Sample records for active wavefront sensing

  1. Wavefront sensing and control aspects in a high energy laser optical train

    NASA Astrophysics Data System (ADS)

    Bartosewcz, M.; Bareket, N.

    1981-01-01

    In this paper we review the major elements of a HEL (high energy laser) wavefront sensing and control system with particular emphasis on experimental demonstrations and hardware components developed at Lockheed Missiles & Space Company, Inc. The review concentrates on three important elements of wavefront control: wavefront sampling, wavefront sensing and active mirrors. Methods of wavefront sampling by diffraction gratings are described. Some new developments in wavefront sensing are explored. Hardware development efforts of fast steering mirrors and edge controlled deformable mirrors are described.

  2. Wavefront error sensing

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.

    1986-01-01

    A two-step approach to wavefront sensing for the Large Deployable Reflector (LDR) was examined as part of an effort to define wavefront-sensing requirements and to determine particular areas for more detailed study. A Hartmann test for coarse alignment, particularly segment tilt, seems feasible if LDR can operate at 5 microns or less. The direct measurement of the point spread function in the diffraction limited region may be a way to determine piston error, but this can only be answered by a detailed software model of the optical system. The question of suitable astronomical sources for either test must also be addressed.

  3. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  4. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  5. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  6. ARGOS wavefront sensing: from detection to correction

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, Gilles; Bonaglia, M.; Borelli, J.; Busoni, L.; Connot, C.; Esposito, S.; Gaessler, W.; Kulas, M.; Mazzoni, T.; Puglisi, A.; Rabien, S.; Storm, J.; Ziegleder, J.

    2014-08-01

    Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.

  7. Underwater Turbulence Detection Using Gated Wavefront Sensing Technique

    PubMed Central

    Bi, Ying; Xu, Xiping; Chow, Eddy Mun Tik

    2018-01-01

    Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments. PMID:29518889

  8. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  9. Complex wavefront sensing with a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2016-09-01

    There are many techniques to achieve basic wavefront sensing tasks in the weak atmospheric turbulence regime. However, in strong and deep turbulence situations, the complexity of a propagating wavefront increases significantly. Typically, beam breakup will happen and various portions of the beam will randomly interfere with each other. Consequently, some conventional techniques for wavefront sensing turn out to be inaccurate and misleading. For example, a Shack-Hartmann sensor will be confused by multi-spot/zero-spot result in some cells. The curvature sensor will be affected by random interference patterns for both the image acquired before the focal plane and the image acquired after the focal plane. We propose the use of a plenoptic sensor to solve complex wavefront sensing problems. In fact, our results show that even for multiple beams (their wavelengths can be the same) passing through the same turbulent channel, the plenoptic sensor can reconstruct the turbulence-induced distortion accurately. In this paper, we will demonstrate the plenoptic mapping principle to analyze and reconstruct the complex wavefront of a distorted laser beam.

  10. Wavefront sensing with a thin diffuser

    NASA Astrophysics Data System (ADS)

    Berto, Pascal; Rigneault, Hervé; Guillon, Marc

    2017-12-01

    We propose and implement a broadband, compact, and low-cost wavefront sensing scheme by simply placing a thin diffuser in the close vicinity of a camera. The local wavefront gradient is determined from the local translation of the speckle pattern. The translation vector map is computed thanks to a fast diffeomorphic image registration algorithm and integrated to reconstruct the wavefront profile. The simple translation of speckle grains under local wavefront tip/tilt is ensured by the so-called "memory effect" of the diffuser. Quantitative wavefront measurements are experimentally demonstrated both for the few first Zernike polynomials and for phase-imaging applications requiring high resolution. We finally provided a theoretical description of the resolution limit that is supported experimentally.

  11. Wavefront error sensing for LDR

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  12. Asymmetric cryptography based on wavefront sensing.

    PubMed

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  13. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  14. Low-order wavefront sensing for coronagraphic telescopes

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, Jeremy; Peter Varnai

    2018-01-01

    Space telescopes equipped with a coronagraph to detect and characterize exoplanets must have the ability to sense and control low-order wavefront aberrations. Most concepts for low-order wavefront sensing use the starlight rejected by the coronagraph to sense these aberrations. The sensor must be able to make precise estimates and be robust to photon and read noise. A thorough study of various differential low-order wavefront sensors (LOWFSs) would be beneficial for future space-based observatories designed for exoplanet detection and characterization. In this talk, we will expand on the comparison of different LOWFSs that use the rejected starlight either from the coronagraphic focal plane or the Lyot plane to estimate these aberrations. We will also present the experimental results of the sparse aperture mask (SAM) LOWFS that we have designed at the Princeton High Contrast Imaging Lab (PHCIL).

  15. Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.

    PubMed

    Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A

    2005-07-11

    An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.

  16. Experimental results for correlation-based wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Palmer, D W; LaFortune, K N

    2005-07-01

    Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.

  17. Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Balasubramanian, Kunjithapatha; Bartos, Randall; Hien, Randall; Kern, Brian; Krist, John; Lam, Raymond; Moore, Douglas; Moore, James; Patterson, Keith; hide

    2015-01-01

    To maintain the required WFIRST Coronagraph performance in a realistic space environment, a low order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C use s the rejected stellar light from coronagraph to sense and suppress the telescope pointing drift and jitter as well as the low order wavefront errors due to changes in thermal loading of the telescope and the rest of the observatory. In this paper we will present an overview of the low order wavefront sensing and control subsystem for the WFIRST -AFTA Coronagraph. We will describe LOWFS/C's Zernike wavefront sensor concept and WFIRST LOWFS/C control design. We will present an overview of our analysis and modeling results on the Zernike wavefront sensor, the line -of-sight jitter suppression loop performance, as well as the low order wavefront error correction with the coronagraph's deformable mirror. In this paper we will also report the LOWFS/C testbed design and the preliminary in-air test results, which show a very promising performance of the Zernike wavefront sensor and FSM feedback loop.

  18. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.

    PubMed

    Wang, Shuai; Yang, Ping; Xu, Bing; Dong, Lizhi; Ao, Mingwu

    2015-02-23

    Spot centroid detection is required by Shack-Hartmann wavefront sensing since the technique was first proposed. For a Shack-Hartmann wavefront sensor, the standard structure is to place a camera behind a lenslet array to record the image of spots. We proposed a new Shack-Hartmann wavefront sensing technique without using spot centroid detection. Based on the principle of binary-aberration-mode filtering, for each subaperture, only one light-detecting unit is used to measure the local wavefront slopes. It is possible to adopt single detectors in Shack-Hartmann wavefront sensor. Thereby, the method is able to gain noise benefits from using singe detectors behind each subaperture when used for sensing rapid varying wavefront in weak light. Moreover, due to non-discrete pixel imaging, this method is a potential solution for high measurement precision with fewer detecting units. Our simulations demonstrate the validity of the theoretical model. In addition, the results also indicate the advantage in measurement accuracy.

  19. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  20. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature

  1. Parallel-Computing Architecture for JWST Wavefront-Sensing Algorithms

    DTIC Science & Technology

    2011-09-01

    results due to the increasing cost and complexity of each test. 2. ALGORITHM OVERVIEW Phase retrieval is an image-based wavefront-sensing...broadband illumination problems we have found that hand-tuning the right matrix sizes can account for a speedup of 86x faster. This comes from hand-picking...Wavefront Sensing and Control”. Proceedings of SPIE (2007) vol. 6687 (08). [5] Greenhouse, M. A., Drury , M. P., Dunn, J. L., Glazer, S. D., Greville, E

  2. Plenoptic camera wavefront sensing with extended sources

    NASA Astrophysics Data System (ADS)

    Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun

    2016-09-01

    The wavefront sensor is used in adaptive optics to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. Different from the Shack-Hartmann sensor that has been widely used with point sources, the plenoptic camera wavefront sensor has been proposed as an alternative wavefront sensor adequate for extended objects in recent years. In this paper, the plenoptic camera wavefront sensing with extended sources is discussed systematically. Simulations are performed to investigate the wavefront measurement error and the closed-loop performance of the plenoptic sensor. The results show that there are an optimal lenslet size and an optimal number of pixels to make the best performance. The RMS of the resulting corrected wavefront in closed-loop adaptive optics system is less than 108 nm (0.2λ) when D/r0 ≤ 10 and the magnitude M ≤ 5. Our investigation indicates that the plenoptic sensor is efficient to operate on extended sources in the closed-loop adaptive optics system.

  3. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  4. Wavefront sensing, control, and pointing

    NASA Technical Reports Server (NTRS)

    Pitts, Thomas; Sevaston, George; Agronin, Michael; Bely, Pierre; Colavita, Mark; Clampin, Mark; Harvey, James; Idell, Paul; Sandler, Dave; Ulmer, Melville

    1992-01-01

    A majority of future NASA astrophysics missions from orbiting interferometers to 16-m telescopes on the Moon have, as a common requirement, the need to bring light from a large entrance aperture to the focal plane in a way that preserves the spatial coherence properties of the starlight. Only by preserving the phase of the incoming wavefront, can many scientific observations be made, observations that range from measuring the red shift of quasi-stellar objects (QSO's) to detecting the IR emission of a planet in orbit around another star. New technologies for wavefront sensing, control, and pointing hold the key to advancing our observatories of the future from those already launched or currently under development. As the size of the optical system increases, either to increase the sensitivity or angular resolution of the instrument, traditional technologies for maintaining optical wavefront accuracy become prohibitively expensive or completely impractical. For space-based instruments, the low mass requirement and the large temperature excursions further challenge existing technologies. The Hubble Space Telescope (HST) is probably the last large space telescope to rely on passive means to keep its primary optics stable and the optical system aligned. One needs only look to the significant developments in wavefront sensing, control, and pointing that have occurred over the past several years to appreciate the potential of this technology for transforming the capability of future space observatories. Future developments in space-borne telescopes will be based in part on developments in ground-based systems. Telescopes with rigid primary mirrors much larger than 5 m in diameter are impractical because of gravity loading. New technologies are now being introduced, such as active optics, that address the scale problem and that allow very large telescopes to be built. One approach is a segmented design such as that being pioneered by the W.M. Keck telescope now under

  5. Direct-Solve Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2009-01-01

    A method of wavefront sensing (more precisely characterized as a method of determining the deviation of a wavefront from a nominal figure) has been invented as an improved means of assessing the performance of an optical system as affected by such imperfections as misalignments, design errors, and fabrication errors. The method is implemented by software running on a single-processor computer that is connected, via a suitable interface, to the image sensor (typically, a charge-coupled device) in the system under test. The software collects a digitized single image from the image sensor. The image is displayed on a computer monitor. The software directly solves for the wavefront in a time interval of a fraction of a second. A picture of the wavefront is displayed. The solution process involves, among other things, fast Fourier transforms. It has been reported to the effect that some measure of the wavefront is decomposed into modes of the optical system under test, but it has not been reported whether this decomposition is postprocessing of the solution or part of the solution process.

  6. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  7. Wavefront Sensing With Switched Lenses for Defocus Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    In an alternative hardware design for an apparatus used in image-based wavefront sensing, defocus diversity is introduced by means of fixed lenses that are mounted in a filter wheel (see figure) so that they can be alternately switched into a position in front of the focal plane of an electronic camera recording the image formed by the optical system under test. [The terms image-based, wavefront sensing, and defocus diversity are defined in the first of the three immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] Each lens in the filter wheel is designed so that the optical effect of placing it at the assigned position is equivalent to the optical effect of translating the camera a specified defocus distance along the optical axis. Heretofore, defocus diversity has been obtained by translating the imaging camera along the optical axis to various defocus positions. Because data must be taken at multiple, accurately measured defocus positions, it is necessary to mount the camera on a precise translation stage that must be calibrated for each defocus position and/or to use an optical encoder for measurement and feedback control of the defocus positions. Additional latency is introduced into the wavefront sensing process as the camera is translated to the various defocus positions. Moreover, if the optical system under test has a large focal length, the required defocus values are large, making it necessary to use a correspondingly bulky translation stage. By eliminating the need for translation of the camera, the alternative design simplifies and accelerates the wavefront-sensing process. This design is cost-effective in that the filterwheel/lens mechanism can be built from commercial catalog components. After initial calibration of the defocus value of each lens, a selected defocus value is introduced by simply rotating the filter wheel to place the corresponding lens in front of the camera. The rotation of the

  8. Implementation of a Wavefront-Sensing Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  9. SAPHIRA detector for infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.

    2014-08-01

    The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the

  10. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  11. Filter Function for Wavefront Sensing Over a Field of View

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.

  12. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  13. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  14. Zonal wavefront sensing using a grating array printed on a polyester film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less

  15. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST).

    PubMed

    Manuel, Anastacia M; Phillion, Donald W; Olivier, Scot S; Baker, Kevin L; Cannon, Brice

    2010-01-18

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary, along with three refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. In order to maintain image quality during operation, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations, which arise primarily from forces due to gravity and thermal expansion. We describe the methodology for measuring the telescope aberrations using a set of curvature wavefront sensors located in the four corners of the LSST camera focal plane. We present a comprehensive analysis of the wavefront sensing system, including the availability of reference stars, demonstrating that this system will perform to the specifications required to meet the LSST performance goals.

  16. Multiple Spatial Frequencies Pyramid WaveFront Sensing

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Vassallo, Daniele; Dima, Marco; Portaluri, Elisa; Bergomi, Maria; Greggio, Davide; Viotto, Valentina; Gullieuszik, Marco; Biondi, Federico; Carolo, Elena; Chinellato, Simonetta; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca

    2017-11-01

    A modification of the pyramid wavefront sensor is described. In this conceptually new class of devices, the perturbations are split at the level of the focal plane depending upon their spatial frequencies, and then measured separately. The aim of this approach is to increase the accuracy in the determination of some range of spatial frequency perturbations, or a certain classes of modes, disentangling them from the noise associated to the Poissonian fluctuations of the light coming from the perturbations outside of the range of interest or from the background in the pupil planes; the latter case specifically when the pyramid wavefront sensor is used with a large modulation. While the limits and the effectiveness of this approach should be further investigated, a number of variations on the concept are shown, including a generalization of the spatial filtering in the point-diffraction wavefront sensor. The simplest application, a generalization to the pyramid of the well-known spatially filtering in wavefront sensing, is showing promise as a significant limiting magnitude advance. Applications are further speculated in the area of extreme adaptive optics and when serving spectroscopic instrumentation where “light in the bucket” rather than Strehl performance is required.

  17. Wavefront Sensing with the Fine Guidance Sensor for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott; Aronstein, David; Dean, Bruce H.; Howard,Joe; Shiri, Ron

    2008-01-01

    An analysis is presented that utilizes the Fine Guidance Sensor (FGS) for focal-plane wavefront sensing (WFS) for the James Webb Space Telescope (JWST). WFS with FGS increases the number of wavefront measurements taken in field of the telescope, but has many challenges over the other JWST instruments that make it unique, such as; less sampling of the Point Spread Function (PSF), a smaller diversity-defocus range, a smaller image detector size, and a polychromatic object or source. Additionally, presented is an analysis of sampling for wavefront sensing. Results are shown based on simulations of flight and the cryogenic optical testing at NASA Johnson Space Center.

  18. Sequential deconvolution from wave-front sensing using bivariate simplex splines

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai

    2015-05-01

    Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.

  19. MEMS deformable mirror embedded wavefront sensing and control system

    NASA Astrophysics Data System (ADS)

    Owens, Donald; Schoen, Michael; Bush, Keith

    2006-01-01

    Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.

  20. Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions

    PubMed Central

    Barrett, Harrison H.; Dainty, Christopher; Lara, David

    2008-01-01

    Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods. PMID:17206255

  1. Hybrid wavefront sensor for the fast detection of wavefront disturbances.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang

    2012-09-01

    Strongly aberrated wavefronts lead to inaccuracies and nonlinearities in holography-based modal wavefront sensing (HMWS). In this contribution, a low-resolution Shack-Hartmann sensor (LRSHS) is incorporated into HMWS via a compact holographic design to extend the dynamic range of HMWS. A static binary-phase computer-generated hologram is employed to generate the desired patterns for Shack-Hartmann sensing and HMWS. The low-order aberration modes dominating the wavefront error are first sensed with the LRSHS and corrected by the wavefront modulator. The system then switches to HMWS to obtain better sensor sensitivity and accuracy. Simulated as well as experimental results are shown for validating the proposed method.

  2. Modified plenoptic camera for phase and amplitude wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.

  3. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets

  4. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  5. Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics

    NASA Astrophysics Data System (ADS)

    Paul, Lancelot; Kumar Saxena, Ajay

    2010-12-01

    An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.

  6. Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.

    2017-01-01

    NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.

  7. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  8. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  9. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  10. Projected Pupil Plane Pattern: an alternative LGS wavefront sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Huizhe; Bharmal, Nazim A.; Myers, Richard M.

