Science.gov

Sample records for active water ice

  1. Biological Ice Nucleation Activity in Cloud Water (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content...), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1%.of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively.

  2. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    PubMed

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed. PMID:18363389

  3. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  4. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  5. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  6. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    PubMed

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  7. The Search for a Habitable Europa: Radar, Water and an Active Ice Shell

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Schmidt, B. E.; Young, D. A.; Schroeder, D. M.; Greenbaum, J. S.

    2011-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for detecting these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successful at the Moon and Mars.

  8. Evolution of a supercooled Ice Shelf Water plume with an actively growing subice platelet matrix

    NASA Astrophysics Data System (ADS)

    Robinson, Natalie J.; Williams, Michael J. M.; Stevens, Craig L.; Langhorne, Patricia J.; Haskell, Timothy G.

    2014-06-01

    We use new observations in Western McMurdo Sound, combined with longitudinal hydrographic transects of the sound, to identify a northward-flowing Ice Shelf Water (ISW) plume exiting the cavity of the McMurdo-Ross Ice Shelf. We estimate the plume's net northward transport at 0.4 ± 0.1 Sv, carving out a corridor approximately 35 km wide aligned with the Victoria Land Coast. Basal topography of the McMurdo Ice Shelf is such that the plume is delivered to the surface without mixing with overlying warmer water, and is therefore able to remain below the surface freezing temperature at the point of observation beneath first-year ice. Thus, the upper ocean was supercooled, by up to 50 mK at the surface, due to pressure relief from recent rapid ascent of the steep basal slope. The 70 m thick supercooled layer supports the growth and maintenance of a thick, semirigid, and porous matrix of platelet ice, which is trapped by buoyancy at the ice-ocean interface. Continued growth of individual platelets in supercooled water creates significant brine rejection at the top of the water column which resulted in convection over the upper 200 m thick, homogeneous layer. By examining the diffusive nature of the intermediate water between layers of ISW and High Salinity Shelf Water, we conclude that the ISW plume must have originated beneath the Ross Ice Shelf and demonstrate that it is likely to expand eastward across McMurdo Sound with the progression of winter.

  9. Hugoniot of water ice

    SciTech Connect

    Gaffney, E.S.

    1984-01-19

    Hugoniot data for water ice are available for pressures ranging from about 150 MPa to about 50 GPa from initial states near 260 K. Limited data on porous ice (snow) at the same initial temperatures are available from 3.5 to 38 GPa and initial densities of 600 and 350 Mg/m/sup 3/. Above about 5 GPa, the data are fairly well-fit by a linear relation between shock and particle velocity: D(km/s) = 1.79 + 1.42u. However, a quadratic form fits the data better: D(km/s) = 1.32 + 1.68u - 0.035u/sup 2/. At lower stresses the velocity is a very complicated function of particle velocity due to elastic propagation, yielding and several possible phase changes. The Hugoniot elastic limit (HEL) of ice at these temperatures is about 180 +- 20 MPa with the elastic waves travelling at about 3900 m/s. The mean stress at the HEL is 115 +- 14 MPa. Comparison with strength measurements at lower strain rate indicates that failure at the HEL probably involves fracture and is almost independent of both temperature and strain rate. Ice V has been reported at about 600 MPa, and ice VI at 1.9 GPa and possibly at 3.7 GPa. Transition to ice III probably commences at the HEL at 200 MPa. Relations between volume, enthalpy and internal energy indicate that states below about 1 GPa maintain their shear strength even after undergoing complete transition to a high pressure phase. Time-resolved stress measurements indicate that equilibrium is achieved in about three microseconds for a 695 MPa shock. Melting is definitely complete below 10 GPa.

  10. WATER-ICE-DRIVEN ACTIVITY ON MAIN-BELT COMET P/2010 A2 (LINEAR)?

    SciTech Connect

    Moreno, F.; Ortiz, J. L.; Cabrera-Lavers, A.; Augusteijn, T.; Liimets, T.; Lindberg, J. E.; Pursimo, T.; RodrIguez-Gil, P.; Vaduvescu, O.

    2010-08-01

    The dust ejecta of Main-Belt Comet P/2010 A2 (LINEAR) have been observed with several telescopes at the Observatorio del Roque de los Muchachos on La Palma, Spain. Application of an inverse dust tail Monte Carlo method to the images of the dust ejecta from the object indicates that a sustained, likely water-ice-driven, activity over some eight months is the mechanism responsible for the formation of the observed tail. The total amount of the dust released is estimated to be 5 x 10{sup 7} kg, which represents about 0.3% of the nucleus mass. While the event could have been triggered by a collision, this cannot be determined from the currently available data.

  11. Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Corr, H.; Smith, B.; Jordan, T.; Bingham, R.; Ferraccioli, F.; Rippin, D.; Le Brocq, A.

    2013-06-01

    Repeat-pass IceSat altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts (notable exceptions are Lake Whillans and three in the Adventure Subglacial Trench). Here we present targeted RES and radar altimeter data from an "active lake" location within the upstream Institute Ice Stream, into which 0.12 km3 of water is calculated to have flowed between October 2003 and February 2008. We use a series of transects to establish an accurate appreciation of the influences of bed topography and ice-surface elevation on water storage potential. The location of surface height change is over the downslope flank of a distinct topographic hollow, where RES reveals no obvious evidence for deep (> 10 m) water. The regional hydropotential reveals a sink coincident with the surface change, however. Governed by the location of the hydrological sink, basal water will likely "drape" over existing topography in a manner dissimilar to subglacial lakes where flat strong specular RES reflections are measured. The inability of RES to detect the active lake means that more of the Antarctic ice sheet bed may contain stored water than is currently appreciated. Variation in ice surface elevation datasets leads to significant alteration in calculations of the local flow of basal water indicating the value of, and need for, high resolution RES datasets in both space and time to establish and characterise subglacial hydrological processes.

  12. Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Corr, H.; Smith, B.; Jordan, T.; Bingham, R. G.; Ferraccioli, F.; Rippin, D. M.; Le Brocq, A.

    2014-01-01

    Repeat-pass ICESat altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts (notable exceptions are Lake Whillans and three in the Adventure Subglacial Trench). Here we present targeted RES and radar altimeter data from an "active lake" location within the upstream Institute Ice Stream, into which at least 0.12 km3 of water was previously calculated to have flowed between October 2003 and February 2008. We use a series of transects to establish an accurate depiction of the influences of bed topography and ice surface elevation on water storage potential. The location of surface height change is downstream of a subglacial hill on the flank of a distinct topographic hollow, where RES reveals no obvious evidence for deep (> 10 m) water. The regional hydropotential reveals a sink coincident with the surface change, however. Governed by the location of the hydrological sink, basal water will likely "drape" over topography in a manner dissimilar to subglacial lakes where flat strong specular RES reflections are measured. The inability of RES to detect the active lake means that more of the Antarctic ice sheet bed may contain stored water than is currently appreciated. Variation in ice surface elevation data sets leads to significant alteration in calculations of the local flow of basal water indicating the value of, and need for, high-resolution altimetry data in both space and time to establish and characterise subglacial hydrological processes.

  13. Water Freezing and Ice Melting.

    PubMed

    Małolepsza, Edyta; Keyes, Tom

    2015-12-01

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to the freezing of liquid water and the melting of hexagonal and cubic ice. It is confirmed that coexisting states are well-sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice ↔ liquid and cubic ice ↔ liquid with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. Pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice. PMID:26642983

  14. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  15. Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Borchers, Andreas; Dietze, Elisabeth; Kuhn, Gerhard; Esper, Oliver; Voigt, Ines; Hartmann, Kai; Diekmann, Bernhard

    2016-03-01

    A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land-Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In

  16. Ice nucleation by water-soluble macromolecules

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.

    2015-04-01

    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.

  17. Water Ice on Triton

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Schmitt, Bernard; Quirico, Eric; Geballe, Thomas R.; deBergh, Catherine; Bartholomew, Mary Jane; DalleOre, Cristina M.; Doute, Sylvain

    1999-01-01

    We report the spectroscopic detection of H2O ice on Triton, evidenced by the broad absorptions in the near infrared at 1.55 and 2.04 micron. The detection on Triton confirms earlier preliminary studies (D. P. Cruikshank, R. H. Brown, and R. N. Clark, Icarus 58, 293-305, 1984). The spectra support the contention that H2O ice on Triton is in a crystalline (cubic or hexagonal) phase. Our spectra (1.87-2.5 micron) taken over an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti, M. D. Hicks, and R. L. Newburn, Jr., Nature 397, 219, 1999), or in Triton's volatile inventory (J. L. Elliot et al., Nature 393, 765-767, 1998).

  18. Martian north polar water ice clouds

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Bass, D.

    2000-01-01

    The Viking Orbiter determined that the surface of Mars' northern residual cap consists of water ice. An examination of north polar water-ice clouds could lend insight into the fate of the water vapor during this time period.

  19. Water freezing and ice melting

    DOE PAGESBeta

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  20. Water freezing and ice melting

    SciTech Connect

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  1. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  2. SURVIVAL OF AMORPHOUS WATER ICE ON CENTAURS

    SciTech Connect

    Guilbert-Lepoutre, Aurelie

    2012-10-01

    Centaurs are believed to be Kuiper Belt objects in transition between Jupiter and Neptune before possibly becoming Jupiter family comets. Some indirect observational evidence is consistent with the presence of amorphous water ice in Centaurs. Some of them also display a cometary activity, probably triggered by the crystallization of the amorphous water ice, as suggested by Jewitt and this work. Indeed, we investigate the survival of amorphous water ice against crystallization, using a fully three-dimensional thermal evolution model. Simulations are performed for varying heliocentric distances and obliquities. They suggest that crystallization can be triggered as far as 16 AU, though amorphous ice can survive beyond 10 AU. The phase transition is an efficient source of outgassing up to 10-12 AU, which is broadly consistent with the observations of the active Centaurs. The most extreme case is 167P/CINEOS, which barely crystallizes in our simulations. However, amorphous ice can be preserved inside Centaurs in many heliocentric distance-obliquity combinations, below a {approx}5-10 m crystallized crust. We also find that outgassing due to crystallization cannot be sustained for a time longer than 10{sup 4}-10{sup 4} years, leading to the hypothesis that active Centaurs might have recently suffered from orbital changes. This could be supported by both observations (although limited) and dynamical studies.

  3. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  4. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  5. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  6. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  7. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  8. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect

    Liu, Guosheng

    2013-03-15

    water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  9. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  10. Water Ice in Comets: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Sunshine, J.; Feaga, L. M.; Kelley, M. S.; A'Hearn, M. F.; Farnham, T.; DIXI Team

    2013-06-01

    Processes involving the sublimation of volatiles dominate cometary activity and drive the release of ancient material from within the nucleus into the coma. As comets are kept cold for most of their history, they contain the least processed primordial materials that accumulated into the giant planets. In addition, comets may have delivered their ices and organics to the primitive Earth. The Deep Impact eXtended Investigation (DIXI) to comet Hartley 2 revealed a highly active comet with bright icy-rich jets. We present a detailed characterization of the composition and texture of the ices and refractories in the inner-most coma of Hartley 2, closer than a few kilometers from the surface. This analysis is conducted using laboratory measurements of optical constants of cometary analog materials. We also discuss the implications of these findings on the accretion process that led to the formation of cometary nuclei and therefore of planets. The physical makeup of the ice grains in comet Hartley 2 is compared with that of water ice in the interior, surface, and coma of other comets (e.g., 9P/Tempel 1, C/2002 T7 (LINEAR), 17P/Holmes). Through this comparative study, we investigate how ice is redistributed from the interior to the surface and ultimately into the coma of comets.

  11. Hydraulic Transport of Ice-Water Mixtures

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko

    When an ice thermal storage system is introduced into a district cooling system,the hydraulic ice transport system must have an advantage over a conventional water transport system in saving pipe sizes and pumping powers. Referring to the literature providing direct information on the hydraulic transport of ice-water mixtures,the author comments on the following subjects : •Definitions of an ice packing factor. • The capacity of heat transported with ice-water mixtures. • District distribution system. • Flow patterns in ice-water two-phase flow in straight pipes. • General expressions for pressure losses in solid-liquid two-phase flow. • The characteristics of pressure losses in ice-water two-phase flow. •Choking phenomena in channels.

  12. SPARE-ICE: Synergistic ice water path from passive operational sensors

    NASA Astrophysics Data System (ADS)

    Holl, G.; Eliasson, S.; Mendrok, J.; Buehler, S. A.

    2014-02-01

    This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.

  13. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  14. Ice composition at active Mars Gullies

    NASA Astrophysics Data System (ADS)

    Vincendon, M.

    2015-10-01

    Current activity at gullied sites includes occurrence of bright/dark deposits within pre-existing gullies, channel widening/lengthening, and formation of new channels[e.g., 1]. Whether present-day gully formation and modification mechanisms are representative or not of all gullies formation pathways remains an open question[e.g., 2].This activity is observed during winter / spring seasons in relation with surface ice which strongly suggests that condensed volatiles are a key factor controlling present-day gully modifications[e.g., 1].CO2 ice, the main component of seasonal ice, is t hought to be the main driver of current gully activity[e.g., 1], which could imply that gullies arenot primarily formed by liquid water, as previously thought. However, CO2 ice has not yet been detected at all currently active gullies[1, 3]. In this study, we perform an extended survey of near-infrared observations of active gullies to identify the presence and composition of seasonal ice.

  15. Ice mechanics, basal water and the stagnation of Kamb Ice Stream, Antarctica

    NASA Astrophysics Data System (ADS)

    Fried, M.; Hulbe, C. L.; Fahnestock, M. A.

    2012-12-01

    Several of the ice streams that move ice from the interior of the West Antarctic Ice Sheet (WAIS) to the Ross Ice Shelf are documented to stagnate and reactivate on multi-century time scales. Once such event may now be underway on the downstream ice plain of the Whillans Ice Stream (WIS), a stream that stopped and started between about 850 and 450 years ago. Kamb Ice Stream (KIS) ceased its rapid flow about 150 years ago in an event that appears to have initiated in the downstream reach of the ice stream. These switches from fast to slow and back again produce major changes in mass balance of the ice sheet and ice shelf system. Ice stream stagnation must in some way involve changes in the basal water that facilitates fast flow. Here, transients in ice thickness and surface slope, which together steer basal water, are examined in the context of the recent stagnation of KIS. Transients have both regional—changes in WIS flux and in Crary Ice Rise, for example—and local causes. A mechanical analysis of high-resolution surface elevation and ice velocity data sets on the now-active WIS is used as a proxy for past conditions on KIS and an ice flow model is used to place those local conditions in a regional context. We argue that thickness transients associated with stagnation of WIS required the KIS grounding line to retreat far upstream of its present location while reactivation of WIS led to regional thickening, grounding of floating ice, and advance of the KIS grounding line toward its present location. The present work examines the role of lateral margins near the grounding line, in particular the broad, flat, "Duckfoot" on the right lateral side of the KIS outlet and Lake Englehardt, which occupies the same postion at the outlet of WIS. Lake Englehardt diverts water away from the main trunk of the ice stream. In the past, the Duckfoot may have played a similar role and that diversion may have been associated with KIS stagnation. Overall, our aim is to understand

  16. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  17. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  18. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  19. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  20. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet. PMID:26887494

  1. Structure and dynamics of amorphous water ice

    NASA Technical Reports Server (NTRS)

    Laufer, D.; Kochavi, E.; Bar-Nun, A.; Owen, T. (Principal Investigator)

    1987-01-01

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  2. Separations on water-ice. Final report

    SciTech Connect

    Dasgupta, P.K.

    1998-07-01

    This report focuses on processes to separate water frozen into ice. Research topics include the following: normal phase columnar chromatography; electrophoresis in a planar format; and zone melting type separations on a solid column of ice. Attempts were made to dope the emulsion with {beta}-cyclodextrin in order to separate commercially important chiral drugs such as Inderal.

  3. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  4. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  5. Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach.

    PubMed

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2010-01-01

    A Strecker-type synthesis of glycine by reacting NH(3), H(2)C=O and HCN in presence of ice water (H(2)O-ice) as a catalyst has been theoretically studied at B3LYP/6-31+G(d,p) level within a cluster approach in order to mimic reactions occurring in the interstellar and circumstellar medium (ICM). Results indicate that, despite the exoergonic character of the considered reactions occurring at the H(2)O-ice surface, the kinetics are slow due to relatively high electronic energy barriers (ΔU(0)(≠)=15-45 kcal mol(-1)). Reactions occurring within H(2)O-ice cavities, in which ice bulk effects have been modeled by assuming a dielectric continuum (ε=78), show energy barriers low enough to allow NH(2)CH(2)OH formation but not NH=CH2 (ΔU(0)(≠)= 2 and 21 kcal mol(-1), respectively) thus hindering the NH(2)CH(2)CN formation, i.e. the precursor of glycine, through Strecker channels. Moreover, hydrolysis of NH(2)CH(2)CN to give glycine is characterized by high electronic energy barriers (ΔU(0)(≠)=27-34 kcal mol(-1)) and cannot readily occur at cryogenic temperatures. Nevertheless, the facts that NH=CH(2) formation can readily be achieved through the radical-radical HCN+2H - NH−−>CH2 reaction [D. E. Woon, Astrophys. J., 2002, 571, L177-L180], and that present results indicate that the Strecker step of NH=CH(2)+HCN−−>NH(2)CH(2)CN exhibits a relative low energy barrier (ΔU(0)(≠)=8–9 kcal mol(-1)), suggest that a combination of these two mechanisms allows for the formation of NH(2)CH(2)CN in the ICM. These results strengthen the thesis that NH(2)CH(2)CN could have been formed and protected by icy dust particles, and then delivered through micro-bombardments onto the early Earth, leading to glycine formation upon contact with the primordial ocean. PMID:20358044

  6. Airborne discrimination between ice and water - Application to the laser measurement of chlorophyll-in-water in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1989-01-01

    The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.

  7. Identification of Mars gully activity types associated with ice composition

    NASA Astrophysics Data System (ADS)

    Vincendon, Mathieu

    2015-11-01

    The detection of geologically recent channels at the end of the twentieth century rapidly suggested that liquid water could have been present on Mars up to recent times. A mechanism involving melting of water ice during ice ages in the last several million years progressively emerged during years following the first observations of these gullies. However, the recent discovery of current activity within gullies now suggests a paradigm shift where a contemporary CO2 ice-based and liquid water-free mechanism may form all gullies. Here we perform a survey of near-infrared observations and construct time sequences of water and CO2 ice formation and sublimation at active gully sites. We observe that all major new erosive features such as channel development or lengthening systematically occur where and, if applicable, when CO2 ice is observed or probable. CO2 ice layers are, however, estimated to be only 1 mm to 1 cm thick for low-latitude sites, which may have implication for potential formation mechanisms. We also observe that part of current gully activity, notably the formation of some new deposits, is poorly compatible with the presence of CO2 ice. In particular, all new bright deposits reported in the literature have a low CO2 ice probability while water ice should be present at most sites. Our results confirm that CO2 ice is a key factor controlling present-day channel development on Mars and show that other mechanisms, potentially involving sublimation or melting of water ice, are also contributing to current gully activity.

  8. Water Accommodation on Bare and Coated Ice

    NASA Astrophysics Data System (ADS)

    Kong, Xiangrui

    2015-04-01

    A good understanding of water accommodation on ice surfaces is essential for quantitatively predicting the evolution of clouds, and therefore influences the effectiveness of climate models. However, the accommodation coefficient is poorly constrained within the literature where reported values vary by up to three orders of magnitude. In addition, the complexity of the chemical composition of the atmosphere plays an important role in ice phase behavior and dynamics. We employ an environmental molecular beam (EMB) technique to investigate molecular water interactions with bare and impurity coated ice at temperatures from 170 K to 200 K. In this work, we summarize results of water accommodation experiments on bare ice (Kong et al., 2014) and on ice coated by methanol (Thomson et al., 2013), butanol (Thomson et al., 2013) and acetic acid (Papagiannakopoulos et al., 2014), and compare those results with analogous experiments using hexanol and nitric acid coatings. Hexanol is chosen as a complementary chain alcohol to methanol and butanol, while nitric acid is a common inorganic compound in the atmosphere. The results show a strong negative temperature dependence of water accommodation on bare ice, which can be quantitatively described by a precursor model. Acidic adlayers tend to enhance water uptake indicating that the system kinetics are thoroughly changed compared to bare ice. Adsorbed alcohols influence the temperature dependence of the accommodation coefficient and water molecules generally spend less time on the surfaces before desorbing, although the measured accommodation coefficients remain high and comparable to bare ice for the investigated systems. We conclude that impurities can either enhance or restrict water uptake in ways that are influenced by several factors including temperature and type of adsorbant, with potential implications for the description of ice particle growth in the atmosphere. This work was supported by the Swedish Research Council and

  9. The effect of microwave-frequency discharge-activated oxygen on the microscale structure of low-temperature water ice films

    NASA Astrophysics Data System (ADS)

    Doering, Skye R.; Strobush, Kirsten M.; Marschall, Jochen; Boulter, James E.

    2009-12-01

    Low-temperature, amorphous water ice films grown by vapor deposition under high-vacuum are exposed to microwave-frequency discharge-activated oxygen in order to investigate its effect on the ice surface. Adsorption of methane is used to probe alterations to microscale structures and surface morphology. Films are interrogated throughout the experiment by grazing-angle Fourier-transform infrared reflection-absorption spectroscopy, and after the experiment by temperature-programmed desorption mass spectrometry. Multilayer Fresnel thin-film optics simulations aid in the interpretation of absorbance spectra. Using these techniques, structural alterations are observed over a range of spatial and time scales. At first, spectral absorbance features arising from incompletely coordinated water molecules disappear. The density of high-energy methane adsorption sites is reduced, lowering the equilibrium amount of adsorbed methane. At longer exposure times, this is manifested in a narrowing of the width of the primary methane desorption peak, indicating a narrower range of methane adsorption energies on the ice surface. Together these observations indicate restructuring of micropores resulting in an increase in the structural homogeneity of the film. Enhancement of small, higher-temperature methane desorption features associated with methane encapsulation during thermal annealing indicates alterations to larger pore structures by the same restructuring process. Attribution of these effects to various energetic species in active oxygen is discussed. Based on their abundance, O(P3) and O2(aΔ1g) are the most likely candidates; other trace atomic and molecular species may also contribute.

  10. North Polar Water-ice Clouds

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Smith, M. D.; Bass, DS

    2002-09-01

    Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb sounding and nadir pointed data in the north polar region of Mars have been analyzed during northern spring and summer to find water-ice clouds. There has been uncertainty about the amount of water cycling in and out of the polar region, as evidenced by visible brightness changes in the residual polar cap from year to year which were originally though to be interannual variations (James and Martin, 1995; Kieffer, 1990). Bass et al. (2000) re-examined Viking data and found that 14-35 pr microns of water -ice appeared to be deposited on the cap later in the summer season. This deposition could be due to adsorption directly onto the cap surface or due to snowfall. In addition, Viking IRTM albedo and MAWD water vapor data were examined throughout this season (Bass and Paige, 2000), and water vapor was observed to increase in the cap area as the residual cap brightened. The possibility that some of the water is seasonally sequestered in water-ice clouds and may allow later precipitation had not been previously considered. Water-ice clouds, in the north polar region, have previously been tentatively identified in the Viking data (Tamppari and Bass, 2000), and some water-ice cloud identifications have been made in the north polar region during the MGS era (M. Smith, pers. comm., 2001). The detection of water-ice clouds over a cold surface is difficult (Tamppari et al., 2000) and during northern spring, the CO2 cap is retreating. Therefore, it is advantageous to examine TES limb-pointed observations over the seasonal polar cap regions and to combine those data with nadir-pointed data over the non-frost covered areas. We are examining these two data sets together to identify and track water-ice clouds and current results will be presented.

  11. Investigation of water and ice by ac impedance using electrochemical properties cup.

    PubMed

    Chin, K B; Buehler, M G; Seshadri, S; Keymeulen, D; Anderson, R C; Dutz, S; Narayanan, S R

    2007-01-01

    Water and ice were investigated by ac impedance with the electrochemical properties cup in an effort to develop an in situ instrument for water characterization. In liquid water, the impedance modulus decreased with the increase in charge carriers. In the ice, the impedance measurements were characterized by the dielectric relaxation and its corresponding activation energy. The activation energy of 0.400 eV was determined for pure ice. With ice containing Cl(-) anions, the activation energy was 0.24 eV. H(+) and OH(-) doped ice has the lowest activation energy for dielectric relaxation. Results from previous works are similar to the results reported in this study. PMID:17503953

  12. Mars water-ice clouds and precipitation.

    PubMed

    Whiteway, J A; Komguem, L; Dickinson, C; Cook, C; Illnicki, M; Seabrook, J; Popovici, V; Duck, T J; Davy, R; Taylor, P A; Pathak, J; Fisher, D; Carswell, A I; Daly, M; Hipkin, V; Zent, A P; Hecht, M H; Wood, S E; Tamppari, L K; Renno, N; Moores, J E; Lemmon, M T; Daerden, F; Smith, P H

    2009-07-01

    The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface. PMID:19574386

  13. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  14. High-resolution subsurface water-ice distributions on Mars.

    PubMed

    Bandfield, Joshua L

    2007-05-01

    Theoretical models indicate that water ice is stable in the shallow subsurface (depths of <1-2 m) of Mars at high latitudes. These models have been mainly supported by the observed presence of large concentrations of hydrogen detected by the Gamma Ray Spectrometer suite of instruments on the Mars Odyssey spacecraft. The models and measurements are consistent with a water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has predicted that the depth at which water ice is stable can be highly variable, owing to local surface heterogeneities such as rocks and slopes, and the thermal inertia of the ground cover. Measurements have, however, been limited to the footprint (several hundred kilometres) of the Gamma Ray Spectrometer suite, preventing the observations from documenting more detailed water-ice distributions. Here I show that by observing the seasonal temperature response of the martian surface with the Thermal Emission Imaging System on the Mars Odyssey spacecraft, it is possible to observe such heterogeneities at subkilometre scale. These observations show significant regional and local water-ice depth variability, and, in some cases, support distributions in the subsurface predicted by atmospheric exchange and vapour diffusion models. The presence of water ice where it follows the depth of stability under current climatic conditions implies an active martian water cycle that responds to orbit-driven climate cycles. Several regions also have apparent deviations from the theoretical stability level, indicating that additional factors influence the ice-table depth. The high-resolution measurements show that the depth to the water-ice table is highly variable within the potential Phoenix spacecraft landing ellipses, and is likely to be variable at scales that may be sampled by the spacecraft. PMID:17476262

  15. Rheology of water ices V and VI

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1996-01-01

    We have measured the mechanical strength (??) of pure water ices V and VI under steady state deformation conditions. Constant displacement rate compressional tests were conducted in a gas apparatus at confining pressures from 400 250 K. Ices V and VI are thus Theologically distinct but by coincidence have approximately the same strength under the conditions chosen for these experiments. To avoid misidentification, these tests are therefore accompanied by careful observations of the occurrences and characteristics of phase changes. One sample each of ice V and VI was quenched at pressure to metastably retain the high-pressure phase and the acquired deformation microstructures; X ray diffraction analysis of these samples confirmed the phase identification. Surface replicas of the deformed and quenched samples suggest that ice V probably deforms largely by dislocation creep, while ice VI deforms by a more complicated process involving substantial grain size reduction through recrystallization.

  16. Relationships between water wettability and ice adhesion.

    PubMed

    Meuler, Adam J; Smith, J David; Varanasi, Kripa K; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2010-11-01

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (∼200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials). PMID:20949900

  17. Lessons: Science: "Sinkholes." Students Observe What Happens When Ice-Cold Water Mingles with Warm Water.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    This intermediate-level science activity has students observe the effect of ice-cold water mingling with warm water. Water's behavior and movement alters with shifts in temperature. Students must try to determine how temperature affects the movement of water. Necessary materials include a pencil, cup, glass jar, masking tape, warm water, ice…

  18. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  19. Water Ice and Life's Roots in Space

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic

  20. Got Ice? Teaching Ice-Skating as a Lifelong Activity

    ERIC Educational Resources Information Center

    Tarkinton, Brenda C.; Karp, Grace Goc

    2010-01-01

    With today's focus on the importance of lifelong physical activity, educators are increasingly offering a variety of such activities in their classes, as well as in before- and after-school programs. This article describes the benefits of offering ice skating as a challenging and rewarding lifetime activity, either before or after school or in…

  1. WATER ICE IN THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2012-06-15

    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice-perhaps mixed with ammonia-that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the {approx}20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  2. Development of Impact Model for Water Ice

    NASA Astrophysics Data System (ADS)

    Church, Philip; Gould, Peter; Lewtas, Ian; Jardine, Andy; Braithwaite, Chris; Jarman, Katie; QinetiQ Team; Cambridge Team

    2015-06-01

    This work, which is supported by the European Space Agency (ESA) is in support of Penetrator technology development for a potential mission to Europa or other icy bodies. An ice model has been constructed to predict the shock and impact behaviour of water ice. The equation of state is based on the theoretical Porter-Gould approach and is capable of predicting the shock response of ice. The constitutive model is based on a Johnson-Holmquist model and is constructed from a combination of low and high rate compression tests and a simple spall model is included. The model has been incorporated into the GRIM and DYNA hydrocodes and has been validated for impacts of ball-bearings into very well controlled ice blocks. The results are discussed and future studies are suggested. funding from ESA.

  3. Oxidation-reduction processes in ice swimmers after ice-cold water bath and aerobic exercise.

    PubMed

    Sutkowy, Paweł; Woźniak, Alina; Boraczyński, Tomasz; Boraczyński, Michał; Mila-Kierzenkowska, Celestyna

    2015-06-01

    The effect of an ice-cold water (ICW) bath as a recovery intervention from aerobic exercise on the oxidant-antioxidant balance in healthy ice swimmers was determined. Twenty ice swimmers aged 31.2 ± 6.3 years performed a 30-min cycloergometer exercise test at room temperature (20°C, RT), followed by recovery at RT or in a pool of ice-cold water (ICW bath, 3°C, 5 min). Blood for laboratory assays was collected from the basilic vein two times: before the exercise (baseline) and 40 min after the RT or ICW recovery. The concentrations of plasma and erythrocytic thiobarbituric acid reactive substances (plTBARS and erTBARS, respectively), serum concentrations of 8-iso-prostaglandin F2α, 4-hydroxynonenal and malondialdehyde, along with the erythrocytic activities of catalase (CAT) and superoxide dismutase (SOD), as well as the serum level of total antioxidant capacity, were assessed. No statistically significant changes were observed. However, a statistically significant negative linear correlation between the erTBARS concentration and the SOD activity was found 40 min after the combination of exercise/RT recovery (r=-0.571, P<0.01). The baseline CAT and SOD activities were also linearly correlated (r=0.469, P<0.05). Both the 5-min ICW bath and the 30-min aerobic exercise have practically no impact on the oxidant-antioxidant balance in healthy ice swimmers. PMID:25910677

  4. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  5. The effect of ice-cream-scoop water on the hygiene of ice cream.

    PubMed

    Wilson, I G; Heaney, J C; Weatherup, S T

    1997-08-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  6. Ice world: the origin of nucleobases in ice-liquid water coexistence conditions.

    NASA Astrophysics Data System (ADS)

    Menor Salvan, C.

    2013-09-01

    We could define the ice world as the chemical evolution in the range between freezing point of water and the limit of stability of liquid brines, ≈273 to 210 K. In this environment, the synthesis of nitrogen heterocycles using urea as nitrogen source and methane as precursor of active intermediates is favorable from a prebiotic chemistry standpoint, leading to a mixture dominated by pyrimidines and hydantoins. Hence, the synthesis in ice matrix constitutes an experimental model for the study of origin of nucleobases in Solar System bodies.

  7. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  8. Study on Ice Formation in Still Supercooled Water with Ice Nucleating Substance

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Takeya, Kengo; Asano, Takaya

    Relating to the problem of supercooling phenomenon for ice storage system, the effect of ice nucleating substances (Xanthan gum, Silver iodide, Copper sulfide, Cholesterole and Ice nucleating bacteria) in still bulk supercooled water was investigated. In the experiment, the test water sample containing the ice nucleating substance was cooled below the equilibrium freezing point temperature in low-temperature room maintained at -40 °C, and its freezing temperature was measured for various mass ratios of ice nucleating substance to water. The supercooling degree for the test water sample decreased with an increase in the mass ratio. It was found that the supercooling degree for the test sample with the insoluble ice nucleating substance was smaller than that for the soluble one. Among test ice nucleating substances, Cholesterole had a pronounced effect on the ice nucleation of supercooled water. However, it was clarified that the supercooling degree for each test sample increased by repeating the process of freezing and melting.

  9. Use of electrolyzed water ice for preserving freshness of pacific saury (Cololabis saira).

    PubMed

    Kim, Won-Tae; Lim, Yeong-Seon; Shin, Il-Shik; Park, Hoon; Chung, Donghwa; Suzuki, Tetsuya

    2006-09-01

    The effects of electrolyzed water ice (EW-ice), compared with traditional tap water ice (TW-ice), on the microbiological, chemical, and sensory quality of Pacific saury (Cololabis saira) stored for a period of up to 30 days at 4 degrees C were evaluated. EW-ice with active chlorine at a concentration of 34 mg/kg was prepared from weak acidic electrolyzed water, whose pH, oxidation-reduction potential, and chlorine content were 5, 866 mV, and 47 mg/liter, respectively. Microbiological analysis showed that EW-ice, compared with TW-ice, markedly inhibited the growth of both aerobic and psychrotrophic bacteria in saury flesh during refrigerated storage, primarily because of the action of active chlorine. Chemical analysis revealed that EW-ice retarded the formation of volatile basic nitrogen and thiobarbituric acid-reactive substances and reduced the accumulation of alkaline compounds in the fish flesh in comparison with TW-ice. Sensory analysis confirmed that the freshness of saury was better preserved in EW-ice than in TW-ice and showed that the saury stored in EW-ice had a shelf life that was about 4 to 5 days longer than the fish stored in TW-ice. PMID:16995524

  10. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  11. Observation of ice-like water layers at an aqueous protein surface

    PubMed Central

    Meister, Konrad; Strazdaite, Simona; DeVries, Arthur L.; Lotze, Stephan; Olijve, Luuk L. C.; Voets, Ilja K.; Bakker, Huib J.

    2014-01-01

    We study the properties of water at the surface of an antifreeze protein with femtosecond surface sum frequency generation spectroscopy. We find clear evidence for the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution at temperatures above the freezing point. Decreasing the temperature to the biological working temperature of the protein (0 °C to −2 °C) increases the amount of ice-like water, while a single point mutation in the ice-binding site is observed to completely disrupt the ice-like character and to eliminate antifreeze activity. Our observations indicate that not the protein itself but ordered ice-like water layers are responsible for the recognition and binding to ice. PMID:25468976

  12. Observation of ice-like water layers at an aqueous protein surface.

    PubMed

    Meister, Konrad; Strazdaite, Simona; DeVries, Arthur L; Lotze, Stephan; Olijve, Luuk L C; Voets, Ilja K; Bakker, Huib J

    2014-12-16

    We study the properties of water at the surface of an antifreeze protein with femtosecond surface sum frequency generation spectroscopy. We find clear evidence for the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution at temperatures above the freezing point. Decreasing the temperature to the biological working temperature of the protein (0 °C to -2 °C) increases the amount of ice-like water, while a single point mutation in the ice-binding site is observed to completely disrupt the ice-like character and to eliminate antifreeze activity. Our observations indicate that not the protein itself but ordered ice-like water layers are responsible for the recognition and binding to ice. PMID:25468976

  13. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  14. Detection of water ice on Nereid.

    PubMed

    Brown, M E; Koresko, C D; Blake, G A

    1998-12-01

    We report the detection of the 1.5 and 2.0 micrometers absorption bands of water ice in the near-infrared reflection spectrum of Neptune's distant irregular satellite Nereid. The spectrum and albedo of Nereid appear intermediate between those of the Uranian satellites Umbriel and Oberon, suggesting a surface composed of a combination of water ice frost and a dark and spectrally neutral material. In contrast, the surface of Nereid appears dissimilar to those of the outer solar system minor planets Chiron, Pholus, and 1997 CU26. The spectrum thus provides support for the hypothesis that Nereid is a regular satellite formed in a circumplanetary environment rather than a captured object. PMID:11542819

  15. INFRARED SPECTRA OF AMMONIA-WATER ICES

    SciTech Connect

    Zheng Weijun; Jewitt, David; Kaiser, Ralf I. E-mail: ralfk@hawaii.edu

    2009-03-15

    We conducted a systematic study of the near-IR and mid-IR spectra of ammonia-water ices at various NH{sub 3}/H{sub 2}O ratios. The differences between the spectra of amorphous and crystalline ammonia-water ices were also investigated. The 2.0 {mu}m ammonia band central wavelength is a function of the ammonia/water ratio. It shifts from 2.006 {+-} 0.003 {mu}m (4985 {+-} 5 cm{sup -1}) to 1.993 {+-} 0.003 {mu}m (5018 {+-} 5 cm{sup -1}) as the percentage of ammonia decreases from 100% to 1%. The 2.2 {mu}m ammonia band center shifts from 2.229 {+-} 0.003 {mu}m (4486 {+-} 5 cm{sup -1}) to 2.208 {+-} 0.003 {mu}m (4528 {+-} 5 cm{sup -1}) over the same range. Temperature-dependent shifts of those bands are below the uncertainty of the measurement, and therefore are not detectable. These results are important for comparison with astronomical observations as well as for estimating the concentration of ammonia in outer solar system ices.

  16. Heat Transfer Near An Ice-Ocean Interface In Supercooled Water

    NASA Astrophysics Data System (ADS)

    McPhee, M.; Stanton, T. P.; Shaw, W. J.

    2012-12-01

    Turbulence measurements in the oceanic boundary layer under fast sea ice near Erebus Glacier Tongue in McMurdo Sound, Antarctica, provided a unique opportunity to investigate ice-ocean heat and momentum transfer during platelet ice growth in a supercooled seawater environment. Platelets are often a major constituent of sea ice growth near ice shelves and are thought to be an important factor in forming basal marine ice under shelves supporting an active "ice pump" (i.e., where water cooled to freezing by melting at depth becomes supercooled as it advects to lower pressures). Temperature and conductivity profiles in Oct-Nov, 2010, showed the water column to be supercooled to about 15 m, confirmed by ice growth on suspended cables. Turbulence data near the ice-ocean boundary were used to infer heat transfer rates and momentum flux by both direct covariance and spectral techniques. Although limited in duration by ice accretion on the instrumentation, our results indicated tidally modulated, but consistently downward heat flux. An unexpected result was that heat flux appeared to follow a bulk heat transfer formula based on the product of friction velocity and departure from freezing temperature (negative for supercooled water), not unlike that for melting ice in water above freezing. This illustrates that the capacity of seawater to turbulently diffuse heat released by freezing away from the boundary constrains platelet growth.

