongoing research is investigating the potential for microbial life in these waters, and the timing of life's penetration of these environments relative to the residence times of the fracture waters. These frontiers of the deep cool biosphere may provide a window into the Earth's biodiversity. The saline fracture waters provide a critical environment in which to investigate habitability and to determine whether the types of chemolithotrophic life recognized at the vents and hot springs are supported in the much larger segments of the Earth's crust where lower temperatures and hence slower rates of water-rock reaction prevail. The deepest fracture water may even provide the opportunity to investigate controls on the biotic-abiotic transition and limits to life in the deep Earth. [1] Lin et al. (2006) Science 314, 479-482. [2] Lippmann-Pipke et al. (2011) Chemical Geology 283, 287-296. [3] Holland et al. (2013) Nature 497, 357-360.

  2. Design and analysis of a plate-fin sandwich actively cooled structural panel

    NASA Technical Reports Server (NTRS)

    Smith, L. M.

    1978-01-01

    The skin structure of hydrogen fueled hypersonic transport vehicles traveling at Mach 6 and above must be designed to withstand, for relatively long periods of time, the aerodynamic heating effects which are far more severe than those encountered by the supersonic aircraft of today. The use of conventional aircraft materials such as aluminum in combination with forced convection active cooling to accommodate aerodynamic heating is addressed. The basic active cooling concept consists of a stringer stiffened plate-fin sandwich. The sandwich surface is subjected to the aerodynamic heat flux which is transferred, via convection, to a coolant that is forced through the sandwich under pressure. The coolant, in turn, circulates in a closed loop through a hydrogen heat exchanger and back through the skin panel.

  3. Thermally Activated Cooling: A Regional Approach for EstimatingBuilding Adoption

    SciTech Connect

    Edwards, Jennifer L.; Marnay, Chris

    2005-06-01

    This paper examines the economic potential for thermally-activated cooling (TAC) technologies as a component of distributed energy resource (DER) systems in California. A geographic information system (GIS) is used to assess the regional variation of TAC potential and to visualize the geographic pattern of potential adoption. The economic potential and feasibility of DER systems in general, and especially TAC, is highly dependent on regional factors such as retail electricity rates, building cooling loads, and building heating loads. Each of these factors varies with location, and their geographic overlap at different sites is an important determinant in a market assessment of DER and TAC. This analysis uses system payback period as the metric to show the regional variation of TAC potential in California office buildings. The DER system payback with and without TAC is calculated for different regions in California using localized values of retail electricity rates and the weather-dependent variation in building cooling and heating loads. This GIS-based method has numerous applications in building efficiency studies where geographically dependent variables, such as space cooling and heating energy use, play an important role.

  4. Ambient temperature fatigue tests of elements of an actively cooled honeycomb sandwich structural panel

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Elber, W.

    1977-01-01

    Elements of an actively cooled structural panel for a hypersonic aircraft have been investigated for fatigue characteristics. The study involved a bonded honeycomb sandwich panel with d-shaped coolant tubes. The curved portion of these tubes was embedded in the honeycomb, and the flat portion was bonded or soldered to the inner surface of the outer skin. The elements examined were two plain skin specimens (aluminum alloy); two specimens with skins attached to manifolds and tubes (one specimen was bonded, the other soldered); and a specimen representative of a corner section of the complete cooled sandwich. Sinusoidal loads were applied to all specimens. The honeycomb sandwich specimen was loaded in both tension and compression; the other specimens were loaded in tension only. The cooling tubes were pressurized with oil throughout the fatigue tests. The most significant results of these tests follow: All specimens exceeded their design life of 20,000 cycles without damage. Crack growth rates obtained in the plain skin specimens were used to determine the crack growth characteristics of aluminum alloy. Cracks in skins either bonded or soldered to cooling tubes propagated past the tubes without penetration. The coolant tubes served as crack arresters and temporarily stopped crack growth when a crack reached a tube-skin interface. The honeycomb core demonstrated that it could contain leakage from a tube.