    2018-07-01

    We have analysed and simulated a novel alternative Laser Guide Star (LGS) configuration termed Projected Pupil Plane Pattern (PPPP), including wavefront sensing and the reconstruction method. A key advantage of this method is that a collimated beam is launched through the telescope primary mirror, therefore the wavefront measurements do not suffer from the effects of focal anisoplanatism. A detailed simulation including the upward wave optics propagation, return path imaging, and linearized wavefront reconstruction has been presented. The conclusions that we draw from the simulation include the optimum pixel number across the pupilN = 32, the optimum number of Zernike modes (which is 78), propagation altitudes h1 = 10 km and h2 = 20 km for Rayleigh scattered returns, and the choice for the laser beam modulation (Gaussian beam). We also investigate the effects of turbulence profiles with multiple layers and find that it does not reduce PPPP performance as long as the turbulence layers are below h1. A signal-to-noise ratio analysis has been given when photon and read noise are introduced. Finally, we compare the PPPP performance with a conventional Shack-Hartmann Wavefront Sensor in an open loop, using Rayleigh LGS or sodium LGS, for 4-m and 10-m telescopes, respectively. For this purpose, we use a full Monte Carlo end-to-end AO simulation tool, Soapy. From these results, we confirm that PPPP does not suffer from focus anisoplanatism.

  11. Projected Pupil Plane Pattern: an alternative LGS wavefront sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Huizhe; Bharmal, Nazim A.; Myers, Richard M.

    2018-04-01

    We have analyzed and simulated a novel alternative LGS configuration termed Projected Pupil Plane Pattern (PPPP), including wavefront sensing and the reconstruction method. A key advantage of this method is that a collimated beam is launched through the telescope primary mirror, therefore the wavefront measurements do not suffer from the effects of focal anisoplanatism. A detailed simulation including the upward wave optics propagation, return path imaging and linearized wavefront reconstruction has been presented. The conclusions that we draw from the simulation include the optimum pixel number across the pupil N=32, the optimum number of Zernike modes (which is 78), propagation altitudes h1 = 10 km and h2 = 20 km for Rayleigh scattered returns, and the choice for the laser beam modulation (Gaussian beam). We also investigate the effects of turbulence profiles with multiple layers and find that it does not reduce PPPP performance as long as the turbulence layers are below h1. A signal-to-noise ratio (SNR) analysis has been given when photon and read noise are introduced. Finally, we compare the PPPP performance with a conventional Shack-Hartmann Wavefront Sensor (WFS) in open loop, using Rayleigh LGS or sodium LGS, for 4-m and 10-m telescopes respectively. For this purpose we use a full Monte-Carlo end-to-end AO simulation tool, Soapy. From these results we confirm that PPPP does not suffer from focus anisoplanatism.

  12. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  13. Method and apparatus for wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahk, Seung-Whan

    A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size .LAMBDA.. The method also includes directing an incident light field having a wavelengthmore » $$ \\lamda $$ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields.« less

  14. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  15. Dynamic testbed demonstration of WFIRST coronagraph low order wavefront sensing and control (LOWFS/C)

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Cady, Eric; Seo, Byoung-Joon; An, Xin; Balasubramanian, Kunjithapatham; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Mejia Prada, Camilo; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying

    2017-09-01

    To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope's vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.

  16. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  17. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  18. System and Method for Null-Lens Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)

    2015-01-01

    A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.

  19. Fast Holographic Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.; Gurley, K.

    There are several different types of wavefront sensors that can be used to measure the phase of an input beam. While they have widely varying modes of operation, they all require some computational overhead in order to deconstruct the phase from an optical measurement which greatly reduces the sensing speed. Furthermore, zonal detection methods, such as the Shack-Hartmann wavefront sensor (SHWFS) are not well suited to temporal changes in pupil obscuration such as can occur with scintillation. Here we present a modal detector that incorporates a multiplexed hologram to give a full description of wavefront error without the need for any calculations. The holographic wavefront sensor (HWFS) uses a hologram that is "pre-programmed" with all desired Zernike aberration components. An input beam of arbitrary phase will diffract into pairs of focused beams. Each pair represents a different aberration, and the amplitude is obtained by measuring the relative brightness of the pair of foci. This can be easily achieved by using conventional position sensing devices. In this manner, the amplitudes of each aberration components are directly sensed without the need for any calculations. As such, a complete characterization of the wavefront can be made at speeds of up to 100 kHz in a compact device and without the need for a computer or sophisticated electronics. In this talk we will detail the operation of the holographic wavefront sensor and present results of a prototype sensor as well as a modified design suitable for a closed-loop adaptive optics system. This new wavefront sensor will not only permit faster correction, but permit adaptive optics systems to work in extremely turbulent environments such as those encountered in fast-tracking systems and the Airborne Laser project.

  20. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  1. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  2. Reference-free Shack-Hartmann wavefront sensor.

    PubMed

    Zhao, Liping; Guo, Wenjiang; Li, Xiang; Chen, I-Ming

    2011-08-01

    The traditional Shack-Hartmann wavefront sensing (SHWS) system measures the wavefront slope by calculating the centroid shift between the sample and a reference piece, and then the wavefront is reconstructed by a suitable iterative reconstruction method. Because of the necessity of a reference, many issues are brought up, which limit the system in most applications. This Letter proposes a reference-free wavefront sensing (RFWS) methodology, and an RFWS system is built up where wavefront slope changes are measured by introducing a lateral disturbance to the sampling aperture. By using Southwell reconstruction two times to process the measured data, the form of the wavefront at the sampling plane can be well reconstructed. A theoretical simulation platform of RFWS is established, and various surface forms are investigated. Practical measurements with two measurement systems-SHWS and our RFWS-are conducted, analyzed, and compared. All the simulation and measurement results prove and demonstrate the correctness and effectiveness of the method. © 2011 Optical Society of America

  3. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics

    NASA Astrophysics Data System (ADS)

    Montmerle Bonnefois, A.; Fusco, T.; Meimon, S.; Michau, V.; Mugnier, L.; Sauvage, J.-F.; Engel, C.; Escolle, C.; Ferrari, M.; Hugot, E.; Liotard, A.; Bernot, M.; Carlavan, M.; Falzon, F.; Bret-Dibat, T.; Laubier, D.

    2017-11-01

    Earth-imaging or Universe Science satellites are always in need of higher spatial resolutions, in order to discern finer and finer details in images. This means that every new generation of satellites must have a larger main mirror than the previous one, because of the diffraction. Since it allows the use of larger mirrors, active optics is presently studied for the next generation of satellites. To measure the aberrations of such an active telescope, the Shack-Hartmann (SH), and the phase-diversity (PD) are the two wavefront sensors (WFS) considered preferentially because they are able to work with an extended source like the Earth's surface, as well as point sources like stars. The RASCASSE project was commissioned by the French spatial agency (CNES) to study the SH and PD sensors for high-performance wavefront sensing. It involved ONERA and Thales Alenia Space (TAS), and LAM. Papers by TAS and LAM on the same project are available in this conference, too [1,2]. The purpose of our work at ONERA was to explore what the best performance both wavefront sensors can achieve in a space optics context. So we first performed a theoretical study in order to identify the main sources of errors and quantify them - then we validated those results experimentally. The outline of this paper follows this approach: we first discuss phase diversity theoretical results, then Shack-Hartmann's, then experimental results - to finally conclude on each sensor's performance, and compare their weak and strong points.

  4. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS

  5. TRL-6 for JWST Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  6. TRL-6 for JWST wavefront sensing and control

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis

    2007-09-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.

  7. Wavefront sensing with all-digital Stokes measurements

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew

    2014-09-01

    A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.

  8. Investigation of the confocal wavefront sensor and its application to biological microscopy.

    PubMed

    Shaw, Michael; O'Holleran, Kevin; Paterson, Carl

    2013-08-12

    Wavefront sensing in the presence of background light sources is complicated by the need to restrict the effective depth of field of the wavefront sensor. This problem is particularly significant in direct wavefront sensing adaptive optic (AO) schemes for correcting imaging aberrations in biological microscopy. In this paper we investigate how a confocal pinhole can be used to reject out of focus light whilst still allowing effective wavefront sensing. Using a scaled set of phase screens with statistical properties derived from measurements of wavefront aberrations induced by C. elegans specimens, we investigate and quantify how the size of the pinhole and the aberration amplitude affect the transmitted wavefront. We suggest a lower bound for the pinhole size for a given aberration strength and quantify the optical sectioning provided by the system. For our measured aberration data we find that a pinhole of size approximately 3 Airy units represents a good compromise, allowing effective transmission of the wavefront and thin optical sections. Finally, we discuss some of the practical implications of confocal wavefront sensing for AO systems in microscopy.

  9. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  10. Wavefront Sensing Analysis of Grazing Incidence Optical Systems

    NASA Technical Reports Server (NTRS)

    Rohrbach, Scott; Saha, Timo

    2012-01-01

    Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined

  11. Design and realization of adaptive optical principle system without wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  12. Focal plane based wavefront sensing with random DM probes

    NASA Astrophysics Data System (ADS)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  13. Method and apparatus for wavefront sensing

    DOEpatents

    Bahk, Seung-Whan

    2016-08-23

    A method of measuring characteristics of a wavefront of an incident beam includes obtaining an interferogram associated with the incident beam passing through a transmission mask and Fourier transforming the interferogram to provide a frequency domain interferogram. The method also includes selecting a subset of harmonics from the frequency domain interferogram, individually inverse Fourier transforming each of the subset of harmonics to provide a set of spatial domain harmonics, and extracting a phase profile from each of the set of spatial domain harmonics. The method further includes removing phase discontinuities in the phase profile, rotating the phase profile, and reconstructing a phase front of the wavefront of the incident beam.

  14. JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team

    2018-01-01

    After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.

  15. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  16. Precise calibration of pupil images in pyramid wavefront sensor.

    PubMed

    Liu, Yong; Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Yang, Chengliang; Xuan, Li

    2017-04-20

    The pyramid wavefront sensor (PWFS) is a novel wavefront sensor with several inspiring advantages compared with Shack-Hartmann wavefront sensors. The PWFS uses four pupil images to calculate the local tilt of the incoming wavefront. Pupil images are conjugated with a telescope pupil so that each pixel in the pupil image is diffraction-limited by the telescope pupil diameter, thus the sensing error of the PWFS is much lower than that of the Shack-Hartmann sensor and is related to the extraction and alignment accuracy of pupil images. However, precise extraction of these images is difficult to conduct in practice. Aiming at improving the sensing accuracy, we analyzed the physical model of calibration of a PWFS and put forward an extraction algorithm. The process was verified via a closed-loop correction experiment. The results showed that the sensing accuracy of the PWFS increased after applying the calibration and extraction method.

  17. An Improved Wavefront Control Algorithm for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Basinger, Scott A.; Redding, David C.

    2008-01-01

    Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.

  18. Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    NASA Astrophysics Data System (ADS)

    Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.

    2018-03-01

    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.

  19. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, P. N.

    1974-01-01

    Focal plane sensors for determining the error in a telescope wavefront were investigated. The construction of three candidate test instruments and their evaluation in terms of small wavefront error aberration measurements are described. A laboratory wavefront simulator was designed and fabricated to evaluate the test instruments. The laboratory wavefront error simulator was used to evaluate three tests; a Hartmann test, a polarization shearing interferometer test, and an interferometric Zernike test.

  20. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  1. Local sharpening and subspace wavefront correction with predictive dynamic digital holography

    NASA Astrophysics Data System (ADS)

    Sulaiman, Sennan; Gibson, Steve

    2017-09-01

    Digital holography holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. Consequently, many imaging and sensing applications including microscopy and optical tweezing have turned to using digital holography. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high energy laser systems and high speed imaging for target racking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing to optimize some sharpness criteria. It has been shown recently that minimum-variance wavefront prediction can be integrated with digital holography and image sharpening to reduce significantly large number of costly sharpening iterations required to achieve near-optimal wavefront correction. This paper demonstrates further gains in computational efficiency with localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. The method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.

  2. Quantitative phase imaging using a programmable wavefront sensor

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Durán, V.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We perform phase imaging using a non-interferometric approach to measure the complex amplitude of a wavefront. We overcome the limitations in spatial resolution, optical efficiency, and dynamic range that are found in Shack-Hartmann wavefront sensing. To do so, we sample the wavefront with a high-speed spatial light modulator. A single lens forms a time-dependent light distribution on its focal plane, where a position detector is placed. Our approach is lenslet-free and does not rely on any kind of iterative or unwrap algorithm. The validity of our technique is demonstrated by performing both aberration sensing and phase imaging of transparent samples.

  3. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  4. An Adaptive Cross-Correlation Algorithm for Extended-Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    This viewgraph presentation reviews the Adaptive Cross-Correlation (ACC) Algorithm for extended scene-Shack Hartmann wavefront (WF) sensing. A Shack-Hartmann sensor places a lenslet array at a plane conjugate to the WF error source. Each sub-aperture lenslet samples the WF in the corresponding patch of the WF. A description of the ACC algorithm is included. The ACC has several benefits; amongst them are: ACC requires only about 4 image-shifting iterations to achieve 0.01 pixel accuracy and ACC is insensitive to both background light and noise much more robust than centroiding,

  5. Performance analysis of a Hartmann wavefront sensor used for sensing atmospheric turbulence statistics

    NASA Astrophysics Data System (ADS)

    Welsh, Byron M.; Reeves, Toby D.; Roggemann, Michael C.

    1997-09-01

    The ability to measure atmospheric turbulence characteristics such as Fried's coherence diameter, the outer scale of turbulence, and the turbulence power law are critical for the optimized operation of adaptive optical telescopes. One approach for sensing these turbulence parameters is to use a Hartmann wavefront sensor (H-WFS) array to measure the wavefront slope structure function (SSF) . The SSF is defined as the second moment of the wavefront slope difference between any two subapertures separated in time and/or space. Accurate knowledge of the SSF allows turbulence parameters to be estimated. The H-WFS slope measurements, composed of a true slope signal corrupted by noise, are used to estimate the SSF by computing a mean square difference of slope signals from different subapertures. This computation is typically performed over a large number of H-WFS measurement frames. The quality of the SSF estimate is quantified by the signal-to-noise ratio (SNR) of the estimator. The quality of the SSF estimate then can in turn be related to the quality of the atmospheric turbulence parameter estimates. This research develops a theoretical SNR expression for the SSF estimator. This SNR is a function of H-WFS geometry, the number of temporal measurement frames, the outer scale of turbulence, the turbulence spectrum power law, and the temporal properties of the turbulence. Results are presented for various H-WFS configurations and atmospheric turbulence properties.

  6. Wavefront control with a spatial light modulator containing dual-frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank

    2004-10-01

    A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.

  7. AO wavefront sensing detector developments at ESO

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Baade, Dietrich; Iwert, Olaf; Hubin, Norbert; Reyes, Javier; Feautrier, Philippe; Gach, Jean-Luc; Balard, Philippe; Guillaume, Christian; Stadler, Eric; Magnard, Yves

    2010-07-01

    The detector is a critical component of any Adaptive Optics WaveFront Sensing (AO WFS) system. The required combination of fast frame rate, high quantum efficiency, low noise, large number and size of pixels, and low image lag can often only be met by specialized custom developments. ESO's very active WFS detector development program is described. Key test results are presented for newly developed detectors: a) the e2v L3Vision CCD220 (the fastest/lowest noise AO detector to date) to be deployed soon on 2nd Generation VLT instruments, and b) the MPI-HLL pnCCD with its superb high "red" response. The development of still more advanced laser/natural guide-star WFS detectors is critical for the feasibility of ESO's EELT. The paper outlines: a) the multi-phased development plan that will ensure detectors are available on-time for EELT first-light AO systems, b) results of design studies performed by industry during 2007 including a comparison of the most promising technologies, c) results from CMOS technology demonstrators that were built and tested over the past two years to assess and validate various technologies at the pixel level, their fulfillment of critical requirements (especially read noise and speed), and scalability to full-size. The next step will be towards Scaled-Down Demonstrators (SDD) to retire architecture and process risks. The SDD will be large enough to be used for E-ELT first-light AO WFS systems. For full operability, 30-50 full-scale devices will be needed.

  8. Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices

    PubMed Central

    Bartsch, D-UG; Bessho, K; Gomez, L; Freeman, WR

    2009-01-01

    Purpose To compare two wavefront-sensing devices based on different principles. Methods Thirty-eight healthy eyes of 19 patients were measured five times in the reproducibility study. Twenty eyes of 10 patients were measured in the comparison study. The Tracey Visual Function Analyzer (VFA), based on the ray-tracing principle and the Nidek optical pathway difference (OPD)-Scan, based on the dynamic skiascopy principle were compared. Standard deviation (SD) of root mean square (RMS) errors was compared to verify the reproducibility. We evaluated RMS errors, Zernike terms and conventional refractive indexes (Sph, Cyl, Ax, and spherical equivalent). Results In RMS errors reading, both devices showed similar ratios of SD to the mean measurement value (VFA: 57.5±11.7%, OPD-Scan: 53.9±10.9%). Comparison on the same eye showed that almost all terms were significantly greater using the VFA than using the OPD-Scan. However, certain high spatial frequency aberrations (tetrafoil, pentafoil, and hexafoil) were consistently measured near zero with the OPD-Scan. Conclusion Both devices showed similar level of reproducibility; however, there was considerable difference in the wavefront reading between machines when measuring the same eye. Differences in the number of sample points, centration, and measurement algorithms between the two instruments may explain our results. PMID:17571088

  9. Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor.

    PubMed

    Meimon, Serge; Fusco, Thierry; Michau, Vincent; Plantet, Cédric

    2014-05-15

    We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.