  17. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  18. Molecular Ice Nucleation Activity of Birch Pollen

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  19. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  20. Navigation Assistance for Ice-Infested Waters Through Automatic Iceberg Detection and Ice Classification Based on Terrasar-X Imagery

    NASA Astrophysics Data System (ADS)

    Ressel, R.; Frost, A.; Lehner, S.

    2015-04-01

    Most icebergs present in northern latitudes originate from western Greenland glaciers, from where they drift into Baffin Bay, circulating north along Greenland coast and south along Canadian coast. Some of them drift more southwards up to Newfoundland, where they frequently cross shipping routes. Furthermore, the Arctic summer sea ice coverage significantly decreased over the last three decades. This has attracted numerous attentions from maritime end-users. To keep Arctic shipping routes safe, the monitoring of sea ice and icebergs is crucial. For this purpose, satellite-based Synthetic Aperture Radar (SAR) is well suited. Equipped with an active radar antenna, SAR satellites provide image data of the ocean and frozen waters independent of weather conditions, cloud cover or absence of daylight. In this paper, we present a processor for sea ice classification and (subsequent) iceberg detection based on TerraSAR-X imagery. In the classification step, texture features are extracted from the images and fed into a neural network, indicating areas of low sea ice concentration. Then, an adapted Constant False Alarm Rate (CFAR) detector is executed in order to detect icebergs. In the end, sea ice boundary and iceberg positions are output. Our experiments deal with HH polarized TerraSAR-X images taken in spring season in the Baffin Bay off the western Greenland coast, where both, sea ice and icebergs are present. Our results exemplify how a comprehensive ice processor with complementary information can be set up for near real time (NRT) service in ice infested waters.

  1. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    than the cutting chips has been collected. When the drilling passed 3033.46m, the amount of ice chip was decreased. But the amount of ice chip collected increase again from 3034.59m and many large ices have taken the upper part of ice core. The temperature of ice sheet near the bedrock is the pressure melting point. So the liquid water can exist easy there. The water like groundwater infiltrated into the borehole and froze in drilling liquid from 3031.44m to 3033.46m. Under 3034.59m, the subglacial water infiltrated into the borehole and froze in drilling liquid. The existence of water channel in the ice core was found. We think that the liquid water has been flowing through the boundary of ice crystal. (Characteristics of chemical constituents): The melted ice was analyzed every 10cm per 50cm from 2400m to 3028m and continuously every 10cm from 3028m to 3034m. The analytical items were water isotopes (d18O and dD), micro particles (dust) and major ion components. The variations of water isotope and dust in ice near the bedrock have no conspicuous change. But, the concentrations of Cl- and Na+ ions had interesting behavior. The concentration of Cl- ion increased and Na+ ion was decreased deeper than 3020m. Further the concentrations of all ions were decreased suddenly deeper than 3034m. The concentration of ions will be decrease in turn according to the solubility of the ion. home/

  2. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  3. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  4. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  5. Water-ice and water-updraft relationships near -10 C within populations of Florida cumuli

    NASA Technical Reports Server (NTRS)

    Sax, R. I.; Keller, V. W.

    1980-01-01

    Evidence is presented for a sequential development of cloud water, rainwater, graupel, and crystalline ice with the aging of the cloud. This evidence is based on in-cloud microphysical data set collected in Florida convective towers that were penetrated close to their tops near -10 C; the very rapid onset of graupel that appears on repeat penetrations of some towers is of particular interest. A separate data set shows a large scatter in the relationship between the maximum value of cloud water and vertical velocity which indicates that measurements of cloud water can be misleading as an indication of growth activity. The sequential pass data showing the evolution of ice and water are consistent with a rime-splintering, secondary ice production hypothesis.

  6. Subglacial Water and Sediment Transport across the Grounding Zone of Whillans Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Christianson, Knut; Horgan, Huw; Jacobel, Robert; Anandakrishnan, Sridhar; Alley, Richard; Muto, Atsuhiro; Craig, Brian; Dalla-Santa, Kevin; Gobel, Rebecca; Keisling, Benjamin; Synder, Lauren

    2013-04-01

    Much of the threshold behavior of marine ice sheets is thought to result from processes occurring at the grounding zone, where the ice sheet transitions into the ice shelf. At short time scales (decades to centuries) grounding zone behavior is likely to be influenced by processes not included in the current generation of ice sheet models. Here we report on two such processes: the flow of subglacial water from beneath the ice sheet, and the associated transport, and deposition, of sediment. We present a ground-based geophysical study across the grounding zone of a major West Antarctic Ice Stream (Whillans Ice Stream). Using a combination of active-source seismology and radio-echo sounding (RES) data, we image the outlet of a large subglacial drainage system. This drainage system deposits sediment, the lithology of which we determine with seismic amplitude analysis, into a thin (< 15 m) ocean water column. RES reflectivity indicates that subglacial deformation, subglacial water flow, and this ocean water column likely transport sediment along the base of the ice sheet and eventually the ice shelf. These findings have implications for the evolution of grounding zones and the basal melt of ice shelves; knowledge of both of which is required if well-informed models are to provide accurate estimates of future sea level rise.

  7. Ice-covered water volcanism on Ganymede

    NASA Technical Reports Server (NTRS)

    Allison, M. Lee; Clifford, Stephen M.

    1987-01-01

    Eruption of liquid H2O magmas along extensional fractures and graben-bounding normal faults may have played a critical role in the development of Ganymede's grooved terrain. The resurfacing potential of a water magma is dependent on a variety of factors, including the areal extent of the source region, the rate of discharge, the thickness of the flow, and the time that it takes the flow to completely freeze to its base. In this paper the thermal evolution of such a flow is considered in detail. The minimum unfrozen lifetime of a 5-m flow is approximately 12.5 days while a 10-m flow would survive for at least 50 days. Heating resulting from frictional head loss could reasonably extend these lifetimes by 50 percent or more. With a discharge rate of the order of 1-10 cu km/d, an individual volcanic water flow could flood an area of about 10,000 sq km before freezing. As the flow solidifies, its volume will increase, thus lifting and arching its protective ice cover. Extensional fractures may then develop in the ice subparallel to the graben walls. These fractures could result in grooves directly, given a sufficiently thick (1 km) flow, or they may simply act to concentrate various tectonic forces that could initiate groove-producing faults.

  8. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  9. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  10. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034–1143 K and 1155–1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ∼1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  11. Freshwater ice as habitat: partitioning of phytoplankton and bacteria between ice and water in central European reservoirs.

    PubMed

    McKay, Robert M L; Prášil, Ondrej; Pechar, Libor; Lawrenz, Evelyn; Rozmarynowycz, Mark J; Bullerjahn, George S

    2015-12-01

    Abundant phytoplankton and bacteria were identified by high-throughput 16S rRNA tag Illumina sequencing of samples from water and ice phases collected during winter at commercial fish ponds and a sand pit lake within the UNESCO Třeboň Basin Biosphere Reserve, Czech Republic. Bacterial reads were dominated by Proteobacteria and Bacteroidetes. Despite dominance by members of just two phyla, UniFrac principal coordinates analysis of the bacterial community separated the water community of Klec fish pond, as well as the ice-associated community of Klec-Sand Pit from other samples. Both phytoplankton and cyanobacteria were represented with hundreds of sequence reads per sample, a finding corroborated by microscopy. In particular, ice from Klec-Sand Pit contained high contributions from photoautotrophs accounting for 25% of total reads with reads dominated by single operational taxonomic units (OTUs) of the cyanobacterium Planktothrix sp. and two filamentous diatoms. Dominant OTUs recovered from ice were largely absent (< 0.01%) from underlying water suggestive of low floristic similarity of phytoplankton partitioned between these phases. Photosynthetic characterization of phototrophs resident in water and ice analysed by variable chlorophyll a fluorescence showed that communities from both phases were photosynthetically active, thus supporting ice as viable habitat for phytoplankton in freshwater lakes and reservoirs. PMID:26224255

  12. The Stickiness of Micrometer-sized Water-ice Particles

    NASA Astrophysics Data System (ADS)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of μm-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ~210 K), μm-sized water-ice particles stick below a threshold velocity of 9.6 m s-1, which is approximately 10 times higher than the sticking threshold of μm-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s-1. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  13. Exploring Ice-Covered Waters with an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Hamilton, A.; Forrest, A.; Laval, B.

    2009-12-01

    Reductions in lake- and sea-ice extent and ice-shelf collapse in both the Arctic and Antarctic are exposing underlying waters to significant increases in light and heat penetration, altering water mass properties and current dynamics. These physical changes likely drive rapid biological evolution and succession in associated marine ecosystems, influencing the biogeochemical transformation of matter and energy in previously ice-covered waters. However the unaltered, or pristine state of waters covered by thick (>3m) or moving ice is poorly understood, as these environments are largely inaccessible to investigation from the surface. Advancement of autonomous underwater vehicle (AUV) technology now allows these vehicles to be utilized as platforms for polar oceanographic research, permitting exploration of previously uncharted ice-covered waters. UBC-Gavia, a 2.5 m long AUV operated out of the University of British Columbia, has been involved in several under-ice (both lake and sea) missions making it one of the few such vehicles to be successfully deployed under-ice. Results of three under-ice case studies are presented in this work: Pavilion Lake, Canada - an ice-covered temperate lake; Lake Thingvallavatn, Iceland - a subarctic lake experiencing spring ice break-up; and Joliffe Bay, Lincoln Sea, Canadian High Arctic - a near shore multi- and first-year sea ice environment. The focus of each of these case studies was to examine physical processes in the water column under ice (e.g. radiatively driven convection) using a Conductivity-Temperature-Depth (CTD) profiler mounted on the front of the vehicle. In addition, various engineering lessons were acquired in order to adapt the vehicle for deployment, operation and recovery in ice-covered waters. The next phase of research will also be presented; a planned deployment of UBC-Gavia near the McMurdo Ice Shelf in Antarctica, to map under ice structure, ice thickness and convective processes in the water column. These

  14. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  15. Structure of Water Ice in the Solar System

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.

  16. Ice crystallization in water's ``no-man's land''

    NASA Astrophysics Data System (ADS)

    Moore, Emily B.; Molinero, Valeria

    2010-06-01

    The crystallization of water at 180 K is studied through large-scale molecular dynamics simulations with the monatomic water model mW. This temperature is in the middle of water's "no-man's land," where rapid ice crystallization prevents the elucidation of the structure of liquid water and its transformation into ice with state of the art experimental methods. We find that critical ice nuclei (that contain less than ten water molecules) form in a time scale shorter than the time required for the relaxation of the liquid, suggesting that supercooled liquid water cannot be properly equilibrated in this region. We distinguish three stages in the crystallization of water at 180 K: concurrent nucleation and growth of ice, followed by consolidation that decreases the number density of ice nuclei, and finally, slow growth of the crystallites without change in their number density. The kinetics of the transformation along the three stages is well described by a single compacted exponential Avrami equation with n ≈1.7. This work confirms the coexistence of ice and liquid after water is crystallized in "no-man's land": the formation of ice plateaus when there is still 15%-20% of liquid water in the systems, thinly dispersed between ice I crystals with linear dimensions ranging from 3 to 10 nm. We speculate that the nanoscopic size of the crystallites decreases their melting point and slows their evolution toward the thermodynamically most stable fully crystalline state.

  17. Thickness Measurement Device for Ice, or Ice Mixed with Water or Other Liquid

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    2001-01-01

    A Device and Method are provide for determining the thickness of a layer of solid ice, a mixture of ice and water, or a mixture of ice arid other liquid, accumulated on the outer surface of an object. First and second total impedance sensors are operated at first and second frequencies. Corresponding first and second AC total impedance measuring circuits are coupled to The first and second sensors to produce output voltages based on the total impedance changes sensed by the sensors. A processor is coupled to the first and second measuring circuits to generate an output value using the measured output voltages. The output value s indicative of the thickness of the ice or ice and water mixture, or ice and other liquid.

  18. Electrophysiological and behavioural responses of turbot (Scophthalmus maximus) cooled in ice water.

    PubMed

    Lambooij, Bert; Bracke, Marc; Reimert, Henny; Foss, Atle; Imsland, Albert; van de Vis, Hans

    2015-10-01

    Behavioural, neural and physiological aspects related to pre-slaughter cooling of turbot habituated to two environmental temperatures (18.7 and 12.0°C) were investigated. Six fish in both treatments were immersed in ice water for 75 min. For control, four fish were immersed in water under their habituated environmental temperature. Turbot did not show a quick reduction of overall power in the EEG (electroencephalogram) to less than 10%, nor did the turbot show a shift in brain wave predominance from high to low frequency waves. At 15 min after immersion in ice water at least 7 out of 12 fish still showed total power values over 10% of pre-immersion values. Significant reductions in responsiveness to needle scratches and reduced breathing after immersion in ice water were observed, but none of these parameters had dropped to 0 even after 75 min in ice water. A significant reduction in gill score was found at 2 and 5 min after immersion in ice water compared to the control fish (p<0.05). Heart rates significantly increased immediately after immersion in ice water and then decreased to a low basal value 30 min after immersion. The heart beat did not show major changes in regularity over time. Finally, at 15 and 75 min the turbot in ice water were significantly more responsive to vibration than to needle scratches. From these results we conclude that immersion in ice water may not induce unconsciousness, however, the brain activity does decrease to a lower level. The implication of this low brain activity with respect to welfare is not clear. Increased heart rates and maintained low brain activity and response to needle scratches during early immersion in ice water are indicative of a stress response appearing to affect welfare negatively. PMID:26003496

  19. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  20. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  1. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  2. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  3. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  4. SBUV Trends in PMC Ice Water Content

    NASA Astrophysics Data System (ADS)

    Deland, M. T.; Thomas, G. E.; Shettle, E. P.; Olivero, J. J.

    2010-12-01

    Overlapping data sets from SBUV and SBUV/2 instruments can be combined to create a long-term record of polar mesospheric cloud (PMC, also known as noctilucent clouds) behavior. We have previously used these data to examine multi-decade trends in PMC occurrence frequency and albedo. In this presentation, we extend our analysis to consider zonally and seasonally averaged PMC ice water content (IWC). We use a set of parameterized relationships between mid-UV PMC albedo and scattering angle derived from WACCM-CARMA simulations to determine IWC from SBUV PMC observations at 252 nm. This procedure incorporates an adjustment for the fact that the SBUV/2 data are sensitive to only a portion of the total IWC. We will show results using SBUV/2 data from 1979 to the most recent Northern Hemisphere PMC season in 2010, and compare our results with previous work (e.g. Stevens et al. [2007], Baumgarten et al. [2008]).

  5. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    SciTech Connect

    Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan

    2015-10-07

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.

  6. Rheology of water and ammonia-water ices

    NASA Technical Reports Server (NTRS)

    Goldsby, D. L.; Kohlstedt, D. L.; Durham, W. B.

    1993-01-01

    Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates.

  7. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  8. Electric Response of Hydrogen Peroxide-doped Water Ices: an Analog Study for Positive Hole Currents in Rocks

    NASA Astrophysics Data System (ADS)

    Stockburger, C. C.; Keller, C. T.; Gray, A.; Sornette, J.; Udom, A.; Cruikshank, D. P.; Freund, F.

    2013-12-01

    Hydrogen peroxide-doped water ices can be viewed an analog system to igneous and high-grade metamorphic rocks, which invariably contain peroxy defects, typically Si-OO-Si, and generate positive hole charge carriers when subjected to stress. By preparing pure water ice and hydrogen peroxide-doped water ices, freezing them to -80°C, allows us to control the concentration of peroxy defects (here hydrogen peroxide molecules) and study the electrical response, when the ices are subjected to stress. Blocks of pure water ice and hydrogen peroxide-doped water ices, -80°C, were prepared. Two methods to activate peroxy bonds were used: (i) stressing one end of rectangular blocks in a hydraulic press, (ii) subjecting one part of a 2-chamber plastic tray to intense ultrasound to create a gradient of activated charge carriers. In the hydraulic press experiments the pure water ice samples produced vanishingly small currents except for occasional transients, mostly negative, during fracturing of the ice. By contrast, hydrogen peroxide-doped water ices led to significant currents, consistently positive, flowing down the stress gradients. Using ultrasound as an activation method avoids fracturing. Therefore the results are much 'cleaner', not contaminated by hard-to-control fracture-induced currents. The positive sign of the currents suggests defect electrons, generated by the break-up of peroxy bonds of hydrogen peroxide molecules embedded in the ice structure, analogous to positive hole charge carriers that are stress-activated in rocks.

  9. Water Ice in 2060 Chiron and Its Implications for Centaurs and Kuiper Belt Objects.

    PubMed

    Luu; Jewitt; Trujillo

    2000-03-10

    We report the detection of water ice in the Centaur 2060 Chiron, based on near-infrared spectra (1.0-2.5 µm) taken with the 3.8 m United Kingdom Infrared Telescope and the 10 m Keck Telescope. The appearance of this ice is correlated with the recent decline in Chiron's cometary activity: the decrease in the coma cross section allows previously hidden solid-state surface features to be seen. We predict that water ice is ubiquitous among Centaurs and Kuiper Belt objects, but its surface coverage varies from object to object and thus determines its detectability and the occurrence of cometary activity. PMID:10688775

  10. Ice Particle Impact on Cloud Water Content Instrumentation

    NASA Technical Reports Server (NTRS)

    Emery, Edward F.; Miller, Dean R.; Plaskon, Stephen R.; Strapp, Walter; Lillie, Lyle

    2004-01-01

    Determining the total amount of water contained in an icing cloud necessitates the measurement of both the liquid droplets and ice particles. One commonly accepted method for measuring cloud water content utilizes a hot wire sensing element, which is maintained at a constant temperature. In this approach, the cloud water content is equated with the power required to keep the sense element at a constant temperature. This method inherently assumes that impinging cloud particles remain on the sensing element surface long enough to be evaporated. In the case of ice particles, this assumption requires that the particles do not bounce off the surface after impact. Recent tests aimed at characterizing ice particle impact on a thermally heated wing section, have raised questions about the validity of this assumption. Ice particles were observed to bounce off the heated wing section a very high percentage of the time. This result could have implications for Total Water Content sensors which are designed to capture ice particles, and thus do not account for bouncing or breakup of ice particles. Based on these results, a test was conducted to investigate ice particle impact on the sensing elements of the following hot-wire cloud water content probes: (1) Nevzorov Total Water Content (TWC)/Liquid Water Content (LWC) probe, (2) Science Engineering Associates TWC probe, and (3) Particle Measuring Systems King probe. Close-up video imaging was used to study ice particle impact on the sensing element of each probe. The measured water content from each probe was also determined for each cloud condition. This paper will present results from this investigation and attempt to evaluate the significance of ice particle impact on hot-wire cloud water content measurements.

  11. Enceladus: An Active Ice World in the Saturn System

    NASA Astrophysics Data System (ADS)

    Spencer, John R.; Nimmo, Francis

    2013-05-01

    Enceladus, one of the mid-sized icy moons of Saturn, has an importance to planetary science far greater than its modest 504-km diameter would suggest. Intensive exploration of Enceladus by the Cassini Saturn orbiter has revealed that it is the only known icy world in the solar system with ongoing deep-seated geological activity. Active tectonic fractures at Enceladus's south pole, dubbed “tiger stripes,” warmed by internal tidally generated heat, spew supersonic jets of water vapor, other gases, and ice particles into circum-Saturnian space. A subsurface saltwater sea probably exists under the south pole, between the ice shell and the silicate core. Because of evidence that liquid water is probably present at the jet sources, Enceladus is also of great astrobiological interest as a potential habitat for life.

  12. Applying Archimedes' Law to Ice Melting in Sea Water

    NASA Astrophysics Data System (ADS)

    Noerdlinger, Peter D.; Brower, K. R.

    2006-12-01

    Archimedes stated that a floating body displaces its own weight of liquid, but his law has been widely misapplied to ice floating in the oceans by scientists who assumed that equal weights correspond to equal liquid volumes. It is often said that when floating ice melts, the sea level does not rise "because of Archimedes' law." True when ice floats in fresh water, but a myth for ice in oceans! Most ice floating in the oceans is nearly pure water. When it melts, the pure water produced has about 2.6% more volume than the salt water that was displaced, and the ocean slightly rises. It is often suggested that students demonstrate the "fact" of no rise in the sea surface by melting ice cubes floating in a glass of water; such a demonstration even appears in the movie "An Inconvenient Truth." Let's teach students to spot such errors. We highlight a couple more "surprise issues." First, the density of the floating ice, if it is free of salt and dirt, is irrelevant, so long as it floats. Next, when "grounded" ice (resting on land), enters the sea, it initially displaces less water than its melted form will eventually add to the sea. Thus, an event of that kind, such as formation of an iceberg, produces a rise of the sea level in two stages. We conclude with a series of thought-experiments that could help teachers and students discern the correct result, and a photo of a demonstration.

  13. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  14. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  15. Mobility of water ice on Callisto - Evidence and implications

    NASA Technical Reports Server (NTRS)

    Spencer, J. R.; Maloney, P. R.

    1984-01-01

    Voyager images of Callisto reveal evidence for the accumulation of a bright volatile, presumably water ice, on north-facing slopes in the north polar region. The geometry of these accumulations suggests that ice migration in Callistoan high latitudes is dominated by thermal sublimation, controlled by insolation-dependent surface temperature contrasts. Such sublimation-dominated migration may result in the cold-trapping of most of the surface ice in discrete high-albedo regions.

  16. Isotopic Fractionation of Water-Ice from Sublimation

    NASA Astrophysics Data System (ADS)

    Christensen, E.; Boyer, C.; Park, M.; Gormally, J.; Benitez, E.; Dominguez, G.

    2015-12-01

    Elizabeth Christensen, Charisa Boyer, Manesseh Park, Ezra Benitez, Gerardo Dominguez Understanding the multi-isotopic fractionation of water-ice that results from its sublimation may be important for understanding the isotopic composition of cometary ices. Here we describe an experimental setup whose purpose is to understand the effects of various astrophysical processes on the δD and δ18O and δ17O composition of water-ices. Our setup consists of an ultrahigh vacuum (UHV) chamber with oil free pumping, a closed cycle He cryostat to achieve low temperatures (capable of reaching 6K), and a vacuum line connected to the chamber via a UHV feed-through. Water isotopologues H216O, H218O, H217O, and HD16O samples can be measured after sublimation of water-ice with a cavity ring-down spectrometer (Picarro L2120-i) that is connected to the vacuum line. To perform these experiments, ambient water vapor was introduced into, frozen, and purified inside the UHV chamber (T< 150 K). Water-ice samples were sublimated for varying amounts of time to collect various fractions of the original reservoir. We will present the first results on the oxygen and deuterium isotopic fractionation of water-ice sublimation and discuss their implications for interpreting the isotopic compositions of cometary ices.

  17. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70 K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  18. The structural changes of water ice I during warmup

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Blake, David F.

    1994-01-01

    The polymorph transitions of vapor deposited water ice I during warmup from 15 K to 210 K was mapped by means of selected area electron diffraction. The polymorph transitions account for many phenomena observed in laboratory analog studies of cometary outgassing and radial diffusion in UV photolyzed interstellar ices.

  19. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice.

    PubMed

    Klein, Eric S; Cherry, J E; Young, J; Noone, D; Leffler, A J; Welker, J M

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ(18)O, δ(2)H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ(18)O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle. PMID:26023728

  20. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice

    PubMed Central

    Klein, Eric S.; Cherry, J. E.; Young, J.; Noone, D.; Leffler, A. J.; Welker, J. M.

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ18O, δ2H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ18O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle. PMID:26023728

  1. Exposed water ice discovered near the south pole of Mars

    USGS Publications Warehouse

    Titus, T.N.; Kieffer, H.H.; Christensen, P.R.

    2003-01-01

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  2. Exposed water ice discovered near the south pole of Mars.

    PubMed

    Titus, Timothy N; Kieffer, Hugh H; Christensen, Phillip R

    2003-02-14

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap. PMID:12471268

  3. Active laser system for sea ice control

    NASA Astrophysics Data System (ADS)

    Evtikhiev, Nickolay N.; Gaponov, Alexandr E.; Kuluba, Yury N.; Matous, Vladislav I.; Radominov, Oleg E.; Tuzikov, Vladimir Z.; Vargaftic, Vasiliy N.

    1997-01-01

    The airborne systems are used for complex investigations of coastline very successfully, for example it can be used to measure the depth of the sea, to discover the reefs and so on. Such information may be used in navigation too. The specific conditions of navigation in the North and Pole seas defines the necessity of exact knowledge about the ice cracks in order to find the possible direction of the ship movement. The active optical system, working in the near IR region, has many advantages before the passive one, especially if it is necessary to work during the polar night and at bad weather conditions. In this article we discuss the demands to the laser active airborne systems, that given the accurate picture of the ice with high resolution in the daytime and nighttime conditions. Such system based on the laser, mechanical scanner and avalanche photodiode is very compact, reliable and informative. The picture of the ice surface can be shown on the TV monitor, can be written to the memory and can be delivered to the processing center by the radiochannel. The experimental results are shown together with results of this system probing in the conditions of the North Pole Ocean.

  4. Radiation chemistry in ammonia-water ices

    SciTech Connect

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-02-07

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H{sub 2}, N{sub 2}, NO, and N{sub 2}O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete ({approx}97% destroyed) after a fluence of 10{sup 16} ions/cm{sup 2}. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N{sub 2} and H{sub 2}, which are seen to be ejected from the ice at all temperatures.

  5. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  6. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of μm-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ∼210 K), μm-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup –1}, which is approximately 10 times higher than the sticking threshold of μm-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup –1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  7. Ice Water Path Retrieval Using Microwave and Submillimetre Wave Observations

    NASA Astrophysics Data System (ADS)

    Brath, Manfred; Grützun, Verena; Mendrok, Jana; Fox, Stuart; Eriksson, Patrick; Buehler, Stefan A.

    2016-04-01

    There is an ongoing need for data on ice clouds. The ice water path as an essential climate variable is a fundamental parameter to describe ice clouds. Combined passive microwave and submillimetre wave measurements are capable to sample the size distribution of the ice particles and are sensitive to relevant particle sizes. This makes combined microwave and submillimetre wave measurements useful for estimates of ice water path. Furthermore, instead of being sensitive for the upper ice column as for example for passive visible and passive infrared measurements, combined microwave and submillimetre wave measurements can sample the full ice column. We developed a retrieval algorithm for ice water path based on a neural network approach using combined microwave and submillimetre wave measurements, from about 20 channels in the range between 89 GHz and 664 GHz of the electromagnetic sprectra. We trained a neural network by using 1D radiative transfer simulations which were conducted using the Atmospheric Radiative Transfer Simulator (ARTS). The radiative transfer simulations were fed by atmospheric profiles from a numerical weather prediction model. We will present an analysis of the retrieval. Additionally, we will present results of retrieved IWP from combined ISMAR (International SubMillimetre Airborne Radiometer) and MARSS (Microwave Airborne Radiometer Scanning System) measurements on board of the Facility for Airborne Atmospheric Measurements (FAAM) aircraft during March 2015 over the North Atlantic.

  8. Photochemistry of alkyl bromides trapped in water ice films

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Okaikwei, B.; Bluszcz, Th.

    2012-04-01

    Photochemical reactions of atmospheric trace gases taking place at the surface of atmospheric ice particles and in bulk ice are important in stratospheric and tropospheric chemistry but also in polar and alpine snowpack chemistry. Consequently, the understanding of the uptake und incorporation of atmospheric trace gases in water ice as well as their interactions with water molecules is very important for the understanding of processes which occur in ice particles and at the air/ice interface. Reactive atmospheric trace gases trapped in ice are subject of photochemical reactions when irradiated with solar UV radiation. Among such compounds bromine species are highly interesting due to their potential of depleting ozone both in the stratosphere and troposphere. Organic bromine gases can carry bromine to the stratosphere. Methyl bromide (CH3Br) is the largest bromine carrier to the stratosphere. It has both natural and anthropogenic sources. In this contribution we will present the results of our laboratory studies of alkyl bromides (methyl, bromide (CH3Br), dimethyl bromide (CH2Br2), n-propyl bromide (C3H7Br), 1,2-dibromoethane C2H4Br2)), trapped in water ice. We have simulated the UV photochemistry of these brominated alkanes isolated in ice films kept at 16 K and for comparison in solid argon matrices. The photoproducts formed in the ice have been identified by means of FTIR spectroscopy. Reflection absorption infrared spectroscopy (RAIRS) is especially useful to study nascent ice surfaces, kinetics of adsorption/decomposition, and heterogeneous catalysis. Among the observed photoproducts we could identify carbon monoxide and carbon dioxide for each alkyl bromide studied. The photoproduct HBr is dissociated in the bulk ice. Based on the experimental observations possible reaction mechanisms will be discussed.

  9. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    NASA Astrophysics Data System (ADS)

    Attard, E.; Yang, H.; Delort, A.-M.; Amato, P.; Pöschl, U.; Glaux, C.; Koop, T.; Morris, C. E.

    2012-11-01

    Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  10. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    NASA Astrophysics Data System (ADS)

    Attard, E.; Yang, H.; Delort, A.-M.; Amato, P.; Pöschl, U.; Glaux, C.; Koop, T.; Morris, C. E.

    2012-04-01

    Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  11. Convective Cloud Ice Water Content Distribution in the Upper Tropical Troposphere

    NASA Astrophysics Data System (ADS)

    Avery, M. A.; Davis, S. M.; Vaughan, M. A.; Young, S. A.; Schoeberl, M. R.; Rosenlof, K. H.; Trepte, C. R.; Winker, D. M.

    2015-12-01

    The Cloud and Aerosol LIdar with Orthogonal Polarization (CALIOP) has been making backscatter measurements of cirrus clouds in the upper tropical troposphere and lowermost stratosphere for more than nine years. Using empirical relationships between backscatter and extinction coefficients, as well as cloud ice water content measured by aircraft, the lidar backscatter can be converted into cloud ice water content. A nine-year climatology of ice water content from CALIOP shows that the distribution of ice mass in the tropical UT/LS is dominated by convection over land, with a large longitudinal variation. There are four centers of activity for high altitude tropical convection, over South America, Africa, the Asian Monsoon region and in the tropical Western Pacific over the maritime continent. The distribution of cloud ice water content is very different from that of cloud fraction, which includes many thin cloud layers in the TTL that do not contain much ice, and that are locally and not convectively generated. These results suggest that approaches based on zonal means, or on cloud fraction do not give an accurate accounting of the total water budget of the UT/LS, and that a regional approach is needed. It is found that "overshooting" convection likely dominates the stratospheric moistening process in specific regions and at specific times of the year. Finally, upper tropical tropospheric cloud ice mass loading is correlated with the Asian monsoon and with climate cycles such as ENSO and the QBO.

  12. Detecting water-ice in extreme OH/IR stars

    NASA Astrophysics Data System (ADS)

    Justtanont, K.; Olofsson, G.

    A sample of 17 extreme OH/IR stars were searched for the presence of water-ice absorption at 3.1μm using the Stockholm Infrared Camera (SIRCA) on the Nordic Optical Telescope (NOT). The stars have been selected on the basis of their deep 10μm silicate absorption. With supplementary ISO and UKIRT data which incresed our sample to 23 stars, we found 50% of our sample show the water-ice absorption. Of those which show water-ice absorption, there seems to be a correlation between the optical depths of the silicate and water-ice. However, from the silicate feature alone, it is not possible to predict which stars would exhibit the water-ice signature. Stars which have water-ice condensing in their circumstellar envelope show the near-IR deficiency, implying that there is possibly another dust component condensing at the same time. Alternatively, this deficiency can be due to the gaseous water in the circumstellar envelope which efficiently absorbs the radiation between 3-7μm. When comparing the derived dust mass loss rate with the gas mass loss rate derived from the OH masers, it is clear that the epoch of intense mass loss rate giving rise to the deep 10μm silicate absorption has started only recently, i.e., ≤ 2000 yrs.

  13. Water vapor, water-ice clouds, and dust in the North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Michael D.; Bass, Deborah S.; Hale, Amy S.

    2006-01-01

    The behavior of water vapor, water-ice and dust in the Martian atmosphere is important for understanding the overall Martian climate system, which is characterized by three main cycles: water, including water-ice, dust, and CO2. Understanding these cycles will lend insight into the behavior of the atmospheric dynamics, the atmosphere's ability to transport dust, water-ice, and vapor to different parts of the planet, and how that ability changes as a function of dust and water-ice loading.

  14. Kindergarten Explorations with Snow, Ice, and Water

    ERIC Educational Resources Information Center

    Carroll, Martha A.

    1978-01-01

    Using winter snow, kindergarten students can explore the properties of water. Students demonstrate melting, freezing, expansion, and evaporation through a number of activities involving a paper cup and a scoop of snow. Procedures and student reactions are described in detail by the teacher-author. (MA)

  15. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  16. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  17. Creep of water ices at planetary conditions: A compilation

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1997-01-01

    Many constitutive laws for the flow of ice have been published since the advent of the Voyager explorations of the outer solar system. Conflicting data have occasionally come from different laboratories, and refinement of experimental techniques has led to the publication of laws that supersede earlier ones. In addition, there are unpublished data from ongoing research that also amend the constitutive laws. Here we compile the most current laboratory-derived flow laws for water ice phases I, II, III, V, and VI, and ice I mixtures with hard particulates. The rheology of interest is mainly that of steady state, and the conditions reviewed are the pressures and temperatures applicable to the surfaces and interiors of icy moons of the outer solar system. Advances in grain-size-dependent creep in ices I and II as well as in phase transformations and metastability under differential stress are also included in this compilation. At laboratory strain rates the several ice polymorphs are rheologically distinct in terms of their stress, temperature, and pressure dependencies but, with the exception of ice III, have fairly similar strengths. Hard particulates strengthen ice I significantly only at high particulate volume fractions. Ice III has the potential for significantly affecting mantle dynamics because it is much weaker than the other polymorphs and its region of stability, which may extend metastably well into what is nominally the ice II field, is located near likely geotherms of large icy moons. Copyright 1997 by the American Geophysical Union.

  18. Spectral properties of water ice and contaminants. [of importance to remote sensing of ice in solar system

    NASA Technical Reports Server (NTRS)

    Lucey, P. G.; Clark, R. N.

    1985-01-01

    For remote sensing studies of ices in the solar system, it is important to understand the optical properties of water ice, and mixtures of ice and particulate materials. The present paper has the objective to review the current understanding of the spectral properties of ice, and mixtures of ice and particulates. The review is to provide a basis for the understanding of the remote sensing of ice. It is found that reflectance spectra of ice-soil intimate mixtures are complex, nonlinear functions of the optical and physical properties of the components which comprise the surface.

  19. Anchored Clathrate Waters Bind Antifreeze Proteins to Ice

    SciTech Connect

    C Garnham; R Campbell; P Davies

    2011-12-31

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca{sup 2+}-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP{vert_ellipsis}ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the 'anchored clathrate' mechanism of AFP action.

  20. Morphology of nitric acid and water ice films

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Leu, Ming-Taun

    1993-01-01

    Ice films have been used to simulate stratospheric cloud surfaces in order to obtain laboratory data on solubilities and heterogeneous reaction rates. In the present study, environmental scanning electron microscopy (ESEM) is used to study thin films of both water ice and nitric acid ice near the composition of the trihydrate. The ices are formed by vapor deposition onto aluminum or borosilicate-glass substrates cooled to about 200 K. Micrographs are recorded during the deposition process and during subsequent annealing at higher temperatures. The results show that the ice films are composed of loosely consolidated granules, which range from about 1 to 20 microns in size at temperatures between 197 and 235 K. Cubic water ice is sometimes observed at 200 K, which converts to the hexagonal form at slightly higher temperatures. The loose packing of the granules confirms the high porosities of these films obtained from separate bulk porosity measurements. Average surface areas calculated from the observed granule sizes range from about 0.2 to 1 sq m/g and agree with surface areas obtained by gas-adsorption (BET) analysis of annealed ice films. For unannealed films, the BET areas are about an order of magnitude higher than the ESEM results, implying that the unannealed ices contain microporosity which is lost during the annealing process.

  1. Water-ice clouds in the Martian North Polar Region

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Qu, Z.; Smith, M. D.; Bass, D. S.; Hale, A. S.

    2004-11-01

    There has been uncertainty about the amount of water cycling in and out of the polar region during the northern spring/summer timeframe, as evidenced by visible brightness changes in the residual polar cap from year to year which were originally though to be interannual variations (James and Martin, 1995; Kieffer, 1990). Subsequently, through comparison of Viking and Mariner 9 data sets, these variations were thought to be late season water deposition (Bass et al., 2000: Bass and Paige, 2000), perhaps in the form of direct condensation or snowfall. More recently, examination of multi-year MGS MOC data (Hale et al., 2004) opens this question again. Water cycling can be assessed using data sets by examination of water vapor, polar cap changes, and water-ice clouds. In this presentation, we examine the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) nadir pointed data in the north polar region of Mars during northern spring and summer to find and map water-ice clouds. Water-ice clouds, in the north polar region, have previously been tentatively identified in the Viking data (Tamppari and Bass, 2000), and some water-ice clouds identifications have been made in the north polar region during the MGS era (M. Smith, pers. comm., 2001). We present our results of water-ice clouds for 3 Mars years' spring and summer times, including opacities, spatial and temporal variations.