  5. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  6. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop. PMID:26353536

  7. Subscale, hydrogen-burning, airframe-integrated-scramjet: Experimental and theoretical evaluation of a water cooled strut airframe-integrated-scramjet: Experimental leading edge

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.; Guy, R. W.; Beach, H. L., Jr.; Rogers, R. C.

    1975-01-01

    A water-cooled leading-edge design for an engine/airframe integrated scramjet model strut leading edge was evaluated. The cooling design employs a copper cooling tube brazed just downstream of the leading edge of a wedge-shaped strut which is constructed of oxygen-free copper. The survival of the strut leading edge during a series of tests at stagnation point heating rates confirms the practicality of the cooling design. A finite difference thermal model of the strut was also proven valid by the reasonable agreement of calculated and measured values of surface temperature and cooling-water heat transfer.

  8. Engineering Water Analysis Laboratory Activity.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    The purposes of water treatment in a marine steam power plant are to prevent damage to boilers, steam-operated equipment, and steam and condensate lives, and to keep all equipment operating at the highest level of efficiency. This laboratory exercise is designed to provide students with experiences in making accurate boiler water tests and to…

  9. Characterization of Super-Cooled Liquid Water Clouds Using the Research Scanning Polarimeter Measurements

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; van Diedenhoven, B.; Wasilewski, A. P.; Ackerman, A. S.

    2014-12-01

    Super-cooled liquid water (SCW) clouds, where liquid droplets exist at temperatures below 0oC, impact both the radiative budget and the development of precipitation. They also present an aviation hazard due to their role in aircraft icing. The two recent NASA's field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January - February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August - September 2013) provided a unique opportunity to observe SCW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of the measurements made by the Research Scanning Polarimeter (RSP) during these experiments. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a scanning sensor taking samples at 0.8o intervals within 60o from nadir in both forward and backward directions. This unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135o and 165o for every pixel independently. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of SCW clouds, which often have complex spatial and microphysical structure. For example the measurements made on 22 September 2013 during SEAC4RS indicate a cloud that alternates between being in glaciated and liquid phases, with super-cooled liquid drops at altitudes as high as 10 km, which

  10. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    NASA Astrophysics Data System (ADS)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian; Lovera, Oscar M.

    2011-02-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U-Th zircon crystallization ages (29.3 - 4.6 + 4.8 ka; 1σ standard error s.e.) overlap with the (U-Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U- 230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10-20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850-900 °C and pressures > 70-150 MPa are calculated from H 2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10 - 2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series ( 238U- 230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  11. Startup Thermal Considerations for Supercritical-Pressure Light Water-Cooled Reactors

    SciTech Connect

    Nakatsuka, Toru; Oka, Yoshiaki; Koshizuka, Seiichi

    2001-06-15

    Supercritical-pressure light water-cooled reactors (SCRs) are innovative systems aimed at high efficiency and cost reduction. The once-through direct-cycle plant system is the leading system of fossil-fired power plants (FPPs). Estimates of the coolability and necessary sizes of the SCR startup systems, sequences, and required equipment for startup are investigated with reference to supercritical FPPs. There are two types of supercritical boilers. One is a constant pressure boiler, and the other is a variable pressure boiler.First, startup of the constant pressure boiler is examined. The reactor starts at a supercritical pressure. A startup bypass system consisting of a flash tank and pressure-reducing valves is required. Second, startup of the variable pressure boiler is investigated. The reactor starts at a subcritical pressure, and the pressure increases with the load. A steam-water separator and a drain tank are required for startup.The results of computer calculations show that with both constant pressure and variable pressure startup, the peak cladding temperature does not exceed the operating limit through startup, and both startup sequences are feasible. The sizes of the components required for the startup systems are assessed. To simplify the plant system and to reduce the component size, variable pressure startup with steam separators in the bypass line appears desirable.