  10. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  11. Single-Grating Talbot Imaging for Wavefront Sensing and X-Ray Metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grizolli, Walan; Shi, Xianbo; Kolodziej, Tomasz

    2017-01-01

    Single-grating Talbot imaging relies on high-spatial-resolution detectors to perform accurate measurements of X-ray beam wavefronts. The wavefront can be retrieved with a single image, and a typical measurement and data analysis can be performed in few seconds. These qualities make it an ideal tool for synchrotron beamline diagnostics and in-situ metrology. The wavefront measurement can be used both to obtain a phase contrast image of an object and to characterize an X-ray beam. In this work, we explore the concept in two cases: at-wavelength metrology of 2D parabolic beryllium lenses and a wavefront sensor using a diamond crystal beam splitter.

  12. Optimal wavefront control for adaptive segmented mirrors

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.

  13. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  14. Two-photon Shack-Hartmann wavefront sensor.

    PubMed

    Xia, Fei; Sinefeld, David; Li, Bo; Xu, Chris

    2017-03-15

    We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.

  15. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  16. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.

    PubMed

    Zhang, Yong; Yang, Dehua; Cui, Xiangqun

    2004-02-01

    We describe the measurement of atmospheric enclosure seeing along a 120-m light path by use of a Shack-Hartmann wave-front sensor (S-H WFS) for the first time to our knowledge in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) outdoor active-optics experiment system, based on the differential image motion method and a S-H WFS. Seeing estimates that were gained with the S-H WFS were analyzed and found to be in close agreement with the actual seeing conditions, the estimates of refractive-index structure constant, and the thin-mirror active optics results, which usually include the shape sensing precision and the active correction precision of the experimental system. Finally, some countermeasures against poor seeing conditions were considered and adopted.

  17. Adaptive Full Aperture Wavefront Sensor Study

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or

  18. Zernike Wavefront Sensor Modeling Development for LOWFS on WFIRST-AFTA

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Wallace, J. Kent; Shi, Fang

    2015-01-01

    WFIRST-AFTA design makes use of an existing 2.4m telescope for direct imaging of exoplanets. To maintain the high contrast needed for the coronagraph, wavefront error (WFE) of the optical system needs to be continuously sensed and controlled. Low Order Wavefront Sensing (LOWFS) uses the rejected starlight from an immediate focal plane to sense wavefront changes (mostly thermally induced low order WFE) by combining the LOWFS mask (a phase plate located at the small center region with reflective layer) with the starlight rejection masks, i.e. Hybrid Lyot Coronagraph (HLC)'s occulter or Shaped Pupil Coronagraph (SPC)'s field stop. Zernike wavefront sensor (ZWFS) measures phase via the phase-contrast method and is known to be photon noise optimal for measuring low order aberrations. Recently, ZWFS was selected as the baseline LOWFS technology on WFIST/AFTA for its good sensitivity, accuracy, and its easy integration with the starlight rejection mask. In this paper, we review the theory of ZWFS operation, describe the ZWFS algorithm development, and summarize various numerical sensitivity studies on the sensor performance. In the end, the predicted sensor performance on SPC and HLC configurations are presented.

  19. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  20. Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors

    NASA Astrophysics Data System (ADS)

    Basavaraju, Roopashree M.; Akondi, Vyas; Weddell, Stephen J.; Budihal, Raghavendra Prasad

    2014-02-01

    In comparison with a Hartmann Shack wavefront sensor, the curvature wavefront sensor is known for its higher sensitivity and greater dynamic range. The aim of this study is to numerically investigate the merits of using a curvature wavefront sensor, in comparison with a Hartmann Shack (HS) wavefront sensor, to analyze aberrations of the myopic eye. Aberrations were statistically generated using Zernike coefficient data of 41 myopic subjects obtained from the literature. The curvature sensor is relatively simple to implement, and the processing of extra- and intra-focal images was linearly resolved using the Radon transform to provide Zernike modes corresponding to statistically generated aberrations. Simulations of the HS wavefront sensor involve the evaluation of the focal spot pattern from simulated aberrations. Optical wavefronts were reconstructed using the slope geometry of Southwell. Monte Carlo simulation was used to find critical parameters for accurate wavefront sensing and to investigate the performance of HS and curvature sensors. The performance of the HS sensor is highly dependent on the number of subapertures and the curvature sensor is largely dependent on the number of Zernike modes used to represent the aberration and the effective propagation distance. It is shown that in order to achieve high wavefront sensing accuracy while measuring aberrations of the myopic eye, a simpler and cost effective curvature wavefront sensor is a reliable alternative to a high resolution HS wavefront sensor with a large number of subapertures.

  1. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  2. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  3. Bottlenecks of the wavefront sensor based on the Talbot effect.

    PubMed

    Podanchuk, Dmytro; Kovalenko, Andrey; Kurashov, Vitalij; Kotov, Myhaylo; Goloborodko, Andrey; Danko, Volodymyr

    2014-04-01

    Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack-Hartmann sensor.

  4. C-RED one: ultra-high speed wavefront sensing in the infrared made possible

    NASA Astrophysics Data System (ADS)

    Gach, J.-L.; Feautrier, Philippe; Stadler, Eric; Greffe, Timothee; Clop, Fabien; Lemarchand, Stéphane; Carmignani, Thomas; Boutolleau, David; Baker, Ian

    2016-07-01

    First Light Imaging's CRED-ONE infrared camera is capable of capturing up to 3500 full frames per second with a subelectron readout noise. This breakthrough has been made possible thanks to the use of an e-APD infrared focal plane array which is a real disruptive technology in imagery. We will show the performances of the camera, its main features and compare them to other high performance wavefront sensing cameras like OCAM2 in the visible and in the infrared. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944.

  5. Estimate Low and High Order Wavefront Using P1640 Calibrator Measurements

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2013-01-01

    P1640 high contrast imaging system on the Palomar 200 inch Telescope consists of an apodized-pupil Lyot coronagraph, the PALM-3000 adaptive optics (P3K-AO), and P1640 Calibrator (CAL). Science images are recorded by an integral field spectrograph covering J-H bands for detecting and characterizing stellar companions. With aberrations from atmosphere corrected by the P3K-AO, instrument performance is limited mainly by the quasi-static speckles due to noncommon path wavefront aberrations for the light to propagate to the P3K-AO wavefront sensor and to the coronagraph mask. The non-common path wavefront aberrations are sensed by CAL, which measures the post-coronagraph E-field using interferometry, and can be effectively corrected by offsetting the P3K-AO deformable mirror target position accordingly. Previously, we have demonstrated using CAL measurements to correct high order wavefront aberrations, which is directly connected to the static speckles in the image plane. Low order wavefront, on the other hand, usually of larger amplitudes, causes light to leak through the coronagraph making the whole image plane brighter. Knowledge error in low order wavefront aberrations can also affect the estimation of the high order wavefront. Even though, CAL is designed to sense efficiently high order wavefront aberrations, the low order wavefront front can be inferred with less sensitivity. Here, we describe our method for estimating both low and high order wavefront aberrations using CAL measurements by propagating the post-coronagraph E-field to a pupil before the coronagraph. We present the results from applying this method to both simulated and experiment data.

  6. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.

    PubMed

    Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li

    2016-10-17

    The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.

  7. Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, N. Jeremy

    2017-01-01

    To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.

  8. Study of optimal wavefront sensing with elongated laser guide stars

    NASA Astrophysics Data System (ADS)

    Thomas, S. J.; Adkins, S.; Gavel, D.; Fusco, T.; Michau, V.

    2008-06-01

    Over the past decade, adaptive optics (AO) has become an established method for overcoming the effects of atmospheric turbulence on both astronomical imaging and spectroscopic observations. These systems are now beginning to make extensive use of laser guide star (LGS) techniques to improve performance and provide increased sky coverage. Sodium LGS AO employs one or more lasers at 589-nm wavelength to produce an artificial guide star through excitation of sodium atoms in the mesosphere (90 km altitude). Because of its dependence on the abundance and distribution of sodium atoms in the mesosphere, this approach has its own unique set of difficulties not seen with natural stars. The sodium layer exhibits time-dependent variations in density and altitude, and since it is at a finite range, the LGS images become elongated due to the thickness of the layer and the offset between the laser projection point and the subapertures of a Shack-Hartmann wavefront sensor (SHWFS). Elongation causes the LGS image to be spread out resulting in a decrease in the signal-to-noise ratio which, in turn, leads to an increase in SHWFS measurement error and therefore an increased error in wavefront phase reconstruction. To address the problem of elongation, and also to provide a higher level of readout performance and reduced readout noise, a new type of charge-coupled device (CCD) is now under development for Shack-Hartmann wavefront sensing called the polar coordinate CCD. In this device, discrete imaging arrays are provided in each SHWFS subaperture and the size, shape and orientation of each discrete imaging array are adjusted to optimally sample the LGS image. The device is referred to as the polar coordinate CCD because the location of each imager is defined by a polar coordinate system centred on the laser guide star projection point. This concept is especially suited to Extremely Large Telescopes (ELTs) where the effect of perspective elongation is a significant factor. In this

  9. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  10. Wavefront Measurement in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl

    Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.

  11. Algorithm for Wavefront Sensing Using an Extended Scene

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph; Ohara, Catherine

    2008-01-01

    A recently conceived algorithm for processing image data acquired by a Shack-Hartmann (SH) wavefront sensor is not subject to the restriction, previously applicable in SH wavefront sensing, that the image be formed from a distant star or other equivalent of a point light source. That is to say, the image could be of an extended scene. (One still has the option of using a point source.) The algorithm can be implemented in commercially available software on ordinary computers. The steps of the algorithm are the following: 1. Suppose that the image comprises M sub-images. Determine the x,y Cartesian coordinates of the centers of these sub-images and store them in a 2xM matrix. 2. Within each sub-image, choose an NxN-pixel cell centered at the coordinates determined in step 1. For the ith sub-image, let this cell be denoted as si(x,y). Let the cell of another subimage (preferably near the center of the whole extended-scene image) be designated a reference cell, denoted r(x,y). 3. Calculate the fast Fourier transforms of the sub-sub-images in the central NxN portions (where N < N and both are preferably powers of 2) of r(x,y) and si(x,y). 4. Multiply the two transforms to obtain a cross-correlation function Ci(u,v), in the Fourier domain. Then let the phase of Ci(u, v) constitute a phase function, phi(u,v). 5. Fit u and v slopes to phi (u,v) over a small u,v subdomain. 6. Compute the fast Fourier transform, Si(u,v) of the full NxN cell si(x,y). Multiply this transform by the u and phase slopes obtained in step 4. Then compute the inverse fast Fourier transform of the product. 7. Repeat steps 4 through 6 in an iteration loop, cumulating the u and slopes, until a maximum iteration number is reached or the change in image shift becomes smaller than a predetermined tolerance. 8. Repeat steps 4 through 7 for the cells of all other sub-images.

  12. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, D. N.

    1973-01-01

    Partial results are presented of theoretical and experimental investigations of different focal plane sensor configurations for determining the error in a telescope wavefront. The coarse range sensor and fine range sensors are used in the experimentation. The design of a wavefront error simulator is presented along with the Hartmann test, the shearing polarization interferometer, the Zernike test, and the Zernike polarization test.

  13. Adaptive wavefront sensor based on the Talbot phenomenon.

    PubMed

    Podanchuk, Dmytro V; Goloborodko, Andrey A; Kotov, Myhailo M; Kovalenko, Andrey V; Kurashov, Vitalij N; Dan'ko, Volodymyr P

    2016-04-20

    A new adaptive method of wavefront sensing is proposed and demonstrated. The method is based on the Talbot self-imaging effect, which is observed in an illuminating light beam with strong second-order aberration. Compensation of defocus and astigmatism is achieved with an appropriate choice of size of the rectangular unit cell of the diffraction grating, which is performed iteratively. A liquid-crystal spatial light modulator is used for this purpose. Self-imaging of rectangular grating in the astigmatic light beam is demonstrated experimentally. High-order aberrations are detected with respect to the compensated second-order aberration. The comparative results of wavefront sensing with a Shack-Hartmann sensor and the proposed sensor are adduced.

  14. Numerical analysis of wavefront measurement characteristics by using plenoptic camera

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun

    2016-01-01

    To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.

  15. A zonal wavefront sensor with multiple detector planes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  16. Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.

    PubMed

    Haber, Aleksandar; Verhaegen, Michel

    2016-11-15

    We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.

  17. Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Fusco, Thierry; Vedrenne, Nicolas

    2006-03-01

    Adaptive optics provides a real-time compensation for atmospheric turbulence that severely limits the resolution of ground-based observation systems. The correction quality relies on a key component, that is, the wavefront sensor (WFS). When observing extended sources, WFS precision is limited by anisoplanatism effects. Anisoplanatism induces a variation of the turbulent phase and of the collected flux in the field of view. We study the effect of this phase and scintillation anisoplanatism on wavefront analysis. An analytical expression of the error induced is given in the Rytov regime. The formalism is applied to a solar and an endoatmospheric observation. Scintillation effects are generally disregarded, especially in astronomical conditions. We shall prove that this approximation is not valid with extended objects.

  18. Atmospherical wavefront phases using the plenoptic sensor (real data)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Montilla, I.; Lüke, J. P.; López, R.; Marichal-Hernández, J. G.; Trujillo-Sevilla, J.; Femenía, B.; López, M.; Fernández-Valdivia, J. J.; Puga, M.; Rosa, F.; Rodríguez-Ramos, J. M.

    2012-06-01

    Plenoptic cameras have been developed the last years as a passive method for 3d scanning, allowing focal stack capture from a single shot. But data recorded by this kind of sensors can also be used to extract the wavefront phases associated to the atmospheric turbulence in an astronomical observation. The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated to the turbulence. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically, taking advantage of the two principal characteristics of the plenoptic sensors at the same time: 3D scanning and wavefront sensing. Then, the plenoptic sensors can be studied and used as an alternative wavefront sensor for Adaptive Optics, particularly relevant when Extremely Large Telescopes projects are being undertaken. In this paper, we will present the first observational wavefront phases extracted from real astronomical observations, using punctual and extended objects, and we show that the restored wavefronts match the Kolmogorov atmospheric turbulence.

  19. Wavefront sensors for the active control of earth observation optical instruments

    NASA Astrophysics Data System (ADS)

    Velluet, Marie-Thérèse; Michau, Vincent; Rousset, Gérard

    2018-04-01

    This paper, "Wavefront sensors for the active control of earth observation optical instruments," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  20. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  1. Curvature sensor for ocular wavefront measurement.

    PubMed

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O

    2006-08-01

    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.

  2. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphsmore » and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.« less

  3. Phase unwrapping with a virtual Hartmann-Shack wavefront sensor.

    PubMed

    Akondi, Vyas; Falldorf, Claas; Marcos, Susana; Vohnsen, Brian

    2015-10-05

    The use of a spatial light modulator for implementing a digital phase-shifting (PS) point diffraction interferometer (PDI) allows tunability in fringe spacing and in achieving PS without the need for mechanically moving parts. However, a small amount of detector or scatter noise could affect the accuracy of wavefront sensing. Here, a novel method of wavefront reconstruction incorporating a virtual Hartmann-Shack (HS) wavefront sensor is proposed that allows easy tuning of several wavefront sensor parameters. The proposed method was tested and compared with a Fourier unwrapping method implemented on a digital PS PDI. The rewrapping of the Fourier reconstructed wavefronts resulted in phase maps that matched well the original wrapped phase and the performance was found to be more stable and accurate than conventional methods. Through simulation studies, the superiority of the proposed virtual HS phase unwrapping method is shown in comparison with the Fourier unwrapping method in the presence of noise. Further, combining the two methods could improve accuracy when the signal-to-noise ratio is sufficiently high.

  4. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the

  5. Application of phase-diverse phase retrieval to wavefront sensing in non-connected complicated pupil optics

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2007-07-01

    Baseline algorithm, as a tool in wavefront sensing (WFS), incorporates the phase-diverse phase retrieval (PDPR) method with hybrid-unwrapping approach to ensure a unique pupil phase estimate with high WFS accuracy even in the case of high dynamic range aberration, as long as the pupil shape is of a convex set. However, for a complicated pupil, such as that in obstructed pupil optics, the said unwrapping approach would fail owing to the fake values at points located in obstructed areas of the pupil. Thus a modified unwrapping approach that can minimize the negative effects of the obstructed areas is proposed. Simulations have shown the validity of this unwrapping approach when it is embedded in Baseline algorithm.

  6. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  7. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  8. Wavefront sensor and wavefront corrector matching in adaptive optics

    PubMed Central

    Dubra, Alfredo

    2016-01-01

    Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements. PMID:19532513

  9. Wavefront sensor and wavefront corrector matching in adaptive optics.

    PubMed

    Dubra, Alfredo

    2007-03-19

    Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements.

  10. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  11. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less

  12. Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal.

    PubMed

    Mishra, Sanjay K; Bhatt, Rahul; Mohan, Devendra; Gupta, Arun Kumar; Sharma, Anurag

    2009-11-20

    The process of Zernike mode detection with a Shack-Hartmann wavefront sensor is computationally extensive. A holographic modal wavefront sensor has therefore evolved to process the data optically by use of the concept of equal and opposite phase bias. Recently, a multiplexed computer-generated hologram (CGH) technique was developed in which the output is in the form of bright dots that specify the presence and strength of a specific Zernike mode. We propose a wavefront sensor using the concept of phase biasing in the latter technique such that the output is a pair of bright dots for each mode to be sensed. A normalized difference signal between the intensities of the two dots is proportional to the amplitude of the sensed Zernike mode. In our method the number of holograms to be multiplexed is decreased, thereby reducing the modal cross talk significantly. We validated the proposed method through simulation studies for several cases. The simulation results demonstrate simultaneous wavefront detection of lower-order Zernike modes with a resolution better than lambda/50 for the wide measurement range of +/-3.5lambda with much reduced cross talk at high speed.