  2. External Sources of Water for Mercury's Putative Ice Deposits

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Rawlins, Katherine; Zahnle, Kevin; Dones, Luke

    1999-01-01

    Radar images have revealed the possible presence of ice deposits in Mercury's polar regions. Although thermal models indicate that water ice can be stable in permanently shaded regions near Mercury's poles, the ultimate source of the water remains unclear. We use stochastic models and other theoretical methods to investigate the role of external sources in supplying Mercury with the requisite amount of water. By extrapolating the current terrestrial influx of interplanetary dust particles to that at Mercury, we find that continual micrometeoritic bombardment of Mercury over the last 3.5 byr could have resulted in the delivery of (3-60) x 10(exp 16) grams of water ice to the permanently shaded regions at Mercury's poles (equivalent to an average ice thickness of 0.8-20 m). Erosion by micrometeoritic impact on exposed ice deposits could reduce the above value by about a half. For comparison, the current ice deposits on Mercury are believed to be somewhere between approx. 2 and 20 m thick. Using a Monte Carlo model to simulate the impact history of Mercury, we find that asteroids and comets can also deliver an amount of water consistent with the observations. Impacts from Jupiter-family comets over the last 3.5 billion years can supply (0.1-200) x 10(exp 16) grams of water to Mercury's polar regions (corresponding to ice deposits 0.05-60 m thick), Halley-type comets can supply (0.2-20) x 10(exp 16) grams of water to the poles (0.07-7 m of ice), and asteroids can provide (0.4-20) x 10(exp 16) grams of water to the poles (0.1-8 m of ice). Although all these external sources are nominally sufficient to explain the estimated amount of ice currently at Mercury's poles, impacts by a few large comets and/or asteroids seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury. Despite their low population estimates in the inner solar system, Jupiter-family comets are particularly promising candidates for delivering water to Mercury

  3. Instability of water-ice interface under turbulent flow

    NASA Astrophysics Data System (ADS)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  4. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  5. Permittivity of ice and water at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1980-01-01

    Measurements of reflectivity of water and ice at 100 GHz, 140 GHz, and 180 GHz are reported. Measurements on water covered the temperature range 0 C to 50 C. No anomalies in the dielectric properties of water due to the presence of either salts or organic matter were found. The reflectivity of water and its temperature dependence are consistent with recent dielectric property models derived from data at other wavelengths. The index of refraction of fresh ice is constant at 1.78 throughout this regions.

  6. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko.

    PubMed

    De Sanctis, M C; Capaccioni, F; Ciarniello, M; Filacchione, G; Formisano, M; Mottola, S; Raponi, A; Tosi, F; Bockelée-Morvan, D; Erard, S; Leyrat, C; Schmitt, B; Ammannito, E; Arnold, G; Barucci, M A; Combi, M; Capria, M T; Cerroni, P; Ip, W-H; Kuehrt, E; McCord, T B; Palomba, E; Beck, P; Quirico, E

    2015-09-24

    Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface. PMID:26399830

  7. Amplitude analysis of active source seismic data from the grounding zone of Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Horgan, Huw; Anandakrishnan, Sridhar; Alley, Richard; Christianson, Knut

    2015-04-01

    Amplitude analysis of active source seismic data is often used to estimate acoustic properties and thereby infer the lithology of the substrate beneath glaciers and ice streams. The substrate beneath the ice streams of West Antarctica is of particular interest as here subglacial sediment deformation results in the rapid flow of the overriding ice. At the grounding zone, where the grounded ice sheet transitions to the floating ice shelf, this substrate is thought to stiffen due to tidal compaction resulting in a zone of higher basal shear stress which is manifest in the buckling of the internal layering in the overriding ice. Here we investigate these processes by estimating subglacial properties using active source seismic data acquired across the grounding zone of Whillans Ice Stream. Perhaps uniquely, we are able to test our methodology due to the survey crossing from an ice overlying sediment interface into a known ice overlying water interface. Our analysis indicates that lithological variations within the grounding zone are below the resolution of our methodology with the exception of a body of water trapped by a hydropotential reversal upstream of the grounding zone.

  8. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.

    PubMed

    Shi, Ke; Yu, Hailong; Lee, Tung-Ching; Huang, Qingrong

    2013-11-13

    Zein protein has been of scientific interest in the development of biodegradable functional food packaging. This study aimed at developing a novel zein-based biopolymer film with ice nucleation activity through layer-by-layer deposition of biogenic ice nucleators, that is, extracellular ice nucleators (ECINs) isolated from Erwinia herbicola , onto zein film surface. The adsorption behaviors and mechanisms were investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). On unmodified zein surface, the highest ECINs adsorption occurred at pH 5.0; on UV/ozone treated zein surface followed by deposition of poly(diallyldimethylammonium chloride) (PDADMAC) layer, the optimum condition for ECINs adsorption occurred at pH 7.0 and I 0.05 M, where the amount of ECINs adsorbed was also higher than that on unmodified zein surface. QCM-D analyses further revealed a two-step adsorption process on unmodified zein surfaces, compared to a one-step adsorption process on PDADMAC-modified zein surface. Also, significantly, in order to quantify the ice nucleation activity of ECINs-coated zein films, an empirical method was developed to correlate the number of ice nucleators with the ice nucleation temperature measured by differential scanning calorimetry. Calculated using this empirical method, the highest ice nucleation activity of ECINs on ECINs-modified zein film reached 64.1 units/mm(2), which was able to elevate the ice nucleation temperature of distilled water from -15.5 °C to -7.3 °C. PMID:24106783

  9. An Analysis on Ice Storing CharacterIstics in Dynamic-type Ice Storage System using Supercooled Water

    NASA Astrophysics Data System (ADS)

    Aizawa, Naoki; Tanino, Masayuki; Kozawa, Yoshiyuki

    For an application of the Dynamic-type Ice Storage System to the District Cooling and Heating System, the effects of ice content (IPF) and mass flow rate of supplying ice-slurry on the ice storing characteristics in a tank were investigated by experiments and analyses. In the analytical model, we considered that the ice-rich layer would be ununiform by raising of IPF and the water permeability in the ice-rich layer increases. By raising of IPF and reducing of mass flow rate of supplying ice-slurry, ice-rich layer could not spread in a tank. The porosity of ice-rich layer was contracting to the value of 0.8-0.9 in the ice storing process. The stored ice quantity depends on distribution and porosity of ice-rich layer in a tank decreased to 10% by raising IPF from 2.5wt% to 10wt% and reducing mass flow rate as constant ice flow rate. The analytical results could express the experimental results about stored ice quantity. Our analytical model is considered to be applicable to prediction of the ice storing characteristics and to design of an ice storage tank.

  10. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications. PMID:22235939

  11. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  12. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kiselev, Alexei; Möhler, Ottmar; Saathoff, Harald; Steinke, Isabelle

    2016-02-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  13. Analysis of water ice and ice/dust mixtures using laser-induced breakdown spectroscopy (LIBS).

    SciTech Connect

    Cremers, D. A.; Brown, Kari; Gibson, L. E.; Ferris, M. J.; Wiens, R. C.; Maurice, S.

    2003-01-01

    In 1992, LIBS was proposed as a new method for stand-off detection of geological samples for use on landers and rovers to Mars. Recently, there has been increased interest in the technique for this and other space applications and studies have determined some of the characteristics and capabilities of the method under the conditions that these measurements will have to be made. In addition to rocks and soils, there is interest in using LIBS to analyze ices and dusts entrained in ice . This is especially true for missions to the Mars polar regions . Of particular interest is determining the nature of polar layered deposits, the geochemistry of polar surface materials, detection of water ice and the distribution of ice, and the presence of possible organics in these materials (via C/N ratios)

  14. Amorphous and polycrystalline water ices in space environments

    NASA Astrophysics Data System (ADS)

    Andrade, Diana; Pilling, Sergio; Da Silveira, Enio; Barros, Ana

    2016-07-01

    Ices are an important reservoir of more complex molecular species in several space environments, containing information about the composition and formation of these regions. Water ice is the dominant constituent of interstellar ices in most lines of sight and is about 70 % of the composition in comets, being a key molecule in astrochemical models. It is believed that one of the reactive species possibly evaporated from the water ices is the hydronium ion, H_{3}O^{+}, which plays an important role in the oxygen chemistry network. This ion has been detected in the lunar surface of Enceladus and Titan, and toward the Sagittarius B2 molecular Clouds, where H_{2}O and OH were also identified. In this work, the ion desorption due to radiolysis in ices constituted by water at three different temperatures (40, 70 and 125 K) is studied, to investigate the different allotropic water ices. A discussion on the rate of H_{3}O^{+} and water delivered to gas phase, as well as the half-life of water ice grains, inside dense molecular clouds considering a constants cosmic ray flux is given. The ions desorbed from water ice have been mass/charge analyzed by a time-of-flight spectrometer. Among the results, it is seen that in the positive ion spectrum of high density amorphous water ice at 40 K the highest desorption yields (ejected ions/impact) correspond to H^{+}, H_{3}O^{+} and clusters formed by (H_{2}O)_{n}R^{+}, where R^{+} is H_{3}O^{+} and 1 ≤ n ≤ 25. At T = 125 K, the ice is in its low density polycrystalline form and new clusters are present, such as (H_{2}O)_{n}R^{+}, where R^{+} is H_{2}^{+} and H_{3}^{+} (for low n), beyond H_{3}O^{+}. Therefore, it is seen that (H_{2}O)_{n}H_{3}O^{+} series (with n between 1 and 25) is dominant in all cases. The H_{3}O^{+} desorption yield at 40 K is about 5times10^{-3} ions/impact. This value is 4-5 times higher than the one obtained at T > 125 K. This behavior is also seen to all series member and consequently to the sum (Yn).

  15. Thermal segregation of water ice on the Galilean satellites

    SciTech Connect

    Spencer, J.R.

    1987-02-01

    The susceptibility of dirty ice surfaces to a water cold-trapping process in the Galilean satellites' local bright patches, in association with preferential removal from dark areas, is inferred on the basis of a consideration of the thermal sublimation of ice. A decade time-scale segregation of the surface into bright icy regions and dark ice-free lag deposit regions would be the main consequence of such a process. While ion sputtering and micrometeorite bombardment do not appear to be of sufficient magnitude for a prevention of the process on Callisto and Ganymede, sputtering on the trailing side of Europa may be able to prevent segregation. 49 references.

  16. Thermal segregation of water ice on the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Spencer, John R.

    1987-01-01

    The susceptibility of dirty ice surfaces to a water cold-trapping process in the Galilean satellites' local bright patches, in association with preferential removal from dark areas, is inferred on the basis of a consideration of the thermal sublimation of ice. A decade time-scale segregation of the surface into bright icy regions and dark ice-free lag deposit regions would be the main consequence of such a process. While ion sputtering and micrometeorite bombardment do not appear to be of sufficient magnitude for a prevention of the process on Callisto and Ganymede, sputtering on the trailing side of Europa may be able to prevent segregation.

  17. Liquid water in the domain of cubic crystalline ice Ic

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.

    1997-01-01

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  18. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples

  19. Icing Branch Current Research Activities in Icing Physics

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2009-01-01

    Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.

  20. Water Ice at the Surface of the HD 100546 Disk

    NASA Astrophysics Data System (ADS)

    Honda, M.; Kudo, T.; Takatsuki, S.; Inoue, A. K.; Nakamoto, T.; Fukagawa, M.; Tamura, M.; Terada, H.; Takato, N.

    2016-04-01

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H2O ice (3.06 μm), and L‧ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.

  1. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  2. Spectroscopic Search for Water Ice on Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Jewitt, D.

    2006-09-01

    We are conducting a systematic study of the Jovian Trojans using the Subaru 8-m, UKIRT 4-m and IRTF 3-m telescopes atop Mauna Kea, Hawaii. Theoretical models show that the Jovian Trojans formed beyond the snow-line and they may contain considerable amounts of water ice. We seek spectroscopic evidence for this pristine ice. Object (4709) Ennomos has a geometric albedo of 0.13+/-0.02, which is significantly above the mean Trojan albedo of 0.041+/- 0.002 (Fernandez et al., 2003). An intriguing possibility is that the albedo of Ennomos is high because a recent impact has coated part of the surface with freshly excavated ice. We obtained near-IR (0.8-2.5 micron) spectra of (4709) Ennomos in search of the 1.5 and 2.0 micron bands of water ice. Four other Trojans, (911) Agamemnon, (617) Patroclus, (1143) Odysseus and (2797) Teucer, were also observed. These objects have been reported to show possible weak absorptions at 1.7 and 2.3 micron respectively (Emery and Brown, 2003). All five targets appear spectrally featureless, even in our highest signal-to-noise ratio data. We present the data and a simple model consisting of mixtures of water ice and a spectrally featureless material, to quantify the limits to surface ice.

  3. Crystalline water ice on the Kuiper belt object (50000) Quaoar.

    PubMed

    Jewitt, David C; Luu, Jane

    2004-12-01

    The Kuiper belt is a disk-like structure consisting of solid bodies orbiting the Sun beyond Neptune. It is the source of the short-period comets and the likely repository of the Solar System's most primitive materials. Surface temperatures in the belt are low ( approximately 50 K), suggesting that ices trapped at formation should have been preserved over the age of the Solar System. Unfortunately, most Kuiper belt objects are too faint for meaningful compositional study, even with the largest available telescopes. Water ice has been reported in a handful of objects, but most appear spectrally featureless. Here we report near-infrared observations of the large Kuiper belt object (50000) Quaoar, which reveal the presence of crystalline water ice and ammonia hydrate. Crystallinity indicates that the ice has been heated to at least 110 K. Both ammonia hydrate and crystalline water ice should be destroyed by energetic particle irradiation on a timescale of about 10(7) yr. We conclude that Quaoar has been recently resurfaced, either by impact exposure of previously buried (shielded) ices or by cryovolcanic outgassing, or by a combination of these processes. PMID:15592406

  4. Trapping of gas mixtures by amorphous water ice

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Kleinfeld, I.; Kochavi, E.; Owen, T. (Principal Investigator)

    1988-01-01

    Our studies on gas trapping in amorphous water ice at 24-100 K were extended, by using mixtures of CH4, CO, N2, and Ar, rather than single gases. In 1:1 gas:(water vapor) mixtures, the competition among these gases on the available sites in the ice showed that the trapping capacity for the various gases is determined not only by the structure and dynamics of the ice, but is also influenced by the gas itself. Whereas at 24-35 K all four gases are trapped in the ice indiscriminantly, at 50-75 K there is a clear enhancement, in the order of CH4 > CO > N2 > or approximately Ar. This order is influenced by the gas-water interaction energy, the size of the trapped gas atom or molecule, the type of clathrate-hydrate formed (I or II) and, possibly, other factors. It seems that the gas can be trapped in the amorphous ice in several different locations, each being affected in a different way by the deposition temperature and gas composition. Once a gas atom or molecule is trapped in a specific location, it is predestined to emerge in one of eight different temperature ranges, which are associated with changes in the ice. The experimentally observed enhancements, together with the findings on the gas composition of comet Halley, might enable an estimation of the gas composition in the region of comet formation.

  5. The exploitation of Europa ice and water basins:an assessment on required technological developments, on system design approaches and on relevant expected benefits to space and Earth based activities

    NASA Astrophysics Data System (ADS)

    Di Pippo, S.; Mugnuolo, R.; Vielmo, P.; Prendin, W.

    1999-06-01

    Europa is likely to be the only object in the Solar System to share with Earth the presence of massive liquid water bodies, condition essential for sustaining biological processes; the discovery of extraterrestrial forms of life in this environment would have a scientifical impact of the greatest importance. An in-situ exploration of Europa ice crust and of the possible underlaying water masses is considered; this mission appears an extremely challenging undertaking because of the quite new environment and of the operative requirements in which equipment designed to carry out long distance space activities would be asked to work. A very complex mission structure, split into a number of integrated and cooperating vehicles has to be envisaged; the attention is anyway here concentrated on the critical mission phase in which a specialized vehicle, a Probe, would penetrate through the satellite ice crust and would deploy into a liquid water environment an instrumentation package for in-situ exploration. The complexity and novelty of this operational scenario require the identification, development and experimental validation of a number of new technologies and system design approaches which are very briefly analyzed. The following areas are considered of particular interest:

  6. Salts as Water Ice Cloud Nuclei on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D.; Chuang, P. Y.; Iraci, L. T.

    2015-12-01

    In recent years, observations of the Martian surface have indicated the presence of chlorine-bearing minerals, including perchlorates, on the surface of Mars. These salt-bearing minerals would potentially be source material for dust lofted from the surface into the Martian atmosphere, thus providing potential nucleation sites for water ice clouds. Considering that salts play an important role in cloud formation on Earth, it is important to have a better understanding of how salt may affect nucleation processes under Mars-like conditions. We perform laboratory experiments to examine water ice nucleation onto salt substrates. We use a vacuum chamber that simulates the temperatures and pressures observed of the Martian atmosphere. Using infrared spectroscopy we measure the onset of nucleation and calculate the temperature-dependent critical saturation ratio (Scrit) for water ice nucleation onto salts, specifically sodium chloride and sodium perchlorate. Preliminary results of Scrit values for water ice nucleation on sodium chloride show a negative temperature dependence, as did other substrates from previous experiments. Values of Scrit are useful for understanding the realistic conditions under which water ice clouds may form on Mars, and can be used in climate models simulating clouds on Mars.

  7. Ice/water Classification of Sentinel-1 Images

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan

    2015-04-01

    Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification

  8. Putting life on ice: bacteria that bind to frozen water

    PubMed Central

    Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L.; Braslavsky, Ido

    2016-01-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. PMID:27534698

  9. Putting life on ice: bacteria that bind to frozen water.

    PubMed

    Bar Dolev, Maya; Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L; Braslavsky, Ido

    2016-08-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. PMID:27534698

  10. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  11. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    PubMed

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  12. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  13. Forced convective melting at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  14. Sea ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.

  15. Effect of Water Ice Transition on Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Páchová, H.; Kletetschka, G.

    2014-12-01

    Uncertainty of magnetic field existence during formation of our solar system may be resolved by studying the details of carbonaceous meteorite. We chose Murchison meteorite to represent this group of carbonaceous meteorites. Murchison contains magnetic minerals like magnetite and pyrhottite. Their presence suggests that there were oxidizing conditions during the formation of these two minerals. This material may have been exposed to water-ice proximity that caused neo-formation of these two minerals. Such chemical change in magnetic mineralogy may resulted from multiple exposure of the meteorite material to transition between the liquid and solid water (ice). We expose Murchison fragments to multiple cycles of water/ice transition. Our data shows changes in both magnetic susceptibility and remanence. We interpret these findings in terms of the past nebular magnetic fields.

  16. Identification of water ice on the Centaur 1997 CU26.

    PubMed

    Brown, R H; Cruikshank, D P; Pendleton, Y; Veeder, G J

    1998-05-29

    Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects. PMID:9603731

  17. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  18. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  19. Origin of Water Ice in the Solar System

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    The origin and early distribution of water ice and more volatile compounds in the outer solar system is considered. The origin of water ice during planetary formation is at least twofold: It condenses beyond a certain distance from the proto-Sun - no more than 5 AU but perhaps as close as 2 AU - and it falls in from the surrounding molecular cloud. Because some of the infalling water ice is not sublimated in the ambient disk, complete mixing between these two sources was not achieved, and at least two populations of icy planetesimals may have been present in the protoplanetary disk. Added to this is a third reservoir of water ice planetesimals representing material chemically processed and then condensed in satellite-forming disks around giant planets. Water of hydration in silicates inward of the condensation front might be a separate source, if the hydration occurred directly from the nebular disk and not later in the parent bodies. The differences among these reservoirs of icy planetesimals ought to be reflected in diverse composition and abundance of trapped or condensed species more volatile than the water ice matrix, although radial mixing may have erased most of the differences. Possible sources of water for Earth are diverse, and include Mars-sized hydrated bodies in the asteroid belt, smaller "asteroidal" bodies, water adsorbed into dry silicate grains in the nebula, and comets.These different sources may be distinguished by their deuterium-to-hydrogen ratio, and by predictions on the relative amounts of water (and isotopic compositional differences) between Earth and Mars.

  20. Competition between water uptake and ice nucleation by glassy organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Berkemeier, T.; Shiraiwa, M.; Pöschl, U.; Koop, T.

    2014-11-01

    Organic aerosol particles play a key role in climate by serving as nuclei for clouds and precipitation. Their sources and composition are highly variable, and their phase state ranges from liquid to solid under atmospheric conditions, affecting the pathway of activation to cloud droplets and ice crystals. Due to slow diffusion of water in the particle phase, organic particles may deviate in phase and morphology from their thermodynamic equilibrium state, hampering the prediction of their influence on cloud formation. We overcome this problem by combining a novel semi-empirical method for estimation of water diffusivity with a kinetic flux model that explicitly treats water diffusion. We estimate timescales for particle deliquescence as well as various ice nucleation pathways for a wide variety of organic substances, including secondary organic aerosol (SOA) from the oxidation of isoprene, α-pinene, naphthalene, and dodecane. The simulations show that, in typical atmospheric updrafts, glassy states and solid/liquid core-shell morphologies can persist for long enough that heterogeneous ice nucleation in the deposition and immersion mode can dominate over homogeneous ice nucleation. Such competition depends strongly on ambient temperature and relative humidity as well as humidification rate and particle size. Due to differences in glass transition temperature, hygroscopicity and atomic O / C ratio of the different SOA, naphthalene SOA particles have the highest potential to act as heterogeneous ice nuclei. Our findings demonstrate that kinetic limitations of water diffusion into organic aerosol particles are likely to be encountered under atmospheric conditions and can strongly affect ice nucleation pathways. For the incorporation of ice nucleation by organic aerosol particles into atmospheric models, our results demonstrate a demand for model formalisms that account for the effects of molecular diffusion and not only describe ice nucleation onsets as a function of

  1. Satellite color observations of spring blooming in Bering Sea shelf waters during the ice edge retreat in 1980

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Clark, Dennis K.

    1987-01-01

    The temporal and spatial development of the ice-edge bloom and the spring open-water bloom on the eastern Bering Sea shelf was studied using CZCS images of the eastern Bering Sea between April 27 and July 22, 1980. Images of the Norton Sound area taken during the period of ice breakup show that the influence of ice melt on phytoplankton growth is particularly significant where the ice is actively melting. Significant levels (5-30 mg/cu m) of chlorophyll could be seen trailing the ice pack as it melted and moved northward and westward in late April and early May. In the ice-free eastern Bering Sea midsummer image, a northwesterly oriented band of high pigment concentration was seen in the area of the outer domain, suggesting periodic offshore movements of shelf waters.

  2. The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

  3. A possible water ice cloud in Jupiter's stratosphere

    NASA Astrophysics Data System (ADS)

    López-Puertas, M.; Montañés-Rodríguez, M. P.; González-Merino, B.; Pallé, E.; García-Melendo, E.; Höpfner, M.; García-Comas, M.; Funke, B.

    2015-10-01

    Jupiter's atmosphere has been sounded in transmission from UV to IR, as if it were a transiting exoplanet by observing one of its satellites, Ganymede, while passing through Jupiter's shadow during a solar eclipse from Ganymede. The spectra show strong extinction due to the presence of aerosols and haze in the atmosphere and strong absorption features from CH4.In addition, the spectra show two broad features near 1.5 and 2.0μm that we tentatively attribute to a layer of H2O ice in Jupiter's stratosphere. While the spectral signatures seem to be unequivocally attributed to crystalline water ice, to explain the strong absorption features requires a large amount of water ice.

  4. Active Lakes of the Recovery Ice Stream, East Antarctica: A Bedrock-Controlled Subglacial Hydrological System

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.; Scambos, T. A.; Bell, R. E.; Carter, S. P.

    2014-12-01

    A connected system of active sub-glacial lakes was revealed beneath the Recovery Ice Stream, East Antarctica by ICESat laser altimetry acquired from 2003 to 2008. Here we combine repeat-track analysis of ICESat (2003-2009), Operation IceBridge laser altimetry and radio-echo sounding (RES; 2011 and 2012), and MODIS image differencing (2009-2011) to learn more about the surface and bedrock topographic setting of the lakes and the constraints on water flow through the system. IceBridge data reveal a ~1500 m deep, ~1000 km long bedrock trough under the main trunk of Recovery Ice Stream. We extend the lake activity time series to 2012 for the three lower lakes using IceBridge data: one lake underwent a large deflation between 2009 and 2011; another lake, which had been continuously filling between 2003 and 2010, started to drain after 2011. Hydrologic connections among the lakes appear to be direct and responsive. We reproduce the lake activity using a simple subglacial water model. The hydrologic system beneath Recovery Ice Stream is controlled by unusually pronounced bedrock topography (and not ice surface topography, as is the case for most Antarctic systems studied to date). We discuss potential causes of non-steady hydrologic behavior in major Antarctic catchments.

  5. Freezing activities of flavonoids in solutions containing different ice nucleators.

    PubMed

    Kuwabara, Chikako; Wang, Donghui; Kasuga, Jun; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2012-06-01

    In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many

  6. Mimas: Preliminary Evidence For Amorphous Water Ice from VIMS

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Marzo, G. A.; Pinilla-Alonso, N.; Roush, T. L.; Mastrapa, R. M.; DalleOre, C. M.; Buratti, B. J.; Stephan, K.

    2010-01-01

    We have conducted a statistical clustering analysis (1,2) on a mosaic of VIMS data cubes obtained on February 13, 2010, for Saturn s satellite Mimas. Seven VIMS cubes were geometrically projected and re-sampled to a common spatial resolution. The clustering technique consists of a partitioning algorithm coupled to a criterion that prevents sub-optimal solutions and tests for the influence of random noise in the measurements. The clustering technique is agnostic about the meaning of the clusters, and scientific interpretation requires their a posteriori evaluation. The preliminary results yielded five clusters, demonstrating that spectral variability across Mimas surface is statistically significant. The ratios of the means calculated for each of the clusters show structure within the 1.6- micron water ice band, as well as the shape and the central wavelength of the strong ice band at 2 micron, that map spatially in patterns apparently related to the topography of Mimas, in particular certain regions in and around Herschel crater. The mean spectra of the five clusters, show similarities with laboratory spectra of amorphous and crystalline H2O ice (3) that are suggestive of the presence of an amorphous ice component in certain regions of Mimas, notably on the central peak of Herschel, on the crater floor, and in faults surrounding the crater. This may represent a mixture of both ice phases, or perhaps a layer of amorphous ice on a base of crystalline ice. Another possible occurrence of amorphous ice appears southwest of Herschel, close to the south pole.

  7. Sea ice trends and cyclone activity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Coggins, Jack; McDonald, Adrian; Rack, Wolfgang; Dale, Ethan

    2015-04-01

    Significant trends in the extent of Southern Hemisphere sea ice have been noted over the course of the satellite record, with highly variable trends between different seasons and regions. In this presentation, we describe efforts to assess the impact of cyclones on these trends. Employing a maximum cross-correlation method, we derive Southern Ocean ice-motion vectors from daily gridded SSMI 85.5 GHz brightness temperatures. We then derive a sea ice budget from the NASA-Team 25 km square daily sea ice concentrations. The budget quantifies the total daily change in sea ice area, and includes terms representing the effects of ice advection and divergence. A residual term represents the processes of rafting, ridging, freezing and thawing. We employ a cyclone tracking algorithm developed at the University of Canterbury to determine the timing, location, size and strength of Southern Hemisphere cyclones from mean sea-level pressure fields of the ERA-Interim reanalysis. We then form composites of the of sea ice budget below the location of cyclones. Unsurprisingly, we find that clockwise atmospheric flow around Southern Hemisphere cyclones exerts a strong influence on the movement of sea ice, an effect which is visible in the advection and divergence terms. Further, we assess the climatological importance of cyclones by comparing seasons of sea ice advance for periods with varying numbers of cyclones. This analysis is performed independently for each sea ice concentration pixel, thus affording us insight into the geographical importance of storm systems. We find that Southern Hemisphere sea ice extent is highly sensitive to the presence of cyclones in the periphery of the pack in the advance season. Notably, the sensitivity is particularly high in the northern Ross Sea, an area with a marked positive trend in sea ice extent. We discuss whether trends in cyclone activity in the Southern Ocean may have contributed to sea ice extent trends in this region.

  8. Response of Simulated Mixed-Phase Arctic Stratus Clouds to Slowly Activated Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.

    2014-12-01

    Supercooled mixed-phase cloud decks are common in the Arctic, often persisting for days. Individual ice crystals in such clouds have relatively short lifetimes, typically an hour or less. Thus new ice crystals must be generated continuously in such long-lived cloud layers. Field campaigns investigating the microphysics of the simplest such clouds—unseeded single-layer cases in coupled or decoupled boundary layers—have aimed to measure the background ice nuclei (IN) required to initiate ice formation processes, specifically by measuring the concentration of IN above cloud top that are active at water saturation at cloud-top temperature. In previous detailed simulations of observed case studies, we demonstrated that if all ambient IN are assumed to be activated rapidly, and if there is no surface source of IN over pack ice or efficient multiplication process in the absence of riming, as commonly assumed, then overlying IN concentrations must exceed those of in-cloud ice crystals by a factor of order 10-100 or more, generally much higher than measured. However, under such conditions, entrainment and rapid activation quickly achieve a long-lived quasi-steady cloud microphysical state in simulations that seems consistent with that commonly observed. These previous studies made the assumption that all relevant IN have a lifetime of roughly one second at water saturation under cloud-top conditions, using a singular ice nucleation scheme. Here we investigate the behavior of the same cloud systems in the presence of IN with longer activation time scales, including those only available in the contact mode and those with a wider range of lifetimes under in-cloud conditions. We make a range of assumptions about IN properties to constrain ice nucleation schemes to the degree possible using field data. When ice crystals are primarily sustained by slowly activated IN, we find that the relative depletion rate of the boundary-layer reservoir of IN impacts the degree of quasi

  9. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-04-01

    active surface site density, which we named ns*, for the investigated feldspar sample. The comparison of these results with those of other studies elucidates the general feasibility of determining such an asymptotic value and also show that the value of ns* strongly depends on the method of the particle surface area determination. Acknowledgement This work is partly funded by the Federal Ministry of Education and Research (BMBF - project CLOUD 12) and by the German Research Foundation (DFG project WE 4722/1-1, part of the research unit INUIT, FOR 1525). D. Niedermeier acknowledges financial support from the Alexander von Humboldt-foundation. References Augustin et al.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, doi:10.5194/acp-13-10989-2013, 2013. Hartmann et al.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751-5766, doi:10.5194/acp-13-5751-2013, 2013. Murray et al.: Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519-6554, 2012. Wex et al.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys. Discuss., 14, 22321-22384, doi:10.5194/acpd-14-22321-2014, 2014.

  10. Pre-activation of ice nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Kiselev, A.; Möhler, O.; Saathoff, H.; Steinke, I.

    2015-10-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Already fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice subsaturated conditions. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  11. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  12. Martian north pole summer temperatures - Dirty water ice

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.

    1976-01-01

    Broadband thermal and reflectance observations of the Martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  13. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  14. Water ice and organics on the surface of the asteroid 24 Themis.

    PubMed

    Campins, Humberto; Hargrove, Kelsey; Pinilla-Alonso, Noemi; Howell, Ellen S; Kelley, Michael S; Licandro, Javier; Mothé-Diniz, T; Fernández, Y; Ziffer, Julie

    2010-04-29

    It has been suggested that Earth's current supply of water was delivered by asteroids, some time after the collision that produced the Moon (which would have vaporized any of the pre-existing water). So far, no measurements of water ice on asteroids have been made, but its presence has been inferred from the comet-like activity of several small asteroids, including two members of the Themis dynamical family. Here we report infrared spectra of the asteroid 24 Themis which show that ice and organic compounds are not only present on its surface but also prevalent. Infrared spectral differences between it and other asteroids make 24 Themis unique so far, and our identification of ice and organics agrees with independent results that rule out other compounds as possible sources of the observed spectral structure. The widespread presence of surface ice on 24 Themis is somewhat unexpected because of the relatively short lifetime of exposed ice at this distance ( approximately 3.2 au) from the Sun. Nevertheless, there are several plausible sources, such as a subsurface reservoir that brings water to the surface through 'impact gardening' and/or sublimation. PMID:20428164

  15. Interactions of adsorbed CO₂ on water ice at low temperatures.

    PubMed

    Karssemeijer, L J; de Wijs, G A; Cuppen, H M

    2014-08-01

    We present a computational study into the adsorption properties of CO2 on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of interstellar dust grains and a thorough understanding of their solid phase interactions at low temperatures is crucial for understanding the structural evolution of the ices due to thermal segregation. In this paper, a new H2O-CO2 interaction potential is proposed and used to model the ballistic deposition of CO2 layers on water ice surfaces, and to study the individual binding sites at low coverages. Contrary to recent experimental results, we do not observe CO2 island formation on any type of water substrate. Additionally, density functional theory calculations are performed to assess the importance of induced electrostatic interactions. PMID:24955794

  16. Numerical modeling of runback water on ice protected aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1992-01-01

    A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.

  17. Sea-ice hazards, associated risks and implications for human activities in the Arctic

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo; Mahoney, Andrew; Jones, Joshua

    2014-05-01

    Arctic sector, major reductions in summer sea ice extent and presence of multiyear ice have exposed large stretches of coastline to warmer waters and increased fetch, contributing to increased coastal erosion and thermal subrosion of permafrost. Changing ice dynamics, with reductions in the persistence and stability of shorefast ice and increases in sediment transport by sea ice, aggravate these processes. A case study from our coastal ice observatory at Barrow, Alaska in conjunction with analysis of remote sensing data on coastal ice persistence and stability illustrates some of these processes. For maritime activities, sea-ice hazards can result in substantial risks, e.g., of major oil spills or accidents, if conflated with faults or failures of equipment, procedures or decision-making. Our current understanding of key sea-ice processes that govern its role as a hazard needs to be updated in light of rapid changes in Arctic marine environments. This will be illustrated by examples drawn from a study to provide baseline data in the evaluation of threats to coastal and offshore infrastructure.

  18. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  19. Anchor ice and benthic disturbance in shallow Antarctic waters: interspecific variation in initiation and propagation of ice crystals.

    PubMed

    Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan

    2011-10-01

    Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates. PMID:22042434

  20. Ionization dynamics of water dimer on ice surface

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  1. The Detection of Water Ice in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Davies, John K.; Roush, Ted L.; Cruikshank, Dale P.; Bartholomew, Mary Jane; Geballe, Thomas R.; Owen, Tobias

    1996-01-01

    We present spectra of Comet Hale-Bopp (C/1995 01) covering the range 1.4-2.5 micron that were recorded when the comet was 7 AU from the Sun. These show I)road absorption features at 1.5 and 2.05 micron. We show that some, but not all, of this absorption could be matched by an intimate mixture of water ice and a low albedo material such as carbon on the nucleus. However, we recognize that it is more likely that the ice features are produced by scattering from icy grains in the coma. The absence of absorption at 1.65 micron suggests that this ice is probably in the amorphous state. An unidentified additional component may be required to account for the downward slope at the longwavelength end of the spectrum.

  2. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate.

    PubMed

    Chen, Jing; Dou, Renmei; Cui, Dapeng; Zhang, Qiaolan; Zhang, Yifan; Xu, Fujian; Zhou, Xin; Wang, Jianjun; Song, Yanlin; Jiang, Lei

    2013-05-22

    A robust prototypical anti-icing coating with a self-lubricating liquid water layer (SLWL) is fabricated via grafting cross-linked hygroscopic polymers inside the micropores of silicon wafer surfaces. The ice adhesion on the surface with SLWL is 1 order of magnitude lower than that on the superhydrophobic surfaces and the ice formed atop of it can be blown off by an action of strong breeze. The surface with self-lubricating liquid water layer exhibits excellent capability of self-healing and abrasion resistance. The SLWL surface should also find applications in antifogging and self-cleaning by rainfall, in addition to anti-icing and antifrosting. PMID:23642212

  3. Measured basal water pressure variability of the western Greenland Ice Sheet: Implications for hydraulic potential

    NASA Astrophysics Data System (ADS)

    Wright, Patrick J.; Harper, Joel T.; Humphrey, Neil F.; Meierbachtol, Toby W.

    2016-06-01

    The gradient of the hydraulic potential field at the ice-bedrock interface beneath the Greenland Ice Sheet (GrIS) dictates the routing and energetics of subglacial water, thereby influencing drainage system characteristics and sliding dynamics. In the ablation zone of the GrIS, variable water pressure due to an active subglacial drainage system and basal topography with high relief potentially interact to drive unknown spatial patterns and temporal changes in the hydraulic potential field. Here we present a suite of water pressure measurements collected in 13 boreholes along a 46 km transect on the western GrIS to investigate the role of spatial and temporal basal water pressure adjustments in hydraulic potential gradient dynamics. All borehole sites show pressures with similar seasonality, having relatively steady and high values during winter, variable and irregular behavior during spring and fall, and diurnal cycles that can persist for multiple weeks during the peak melt season. Despite much higher variability during the melt season, the median pressure of the summer period is nearly the same as the median pressure of the winter period. However, time variability of water pressure due to basal drainage processes can force changes in the magnitude and orientation of the hydraulic potential field over diurnal periods. We find that the basal water pressure across the transect generally mimics the ice thickness field but with superimposed large pressure gradients that develop at shorter scales within the basal drainage system. This leads to a complex hydraulic potential field across regions of similar ice thickness.

  4. Ion Irradiation of H2-Laden Porous Water-ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, U.; Mitchell, E. H.; Baragiola, R. A.

    2015-10-01

    To understand the effects of cosmic-ray (CR) impacts on interstellar icy grains immersed in H2 gas, we have irradiated porous water-ice films loaded with H2 with 100 keV H+. The ice films were exposed to H2 gas at different pressures following deposition and during irradiation. A net H2 loss is observed during irradiation due to competition between ion-induced sputtering and gas adsorption. The initial H2 loss cross-section, 4(1) × 10-14 cm2, was independent of film thickness, H2, and proton fluxes. In addition to sputtering, irradiation also closes nanopores, trapping H2 in the film with binding that exceeds physical absorption energies. As a result, 2%-7% H2 is retained in the ice following irradiation to high fluences. We find that the trapped H2 concentration increases with decreasing Φ, the ratio of ion to H2 fluxes, suggesting that as high as 8% solid H2 can be trapped in interstellar ice by CR or stellar wind impacts.

  5. Water Ice on Kuiper Belt Object 1996 TO66

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.

    1999-01-01

    The 1.40-2.40 micron spectrum of Kuiper Belt object (KBO) 1996 TO66 was measured at the Keck Observatory in September 1998. It's spectrum shows the strong absorptions near 1.5 and 2.0 micron characteristic of water ice--the first such detection on a Kuiper Belt object. The depth of the absorption bands and the continuum reflectance of 1996 TO66 also suggest the presence of a black to slightly blue-colored, spectrally featureless particulate material as a minority component mixed with the water ice. In addition, there is evidence that the intensity of the water bands in the spectrum of 1996 TO66 vary with rotational phase suggesting that it has a "patchy" surface.