  12. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺). PMID:25098884

  13. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    PubMed

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots. PMID:19968824

  14. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    PubMed

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal. PMID:19901466

  15. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    SciTech Connect

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  16. Mathematical Modeling of Heat Transfer in Mold Copper Coupled with Cooling Water During the Slab Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Chen, Dengfu; Long, Haijun; Long, Mujun; Lv, Kui

    2014-12-01

    The heat transfer in mold copper plays an important role in the solidification behavior of steel. In this study, a three-dimensional heat transfer model coupled with flow behavior of the cooling water was established to analyze the temperature field of the copper and water slots. And this model was verified by the measured temperature rise of cooling water at the inlet and outlet of slots. The advantages of this model were obtained by comparing it with Dittus-Boelter model and the Sleicher-Rouse model, which did not consider the flow of water. The results show that the Dittus-Boelter model has the highest temperature and that the coupled model has the lowest temperature. Moreover, the coupled model includes calculation of the temperature and velocity field of the cooling water inside the slots. This temperature information is very helpful for predicting the water boiling in the slots. In addition, the coupled model shows that the temperature, heat flux, and heat transfer coefficient around the water slot wall are different from the conventional models.

  17. The Cooling Rate of an Active Aa Lava Flow Determined Using an Orbital Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Garbeil, Harold

    2010-05-01

    The surface temperature of an active lava flow is an important physical property to measure. Through its influence on lava crystallinity, cooling exerts a fundamental control on lava rheology. Remotely sensed thermal radiance data acquired by multispectral sensors such as Landsat Thematic Mapper and the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer, are of insufficient spectral and radiometric fidelity to allow for realistic determination of lava surface temperatures from Earth orbit. This paper presents results obtained from the analysis of active lava flows using hyperspectral data acquired by NASA's Earth Observing-1 Hyperion imaging spectrometer. The contiguous nature of the measured radiance spectrum in the 0.4-2.5 micron region means that, although sensor saturation most certainly occurs, unsaturated radiance data are always available from even the hottest, and most radiant, active lava flow surfaces. The increased number of wavebands available allows for the assumption of more complex flow surface temperature distributions in the radiance-to-temperature inversion processes. The technique is illustrated by using a hyperspectral image of the active lava lake at Erta Ale volcano, Ethiopia, a well characterized calibration target. We then go on to demonstrate how this approach can be used to constrain the surface cooling rate of an active lava flow at Mount Etna, Sicily, using three images acquired during a four day period in September 2004. The cooling rate of the active channel as determined from space falls within the limits commonly assumed in numerical lava flow models. The results provide insights into the temperature-radiance mixture modeling problem that will aid in the analysis of data acquired by future hyperspectral remote sensing missions, such as NASA's proposed HyspIRI mission.

  18. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    USGS Publications Warehouse

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  19. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... include the rupture opening. (3) Maximum hydrogen generation. The calculated total amount of...

  20. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Commission (NRC) is issuing revision 1 to Regulatory Guide (RG) 1.110, ``Cost-Benefit Analysis for Radwaste... methods and procedures that the staff of the NRC considers acceptable for performing a...

  1. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  2. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? 550.217 Section 550.217 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL...

  3. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 550.248 Section 550.248 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...

  4. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 550.248 Section 550.248 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...

  5. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? 550.217 Section 550.217 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL...

  6. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  7. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  8. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  9. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  10. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  11. Legionella pneumophila in cooling water systems. Report of a survey of cooling towers in London and a pilot trial of selected biocides.

    PubMed Central

    Kurtz, J. B.; Bartlett, C. L.; Newton, U. A.; White, R. A.; Jones, N. L.