  13. Comparison between non-modulation four-sided and two-sided pyramid wavefront sensor.

    PubMed

    Wang, Jianxin; Bai, Fuzhong; Ning, Yu; Huang, Linhai; Wang, Shengqian

    2010-12-20

    Based on the diffraction theory the paper analyzes non-modulation Pyramid wavefront sensor (PWFS, namely, four-sided pyramid) and two-sided pyramid wavefront sensor (TSPWFS), and expresses the detected signals as a function of the measured wavefront. The expressions of the detected signals show that non-modulation PWFS and TSPWFS hold the same properties of both slope and direct phase sensors. We compare both sensors working in slope and phase sensing by theory and numerical simulations. The results demonstrate that the performance of TSPWFS excels that of PWFS. Additionally, the influence of interference between adjacent pupils is discussed.

  14. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  15. In-vivo digital wavefront sensing using swept source OCT

    PubMed Central

    Kumar, Abhishek; Wurster, Lara M.; Salas, Matthias; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.

    2017-01-01

    Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations in-vivo, a small lateral field of view of ~150×150 μm2 is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a “guide star” for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1μm) is detected. In-vivo aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal’s criterion of 1/14 waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations. PMID:28717573

  16. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    PubMed

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  17. Response analysis of holography-based modal wavefront sensor.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang; Ruppel, Thomas; Sawodny, Oliver

    2012-03-20

    The crosstalk problem of holography-based modal wavefront sensing (HMWS) becomes more severe with increasing aberration. In this paper, crosstalk effects on the sensor response are analyzed statistically for typical aberrations due to atmospheric turbulence. For specific turbulence strength, we optimized the sensor by adjusting the detector radius and the encoded phase bias for each Zernike mode. Calibrated response curves of low-order Zernike modes were further utilized to improve the sensor accuracy. The simulation results validated our strategy. The number of iterations for obtaining a residual RMS wavefront error of 0.1λ is reduced from 18 to 3. © 2012 Optical Society of America

  18. Predictor-corrector framework for the sequential assembly of optical systems based on wavefront sensing.

    PubMed

    Schindlbeck, Christopher; Pape, Christian; Reithmeier, Eduard

    2018-04-16

    Alignment of optical components is crucial for the assembly of optical systems to ensure their full functionality. In this paper we present a novel predictor-corrector framework for the sequential assembly of serial optical systems. Therein, we use a hybrid optical simulation model that comprises virtual and identified component positions. The hybrid model is constantly adapted throughout the assembly process with the help of nonlinear identification techniques and wavefront measurements. This enables prediction of the future wavefront at the detector plane and therefore allows for taking corrective measures accordingly during the assembly process if a user-defined tolerance on the wavefront error is violated. We present a novel notation for the so-called hybrid model and outline the work flow of the presented predictor-corrector framework. A beam expander is assembled as demonstrator for experimental verification of the framework. The optical setup consists of a laser, two bi-convex spherical lenses each mounted to a five degree-of-freedom stage to misalign and correct components, and a Shack-Hartmann sensor for wavefront measurements.

  19. Comparison of different 3D wavefront sensing and reconstruction techniques for MCAO

    NASA Astrophysics Data System (ADS)

    Bello, Dolores; Vérinaud, Christophe; Conan, Jean-Marc; Fusco, Thierry; Carbillet, Marcel; Esposito, Simone

    2003-02-01

    The vertical distribution of the turbulence limits the field of view of classical adaptive optics due to the anisoplanatism. Multiconjugate adaptive optics (MCAO) uses several deformable mirrors conjugated to different layers in the atmosphere to overcome this effect. In the last few years, many studies and developments have been done regarding the analysis of the turbulence volume, and the choice of the wavefront reconstruction techniques.An extensive study of MCAO modelisation and performance estimation has been done at OAA and ONERA. The developed Monte Carlo codes allow to simulate and investigate many aspects: comparison of turbulence analysis strategies (tomography or layer oriented) and comparison of different reconstruction approaches. For instance in the layer oriented approach, the control for a given deformable mirror can be either deduced from the whole set of wavefront sensor measurements or only using the associated wavefront sensor. Numerical simulations are presented showing the advantages and disadvantages of these different options for several cases depending on the number, geometry and magnitude of the guide stars.

  20. An optical wavefront sensor based on a double layer microlens array.

    PubMed

    Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John

    2011-01-01

    In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  1. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    PubMed Central

    Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John

    2011-01-01

    In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution. PMID:22346643

  2. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  3. 3D imaging and wavefront sensing with a plenoptic objective

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, J. M.; Lüke, J. P.; López, R.; Marichal-Hernández, J. G.; Montilla, I.; Trujillo-Sevilla, J.; Femenía, B.; Puga, M.; López, M.; Fernández-Valdivia, J. J.; Rosa, F.; Dominguez-Conde, C.; Sanluis, J. C.; Rodríguez-Ramos, L. F.

    2011-06-01

    Plenoptic cameras have been developed over the last years as a passive method for 3d scanning. Several superresolution algorithms have been proposed in order to increase the resolution decrease associated with lightfield acquisition with a microlenses array. A number of multiview stereo algorithms have also been applied in order to extract depth information from plenoptic frames. Real time systems have been implemented using specialized hardware as Graphical Processing Units (GPUs) and Field Programmable Gates Arrays (FPGAs). In this paper, we will present our own implementations related with the aforementioned aspects but also two new developments consisting of a portable plenoptic objective to transform every conventional 2d camera in a 3D CAFADIS plenoptic camera, and the novel use of a plenoptic camera as a wavefront phase sensor for adaptive optics (OA). The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated with the turbulence. These changes require a high speed processing that justify the use of GPUs and FPGAs. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically. These advances significantly increase the versatility of the plenoptic camera, and provides a new contribution to relate the wave optics and computer vision fields, as many authors claim.

  4. Novel asymmetric cryptosystem based on distorted wavefront beam illumination and double-random phase encoding.

    PubMed

    Yu, Honghao; Chang, Jun; Liu, Xin; Wu, Chuhan; He, Yifan; Zhang, Yongjian

    2017-04-17

    Herein, we propose a new security enhancing method that employs wavefront aberrations as optical keys to improve the resistance capabilities of conventional double-random phase encoding (DRPE) optical cryptosystems. This study has two main innovations. First, we exploit a special beam-expander afocal-reflecting to produce different types of aberrations, and the wavefront distortion can be altered by changing the shape of the afocal-reflecting system using a deformable mirror. Then, we reconstruct the wavefront aberrations via the surface fitting of Zernike polynomials and use the reconstructed aberrations as novel asymmetric vector keys. The ideal wavefront and the distorted wavefront obtained by wavefront sensing can be regarded as a pair of private and public keys. The wavelength and focal length of the Fourier lens can be used as additional keys to increase the number of degrees of freedom. This novel cryptosystem can enhance the resistance to various attacks aimed at DRPE systems. Finally, we conduct ZEMAX and MATLAB simulations to demonstrate the superiority of this method.

  5. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    NASA Astrophysics Data System (ADS)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  6. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme. © 2011 Optical Society of America

  7. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    NASA Astrophysics Data System (ADS)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  8. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  9. Testing the pyramid truth wavefront sensor for NFIRAOS in the lab

    NASA Astrophysics Data System (ADS)

    Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen

    2016-07-01

    For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.

  10. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  11. Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing

    NASA Astrophysics Data System (ADS)

    Banet, Matthias T.; Spencer, Mark F.

    2017-09-01

    Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.

  12. Development of a hard x-ray wavefront sensor for the EuXFEL

    NASA Astrophysics Data System (ADS)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  13. Generalised optical differentiation wavefront sensor: a sensitive high dynamic range wavefront sensor.

    PubMed

    Haffert, S Y

    2016-08-22

    Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.

  14. Designing and testing the coronagraphic Modal Wavefront Sensor: a fast non-common path error sensor for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Haffert, S.; Korkiakoski, V.; Snik, F.; Pietrow, A. G. M.

    2016-07-01

    Non-Common Path Errors (NCPEs) are the dominant factor limiting the performance of current astronomical high-contrast imaging instruments. If uncorrected, the resulting quasi-static speckle noise floor limits coronagraph performance to a raw contrast of typically 10-4, a value which does not improve with increasing integration time. The coronagraphic Modal Wavefront Sensor (cMWS) is a hybrid phase optic which uses holographic PSF copies to supply focal-plane wavefront sensing information directly from the science camera, whilst maintaining a bias-free coronagraphic PSF. This concept has already been successfully implemented on-sky at the William Herschel Telescope (WHT), La Palma, demonstrating both real-time wavefront sensing capability and successful extraction of slowly varying wavefront errors under a dominant and rapidly changing atmospheric speckle foreground. In this work we present an overview of the development of the cMWS and recent first light results obtained using the Leiden EXoplanet Instrument (LEXI), a high-contrast imager and high-dispersion spectrograph pathfinder instrument for the WHT.

  15. Detecting higher-order wavefront errors with an astigmatic hybrid wavefront sensor.

    PubMed

    Barwick, Shane

    2009-06-01

    The reconstruction of wavefront errors from measurements over subapertures can be made more accurate if a fully characterized quadratic surface can be fitted to the local wavefront surface. An astigmatic hybrid wavefront sensor with added neural network postprocessing is shown to have this capability, provided that the focal image of each subaperture is sufficiently sampled. Furthermore, complete local curvature information is obtained with a single image without splitting beam power.

  16. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.

    PubMed

    Carvalho, Luis Alberto; Castro, Jarbas; Chamon, Wallace; Schor, Paulo

    2006-11-01

    A novel wavefront sensor has been developed. It follows the same principle of the Shack-Hartmann wavefront sensor in that it is based on slope information. However, it has a different symmetry, which may offer benefits in terms of application. The new wavefront sensor consists of a set of donut-shaped acrylic lenses with a charge coupled device located at the focal plane. From detection of shift in the radial direction, radial slopes are computed for 2880 points. Theoretical computations for higher order aberrations and lower order aberrations were implemented for the Shack-Hartmann wavefront sensor and the new wavefront sensor, and practical measurements were conducted on several sphere-cylinder trial lenses. The overall mean value of root mean square error (RMSE) (in microns) for theoretical computations was 0.03 for the Shack-Hartmann wavefront sensor and 0.02 for the new wavefront sensor. The mean value of RMSE for lower order aberrations (1-5) was 0.01 and 0.00003, and for higher order aberrations was 0.02 and 0.02, for the Shack-Hartmann and new wavefront sensors, respectively. For practical measurements (sphere, cylinder, axis), the standard deviation was 0.04 diopters (D), 0.04 D, and 4 degrees for the new wavefront sensor and 0.02 D, 0.02 D, and 5 degrees for the Shack-Hartmann wavefront sensor. Precision of the new wavefront sensor when measuring astigmatic and spherical surfaces is compatible with the Shack-Hartmann wavefront sensor. Centration with this new sensor is an absolute process using the center of the entrance pupil, which is where the line of site passes. This wavefront sensor, similar to the Shack-Hartmann sensor, does not eliminate the possibility of tilt. For more conclusive and statistically valid data, in vivo measurements are needed.

  17. The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Iskander, D Robert

    2006-09-01

    We have used videokeratoscopy and wavefront sensing to investigate the contribution of the ocular surface and the effect of stimulus vergence on the microfluctuations of the wavefront aberrations of the eye. The fluctuations of the wavefront aberrations were quantified by their variations around the mean and by using power spectrum analysis. Integrated power was determined in two regions: 0.1-0.7 Hz (low frequencies) and 0.8-1.8 Hz (high frequencies). Changes in the ocular surface topography were measured using high-speed videokeratoscopy and variations in the ocular wavefront aberrations were measured with a wavefront sensor. The microfluctuations of wavefront aberrations of the ocular surface were found to be considerably smaller than the microfluctuations of the wavefront aberrations of the total eye. The fluctuations in defocus while viewing a closer target at 2 or 4 D were found to be significantly greater than fluctuations in defocus when viewing a far target. This increase in defocus fluctuations (p < or = 0.001) occurred in both the low- and high-frequency regions of the power spectra.

  18. Development of a Pyramid Wave-front Sensor

    NASA Astrophysics Data System (ADS)

    El Hadi, Kacem; Vignaux, Mael; Fusco, Thierry

    2013-12-01

    Within the framework of the E-ELT studies, several laboratories are involved on some instruments: HARMONY with its ATLAS adaptive optics [AO] system, EAGLE or EPICS. Most of the AO systems will probably integrate one or several pyramidal wavefront sensors, PWFS (R. Ragazzoni [1]). The coupling in an AO loop and the control in laboratory (then on sky) of this type of sensor is fundamental for the continuation of the projects related to OA systems on the E-ELT. LAM (Laboratory of Astrophysics of Marseille) is involved in particular in the VLT-SPHERE, ATLAS, EPICS projects. For the last few years, our laboratory has been carrying out different R&D activities in AO instrumentation for ELTs. An experimental AO bench is designed and being developed to allow the validation of new wave-front sensing and control concepts [2]. One the objectives of this bench, is the experimental validation of a pyramid WFS. Theoretical investigations on its behavior have been already made. The world's fastest and most sensitive camera system (OCAM2) has been recently developed at LAM (J.L Gach [3], First Light Imaging). Conjugating this advantage with the pyramid concept, we plan to demonstrate a home made Pyramid sensor for Adaptive Optics whose the speed and the precision are the key points. As a joint collaboration with ONERA and Shaktiware, our work aims at the optimization (measurement process, calibration and operation) in laboratory then on the sky of a pyramid sensor dedicated to the first generation instruments for ELTs. The sensor will be implemented on the ONERA ODISSEE AO bench combining thus a pyramid and a Shack-Hartmann wavefront sensors. What would give the possibility to compare strictly these two WFS types and make this bench unique in France and even in Europe. Experimental work on laboratory demonstration is undergoing. The status of our development will presented at the conference.

  19. Concepts, laboratory, and telescope test results of the plenoptic camera as a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Montilla, I.; Fernández-Valdivia, J. J.; Trujillo-Sevilla, J. L.; Rodríguez-Ramos, J. M.

    2012-07-01

    The plenoptic camera has been proposed as an alternative wavefront sensor adequate for extended objects within the context of the design of the European Solar Telescope (EST), but it can also be used with point sources. Originated in the field of the Electronic Photography, the plenoptic camera directly samples the Light Field function, which is the four - dimensional representation of all the light entering a camera. Image formation can then be seen as the result of the photography operator applied to this function, and many other features of the light field can be exploited to extract information of the scene, like depths computation to extract 3D imaging or, as it will be specifically addressed in this paper, wavefront sensing. The underlying concept of the plenoptic camera can be adapted to the case of a telescope by using a lenslet array of the same f-number placed at the focal plane, thus obtaining at the detector a set of pupil images corresponding to every sampled point of view. This approach will generate a generalization of Shack-Hartmann, Curvature and Pyramid wavefront sensors in the sense that all those could be considered particular cases of the plenoptic wavefront sensor, because the information needed as the starting point for those sensors can be derived from the plenoptic image. Laboratory results obtained with extended objects, phase plates and commercial interferometers, and even telescope observations using stars and the Moon as an extended object are presented in the paper, clearly showing the capability of the plenoptic camera to behave as a wavefront sensor.

  20. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  1. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish

  2. Simulating the Effects of an Extended Source on the Shack-Hartmann Wavefront Sensor Through Turbulence

    DTIC Science & Technology

    2011-03-01

    wavefront distortions in real time. Often, it is used to correct for optical fluctuations due to atmospheric turbulence and improve imaging system...propagation paths, the overall turbulence is relatively weak, with a Rytov number of only 0.045. The atmospheric parameters were then used to program a three...on an adaptive optics (AO) system, it enables further research on the effects of deep turbulence on AO systems and correlation based wavefront sensing

  3. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    NASA Astrophysics Data System (ADS)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  4. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: reply.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-11-10

    We appreciate the thoughtful comments by Kellerer [Appl. Opt.53, 7643 (2014)10.1364/AO.53.007643] to our recent study [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685] in which we evaluate the practicability of a layer-oriented wavefront sensing approach suggested for use in solar multiconjugate adaptive optics. After careful review of Kellerer's comment, we remain cautious about the feasibility of a solar-layer-oriented Shack-Hartmann wavefront sensor. However, we strongly encourage further analysis and proof-of-concept work that addresses the difficulties outlined in our original paper and that demonstrates the operating principles behind such an instrument.

  5. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-01-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects’ natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques. PMID:25798317

  6. Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Shatokhina, Iuliia; Obereder, Andreas; Ramlau, Ronny

    2014-08-01

    We present a fast wavefront reconstruction algorithm developed for an extreme adaptive optics system equipped with a pyramid wavefront sensor on a 42m telescope. The method is called the Preprocessed Cumulative Reconstructor with domain decomposition (P-CuReD). The algorithm is based on the theoretical relationship between pyramid and Shack-Hartmann wavefront sensor data. The algorithm consists of two consecutive steps - a data preprocessing, and an application of the CuReD algorithm, which is a fast method for wavefront reconstruction from Shack-Hartmann sensor data. The closed loop simulation results show that the P-CuReD method provides the same reconstruction quality and is significantly faster than an MVM.