  6. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria. PMID:25193694

  7. Dense water production in the Larsen Ice Shelf region

    NASA Astrophysics Data System (ADS)

    van Caspel, Mathias; Schröder, Michael; Huhn, Oliver; Hellmer, Hartmut

    2014-05-01

    Dense water flowing out from the Weddell Sea significantly contributes to Antarctic Bottom Water (AABW). The relative importance of two dense water formation sites in the Weddell Sea, the continental shelves in front of Ronne-Filchner Ice Shelf and Larsen Ice Shelf, remains unclear. Measurements made in summer 2012/2013 during Polarstern cruise ANT XXIX-3 add evidence to the importance of the western source region. During the cruise, three sections were made perpendicular to the continental slope of the northwestern Weddell Sea. Visual inspection of temperature and salinity data suggest that the dense water found in the throughs in front of Larsen A and B mixes with slope waters and sinks down the continental slope to form a fresher type of Weddell Sea Deep Water. This hypothesis was tested using the Optimum Multiparameter Analysis with three source water types, Larsen A/B dense Water (LABW), Warm Deep Water (WDW) and Weddell Sea Bottom Water (WSBW) and potential temperature, salinity, oxygen, and mass as conservative parameters. The majority of the slope waters were reproduced with this setting but the densest bottom water sampled during the cruise at ~1200m and ~1800m depth. To overcome this, a fourth source water type, representing very dense water observed in front of Larsen C (LCW) during summer 2004/2005 (ISPOL), was added. The mixture of Larsen waters - LABW and LCW - and the water masses coming from the south - WDW and WSBW - increases the thickness of the dense layer on the continental slope that can cross the ridges confining the northwestern Weddell Sea. Since this process occurs next to the outflow areas, changes in the thermohaline properties or in the production rates may have an impact on the global thermohaline circulation.

  8. Importance of open-water ice growth and ice concentration evolution: a study based on FESOM-ECHAM6

    NASA Astrophysics Data System (ADS)

    Shi, X.; Lohmann, G.

    2015-10-01

    A newly developed global climate model FESOM-ECHAM6 with an unstructured mesh and high resolution is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. A sensitivity experiment is performed which reduces the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting decrease in the Arctic winter sea-ice concentration strongly reduces the surface albedo, enhances the ocean heat release to the atmosphere, and increases the sea-ice production. Furthermore, our simulations show a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the sea ice transport affects the freshwater budget in regions of deep water formation. A warming over Europe, Asia and North America, associated with a negative anomaly of Sea Level Pressure (SLP) over the Arctic (positive phase of the Arctic Oscillation (AO)), is also simulated by the model. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), especially for the Pacific sector. Additionally, a series of sensitivity tests are performed using an idealized 1-D thermodynamic model to further investigate the influence of the open-water ice growth, which reveals similar results in terms of the change of sea ice and ocean temperature. In reality, the distribution of new ice on open water relies on many uncertain parameters, for example, surface albedo, wind speed and ocean currents. Knowledge of the detailed processes is currently too crude for those processes to be implemented realistically into models. Our sensitivity experiments indicate a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system.

  9. Regional geothermal effects on subglacial water routes beneath the last Cordilleran ice sheet

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina

    2016-04-01

    The Cordilleran ice sheet, which covered the mountain ranges of north-western America during the last glacial cycle, provides an ideal setting to study the effect of geothermal anomalies on subglacial water routing beneath large-scale ice masses. First, the Cordilleran ice sheet rested directly on a geologically old yet still active subduction zone, which is responsible for significant geothermal variability in the region. Second, the deep valleys and intramontane basins that characterize the Cordilleran topography tend to act as flux wells to further enhance the heterogeneity of this geothermal distribution. Third, compared to the currently ice covered areas such as Greenland and Antarctica where direct observations of the geothermal distribution are exceedingly rare, the region of the North American Cordillera offers insights into geothermal variability from numerous borehole measurements taken across western territories of the US and Canada. Fourth and last, the subglacial water system left ample evidence on the landscape, including vast esker systems, deep canyons and subglacial lake sediments, allowing for an interpretation of the modeled hydrological networks and their comparison with geological data. Here we use the Parallel Ice Sheet Model (PISM) to simulate ice dynamics and simplified subglacial hydrology of the Cordilleran ice sheet through the last 120 000 years. We test several existing reconstructions of the geothermal flux from direct and indirect observations versus a uniform distribution of heat flux to isolate the effects of regional geothermal variability on thermo-hydrological conditions at the base of the last Cordilleran ice sheet. We find that the uncertainties in the geothermal flux distribution as well as regional geothermal anomalies present in the reconstructions have little effect on the modelled ice extent and thickness, but they affect the distribution of melt rate and water routes beneath the ice sheet. All but one of the

  10. Application of theoretical models to active and passive remote sensing of saline ice

    NASA Technical Reports Server (NTRS)

    Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.

  11. Application of theoretical models to active and passive remote sensing of saline ice

    NASA Technical Reports Server (NTRS)

    Han, H. C.; Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Kwok, R.

    1992-01-01

    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program.

  12. Turbulent heat exchange between water and ice at an evolving ice–water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  13. Mercury Polar Volatiles: Complex Hydrocarbons vs Water Ice

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Smith, D. E.; Paige, D. A.; Solomon, S. C.; Ernst, C. M.; Barnouin, O. S.; Mao, D.

    2012-12-01

    Radiometric measurements by MLA elucidate the emplacement and sequestration of volatiles on Mercury, repeatedly imaged by Earth-based radar. We have reported [Neumann et al., 2012, LPSC, #2651] the presence of MLA-dark deposits coinciding with many of the radar-bright regions thought to indicate the presence of subsurface ice. Thermal models [Paige et al., 2012, LPSC, #2875] suggest that at certain latitudes, maximum temperatures exceed the regime of stability of surface water ice, but average subsurface temperatures allow its persistence there against sublimation. At the highest latitudes, where radar signatures fill large portions of polar craters, measurements by MLA are at the noise limit for measuring reflectance; however, several profiles have been obtained with useful energy data. We explore the working hypothesis that dark, complex organics (common in asteroids & comets) overly water ice, providing an important constraint on thermal models of polar regions. Repeated profiles are being acquired in the extended mission in order to more clearly delineate the boundaries of volatile deposits. A good sampling of craters over the appropriate latitude range will further constrain the composition of volatiles. We will report on further mapping in the MESSENGER Extended Mission to the coldest north polar regions, where the majority of ices lie.

  14. Soliton-like structures on a water-ice interface

    NASA Astrophysics Data System (ADS)

    Il'ichev, A. T.

    2015-12-01

    This paper contains a proof of the existence of soliton-like solutions of the complete system of equations describing wave propagation in a fluid of finite depth under an ice cover. These solutions correspond to solitary waves of various kinds propagating along the water-ice interface. The plane-parallel motion is considered in a layer of a perfect fluid of finite depth whose characteristics obey the complete two-dimensional Euler system of equations. The ice cover is modelled by an elastic Kirchhoff-Love plate and has significant thickness, so that the plate's inertia is taken into account in the formulation of the model. The Euler equations contain the additional pressure arising from the presence of the elastic plate floating freely on the fluid surface. The indicated families of solitary waves are parameterized by the speed of the waves, and their existence is proved for speeds lying in some neighbourhood of the critical value corresponding to the quiescent state. The solitary waves, in turn, bifurcate from the quiescent state and lie in some neighbourhood of it. In other words, it is proved that solitary waves of sufficiently small amplitude exist on the water-ice interface. The proof is conducted using the projection of the required system of equations on the centre manifold and a further analysis of the finite-dimensional reduced dynamical system on the centre manifold. Bibliography: 84 titles.

  15. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Burns, Barbara A.; Onstott, Robert G.

    1990-01-01

    The effects of ice surface melt on microwave signatures and errors in the calculation of sea ice concentration are examined, using active and passive microwave data sets from the Marginal Ice Zone Experiment aircraft flights in the Fram Strait region. Consideration is given to the possibility of using SAR to supplement passive microwave data to unambiguously discriminate between open water areas and ponded floes. Coincident active multichannel microwave radiometer and SAR measurements of individual floes are used to describe the effects of surface melt on sea ice concentration calculations.

  16. Pathways of Snowmelt Water into an Ice-Covered Lake

    NASA Astrophysics Data System (ADS)

    Cortes, A.; MacIntyre, S.; Sadro, S.

    2015-12-01

    Discharge of water into ice-covered arctic lakes during snowmelt can be high, but no general framework exists to quantify the pathway of the flow into the lakes and the associated distribution of incoming resources including dissolved organic carbon (DOC) or greenhouse gases. In this study, we characterize the fate of the snowmelt water flowing into 1.5 km2 Toolik Lake, Alaska, in 2014 and 2015. We deployed arrays with temperature, conductivity, and oxygen sensors in the water column over the winter, performed high temporal and spatial resolution CTD surveys on four 500 m to 1 km long transect lines during spring, and obtained correlative meteorological and discharge data. During both study spring periods, we observed different snowmelt inflow regimes based on the discharge rate (low and high) which led to differences in the extent of vertical and horizontal dilution of the lake water. Our first estimates of horizontal dispersion of snowmelt water in Toolik Lake under a high discharge regime are in the upper range of values found for ice-covered lakes (O ~ (102) cm2 s-1). In both years, the incoming water spread over ~75% of the basin near the surface with associated loading of DOC and methane. Spring 2014 was typical of other years with a gradual snowmelt and restricted depth of penetration of the incoming water. In fact, the increased density gradient in the upper few meters created conditions which retarded subsequent mixing at ice off. In contrast, persistent high pressures over the Alaskan region caused an exceptionally warm spring and rapid snowmelt in 2015. The subsequent warming of stream waters meant that the within lake vertical density gradient was weakened and facilitated later mixing. The differences in magnitude of discharge and temperature of incoming water during the more average and the warm springs enable interpretations and predictions of the fate of solutes flowing into lakes during snowmelt under variable weather regimes.

  17. Application of Ice Nucleation - Active Bacteria to Food

    NASA Astrophysics Data System (ADS)

    Arai, Soichi; Watanabe, Michiko

    Ice nucleation-active bacteria act as nuclei and are able to freeze water without supercooling to a great degree. They are known as a major cause of the frost damage to crops. We have been trying with success to positively apply these bacteria to freeze texturing of food materials, freeze concentration of fresh liquid foods, formation of new physical properties of foods by freezing, and so forth. The most useful species for these applications is Xanthomonas campestris which has recently been designated as a food additive by the Japan Ministry of Health and Welfare and produced on an industrial scale. This paper reviews these topics, with some practical examples quoted primarily from our studies.

  18. North Polar Water Ice by Weight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 8, 2003

    This map shows the percent of water by weight in near-surface materials of Mars' north polar region. It is derived from the gamma ray spectrometer component of the gamma ray spectrometer suite of instruments on NASA's Mars Odyssey spacecraft.

    Significant concentrations of water (greater than 20 percent) are poleward of 55 degrees north latitude. The highest concentration, greater than 50 percent, is between 75 degrees north and the pole. Another area with a high concentration of water by weight is in the north polar plains between longitudes minus 105 degrees and minus 140 degrees, and between latitudes 60 degrees and 75 degrees.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for the NASA Office of Space Science in Washington. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

  19. Fluctuations and local ice structure in model supercooled water

    NASA Astrophysics Data System (ADS)

    Overduin, S. D.; Patey, G. N.

    2015-09-01

    Large-scale simulations (up to 32 000 molecules) are used to analyze local structures and fluctuations for the TIP4P/2005 and TIP5P water models, under deeply supercooled conditions, near previously proposed liquid-liquid critical points. Bulk freezing does not occur in our simulations, but correlations between molecules with local ice-like structure (ice-like molecules) are strong and long ranged (˜4 nm), exceeding the shortest dimension of smaller simulation cells at the lowest temperatures considered. Correlations between ice-like molecules decay slowly at low temperature, on the order of a hundred nanoseconds. Local ice-like structure is strongly correlated with highly tetrahedral liquid structure at all times, both structures contribute to density fluctuations, and to the associated anomalous scattering. For the TIP4P/2005 and TIP5P models, we show that the apparent spontaneous liquid-liquid phase separations, recently reported [T. Yagasaki, M. Matsumoto, and H. Tanaka, Phys. Rev. E 89, 020301 (2014)] for small rectangular simulation cells below the proposed critical points, exhibit strong system size dependence and do not occur at all in the largest systems we consider. Furthermore, in the smaller rectangular systems where layers of different densities do occur, we find that the appearance of a region of low density is always accompanied simultaneously by an excess of local ice density, with no separation in time. Our results suggest that the density differences observed in direct simulations for the two models considered here are likely due to long-range correlations between ice-like molecules and do not provide strong evidence of liquid-liquid phase separation.

  20. Effects of de-icing salt on ground water characteristics.

    PubMed

    O'Brien, J E; Majewski, J C

    1975-01-01

    The effect of "road salt" on the characteristics of Massachusetts drinking water supplies has been significant and cumulative rather than transient or seasonal. De-icing salt is essentially all sodium chloride. Calcium chloride accounted for only three percent of the total salt used. However, hardness content, as well as sodium ion concentration, has increased greatly in ground waters in the past decade. The changing composition of our water supplies has agricultural, economic, and public health implications. This study attempts to quantify the stoichiometry of these changes in concentration, which are in part due to an ion-exchange mechanism in the soil. PMID:238830

  1. Keeping a surface ice/frost free with electro-conducting water-repellent coatings

    NASA Astrophysics Data System (ADS)

    Das, Arindam; Kapatral, Shreyas; Megaridis, Constantine M.

    2013-11-01

    Ice/frost formation on aircraft, wind turbines, power grids, marine vessels, telecommunication devices, etc. has propelled scientific research on surfaces that facilitate the removal of the water solid phase or retard its formation. Superhydrophobic, self-cleaning surfaces have been investigated recently (Jung et al., Langmuir 2011) for their passive anti-icing properties. Although superhydrophobic surfaces have been shown to delay the onset of frosting and icing, they cannot prevent it entirely. Hence active deicing/defrosting approaches are required to keep surfaces free of ice/frost. Defrosting experiments have been carried out on glass substrates coated with textured polymeric nanocomposite films of different surface wettability, porosity and roughness. A strong influence of these parameters on condensation, condensation frosting and defrosting was observed. The coatings are electro-conducting, thus allowing skin heating at the interface between ice and the substrate. Sustained ice- and frost-free operation is demonstrated at substrate temperatures well below the freezing point and in humid ambient atmospheres. Supported by NSF Grant CBET-1066426.

  2. 78 FR 15876 - Activation of Ice Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... final rule published on August 22, 2011 (76 FR 52241). In that rule, the FAA amended its regulations to... Protection,'' (76 FR 52241). In that final rule the FAA added operating rules for flight in icing conditions... amendatory language of the final rule which inadvertently led to the omission of the new section from...

  3. Active microwave classification of sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.

    1989-01-01

    Radar backscatter studies of Arctic sea ice have been carried out over a number of years with the intent to acquire physical property information through the examination of microwave signatures. The breadth of these studies continues to expand; as an example, measurements are now conducted at frequencies from 500 MHz to about 100 GHz. One of the scientific goals of this work has been to develop an improved outstanding of the scattering processes at play. A second, equally important goal has been to apply the knowledge gained in examining the backscatter response of ice and snow made in conjunction with the detailed scene characterizations, the insight gained through theoretical modeling and parametric study, and the data entered into the radar signature library to develop procedures to convert microwave signal information (available in the very near future) into valuable data products. This should ultimately provide a better understanding of the environment. The author discusses what has been learned through the many efforts associated with the near-surface scatterometer measurement programs and how the knowledge gained is assisting in the development of future sea ice type satellite algorithms. The logic and mechanisms used in discriminating sea ice types are presented.

  4. Water quality observations of ice-covered, stagnant, eutrophic water bodies and analysis of influence of ice-covered period on water quality

    NASA Astrophysics Data System (ADS)

    sugihara, K.; Nakatsugawa, M.

    2013-12-01

    The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that

  5. The first laboratory measurements of sulfur ions sputtering water ice

    NASA Astrophysics Data System (ADS)

    Galli, André; Pommerol, Antoine; Vorburger, Audrey; Wurz, Peter; Tulej, Marek; Scheer, Jürgen; Thomas, Nicolas; Wieser, Martin; Barabash, Stas

    2015-04-01

    The upcoming JUpiter ICy moons Explorer mission to Europa, Ganymede, and Callisto has renewed the interest in the interaction of plasma with an icy surface. In particular, the surface release processes on which exosphere models of icy moons rely should be tested with realistic laboratory experiments. We therefore use an existing laboratory facility for space hardware calibration in vacuum to measure the sputtering of water ice due to hydrogen, oxygen, and sulfur ions at energies from 1 keV to 100 keV. Pressure and temperature are comparable to surface conditions encountered on Jupiter's icy moons. The sputter target is a 1cm deep layer of porous, salty water ice. Our results confirm theoretical predictions that the sputter yield from oxygen and sulfur ions should be similar. Thanks to the modular set-up of our experiment we can add further surface processes relevant for icy moons, such as electron sputtering, sublimation, and photodesorption due to UV light.

  6. The x-ray absorption spectra of water and ice

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Wu, Xifan; Car, Roberto

    2012-02-01

    We calculate the x-ray absorption spectra of liquid water at STP, hexagonal ice and amorphous low- and high-density ice at T=269K, using the static Coulomb-hole and screened exchange self energy approach ootnotetextW. Chen, X. Wu and R. Car, PRL 105, 017802 (2008) . We take the nuclear quantum effects into account by averaging over the Feynman path-integral replicas. We find that quantum disorder is particularly important in liquid water where it substantially improves the structure ootnotetextJ. Morrone and R. Car, PRL 101, 017801 (2008) Compared to Ref. 2, we use an improved screening model that includes the approximate local field correction ootnotetextM. Hybertsen and S. G. Louie, PRB 37, 2733 (1988). The resulting spectra are in significantly better agreement with experiments than in previous calculations.

  7. Water-Related Seismic Sources in Glaciers and Ice Sheets (Invited)

    NASA Astrophysics Data System (ADS)

    Walter, F. T.; Heeszel, D.; Kilb, D. L.; Roux, P.; Husen, S.; Kissling, E. H.; Luethi, M. P.; Funk, M.; Clinton, J. F.; Fricker, H.

    2013-12-01

    Liquid water can have a profound impact on the flow of glaciers and ice sheets. Acceleration of ice flow via enhanced basal motion, hydro-fracturing and cryo-hydrologic warming are just three possible mechanisms that can drastically alter ice dynamics. At the same time, subsurface water flow is difficult to measure as the englacial and subglacial drainage systems are highly inaccessible. Although tracer experiments, speleological methods, radar measurements and deep drilling provide some information about water flow and changes thereof, more data on hydraulic processes are needed for the development and testing of numerical ice flow models. Recent studies have suggested that passive seismic techniques can be used to monitor englacial and subglacial water flow. This inter-disciplinary approach is motivated by the analogy between fluid-induced seismic sources in glaciers and volcanoes, which was first proposed in the late 70's. As seismological analysis is a valuable tool to monitor hydro-thermal activity in volcanic regions, it may consequently also reveal transient or sudden changes in a glacier's water drainage system. Here, we present results from continuous and event-based seismic monitoring exercises on Swiss mountain glaciers and the ablation zone of the Greenland ice sheet. We examine 'icequakes', sustained tremors and seismic background noise, whose sources are closely connected to the presence or movement of water. Analyzing icequake moment tensors and signal characteristics, spectrograms, noise source locations and simple models of resonating cracks, we can monitor the development and evolution of water passages below the glacier surface. Accordingly, our seismic measurements elucidate an area of the glacier, which has been difficult to investigate with traditional glaciological techniques.

  8. The Uranian satellites - Water ice on Ariel and Umbriel

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Brown, R. H.

    1981-01-01

    New near-infrared reflectance spectra are presented for Ariel and Umbriel. Water ice on the surface of Ariel and Umbriel is verified from spectral signatures in the 2-micron region. However, the weaker bands in Umbriel's spectrum indicate that its surface is significantly different from Ariel either in degree of contamination with dark material or in microstate. Umbriel may have a lower albedo than Ariel, Titania, and Oberon and, therefore, may have a diameter comparable to that of Titania.

  9. Improved Instrument for Detecting Water and Ice in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  10. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  11. Shedding of Water Drops from a Surface under Icing Conditions.

    PubMed

    Mandal, Deepak Kumar; Criscione, Antonio; Tropea, C; Amirfazli, A

    2015-09-01

    A sessile water drop exposed to an air flow will shed if the adhesion is overcome by the external aerodynamic forces on the drop. In this study, shedding of water drops were investigated under icing conditions, on surfaces with different wettabilities, from hydrophilic to superhydrophobic. A wind tunnel was used for experiments in a temperature range between -8 and 24.5 °C. Results indicate that the temperature has a major influence on the incipient motion of drop shedding. The critical air velocity (U(c)) at which a drop first starts to shed generally increases under icing conditions, indicating an increase in the adhesion force. The contact angle hysteresis (CAH) and the drop base length (L(b)) are found to be the controlling factors for adhesion. A correlation was also developed to deduce the drag coefficient, C(D) for the drop. It was found that C(D) can decrease under icing conditions. In general, a lower C(D) and higher adhesion together lead to a higher critical air velocity. However, there are systems such as water on Teflon for which the critical air velocity remains practically unaffected by temperature because of similar adhesion and C(D) values, at all temperatures tested. PMID:26261936

  12. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.

    PubMed

    Kasuga, Jun; Mizuno, Kaoru; Arakawa, Keita; Fujikawa, Seizo

    2007-12-01

    Boreal hardwood species, including Japanese white birch (Betula platyphylla Sukat. var. japonica Hara), Japanese chestnut (Castanea crenata Sieb. et Zucc.), katsura tree (Cercidiphyllum japonicum Sieb. et Zucc.), Siebold's beech (Fagus crenata Blume), mulberry (Morus bombycis Koidz.), and Japanese rowan (Sorbus commixta Hedl.), had xylem parenchyma cells (XPCs) that adapt to subfreezing temperatures by deep supercooling. Crude extracts from xylem in all these trees were found to have anti-ice nucleation activity that promoted supercooling capability of water as measured by a droplet freezing assay. The magnitude of increase in supercooling capability of water droplets in the presence of ice-nucleation bacteria, Erwinia ananas, was higher in the ranges from 0.1 to 1.7 degrees C on addition of crude xylem extracts than freezing temperature of water droplets on addition of glucose in the same concentration (100 mosmol/kg). Crude xylem extracts from C. japonicum provided the highest supercooling capability of water droplets. Our additional examination showed that crude xylem extracts from C. japonicum exhibited anti-ice nucleation activity toward water droplets containing a variety of heterogeneous ice nucleators, including ice-nucleation bacteria, not only E. ananas but also Pseudomonas syringae (NBRC3310) or Xanthomonas campestris, silver iodide or airborne impurities. However, crude xylem extracts from C. japonicum did not affect homogeneous ice nucleation temperature as analyzed by emulsified micro-water droplets. The possible role of such anti-ice nucleation activity in crude xylem extracts in deep supercooling of XPCs is discussed. PMID:17936742

  13. Laboratory Investigation of Direct Measurement of Ice Water Content, Ice Surface Area, and Effective Radius of Ice Crystals Using a Laser-Diffraction Instrument

    NASA Technical Reports Server (NTRS)

    Gerber, H.; DeMott, P. J.; Rogers, D. C.

    1995-01-01

    The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.

  14. Immersion freezing of ice nucleation active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached

  15. Discovery of water ice nearly everywhere in the solar system

    SciTech Connect

    Zuppero, A.

    1995-10-01

    During the last decade we have discovered sources of accessible water in some form nearly everywhere in the solar system. Water ice has been found on the planet Mercury; probably on the Earth`s Moon; on Mars; on near Earth objects; on comets whose orbits frequently come close to that of Earth`s orbit; probably on Ceres, the largest inner asteroid; and on comets previously and incorrectly considered to be out of practical reach. The comets also provide massive quantities of hydrocarbons, similar to oil shale. The masses of either water or hydrocarbons are measured in units of cubic kilometers. The water is key to space transportation because it can be used as a rocket propellant directly, and because thermal process alone can be used to convert it and hydrocarbons into hydrogen, the highest performing rocket propellant. This presentation outlines what is currently known about the locations of the water ice, and sketches the requirements and environments of missions to prospect for and assay the water sources.

  16. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    USGS Publications Warehouse

    Durner, G.M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness. ?? 2011 US Government.

  17. One-hundred-km-scale basins on Enceladus: Evidence for an active ice shell

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.; McKinnon, William B.

    2009-08-01

    Stereo-derived topographic mapping of ˜50% of Enceladus reveals at least 6 large-scale, ovoid depressions (basins) 90-175 km across and 800-to-1500 m deep and uncorrelated with geologic boundaries. In contrast, the south polar depression is larger and apparently shallower and correlates with active resurfacing. The shape and scale of the basins is inconsistent with impact, geoid surface deflections, or with dynamically supported topography. Isostatic thinning of Enceladus' ice shell associated with upwellings (and tidally-driven ice melting) can plausibly account for these basins. Thinning implies upwarping of the base of the shell of ˜10-20 km beneath the depressions, depending on total shell thickness; loss of near-surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice.

  18. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  19. Identifying the Influence of Variable Ice Types on Passive and Active Microwave Measurements for the Purpose of SWE Retrieval

    NASA Astrophysics Data System (ADS)

    Gunn, G. E.; Duguay, C. R.; Derksen, C.

    2010-12-01

    Dual polarized airborne passive microwave (PM) brightness temperatures (Tbs) at 6.9, 19 and 37 GHz H/V and satellite X-band (9.65 GHz VV/VH) active microwave backscatter measurements were combined with coincident in-situ measurements of snow and ice characteristics to determine the potential of unique emission/interaction caused by variable ice properties. Algorithms designed to estimate snow water equivalent (SWE) using the common brightness temperature difference approach (37GHz - 19 GHz) continually underestimate in-situ levels when applied to pure-ice pixels in the Canadian subarctic. Ice thickness measurements were positively correlated with 19 GHz vertically polarised (V pol) passive microwave emissions (R= 0.67), and negatively with 19 GHz horizontally polarised (H pol) emissions (R = -0.79), indicating that surface conditions at the ice/snow interface affect the emissivity at H pol. This study examines the effect of ice types on coincident passive and active microwave measurements for free-floating ice in two lakes (Sitidgi, Husky Lakes). Ice types are delineated using the SAR segmentation program MAGIC (MAp Guided Ice Classification) that has previously been used to characterize sea ice types. Based on output ice types produced by MAGIC, the relationship between active and passive microwave measurements is examined. Output ice classes corresponded well to those measured at coincident in-situ sampling sites. Emissions at 19 GHz H and cross-polarised X-band backscatter (9.65 GHz) increase coincident to ice types that exhibit more scattering potential. Clear ice exhibits the lowest return, followed by a transition zone between clear ice and grey ice. Grey ice exhibits higher returns as a result of the inclusion of spherical air bubbles, followed by rafted ice, which exhibits an excess of scattering potential. Concurrently, transects of dual polarized 6.9 and 19 GHz PM Tbs exhibited a positive relationship with cross-polarized active microwave backscatter (VH

  20. Bursting money bins, the ice and water structure

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-05-01

    In the classic comics by Carl Barks, "The Big Bin on Killmotor Hill" [1], Uncle Scrooge, trying to defend his money bin from the Beagle Boys, follows a suggestion by Donald Duck, and fills the bin with water. Unfortunately, that night is going be the coldest one in the history of Ducksburg. The water freezes, bursting the "ten-foot walls'' of the money bin, and finally the gigantic cube of ice and dollars slips down the hill up to the Beagle Boys lot.

  1. The surface composition of Charon - Tentative identification of water ice

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Rieke, George H.

    1987-01-01

    The Mar. 3, 1987, Charon occultation by Pluto was observed in the infrared at 1.5, 1.7, 2.0, and 2.35 micrometers. Subtraction of fluxes measured between second and third contacts from measurements made before and after the event has yielded individual spectral signatures for each body at these wavelengths. Charon's surface appears depleted in methane relative to Pluto. Constancy of flux at 2.0 micrometers throughout the event shows that Charon is effectively black at this wavelength, which is centered on a very strong water absorption band. Thus, the measurements suggest the existence of water ice on Pluto's moon.

  2. Laboratory investigation of Martian water ice cloud formation using dust aerosol stimulants

    NASA Astrophysics Data System (ADS)

    Ladino, L. A.; Abbatt, J. P. D.

    2013-01-01

    The ice nucleation abilities of submicron aerosol particles of two Martian regolith analogs, the Mojave Mars simulant and Johnson Space Center Mars-1, were investigated with the University of Toronto continuous flow diffusion chamber. The temperature range studied (> 200 K) is relevant to low-altitude water ice cloud formation in the Martian atmosphere and the aerosol particles were suspended in air, in contrast to previous experiments. Both simulants were found to be active ice nuclei in the deposition nucleation mode between 223 K and 203 K. The Mojave Mars simulant particles were found to be better ice nuclei than the Johnson Space Center Mars-1 particles requiring lower supersaturations to nucleate ice. It was observed that the critical supersaturation (Scrit) to activate 1% of the particles increased with decreasing temperature in accord with previous low-temperature studies, rising to a value of above 1.7 at 203 K. This corroborates literature results that there is a substantial barrier to ice nucleation at low temperatures, underlining the need for incorporating this effect in Martian cloud microphysical models. It was also found that Scrit did not change when the size of the Mojave Mars simulant particles was increased from 240 to 400 nm. Comparison of the Martian simulants with other mineral dusts shows that the Johnson Space Center Mars-1 analog behaves similarly to the well-known terrestrial ice nuclei such as kaolinite and Arizona test dust particles, whereas the Mojave Mars simulant behaves closer to another clay, montmorillonite. The wettability parameter, m, was calculated to range from 0.955 to 0.959.

  3. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  4. Crystallization of amorphous water ice in the solar system

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.

    1996-01-01

    Electron diffraction studies of vapor-deposited water ice have characterized the dynamical structural changes during crystallization that affect volatile retention in cometary materials. Crystallization is found to occur by nucleation of small domains, while leaving a significant part of the amorphous material in a slightly more relaxed amorphous state that coexists metastably with cubic crystalline ice. The onset of the amorphous relaxation is prior to crystallization and coincides with the glass transition. Above the glass transition temperature, the crystallization kinetics are consistent with the amorphous solid becoming a "strong" viscous liquid. The amorphous component can effectively retain volatiles during crystallization if the volatile concentration is approximately 10% or less. For higher initial impurity concentrations, a significant amount of impurities is released during crystallization, probably because the impurities are trapped on the surfaces of micropores. A model for crystallization over long timescales is described that can be applied to a wide range of impure water ices under typical astrophysical conditions if the fragility factor D, which describes the viscosity behavior, can be estimated.

  5. Warm Atlantic water drives Greenland Ice Sheet discharge dynamics

    NASA Astrophysics Data System (ADS)

    Christoffersen, P.; Heywood, K. J.; Dowdeswell, J. A.; Syvitski, J. P.; Benham, T. J.; Mugford, R. I.; Joughin, I.; Luckman, A.

    2008-12-01

    Greenland outlet glaciers terminating in fjords experience seasonal fluctuations as well as abrupt episodes of rapid retreat and speed-up. The cause of abrupt speed-up events is not firmly established, but synchronous occurrences suggest that it is related to Arctic warming. Here, we report major warming of water masses in Kangerdlugssuaq Fjord, East Greenland, immediately prior to the fast retreat and speed-up of Kangerdlugssuaq Glacier in 2004-05. Our hydrographic data show that this event occurred when Atlantic water entered the fjord and increased temperature of surface water by 4°C and deep water by 1°C. On the basis of meteorological records and satellite-derived sea surface temperatures, which fluctuate by up to 4°C in periods of 2-3 years, we infer that inflow of Atlantic water is controlled by the direction and intensity of prevailing winds that force coastal and offshore currents. Our results demonstrate that Greenland Ice Sheet discharge dynamics are modulated by North Atlantic climate variability, which is identified by shifts in the position of atmospheric low pressure over the Labrador and Irminger seas. A persisting westerly position of the Icelandic Low since 1999 may explain why winters in Greenland have been particularly mild during the last decade and it is feasible that widespread and synchronous discharge fluctuations from outlet glaciers, which resulted in high rates of ice loss in southeast Greenland, are a consequence of this synoptic condition.

  6. Passive Anti-Icing and Active Deicing Films.

    PubMed

    Wang, Tuo; Zheng, Yonghao; Raji, Abdul-Rahman O; Li, Yilun; Sikkema, William K A; Tour, James M

    2016-06-01

    Anti-icing and deicing are the two major pathways for suppressing adhesion of ice on surfaces, yet materials with dual capabilities are rare. In this work, we have designed a perfluorododecylated graphene nanoribbon (FDO-GNR) film that takes advantage of both the low polarizability of perfluorinated carbons and the intrinsic conductive nature of graphene nanoribbons. The FDO-GNR films are superhydrophobic with a sheet resistance below 8 kΩ·sq(-1) and then exhibit an anti-icing property that prevents freezing of incoming ice-cold water down to -14 °C. After that point, voltage can be applied to the films to resistively heat and deice the surface. Further a lubricating liquid can be employed to create a slippery surface to improve the film's deicing performance. The FDO-GNR films can be easily switched between the superhydrophobic anti-icing mode and the slippery deicing mode by applying the lubricant. A spray-coating method makes it suitable for large-scale applications. The anti-icing and deicing properties render the FDO-GNR films with promise for use in extreme environments. PMID:27192099

  7. Mesoscale variability of water vapor, surface ice aging and precipitation in the Martian polar regions

    NASA Astrophysics Data System (ADS)

    Evdokimova, Nadezda; Rodin, Alexander V.; Kuzmin, Ruslan; Fedorova, Anna

    We present the results of analysis of the H2 O and CO2 ices and the atmospheric water vapor distribution in the polar regions of Mars, based on the OMEGA C channel data obtained during the period of MY 26-27. We employ observations of the North polar cap (NPC) obtain during the aphelion campaigns of 26-27 MY, and corresponding South polar cap (SPC) observations obtained during the perihelion season. In both cases ices were mapped using spectral indices corresponding to specific adsorption bands. At the NPC where H2 O ices is presented during the spring-summer season we used square-based index of the 1.5 µm for estimation of the net ice content and one of the 1.25 µm band for the analysis of ice microstructure. At the SPC square indices are unreliable because of contamination of narrow CO2 absorption bands, so the relative depth of 1.5 µm was used for mapping of H2 O ice. CO2 ice was mapped using 1.57 µm band. In both hemispheres, wave-2 and wave-3 structures were observed in the circumpolar regions during limited period of time. At the NPC wave-2 pattern was found in the 1.25 µm index distribution during early aphelion season that presumably reflects enhanced aging rates of the NPC frost caused by cyclonic wind system in the circumpolar vortex, resulting in enlargement of grains in the optically active skin layer. Later in the aphelion season, wave-2 pattern is followed by wave-3 which is a consequence of change of the leading wavenumber in the polar vortex. At the SPC, wave-3 pattern is observed during the shot period when seasonal CO2 ice cap retreats. We interpret this structure as the outcropping of H2 O ice deposits accumulated during south hemisphere for autumn-winter season. Water vapor distribution inferred from OMEGA data also demonstrates zonal variations correlating with such wave structures. GCM simulations with comprehensive treatment of the water cycle reproduce stationary cyclonic eddies during the string-summer, and transient wave-3 system

  8. The temperature jump at a growing ice-water interface

    NASA Astrophysics Data System (ADS)

    Elif Genceli Güner, F.; Wåhlin, Johan; Hinge, Mogens; Kjelstrup, Signe

    2015-02-01

    During an ice growth rate of around 0.02 mm/s, we report a temperature jump at an ice-water interface above 0 °C up to 1.68 °C (0.01 ± °C), as measured with thermochromatic-liquid-crystals. This gives experimental proof for the existence of an interfacial temperature jump during a liquid-solid phase transition, confirming similar results for liquid-vapour transition, and supporting idea of the surface as a separate thermodynamic system. The fact that there is no continuity in intensive variables across the interface, unlike what is assumed in standard engineering models, has a bearing on the understanding and modelling of coupled heat and mass transport at interfaces in nature and man-made applications.

  9. Research Station "Ice Base "Cape Baranov"- overview of activities in 2013 - 2015 years

    NASA Astrophysics Data System (ADS)

    Makshtas, Alexander; Sokolov, Vladimir; Bogorodskii, Peter; Kustov, Vasily; Movchan, Vadim; Laurila, Tuomas; Asmi, Eija; Popovicheva, Olga; Eleftheriadis, Kostas

    2016-04-01

    Research Station "Ice base "Cape Baranov" of Arctic and Antarctic Research Institute (AARI) had been opened in the fall 2013 on the Bolshevik Island, Archipelago Severnaya Zemlia. Now it is going as the integrated observatory, conducting comprehensive studies in practically all areas of Earth Sciences: from free atmosphere to sea ice and sea water structure in the Shokalsky Strait, from glaciers to permafrost, from paleogeography to ornithology. Overview of activities together with some preliminary results of field works at the station performing in 2014 - 2015 years by international multidisciplinary team in frame of free atmosphere, atmospheric surface layer, greenhouse gases and aerosol studies is presented together with model estimations of active soil layer.

  10. Concerning the co-occurrence of subglacial lakes and flow bifurcations of water and ice in Antarctica

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Fricker, H. A.; Siegfried, M. R.