    1982-01-01

    Fourteen recirculating cooling water systems were surveyed during the summer, 1981, to see what factors might influence the prevalence of Legionella pneumophila. The effect on the organism of three anti-microbials was studied, each in two systems, by intermittent treatment at two week intervals. L. pneumophila was isolated from six of the 14 cooling systems at the beginning of the trial but by the end was present in ten. An association was found between the presence of the organism and the concentration of dissolved solids, and chlorides and the pH. There also appeared to be associations with exclusion of light and higher water temperatures. Repeated tests on eight untreated systems showed that two were consistently infected, three became and remained infected, one was infected on a single occasion and two were never infected with L. pneumophila. Treatment of a contaminated system, either with a 10 p.p.m mixture of a quaternary ammonium compound and tributyltinoxide or slow release chlorine briquettes (maximum recorded free chlorine level 1.2 p.p.m.), did not eliminated legionellae. Treatment of two infected towers with a chlorinated phenol (100 p.p.m.) eliminated legionellae for at least three days, but after 14 days the organism was again found. PMID:7086112

  12. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilaineni, Kimmo K

    2014-02-01

    Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts

  13. The design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Paterson, J. A.; Koehler, G.; Wells, R. P.

    1981-10-01

    To test neutral beam sources up to 170 keV, 65 Amps, with 30 second beam on times, actively cooled beam dumps for both the neutral and ionized particles are required. The dumps should be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/sq cm anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on two different panel designs. The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies.

  14. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine.

    PubMed

    Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D

    2012-12-01

    Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine

  15. Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

    PubMed Central

    2014-01-01

    The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs. PMID:25162058

  16. Performance of water jet cooled silicon monochromators in high power x-ray beams (abstract)

    NASA Astrophysics Data System (ADS)

    Berman, Lonny E.; Hart, Michael

    1992-01-01

    We have fabricated and tested water jet cooled silicon (111) and (220) monochromators specially tailored for extended wiggler beam and concentrated undulator beam power loadings. The tests were made at the X25 27 pole, 1.1 T hybrid wiggler beam line1 at the National Synchrotron Light Source (NSLS). The wiggler-like line-type loading was produced by the direct, unfocused wiggler white beam, in which 300 W of total power in a 60-mm-wide by 5-mm-high [full width at half maximum (FWHM)] cross section were available in the experimental hutch; this represents a typical power density at existing insertion device beam lines. The undulator-like point-type loading was produced by the focused wiggler white beam, generated via reflection of a portion of the direct white beam from a toroidal platinum-coated silicon mirror, resulting in 75 W of total power in a 0.8-mm-wide (FWHM) by 0.45-mm-high (FWHM) cross section in the hutch. This will be a typical power density at next-generation insertion device beam lines. The monochromator design consists of a thin walled silicon box whose bottom is glued to a stainless-steel water manifold; the coolant is delivered through jet tubes directed perpendicular to the underside of the top, diffracting surface of the box.2 Rectangular monochromators with multiple jets were used for the line power loading studies, and cylindrical monochromators with single jets were used for the point power loading studies. Provisions for simple adaptive corrections to compensate for the inevitable beam-induced thermal deformations, consisting of mechanisms to reverse-bend the top surface, and internal heat baffles to frustrate the cooling at the edges of the crystal (to produce an isothermal top surface), were included in the designs. These required approximate matching of the top surface dimensions to the x-ray footprint. To better understand the thermal strain fields, spatial and angular mapping of both fundamental and harmonic Bragg reflections within the

  17. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2008-09-01

    The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. PMID:26050159

  18. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  19. Legionella species and serogroups in Malaysian water cooling towers: identification by latex agglutination and PCR-DNA sequencing of isolates.

    PubMed

    Yong, Stacey Foong Yee; Goh, Fen-Ning; Ngeow, Yun Fong

    2010-03-01

    In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml(-1); 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2-14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers. PMID:20009251

  20. Upgrading the Solar-Stellar Connection: News about activity in Cool Stars

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Poppenhaeger, K.; Testa, P.; Borgniet, S.; Brun, A. S.; Cegla, H. M.; Garraffo, C.; Kowalski, A.; Shapiro, A.; Shkolnik, E.; Spada, F.; Vidotto, A. A.

    2015-01-01

    In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theoretical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.