  7. Implementation of the pyramid wavefront sensor as a direct phase detector for large amplitude aberrations

    NASA Astrophysics Data System (ADS)

    Kupke, Renate; Gavel, Don; Johnson, Jess; Reinig, Marc

    2008-07-01

    We investigate the non-modulating pyramid wave-front sensor's (P-WFS) implementation in the context of Lick Observatory's Villages visible light AO system on the Nickel 1-meter telescope. A complete adaptive optics correction, using a non-modulated P-WFS in slope sensing mode as a boot-strap to a regime in which the P-WFS can act as a direct phase sensor is explored. An iterative approach to reconstructing the wave-front phase, given the pyramid wave-front sensor's non-linear signal, is developed. Using Monte Carlo simulations, the iterative reconstruction method's photon noise propagation behavior is compared to both the pyramid sensor used in slope-sensing mode, and the traditional Shack Hartmann sensor's theoretical performance limits. We determine that bootstrapping using the P-WFS as a slope sensor does not offer enough correction to bring the phase residuals into a regime in which the iterative algorithm can provide much improvement in phase measurement. It is found that both the iterative phase reconstructor and the slope reconstruction methods offer an advantage in noise propagation over Shack Hartmann sensors.

  8. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  9. Beam wavefront and farfield control for ICF laser driver

    NASA Astrophysics Data System (ADS)

    Dai, Wanjun; Deng, Wu; Zhang, Xin; Jiang, Xuejun; Zhang, Kun; Zhou, Wei; Zhao, Junpu; Hu, Dongxia

    2010-10-01

    Five main problems of beam wavefront and farfield control in ICF laser driver are synthetically discussed, including control requirements, beam propagation principle, distortions source control, system design and adjustment optimization, active wavefront correction technology. We demonstrate that beam can be propagated well and the divergence angle of the TIL pulses can be improved to less than 60μrad with solving these problems, which meets the requirements of TIL. The results can provide theoretical and experimental support for wavefront and farfield control designing requirements of the next large scale ICF driver.

  10. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity

    PubMed Central

    Holley, Scott A.; Geisler, Robert; Nüsslein-Volhard, Christiane

    2000-01-01

    Somitogenesis has been linked both to a molecular clock that controls the oscillation of gene expression in the presomitic mesoderm (PSM) and to Notch pathway signaling. The oscillator, or clock, is thought to create a prepattern of stripes of gene expression that regulates the activity of the Notch pathway that subsequently directs somite border formation. Here, we report that the zebrafish gene after eight (aei) that is required for both somitogenesis and neurogenesis encodes the Notch ligand DeltaD. Additional analysis revealed that stripes of her1 expression oscillate within the PSM and that aei/DeltaD signaling is required for this oscillation. aei/DeltaD expression does not oscillate, indicating that the activity of the Notch pathway upstream of her1 may function within the oscillator itself. Moreover, we found that her1 stripes are expressed in the anlage of consecutive somites, indicating that its expression pattern is not pair-rule. Analysis of her1 expression in aei/DeltaD, fused somites (fss), and aei;fss embryos uncovered a wave-front activity that is capable of continually inducing her1 expression de novo in the anterior PSM in the absence of the oscillation of her1. The wave-front activity, in reference to the clock and wave-front model, is defined as such because it interacts with the oscillator-derived pattern in the anterior PSM and is required for somite morphogenesis. This wave-front activity is blocked in embryos mutant for fss but not aei/DeltaD. Thus, our analysis indicates that the smooth sequence of formation, refinement, and fading of her1 stripes in the PSM is governed by two separate activities. PMID:10887161

  11. Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm

    NASA Technical Reports Server (NTRS)

    Sidick, Erikin

    2009-01-01

    A Shack-Hartmann sensor (SHS) is an optical instrument consisting of a lenslet array and a camera. It is widely used for wavefront sensing in optical testing and astronomical adaptive optics. The camera is placed at the focal point of the lenslet array and points at a star or any other point source. The image captured is an array of spot images. When the wavefront error at the lenslet array changes, the position of each spot measurably shifts from its original position. Determining the shifts of the spot images from their reference points shows the extent of the wavefront error. An adaptive cross-correlation (ACC) algorithm has been developed to use scenes as well as point sources for wavefront error detection. Qualifying an extended scene image is often not an easy task due to changing conditions in scene content, illumination level, background, Poisson noise, read-out noise, dark current, sampling format, and field of view. The proposed new technique based on ACC algorithm analyzes the effects of these conditions on the performance of the ACC algorithm and determines the viability of an extended scene image. If it is viable, then it can be used for error correction; if it is not, the image fails and will not be further processed. By potentially testing for a wide variety of conditions, the algorithm s accuracy can be virtually guaranteed. In a typical application, the ACC algorithm finds image shifts of more than 500 Shack-Hartmann camera sub-images relative to a reference sub -image or cell when performing one wavefront sensing iteration. In the proposed new technique, a pair of test and reference cells is selected from the same frame, preferably from two well-separated locations. The test cell is shifted by an integer number of pixels, say, for example, from m= -5 to 5 along the x-direction by choosing a different area on the same sub-image, and the shifts are estimated using the ACC algorithm. The same is done in the y-direction. If the resulting shift

  12. Wavefront control of large optical systems

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.

    1990-01-01

    Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.

  13. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  14. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    PubMed

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  15. The AOLI low-order non-linear curvature wavefront sensor: laboratory and on-sky results

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; MacKay, Craig

    2014-08-01

    Many adaptive optics (AO) systems in use today require the use of bright reference objects to determine the effects of atmospheric distortions. Typically these systems use Shack-Hartmann Wavefront sensors (SHWFS) to distribute incoming light from a reference object between a large number of sub-apertures. Guyon et al. evaluated the sensitivity of several different wavefront sensing techniques and proposed the non-linear Curvature Wavefront Sensor (nlCWFS) offering improved sensitivity across a range of orders of distortion. On large ground-based telescopes this can provide nearly 100% sky coverage using natural guide stars. We present work being undertaken on the nlCWFS development for the Adaptive Optics Lucky Imager (AOLI) project. The wavefront sensor is being developed as part of a low-order adaptive optics system for use in a dedicated instrument providing an AO corrected beam to a Lucky Imaging based science detector. The nlCWFS provides a total of four reference images on two photon-counting EMCCDs for use in the wavefront reconstruction process. We present results from both laboratory work using a calibration system and the first on-sky data obtained with the nlCWFS at the 4.2 metre William Herschel Telescope, La Palma. In addition, we describe the updated optical design of the wavefront sensor, strategies for minimising intrinsic effects and methods to maximise sensitivity using photon-counting detectors. We discuss on-going work to develop the high speed reconstruction algorithm required for the nlCWFS technique. This includes strategies to implement the technique on graphics processing units (GPUs) and to minimise computing overheads to obtain a prior for a rapid convergence of the wavefront reconstruction. Finally we evaluate the sensitivity of the wavefront sensor based upon both data and low-photon count strategies.

  16. Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method.

    PubMed

    Polo, A; Kutchoukov, V; Bociort, F; Pereira, S F; Urbach, H P

    2012-03-26

    We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.

  17. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second

  18. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  19. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Snik, F.; Korkiakoski, V.; Pietrow, A. G. M.

    2017-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2-10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of

  20. Wavefront division digital holography

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  1. Correction of large amplitude wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.

    2005-12-01

    Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.

  2. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  3. Wavefront error budget development for the Thirty Meter Telescope laser guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2008-07-01

    This paper describes the modeling effort undertaken to derive the wavefront error (WFE) budget for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility, laser guide star (LGS), dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The budget describes the expected performance of NFIRAOS at zenith, and has been decomposed into (i) first-order turbulence compensation terms (120 nm on-axis), (ii) opto-mechanical implementation errors (84 nm), (iii) AO component errors and higher-order effects (74 nm) and (iv) tip/tilt (TT) wavefront errors at 50% sky coverage at the galactic pole (61 nm) with natural guide star (NGS) tip/tilt/focus/astigmatism (TTFA) sensing in J band. A contingency of about 66 nm now exists to meet the observatory requirement document (ORD) total on-axis wavefront error of 187 nm, mainly on account of reduced TT errors due to updated windshake modeling and a low read-noise NGS wavefront sensor (WFS) detector. A detailed breakdown of each of these top-level terms is presented, together with a discussion on its evaluation using a mix of high-order zonal and low-order modal Monte Carlo simulations.

  4. Wavefront analysis from its slope data

    NASA Astrophysics Data System (ADS)

    Mahajan, Virendra N.; Acosta, Eva

    2017-08-01

    In the aberration analysis of a wavefront over a certain domain, the polynomials that are orthogonal over and represent balanced wave aberrations for this domain are used. For example, Zernike circle polynomials are used for the analysis of a circular wavefront. Similarly, the annular polynomials are used to analyze the annular wavefronts for systems with annular pupils, as in a rotationally symmetric two-mirror system, such as the Hubble space telescope. However, when the data available for analysis are the slopes of a wavefront, as, for example, in a Shack- Hartmann sensor, we can integrate the slope data to obtain the wavefront data, and then use the orthogonal polynomials to obtain the aberration coefficients. An alternative is to find vector functions that are orthogonal to the gradients of the wavefront polynomials, and obtain the aberration coefficients directly as the inner products of these functions with the slope data. In this paper, we show that an infinite number of vector functions can be obtained in this manner. We show further that the vector functions that are irrotational are unique and propagate minimum uncorrelated additive random noise from the slope data to the aberration coefficients.

  5. Broadband, Common-path, Interferometric Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent (Inventor)

    2015-01-01

    Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.

  6. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  7. Bringing it all together: a unique approach to requirements for wavefront sensing and control on the James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Contos, Adam R.; Acton, D. Scott; Atcheson, Paul D.; Barto, Allison A.; Lightsey, Paul A.; Shields, Duncan M.

    2006-06-01

    The opto-mechanical design of the 6.6 meter James Webb Space Telescope (JWST), with its actively-controlled secondary and 18-segment primary mirror, presents unique challenges from a system engineering perspective. To maintain the optical alignment of the telescope on-orbit, a process called wavefront sensing and control (WFS&C) is employed to determine the current state of the mirrors and calculate the optimal mirror move updates. The needed imagery is downloaded to the ground, where the WFS&C algorithms to process the images reside, and the appropriate commands are uploaded to the observatory. Rather than use a dedicated wavefront sensor for the imagery as is done in most other applications, a science camera is used instead. For the success of the mission, WFS&C needs to perform flawlessly using the assets available among the combination of separate elements (ground operations, spacecraft, science instruments, optical telescope, etc.) that cross institutional as well as geographic borders. Rather than be yet another distinct element with its own set of requirements to flow to the other elements as was originally planned, a novel approach was selected. This approach entails reviewing and auditing other documents for the requirements needed to satisfy the needs of WFS&C. Three actions are taken: (1) when appropriate requirements exist, they are tracked by WFS&C ; (2) when an existing requirement is insufficient to meet the need, a requirement change is initiated; and finally (3) when a needed requirement is missing, a new requirement is established in the corresponding document. This approach, deemed a "best practice" at the customer's independent audit, allows for program confidence that the necessary requirements are complete, while still maintaining the responsibility for the requirement with the most appropriate entity. This paper describes the details and execution of the approach; the associated WFS&C requirements and verification documentation; and the

  8. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue

    PubMed Central

    Wang, Kai; Sun, Wenzhi; Richie, Christopher T.; Harvey, Brandon K.; Betzig, Eric; Ji, Na

    2015-01-01

    Adaptive optics by direct imaging of the wavefront distortions of a laser-induced guide star has long been used in astronomy, and more recently in microscopy to compensate for aberrations in transparent specimens. Here we extend this approach to tissues that strongly scatter visible light by exploiting the reduced scattering of near-infrared guide stars. The method enables in vivo two-photon morphological and functional imaging down to 700 μm inside the mouse brain. PMID:26073070

  9. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  10. Wavefront-Guided versus Non-Wavefront-Guided Photorefractive Keratectomy for Myopia: Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Kobashi, Hidenaga; Kamiya, Kazutaka; Hoshi, Keika; Igarashi, Akihito; Shimizu, Kimiya

    2014-01-01

    Purpose To compare the efficacy, predictability, safety, and induced higher-order aberrations (HOAs) between wavefront-guided and non-wavefront-guided photorefractive keratectomy (PRK). Methods The Cochrane Central Register of Controlled Trials, PubMED, and EMBASE were searched for randomized controlled trials. Trials meeting the selection criteria were quality appraised, and data was extracted by 2 independent authors. Measures of association were pooled quantitatively using meta-analytical methods. Comparisons between wavefront-guided and non-wavefront-guided ablations were made as pooled odds ratios (ORs) or weighted mean differences. The pooled ORs and 95% confidence intervals (CIs) were computed for efficacy, safety, and predictability. The weighted mean differences and 95% CIs were used to compare induced HOAs. Results The study covered five trials involving 298 eyes. After wavefront-guided PRK, the pooled OR of achieving an uncorrected distance visual acuity of 20/20 (efficacy) was 1.18 (95% CI, 0.53–2.60; p = 0.69), the pooled OR of achieving a result within ±0.50 diopter of the intended target (predictability) was 0.86 (95% CI, 0.40–1.84; p = 0.70). No study reported a loss of 2 or more lines of Snellen acuity (safety) with either modality. In eyes with wavefront-guided PRK, the postoperative trefoil aberrations (mean difference −0.02; 95% CI, −0.03 to −0.00; p = 0.03) were significantly lower. There were no significant differences between the two groups in the postoperative total HOAs (mean difference −0.04; 95% CI, −0.23 to 0.14; p = 0.63), spherical (mean difference 0.00; 95% CI, −0.08 to 0.09; p = 0.93), and coma (mean difference −0.06; 95% CI, −0.14 to 0.03; p = 0.20) aberrations. Conclusions According to the meta-analysis, wavefront-guided PRK offered no advantage in efficacy, predictability, or safety measures over non-wavefront-guided PRK, although it may have induced fewer trefoil aberrations. PMID

  11. Wavefront attributes in anisotropic media

    NASA Astrophysics Data System (ADS)

    Vanelle, C.; Abakumov, I.; Gajewski, D.

    2018-07-01

    Surface-measured wavefront attributes are the key ingredient to multiparameter methods, which are nowadays standard tools in seismic data processing. However, most operators are restricted to application to isotropic media. Whereas application of an isotropic operator will still lead to satisfactory stack results, further processing steps that interpret isotropic stacking parameters in terms of wavefront attributes will lead to erroneous results if anisotropy is present but not accounted for. In this paper, we derive relationships between the stacking parameters and anisotropic wavefront attributes that allow us to apply the common reflection surface type operator to 3-D media with arbitrary anisotropy for the zero-offset and finite-offset configurations including converted waves. The operator itself is expressed in terms of wavefront attributes that are measured in the acquisition surface, that is, no model assumptions are made. Numerical results confirm that the accuracy of the new anisotropic operator is of the same magnitude as that of its isotropic counterpart.

  12. Correction of the wavefront using the irradiance transport equation

    NASA Astrophysics Data System (ADS)

    García, M.; Granados, F.; Cornejo, A.

    2008-07-01

    The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)

  13. x-y curvature wavefront sensor.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J

    2015-04-15

    In this Letter, we propose a new curvature wavefront sensor based on the principles of optical differentiation. The theoretically modeled setup consists of a diffractive optical mask placed at the intermediate plane of a classical two-lens coherent optical processor. The resulting image is composed of a number of local derivatives of the entrance pupil function whose proper combination provides the wavefront curvature. In contrast to the common radial curvature sensors, this one is able to provide the x and y wavefront curvature maps simultaneously. The sensor offers other additional advantages like having high spatial resolution, adjustable dynamic range, and not being sensitive to misalignment.

  14. Virtual pyramid wavefront sensor for phase unwrapping.

    PubMed

    Akondi, Vyas; Vohnsen, Brian; Marcos, Susana

    2016-10-10

    Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.

  15. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  16. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  17. A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Lu, Xinghai; Xuan, Li

    2009-09-28

    A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors (DLCWFCs) for atmospheric turbulence correction is reported. A simple formula which describes the relationship between pixel number, DLCWFC aperture, quantization level, and atmospheric coherence length was derived based on the calculated atmospheric turbulence wavefronts using Kolmogorov atmospheric turbulence theory. It was found that the pixel number across the DLCWFC aperture is a linear function of the telescope aperture and the quantization level, and it is an exponential function of the atmosphere coherence length. These results are useful for people using DLCWFCs in atmospheric turbulence correction for large-aperture telescopes.

  18. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  19. Optimal wavefront estimation of incoherent sources

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler

    2014-08-01

    Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star's PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.

  20. Active touch sensing

    PubMed Central

    Prescott, Tony J.; Diamond, Mathew E.; Wing, Alan M.

    2011-01-01

    Active sensing systems are purposive and information-seeking sensory systems. Active sensing usually entails sensor movement, but more fundamentally, it involves control of the sensor apparatus, in whatever manner best suits the task, so as to maximize information gain. In animals, active sensing is perhaps most evident in the modality of touch. In this theme issue, we look at active touch across a broad range of species from insects, terrestrial and marine mammals, through to humans. In addition to analysing natural touch, we also consider how engineering is beginning to exploit physical analogues of these biological systems so as to endow robots with rich tactile sensing capabilities. The different contributions show not only the varieties of active touch—antennae, whiskers and fingertips—but also their commonalities. They explore how active touch sensing has evolved in different animal lineages, how it serves to provide rapid and reliable cues for controlling ongoing behaviour, and even how it can disintegrate when our brains begin to fail. They demonstrate that research on active touch offers a means both to understand this essential and primary sensory modality, and to investigate how animals, including man, combine movement with sensing so as to make sense of, and act effectively in, the world. PMID:21969680

  1. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.