    2012-12-01

    Active subglacial lakes beneath the ice streams and outlet glaciers of Antarctica are frequently found in regions of the ice sheet that are potential bifurcation points - i.e. locations where a small change in surface elevation (<5 m) would make the difference between subglacial water following main ice flow and diverting to an outflow location ultimately 100's of km away. In these regions the hydropotential basins that enable the water to pond result from a combination of bedrock topography and dynamic ice topography. Consequently the stability of such lakes over long timescales is subject to many factors, but ultimately favors locations where deceleration is occurring downstream but there is still a sufficient supply of water from upstream. Here we map and model the hydraulic connections in these dynamic regions, simulating the filling and draining of several key subglacial lakes. We then compare the model output against repeat track surface altimetry and other geophysical observations. Our initial results suggest the formation and drainage of subglacial lakes comprise part of two separate but related feedback loops: 1. In these regions thickening of ice downstream will tend to form hydropotential barriers that impound large quantities of subglacial water over time. Lakes formed upstream of these barriers will reduce lubrication to points downstream through impoundment and channelization of water. This will lead to further slowing and thickening. 2. The additional water stored upstream of a slowing ice stream is can then be accessed by an accelerating ice stream can provide an additional source of water for neighboring ice streams, especially those undergoing acceleration and thinning downstream. Consequently subglacial lake dynamics contribute significantly to the ice flow variability for much of the continent. Furthermore, the inferred ice flow history for locations such as the Siple Coast, is consistent with lake clusters and the associated water storage at

  11. Ice-Accretion Scaling Using Water-Film Thickness Parameters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Feo, Alejandro

    2003-01-01

    Studies were performed at INTA in Spain to determine water-film thickness on a stagnation-point probe inserted in a simulated cloud. The measurements were correlated with non-dimensional parameters describing the flow and the cloud conditions. Icing scaling tests in the NASA Glenn Icing Research Tunnel were then conducted using the Ruff scaling method with the scale velocity found by matching scale and reference values of either the INTA non-dimensional water-film thickness or a Weber number based on that film thickness. For comparison, tests were also performed using the constant drop-size Weber number and the average-velocity methods. The reference and scale models were both aluminum, 61-cm-span, NACA 0012 airfoil sections at 0 deg. AOA. The reference had a 53-cm-chord and the scale, 27 cm (1/2 size). Both models were mounted vertically in the center of the IRT test section. Tests covered a freezing fraction range of 0.28 to 1.0. Rime ice (n = 1.0) tests showed the consistency of the IRT calibration over a range of velocities. At a freezing fraction of 0.76, there was no significant difference in the scale ice shapes produced by the different methods. For freezing fractions of 0.40, 0.52 and 0.61, somewhat better agreement with the reference horn angles was typically achieved with the average-velocity and constant-film thickness methods than when either of the two Weber numbers was matched to the reference value. At a freezing fraction of 0.28, the four methods were judged equal in providing simulations of the reference shape.

  12. The ancient heritage of water ice in the solar system

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Alexander, Conel M. O.'D.; Du, Fujun; Graninger, Dawn; Öberg, Karin I.; Harries, Tim J.

    2014-09-01

    Identifying the source of Earth’s water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk’s deuterated water formation and its viability as the sole source for the solar system’s water. This finding implies that, if the solar system’s formation was typical, abundant interstellar ices are available to all nascent planetary systems.

  13. The ancient heritage of water ice in the solar system.

    PubMed

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. PMID:25258075

  14. Present-day Exposures of Water Ice in the Northern Mid-latitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Kanner, Lisa C.

    2007-01-01

    Water ice is exposed in the martian north polar cap, but is rarely exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual ice-rich layers, and report evidence of present-day surface exposures of water ice. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface ice on Mars.

  15. Bottom melting of Arctic Sea Ice in the Nansen Basin due to Atlantic Water influence

    NASA Astrophysics Data System (ADS)

    Muilwijk, Morven; Smedsrud, Lars H.; Meyer, Amelie

    2016-04-01

    sea ice. Because of the large increase in AW temperature over the last 30 years we assume that perturbations in the AW are important drivers of location of AW in this region, and that the sea ice and polar water above is passively responding to the AW variability. Previously it has been argued that the warming of AW could not contribute to increased ice melting because of the strong stratification. Our observations show an ice cover around 2 m, but with active ice formation in between the larger and thicker floes. The ongoing freezing drives brine release and subsequent convection, contributing to the deep ~100 m mixed layer observed in the area until mid-May. Onwards from May solar heating is stratifying the upper layer by adding heat. Data analysis is ongoing but indicates that location of AW is an important factor in bottom melting in the area north of Svalbard. Location of AW and related bottom melting will be evaluated using simulations from a fully coupled climate model.

  16. Water Ice Albedo Variations on the Martian Northern Polar Cap

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  17. Species of Thaumatomastix (Thaumatomastigidae, Protista incertae sedis) from the Arctic sea ice biota (North-East Water Polynya, NE Greenland)

    NASA Astrophysics Data System (ADS)

    Thomsen, Helge Abildhauge; Ikävalko, Johanna

    1997-01-01

    The sea ice biota of polar regions contains numerous heterotrophic flagellates very few of which have been properly identified. The whole mount technique for transmission electron microscopy enables the identification of loricate and scaly forms. A survey of Arctic ice samples (North-East Water Polynya, NE Greenland) revealed the presence of ca. 12 taxa belonging to the phagotrophic genus Thaumatomastix (Protista incertae sedis). Species of Thaumatomastix possess siliceous body scales and one naked and one scale-covered flagellum. The presence in both Arctic samples and sea ice material previously examined from the Antarctic indicates that this genus is most likely ubiquitous in polar sea ice and may be an important component in sea ice biota microbial activities.

  18. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  19. Extension of an Ice Shelf Water plume model beneath sea ice with application in McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hughes, K. G.; Langhorne, P. J.; Leonard, G. H.; Stevens, C. L.

    2014-12-01

    A one-dimensional, frazil-laden plume model predicts the properties of Ice Shelf Water (ISW) as it evolves beneath sea ice beyond the ice shelf edge. An idealized background ocean circulation, which moves parallel to the plume, imitates forcings other than the plume's own buoyancy. The size distribution and concentration of the plume's suspended frazil ice crystals are affected by the background circulation velocity, the root-mean square tidal velocity, the drag coefficient, and the efficiency of secondary nucleation. Consequently, these variables are the key physical controls on the survival of supercooled water with distance from the ice shelf, which is predicted using several realistic parameter choices. Starting at 65 m thick, the in situ supercooled layer thins to 11 ± 5 and 4 ± 3 m at distances of 50 and 100 km, respectively. We apply the extended model in McMurdo Sound, Antarctica, along the expected path of the coldest water. Three late-winter oceanographic stations along this path, in conjunction with historical data, provide initial conditions and evaluation of the simulations. Near the ice shelf in the western Sound, the water column consisted entirely of ISW, and the subice platelet layer thickness exceeded 5 m with platelet crystals dominating the sea ice structure suggesting that ISW persisted throughout winter. Presuming a constant ISW flux, the model predicts that the plume increases thermodynamic growth of sea ice by approximately 0.1 m yr-1 (˜5% of the average growth rate) even as far as 100 km beyond the ice shelf edge.

  20. Water level and ice monitoring of large and middle-sized lakes of Russia

    NASA Astrophysics Data System (ADS)

    Rybushkina, Galina; Troitskaya, Yuliya; Soustova, Irina

    2014-05-01

    Studying of water level and ice cover of large and medium sized lakes are of interest because they represent natural reservoirs of fresh water and are associated with human economic activity. Moreover, the water level variations and ice cover duration are important indicators of climate changes. In addition to in situ observations satellite methods of monitoring have certain advantages connected with the global coverage, instantaneous observations of large water areas and relatively low cost. However, the use of satellite methods for inland waters is often difficult because of their spatial resolution comparable to or greater than the size of water reservoirs. Remote sensing with high spatial resolution is often associated with a large repeat period of data (ICESat), or with a significant dependence of the quality of data on weather conditions (Landsat). In this regard, the use of Jason -2 satellite equipped with dual-frequency (13.6 GHz and 5 GHz) radar altimeters and passive three-frequency (18, 21 and 37 GHz) microwave radiometers is of interest, because the footprint diameter of their altimeters in Ku-band is about 10 km and the repeat period of observations is ten days, that make it suitable for observations of large and medium-sized inland waters. In this work we use the data of three mentioned above satellites to determine the water level variations and ice-cover régime of 8 lakes in Russia, water areas of which are intersected by the tracks of these satellites. Variations in water level is calculated on the base of retracking method [1] taking into account the fact that the waveforms of altimetry pulses of satellites Jason-2 and ICESat are distorted due to the influence of land. Satellite data are compared with available in situ observations and the correlation coefficient with in situ observations is calculated. The ice regime of lakes is determined using a new method [2] based on the analysis of the difference between the brightness temperatures of land

  1. Photochemistry of Secondary Organic Aerosol Components in Water and Ice

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Tran, V. T.; Lignell, H.; Nizkorodov, S.; Shemesh, D.; Gerber, R.

    2011-12-01

    Secondary organic aerosol (SOA) can nucleate clouds in the atmosphere and may be scavenged by previously formed cloud droplets. Significant concentrations of dissolved organic matter are typically present in cloud droplets, snow, and ice particles, however the photochemical transformations of these organic components in liquid aqueous solutions and in ice are poorly understood. An apparatus was constructed to measure the absorption spectra of frozen aqueous solutions in the presence of ultra-violet (UV) light. We can monitor the disappearance of the original reactant as a function of UV exposure time with UV-Visible spectroscopy and identify products with gas chromatography-mass spectrometry. Initial experiments with methylhydroperoxide, the simplest organic peroxide, which is readily detectable in solid and liquid cloud particles, reveal no change in the absorption spectra between the liquid and frozen solution. With these photolysis experiments, we can establish quantum yields of methylhydroperoxide photodissociation and allow for the comparison between liquid and ice phase chemistry. Additional experiments with pinonic acid, a significant product formed from alpha-pinene ozonolysis, and a mixture of common SOA constituents will allow us to determine quantum yields and reveal important insight in the understanding of the cloud processing of water soluble SOA by sunlight.

  2. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  3. Year round subglacial water pressure and ice velocity data from the West-Greenland ice sheet margin

    NASA Astrophysics Data System (ADS)

    Smeets, C. J. P. P.; Boot, W.; Hubbard, A.; Pettersson, R.; Wilhelms, F.; van den Broeke, M. R.; van de Wal, R. S. W.

    2012-04-01

    Surface melt water plays in important role in controlling the motion of ice caps or ice sheets. However, the lack of subglacial pressure information currently hampers the interpretation of the physics of the hydraulic system beneath the ice and the melt and ice velocity at the surface. In July 2010 an experiment was started at Russell glacier, a land terminating glacier near Kangerlussuaq, West Greenland. The drilling location is proven to experience a particular strong coupling between melt water production and ice velocity. During the experiment two pressure, one tilt, and 23 temperature sensors were installed in two 600 m deep holes using a newly developed wireless sensor system (WiSe). Surface melt water production and surface velocity are monitored simultaneously at nearby locations. The measurements are ongoing and currently a continuous data set of subglacial pressure, ice velocity and surface melt has been collected for the period July 2010 to August 2011 from which results are presented. At the start of summer melt the ice velocity quickly increases with daytime maxima up to 500% of its wintertime background values and a clear daily variation in line with subglacial pressure. During a period of 20 days thereafter the mean ice velocity and subglacial pressure decrease substantially while maintaining a diurnal cycle. It is apparent that the subglacial drainage network quickly develops into an efficient channelized (low pressure) system. Throughout the second half of the melt season the mean ice velocity is slightly decreasing and the diurnal minima show values below wintertime. Only during periods with intense melting the ice velocity increases substantially. The evolution of subglacial pressure during this period appears quite different between 2010 and 2011 indicating that the sensor location was connected to a system influenced by either channels or cavities. At the end of the melt season daily variations in subglacial pressure and ice velocity cease at

  4. A Lightweight Vertical Rosette for Deployment in Ice Covered Water

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Chayes, D. N.; Perry, R. S.; Schlosser, P.

    2009-12-01

    Although remote sensing technology provides measurement capability for a number of water properties, there are important substances for which this technology does not currently exist and the only way to measure these substances is to collect water samples and return the samples to the lab. In the Arctic Ocean water samples are difficult to obtain from ships because of the extensive ice cover and thick pressure ridges. However, the ice provides a landing platform for aircraft, which can rapidly cover long distances. Aircraft have been used for sampling the Arctic Ocean for the past half-century using bottles and internally recording CTDs attached to a cable and lowered through leads or holes drilled in the ice. The routine CTD/rosette technology used for sampling from ships measures profiles of temperature, salinity, oxygen as well as other substances in situ, displays the data in real time for choosing depths to obtain water samples and the water samples are then collected with the rosette. These systems are too heavy and bulky to deploy from aircraft. We have developed a lightweight modular CTD/rosette system that is deployed through a 12-inch diameter hole drilled in the ice. The modules are connected together physically and electrically with the water bottle modules, which contain four 4-liter bottles each, stacked on top of the CTD module. The CTD traces are displayed on a laptop computer and the bottles are tripped using modified Seabird controllers and a melt-lanyard tripping mechanism. We have used this system for several years with Twin Otter fixed wing aircraft as part of the Switchyard Project, sampling a line of stations annually in the heavily ice covered region between Alert and the North Pole. Casts are carried out in a tent connected to the airplane using a lightweight winch mounted in the airplane. At the completion of a cast, the water modules are placed in a cooler with bags of snow to provide thermal stability at about 0°C and the end caps

  5. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers

    PubMed Central

    2015-01-01

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729

  6. A Mechanism for Near-Surface Water Ice on Mars

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  7. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-10-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at -5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an ice nucleation (IN) active fraction of the order of 10-4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around -8°C.

  8. Increased Ice-age Influence of Antarctic Intermediate Water.

    NASA Astrophysics Data System (ADS)

    Muratli, J.; McManus, J.; Mix, A.; Chase, Z.

    2008-12-01

    A depth transect of three ODP sites collected along the central Chile Margin constrain Antarctic Intermediate Water (AAIW) distributions and regional export production over the last 30 ka. Reduced Re and Cd, and increased Mn are proxies for higher bottom water oxygenation; 230Th-normalized burial of opal is a proxy for productivity. Mn/Al is high during the glacial interval at all three sites, suggesting high oxygenation and the retreat of the oxygen minimum zone during this period. At Site 1233, within the core of modern AAIW, Re and Cd are unchanged from detrital values throughout the last 30 ky, implying continuously oxic conditions. In contrast, at the northern sites 1234 and 1235, which reside below and above AAIW respectively, Re and Cd rise rapidly from low glacial values at ~15ka, signifying lower oxygen concentrations at the sea floor during Holocene time relative to ice-age conditions. Local productivity, recorded in Th-normalized opal burial, is highest during the glacial interval at both sites 1233 and 1234, and varies independently from the redox proxies. We conclude that local productivity does not drive bottom water oxygenation here, and that ventilation of the shallow subsurface southeast Pacific increased during the last ice age, with an expanded depth range of AAIW relative to the present.

  9. Organochlorine compounds in ice melt water from Italian Alpine rivers.

    PubMed

    Villa, Sara; Negrelli, Christian; Finizio, Antonio; Flora, Onelio; Vighi, Marco

    2006-01-01

    Organochlorine chemicals (OCs) (dichlorodiphenyltrichloroethanes, hexachlorocyclohexanes, and hexachlorobenzene) were measured in ice melt water from five glaciers in the Italian Alps. Even though the data collected may not be sufficient for a precise description of persistent organic pollutant release patterns from glacier melting, they have, however, highlighted the potential for surface water contamination. Concentrations were of the same order of magnitude in all glacial streams, indicating comparable contamination levels in different glaciers of the alpine region. OC levels in nonglacial springs sampled in the same areas are usually lower. Even if differences during the melting season (from spring to autumn) have been identified, a regular seasonal pattern in OC concentrations was not observed. Risk for the aquatic environment is excluded through direct water exposure, but it is likely to occur through biomagnification and secondary poisoning exposure. PMID:16054693

  10. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  11. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  12. Rocket effluent - Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager I and II launches. The aerosol's morphology, concentration and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a subfreezing thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei. Their consequences for potential inadvertant weather modification demand additional study.

  13. Analysis of methanogenic and methanotrophic activity at the western margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Broemsen, E. L.; Webster, K. D.; Dieser, M.; Pratt, L. M.; Christner, B. C.

    2012-12-01

    Anoxic conditions in environments beneath the world's glaciers and ice sheets provide plausible habitats supporting the microbial production of methane. Recent reports of potential methane sources beneath the Greenland Ice Sheet (GrIS) suggest in situ production by an active community of methanogens. Beneath the GrIS, microbially derived methane can be dissolved in subglacial water, and during periods of melting, can exchange with the atmosphere at sites of subglacial discharge. Transfer of methane from subglacial fluids to the atmosphere could be a significant climate factor, but few data are available to make such assessments. The specific aim of this study was to characterize the composition and activity of methanogens and methanotrophs present in samples of subglacial outflow at the ice sheet margin near Kangerlussuaq, Greenland. Subglaical water was collected twice-weekly over a nine week period (mid July to mid September of 2012) and the dissolved methane concentration in the samples was determined via gas chromatography. Extracted RNA and DNA from the subglacial water was analyzed by analysis of 16s rRNA and rRNA genes present in the subglacial assemblages. From the molecular results we infer the presence of active methanogens related to the order Methanosarcinales. Further, locally elevated concentrations of atmospheric methane as high as 1.92 ± 0.03 ppmv, were detected in the ice tunnel of the subglacial outflow using open-path laser spectrometry. From these data we estimate rates of methane release at the ice sheet margin during the summer melt months at this geographical location. The results provide a context for addressing the impact that deglaciation will have on the release of greenhouse gases from ice sheets on a warming Earth.

  14. Microbial ice-nucleators in cloud water at the puy de Dôme (France)

    NASA Astrophysics Data System (ADS)

    Joly, Muriel; Amato, Pierre; Deguillaume, Laurent; Attard, Eleonore; Sancelme, Martine; Monier, Marie; Morris, Cindy E.; Delort, Anne-Marie

    2013-04-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content…), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1% of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively. References: Attard E. et al. (2012) Effects of atmospheric conditions on ice nucleation activity of Pseudomonas. Atmospheric Chemistry and Physics Discussion 12, 9491-9516. Joly M. et al. Ice nucleation activity of bacteria isolated from cloud water, accepted in Atmospheric Environment. Vaïtilingom M. et al. (2012) Long-term features of cloud microbiology at the Puy de Dôme (France). Atmospheric Environment 56, 88-100.

  15. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  16. Exposure of Water Ice in the Northern Mid-lattitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Kanner, Lisa C.

    2007-01-01

    Water ice is exposed in the martian north polar cap, and is occasionally exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60 deg. We have examined midlatitude areas of the northern plains displaying evidence of residual ice-rich layers, and report possible present-day exposures of ice. These exposures, if confirmed, could constrain the latitudinal and temporal stability of surface ice on Mars.

  17. Immersion freezing of ice nucleating active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Voigtländer, J.; Niedermeier, D.; Wex, H.; Stratmann, F.

    2012-08-01

    Biological particles, e.g. bacteria and their Ice Nucleating Active (INA) protein complexes, might play an important role for the ice formation in atmospheric mixed-phase clouds. Therefore, the immersion freezing behavior of INA protein complexes generated from a SnomaxTM solution/suspension was investigated as function of temperature in a range of -5 °C to -38 °C at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). The immersion freezing of droplets containing small numbers of INA protein complexes occurs in a temperature range of -7 °C and -10 °C. The experiments performed in the lower temperature range, where all droplets freeze which contain at least one INA protein complex, are used to determine the average number of INA protein complexes present, assuming that the INA protein complexes are Poisson distributed over the droplet ensemble. Knowing the average number of INA protein complexes, the heterogeneous ice nucleation rate and rate coefficient of a single INA protein complex is determined by using the newly-developed CHESS model (stoCHastic model of idEntical poiSSon distributed ice nuclei). Therefore, we assume the ice nucleation process to be of stochastic nature, and a parameterization of the INA protein complex's nucleation rate. Analyzing the results of immersion freezing experiments from literature (SnomaxTM and Pseudomonas syringae bacteria), to results gained in this study, demonstrates that first, a similar temperature dependence of the heterogeneous ice nucleation rate for a single INA protein complex was found in all experiments, second, the shift of the ice fraction curves to higher temperatures can be explained consistently by a higher average number of INA protein complexes being present in the droplet ensemble, and finally the heterogeneous ice nucleation rate of one single INA protein complex might be also applicable for intact Pseudomonas syringae bacteria cells. The results obtained in this study allow a new perspective on the

  18. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    NASA Astrophysics Data System (ADS)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  19. Erosion by Ice and Water in the Southern Andes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This scene on the remote, rugged Argentine/Chilean border in the far southern Andes Mountains offers numerous, dramatic examples of both erosional processes and features of ice and water. The sharp, glaciated crest of the Cerro San Lorenzo (center) exceeds 12,000 feet and casts a long shadow southeastward. Glaciers on its western flank flow into the valley. This Electronic Still Camera photo was taken from the International Space Station, in December 2000 (late spring) when most of the previous winter's snow had melted below an altitude of 6,000 feet. Lago Pueyrredon, and the other lakes visible here, have been excavated by geologically recent episodes of glacier erosion, when glaciers extended all the way onto the lowland plains (top right). Since the last melting of the glaciers (15,000 years ago) three distinct fan deltas (semicircular features, marked with arrows) have formed where rivers flow into the lake. Counterclockwise currents in the lake-driven by strong winds from the west-have generated thin sand spits from each fan-delta. The largest spit (attached to the largest fan-delta, see right arrow) has isolated an approximately 10-kilometer long segment of the south end of the lake. The river that constructed the largest fan presently discharges turbid water to this isolated basin, giving it a lighter color than the rest of the lake. Glacial data collected over the past 50 years indicate that small ice bodies are disappearing at accelerated rates. (EOS, vol 81, no. 24, June 13, 2000) Predictions are that large fluctuations in land ice, with significant implications to society, are possible in the coming decades and centuries due to natural and anthropogenic climate change. Before glacial data can be used to address critical problems pertaining to the world's economic and environmental health, more detailed information about such glaciers is needed. Image ISS001-ESC-5113 provided by the Earth Sciences and Image Analysis Laboratory, Johnson Space Center.

  20. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-04-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly spray into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°. At this temperature, about 1% of the SnomaxTM cells induced freezing of the spray droplets before they evaporated in the cloud chamber. The other suspensions of living cells didn't induce any measurable ice concentration during spray formation at -5.7°. The remaining aerosol was exposed to typical cloud activation conditions in subsequent experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets and then eventually acted as ice nuclei to freeze the droplets. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an INA fraction of the order of 10-4. The ice nucleation efficiency of SnomaxTM cells was much larger with an INA fraction of 0.2 at temperatures around -8°C.

  1. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  2. Volcano-Ice Interactions During Recent Eruptions of Aleutian Arc Volcanoes and Implications for Melt Water Generation

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.

    2013-12-01

    Recent eruptions in Alaska (Redoubt 2009; Pavlof 2007, 2013; Veniaminof 2013) all involved ice eruptive-product interactions that led to variable amounts of melt water generation. Production of melt water during explosive eruptions is the primary mechanism for lahar generation, which is a significant and sometimes-deadly hazard at snow and ice clad volcanoes. During the 2009 eruption of Redoubt Volcano, pyroclastic flows produced by explosive destruction of lava domes swept across and eroded glacier ice and generated large quantities of melt water that formed correspondingly large lahars (107-109 m3) in the Drift River valley north of the volcano. Three of the twenty lahars generated during the eruption were large enough to threaten an oil storage facility 40 km from the volcano. During eruptions of Pavlof Volcano in 2007 and 2013 spatter-fed lava flows and minor pyroclastic flows descended over snow and ice on the upper flanks of the volcano and produced some melt water that generated lahars in the associated drainages. These lahars were smaller than those associated with the 2009 eruption of Redoubt Volcano because the melt water generation mechanism was different. At Veniaminof Volcano, a low-level eruption beginning in June 2013 produced small lava flows that flowed passively over glacier ice and produced only limited amounts of melt water. Although melt pits surrounding the lava flows eventually developed, the rate of melt water production was gradual and no significant outflows of water occurred. These eruptions and comparison with past events highlight the various mechanisms for melt water production during eruptive activity at snow and ice clad Alaskan volcanoes. Dynamic emplacement of eruptive products over glacier ice that involves significant erosion of ice and snow leads to production of large volumes of melt water. Less dynamic, but still energetic interactions such as those that have occurred at Pavlof Volcano, produce smaller amounts of melt and

  3. Hydrogen Sticking on Amorphous Water-Ice: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Dupuy, John; Lewis, Steven; Stancil, Phillip C.

    2016-01-01

    Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is a prime example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, adsorb to the surface, interact with the molecular structure of substrate (in this case water), form molecular hydrogen, and then be ejected from the surface. We perform classical molecular dynamics (MD) simulations of hydrogen atoms sticking to an amorphous water-ice surface. This study examines the first step in the process; the sticking of the atom to the substrate. This talk emphasizes the importance of accurately defining a sticking event in calculating sticking probabilities which are used to obtain a reasonable model for H2 formation in the ISM. With these sticking probabilities calculated, sticking coefficients are obtained for various ice substrate temperatures and incident H-atom kinetic energies.

  4. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Charnley, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-12-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 μm, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 μm. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 μm found on the long-wavelength wing of the 3 μm H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% ± 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  5. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  6. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  7. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Technical Reports Server (NTRS)

    Elsaesser, Greg; Del Genio, Anthony

    2015-01-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  8. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  9. Perennial water stratification and the role of basal freshwater flow in the mass balance of the Ward Hunt Ice Shelf, Canadian High Arctic

    SciTech Connect

    Jefferies, M.O.

    1992-03-01

    A pronounced perennial water stratification in Disraeli Fjord behind the Ward Hunt Ice Shelf on the north coast of Ellesmere Island is described. The ice shelf acts as a hanging dam at the mouth of the fjord and minimizes mixing between inflowing meltwater runoff and the seawater. Consequently, a 4 1 -m-deep layer of low salinity water, interposed between a 2- to 3-m-thick fjord surface ice layer and deeper seawater, is impounded behind the ice shelf. Highly negative delta 18O Values and high tritium activity in the low salinity water indicate it is derived primarily from snow-meltwater. Highly negative delta 18O values and high tritium values in a 5-m-thick basal ice layer in Hobson's Choice Ice Island, which broke off the East Ward Hunt Ice Shelf in 1982-83, might be evidence that basal accretion from freshwater flowing out of Disraeli Fjord below the ice shelf occurred prior to the calving. Using the known chronology of tritium occurrence in precipitation since 1952 and the measured levels in the basal ice, mean basal accretion rates of 96-141 mm yr-1 (water equivalent, w.e.) are calculated. The record of ablation and accumulation at the surface of the East Ward Hunt Ice Shelf for the period 1966-1982 shows an accumulated loss at the surface of 1.26 m (w.e.) at a mean annual rate of 74 mm yr-1. Therefore, despite many consecutive warm summers with considerable surface melting and runoff, the calculated basal accretion exceeds the surface loss and the ice shelf has increased, or at least maintained, its thickness. The thickening has been possible because of the feedback system created by the location of the ice shelf across the mouth of the fjord, the resultant water stratification and the outflow of freshwater below the ice shelf.

  10. Investigation of Low Altitude Water Ice Cloud Formation in Mars using a Laboratory Based Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Ladino Moreno, L. A.; Abbatt, J.

    2012-12-01

    The ice nuclei abilities of the two available Martian regolith analogs (the Mojave Mars simulant and Johnson Space Center Mars-1) to form low altitude water ice clouds in the Martian atmosphere were investigated with the help of the University of Toronto continuous flow diffusion chamber (UT-CFDC). Polydisperse aerosol particles (below 1μm) generated using a dry disperser and monodisperse aerosol particles (100 nm and 240 nm) generated with an atomizer were exposed to different supersaturations with respect to ice as a function of temperature. Experiments using 100 nm size selected sulfuric acid particles defined the homogeneous freezing threshold in the chamber. Both simulants were found to be active ice nuclei in the deposition nucleation mode between 223 K and 203 K. The Mojave Mars simulant particles were found to be slightly better ice nuclei than the Johnson Space Center Mars-1 particles since they require lower supersaturations to nucleate ice at the different tested temperatures. It was observed that the critical supersaturation (Scrit) to activate 1 % of the aerosol particles increased with decreasing temperature. It was also found that Scrit decreased when the particle size was increased from 100 nm to 240 nm. The Johnson Space Center Mars-1 analog behaves similarly to the well known terrestrial ice nuclei such as kaolinite and Arizona test dust particles, whereas, the Mojave Mars simulant behaves closer to another clay, montmorillonite. The m parameter values and the contact angles were calculated from the experimental Scrit. Those values follow the literature trends; however, our values are larger than in previous studies perhaps due to the use of submicron aerosol particles and the lower sensitivity of our system for determining the Scrit values. A general finding is that the barrier to ice nucleation becomes larger at lower temperatures. This behaviour is typically neglected in most of the microphysical models since the nucleation rates at this

  11. A Small Diameter Rosette for Sampling Ice Covered Waters

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Smethie, W. M.; Perry, R. S.; Schlosser, P.; Friedrich, R.

    2011-12-01

    A gas tight, small diameter, lightweight rosette, supporting equipment and an effective operational protocol has been developed for aircraft supported sampling of sea water across the Lincoln Sea. The system incorporates a commercial off the shelf CTD electronics (SBE19+ sensor package and SBE33 deck unit) to provide real-time measurement data at the surface. We designed and developed modular water sample units and custom electronics to decode the bottle firing commands and close the sample bottles. For a typical station, we land a ski-equipped deHaviland Twin Otter (DHC-6) aircraft on a suitable piece of sea-ice, drill a 12" diameter hole through the ice next to the cargo door and set up a tent to provide a reasonable working environment over the hole. A small winch with 0.1" diameter single conductor cable is mounted in the aircraft by the cargo door and a tripod supports a sheave above the hole. The CTD module is connected to the end of the wire and the water sampling modules are stacked on top as the system is lowered. For most stations, three sample modules are used to provide 12 four (4) liter sample bottles. Data collected during the down-cast is used to formulate the sampling plan which is executed on the up-cast. The system is powered by a 3,700 Watt, 120VAC gasoline generator. After collection, the sample modules are stored in passively temperature stabilized ice chests during the flight back to the logistics facility at Alert where a broad range of samples are drawn and stored for future analysis. The transport mechanism has a good track record of maintaining water samples within about two degrees of the original collection temperature which minimizes out-gassing. The system has been successfully deployed during a field program each spring starting in 2004 along a transect between the north end of Ellesmere Island (Alert, Nunavut) and the North Pole. During the eight field programs we have taken 48 stations with twelve bottles at most stations (eight at

  12. Ice Formation Process for Ice Thermal Energy Storage by Cooling Water-Oil Emulsion with Stirring in a Vessel

    NASA Astrophysics Data System (ADS)

    Nakagawa, Shinji; Okada, Masashi; Tsuchida, Daisuke; Kang, Chaedong; Matsumoto, Koji; Kawagoe, Tetuso

    A water-oil emulsion which is the mixture of silanol-aqueous solution and silicone oil was frozen in a vessel with stirring under various cooling temperatures. The cooling surfaces of the vessels were PTFE or PF A whose critical surface tension is relatively low. The effects of the wall thermal resistance on ice formation process were investigated. The relationship between the state of formed ice and cooling heat flux during freezing was c1arified. When the critical surface tension of the inner wall of the cooling surface is fixed, a smaller thermal resistance of wall enables the ice formation without ice adhesion to the surface at a higher ice formation rate. Ice can be formed without adhesion at the lower cooling temperature by using the vessel with a larger thermal resistance although the maximum cooling heat flux is relatively small. The maximum cooling heat flux decreases when the ratio of wall thermal resistance to overall thermal resistance before freezing is more than one half. It was shown that there were proper conditions to increase the cooling heat flux and that ice could be formed with high IPF under the proper conditions.

  13. Ice nucleation of Snomax® particles below water vapor saturation: immersion freezing in concentrated solution droplets

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kanji, Zamin A.; Boose, Yvonne; Beyer, Alexander; Henning, Silvia; Augustin-Bauditz, Stefanie

    2015-04-01

    Heterogeneous ice nucleation has received an increasing amount of interest in the past years, as it initiates the ice phase in mixed phase clouds (MPCs) and, to some extent, also in cirrus clouds. The presence of ice influences cloud radiative properties and, for mixed phase clouds, also the formation of precipitation. Immersion freezing is thought to be the most important mechanism through which ice formation could take place in MPCs. Here, we examine the ice nucleation activity of biological ice nucleating particles (INP) derived from bacteria, namely, particles generated from Snomax® suspensions, both above and below water vapor saturation. During a measurement campaign in Leipzig, ice nucleation measurements were conducted with PINC (Portable Ice Nucleus Counter, Chou et al., 2011) and LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014a). Immersion freezing measurements from PINC and LACIS were in agreement in the temperature regime for which both instruments operate reliably. Here, we will show that measurements done below water vapour saturation and above the deliquescence relative humidity of the Snomax® particles follow what would be expected for immersion freezing in concentrated solutions, similar to what was suggested for coated kaolinite particles in Wex et al. (2014b). Additionally, some measurements reported in the literature that were done in the water vapour sub-saturated regime will be evaluated based on the assumption made above, showing that at least some of the ice nucleation which previously was ascribed to deposition ice nucleation rather follows the behavior of immersion freezing in concentrated solutions. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725-4738, doi:10.5194/acp-11-4725-2011. Wex, H. et al. (2014a) Intercomparing different devices

  14. Ice Protection of Turbojet Engines by Inertia Separation of Water I : Alternate-duct System

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing investigations of internal water-inertia separation inlets designed to prevent automatically entrance of large quantities of water into a turbojet engine in icing conditions was conducted on a one-half scale model. A simplified analytical approach to the design of internal water-inertia separation inlets is included. Results show that in order to be effective in preventing screen and guide-vane icing for an inlet of this type, a ram-pressure recovery of 75 percent was attained at design inlet-velocity ratio in an icing condition. For nonicing operation, ram-pressure recovery is comparable to direct-ram inlet.

  15. Examination of the physical, electrical, and microwave evolution of sea water into young ice

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.

    1992-01-01

    Knowledge of the relationships between ice thickness, its temperature profile, the distribution of salinity, the dielectric property profile, and roughness of the air-ice interface is important to the understanding of the backscatter response of new and young sea ice. Backscatter, physical property, and electrical property measurements made in the laboratory during the first 120 h of growth aid in describing the evolution of first-year ice, in this case open water to gray ice (14.5 cm thick). Results on the evolution response for the case when the ambient air temperature is about -15 C are given, providing insight into the effects of upper ice sheet temperatures, the accompanying dielectric constant response, and the collection of brine and free water at the air-ice interface on the backscatter response.

  16. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  17. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  18. Sublimation of water ice mixed with silicates and tholins: Evolution of surface texture and reflectance spectra, with implications for comets

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Pommerol, Antoine; Jost, Bernhard; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2016-03-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70 °C) and pressure (10-5 mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS-NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for

  19. Evidence for subsurface water ice in Korolev crater, Mars

    USGS Publications Warehouse

    Armstrong, J.C.; Titus, T.N.; Kieffer, H.H.

    2005-01-01

    Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ???73?? latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix. ?? 2004 Elsevier Inc. All rights reserved.

  20. The formation, destruction and chemical influence of water ice: a review of recent laboratory results

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.

    2015-08-01

    Water ice is ubiquitous in dense molecular clouds, the stellar nurseries of the Galaxy. Recent theoretical investigations (Cleeves et al. 2014) suggest that much of this pre-stellar ice survives disk formation and thus takes part in forming of planets and planetesimals. Interstellar and circumstellar ice abundances thus affect the compositions of planets. The presence of water ice is also important for the formation of other molecules on grains. Water is the most abundant ice constituent and therefore sets the ice diffusion environment, which regulates for example the organic photochemistry proposed to drive the complex chemical evolution during star formation.The processes that regulate the formation, destruction and chemical influence of water have all been explored in laboratory experiments. One of the most significant advances in recent years is the arrival of laboratory experiments on hydrogen additions to condensed O, O2 and O3 — the proposed main formation pathways of water ice. These experiments have revealed how the interplay between diffusion and reaction barriers together regulate the water formation chemistry as well as the chemistry of closely related carbon-bearing species such as CO2. A very different set of laboratory experiments have in the same time period constrained the efficiency of non-thermal water desorption, especially UV-induced ice photodesorption. Laboratory work on other non-thermal desorption pathways, e.g. chemical desorption, has also advanced, though more experiments are needed to quantify the importance of these desorption pathways relative to photodesorption. There are also an increasing number of experiments aimed at constraining the diffusion environment of water-dominated ices and its effects on the formation of organics when ice mixtures are exposed to UV photons or other kinds of energetic radiation.I will review the many significant laboratory water ice experiments that has been relaized in the past few years and how they

  1. An integrated approach to the remote sensing of floating ice

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  2. Tectonics of icy satellites driven by melting and crystallization of water bodies inside their ice shells

    NASA Astrophysics Data System (ADS)

    Johnston, Stephanie Ann

    Enceladus and Europa are icy satellites that currently support bodies of liquid water in the outer solar system Additionally, they show signs of being geologically active. Developing numerical models informed by observations of these icy satellites allows for the development of additional constraints and an improved understanding of the tectonics and evolution of icy satellites. The formation mechanisms for both chaos and ridges on Europa are thought to involve water as albedo changes observed in association with them imply the deposition of salt-rich water near these features. Ridges are the most ubiquitous feature on Europa and are described as central troughs flanked by two raised edifices, range in height from tens to hundreds of meters. Europan ridges can extend hundreds of km continuously along strike but are only about 2 km across. A model of a crystallizing dike--like water intrusion is able to match the overall morphology of ridges, and is consistent the long continuous strike. However, the intrusion of a large volume of water is required to match the most common heights of the ridges. Chaos on Europa is defined as a large area of disrupted ice that contain blocks of pre-existing material separated by a hummocky matrix. A proposed mechanism for the formation of Chaos is that a region of heterogeneous ice within the shell is melted and then recrystallizes. Comparing the model results with the geology of Thera Macula, a region where it has been proposed that Chaos is currently forming, suggests that additional processes may be needed to fully understand the development of Chaos. Water-rich plumes erupt from the south pole of Enceladus, suggesting the presence of a pressurized water reservoir. If a pressurized sea is located beneath the south polar terrain, its geometry and size in the ice shell would contribute to the stress state in the ice shell. The geometry and location of such an ocean, as well as the boundary conditions and thickness of an ice shell

  3. Far-infrared spectral studies of phase changes in water ice induced by proton irradiation

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie L.

    1992-01-01

    Changes in the FIR spectrum of crystalline and amorphous water ice as a function of temperature are reported. The dramatic differences between the spectra of these ices in the FIR are used to examine the effect of proton irradiation on the stability of the crystalline and amorphous ice phases from 13 to 77 K. In particular, the spectra near 13 K show interconversion between the amorphous and crystalline ice phases beginning at doses near 2 eV/molecule and continuing cyclically with increased dose. The results are used to estimate the stability of irradiated ices in astronomical environments.

  4. Application of laser induced breakdown spectroscopy (LIBS) to Mars polar exploration : LIBS analysis of water ice and water ice/soil mixtures

    SciTech Connect

    Arp, Z. A.; Cremers, D. A.; Wiens, R. C.

    2004-01-01

    The polar regions of Mars are of great interest due to the presence of water ice and CO{sub 2} ice combined with wind blown deposits. Due to seasonal changes and repeated cycles of precipitating dusts and H{sub 2}O, geological samples appear to have built up in the polar regions. These polar layered deposits (PLD) may include volcanic ash, fallout from surface impacts, evaporates from subliming lakes and seas and even wind blown ancient microbial life. The ability to examine the PLDs will be of great importance in the study of past Martian geological history and the determination of the past presence of life on Mars. Analysis of the ice fields which are present in the polar regions of Mars will almost certainly be of great interest to future surface rovers and landers to this region. The use of LIBS will maximize the scientific return of these missions. Through the development of a compact sensor head and a pan and tilt mechanism, analysis of PLD may be made in areas that are otherwise inaccessible to either a lander or a surface rover. This gives LIBS a significant advantage over other analysis techniques which require more than just optical access. Also, through the use of repetitive laser pulses it will be possible to ablate away the water ice layer to better examine the PLDs which exist below the surface. Another potential use for LIBS is the analysis of retrieved ice core samples. Laser pulses formed along the length of the ice core can monitor composition as a function of depth. This method has already been shown to work for mineral drill cores and terrestrial ice cores using laser ablation ICP-MS. Prior work on the use of LIBS for analysis of ice has focused on the detection of trace metal ions in the ice. To our knowledge no further work has been reported on the use of LIBS for analysis of water ice and water ice/soil mixtures. Here we will examine in detail the detection capabilities of LIBS on water ice and water ice/soil mixtures in an atmosphere similar

  5. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  6. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  7. Diurnal Albedo Variations of the Martian North Polar Water Ice Cap

    NASA Technical Reports Server (NTRS)

    Troy, R. F.; Bass, D.

    2002-01-01

    Presentation of findings regarding diurnal variations in the north polar water ice cap of Mars as part of a larger study of the interannual and seasonal variations of the Martian north polar water ice cap. Additional information is contained in the original extended abstract.

  8. Highly Active Ice Nuclei from Tree Leaf Litters Retain Activity for Decades

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Hill, T. C. J.

    2015-12-01

    Biogenic ice nuclei (IN) studied since the 1960s were first observed in tree leaf litters, in a few bacteria species and later in fungi and lichens. Recently, viable IN bacteria in precipitation have been used as a metric of their possible role in precipitation formation. Although bacterial IN activity is deactivated by a variety of common environmental stresses, we present data showing that IN found in a potpourri of decayed plant leaves, bacteria, molds and fungi etc. in plant litters are exceptionally stable and active over decades while in storage. As such, their atmospheric IN potential is worthy of further study due to their environmental persistence. In August 1970 litter collected in a grove of deciduous trees near Red Deer, AB, Canada was tested for IN (drop freezing technique). The sample initiated ice at -4C with 109 IN per gram of litter active at -10C. A few kilograms were stored in a plastic bag and tested every few years for IN content; the IN activity remained essentially unchanged over 40 years. In 2011, litter collected in the same grove had the same IN activity as the sample tested over the intervening 40 years. Boiling a gram sample of this litter in 100 grams of water deactivated 99 % of the IN activity down to -13C. None of 88 different bacteria cultures several of which appeared to Pseudomonads (common IN producing bacteria) from the fresh litter produced any active IN. A sample of the litter was placed on the top of a 15 cm column of laboratory grade kaolin and water dripped onto the litter. Ten days later the water reached the bottom of the column. The kaolin was dried and tested for IN. The prior essentially IN free kaolin now exhibited IN activity at -4C with 105 IN active at -10C. The litter exposed kaolin retained the IN activity for 25 years. Baking the kaolin removed the active IN. This suggests that IN activity attributed to kaolin particles sometimes seen at the nucleus of snow crystals could be of biological origin.

  9. Fusion of satellite active and passive microwave data for sea ice type concentration estimates

    SciTech Connect

    Beaven, S.G.; Gogineni, S.; Carsey, F.D.

    1996-09-01

    Young first-year sea ice is nearly as important as open water in modulating heat flux between the ocean and atmosphere in the Arctic. Just after the onset of freeze-up, first-year ice is in the early stages of growth and will consist of young first-year and thin ice. The distribution of sea ice in this thickness range impacts heat transfer in the Arctic. Therefore, improving the estimates of ice concentrations in this thickness range is significant. NASA Team Algorithm (NTA) for passive microwave data inaccurately classifies sea ice during the melt and freeze-up seasons because it misclassifies multiyear ice as first-year ice. The authors developed a hybrid fusion technique for incorporating multiyear ice information derived form synthetic aperture radar (SAR) images into a passive microwave algorithm to improve ice type concentration estimates. First, they classified SAR images using a dynamic thresholding technique and estimated the multiyear ice concentration. Then they used the SAR-derived multiyear ice concentration constrain the NTA and obtained an improved first-year ice concentration estimate. They computed multiyear and first-year ice concentration estimates over a region in the eastern-central Arctic in which field observations of ice and in situ radar backscatter measurements were performed. With the NTA alone, the first-year ice concentration in the study area varied between 0.11 and 0.40, while the multiyear ice concentration varied form 0.63 to 0.39. With the hybrid fusion technique, the first-year ice concentration varied between 0.08 and 0.23 and the multiyear ice concentration was between 0.62 and 0.66. The fused estimates of first-year and multiyear ice concentration appear to be more accurate than NTA, based on ice observations that were logged aboard the US Coast Guard icebreaker Polar Star in the study area during 1991.

  10. Magnetospheric ion sputtering and water ice grain size at Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using

  11. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Pöschl, U.

    2015-02-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in southeast Wyoming, we found ice-nucleation-active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). To our knowledge this is the first report of ice nucleation activity in a zygomycotic fungi because the few known INA fungi all belong to the phyla Ascomycota and Basidiomycota. M. alpina is known to be saprobic and widespread in soil, and Mortierella spores are present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, < 300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  12. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  13. Martian Seasonal CO2 Frost Indicating Decameter-Scale Variability in Buried Water Ice

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; Hansen, C. J.; Cull, S.; Arvidson, R. E.; Searls, M.

    2011-12-01

    Several new lines of evidence indicate that subsurface water ice (ground ice) on Mars is more complexly distributed, and in variable concentrations, than had been previously envisioned. Understanding the current distribution of ground ice is a fundamental part of understanding how this ice was emplaced and the recent past climate conditions under which icy deposits formed and subsequently evolved. In this work we examine the seasonal defrosting of CO2 observed by HiRISE as an indicator of decameter-scale ground-ice heterogeneity. It is well known that CO2 dry ice accumulates on the martian surface in winter. The amount of dry ice and the time it spends on the ground depends strongly on surface properties. A readily observable attribute is the "crocus date", the season (Ls) when CO2 completely sublimates, exposing the soil surface. Many factors can affect the crocus date, but perhaps most important are the properties of CO2 frost and of the surface soil. We examine HiRISE observations, spanning more than a martian year, for decameter-scale patterns of CO2 frost and the crocus date. Year-to-year repeatability of CO2 ice patterns, both in polygon troughs and decameter-size patches, along with a lack of topography nor aeolian redistribution, suggests that differences in the surface substrate is the root cause for these patterns. In addition, only CO2 slab ice (solid, non-porous dry ice) is indicated throughout the observed seasons and at all spatial scales (down to meter scale), as evidenced by albedo (HiRISE and TES) and IR spectra (CRISM). In addition, the low emissivity and high albedo of fine-grained particulate CO2 frost would result in a crocus date much earlier than even the earliest observed. We present two scenarios of substrate differences which explain the observations: (i) the ice-table depth varies away from atmospheric equilibrium, such that a thicker "dry-soil" layer occurs in disequilibrium where the CO2 ice lingers longest; and (ii) the H2O

  14. Statistical ortho-to-para ratio of water desorbed from ice at 10 kelvin

    NASA Astrophysics Data System (ADS)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki

    2016-01-01

    The anomalously low ortho-to-para ratios (OPRs) exhibited by gaseous water in space have been used to determine the formation temperature (<50 kelvin) of ice on cold interstellar dust. This approach assumes that the OPR of water desorbed from ice is related to the ice formation temperature on the dust. However, we report that water desorbed from ice at 10 kelvin shows a statistical high-temperature OPR of 3, even when the ice is produced in situ by hydrogenation of O2, a known formation process of interstellar water. This invalidates the assumed relation between OPR and temperature. The necessary reinterpretation of the low OPRs will help elucidate the chemical history of interstellar water from molecular clouds and processes in the early solar system, including comet formation.

  15. Water ice phases II, III, and V - Plastic deformation and phase relationships

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Boro, C. O.; Kirby, S. H.; Stern, L. A.; Heard, H. C.

    1988-01-01

    The ordinary water phase I was transformed to the ice phases that are known to exist in the interiors of large ice moons, such as Ganymede and Callisto for the purpose of investigating plastic deformation behavior of these ices. Ices II, III, and V were prepared using an apparatus and techniques similar to those described by Durham et al. (1983) and subsequently deformed in a gas deformation apparatus, and their deformation data were obtained. It was found that ice II was the strongest of the high-pressure phases, with a strength that was comparable to that of ice I; ice III was very weak, with the flow rate 100 to 1000 times higher than that of ice II at the same levels of stress. It was also found that ices III and V can exist metastably within the ice II field and that they may be deformed plastically within much of the metastable region without reverting to ice II. It is suggested that the weakness of the ice III phase may have profoundly influenced the evolution and the present-day behavior of the icy moons.

  16. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas. PMID:26553610

  17. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    NASA Astrophysics Data System (ADS)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  18. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    PubMed Central

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas. PMID:26553610

  19. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pöschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  20. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; de Sanctis, M. C.; Capaccioni, F.; Raponi, A.; Tosi, F.; Ciarniello, M.; Cerroni, P.; Piccioni, G.; Capria, M. T.; Palomba, E.; Bellucci, G.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; Barucci, M. A.; Fulchignoni, M.; Schmitt, B.; Quirico, E.; Jaumann, R.; Stephan, K.; Longobardo, A.; Mennella, V.; Migliorini, A.; Ammannito, E.; Benkhoff, J.; Bibring, J. P.; Blanco, A.; Blecka, M. I.; Carlson, R.; Carsenty, U.; Colangeli, L.; Combes, M.; Combi, M.; Crovisier, J.; Drossart, P.; Encrenaz, T.; Federico, C.; Fink, U.; Fonti, S.; Ip, W. H.; Irwin, P.; Kuehrt, E.; Langevin, Y.; Magni, G.; McCord, T.; Moroz, L.; Mottola, S.; Orofino, V.; Schade, U.; Taylor, F.; Tiphene, D.; Tozzi, G. P.; Beck, P.; Biver, N.; Bonal, L.; Combe, J.-Ph.; Despan, D.; Flamini, E.; Formisano, M.; Fornasier, S.; Frigeri, A.; Grassi, D.; Gudipati, M. S.; Kappel, D.; Mancarella, F.; Markus, K.; Merlin, F.; Orosei, R.; Rinaldi, G.; Cartacci, M.; Cicchetti, A.; Giuppi, S.; Hello, Y.; Henry, F.; Jacquinod, S.; Reess, J. M.; Noschese, R.; Politi, R.; Peter, G.

    2016-01-01

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.

  1. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation. PMID:26760209

  2. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Abernathey, Ryan P.; Cerovecki, Ivana; Holland, Paul R.; Newsom, Emily; Mazloff, Matt; Talley, Lynne D.

    2016-08-01

    Ocean overturning circulation requires a continuous thermodynamic transformation of the buoyancy of seawater. The steeply sloping isopycnals of the Southern Ocean provide a pathway for Circumpolar Deep Water to upwell from mid depth without strong diapycnal mixing, where it is transformed directly by surface fluxes of heat and freshwater and splits into an upper and lower branch. While brine rejection from sea ice is thought to contribute to the lower branch, the role of sea ice in the upper branch is less well understood, partly due to a paucity of observations of sea-ice thickness and transport. Here we quantify the sea-ice freshwater flux using the Southern Ocean State Estimate, a state-of-the-art data assimilation that incorporates millions of ocean and ice observations. We then use the water-mass transformation framework to compare the relative roles of atmospheric, sea-ice, and glacial freshwater fluxes, heat fluxes, and upper-ocean mixing in transforming buoyancy within the upper branch. We find that sea ice is a dominant term, with differential brine rejection and ice melt transforming upwelled Circumpolar Deep Water at a rate of ~22 × 106 m3 s-1. These results imply a prominent role for Antarctic sea ice in the upper branch and suggest that residual overturning and wind-driven sea-ice transport are tightly coupled.

  3. In-ice evolution of RNA polymerase ribozyme activity

    PubMed Central

    Attwater, James; Wochner, Aniela; Holliger, Philipp

    2014-01-01

    Mechanisms of molecular self-replication have the potential to shed light upon the origins of life. In particular, self-replication through RNA-catalysed templated RNA synthesis is thought to have supported a primordial ‘RNA World’. However, existing polymerase ribozymes lack the capacity to synthesise RNAs approaching their own size. Here we report the in vitro evolution of such catalysts directly in the RNA-stabilising medium of water-ice, which yielded RNA polymerase ribozymes specifically adapted to sub-zero temperatures and able to synthesise RNA in ices at temperatures as low as −19°C. Combination of cold-adaptive mutations with a previously described 5′ extension operating at ambient temperatures enabled the design of a first polymerase ribozyme capable of catalysing the accurate synthesis of an RNA sequence longer than itself (adding up to 206 nucleotides), an important stepping stone towards RNA self-replication. PMID:24256864

  4. DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION

    SciTech Connect

    Terada, Hiroshi; Tokunaga, Alan T.

    2012-07-01

    We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

  5. Electric Properties of Water Ice doped with Hydrogen Peroxide (H2O2): Implications for Icy Moons such as Europa

    NASA Astrophysics Data System (ADS)

    Keller, C.; Freund, F. T.; Cruikshank, D. P.

    2012-12-01

    Large floats of ice on Jupiter's moon Europa drift and collide. The float boundaries are marked by brownish-reddish colors. The origin of these colors is poorly understood. Maybe upwelling of water along the active float boundaries brings finely divided suspended matter or organic compounds from the ocean below to the surface, where the intense, high energy environment in Jupiter's radiation belt would lead to photochemical oxidation. At the same time it has been suggested that Europa's ice contains traces of H2O2, presumably due to micro-meteorite impacts and other processes. We measured the electric currents generated in pure and H2O2-doped water ice when we subjected one end of ice blocks to uniaxial stress. Ice samples with 0%, 0.3% and 0.03% H2O2 were formed in polyethylene troughs, 4.1 x 13.5 x 3.8 cm, with Cu contacts at both ends, at 263K (-10°C), 190K (-78°C, dry ice) and 77K (-196°C,liquid N2). At 77K the ice samples detached themselves from at least one of the Cu contacts, due to thermal contraction. At 190K, when stressing one end, essentially no currents were produced in the pure water ice. By contrast, H2O2-doped ices produced several hundred picoamperes (pA) of positive currents, indicating defect electrons (holes) flowing down the stress gradient. At 263K the results are ambiguous. These (as yet preliminary) results indicate that stresses might break the peroxy bonds of imbedded H2O2 molecules, releasing the same type of positive hole charge carriers as observed during stress experiments with silicate rocks. Since positive holes are defect electrons associated with O 2sp levels at the upper edge of the valence band, they seem to have the capability to spread through the ices. Chemically positive holes are equivalent to highly oxidizing oxygen radicals. They may be responsible for oxidation reactions along the boundaries of active ice floats on Europa.

  6. Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10 K

    NASA Astrophysics Data System (ADS)

    Kuwahata, K.; Hama, T.; Kouchi, A.; Watanabe, N.

    2015-09-01

    Reported here is the first observation of the tunneling surface diffusion of a hydrogen (H) atom on water ice. Photostimulated desorption and resonance-enhanced multiphoton ionization methods were used to determine the diffusion rates at 10 K on amorphous solid water and polycrystalline ice. H-atom diffusion on polycrystalline ice was 2 orders of magnitude faster than that of deuterium atoms, indicating the occurrence of tunneling diffusion. Whether diffusion is by tunneling or thermal hopping also depends on the diffusion length of the atoms and the morphology of the surface. Our findings contribute to a better understanding of elementary physicochemical processes of hydrogen on cosmic ice dust.

  7. Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10 K.

    PubMed

    Kuwahata, K; Hama, T; Kouchi, A; Watanabe, N

    2015-09-25

    Reported here is the first observation of the tunneling surface diffusion of a hydrogen (H) atom on water ice. Photostimulated desorption and resonance-enhanced multiphoton ionization methods were used to determine the diffusion rates at 10 K on amorphous solid water and polycrystalline ice. H-atom diffusion on polycrystalline ice was 2 orders of magnitude faster than that of deuterium atoms, indicating the occurrence of tunneling diffusion. Whether diffusion is by tunneling or thermal hopping also depends on the diffusion length of the atoms and the morphology of the surface. Our findings contribute to a better understanding of elementary physicochemical processes of hydrogen on cosmic ice dust. PMID:26451552

  8. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect

    Jeffery, Nicole; Hunke, Elizabeth; Elliott, Scott; Turner, Adrian

    2012-06-18

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  9. Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Rachman, Arief; Wong, See-Cheuk; Yeong, Hsiung-Wei; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for a 36-in. chord NACA 23012 airfoil with and without simulated ice using a dye-tracer method. The simulated ice shapes were defined with the NASA Glenn LEWICE 2.2 ice accretion program and including one rime, four mixed and five glaze ice shapes. The impingement experiments were performed with spray clouds having median volumetric diameters of 20, 52, 111, 154, and 236 micron. Comparisons to the experimental data were generated which showed good agreement for the rime and mixed shapes at lower drop sizes. For larger drops sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove or shadow regions of ice shapes.

  10. The Structural Properties of Vapor Deposited Water Ice and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Films of vapor deposited water ice at low temperature (T<30 K) show a number of interesting structural changes during a gradual warmup. We would like to talk about the structure of the low temperature high density amorphous form of water ice, the process of crystallization, and some recent work on the morphological changes of water ice films at high temperature. The studies of the high density amorphous form are from in-situ electron microscopy as well as numerical simulations of molecular dynamics and have lead to new insights into the physical distinction between this high density amorphous form and the low density amorphous form. For the process of crystallization, we propose a model that describes the crystallization of water ice from the amorphous phase to cubic ice in terms of the nucleation of small domains in the ice. This model agrees well with the behavior of water ice in our electron microscopy studies and finds that pure water above the glass transition is a strong liquid. In more recent work, we have concentrated on temperatures above the crystallization temperature and we find interesting morphological changes related to the decrease in viscosity of the amorphous component in the cubic crystalline regime. Given enough time, we would like to put these results in an astrophysical context and discuss some observed features of the frost on interstellar grains and the bulk ice in comets.

  11. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.

    1989-01-01

    The icing research tunnel at the NASA Lewis Research Center underwent a major rehabilitation in 1986 to 1987, necessitating recalibration of the icing cloud. The methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content are described. PMS Forward Scattering Spectrometer and Optical Array probes were used for measurement of droplet size. Examples of droplet size distributions are shown for several median volumetric diameters. Finally, the liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and are compared to the FAA icing certification criteria.

  12. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.

    1990-01-01

    The icing research tunnel at the NASA Lewis Research Center underwent a major rehabilitation in 1986 to 1987, necessitating recalibration of the icing cloud. The methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content are described. PMS Forward Scattering Spectrometer and Optical Array probes were used for measurement of droplet size. Examples of droplet size distributions are shown for several median volumetric diameters. Finally, the liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and are compared to the FAA icing certification criteria.

  13. Aquarius - A Compact and Lightweight Ice and Liquid Water Isotope Analyzer

    NASA Astrophysics Data System (ADS)

    Christensen, L. E.; Smith, M.; Chen, P.

    2008-12-01

    We are developing Aquarius, a multipurpose ice and liquid water isotope analyzer. Aquarius combines a liquid-to-gas converter with a laser spectrometer to measure water isotopologue abundances with per mil accuracy. Its compact size will be ideal for field hydrology, while an optional interface with a thermal ice drill will enable in situ measurement of polar climate records. Upon completion, Aquarius will be used for extraterrestrial studies including identifying Mars" past climate cycles, tracing Martian water history, and measuring deuterium abundance in the primordial solar system as recorded in comet ice. Anticipated terrestrial applications include sampling aquifers to assess drinking water quality in developing countries.

  14. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    NASA Astrophysics Data System (ADS)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  15. Ice haze, snow, and the Mars water cycle

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1990-01-01

    Light curves and extinction profiles derived from Martian limb observations are used to constrain the atmospheric temperature structure in regions of the atmosphere with thin haze and to analyze the haze particle properties and atmospheric eddy mixing. Temperature between 170 and 190 K are obtained for three cases at levels in the atmosphere ranging from 20 to 50 km. Eddy diffusion coefficients around 100,000 sq cm/s, typical of a nonconvecting atmosphere, are derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than three orders of magnitude with season and local conditions. The derived particle size parameter varies systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time is always about one Martian day. Ice hazes provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars.

  16. Radiolysis of Nitrogen and Water-ice Mixture by Fast Ions: Implications for Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; da Silveira, E. F.; Bergantini, A.; Rothard, H.; Boduch, P.

    2015-09-01

    The participation of condensed nitrogen in the surface chemistry of some objects in the outer solar system, such as Pluto and Triton, is very important. The remote observation of this species using absorption spectroscopy is a difficult task because N2 is not IR active in the gas phase. Water is also among the most abundant molecules in the surface of these objects; chemical reactions between N2 and H2O induced by cosmic rays are therefore expected. Although pure N2 ice is hardly identified by IR spectroscopy, the species produced through the processing of the surface ice by cosmic rays may give relevant clues indicating how abundant the N2 is in the outside layers of the surface of trans-Neptunian objects (TNOs). The objective of this work is to investigate the formation of nitrogenated species induced by cosmic-ray analogs in an ice mixture containing nitrogen and water. Experiments were performed in the GANIL Laboratory by bombarding N2:H2O (10:1) ice at 15 K with 40 MeV 58Ni11+ ions. Evolution of precursor and daughter species was monitored by Fourier transform infrared spectrometry. The main produced species are the nitrogen oxides NOk (k = 1-3), N2Oj (j = 1-5), N3, and O3. Among them, the N2O and N3 are the most abundant, representing ˜61% of the total column density of the daughter molecules at 1013 ions cm-2 fluence; the current results indicate that the yield of daughter species from this mixture is low, and this may be one of the reasons why NiOj molecules are not usually observed in TNOs.

  17. Field observations of slush ice generated during freeze-up in arctic coastal waters

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.

    1987-01-01

    In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during

  18. Atmospheric Ice Adhesion on Water-Repellent Coatings: Wetting and Surface Topology Effects.

    PubMed

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Sokhey, Jack; Lambourne, Alexis

    2015-12-01

    Recent studies have shown the potential of water-repellent surfaces such as superhydrophobic surfaces in delaying ice accretion and reducing ice adhesion. However, conflicting trends in superhydrophobic ice adhesion strength were reported by previous studies. Hence, this investigation was performed to study the ice adhesion strength of hydrophobic and superhydrophobic coatings under realistic atmospheric icing conditions, i.e., supercooled spray of 20 μm mean volume diameter (MVD) droplets in a freezing (-20 °C), thermally homogeneous environment. The ice was released in a tensile direction by underside air pressure in a Mode-1 ice fracture condition. Results showed a strong effect of water repellency (increased contact and receding angles) on ice adhesion strength for hydrophobic surfaces. However, the extreme water repellency of nanocomposite superhydrophobic surfaces did not provide further adhesion strength reductions. Rather, ice adhesion strength for superhydrophobic surfaces depended primarily on the surface topology spatial parameter of autocorrelation length (Sal), whereby surface features in close proximities associated with a higher capillary pressure were better able to resist droplet penetration. Effects from other surface height parameters (e.g., arithmetic mean roughness, kurtosis, and skewness) were secondary. PMID:26566168

  19. VOLATILE TRANSPORT INSIDE SUPER-EARTHS BY ENTRAPMENT IN THE WATER-ICE MATRIX

    SciTech Connect

    Levi, A.; Podolak, M.; Sasselov, D.

    2013-05-20

    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles, and composition. In this paper, we consider super-Earths with an extensive water mantle (i.e., water planets), and the possibility of entrapment of methane in their extensive water-ice envelopes. We adopt the theory developed by van der Waals and Platteeuw for modeling solid solutions, often used for modeling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  20. ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS

    SciTech Connect

    Smith, R. G.; Wright, C. M.; Robinson, G.; Charnley, S. B.; Pendleton, Y. J.; Maldoni, M. M. E-mail: c.wright@adfa.edu.au E-mail: Steven.B.Charnley@nasa.gov

    2011-12-20

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  1. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  2. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  3. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. PMID:26585223

  4. Electrometric method to determine the surface impedance of an ice-sea water bilayer system

    NASA Astrophysics Data System (ADS)

    Bashkuev, Yu. B.; Naguslaeva, I. B.; Khaptanov, V. B.; Dembelov, M. G.

    2016-02-01

    An electrometric method to determine the surface impedance of an ice-sea water bilayer system is suggested. The complex impedance (its magnitude and phase) of this system is determined at very low, low, and medium frequencies from electrometric, rather than radio, measurements. For the ice-sea water system, it is sufficient to determine the conductivity and thickness of a water sample from drilling data.

  5. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  6. An Albedo-Ice Regression Method for Determining Ice Water Content of Polar Mesospheric Clouds from UV Observations

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Bardeen, C.; Benze, S.

    2014-12-01

    Simulations of Polar Mesospheric Cloud (PMC) brightness and ice water content (IWC) are used to develop a simple robust method for IWC retrieval from UV satellite observations. We compare model simulations of IWC with retrievals from the UV Cloud Imaging and Particle Size (CIPS) experiment on board the satellite mission Aeronomy for Ice in the Mesosphere (AIM). This instrument remotely senses scattered brightness related to the vertically-integrated ice content. Simulations from the Whole Atmosphere Community Climate Model (WACCM), a chemistry climate model, is combined with a sectional microphysics model based on the Community Aerosol and Radiation Model for Atmospheres (CARMA). The model calculates high-resolution three-dimensional size distributions of ice particles. The internal variability is due to geographic and temporal variation of temperature and dynamics, water vapor, and meteoric dust. We examine all simulations from a single model day (we chose northern summer solstice) which contains several thousand model clouds. Accurate vertical integrations of the albedo and IWC are obtained. The ice size distributions are thus based on physical principles, rather than artificial analytic distributions that are often used in retrieval algorithms from observations. Treating the model clouds as noise-free data, we apply the CIPS algorithm to retrieve cloud particle size and IWC. The inherent "errors" in the retrievals are thus estimated. The linear dependence of IWC on albedo makes possible a method to derive IWC, called the Albedo-Ice regression method, or AIR. This method potentially unifies the variety of data from various UV experiments, with the advantages of (1) removing scattering-angle bias from cloud brightness measurements,(2) providing a physically-useful parameter (IWC),(3) deriving IWC even for faint clouds of small average particle sizes, and (4) estimating the statistical uncertainty as a random error, which bypasses the need to derive particle size.

  7. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  8. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  9. The physical properties of water ice in comets: a comparative study

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Keane, Jacqueline; Sunshine, Jessica; A'Hearn, Michael F.; Kolokolova, Ludmilla

    2015-11-01

    Detections of water ice in comets are notably scarce (~10 comets) and our knowledge of cometary ice remains poor. As such, we are not able to consider water-ice characteristics in the evaluation of comet nuclei formation scenarios, despite water ice being the major component of comets. To overcome this deficiency, we have begun a systematic, low-resolution near-infrared spectroscopic survey to look for and characterize water-ice grain halos in cometary comae. The ultimate goal is to survey a large sample of Jupiter-family and Oort cloud comets to understand the conditions that favor the detectability of a comet's water-ice grain halo and the factors, if any, that may control the observed water-ice properties. We report on the modeling approach to determine the relative abundances of the major components within the coma, their grain sizes, and the type of mixing (mixed within the coma, or mixed within each aggregate). We present results on a selected set of comets that were observed prior and during our survey.

  10. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture.

    PubMed

    Zhao, Hai-Xia; Kong, Xiang-Jian; Li, Hui; Jin, Yi-Chang; Long, La-Sheng; Zeng, Xiao Cheng; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-03-01

    Ferroelectric materials are characterized by spontaneous electric polarization that can be reversed by inverting an external electric field. Owing to their unique properties, ferroelectric materials have found broad applications in microelectronics, computers, and transducers. Water molecules are dipolar and thus ferroelectric alignment of water molecules is conceivable when water freezes into special forms of ice. Although the ferroelectric ice XI has been proposed to exist on Uranus, Neptune, or Pluto, evidence of a fully proton-ordered ferroelectric ice is still elusive. To date, existence of ferroelectric ice with partial ferroelectric alignment has been demonstrated only in thin films of ice grown on platinum surfaces or within microdomains of alkali-hydroxide doped ice I. Here we report a unique structure of quasi-one-dimensional (H(2)O)(12n) wire confined to a 3D supramolecular architecture of H(4)CDTA, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid; 4,4'-bpy, 4,4'-bipyridine). In stark contrast to the bulk, this 1D water wire not only exhibits enormous dielectric anomalies at approximately 175 and 277 K, respectively, but also undergoes a spontaneous transition between "1D liquid" and "1D ferroelectric ice" at approximately 277 K. Hitherto unrevealed properties of the 1D water wire will be valuable to the understanding of anomalous properties of water and synthesis of novel ferroelectric materials. PMID:21321232

  11. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Yordanova, Petya; Franc, Gary D.; Pöschl, Ulrich

    2015-04-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nucleators (IN). However, the sources and characteristics of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA, i.e., inducing ice formation in the probed range of temperature and concentration) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. For example, in harvested and ploughed sugar beet and potato fields, and in the organic horizon beneath Lodgepole pine forest, their relative abundances and concentrations among the cultivable fungi were 25% (8 x 103 CFU g-1), 17% (4.8 x 103 CFU g-1) and 17% (4 x 103 CFU g-1), respectively. Across all investigated soils, 8% (2.9 x 103 CFU g-1) of fungal isolates were INA. All INA isolates initiated freezing at -5° C to -6° C and all belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. Mortierella alpina is known to be saprobic (utilizing non-living organic matter), widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be extracellular proteins of 100-300 kDa in size which are not anchored in the fungal cell wall. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, these small cell-free IN might contribute to the as yet uncharacterized pool of atmospheric IN released by soils as dusts.

  12. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades. PMID:19485525

  13. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow. PMID:24804655

  14. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    PubMed Central

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  15. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  16. Stable growth mechanisms of ice disk crystals in heavy water.

    PubMed

    Adachi, Satoshi; Yoshizaki, Izumi; Ishikawa, Takehiko; Yokoyama, Etsuro; Furukawa, Yoshinori; Shimaoka, Taro

    2011-11-01

    Ice crystal growth experiments in heavy water were carried out under microgravity to investigate the morphological transition from a disk crystal to a dendrite. Surprisingly, however, no transition was observed, namely, the disk crystal or dendrite maintained its shape throughout the experiments, unlike the results obtained on the ground. Therefore, we introduce a growth model to understand disk growth. The Gibbs-Thomson effect is taken into account as a stabilization mechanism. The model is numerically solved by varying both an interfacial tension of the prism plane and supercooling so that the final sizes of the crystals can become almost the same to determine the interfacial tension. The results are compared with the typical experimental ones and thus the interfacial tension is estimated to be 20 mJ/m(2). Next, the model is solved under two supercooling conditions by using the estimated interfacial tension to understand stable growth. Comparisons between the numerical and experimental results show that our model explains well the microgravity experiments. It is also found that the experimental setup has the capability of controlling temperature on the order of 1/100 K. PMID:22181428

  17. The role of water ice clouds in the Martian hydrologic cycle

    NASA Technical Reports Server (NTRS)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  18. Interstellar Ice Chemistry: From Water to Complex Organics

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.; Fayolle, E.; Linnartz, H.; van Dishoeck, E.; Fillion, J.; Bertin, M.

    2013-06-01

    Molecular cloud cores, protostellar envelopes and protoplanetary disk midplanes are all characterized by freeze-out of atoms and molecules (other than H and H2) onto interstellar dust grains. On the grain surface, atom addition reactions, especially hydrogenation, are efficient and H2O forms readily from O, CH3OH from CO etc. The result is an icy mantle typically dominated by H2O, but also rich in CO2, CO, NH3, CH3OH and CH4. These ices are further processed through interactions with radiation, electrons and energetic particles. Because of the efficiency of the freeze-out process, and the complex chemistry that succeeds it, these icy grain mantles constitute a major reservoir of volatiles during star formation and are also the source of much of the chemical evolution observed in star forming regions. Laboratory experiments allow us to explore how molecules and radicals desorb, dissociate, diffuse and react in ices when exposed to different sources of energy. Changes in ice composition and structure is constrained using infrared spectroscopy and mass spectrometry. By comparing ice desorption, segregation, and chemistry efficiencies under different experimental conditions, we can characterize the basic ice processes, e.g. diffusion of different species, that underpin the observable changes in ice composition and structure. This information can then be used to predict the interstellar ice chemical evolution. I will review some of the key laboratory discoveries on ice chemistry during the past few years and how they have been used to predict and interpret astronomical observations of ice bands and gas-phase molecules associated with ice evaporation. These include measurements of thermal diffusion in and evaporation from ice mixtures, non-thermal diffusion efficiencies (including the recent results on frequency resolved UV photodesorption), and the expected temperature dependencies of the complex ice chemistry regulated by radical formation and diffusion. Based on these

  19. Impact of Decreasing Perennial Arctic Sea Ice Extent on Local and Remote Water Masses as Depicted by a 60-Year Forced Global Coupled 0.1° Ocean/Sea Ice Simulation

    NASA Astrophysics Data System (ADS)

    McClean, J.; Bailey, D. A.; Papadopoulos, C.

    2015-12-01

    The global climate impact of decreasing perennial Arctic sea ice extent over the past decades remains unclear. To appreciate regional and remote effects due to this reduction, we present results from two forced global coupled ocean and sea ice simulations, run in the Community Earth System Model (CESM) framework, one for 1970-2009 and the other for 1948-2009. A strongly eddy-active (nominal 0.1°) configuration of the Parallel Ocean Program 2 and CICE2 were forced in CESM with Coordinated Ocean Reference Experiment 2 (CORE2) interannually varying atmospheric reanalysis surface fluxes. We compare climatologies and trends of simulated sea-ice quantities as consistently as possible with observations over the past decades. Results, among others, include comparisons of ice thickness from the Ice, Cloud, and land Elevation Satellite (ICESat), ice concentration from the Special Sensor Microwave/Imager, and ice drift statistics from the International Arctic Buoy Programme with quantities from the 40-year simulation. The observed decreasing trend of September sea ice extent is well represented by the model. Histograms of sea ice drift show that slow speeds are under-represented in the model relative to the observations. Using the 60-year simulation, we examine changes and variability through the decades between the 1970s and the 2000s in upper ocean stratification and water mass composition in the western Arctic. Our final objective is to understand how variation in the Arctic freshwater outflow modifies the water mass characteristics of the buoyancy-driven East Greenland Current (EGC) and in turn, how this water mass variation modifies mixing over the East Greenland shelf/slope between Irminger Sea and EGC waters.

  20. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation.

    PubMed

    Tang, Mingjin; Cziczo, Daniel J; Grassian, Vicki H

    2016-04-13

    Mineral dust aerosol is one of the major types of aerosol present in the troposphere. The molecular level interactions of water vapor with mineral dust are of global significance. Hygroscopicity, light scattering and absorption, heterogneous reactivity and the ability to form clouds are all related to water-dust interactions. In this review article, experimental techniques to probe water interactions with dust and theoretical frameworks to understand these interactions are discussed. A comprehensive overview of laboratory studies of water adsorption, hygroscopicity, cloud condensation, and ice nucleation of fresh and atmspherically aged mineral dust particles is provided. Finally, we relate laboratory studies and theoretical simulations that provide fundemental insights into these processes on the molecular level with field measurements that illustrate the atmospheric significance of these processes. Overall, the details of water interactions with mineral dust are covered from multiple perspectives in this review article. PMID:27015126

  1. Injection and Subsequent Evolution of a Water Sill in an Ice Shell: Application to Europa's Lenticulae

    NASA Astrophysics Data System (ADS)

    Manga, M.; Michaut, C.

    2014-12-01

    We study the injection and subsequent evolution of a water sill into an ice shell overlying an ocean and examine the resulting successive surface deformations. We assume that water spreads within the elastic part of the ice shell and show that the mechanical properties of ice exert a strong control on the lateral extent of the sill. At shallow depths, water makes room for itself by lifting the overlying ice layer and water weight promotes lateral spreading of the sill. In contrast, a deep sill bends the underlying elastic layer and its weight does not affect its spreading. As a result, the sill lateral extent is limited to about a few to a few tens of kilometers by the fracture toughness of ice. In that case, the sill can thicken substantially, until the feeder dyke closes, since downward flexure of the lower elastic layer provides a way of keeping the pressure high in the water source. Pits, domes, and small chaos on Europa's surface are quasi-circular features a few to a few tens of kilometers in diameter whose morphology could be explained by the subsequent evolution of such a thick sill. Indeed, cooling of the sill after emplacement warms the surrounding ice and thins the overlying elastic ice layer. As a result, preexisting stresses in the elastic part of the ice shell increase locally to the point that they may disrupt the ice above the sill (small chaos). Furthermore, disruption of the surface also allows for partial isostatic compensation of water weight, leading to a topographic depression at the surface (pit), of the order of ~102 m. Finally, complete water solidification causes expansion of the initial sill volume and results in an uplifted topography (dome) of ~102 m.

  2. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  3. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay

    PubMed Central

    Williams, G. D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K. I.; Fukamachi, Y.; Fraser, A. D.; Gao, L.; Chen, H.; McMahon, C. R.; Harcourt, R.; Hindell, M.

    2016-01-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011–2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65–34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate. PMID:27552365

  4. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.

    PubMed

    Williams, G D; Herraiz-Borreguero, L; Roquet, F; Tamura, T; Ohshima, K I; Fukamachi, Y; Fraser, A D; Gao, L; Chen, H; McMahon, C R; Harcourt, R; Hindell, M

    2016-01-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65-34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate. PMID:27552365

  5. Perennial water ice identified in the south polar cap of Mars.

    PubMed

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap. PMID:15024393

  6. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  7. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  8. Molecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water

    PubMed Central

    Banerjee, Debamalya; Bhat, Shrivalli N.; Bhat, Subray V.; Leporini, Dino

    2012-01-01

    The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed. PMID:23049747

  9. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  10. Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Kattner, G.; Beszczynska-Möller, A.; Nöthig, E. M.; Stimac, I.