    PubMed

    Shatokhina, Iuliia; Obereder, Andreas; Rosensteiner, Matthias; Ramlau, Ronny

    2013-04-20

    We present a fast method for the wavefront reconstruction from pyramid wavefront sensor (P-WFS) measurements. The method is based on an analytical relation between pyramid and Shack-Hartmann sensor (SH-WFS) data. The algorithm consists of two steps--a transformation of the P-WFS data to SH data, followed by the application of cumulative reconstructor with domain decomposition, a wavefront reconstructor from SH-WFS measurements. The closed loop simulations confirm that our method provides the same quality as the standard matrix vector multiplication method. A complexity analysis as well as speed tests confirm that the method is very fast. Thus, the method can be used on extremely large telescopes, e.g., for eXtreme adaptive optics systems.

  2. JWST testbed telescope: a functionally accurate scaled version of the flight optical telescope element used to develop the flight wavefront sensing and control algorithm

    NASA Astrophysics Data System (ADS)

    Kingsbury, Lana K.; Atcheson, Paul D.

    2004-10-01

    The Northrop-Grumman/Ball/Kodak team is building the JWST observatory that will be launched in 2011. To develop the flight wavefront sensing and control (WFS&C) algorithms and software, Ball is designing and building a 1 meter diameter, functionally accurate version of the JWST optical telescope element (OTE). This testbed telescope (TBT) will incorporate the same optical element control capability as the flight OTE. The secondary mirror will be controlled by a 6 degree of freedom (dof) hexapod and each of the 18 segmented primary mirror assemblies will have 6 dof hexapod control as well as radius of curvature adjustment capability. In addition to the highly adjustable primary and secondary mirrors, the TBT will include a rigid tertiary mirror, 2 fold mirrors (to direct light into the TBT) and a very stable supporting structure. The total telescope system configured residual wavefront error will be better than 175 nm RMS double pass. The primary and secondary mirror hexapod assemblies enable 5 nm piston resolution, 0.0014 arcsec tilt resolution, 100 nm translation resolution, and 0.04497 arcsec clocking resolution. The supporting structure (specifically the secondary mirror support structure) is designed to ensure that the primary mirror segments will not change their despace position relative to the secondary mirror (spaced > 1 meter apart) by greater than 500 nm within a one hour period of ambient clean room operation.

  3. Advanced Imaging Optics Utilizing Wavefront Coding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise.more » Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.« less

  4. Beam characterization by wavefront sensor

    DOEpatents

    Neal, Daniel R.; Alford, W. J.; Gruetzner, James K.

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  5. Post-Coronagraph Wavefront Sensor for Gemini Planet Imager

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John

    2009-01-01

    The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.

  6. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  7. Real-Time Wavefront Control for the PALM-3000 High Order Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Troy, Mitchell

    2008-01-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. The architecture enables full-matrix reconstruction of the wavefront at up to 2 KHz with latency under 250 us for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64 x 64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 241 active actuator tweeter DM. The architecture can easily scale up to support much larger AO systems at higher rates and lower latency.

  8. Wavefront Control and Image Restoration with Less Computing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial

  9. The ABLE ACE wavefront sensor

    NASA Astrophysics Data System (ADS)

    Butts, Robert R.

    1997-08-01

    A low noise, high resolution Shack-Hartmann wavefront sensor was included in the ABLE-ACE instrument suite to obtain direct high resolution phase measurements of the 0.53 micrometers pulsed laser beam propagated through high altitude atmospheric turbulence. The wavefront sensor employed a Fired geometry using a lenslet array which provided approximately 17 sub-apertures across the pupil. The lenslets focused the light in each sub-aperture onto a 21 by 21 array of pixels in the camera focal plane with 8 pixels in the camera focal plane with 8 pixels across the central lobe of the diffraction limited spot. The goal of the experiment was to measure the effects of the turbulence in the free atmosphere on propagation, but the wavefront sensor also detected the aberrations induced by the aircraft boundary layer and the receiver aircraft internal beam path. Data analysis methods used to extract the desired atmospheric contribution to the phase measurements from the data corrupted by non-atmospheric aberrations are described. Approaches which were used included a reconstruction of the phase as a linear combination of Zernike polynomials coupled with optical estimator sand computation of structure functions of the sub-aperture slopes. The theoretical basis for the data analysis techniques is presented. Results are described, and comparisons with theory and simulations are shown. Estimates of average turbulence strength along the propagation path from the wavefront sensor showed good agreement with other sensor. The Zernike spectra calculated from the wavefront sensor data were consistent with the standard Kolmogorov model of turbulence.

  10. Beam characterization by wavefront sensor

    DOEpatents

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  11. Geometric Theory of Moving Grid Wavefront Sensor

    DTIC Science & Technology

    1977-06-30

    Identify by block numbot) Adaptive Optics WaVefront Sensor Geometric Optics Analysis Moving Ronchi Grid "ABSTRACT (Continue an revere sdde If nooessaY...ad Identify by block nucber)A geometric optics analysis is made for a wavefront sensor that uses a moving Ronchi grid. It is shown that by simple data... optical systems being considered or being developed -3 for imaging an object through a turbulent atmosphere. Some of these use a wavefront sensor to

  12. The design of wavefront coded imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Shun; Cen, Zhaofeng; Li, Xiaotong

    2016-10-01

    Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.

  13. Two dimensional wavefront retrieval using lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Mancilla-Escobar, B.; Malacara-Hernández, Z.; Malacara-Hernández, D.

    2018-06-01

    A new zonal two-dimensional method for wavefront retrieval from a surface under test using lateral shearing interferometry is presented. A modified Saunders method and phase shifting techniques are combined to generate a method for wavefront reconstruction. The result is a wavefront with an error below 0.7 λ and without any global high frequency filtering. A zonal analysis over square cells along the surfaces is made, obtaining a polynomial expression for the wavefront deformations over each cell. The main advantage of this method over previously published methods is that a global filtering of high spatial frequencies is not present. Thus, a global smoothing of the wavefront deformations is avoided, allowing the detection of deformations with relatively small extensions, that is, with high spatial frequencies. Additionally, local curvature and low order aberration coefficients are obtained in each cell.

  14. Whole eye wavefront aberrations in Mexican male subjects.

    PubMed

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  15. A hierarchical wavefront reconstruction algorithm for gradient sensors

    NASA Astrophysics Data System (ADS)

    Bharmal, Nazim; Bitenc, Urban; Basden, Alastair; Myers, Richard

    2013-12-01

    ELT-scale extreme adaptive optics systems will require new approaches tocompute the wavefront suitably quickly, when the computational burden ofapplying a MVM is no longer practical. An approach is demonstrated here whichis hierarchical in transforming wavefront slopes from a WFS into a wavefront,and then to actuator values. First, simple integration in 1D is used to create1D-wavefront estimates with unknown starting points at the edges of independentspatial domains. Second, these starting points are estimated globally. By thesestarting points are a sub-set of the overall grid where wavefront values are tobe estimated, sparse representations are produced and numerical complexity canbe chosen by the spacing of the starting point grid relative to the overallgrid. Using a combination of algebraic expressions, sparse representation, anda conjugate gradient solver, the number of non-parallelized operations forreconstruction on a 100x100 sub-aperture sized problem is ~600,000 or O(N^3/2),which is approximately the same as for each thread of a MVM solutionparallelized over 100 threads. To reduce the effects of noise propagationwithin each domain, a noise reduction algorithm can be applied which ensuresthe continuity of the wavefront. To apply this additional step has a cost of~1,200,000 operations. We conclude by briefly discussing how the final step ofconverting from wavefront to actuator values can be achieved.

  16. Rapid, parallel path planning by propagating wavefronts of spiking neural activity

    PubMed Central

    Ponulak, Filip; Hopfield, John J.

    2013-01-01

    Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213

  17. Realtime speckle sensing and suppression with project 1640 at Palomar

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam; Cady, Eric; Zhai, Chengxing; Lockhart, Thomas; Oppenheimer, Ben

    2014-08-01

    Palomar's Project 1640 (P1640) is the first stellar coronagraph to regularly use active coronagraphic wavefront control (CWFC). For this it has a hierarchy of offset wavefront sensors (WFS), the most important of which is the higher-order WFS (called CAL), which tracks quasi-static modes between 2-35 cycles-per-aperture. The wavefront is measured in the coronagraph at 0.01 Hz rates, providing slope targets to the upstream Palm 3000 adaptive optics (AO) system. The CWFC handles all non-common path distortions up to the coronagraphic focal plane mask, but does not sense second order modes between the WFSs and the science integral field unit (IFU); these modes determine the system's current limit. We have two CWFC operating modes: (1) P-mode, where we only control phases, generating double-sided darkholes by correcting to the largest controllable spatial frequencies, and (2) E-mode, where we can control amplitudes and phases, generating single-sided dark-holes in specified regions-of-interest. We describe the performance and limitations of both these modes, and discuss the improvements we are considering going forward.

  18. High-contrast imager for complex aperture telescopes (HiCAT): 3. first lab results with wavefront control

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Mazoyer, Johan; Choquet, Élodie; Pueyo, Laurent; Perrin, Marshall D.; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Carlotti, Alexis; Long, Chris A.; Lajoie, Rachel; Soummer, Rémi

    2015-09-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  19. Real-time implementing wavefront reconstruction for adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Li, Mei; Wang, Chunhong; Zhou, Luchun; Jiang, Wenhan

    2004-12-01

    The capability of real time wave-front reconstruction is important for an adaptive optics (AO) system. The bandwidth of system and the real-time processing ability of the wave-front processor is mainly affected by the speed of calculation. The system requires enough number of subapertures and high sampling frequency to compensate atmospheric turbulence. The number of reconstruction operation is increased accordingly. Since the performance of AO system improves with the decrease of calculation latency, it is necessary to study how to increase the speed of wavefront reconstruction. There are two methods to improve the real time of the reconstruction. One is to convert the wavefront reconstruction matrix, such as by wavelet or FFT. The other is enhancing the performance of the processing element. Analysis shows that the latency cutting is performed with the cost of reconstruction precision by the former method. In this article, the latter method is adopted. From the characteristic of the wavefront reconstruction algorithm, a systolic array by FPGA is properly designed to implement real-time wavefront reconstruction. The system delay is reduced greatly by the utilization of pipeline and parallel processing. The minimum latency of reconstruction is the reconstruction calculation of one subaperture.

  20. A First Order Wavefront Estimation Algorithm for P1640 Calibrator

    NASA Technical Reports Server (NTRS)

    Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2012-01-01

    P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.

  1. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  2. Model wavefront sensor for adaptive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  3. Development of a pyramidal wavefront sensor test-bench at INO

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François

    2013-12-01

    The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P

  4. Wavefront-Guided Versus Wavefront-Optimized Photorefractive Keratectomy: Visual and Military Task Performance.

    PubMed

    Ryan, Denise S; Sia, Rose K; Stutzman, Richard D; Pasternak, Joseph F; Howard, Robin S; Howell, Christopher L; Maurer, Tana; Torres, Mark F; Bower, Kraig S

    2017-01-01

    To compare visual performance, marksmanship performance, and threshold target identification following wavefront-guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK). In this prospective, randomized clinical trial, active duty U.S. military Soldiers, age 21 or over, electing to undergo PRK were randomized to undergo WFG (n = 27) or WFO (n = 27) PRK for myopia or myopic astigmatism. Binocular visual performance was assessed preoperatively and 1, 3, and 6 months postoperatively: Super Vision Test high contrast, Super Vision Test contrast sensitivity (CS), and 25% contrast acuity with night vision goggle filter. CS function was generated testing at five spatial frequencies. Marksmanship performance in low light conditions was evaluated in a firing tunnel. Target detection and identification performance was tested for probability of identification of varying target sets and probability of detection of humans in cluttered environments. Visual performance, CS function, marksmanship, and threshold target identification demonstrated no statistically significant differences over time between the two treatments. Exploratory regression analysis of firing range tasks at 6 months showed no significant differences or correlations between procedures. Regression analysis of vehicle and handheld probability of identification showed a significant association with pretreatment performance. Both WFG and WFO PRK results translate to excellent and comparable visual and military performance. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  5. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  6. JWFront: Wavefronts and Light Cones for Kerr Spacetimes

    NASA Astrophysics Data System (ADS)

    Frutos Alfaro, Francisco; Grave, Frank; Müller, Thomas; Adis, Daria

    2015-04-01

    JWFront visualizes wavefronts and light cones in general relativity. The interactive front-end allows users to enter the initial position values and choose the values for mass and angular momentum per unit mass. The wavefront animations are available in 2D and 3D; the light cones are visualized using the coordinate systems (t, x, y) or (t, z, x). JWFront can be easily modified to simulate wavefronts and light cones for other spacetime by providing the Christoffel symbols in the program.

  7. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  8. Dynamic wavefront creation for processing units using a hybrid compactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri

    A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less

  9. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  10. Comparison of Modal to Nodal Approaches for Wavefront Correction,

    DTIC Science & Technology

    1986-02-01

    the influence function of the wavefront corrector. (Implicit here is the assumption that the influence function is the same for every node, which is...To implement a nodal correction, the wavefront to be corrected is -. .. decomposed using a basis which is determined by the nodal (actuator) influence ... function of the wavefront corrector. This decomposition results in a set of coefficients which correspond to the drive signal required at the

  11. Wavefront reconstruction from non-modulated pyramid wavefront sensor data using a singular value type expansion

    NASA Astrophysics Data System (ADS)

    Hutterer, Victoria; Ramlau, Ronny

    2018-03-01

    The new generation of extremely large telescopes includes adaptive optics systems to correct for atmospheric blurring. In this paper, we present a new method of wavefront reconstruction from non-modulated pyramid wavefront sensor data. The approach is based on a simplified sensor model represented as the finite Hilbert transform of the incoming phase. Due to the non-compactness of the finite Hilbert transform operator the classical theory for singular systems is not applicable. Nevertheless, we can express the Moore-Penrose inverse as a singular value type expansion with weighted Chebychev polynomials.

  12. Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors

    NASA Astrophysics Data System (ADS)

    Townson, M. J.; Love, G. D.; Saunter, C. D.

    2018-05-01

    Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.

  13. Holographic wavefront sensor, based on diffuse Fourier holography

    NASA Astrophysics Data System (ADS)

    Gorelaya, Alina; Orlov, Vyacheslav; Venediktov, Vladimir

    2017-09-01

    Many areas of optical science and technology require fast and accurate measurement of the radiation wavefront shape. Today there are known a lot of wavefront sensor (WFS) techniques, and their number is growing up. The last years have brought a growing interest in several schematics of WFS, employing the holography principles and holographic optical elements (HOE). Some of these devices are just the improved versions of the standard and most popular Shack-Hartman WFS, while other are based on the intrinsic features of HOE. A holographic mode wavefront sensor is proposed, which makes it possible to measure up to several tens of wavefront modes. The increase in the number of measured modes is implemented using the conversion of a light wave entering the sensor into a wide diffuse light beam, which allows one to record a large number of holograms, each intended for measuring one of the modes.

  14. Reconfigurable wavefront sensor for ultrashort pulses.

    PubMed

    Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger

    2012-04-01

    A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.

  15. Model-Based Wavefront Control for CCAT

    NASA Technical Reports Server (NTRS)

    Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David

    2011-01-01

    The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.

  16. Rectified directional sensing in long-range cell migration

    PubMed Central

    Nakajima, Akihiko; Ishihara, Shuji; Imoto, Daisuke; Sawai, Satoshi

    2014-01-01

    How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This ‘rectification’ of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition. PMID:25373620

  17. The clock and wavefront model revisited.

    PubMed

    Murray, Philip J; Maini, Philip K; Baker, Ruth E

    2011-08-21

    The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior-posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species. Copyright © 2011 Elsevier Ltd. All rights

  18. Development of a wavefront sensor for terahertz pulses.

    PubMed

    Abraham, Emmanuel; Cahyadi, Harsono; Brossard, Mathilde; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi

    2016-03-07

    Wavefront characterization of terahertz pulses is essential to optimize far-field intensity distribution of time-domain (imaging) spectrometers or increase the peak power of intense terahertz sources. In this paper, we report on the wavefront measurement of terahertz pulses using a Hartmann sensor associated with a 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. We quantitatively determined the deformations of planar and converging spherical wavefronts using the modal Zernike reconstruction least-squares method. Associated with deformable mirrors, the sensor will also open the route to terahertz adaptive optics.

  19. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  20. Laser radiation wavefront conjugation in fiber optic lightguides

    NASA Astrophysics Data System (ADS)

    Chertkov, A. A.