    2011-05-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on a hotspot of methane formation in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79° N oceanographic transect. We show that between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitation occurs and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences and initiates regenerated production in the western Fram Strait. In a unique biogeochemical feedback process, methane production occurs despite an oxygen excess. We postulate that DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for methane formation. Thus, feedback effects on cycling pathways of methane are likely, with DMSP catabolism in high latitudes possibly contributing to a warming effect on the earth's climate. This process could constitute an additional component in biogeochemical cycling in a seasonal ice-free Arctic Ocean. The metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment. Therefore we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  11. Sea ice terminology

    SciTech Connect

    Not Available

    1980-09-01

    A group of definitions of terms related to sea ice is presented, as well as a graphic representation of late winter ice zonation of the Beaufort Sea Coast. Terms included in the definition list are belt, bergy bit, bight, brash ice, calving, close pack ice, compacting, compact pack ice, concentration, consolidated pack ice, crack, diffuse ice edge, fast ice, fast-ice boundary, fast-ice edge, first-year ice, flaw, flaw lead, floe, flooded ice, fractured, fractured zone, fracturing, glacier, grey ice, grey-white ice, growler, hummock, iceberg, iceberg tongue, ice blink, ice boundary, ice cake, ice edge, ice foot, ice free, ice island, ice shelf, large fracture, lead, medium fracture, multiyear ice, nilas, old ice, open pack ice, open water, pack ice, polar ice, polynya, puddle, rafted ice, rafting, ram, ridge, rotten ice, second-year ice, shearing, shore lead, shore polynya, small fracture, strip, tabular berg, thaw holes, very close pack ice, very open pack ice, water sky, young coastal ice, and young ice.

  12. Experimental Results on Isotopic Fractionation of Dusty Deuterated Water Ice During Sublimation

    NASA Astrophysics Data System (ADS)

    Moores, J. E.; Smith, P. H.; Brown, R. H.; Lauretta, D. S.; Boynton, W. V.; Drake, M. J.

    2008-03-01

    Observed heavy fractionation of HDO during sublimation of water ice when mixed with or overlain by (regolith) fine particulate dust is described. Results from two sets of apparatus simulating comets and the Mars polar environment will be presented.

  13. Determination of cloud ice water content and geometrical thickness using microwave and infrared radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.

    1987-01-01

    Cloud ice water content and cloud geometrical thickness have been determined using a combination of near-infrared, thermal infrared and thermal microwave radiometric measurements. The radiometric measurements are from a Multispectral Cloud Radiometer, which has seven channels ranging from visible to thermal infrared, and an Advanced Microwave Moisture Sounder, which has four channels ranging from 90 to 183 GHz. Studies indicate that the microwave brightness temperatures depend not only on the amount of ice water content but also on the vertical distribution of ice water content. Studies also show that the low brightness temperature at 92 GHz for large ice water content is due to cloud reflection which reflects most of the irradiance incident at the cloud base downward. Therefore the 92 GHz channel detects a low brightness temperature at the cloud top.

  14. Mini-RF PSR Observations: Water Ice or Rocks?

    NASA Astrophysics Data System (ADS)

    Fa, W.; Cai, Y.

    2016-05-01

    The enhanced CPRs in the interior of anomalous craters in Mini-RF images are most probably caused by meter-scale rocks, suggesting that ice deposits, if present, are not the only physical agent causing the enhanced CPR.

  15. Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Michelangeli, Diane V.; Toon, Owen B.; Haberle, Robert M.; Pollack, James B.

    1993-01-01

    A model of the formation, evolution, and description of Martian water ice clouds is developed which well reproduces the physical processes governing the microphysics of water ice cloud formation on Mars. The model is used to show that the cloud properties are most sensitive to the temperature profile, the number of days for which condensation previously occurred, the contact angle, and the presence of incoming meteoritic debris at the top of the atmosphere. The AM-PM differences in optical depths measured at the Viking Lander site were successfully simulated with the model, obtaining total column optical depths of ice of a few tenths in agreement with observations.

  16. Seasonal changes in ice sheet motion due to melt water lubrication

    NASA Astrophysics Data System (ADS)

    Hewitt, I.

    2012-12-01

    Significant temporal variability of ice flow has been observed at the melting margins of the Greenland ice sheet. Seasonal acceleration and deceleration has been partly attributed to changes in resistance at the ice-bed interface caused by subglacial routing of surface melt water, as is the case for valley glaciers. Larger quantities of melt water do not necessarily reduce resistance, however, and the overall effect of melt water lubrication on the mean annual motion of the ice sheet remains unclear. In this work, numerical models are used to explore the coupling between subglacial drainage of surface melt water and ice sheet motion. A synthetic ice sheet is forced to melt according to a prescribed seasonal cycle and the effect of this melting on the speed of the ice is calculated. The model adopts a distributed-channelized structure for the subglacial drainage system, with opening and closing of drainage space controlled by turbulent dissipation, cavitation around bedrock roughness elements, and creep closure of the ice. Subglacial water pressure is assumed to exert the main hydrological control on ice lubrication and is used to parameterize the basal sliding law for a vertically-integrated higher-order ice flow model. The model results suggest that the fastest ice velocities should be expected soon after the onset of surface melting, when runoff into moulins swamps the existing capacity of the drainage system. Periods of relatively high melting at any stage of the melt season can have the same effect, but the establishment of a more efficient drainage system can also have the effect of reducing water pressure and sliding velocities. This behaviour is in broad agreement with current observations. Comparing years with different total melting rates, the model further suggests that slow-down due to the more efficient drainage system is likely to be confined to close to the ice sheet margins (perhaps within about 20km), whereas further away from the margin a larger

  17. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae

    PubMed Central

    Ali, Farman; Wharton, David A.

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  18. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    PubMed

    Ali, Farman; Wharton, David A

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  19. Observations of Water Ice Distribution in the HD169142 Disk

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2013-01-01

    Icy grains play an important role on planetesimal/planet formation and related matters. Therefore, to reveal ice dust distribution within a protoplanetary disk is an important work for understanding planet formation. However, observations of icy grain IN THE DISK are scarce due to various observational limitations. Here we propose observations to trace the icy grains by making K, H_2O ice, and L' imaging photometric observations of disk scattered light to derive H_2O ice dust distribution in a disk surface via 3.1 mu m absorption. For the moment, only Gemini/NICI is capable of such observations. We have already demonstrated the effectiveness of such observing method toward Herbig Fe star HD142527. Since some theoretical studies suggest that there are no ice grains at the surface of the disk around A/B stars due to intense UV irradiation, we propose to observe disks around Herbig Ae star HD169142. When we fail to detect the ice feature, it supports the theoretical prediction that photodesorption is important. While the ice feature is detected, it requires reconsideration of the theories and provides an important constraint for the disk chemistry.

  20. A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; O'Sullivan, D.; Umo, N. S.; Baustian, K. J.; Atkinson, J. D.; Morris, G. J.

    2014-09-01

    The ice content of mixed phase clouds, which contain both supercooled water and ice, affects both their lifetime and radiative properties. In many clouds, the formation of ice requires the presence of particles capable of nucleating ice. One of the most important features of ice nucleating particles (INPs) is that they are rare in comparison to cloud condensation nuclei. However, the fact that only a small fraction of aerosol particles can nucleate ice means that detection and quantification of INPs is challenging. This is particularly true at temperatures above about -20 °C since the population of particles capable of serving as INPs decreases dramatically with increasing temperature. In this paper, we describe an experimental technique in which droplets of microlitre volume containing ice nucleating material are cooled down at a controlled rate and their freezing temperatures recorded. The advantage of using large droplet volumes is that the surface area per droplet is vastly larger than in experiments focused on single aerosol particles or cloud-sized droplets. This increases the probability of observing the effect of less common, but important, high temperature INPs and therefore allows the quantification of their ice nucleation efficiency. The potential artefacts which could influence data from this experiment, and other similar experiments, are mitigated and discussed. Experimentally determined heterogeneous ice nucleation efficiencies for K-feldspar (microcline), kaolinite, chlorite, Snomax®, and silver iodide are presented.

  1. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture

    PubMed Central

    Zhao, Hai-Xia; Kong, Xiang-Jian; Li, Hui; Jin, Yi-Chang; Long, La-Sheng; Zeng, Xiao Cheng; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-01-01

    Ferroelectric materials are characterized by spontaneous electric polarization that can be reversed by inverting an external electric field. Owing to their unique properties, ferroelectric materials have found broad applications in microelectronics, computers, and transducers. Water molecules are dipolar and thus ferroelectric alignment of water molecules is conceivable when water freezes into special forms of ice. Although the ferroelectric ice XI has been proposed to exist on Uranus, Neptune, or Pluto, evidence of a fully proton-ordered ferroelectric ice is still elusive. To date, existence of ferroelectric ice with partial ferroelectric alignment has been demonstrated only in thin films of ice grown on platinum surfaces or within microdomains of alkali-hydroxide doped ice I. Here we report a unique structure of quasi-one-dimensional (H2O)12n wire confined to a 3D supramolecular architecture of H4CDTA, trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid; 4,4′-bpy, 4,4′-bipyridine). In stark contrast to the bulk, this 1D water wire not only exhibits enormous dielectric anomalies at approximately 175 and 277 K, respectively, but also undergoes a spontaneous transition between “1D liquid” and “1D ferroelectric ice” at approximately 277 K. Hitherto unrevealed properties of the 1D water wire will be valuable to the understanding of anomalous properties of water and synthesis of novel ferroelectric materials. PMID:21321232

  2. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment.

    PubMed

    Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N

    2014-02-01

    The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. PMID:24443388

  3. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment

    PubMed Central

    Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N

    2014-01-01

    The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0–6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α-and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. PMID:24443388

  4. Experimental characterization of the opposition surge in fine-grained water-ice and high albedo ice analogs

    NASA Astrophysics Data System (ADS)

    Jost, B.; Pommerol, A.; Poch, O.; Gundlach, B.; Leboeuf, M.; Dadras, M.; Blum, J.; Thomas, N.

    2016-01-01

    We measured the bidirectional reflectance in the VIS-NIR spectral range of different surfaces prepared from small-grained spherical water-ice particles over a wide range of incidence and emission geometries, including opposition. We show that coherent backscattering is dominating the opposition effect on fresh sample material, but its contribution decreases when particles become more irregularly shaped and the bulk porosity increases. Strong temporal evolution of the photometric properties of icy samples, caused by particle sintering and resulting in a decrease of backscattering, is shown. The sintering of the ice particles is documented using cryo-SEM micrographs of fresh and evolved samples. To complement the photometric characterization of ices, multiple high albedo laboratory analogs were investigated to study the effects of shape, grain size distribution, wavelength and surface roughness. In addition to the main backscattering peak, the phase curves also display the effect of glory in the case of surfaces of granular surfaces formed by either spherical ice or glass particles. We show that the angular position of the glory can be used to determine accurately the average size of the particles. Reflectance data are fitted by the Hapke photometric model, the Minnaert model and three morphological models. The resulting parameters can be used to reproduce our data and compare them to the results of other laboratory experiments and astronomical observations.

  5. Probing the Extremes in the Water-Ice Content of the Martian Permafrost

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; Feldman, W. C.; Hansen, C. J.; Arvidson, R. E.

    2013-12-01

    The high-latitude regions of Mars are generally understood to be extensively underlain by ice-rich permafrost. The Mars Odyssey Neutron Spectrometer (MONS) provided direct confirmation of the permafrost's ice-rich status. The geographic extent and depth distribution of the observed ground ice are consistent with prior predictions of ground ice stability. On the other hand, the observation of high ice concentrations (ice exceeding the soil pore volume) in many regions is an ongoing puzzle. For example between -60 to -70 degrees latitude the ice concentration varies between extremes of 'low' 20-40% by volume (consistent with matrix-supported ice-cemented soil) and 'high' 75-90% by volume (essentially dirty ice, greatly exceeding typical soil pore volumes). These variations occur longitudinally over 100's to 1000's of kilometers within this single latitude zone. Such a contrast in ice content raises many questions about the details of the horizontal and vertical distribution of the ice on a variety of spatial scales, and of its historical origin and implications for the modern Martian climate and the role of liquid water. In the present work we examined small-scale periglacial geomorphologic features (as seen in High Resolution Imaging Science Experiment, HiRISE, images) over regional scales. We focus on polygonal patterned ground that forms through seasonal thermal contraction of ice-cemented permafrost. The formation and characteristics of these polygons are expected to depend significantly on permafrost properties, such as the ice content and burial depth, through differences in subsurface rheology and seasonal temperatures. Pure or slightly dirty subsurface ice should result in larger polygonal forms due more to rapid relaxation of stresses relative to ice-cemented soil. We find that the characteristic size of polygons in this southern high-latitude region is correlated with MONS ice concentration. Specifically, polygon 'diameters' are typically 2-4 m in areas of

  6. Effetively trapping air or lqiud water for anti-icing applications

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun

    2014-03-01

    Icing on solid surfaces leads to operational difficulties and high maintenance efforts for power networks, aircrafts, ships, ground transportation vehicles and house-hold refrigerators, to name but a few. In extreme cases, icing on surfaces causes disastrous events such as crash of aircrafts and collapse of power networks, which result in severe economic impact and large loss of life. This talk is focused on the fundamentals of the ice formation and adhesion of ice with solid substrates aiming for fighting against icing on solid surfaces. When the supercooling is low, it would be possible to remove supercooled liquid water from the solid surfaces before freezing occurs. To achieve this, we design and constructed surfaces that can trap the air at the subfreezing temperature thus condensed water microdroplets could be spontaneously removed after the coalescence. When the supercooling is high, icing on surfaces occurs spontaniously. In this case, we constructed coatings on which aqueous lubricating layer could be trapped, thus the ice adhesion on the coating is so low that the ice formed atop could be removed by a wind action or its own gravity.

  7. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.

    PubMed

    Mishchenko, Lidiya; Hatton, Benjamin; Bahadur, Vaibhav; Taylor, J Ashley; Krupenkin, Tom; Aizenberg, Joanna

    2010-12-28

    Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties. PMID:21062048

  8. On the shape of martian dust and water ice aerosols

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.; Clancy, R. T.; Clayton, G. C.

    2000-10-01

    Researchers have often calculated radiative properties of Martian aerosols using either Mie theory for homogeneous spheres or semi-empirical theories. Given that these atmospheric particles are randomly oriented, this approach seems fairly reasonable. However, the idea that randomly oriented nonspherical particles have scattering properties equivalent to even a select subset of spheres is demonstratably false} (Bohren and Huffman 1983; Bohren and Koh 1985, Appl. Optics, 24, 1023). Fortunately, recent computational developments now enable us to directly compute scattering properties for nonspherical particles. We have combined a numerical approach for axisymmetric particle shapes, i.e., cylinders, disks, spheroids (Waterman's T-Matrix approach as improved by Mishchenko and collaborators; cf., Mishchenko et al. 1997, JGR, 102, D14, 16,831), with a multiple-scattering radiative transfer algorithm to constrain the shape of water ice and dust aerosols. We utilize a two-stage iterative process. First, we empirically derive a scattering phase function for each aerosol component (starting with some ``guess'') from radiative transfer models of MGS Thermal Emission Spectrometer Emission Phase Function (EPF) sequences (for details on this step, see Clancy et al., DPS 2000). Next, we perform a series of scattering calculations, adjusting our parameters to arrive at a ``best-fit'' theoretical phase function. In this presentation, we provide details on the second step in our analysis, including the derived phase functions (for several characteristic EPF sequences) as well as the particle properties of the best-fit theoretical models. We provide a sensitivity analysis for the EPF model-data comparisons in terms of perturbations in the particle properties (i.e., range of axial ratios, sizes, refractive indices, etc). This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC).

  9. Martian North Polar Water-Ice Clouds During the Viking Era

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  10. Application of thermal imagery to the development of a Great Lakes ice information system. [infrared and SLAR imagery of fresh water ice thickness

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.; Raquet, C. A.; Svehla, R. A.

    1973-01-01

    Recent measurements and analysis have shown that thermal infrared imagery (wavelength, 8-14 microns) can be employed to delineate the relative thicknesses of various regions of freshwater ice, as well as, differentiate new ice from both open water areas and thicker (young)ice. Thermal imagery was observed to be generally superior to visual (0.4 - 0.7 microns) and our SLAR (3.3 cm) imagery for estimating relative ice thicknesses and delineating open water from new ice growth. In a real-time Great Lakes Ice Information System, thermal imagery can not only provide supplementary imagery but also aid in developing interpretative methods for all-weather SLAR imagery, as well as, establishing the areal extent of spot thickness measurements.

  11. Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce D.; Johnson, Alexandria V.; Mar, Brendan; Stone, Bradley M.; Colaprete, Anthony; Iraci, Laura T.

    2011-04-01

    Water ice clouds in the Martian atmosphere are governed by parameters such as number density and particle size distribution that in turn affect how they influence the climate. With some of the underlying properties of cloud formation well known only for Earth, extrapolations to Mars are potentially misleading. We report here continued laboratory experiments to identify critical onset conditions for water ice formation under Martian cloud forming temperatures and water partial pressures (155-182 K, 7.6 × 10-5 to 7.7 × 10-3 Pa H2O). By observing the 3 μm infrared band to monitor nucleation and growth, we observe significant temperature dependence in the nucleation of ice on JSC Mars-1 regolith simulant, with critical saturation ratios, Scrit, as high as 3.8 at 155 K. At temperatures below ˜180 K, ice nucleation on JSC Mars-1 requires significant supersaturation, potentially impacting the Martian hydrological cycle.

  12. Numerical simulation of the process of airfoil icing in the presence of large supercooled water drops

    NASA Astrophysics Data System (ADS)

    Prykhodko, O. A.; Alekseyenko, S. V.

    2014-10-01

    We have developed a software package and related methodology that can be used to simulate the process of airfoil icing during flight in the presence of large supercooled liquid water drops in the oncoming airflow. The motion of a carrier medium is described using the Navier-Stokes equations for a compressible gas. The motion of water drops is described using an inertial model. The process of water deposition and its subsequent freezing on an airfoil surface are described by the method of control volumes based on the equations of conservation of mass, momentum, and energy for each element of the surface. The main results of simulations are presented for the icing of an NACA 0012 airfoil profile with "barrier" ice formation in the absence and presence of heating of the leading edge. The influence of the ice-growth thickness and position on the airfoil chord on the pattern of airflow and aerodynamic characteristics of airfoil is analyzed.

  13. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  14. Dynamical aspects of intermolecular proton transfer in liquid water and low-density amorphous ices.

    PubMed

    Tahat, Amani; Martí, Jordi

    2014-05-01

    The microscopic dynamics of an excess proton in water and in low-density amorphous ices has been studied by means of a series of molecular dynamics simulations. Interaction of water with the proton species was modelled using a multistate empirical valence bond Hamiltonian model. The analysis of the effects of low temperatures on proton diffusion and transfer rates has been considered for a temperature range between 100 and 298 K at the constant density of 1 g cm(-3). We observed a marked slowdown of proton transfer rates at low temperatures, but some episodes are still seen at 100 K. In a similar fashion, mobility of the lone proton gets significantly reduced when temperature decreases below 273 K. The proton transfer in low-density amorphous ice is an activated process with energy barriers between 1-10 kJ/mol depending of the temperature range considered and eventually showing Arrhenius-like behavior. Spectroscopic data indicated the survival of both Zundel and Eigen structures along the whole temperature range, revealed by significant spectral frequency shifts. PMID:25353762

  15. Understanding Europa's Ice Shell and Subsurface Water Through Terestrial Analogs for Flyby Radar Sounding

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Grima, C.; Young, D. A.; Schroeder, D. M.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Patterson, G.; Moussessian, A.

    2015-12-01

    The recently approved NASA mission to Europa proposes to study this ice-covered moon of Jupiter though a series of fly-by observations of its surface and subsurface from a spacecraft in Jovian orbit. The science goal of this mission is to "explore Europa to investigate its habitability". One of the primary instruments in the selected scientific payload is a multi-frequency, multi-channel ice penetrating radar system. The "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" will play a critical role in achieving the mission's habitability driven science objectives, which include characterizing the distribution of any shallow subsurface water, searching for an ice-ocean interface and evaluating a spectrum of ice-ocean-atmosphere exchange hypotheses. The development of successful measurement and data interpretation techniques for exploring Europa will need to leverage knowledge of analogous terrestrial environments and processes. Towards this end, we will discuss a range of terrestrial radioglaciological analogs for hypothesized physical, chemical, and biological processes on Europa and present airborne data collected with the University of Texas dual-frequency radar system over a variety of terrestrial targets. These targets include water filled fractures, brine rich ice, water lenses, accreted marine ice, and ice surfaces with roughness ranging from firn to crevasse fields and will provide context for understanding and optimizing the observable signature of these processes in future radar data collected at Europa.

  16. Water ice self-absorption in three Ophiuchus edge-on disks

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Beck, Tracy; Grosso, Nicolas; McCabe, Caer; Menard, Francois; Pinte, Christophe

    2008-02-01

    We propose to use NIRI to measure the depth and shape of the 3(micron) water ice absorption feature in three edge-on disks in the Ophiuchus molecular cloud. This will provide us with an estimate of the total column density of ice in these disks and an indication of the thermal processing it has experienced. In protoplanetary disks, water ice coats dust grains in the majority of the disk volume and plays a major role in favoring grain-grain sticking during collisions, a key phenomenon towards the formation of planetesimals. In edge-on disks, the disk near- infrared thermal radiation, arising from the innermost regions, provides a continuous background that can be absorbed by water ice in the cold outer regions of the disks. These systems therefore offer a unique opportunity to probe water ice in protoplanetary disks. The proposed observations will double the number of edge-on disks with detected water ice absorption and represent the first such observations in the Ophiuchus molecular cloud.

  17. CO2 ice state during active Dark Spot

    NASA Astrophysics Data System (ADS)

    Andrieu, F.; Schmidt, F.; Douté, S.

    2013-09-01

    MOC and HiRISE high-resolution images permitted the identification of various active seasonal processes such as cold CO2 jets or dark flows [7] on Mars seasonal caps, triggered by the caps' seasonal variations [5]. The purpose of this work is to retrieve quantitative information about the CO2 ice physical state, and its evolution, to constrain the active processes. To this end, we perform a radiative transfer inversion of CRISM near-infrared spectra before, during and after the event. After atmospheric gas and aerosols contributions correction [3], we use a radiative transfer model [2] that simulates reflectance spectra of granular icy material to create a look up table, and then a spectral inversion based on the likelihood that allows taking into account possible bias in atmospheric correction [1]. Using that inversion method, we are able to retrieve the spatial and temporal evolutions of various parameters of the icy surface.

  18. Modeling photosynthesis in sea ice-covered waters

    NASA Astrophysics Data System (ADS)

    Long, Matthew C.; Lindsay, Keith; Holland, Marika M.

    2015-09-01

    The lower trophic levels of marine ecosystems play a critical role in the Earth System mediating fluxes of carbon to the ocean interior. Many of the functional relationships describing biological rate processes, such as primary productivity, in marine ecosystem models are nonlinear functions of environmental state variables. As a result of nonlinearity, rate processes computed from mean fields at coarse resolution will differ from similar computations that incorporate small-scale heterogeneity. Here we examine how subgrid-scale variability in sea ice thickness impacts simulated net primary productivity (NPP) in a 1°×1° configuration of the Community Earth System Model (CESM). CESM simulates a subgrid-scale ice thickness distribution and computes shortwave penetration independently for each ice thickness category. However, the default model formulation uses grid-cell mean irradiance to compute NPP. We demonstrate that accounting for subgrid-scale shortwave heterogeneity by computing light limitation terms under each ice category then averaging the result is a more accurate invocation of the photosynthesis equations. Moreover, this change delays seasonal bloom onset and increases interannual variability in NPP in the sea ice zone in the model. The new treatment reduces annual production by about 32% in the Arctic and 19% in the Antarctic. Our results highlight the importance of considering heterogeneity in physical fields when integrating nonlinear biogeochemical reactions.

  19. Stability relationship for water droplet crystallization with the NASA Lewis icing spray nozzle

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1988-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  20. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  1. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  2. The inhabitants of the spring ice, under-ice water, and sediments of the white sea in the estuarine zone of the Severnaya Dvina River

    NASA Astrophysics Data System (ADS)

    Sazhin, A. F.; Sapozhnikov, F. V.; Rat'kova, T. N.; Romanova, N. D.; Shevchenko, V. P.; Filippov, A. S.

    2011-04-01

    The data on the supra-ice snow, ice, under-ice water, and benthic algal flora obtained in 2007-2008 by sampling in the estuary of the Severnaya Dvina River are analyzed. The river ice and under-ice water in the estuarine zone and in the channel part of the Severnaya Dvina differed greatly in the algal flora's composition. The fresh water species never exceeded 8.6%, while the ice algae composed 90-96% of the total ice inhabitants' biomass. In the under-ice water, this value did not exceed 58-64%. The bacteria in the ice composed not more than 2.5-10% of the total biomass, while, in the under-ice water, 36-49%. The shares of ciliates (0.04%) and nematodes (0.005-1.6%) in the total biomass were negligible. In the estuarine zone, the ice was inhabited mainly by nematodes (78% of the total biomass), while, in the river, their share decreased to 9%. The contribution of bacteria was 15% in Dvina Bay and increased to 61% in the river. The importance of algae in the snow was minor: 7% of the total biomass in the marine zone and 30% in the river region. High species diversity of the algal flora in the sandy and sandy-silty littoral grounds was revealed. The values of the total biomass of the bottom algal flora (0.38 g C/m2) were only two to three times lower than the values revealed in similar habitats in the summer. The epipelithic forms (0.15 g C/m2) dominated, being represented by 46 species of algae (49%). The shares of epipsammonic (0.12 g C/m2) and planktonic (0.11 g C/m2) species were almost equal to each other: 25 and 22 species, respectively (27 and 24%).

  3. Ice nucleation active particles in continental air samples over Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Aerosol particles are of central importance for atmospheric chemistry and physics, climate and public health. Some of these particles possess ice nucleation activity (INA), which is highly relevant for cloud formation and precipitation. In 2010, air filter samples were collected with a high-volume filter sampler separating fine and coarse particles (aerodynamic cut-off diameter 3 μm) in Mainz, Germany. In this study, the INA of the atmospheric particles deposited on these filters was determined. Therefore,they were extracted with ultrapure water, which was then measured in a droplet freezing assay, as described in Fröhlich-Nowoisky et al. (2015). The determined concentration of ice nucleators (INs) was between 0.3 and 2per m³ at 266 K, and between5 and 75 per m³ at 260 K. The INs were further characterized by different treatments, like heating (308 K, 371 K), filtration (0.1 μm, 300 kDa), and digestion with papain (10 mg/ml). We further investigated, which atmospheric conditions (e.g. weather) and distinguished events (e.g. dust storms, volcanic eruptions, and pollen peaks) influenced the number and nature of these INs. Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., and Pöschl, U.: Ice nucleation activity in the widespread soil fungus Mortierella alpina, Biogeosci., 12, 1057-1071, doi:10.5194/bg-12-1057-2015, 2015.

  4. Swift heavy ion modifications of astrophysical water ice

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Rothard, H.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J.-J.; Kamalou, O.; Lv, X.-Y.; da Silveira, E. Frota; Thomas, J.-C.; Pino, T.; Mejia, C.; Godard, M.; de Barros, A. L. F.

    2015-12-01

    In the relatively shielded environments provided by interstellar dense clouds in our Galaxy, infrared astronomical observations have early revealed the presence of low temperature (10-100 K) ice mantles covering tiny grain "cores" composed of more refractory material. These ices are of specific interest because they constitute an interface between a solid phase under complex evolution triggered by energetic processes and surface reactions, with a rich chemistry taking place in the gas phase. The interstellar ice mantles present in these environments are immersed, in addition to other existing radiations fields, in a flux of cosmic ray particles that can produce new species via radiolysis processes, but first affects their structure, which may change and also induces desorption of molecules and radicals from these grains. Theses cosmic rays are simulated by swift ions in the laboratory for a better understanding of astrophysical processes.

  5. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  6. Arctic Ocean Sea Ice Thickness, Bathymetry, and Water Properties from Submarine Data

    NASA Astrophysics Data System (ADS)

    Windnagel, A. K.; Fetterer, F. M.

    2014-12-01

    The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration that began in 1993 among the operational Navy, research agencies, and the marine research community to use nuclear-powered submarines for scientific studies of the Arctic Ocean. Unlike surface ships and satellites, submarines have the unique ability to operate and take measurements regardless of sea ice cover, weather conditions, and time of year. This allows for a broad and comprehensive investigation of an entire ocean basin. The goal of the program is to acquire comprehensive data about Arctic sea ice thickness; biological, chemical, and hydrographic water properties; and bathymetry to improve our understanding of the Arctic Ocean basin and its role in the Earth's climate system. Ice draft is measured with upward looking sonars mounted on the submarine's hull. The work of collaborators on the SCICEX project compared recent ice draft from the submarines with draft from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and with ice thickness estimates from ice age and have shown that SCICEX ice draft are consistent with these models. Bathymetry is measured with a bottom sounder. SCICEX bathymetry data from 1993 to 1999 are included in the International Bathymetric Chart of the Arctic Ocean (IBCAO). Collaborators have compared more recent bathymetry data collected through the SCICEX project with other IBCAO data, and they agree well. Water properties are measured with two different types of conductivity, temperature, and depth (CTD) sensors: one mounted on the submarine's hull and expendable versions that are deployed through the submarines torpedo tubes. Data from the two different CTD sensors validate one another. The breadth of instrumentation available from submarines along with their ability to be unencumbered by sea ice, weather, and season makes the data they have collected extremely valuable. The National Snow and Ice Data Center (NSIDC) manages this data

  7. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  8. Microwave signatures of snow and fresh water ice

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T. T.; Gloersen, P.; Meier, M. F.; Frank, D.; Dirmhirn, I.

    1973-01-01

    During March of 1971, the NASA Convair 990 Airborne Observatory carrying microwave radiometers in the wavelength range 0.8 to 21 cm was flown over dry snow with different substrata: Lake ice at Bear Lake in Utah; wet soil in the Yampa River Valley near Steamboat Springs, Colorado; and glacier ice, firm and wet snow on the South Cascade Glacier in Washington. The data presented indicate that the transparency of the snow cover is a function of wavelength. False-color images of microwave brightness temperatures obtained from a scanning radiometer operating at a wavelength of 1.55 cm demonstrate the capability of scanning radiometers for mapping snowfields.

  9. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems. PMID:21171657

  10. Saturn's Great Storm of 2010-2011: Cloud particles containing ammonia and water ices indicate a deep convective origin. (Invited)

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Baines, K. H.; Fry, P.

    2013-12-01

    Saturn's Great Storm of 2010-2011 was first detected by amateur astronomers in early December 2010 and later found in Cassini Imaging Science Subsystem (ISS) images taken on 5 December, when it took the form of a 1000 km wide bright spot. Within a week the head of the storm grew by a factor of ten in width and within a few months created a wake that encircled the planet. This is the sixth Great Saturn Storm in recorded history, all having appeared in the northern hemisphere, and most near northern summer solstice at intervals of roughly 30 years (Sanchez-Lavega et al. 1991, Nature 353, 397-401). That the most recent storm appeared 10 years early proved fortunate because Cassini was still operating in orbit around Saturn and was able to provide unique observations from which we could learn much more about these rare and enormous events. Besides the dramatic dynamical effects displayed at the visible cloud level by high-resolution imaging observations (Sayanagi et al. 2013, Icarus 223, 460-478), dramatic thermal changes also occurred in the stratosphere above the storm (Fletcher et al. 2011, Science 332, 1413), and radio measurements of lightning (Fischer et al., 2011, Nature 475, 75-77) indicated strong convective activity at deeper levels. Numerical models of Saturn's Giant storms (Hueso and Sanchez-Lavega 2004, Icarus 172, 255-271) suggest that they are fueled by water vapor condensation beginning at the 10-12 bar level, some 250 km below the visible cloud tops. That idea is also supported by our detection of water ice near the cloud tops (Sromovsky et al. 2013, Icarus 226, 402-418). From Cassini VIMS spectral imaging taken in February 2011, we learned that the storm's cloud particles are strong absorbers of sunlight at wavelengths from 2.8 to 3.1 microns. Such absorption is not seen on Saturn outside of storm regions, implying a different kind of cloud formation process as well as different cloud composition inside the storm region. We found compelling evidence

  11. The photoconversion of gamma-hexachlorocyclohexane under UV irradiation in water, snow and ice.

    PubMed

    Xue, Honghai; Tang, Xiaojian; Kang, Chunli; Liu, Jia; Shi, Lei; Wang, Hongliang; Yang, Ting

    2013-01-01

    The photochemistry of organic pollutants has received increasing attention in ice and snow. In this work, the photoconversion of gamma-hexachlorocyclohexane (γ-HCH) under UV irradiation was investigated in water, snow and ice. The photoconversion rate, products and mechanisms were inspected, and the effect of inorganic ions (NO2(-), NO3(-), HCO3(-) and Fe(2+)) was discussed. The results showed that γ-HCH could be photoconverted in water, snow and ice, with the photoconversion rate being fastest in snow, and slowest in ice. All photoconversion could be described by the first-order kinetics model. In water, snow and ice, the common photoproducts of γ-HCH were alpha-hexachlorocyclohexane (α-HCH) and pentachlorocyclohexene. α-HCH was generated by a change in the bonding of a chlorine atom in γ-HCH; pentachlorocyclohexene was generated by the removal of a molecule of chlorine hydride from a molecule of γ-HCH. Different concentrations of NO2(-), NO3(-) and HCO3(-) all inhibited the photoconversion of γ-HCH, and the inhibition effect decreased with increasing concentrations of NO2(-) and NO3(-), but increased with the increasing concentrations of HCO3(-). Different concentrations of Fe(2+) promoted the photoconversion of γ-HCH in water and ice, but had little effect in snow. PMID:24334899

  12. Water Dynamics, Ice Stability, and Salts in Victoria Valley Soils, Antarctica: An Instructive Analog for Mars

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Sletten, R. S.; Hallet, B.

    2006-12-01

    Typical of many hyper arid soils of the Dry Valleys of Antarctica, soils in Victoria Valley contain ~10% ice (at 0.3 m depth) and ~0.4% salt, mostly calcium and sodium sulfates and chlorides, making them excellent analogs to Martian soils. Vapor diffusion models designed to investigate ground ice dynamics on Mars are not entirely satisfactory because they lead to the unrealistic expectation that soils in Antarctica should be ice free within a 1000 years of being saturated with ice, and yet even ancient soils characteristically contain abundant ice near the surface. Validation of these diffusion models has been limited because of the paucity of field based climate and soil climate data. Moreover the models ignore the significant effects of snow cover, surface melt water and salts on vapor fluxes. To better understand the presence and stability of the shallow subsurface ice we are exploring the effect of snow cover and salts on vapor fluxes. Ice stability was investigated using high-resolution climate and soil temperature data from 2002 to 2005. According to the vapor diffusion model ice sublimates at an average rate of 0.22 mm a-1, corresponding to an ice recession of ~1.3 mm a-1 for soil with 10% ice content. Some of the water vapor is transported to the atmosphere; however, some water vapor accumulates at depth in the soil. Furthermore, snow cover during the summer may substantially reduce annual ice loss. Stable isotopes (δ18O & δD) in ice along a 1.6m vertical soil profile reveal a deuterium excess (-13 to -77 ‰) with the greatest enrichment of heavy isotopes at the top of the ice cement and decreasing with depth to form a concave-down profile. This isotopic profile was interpreted using a quantitative model of H2O transport in perennially frozen soil, including the advection-dispersion of heavy isotope- enriched surface water into the ice-cement. It suggests an average infiltration rate of 0.7 mm a-1 of brine if 2.5% of the H2O present is unfrozen, a

  13. The deglaciation over Laurentian Fan: History of diatoms, IRD, ice and fresh water

    NASA Astrophysics Data System (ADS)

    Gil, Isabelle M.; Keigwin, Lloyd D.; Abrantes, Fatima

    2015-12-01

    A high-resolution diatom census coupled with other proxy data from Laurentian Fan (LF) provides a detailed description of the last deglaciation, bringing new insight to that period by revealing directly the timing of sea-ice formation and melting. Cold events Heinrich Event 1 (H1) and the Younger Dryas (YD) were multiphase events. H1 (˜16.8-15.7 cal kyr BP) was defined by a two-pulse release of icebergs promoting sea-ice formation. Melting of sea-ice after H1 corresponds to a cold and fresh anomaly that may have kept the Bølling colder than the Allerød. At ˜13.6 cal kyr BP, a cooling trend culminated with sea-ice formation, marking the YD onset (˜12.8 cal kyr BP). The decrease in sea-ice (˜12.2 cal kyr BP) led to a YD second phase characterized by very cold winters. However, the contribution of warm water diatoms tends to increase at the same time and the YD gradual end (˜11.6 cal kyr BP) contrasts with its abrupt end in Greenland ice cores. The YD cannot be regarded as an event triggered by a fresh water input through the Laurentian Channel since only one weak brief input nearly 1000 yrs after its onset is recorded. Very cold and cool conditions without ice mark the following Preboreal. A northward heat flux between 10.8 and 10.2 cal kyr BP was interrupted by the increased influence of coastal waters likely fed by inland melting. There was no further development of sea-ice or ice-drift then.

  14. Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet.

    PubMed

    Bell, Robin E; Studinger, Michael; Tikku, Anahita A; Clarke, Garry K C; Gutner, Michael M; Meertens, Chuck

    2002-03-21

    The subglacial Lake Vostok may be a unique reservoir of genetic material and it may contain organisms with distinct adaptations, but it has yet to be explored directly. The lake and the overlying ice sheet are closely linked, as the ice-sheet thickness drives the lake circulation, while melting and freezing at the ice-sheet base will control the flux of water, biota and sediment through the lake. Here we present a reconstruction of the ice flow trajectories for the Vostok core site, using ice-penetrating radar data and Global Positioning System (GPS) measurements of surface ice velocity. We find that the ice sheet has a significant along-lake flow component, persistent since the Last Glacial Maximum. The rates at which ice is frozen (accreted) to the base of the ice sheet are greatest at the shorelines, and the accreted ice layer is subsequently transported out of the lake. Using these new flow field and velocity measurements, we estimate the time for ice to traverse Lake Vostok to be 16,000-20,000 years. We infer that most Vostok ice analysed to date was accreted to the ice sheet close to the western shoreline, and is therefore not representative of open lake conditions. From the amount of accreted lake water we estimate to be exported along the southern shoreline, the lake water residence time is about 13,300 years. PMID:11907573

  15. Measuring ice and liquid water content in moderately supercooled clouds with Cloudnet

    NASA Astrophysics Data System (ADS)

    Bühl, Johannes; Seifert, Patric; Myagkov, Alexander; Albert, Ansmann

    2016-04-01

    The interaction between ice nuclei and clouds is an important topic in weather and climate research. Recent laboratory experiments and field in-situ field campaigns present more and more detailed measurements of ice nucleating particles (INP) at temperatures close to 0°C. This brings moderately supercooled mixed-phase clouds into the focus of current cloud research. One current example is the European Union BACCHUS project. A major goal of BACCHUS is the analysis of the anthropogenic impact on ice nucleation. Within this project, we use the Leipzig Aerosol Cloud Remote Observations System (LACROS) and the Cloudnet framework in order to get quantitative insight into the formation of ice in mixed-phase layered clouds with cloud top temperature (CTT) from -40 to 0°C. Depolarization measurements from lidar and radar show a clear dependence between particle shape and the temperature under which the particles have been formed. The special focus of this work is on the CTT range from -10 to 0°C. An algorithm is presented to decide between ice and liquid water precipitation falling from the clouds showing that between 10% and 30% of all layered clouds show ice precipitation with CTT between -5 and 0°C. For these slightly supercooled clouds an average ice-water-content between 10e-7 and 10e-8 [kg per cubic meter] is found.

  16. Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest

    NASA Astrophysics Data System (ADS)

    Chaabouni, H.; Minissale, M.; Manicò, G.; Congiu, E.; Noble, J. A.; Baouche, S.; Accolla, M.; Lemaire, J. L.; Pirronello, V.; Dulieu, F.

    2012-12-01

    The formation of the first monolayer of water molecules on bare dust grains is of primary importance to understand the growth of the icy mantles that cover dust in the interstellar medium. In this work, we explore experimentally the formation of water molecules from O2 + D reaction on bare silicate surfaces that simulates the grains present in the diffuse interstellar clouds at visual extinctions (AV < 3 mag). For comparison, we also study the formation of water molecules on surfaces covered with amorphous water ice representing the dense clouds (AV ⩾ 3 mag). Our studies focus on the formation of water molecules in the sub-monolayer and monolayer regimes using reflection absorption infrared spectroscopy and temperature-programmed desorption techniques. We provide the fractions of the products, such as D2O and D2O2 molecules formed on three astrophysically relevant surfaces held at 10 K (amorphous olivine-type silicate, porous amorphous water ice, and nonporous amorphous water ice). Our results showed that the formation of D2O molecules occurs with an efficiency of about 55%-60% on nonporous amorphous water ice and about 18% on bare silicate grains surfaces. We explain the low efficiency of D2O water formation on the silicate surfaces by the desorption upon formation of certain products once the reaction occurs between O2 and D atoms on the surface. A kinetic model taking into account the chemical desorption of newly formed water supports our conclusions.

  17. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  18. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response.

    PubMed

    Lamy, Frank; Kaiser, Jérôme; Ninnemann, Ulysses; Hebbeln, Dierk; Arz, Helge W; Stoner, Joseph

    2004-06-25

    Marine sediments from the Chilean continental margin are used to infer millennial-scale changes in southeast Pacific surface ocean water properties and Patagonian ice sheet extent since the last glacial period. Our data show a clear "Antarctic" timing of sea surface temperature changes, which appear systematically linked to meridional displacements in sea ice, westerly winds, and the circumpolar current system. Proxy data for ice sheet changes show a similar pattern as oceanographic variations offshore, but reveal a variable glacier-response time of up to approximately 1000 years, which may explain some of the current discrepancies among terrestrial records in southern South America. PMID:15218147

  19. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    NASA Astrophysics Data System (ADS)

    Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2015-07-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re ˜2 ×104- 3 ×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  20. Drag Moderation by the Melting of an Ice Surface in Contact with Water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re~2×10^{4}-3×10^{5} and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface. PMID:26252689

  1. Size, separation, structural order, and mass density of molecules packing in water and ice

    PubMed Central

    Huang, Yongli; Zhang, Xi; Ma, Zengsheng; Li, Wen; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q.

    2013-01-01

    The structural symmetry and molecular separation in water and ice remain uncertain. We present herewith a solution to unifying the density, the structure order and symmetry, the size (H-O length dH), and the separation (dOO = dL + dH or the O:H length dL) of molecules packing in water and ice in terms of statistic mean. This solution reconciles: i) the dL and the dH symmetrization of the O:H-O bond in compressed ice, ii) the dOO relaxation of cooling water and ice and, iii) the dOO expansion of a dimer and between molecules at water surface. With any one of the dOO, the density ρ(g·cm−3), the dL, and the dH, as a known input, one can resolve the rest quantities using this solution that is probing conditions or methods independent. We clarified that: i) liquid water prefers statistically the mono-phase of tetrahedrally-coordinated structure with fluctuation, ii) the low-density phase (supersolid phase as it is strongly polarized with even lower density) exists only in regions consisting molecules with fewer than four neighbors and, iii) repulsion between electron pairs on adjacent oxygen atoms dictates the cooperative relaxation of the segmented O:H-O bond, which is responsible for the performance of water and ice. PMID:24141643

  2. The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Wilson, J. K.

    2013-06-01

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket into the permanently shadowed region (PSR) within Cabeus crater and detected water vapor and ice, as well as other volatiles, in the ejecta plume. The Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph on board the Lunar Reconnaissance Orbiter (LRO), observed this plume as FUV emissions from the fluorescence of sunlight by molecular hydrogen (H2) and other constituents. Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can dissociate the molecules in water ice to form H2. We examine how much H2can be formed by these types of particle radiation interacting with water ice sequestered in the regolith within PSRs, and we assess whether it can account for the H2 observed by LAMP. To estimate H2formation, we use the GCR and SEP radiation dose rates measured by the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER). The exposure time of the ice is calculated by considering meteoritic gardening and the penetration depth of the energetic particles. We find that GCRs and SEPs could convert at least 1-7% of the original water molecules into H2. Therefore, given the amount of water detected by LCROSS, such particle radiation‒induced dissociation of water ice could likely account for a significant percentage (10-100%) of the H2measured by LAMP.

  3. A microfluidic apparatus for the study of ice nucleation in supercooled water drops.

    PubMed

    Stan, Claudiu A; Schneider, Grégory F; Shevkoplyas, Sergey S; Hashimoto, Michinao; Ibanescu, Mihai; Wiley, Benjamin J; Whitesides, George M

    2009-08-21

    This paper describes a microfluidic instrument that produces drops of supercooled water suspended in a moving stream of liquid fluorocarbon, and measures the temperatures at which ice nucleates in the drops. A microfluidic chip containing a monodisperse drop generator and a straight channel with 38 embedded resistance thermometers was placed in contact with a seven-zone temperature-control plate and imaged under a microscope with a high-speed camera. This instrument can record the freezing temperatures of tens of thousands of drops within minutes, with an accuracy of 0.4 degrees C. The ice-nucleation temperatures in approximately 80-microm drops were reported for the freezing of 37 061 drops of pure water, and of 8898 drops of water seeded with silver iodide. Nucleation of ice in pure water was homogenous and occurred at temperatures between -36 and -37.8 degrees C, while water containing silver iodide froze between -10 and -19 degrees C. The instrument recorded the largest sets of individual freezing temperatures (37 061), had the fastest data acquisition rate (75 measurements/s), and the best optical (3 microm) and temporal (70 micros) resolutions among instruments designed to study nucleation of ice. The dendritic growth of ice in 150-microm drops of supercooled water at -35 degrees C was observed and imaged at a rate of 16 000 frames/s. PMID:19636459

  4. Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Johnson, R. E.; Kaiser, M. L.; Wahlund, J.-E.; Waite, J. H., Jr.

    2009-01-01

    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.

  5. Neutrinos in IceCube from active galactic nuclei

    SciTech Connect

    Kalashev, O.; Semikoz, D.; Tkachev, I.

    2015-03-15

    Recently, the IceCube collaboration reported first evidence for the astrophysical neutrinos. Observation corresponds to the total astrophysical neutrino flux of the order of 3 × 10{sup −8} GeV cm{sup −2} s{sup −1} sr{sup −1} in a PeV energy range [1]. Active galactic nuclei (AGN) are natural candidate sources for such neutrinos. To model the neutrino creation in AGNs, we study photopion production processes on the radiation field of the Shakura-Sunyaev accretion discs in the black hole vicinity. We show that this model can explain the detected neutrino flux and at the same time avoids the existing constraints from the gamma-ray and cosmic-ray observations.

  6. Acquisition of seismic data in ice filled waters

    NASA Astrophysics Data System (ADS)

    Hopper, J. R.; Trinhammer, P.; Marcussen, C.; Funck, T.

    2012-12-01

    Collecting seismic data in the Arctic Ocean requires specially designed equipment and procedures adapted to harsh environmental conditions. Based on experiences of others in the 90's and 00's, Aarhus University and GEUS designed a fully containerized seismic acquisition system for Icebreaker Oden that includes: A single cable, the towing umbilical connecting all equipment to the ship. This reduces risk of damage by ice and simplifies deployment and recovery operations. A 250- m-long GeoEel streamer. The short length permits fast deployment and recovery and in the event of a full stop, will not sink below the 300 m depth limit for the equipment. A linear array of two airguns hung from a single point on the towing umbilical. The towing umbilical is designed to keep the guns and streamer at a depth of 20 m, below the wash of the ship's propellers, and minimizing the risk of equipment coming in contact with ice. This, however, compromises signal quality because of the effects on frequency content. Sonobuoys to record data at larger offsets for determining seismic velocities of the sediments. In easier ice conditions, Oden can break ice continuously at 3 to 4 knots and seismic data of reasonable data quality can be acquired. In heavy ice conditions, Oden's normal mode of operation is to maintain as high a speed as possible. In very heavy ice, progress is only achieved by backing and ramming. Neither of these heavy ice modes is possible with seismic gear behind the ship. The gear is designed for slow speeds and backing will entangle gear in the propellers. Limitations to breaking heavy ice while towing seismic gear can only be addressed by having a lead pre-broken prior to acquiring seismic data. We have used two options to accomplish this. First is to operate with two ships, where a lead icebreaker (as powerful as possible) prepares a track along a pre-planned line several times at maximum speed. Oden then uses this track to collect data continuously at 3-4 knots. The

  7. Water Ice Cloud Opacities and Temperatures Derived from the Viking IRTM Data Set

    NASA Technical Reports Server (NTRS)

    TamppariL. K.; Zurek, R. W.; Paige, D. A.

    1999-01-01

    The degree to which water ice clouds play a role in the Mars climate is unknown. Latent heating of water ice clouds is small and since most hazes appeared to be thin (tau less than or = 1) their radiative effects have been neglected. Condensation likely limits the vertical extent of water vapor in the water column and a lowering of the condensation altitude, as seen in the northern spring and summer, could increase the seasonal exchange of water between the atmosphere and the surface. It has been suggested that water ice cloud formation is more frequent and widespread in the aphelic hemisphere (currently the northern). This may limit water to the northern hemisphere through greater exchange with the regolith and through restricted southward transport of water vapor by the Mars Hadley circulation. In addition, it has been suggested that water ice cloud formation also controls the vertical distribution of atmospheric dust in some seasons. This scavenging of dust may Continuing from the IRTM cloud maps, derived cloud opacities and cloud temperatures for several locations and seasons will be presented. Sensitivities to cloud particle sizes, surface temperature, and dust opacity will be discussed.

  8. Compaction of porous ices rich in water by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Mejía, C.; de Barros, A. L. F.; Seperuelo Duarte, E.; da Silveira, E. F.; Dartois, E.; Domaracka, A.; Rothard, H.; Boduch, P.

    2015-04-01

    Porous water ice and water ice mixtures H2O:X (X = CO, CO2 and CH4) produced at 15 K, with film thicknesses in the 0.5-1 μm range, were irradiated by swift ions and monitored by mid-infrared spectroscopy (FTIR). The analysis of the evolution of the pure water ice infrared absorption on ion beam dose reveals a strong correlation among three quantities: (i) the absorbance of the most intense band (3250 cm-1), (ii) the wavelength of the maximum absorbance of this band and (iii) the absorbance of the OH-dangling bonds. This correlation is interpreted as indications of the water ice compaction by irradiation: as the beam fluence increases, the ice porosity decreases, the dangling bond peaks collapse and the area and position of the 3250 cm-1 band vary exponentially, all of them evolving with the same compaction cross section (σc). The linear dependence σc ∝Se (Se being the electronic stopping power) is observed for both pure and mixed water ices, confirming previous results. We suggests that the infrared absorption A-value varies with dose as (1 - ζe - D /D0) during the compaction process (D0 = 0.2 eV/molec being the effective energy density to eliminate the OH-db, and ζ is a parameter characterizing the porosity). These findings may be used as a diagnostic tool to probe the morphology of water ices occurring in the outer Solar System and in the ISM.

  9. Microbial Contamination of Ice Machines Is Mediated by Activated Charcoal Filtration Systems in a City Hospital.

    PubMed

    Yorioka, Katsuhiro; Oie, Shigeharu; Hayashi, Koji; Kimoto, Hiroo; Furukawa, Hiroyuki

    2016-06-01

    Although microbial contamination of ice machines has been reported, no previous study has addressed microbial contamination of ice produced by machines equipped with activated charcoal (AC) filters in hospitals. The aim of this study was to provide clinical data for evaluating AC filters to prevent microbial contamination of ice. We compared microbial contamination in ice samples produced by machines with (n = 20) and without an AC filter (n = 40) in Shunan City Shinnanyo Municipal Hospital. All samples from the ice machine equipped with an AC filter contained 10-116 CFUs/g of glucose nonfermenting gram-negative bacteria such as Pseudomonas aeruginosa and Chryseobacterium meningosepticum. No microorganisms were detected in samples from ice machines without AC filters. After the AC filter was removed from the ice machine that tested positive for Gram-negative bacteria, the ice was resampled (n = 20). Analysis found no contaminants. Ice machines equipped with AC filters pose a serious risk factor for ice contamination. New filter-use guidelines and regulations on bacterial detection limits to prevent contamination of ice in healthcare facilities are necessary. PMID:27348980

  10. Formation and Alignment of Elongated, Fractal-like Water-ice Grains in Extremely Cold, Weakly Ionized Plasma

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Bellan, Paul M.

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1-2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length to width ratio) are as great as 5 while typical fractal dimensions are ˜1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.

  11. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis.

    PubMed

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  12. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  13. Pore-Filling Ice Diffusively Derived From Atmospheric Water Vapor Under Mars Conditions

    NASA Astrophysics Data System (ADS)

    Hudson, T. L.; Aharonson, O.; Oslund, K.; Siegler, M.; Schorghofer, N.

    2007-12-01

    Conditions during previous climate epochs on Mars may have allowed subsurface ice to form via diffusion from a moist atmosphere. The deposition and recharge of such reservoirs is driven by subsurface humidity gradients; an atmospheric frostpoint greater than that of the subsurface results in a net influx of vapor which deposits in pore space as ice. Observations of the hydrogen distribution by Mars Odyssey indicate that the ice content of some high-latitude regions (e.g. Olympia Undae) exceeds 70% by volume. Reconciliation of this concentration with typically lower porosities of soils demands a process of ice segregation (lensing) and mechanical expansion, or direct precipitation. We investigate the possibility and consequences of volumetrically significant subsurface ice derived from the Mars atmosphere by vapor diffusion, at present and in the past. Experiments conducted at the Mars Simulation and Ice Laboratory at Caltech demonstrate that diffusion processes produce significant pore-filling ice under controlled lab conditions. Atmospherically derived water vapor is deposited within an initially dry porous medium subject to a strong (~15~K/cm) temperature gradient forcing a humidity gradient. This mimics the humidity gradient caused by time varying temperatures in the shallow subsurface of Mars with a static experimental setup. The vertical profile of water content is determined at the end of the experiment by gravimetric analysis and the thermal conductivity of the ice-bearing sample is calculated. Pore filling fractions up to 100% have been measured. Profiles with a marked transition in ice content at the frostpoint depth are observed corresponding to a subsurface ice table. The data enable calculation of time-varying diffusion coefficients which exhibit a reduction of up to an order of magnitude with respect to ice-free regolith. These are compared to numerical models of vapor diffusion incorporating ice deposition and pore constriction. Formation theories of

  14. Ceres: predictions for near-surface water ice stability and implications for plume generating processes

    USGS Publications Warehouse

    Titus, Timothy N.

    2015-01-01

    This paper will constrain the possible sources and processes for the formation of recently observed H2O vapor plumes above the surface of the dwarf planet Ceres. Two hypotheses have been proposed: (1) cryovolcanism where the water source is the mantle and the heating source is still unknown or (2) comet-like sublimation where near-surface water ice is vaporized by seasonally increasing solar insolation. We test hypothesis #2, comet-like near-surface sublimation, by using a thermal model to examine the stability of water-ice in the near surface. For a reasonable range of physical parameters (thermal inertia, surface roughness, slopes), we find that water ice is only stable at latitudes higher than ~40-60 degrees. These results indicate that either (a) the physical properties of Ceres are unlike our expectations or (b) an alternative to comet-like sublimation, such as the cryovolcanism hypothesis, must be invoked.

  15. Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Miller, Lisa A.; Carnat, Gauthier; Shadwick, Elizabeth; Thomas, Helmuth; Pineault, Simon; Papakyriakou, Tim N.

    2013-12-01

    From sea-ice formation in November 2007 to onset of ice melt in May 2008, we studied the carbonate system in first-year Arctic sea ice, focusing on the impact of calcium-carbonate (CaCO3) saturation states of aragonite (ΩAr) and calcite (ΩCa) at the ice-water interface (UIW). Based on total inorganic carbon (CT) and total alkalinity (AT), and derived pH, CO2, carbonate ion ([CO32-]) concentrations and Ω, we investigated the major drivers such as brine rejection, CaCO3 precipitation, bacterial respiration, primary production and CO2-gas flux in sea ice, brine, frost flowers and UIW. We estimated large variability in sea-ice CT at the top, mid, and bottom ice. Changes due to CaCO3 and CO2-gas flux had large impact on CT in the whole ice core from March to May, bacterial respiration was important at the bottom ice during all months, and primary production in May. It was evident that the sea-ice processes had large impact on UIW, resulting in a five times larger seasonal amplitude of the carbonate system, relative to the upper 20 m. During ice formation, [CO2] increased by 30 µmol kg-1, [CO32-] decreased by 50 µmol kg-1, and the ΩAr decreased by 0.8 in the UIW due to CO2-enriched brine from solid CaCO3. Conversely, during ice melt, [CO32-] increased by 90 µmol kg-1 in the UIW, and Ω increased by 1.4 between March and May, likely due to CaCO3 dissolution and primary production. We estimated that increased ice melt would lead to enhanced oceanic uptake of inorganic carbon to the surface layer.

  16. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    NASA Technical Reports Server (NTRS)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  17. Ultraviolet-stimulated fluorescence and phosphorescence of aromatic hydrocarbons in water ice.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Bolser, Diana K; Bhartia, Rohit; Lane, Arthur L; Kanik, Isik

    2011-03-01

    A principal goal of astrobiology is to detect and inventory the population of organic compounds on extraterrestrial bodies. Targets of specific interest include the wealth of icy worlds that populate our Solar System. One potential technique for in situ detection of organics trapped in water ice matrices involves ultraviolet-stimulated emission from these compounds. Here, we report a preliminary investigation into the feasibility of this concept. Specifically, fluorescence and phosphorescence of pure benzene ice and 1% mixtures of benzene, toluene, p-xylene, m-xylene, and o-xylene in water ice, respectively, were studied at temperatures ranging from ∼17 K up to 160 K. Spectra were measured from 200-500 nm (50,000-20,000 cm(-1)) while ice mixtures were excited at 248.6 nm. The temperature dependence of the fluorescence and phosphorescence intensities was found to be independent of the thermal history and phase of the ice matrix in all cases examined. All phosphorescent emissions were found to decrease in intensity with increasing temperature. Similar behavior was observed for fluorescence in pure benzene, while the observed fluorescence intensity in water ices was independent of temperature. PMID:21417944

  18. Classical and quantum theories of proton disorder in hexagonal water ice

    NASA Astrophysics Data System (ADS)

    Benton, Owen; Sikora, Olga; Shannon, Nic

    2016-03-01

    It has been known since the pioneering work of Bernal, Fowler, and Pauling that common, hexagonal (Ih) water ice is the archetype of a frustrated material: a proton-bonded network in which protons satisfy strong local constraints (the "ice rules") but do not order. While this proton disorder is well established, there is now a growing body of evidence that quantum effects may also have a role to play in the physics of ice at low temperatures. In this paper, we use a combination of numerical and analytic techniques to explore the nature of proton correlations in both classical and quantum models of ice Ih. In the case of classical ice Ih, we find that the ice rules have two, distinct, consequences for scattering experiments: singular "pinch points," reflecting a zero-divergence condition on the uniform polarization of the crystal, and broad, asymmetric features, coming from its staggered polarization. In the case of the quantum model, we find that the collective quantum tunneling of groups of protons can convert states obeying the ice rules into a quantum liquid, whose excitations are birefringent, emergent photons. We make explicit predictions for scattering experiments on both classical and quantum ice Ih, and show how the quantum theory can explain the "wings" of incoherent inelastic scattering observed in recent neutron scattering experiments [Bove et al., Phys. Rev. Lett. 103, 165901 (2009), 10.1103/PhysRevLett.103.165901]. These results raise the intriguing possibility that the protons in ice Ih could form a quantum liquid at low temperatures, in which protons are not merely disordered, but continually fluctuate between different configurations obeying the ice rules.

  19. Comparison the effects of pressurized salt ice packs with water ice packs on patients following total knee arthroplasty.

    PubMed

    Pan, Liying; Hou, Dong; Liang, Wei; Fei, Jiali; Hong, Zongyuan

    2015-01-01

    The aim of this study was to estimate the effects of pressurized salt ice packs (PIP) with water ice packs (WIP) which are used to relieve pain and decrease swelling on patients following total knee arthroplasty (TKA). Sixty-nine patients undergoing primary unilateral TKA were randomly divided into two groups (PIP group and WIP group). We used a visual analog scale (VAS) to score knee pain and the score was recorded. The knee bilateral girth, the slipping times of the ice pack, and the times of wound dressing or bed moist were recorded during cryotherapy. The scores of pain between the two groups were significant difference in 12 h, 24 h, 48 h and 72 h after TKA (P < 0.05). No significant difference was found for the girth measurements of the operative knee on the two levels in 12 h, 24 h and 72 h, respectively. However, there was statistically difference for girth measurements between the two groups in 48 h after TKA (P < 0.05). PIP is a cheap, safe and simple method, which is more effective than WIP on reducing pain and swelling degree of patients. Thus, PIP is recommended in clinical nursing work. PMID:26770417

  20. Water-Ice Clouds in the LMDs Martian General Circulation Model

    NASA Technical Reports Server (NTRS)

    Montmessin, F.; Forget, F.; Haberle, R. M.; Rannou, P.; Cabane, M.

    2003-01-01

    The interest for Martian water ice clouds has recently taken a new extent given their likely involvement both in climate and in the hydrological cycle. Previous related microphysical studies have already discussed the complex interactions between airborne dust and clouds [2]. Whereas water ice mantles upon dust cores enhance sedimentation rates and thus possibly change the vertical distribution of dust and water, the advection of clouds by winds could also modulate the geographical distribution of volatiles. Within this context, only 3D modeling based on the use of Martian General Circulation Models (MGCM) is able to give us a consistent clue of the global climatic aspects of Martian clouds.

  1. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars.

    PubMed

    Mitrofanov, I G; Zuber, M T; Litvak, M L; Boynton, W V; Smith, D E; Drake, D; Hamara, D; Kozyrev, A S; Sanin, A B; Shinohara, C; Saunders, R S; Tretyakov, V

    2003-06-27

    Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south. PMID:12829779

  2. Contribution of glacial melt water to the recent Southern Ocean sea ice increase

    NASA Astrophysics Data System (ADS)

    Haid, Verena; Iovino, Dorotea

    2015-04-01

    In recent years climate change and global warming are topics that are discussed everywhere. Big concerns are the melting of land ice, the reduced summer sea ice cover in the Arctic Ocean, and the general decline of the cryosphere. In contrast to those scenarios, the response of Antarctic sea ice to a warming climate is elaborate and puzzling: sea ice extent has been slightly increasing on a circumpolar scale during the last decades. Atmospheric data analysis ascribed this expansion to changes in the wind dynamics; simulations with climate-scale ocean model suggest that accelerated basal melting of ice shelves plays a major role. We investigate the influence of the glacial melt water on the sea ice of the Southern Ocean on the circumpolar and regional scales employing the ocean/sea ice NEMO-LIM coupled system at eddy-permitting resolution. The forcing of the sea ice-ocean model is supplied from the ERA-Interim data set. After a 25-year spin-up period the reference run supplies a realistic simulation of the period 2004-2013. Different volumes and distributions of melt water are applied in individual model runs spanning the same period and results are compared with the reference run. The results of this study will increase our understanding of the effect of climate change on the Southern Ocean at present and thus also of the future development. Questions like how long the increasing trend in sea ice will last or how fast it will be reversed once the tipping point is reached will be able to be addressed with more accuracy.

  3. Chemical Processing of Pure Ammonia and Ammonia-Water Ices Induced by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Bordalo, V.; da Silveira, E. F.; Lv, X. Y.; Domaracka, A.; Rothard, H.; Seperuelo Duarte, E.; Boduch, P.

    2013-09-01

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH3) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H2O). FTIR spectroscopy is used to monitor pure NH3 and NH3-H2O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N2H4), diazene (N2H2 isomers), molecular hydrogen (H2), and nitrogen (N2) were identified after irradiation of pure NH3 ices. Nitrous oxide (N2O), nitrogen oxide (NO), nitrogen dioxide (NO2), and hydroxylamine (NH2OH) are some of the products of the NH3-H2O ice radiolysis. The spectral band at 6.85 μm was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH_{4}^{+}) and amino (NH2) radicals, data suggest a small contribution of NH2OH to this band profile after high fluences of irradiation of NH3-H2O ices. The spectral shift of the NH3 "umbrella" mode (9.3 μm) band is parameterized as a function of NH3/H2O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH3-H2O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H2O in the ice and a power law relationship between stopping power and NH3 destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  4. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  5. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  6. A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.

    2015-01-01

    Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…

  7. Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Behncke, Boris; Belousova, Marina

    2011-04-01

    We describe a new type of secondary rootless phreatomagmatic explosions observed at active lava flows at volcanoes Klyuchevskoy (Russia) and Etna (Italy). The explosions occurred at considerable (up to 5 km) distances from primary volcanic vents, generally at steep (15-35°) slopes, and in places where incandescent basaltic or basaltic-andesitic lava propagated over ice/water-saturated substrate. The explosions produced high (up to 7 km) vertical ash/steam-laden clouds as well as pyroclastic flows that traveled up to 2 km downslope. Individual lobes of the pyroclastic flow deposits were up to 2 m thick, had steep lateral margins, and were composed of angular to subrounded bomb-size clasts in a poorly sorted ash-lapilli matrix. Character of the juvenile rock clasts in the pyroclastic flows (poorly vesiculated with chilled and fractured cauliflower outer surfaces) indicated their origin by explosive fragmentation of lava due to contact with external water. Non-juvenile rocks derived from the substrate of the lava flows comprised up to 75% in some of the pyroclastic flow deposits. We suggest a model where gradual heating of a water-saturated substrate under the advancing lava flow elevates pore pressure and thus reduces basal friction (in the case of frozen substrate water is initially formed by thawing of the substrate along the contact with lava). On steep slope this leads to gravitational instability and sliding of a part of the active lava flow and water-saturated substrate. The sliding lava and substrate disintegrate and intermix, triggering explosive "fuel-coolant" type interaction that produces large volume of fine-grained clastic material. Relatively cold steam-laden cloud of the phreatomagmatic explosion has limited capacity to transport upward the produced clastic material, thus part of it descends downslope in the form of pyroclastic flow. Similar explosive events were described for active lava flows of Llaima (Chile), Pavlof (Alaska), and Hekla (Iceland

  8. European Space Agency Campaign Activities in Support of Earth Observation Projects: Examples for Snow and Ice

    NASA Astrophysics Data System (ADS)

    Schüttemeyer, D.; Davidson, M.; Casal, T.; Perrera, A.; Bianchi, R.; Kern, M.; Scipal, K.

    2012-04-01

    studies at phase A level for further down-selection in 2013. The Candidate missions under consideration are: -BIOMASS - Global measurements of forest biomass and extent, -CoReH2O - (Cold Regions Hydrology High-resolution Observatory) - Detailed observations of key snow, ice and water cycle characteristics, -PREMIER - (PRocess Exploration through Measurements of Infrared and millimetre- wave Emitted Radiation)-Understanding the processes that link trace gases, radiation, chemistry and climate in the atmosphere. This paper focuses on describing the current setup for campaign execution in the context of CoReH2O and BIOMASS focusing on applications for Snow and Ice. The CoReH2O primary mission objectives are to observe snow water equivalent, to improve the modelling of snow and ice processes, and to advance the prediction of stream flow in regions where snow and glacier melt are important components of the water balance. Snow cover and glaciers are not only key components of the water balance in high latitudes, but are also vital resources of fresh water for many densely populated areas at mid and low latitudes. A dual frequency SAR, operating at X-band (9.6 GHz) and Ku-band (17.2 GHz), VV and VH polarizations, with a swath width of about 100 km, has been selected for this mission. It will operate in two consecutive mission phases to deliver snow and ice information over two temporal scales (3 days and 12-15 days). The BIOMASS primary mission objectives are to improve estimates of carbon stocks and fluxes over land through global measurements of forest biomass and changes in this biomass with time. The mission concept is based on novel spaceborne P-band synthetic aperture polarimetric radar operating at 435 MHz and with 6 MHz bandwidth. Among the additional application areas of the mission, the potential of BIOMASS to provide ice sheet motion products and subsurface structure maps is considered of highest scientific interest as - with the longer wavelength at P-Band -the

  9. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  10. Experimental studies on the impact properties of water ice

    NASA Technical Reports Server (NTRS)

    Bridges, F. G.; Lin, D. N. C.; Hatzes, A. P.

    1987-01-01

    Experimental studies on the impact of ice particles at very low velocity were continued. These measurements have applications in the dynamics of Saturn's rings. Initially data were obtained on the coefficient of restitution for ice spheres of one radius of curvature. The type of measurements were expanded to include restitution data for balls with a variety of surfaces as well as sticking forces between ice particles. Significant improvements were made to this experiment, the most important being the construction of a new apparatus. The new apparatus consists of a smaller version of the disk pendulum and a stainless steel, double-walled cryostat. The apparatus has proved to be a significant improvement over the old one. Measurements can now be made at temperatures near 90 K, comparable to the temperature of the environment of Saturn's rings, and with much greater temperature stability. It was found that a roughened contact surface or the presence of frost can cause a much larger change in the restitution measure than the geometrical effect of the radius of curvature.

  11. Water ICE: Ion Exclusion Chromatography of Very Weak Acids with a Pure Water Eluent.

    PubMed

    Liao, Hongzhu; Shelor, C Phillip; Dasgupta, Purnendu K

    2016-05-01

    Separation of ions or ionizable compounds with pure water as eluent and detecting them in a simple fashion has been an elusive goal. It has been known for some time that carbonic acid can be separated from strong acids by ion chromatography in the exclusion mode (ICE) using only water as the eluent. The practice of water ICE was shown feasible for very weak acids like silicate and borate with a dedicated element specific detector like an inductively coupled plasma mass spectrometer (ICPMS), but this is rarely practical in most laboratories. Direct conductometric detection is possible for H2CO3 but because of its weak nature, not especially sensitive; complex multistep ion exchange methods do not markedly improve this LOD. It will clearly be impractical in acids that are weaker still. By using a permeative amine introduction device (PAID, Anal. Chem. 2016 , 88 , 2198 - 2204 ) as a conductometric developing agent, we demonstrate that a variety of weak acids (silicate, borate, arsenite, cyanide, carbonate, and sulfide) cannot only be separated on an ion exclusion column, they can be sensitively detected (LODs 0.2-0.4 μM). We observe that the elution order is essentially the same as that on a nonfunctionalized poly(styrene-divinylbenzene) column using 1-10% acetonitrile as eluent and follows the reverse order of the polar surface area (PSA) of the analyte molecules. PSA values have been widely used to predict biological transport of pharmaceuticals across a membrane but never to predict chromatographic behavior. We demonstrate the application of the technique by measuring the silicate and borate depth profiles in the Pacific Ocean; the silicate results show an excellent match with results from a reference laboratory. PMID:27075932

  12. Upwelling at the ice edge - A mechanism for deep water formation?

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    This study sets forward a hypothesis which anticipates deep water formation due to ice edge upwelling. The upwelling can raise thermocline waters (the lower Arctic Intermediate Water) to the surface or near it, where the water is exposed to cooling, evaporation, mixing, and oxygenation. Thus, upwelling can act as a preconditioning mechanism for deep convection. The conjecture would also explain the salinity range of the Greenland Sea Deep Water if the upper and lower Arctic Intermediate Water masses are mixed so that the latter has at least an 80-percent contribution. It is also anticipated that the convection events induced by ice edge upwelling during winter season could give rise to a new deep water annual production rate consistent with observations.

  13. Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water.

    PubMed

    Murr, L E; Esquivel, E V; Bang, J J; de la Rosa, G; Gardea-Torresdey, J L

    2004-11-01

    Particulates extracted from a single section of a 10,000 year-old ice core melt sample exhibited characteristics of contemporary, airborne fine particulates: a majority were microcrystalline particulates and aggregated microcrystals, including some mixtures of microcrystals and carbonaceous matter. Particularly significant were the presence of carbon nanotubes and fullerene nanocrystals composing aggregated particulates reflecting global combustion products similar to contemporary, airborne carbon nanocrystal aggregates. ICP elemental analysis of the melt water showed significant concentrations of Ca, K and especially Na (corresponding to K, NaCl), S, Si, Se, and Zn. Overall, the elemental analysis of the melt water is similar to local tap water. However, lead was absent in the local tap water and only half the concentration of selenium was present in the tap water in contrast to the ice core water. While these observations cannot be generalized, the methodology illustrates the potential to characterize and compare airborne particulate regimes and water chemistries in antiquity. PMID:15491674

  14. Practical Use Study of the Direct Conveyance and Cooling System for Iced Water by the Propylene Glycol Solutio

    NASA Astrophysics Data System (ADS)

    Seki, Mitsuo; Ninomiya, Tohru; Matsubara, Kazuo; Aikawa, Keisuke; Ikoma, Kenji

    In a cold storage warehouse, by developing the thermal energy storage technique using cheap electric powerin the night, it is necessary to construct a high-efficient and energy-saving-type refrigeration system in which air conditioning is possible at 0 degrees c. We created a brine iced water (ice slurry) cooled under 0 degreesc by a closed supercooling ice making method. For a practical application, the brine iced water was directly sent to the load side, and it was utilized as the secondary refrigerant for the heat exchange. As a result, by replacing the pure water with a marketed propylene glycol solution, it was proven that the conventional closed supercooling ice making method could be similarly utilized for the ice making. However, it is necessary to control the evaporation temperature in the refrigerator, because the freezing temperature changes with the brine concentration. In the refrigerator entrance, it is necessary to heat at a constant temperature so that the inflow brine may not freeze. In case of the brine iced water, the fluidity of the brine iced water is high, and the ice particle is carried away by the flow. Therefore, it is necessary to prevent runoff of the ice particle from an intake of the thermal storage tank in case of thebrine water. This proposal system was confirmed that there was practically no problem by an operation of a 15kW refrigerator system.

  15. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Persistent summertime water ice deposits in the northern plains of Mars: Observations from MRO CRISM

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Seelos, F. P.; Murchie, S. L.; Titus, T. N.; CRISM Team

    2007-12-01

    Analysis of MRO CRISM multispectral mapping data obtained during the late northern summer season on Mars (Ls = 130-180 degrees) reveals small water ice deposits distributed throughout the northern plains at latitudes quite distant from the residual polar cap. These outliers range in size from a few hundreds of meters to several kilometers, and are generally associated with the northward facing slopes of crater rims or other elevated landforms. In a few instances the ice deposits are located on the leeward (southeast-facing) sides of larger craters, and may indicate the presence of wintertime CO2 frost formation from orographic lifting. The brighter frost sublimes more slowly than the surrounding CO2 ice, ultimately forming a late spring cold trap and inducing an accumulation of water ice. During the first 4 months of MRO primary science phase (PSP), CRISM was able to cover ~75% of the northern plains surface (at 75 degrees latitude) with 73 channel visible/near infrared (0.41 to 3.92 μm) multispectral data as part of its systematic global mapping campaign. These long, 10 km-wide strips of data are mosaicked together and resampled to 256 pix/deg (~231 m/pix) spatial resolution. CRISM's wavelength range is particularly well-suited to distinguishing between different types and grain sizes of CO2 and water ice, as well as iron- bearing minerals, sulfates, and phyllosilicates. False color composites of the multispectral data allow consistent mapping of the lowest latitudes of water ice occurrences and comparison to other global datasets. The average minimum latitude that water ice is observed during this time period is 75.5 degrees, with excursions of up to 10 degrees. Albedo appears to be a secondary control after local slope, and large scale topographic trends do not influence the locations of residual ice patches. Further comparison to Mars Odyssey GRS inferred subsurface water ice distribution may provide important clues regarding subsurface

  17. Lattice Boltzmann simulation of water isotope fractionation during ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; DePaolo, Donald J.

    2016-05-01

    We describe a lattice Boltzmann (LB) method for simulating water isotope fractionation during diffusion-limited ice crystal growth by vapor deposition from water-oversaturated air. These conditions apply to the growth of snow crystals in clouds where the vapor composition is controlled by the presence of both ice crystals and water droplets. Modeling of water condensation with the LB method has the advantage of allowing concentration fields to evolve based on local conditions so that the controls on grain shapes of the condensed phase can be studied simultaneously with the controls on isotopic composition and growth rate. Water isotope fractionation during snow crystal growth involves kinetic effects due to diffusion of water vapor in air, which requires careful consideration of the boundary conditions at the ice-vapor interface. The boundary condition is relatively simple for water isotopes because the molecular exchange rate for water at the interface is large compared to the crystal growth rate. Our results for th