    1986-02-01

    Wavefront conjugation precision during stimulated brillouin scattering is investigated in a monofiber with spatially homogeneous and inhomogeneous beams at lambda = 106 micrometer. A Q-modulated YAG:Nd sup 3+ laser with initial transmission of 25% was employed as the radiation source. The energy of the incident and reflected radiation was measured by means of F-28 photoelements outputting their signals to an S8-12 oscilloscope. The behavior of the coefficient of reflection from the stimulated Brillouin scattering mirror as a function of the amount by which the pumping energy exceeded the threshold was found to be the same for all types of fibers, and to be independent of astigmatism and angular beam divergence. The wavefront conjugation quality as a function of the energy level was also the same for all of the lightguides employed: quartz, silicate and silicate-quartz. The good wavefront conjugation observed for astigmatic and spatially inhomogeneous beams make it possible to compensate satisfactorily for inhomogeneities in the distorting wavefront of the beam.

  1. Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus

    PubMed Central

    Sabesan, Ramkumar; Johns, Lynette; Tomashevskaya, Olga; Jacobs, Deborah S.; Rosenthal, Perry; Yoon, Geunyoung

    2016-01-01

    Purpose To investigate the feasibility of correcting ocular higher order aberrations (HOA) in keratoconus (KC) using wavefront-guided optics in a scleral lens prosthetic device (SLPD). Methods Six advanced keratoconus patients (11 eyes) were fitted with a SLPD with conventional spherical optics. A custom-made Shack-Hartmann wavefront sensor was used to measure aberrations through a dilated pupil wearing the SLPD. The position of SLPD, i.e. horizontal and vertical decentration relative to the pupil and rotation were measured and incorporated into the design of the wavefront-guided optics for the customized SLPD. A submicron-precision lathe created the designed irregular profile on the front surface of the device. The residual aberrations of the same eyes wearing the SLPD with wavefront-guided optics were subsequently measured. Visual performance with natural mesopic pupil was compared between SLPDs having conventional spherical and wavefront-guided optics by measuring best-corrected high-contrast visual acuity and contrast sensitivity. Results Root-mean-square of HOA(RMS) in the 11 eyes wearing conventional SLPD with spherical optics was 1.17±0.57μm for a 6 mm pupil. HOA were effectively corrected by the customized SLPD with wavefront-guided optics and RMS was reduced 3.1 times on average to 0.37±0.19μm for the same pupil. This correction resulted in significant improvement of 1.9 lines in mean visual acuity (p<0.05). Contrast sensitivity was also significantly improved by a factor of 2.4, 1.8 and 1.4 on average for 4, 8 and 12 cycles/degree, respectively (p<0.05 for all frequencies). Although the residual aberration was comparable to that of normal eyes, the average visual acuity in logMAR with the customized SLPD was 0.21, substantially worse than normal acuity. Conclusions The customized SLPD with wavefront-guided optics corrected the HOA of advanced KC patients to normal levels and improved their vision significantly. PMID:23478630

  2. Adaptive Cross-correlation Algorithm and Experiment of Extended Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.

  3. Influence of wave-front sampling in adaptive optics retinal imaging

    PubMed Central

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael

    2017-01-01

    A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004

  4. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    PubMed

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  5. Wavefront shaping with disorder-engineered metasurfaces

    NASA Astrophysics Data System (ADS)

    Jang, Mooseok; Horie, Yu; Shibukawa, Atsushi; Brake, Joshua; Liu, Yan; Kamali, Seyedeh Mahsa; Arbabi, Amir; Ruan, Haowen; Faraon, Andrei; Yang, Changhuei

    2018-02-01

    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input-output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input-output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated 2.2 × 108 addressable points in an 8 mm field of view.

  6. Absolute color scale for improved diagnostics with wavefront error mapping.

    PubMed

    Smolek, Michael K; Klyce, Stephen D

    2007-11-01

    Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing

  7. Identified state-space prediction model for aero-optical wavefronts

    NASA Astrophysics Data System (ADS)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  8. Fourier transform-wavefront reconstruction for the pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Correia, Carlos; Esposito, Simone

    The application of Fourier-transform reconstruction techniques to the pyramid wavefront sensor has been investigated. A preliminary study based on end-to-end simulations of an adaptive optics system with ≈40x40 subapertures and actuators shows that the performance of the Fourier-transform reconstructor (FTR) is of the same order of magnitude than the one obtained with a conventional matrix-vector multiply (MVM) method.

  9. Wavefront measurement of plastic lenses for mobile-phone applications

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  10. An analysis of printing conditions for wavefront overlapping printing

    NASA Astrophysics Data System (ADS)

    Ichihashi, Y.; Yamamoto, K.; Wakunami, K.; Oi, R.; Okui, M.; Senoh, T.

    2017-03-01

    Wavefront printing for a digitally-designed hologram has got attentions recently. In this printing, a spatial light modulator (SLM) is used for displaying a hologram data and the wavefront is reproduced by irradiating the hologram with a reference light the same way as electronic holography. However, a pixel count of current SLM devices is not enough to display an entire hologram data. To generate a practical digitally-designed hologram, the entire hologram data is divided into a set of sub-hologram data and wavefront reproduced by each sub-hologram is sequentially recorded in tiling manner by using X-Y motorized stage. Due to a lack of positioning an accuracy of X-Y motorized stage and the temporal incoherent recording, phase continuity of recorded/reproduced wavefront is lost between neighboring subholograms. In this paper, we generate the holograms that have different size of sub-holograms with an overlap or nonoverlap, and verify the size of sub-holograms effect on the reconstructed images. In the result, the reconstructed images degrade with decreasing the size of sub-holograms and there is little or no degradation of quality by the wavefront printing with the overlap.

  11. Wavefront control system for the Keck telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  12. Study of the performance of image restoration under different wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Wang, Xinqiu; Hu, Xinqi

    2016-10-01

    Image restoration is an effective way to improve the quality of images degraded by wave-front aberrations. If the wave-front aberration is too large, the performance of the image restoration will not be good. In this paper, the relationship between the performance of image restoration and the degree of wave-front aberrations is studied. A set of different wave-front aberrations is constructed by Zernike polynomials, and the corresponding PSF under white-light illumination is calculated. A set of blurred images is then obtained through convolution methods. Next we recover the images with the regularized Richardson-Lucy algorithm and use the RMS of the original image and the homologous deblurred image to evaluate the quality of restoration. Consequently, we determine the range of wave-front errors in which the recovered images are acceptable.

  13. A wavefront compensation approach to segmented mirror figure control

    NASA Technical Reports Server (NTRS)

    Redding, David; Breckenridge, Bill; Sevaston, George; Lau, Ken

    1991-01-01

    We consider the 'figure-control' problem for a spaceborn sub-millimeter wave telescope, the Precision Segmented Reflector Project Focus Mission Telescope. We show that performance of any figure control system is subject to limits on the controllability and observability of the quality of the wavefront. We present a wavefront-compensation method for the Focus Mission Telescope which uses mirror-figure sensors and three-axis segment actuator to directly minimize wavefront errors due to segment position errors. This approach shows significantly better performance when compared with a panel-state-compensation approach.

  14. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.

    PubMed

    Liu, Tao; Thibos, Larry; Marin, Gildas; Hernandez, Martha

    2014-01-01

    Conventional aberration analysis by a Shack-Hartmann aberrometer is based on the implicit assumption that an injected probe beam reflects from a single fundus layer. In fact, the biological fundus is a thick reflector and therefore conventional analysis may produce errors of unknown magnitude. We developed a novel computational method to investigate this potential failure of conventional analysis. The Shack-Hartmann wavefront sensor was simulated by computer software and used to recover by two methods the known wavefront aberrations expected from a population of normally-aberrated human eyes and bi-layer fundus reflection. The conventional method determines the centroid of each spot in the SH data image, from which wavefront slopes are computed for least-squares fitting with derivatives of Zernike polynomials. The novel 'global' method iteratively adjusted the aberration coefficients derived from conventional centroid analysis until the SH image, when treated as a unitary picture, optimally matched the original data image. Both methods recovered higher order aberrations accurately and precisely, but only the global algorithm correctly recovered the defocus coefficients associated with each layer of fundus reflection. The global algorithm accurately recovered Zernike coefficients for mean defocus and bi-layer separation with maximum error <0.1%. The global algorithm was robust for bi-layer separation up to 2 dioptres for a typical SH wavefront sensor design. For 100 randomly generated test wavefronts with 0.7 D axial separation, the retrieved mean axial separation was 0.70 D with standard deviations (S.D.) of 0.002 D. Sufficient information is contained in SH data images to measure the dioptric thickness of dual-layer fundus reflection. The global algorithm is superior since it successfully recovered the focus value associated with both fundus layers even when their separation was too small to produce clearly separated spots, while the conventional analysis

  15. Statistical analysis of wavefront fluctuations from measurements of a wave-front sensor

    NASA Astrophysics Data System (ADS)

    Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Lukin, V. P.

    2017-11-01

    Measurements of the wave front aberrations at the input aperture of the Big Solar Vacuum Telescope (LSVT) were carried out by a wave-front sensor (WFS) of an adaptive optical system when the controlled deformable mirror was replaced by a plane one.

  16. Bimorph deformable mirror: an appropriate wavefront corrector for retinal imaging?

    NASA Astrophysics Data System (ADS)

    Laut, Sophie; Jones, Steve; Park, Hyunkyu; Horsley, David A.; Olivier, Scot; Werner, John S.

    2005-11-01

    The purpose of this study was to evaluate the performance of a bimorph deformable mirror from AOptix, inserted into an adaptive optics system designed for in-vivo retinal imaging at high resolution. We wanted to determine its suitability as a wavefront corrector for vision science and ophthalmological instrumentation. We presented results obtained in a closed-loop system, and compared them with previous open-loop performance measurements. Our goal was to obtain precise wavefront reconstruction with rapid convergence of the control algorithm. The quality of the reconstruction was expressed in terms of root-mean-squared wavefront residual error (RMS), and number of frames required to perform compensation. Our instrument used a Hartmann-Shack sensor for the wavefront measurements. We also determined the precision and ability of the deformable mirror to compensate the most common types of aberrations present in the human eye (defocus, cylinder, astigmatism and coma), and the quality of its correction, in terms of maximum amplitude of the corrected wavefront. In addition to wavefront correction, we had also used the closed-loop system to generate an arbitrary aberration pattern by entering the desired Hartmann-Shack centroid locations as input to the AO controller. These centroid locations were computed in Matlab for a user-defined aberration pattern, allowing us to test the ability of the DM to generate and compensate for various aberrations. We conclude that this device, in combination with another DM based on Micro-Electro Mechanical Systems (MEMS) technology, may provide better compensation of the higher-order ocular wavefront aberrations of the human eye

  17. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  18. High-resolution wavefront reconstruction using the frozen flow hypothesis

    NASA Astrophysics Data System (ADS)

    Liu, Xuewen; Liang, Yonghui; Liu, Jin; Xu, Jieping

    2017-10-01

    This paper describes an approach to reconstructing wavefronts on finer grid using the frozen flow hypothesis (FFH), which exploits spatial and temporal correlations between consecutive wavefront sensor (WFS) frames. Under the assumption of FFH, slope data from WFS can be connected to a finer, composite slope grid using translation and down sampling, and elements in transformation matrices are determined by wind information. Frames of slopes are then combined and slopes on finer grid are reconstructed by solving a sparse, large-scale, ill-posed least squares problem. By using reconstructed finer slope data and adopting Fried geometry of WFS, high-resolution wavefronts are then reconstructed. The results show that this method is robust even with detector noise and wind information inaccuracy, and under bad seeing conditions, high-frequency information in wavefronts can be recovered more accurately compared with when correlations in WFS frames are ignored.

  19. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  20. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2017-12-01

    Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.

  1. Ocular wavefront aberrations in patients with macular diseases

    PubMed Central

    Bessho, Kenichiro; Bartsch, Dirk-Uwe G.; Gomez, Laura; Cheng, Lingyun; Koh, Hyoung Jun; Freeman, William R.

    2009-01-01

    Background There have been reports that by compensating for the ocular aberrations using adaptive optical systems it may be possible to improve the resolution of clinical retinal imaging systems beyond what is now possible. In order to develop such system to observe eyes with retinal disease, understanding of the ocular wavefront aberrations in individuals with retinal disease is required. Methods 82 eyes of 66 patients with macular disease (epiretinal membrane, macular edema, macular hole etc.) and 85 eyes of 51 patients without retinal disease were studied. Using a ray-tracing wavefront device, each eye was scanned at both small and large pupil apertures and Zernike coefficients up to 6th order were acquired. Results In phakic eyes, 3rd order root mean square errors (RMS) in macular disease group were statistically greater than control, an average of 12% for 5mm and 31% for 3mm scan diameters (p<0.021). In pseudophakic eyes, there also was an elevation of 3rd order RMS, on average 57% for 5mm and 51% for 3mm scan diameters (p<0.031). Conclusion Higher order wavefront aberrations in eyes with macular disease were greater than in control eyes without disease. Our study suggests that such aberrations may result from irregular or multiple reflecting retinal surfaces. Modifications in wavefront sensor technology will be needed to accurately determine wavefront aberration and allow correction using adaptive optics in eyes with macular irregularities. PMID:19574950

  2. Wavefront shaping to correct intraocular scattering

    NASA Astrophysics Data System (ADS)

    Artal, Pablo; Arias, Augusto; Fernández, Enrique

    2018-02-01

    Cataracts is a common ocular pathology that increases the amount of intraocular scattering. It degrades the quality of vision by both blur and contrast reduction of the retinal images. In this work, we propose a non-invasive method, based on wavefront shaping (WS), to minimize cataract effects. For the experimental demonstration of the method, a liquid crystal on silicon (LCoS) spatial light modulator was used for both reproduction and reduction of the realistic cataracts effects. The LCoS area was separated in two halves conjugated with the eye's pupil by a telescope with unitary magnification. Thus, while the phase maps that induced programmable amounts of intraocular scattering (related to cataract severity) were displayed in a one half of the LCoS, sequentially testing wavefronts were displayed in the second one. Results of the imaging improvements were visually evaluated by subjects with no known ocular pathology seeing through the instrument. The diffracted intensity of exit pupil is analyzed for the feedback of the implemented algorithms in search for the optimum wavefront. Numerical and experimental results of the imaging improvements are presented and discussed.

  3. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  4. Stability of corneal topography and wavefront aberrations in young Singaporeans.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Yeo, Anna C H

    2013-09-01

    The aim was to investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total-eye optics in the morning, midday and late afternoon on two separate days. Topographic data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the fourth radial order of the Zernike polynomial expansion and were centred on the entrance pupil (5.0 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. For all subjects considered together, there were significant changes in some of the aberrations across the day, such as spherical aberration ( Z(4 0)) and vertical coma ( Z (3 - 1)) (repeated measures analysis of variance, p < 0.05). The magnitude of positive spherical aberration ( Z(4 0)) was significantly lower in the progressing myopic group than in the stable myopic (p = 0.04) and emmetropic (p = 0.02) groups. There were also significant interactions between refractive group and time of day for with and against-the-rule astigmatism ( Z(2 2)). Significantly lower fourth-order root mean square of ocular wavefront aberrations were found in the progressing myopic group compared with the stable myopes and emmetropes (p < 0.01). These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  5. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  6. Hartmann wavefront sensors and their application at FLASH.

    PubMed

    Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus

    2016-01-01

    Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.

  7. Iterative-Transform Phase Diversity: An Object and Wavefront Recovery Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott

    2011-01-01

    Presented is a solution for recovering the wavefront and an extended object. It builds upon the VSM architecture and deconvolution algorithms. Simulations are shown for recovering the wavefront and extended object from noisy data.

  8. Ultra-high resolution coded wavefront sensor.

    PubMed

    Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang

    2017-06-12

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  9. Multispectral Wavefronts Retrieval in Digital Holographic Three-Dimensional Imaging Spectrometry

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2010-04-01

    This paper deals with a recently developed passive interferometric technique for retrieving a set of spectral components of wavefronts that are propagating from a spatially incoherent, polychromatic object. The technique is based on measurement of 5-D spatial coherence function using a suitably designed interferometer. By applying signal processing, including aperture synthesis and spectral decomposition, one may obtains a set of wavefronts of different spectral bands. Since each wavefront is equivalent to the complex Fresnel hologram at a particular spectrum of the polychromatic object, application of the conventional Fresnel transform yields 3-D image of different spectrum. Thus, this technique of multispectral wavefronts retrieval provides a new type of 3-D imaging spectrometry based on a fully passive interferometry. Experimental results are also shown to demonstrate the validity of the method.

  10. Zonal wavefront estimation using an array of hexagonal grating patterns

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2014-10-01

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  11. RBCs as microlenses: wavefront analysis and applications

    NASA Astrophysics Data System (ADS)

    Merola, Francesco; Barroso, Álvaro; Miccio, Lisa; Memmolo, Pasquale; Mugnano, Martina; Ferraro, Pietro; Denz, Cornelia

    2017-06-01

    Developing the recently discovered concept of RBCs as microlenses, we demonstrate further applications in wavefront analysis and diagnostics. Correlation between RBC's morphology and its behavior as a refractive optical element has been established. In fact, any deviation from the healthy RBC morphology can be seen as additional aberration in the optical wavefront passing through the cell. By this concept, accurate localization of focal spots of RBCs can become very useful in blood disorders identification. Moreover, By modelling RBC as bio-lenses through Zernike polynomials it is possible to identify a series of orthogonal parameters able to recognise RBC shapes. The main improvement concerns the possibility to combine such parameters because of their independence conversely to standard image-based analysis where morphological factors are dependent each-others. We investigate the three-dimensional positioning of such focal spots over time for samples with two different osmolarity conditions, i.e. discocytes and spherocytes. Finally, Zernike polynomials wavefront analysis allows us to study the optical behavior of RBCs under an optically-induced mechanical stress. Detailed wavefront analysis provides comprehensive information about the aberrations induced by the deformation obtained using optical tweezers. This could open new routes for analyzing cell elasticity by examining optical parameters instead of direct but with low resolution strain analysis, thanks to the high sensitivity of the interferometric tool.

  12. High resolution imaging and wavefront aberration correction in plenoptic systems.

    PubMed

    Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M

    2014-09-01

    Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.

  13. Telescope Multi-Field Wavefront Control with a Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Redding, David; Sigrist, Norbert; Basinger, Scott

    2008-01-01

    An effective multi-field wavefront control (WFC) approach is demonstrated for an actuated, segmented space telescope using wavefront measurements at the exit pupil, and the optical and computational implications of this approach are discussed. The integration of a Kalman Filter as an optical state estimator into the wavefront control process to further improve the robustness of the optical alignment of the telescope will also be discussed. Through a comparison of WFC performances between on-orbit and ground-test optical system configurations, the connection (and a possible disconnection) between WFC and optical system alignment under these circumstances are analyzed. Our MACOS-based computer simulation results will be presented and discussed.

  14. MEMS deformable mirror for wavefront correction of large telescopes

    NASA Astrophysics Data System (ADS)

    Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner

    2017-11-01

    A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.

  15. Diffracted wavefront measurement of a volume phase holographic grating at cryogenic temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; Habraken, Serge; Lemaire, Philippe

    2006-09-20

    Flatness of the wavefront diffracted by grating can be mandatory for some applications. At ambient temperature, the wavefront diffracted by a volume phase holographic grating (VPHG) is well mastered by the manufacturing process and can be corrected or shaped by post polishing. However, to be used in cooled infrared spectrometers, VPHGs have to stand and work properly at low temperatures.We present the measurement of the wavefront diffracted by atypical VPHG at various temperatures down to 150 K and at several thermal inhomogeneity amplitudes. The particular grating observed was produced using a dichromated gelatine technique and encapsulated between two glass blanks.more » Diffracted wavefront measurements show that the wavefront is extremely stable according to the temperature as long as the latter is homogeneous over the grating stack volume. Increasing the thermal inhomogeneity increases the wavefront error that pinpoints the importance of the final instrument thermal design. This concludes the dichromated gelatine VPHG technology, used more and more in visible spectrometers, can be applied as it is to cooled IR spectrometers.« less

  16. Zonal wavefront estimation using an array of hexagonal grating patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit, E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R., E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in

    2014-10-15

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during themore » estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.« less

  17. Shack-Hartmann wavefront sensor using a Raspberry Pi embedded system

    NASA Astrophysics Data System (ADS)

    Contreras-Martinez, Ramiro; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J.

    2017-05-01

    In this work we present the design and manufacture of a compact Shack-Hartmann wavefront sensor using a Raspberry Pi and a microlens array. The main goal of this sensor is to recover the wavefront of a laser beam and to characterize its spatial phase using a simple and compact Raspberry Pi and the Raspberry Pi embedded camera. The recovery algorithm is based on a modified version of the Southwell method and was written in Python as well as its user interface. Experimental results and reconstructed wavefronts are presented.

  18. Decomposition of the optical transfer function: wavefront coding imaging systems

    NASA Astrophysics Data System (ADS)

    Muyo, Gonzalo; Harvey, Andy R.

    2005-10-01

    We describe the mapping of the optical transfer function (OTF) of an incoherent imaging system into a geometrical representation. We show that for defocused traditional and wavefront-coded systems the OTF can be represented as a generalized Cornu spiral. This representation provides a physical insight into the way in which wavefront coding can increase the depth of field of an imaging system and permits analytical quantification of salient OTF parameters, such as the depth of focus, the location of nulls, and amplitude and phase modulation of the wavefront-coding OTF.

  19. Bicubic uniform B-spline wavefront fitting technology applied in computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Sun, Jun-qiang; Chen, Guo-jie

    2006-02-01

    This paper presented a bicubic uniform B-spline wavefront fitting technology to figure out the analytical expression for object wavefront used in Computer-Generated Holograms (CGHs). In many cases, to decrease the difficulty of optical processing, off-axis CGHs rather than complex aspherical surface elements are used in modern advanced military optical systems. In order to design and fabricate off-axis CGH, we have to fit out the analytical expression for object wavefront. Zernike Polynomial is competent for fitting wavefront of centrosymmetric optical systems, but not for axisymmetrical optical systems. Although adopting high-degree polynomials fitting method would achieve higher fitting precision in all fitting nodes, the greatest shortcoming of this method is that any departure from the fitting nodes would result in great fitting error, which is so-called pulsation phenomenon. Furthermore, high-degree polynomials fitting method would increase the calculation time in coding computer-generated hologram and solving basic equation. Basing on the basis function of cubic uniform B-spline and the character mesh of bicubic uniform B-spline wavefront, bicubic uniform B-spline wavefront are described as the product of a series of matrices. Employing standard MATLAB routines, four kinds of different analytical expressions for object wavefront are fitted out by bicubic uniform B-spline as well as high-degree polynomials. Calculation results indicate that, compared with high-degree polynomials, bicubic uniform B-spline is a more competitive method to fit out the analytical expression for object wavefront used in off-axis CGH, for its higher fitting precision and C2 continuity.

  20. Wavefront reconstruction using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael

    2012-02-01

    We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.

  1. The plenoptic camera as a wavefront sensor for the European Solar Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, Luis F.; Martín, Yolanda; Díaz, José J.; Piqueras, J.; Rodríguez-Ramos, J. M.

    2009-08-01

    The plenoptic wavefront sensor combines measurements at pupil and image planes in order to obtain wavefront information from different points of view simultaneously, being capable to sample the volume above the telescope to extract the tomographic information of the atmospheric turbulence. After describing the working principle, a laboratory setup has been used for the verification of the capability of measuring the pupil plane wavefront. A comparative discussion with respect to other wavefront sensors is also included.

  2. Simultaneous measurements of density field and wavefront distortions in high speed flows

    NASA Astrophysics Data System (ADS)

    George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin

    2017-09-01

    This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.

  3. pyZELDA: Python code for Zernike wavefront sensors

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.

    2018-06-01

    pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

  4. Plenoptic wavefront sensor with scattering pupil.

    PubMed

    Vdovin, Gleb; Soloviev, Oleg; Loktev, Mikhail

    2014-04-21

    We consider a wavefront sensor combining scattering pupil with a plenoptic imager. Such a sensor utilizes the same reconstruction principle as the Hartmann-Shack sensor, however it is free from the ambiguity of the spot location caused by the periodic structure of the sensor matrix, and allows for wider range of measured aberrations. In our study, sensor with scattering pupil has demonstrated a good match between the introduced and reconstructed aberrations, both in the simulation and experiment. The concept is expected to be applicable to optical metrology of strongly distorted wavefronts, especially for measurements through dirty, distorted, or scattering windows and pupils, such as cataract eyes.

  5. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  6. End-to-end Coronagraphic Modeling Including a Low-order Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Trauger, John T.; Unwin, Stephen C.; Traub, Wesley A.

    2012-01-01

    To evaluate space-based coronagraphic techniques, end-to-end modeling is necessary to simulate realistic fields containing speckles caused by wavefront errors. Real systems will suffer from pointing errors and thermal and motioninduced mechanical stresses that introduce time-variable wavefront aberrations that can reduce the field contrast. A loworder wavefront sensor (LOWFS) is needed to measure these changes at a sufficiently high rate to maintain the contrast level during observations. We implement here a LOWFS and corresponding low-order wavefront control subsystem (LOWFCS) in end-to-end models of a space-based coronagraph. Our goal is to be able to accurately duplicate the effect of the LOWFS+LOWFCS without explicitly evaluating the end-to-end model at numerous time steps.

  7. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

    PubMed

    Cha, Jae Won; Ballesta, Jerome; So, Peter T C

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

  8. Two Improved Algorithms for Envelope and Wavefront Reduction

    NASA Technical Reports Server (NTRS)

    Kumfert, Gary; Pothen, Alex

    1997-01-01

    Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and Scott; we describe enhancements to the Sloan algorithm that improve its quality and reduce its run time. Our test problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the weights in the Sloan algorithm. We describe an efficient 0(nlogn + m) time implementation of the Sloan algorithm, where n is the number of rows (vertices), and m is the number of nonzeros (edges). On a collection of test problems, the improved Sloan algorithm required, on the average, only twice the time required by the simpler Reverse Cuthill-Mckee algorithm while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid that combines a spectral algorithm for envelope and wavefront reduction with a refinement step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the Sloan algorithm at the cost of greater running times. We illustrate how these reductions translate into tangible benefits for frontal Cholesky factorization and incomplete factorization preconditioning.

  9. Iterative wave-front reconstruction in the Fourier domain.

    PubMed

    Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry

    2017-05-15

    The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

  10. Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system.

    PubMed

    He, Ji C; Wang, Jianhua

    2014-04-21

    To quantitatively approach the relationship between optical changes in an accommodated eye and the geometrical deformation of its crystalline lens, a long scan-depth anterior segment OCT equipped wavefront sensor was developed and integrated with a Badal system. With this system, accommodation was stimulated up to 6.0D in the left eye and also measured in the same eye for three subjects. High correlations between the accommodative responses of refractive power and the radius of the anterior lens surface were found for the three subjects (r>0.98). The change in spherical aberration was also highly correlated with the change in lens thickness (r>0.98). The measurement was very well repeated at a 2nd measurement session on the same day for the three subjects and after two weeks for one subject. The novelty of incorporating the Badal system into the OCT equipped wavefront sensor eliminated axial misalignment of the measurement system with the test eye due to accommodative vergence, as in the contralateral paradigm. The design also allowed the wavefront sensor to capture conjugated sharp Hartmann-Shack images in accommodated eyes to accurately analyze wavefront aberrations. In addition, this design extended the accommodation range up to 10.0D. By using this system, for the first time, we demonstrated linear relationships of the changes between the refractive power and the lens curvature and also between the spherical aberration and the lens thickness during accommodation in vivo. This new system provides an accurate and useful technique to quantitatively study accommodation.

  11. Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system

    PubMed Central

    He, Ji C.; Wang, Jianhua

    2014-01-01

    To quantitatively approach the relationship between optical changes in an accommodated eye and the geometrical deformation of its crystalline lens, a long scan-depth anterior segment OCT equipped wavefront sensor was developed and integrated with a Badal system. With this system, accommodation was stimulated up to 6.0D in the left eye and also measured in the same eye for three subjects. High correlations between the accommodative responses of refractive power and the radius of the anterior lens surface were found for the three subjects (r>0.98). The change in spherical aberration was also highly correlated with the change in lens thickness (r>0.98). The measurement was very well repeated at a 2nd measurement session on the same day for the three subjects and after two weeks for one subject. The novelty of incorporating the Badal system into the OCT equipped wavefront sensor eliminated axial misalignment of the measurement system with the test eye due to accommodative vergence, as in the contralateral paradigm. The design also allowed the wavefront sensor to capture conjugated sharp Hartmann-Shack images in accommodated eyes to accurately analyze wavefront aberrations. In addition, this design extended the accommodation range up to 10.0D. By using this system, for the first time, we demonstrated linear relationships of the changes between the refractive power and the lens curvature and also between the spherical aberration and the lens thickness during accommodation in vivo. This new system provides an accurate and useful technique to quantitatively study accommodation. PMID:24787861

  12. Lenses that provide the transformation between two given wavefronts

    NASA Astrophysics Data System (ADS)

    Criado, C.; Alamo, N.

    2016-12-01

    We give an original method to design four types of lenses solving the following problems: focusing a given wavefront in a given point, and performing the transformation between two arbitrary incoming and outgoing wavefronts. The method to design the lenses profiles is based on the optical properties of the envelopes of certain families of Cartesian ovals of revolution.

  13. Wavefront-sensor-based electron density measurements for laser-plasma accelerators.

    PubMed

    Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P

    2010-03-01

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.

  14. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  15. The CAFADIS camera: a new tomographic wavefront sensor for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Femenía, B.; Montilla, I.; Rodríguez-Ramos, L. F.; Marichal-Hernández, J. G.; Lüke, J. P.; López, R.; Díaz, J. J.; Martín, Y.

    The CAFADIS camera is a new wavefront sensor (WFS) patented by the Universidad de La Laguna. CAFADIS is a system based on the concept of plenoptic camera originally proposed by Adelson and Wang [Single lens stereo with a plenoptic camera, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992)] and its most salient feature is its ability to simultaneously measuring wavefront maps and distances to objects [Wavefront and distance measurements using the CAFADIS camera, in Astronomical telescopes, Marseille (2008)]. This makes of CAFADIS an interesting alternative for LGS-based AO systems as it is capable of measuring from an LGS-beacon the atmospheric turbulence wavefront and simultaneously the distance to the LGS beacon thus removing the need of a NGS defocus sensor to probe changes in distance to the LGS beacon due to drifts of the mesospheric Na layer. In principle, the concept can also be employed to recover 3D profiles of the Na Layer allowing for optimizations of the measurement of the distance to the LGS-beacon. Currently we are investigating the possibility of extending the plenoptic WFS into a tomographic wavefront sensor. Simulations will be shown of a plenoptic WFS when operated within an LGS-based AO system for the recovery of wavefront maps at different heights. The preliminary results presented here show the tomographic ability of CAFADIS.

  16. Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.

    PubMed

    López, David; Ríos, Susana

    2010-04-20

    A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.

  17. Remote sensing with intense filaments enhanced by adaptive optics

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.

    2009-11-01

    A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.

  18. Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)

    NASA Technical Reports Server (NTRS)

    Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.

    1997-01-01

    In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,

  19. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy

    PubMed Central

    Cha, Jae Won; Ballesta, Jerome; So, Peter T.C.

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration. PMID:20799824

  20. Closed loop adaptive optics for microscopy without a wavefront sensor

    PubMed Central

    Kner, Peter; Winoto, Lukman; Agard, David A.; Sedat, John W.

    2013-01-01

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity. PMID:24392198

  1. Closed loop adaptive optics for microscopy without a wavefront sensor.

    PubMed

    Kner, Peter; Winoto, Lukman; Agard, David A; Sedat, John W

    2010-02-24

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

  2. Efficacy of predictive wavefront control for compensating aero-optical aberrations

    NASA Astrophysics Data System (ADS)

    Goorskey, David J.; Schmidt, Jason; Whiteley, Matthew R.

    2013-07-01

    Imaging and laser beam propagation from airborne platforms are degraded by dynamic aberrations due to air flow around the aircraft, aero-mechanical distortions and jitter, and free atmospheric turbulence. For certain applications, like dim-object imaging, free-space optical communications, and laser weapons, adaptive optics (AO) is necessary to compensate for the aberrations in real time. Aero-optical flow is a particularly interesting source of aberrations whose flowing structures can be exploited by adaptive and predictive AO controllers, thereby realizing significant performance gains. We analyze dynamic aero-optical wavefronts to determine the pointing angles at which predictive wavefront control is more effective than conventional, fixed-gain, linear-filter control. It was found that properties of the spatial decompositions and temporal statistics of the wavefronts are directly traceable to specific features in the air flow. Furthermore, the aero-optical wavefront aberrations at the side- and aft-looking angles were the most severe, but they also benefited the most from predictive AO.

  3. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng

    2018-03-01

    Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.

  4. Accommodation to wavefront vergence and chromatic aberration.

    PubMed

    Wang, Yinan; Kruger, Philip B; Li, James S; Lin, Peter L; Stark, Lawrence R

    2011-05-01

    Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In this study, we examined the effect of pupil size and LCA on accommodation. Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m) and two artificial pupil conditions (3 and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less.

  5. Nonlinear Wavefront Control with All-Dielectric Metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront ofmore » parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Lastly, our nonlinear metasurfaces produce phase gradients over a full 0–2π phase range with a 92% diffraction efficiency.« less

  6. Nonlinear Wavefront Control with All-Dielectric Metasurfaces.

    PubMed

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill; Kravchenko, Ivan; Luther-Davies, Barry; Kivshar, Yuri

    2018-06-13

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront of parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Our nonlinear metasurfaces produce phase gradients over a full 0-2π phase range with a 92% diffraction efficiency.

  7. Nonlinear Wavefront Control with All-Dielectric Metasurfaces

    DOE PAGES

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill; ...

    2018-05-11

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront ofmore » parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Lastly, our nonlinear metasurfaces produce phase gradients over a full 0–2π phase range with a 92% diffraction efficiency.« less

  8. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront

  9. Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up.

    PubMed

    Aizawa, Daisuke; Shimizu, Kimiya; Komatsu, Mari; Ito, Misae; Suzuki, Masanobu; Ohno, Koji; Uozato, Hiroshi

    2003-08-01

    To evaluate the clinical outcomes 6 months after wavefront-guided laser in situ keratomileusis (LASIK) for myopia in Japan. Department of Ophthalmology, Sanno Hospital, Tokyo, Japan. This prospective study comprised 22 eyes of 12 patients treated with wavefront-guided LASIK who were available for evaluation at 6 months. The mean patient age was 31.2 years +/- 8.4 (SD) (range 23 to 50 years), and the mean preoperative spherical equivalent refraction was -7.30 +/- 2.72 diopters (D) (range -2.75 to -11.88 D). In all cases, preoperative wavefront analysis was performed with a Hartmann-Shack aberrometer and the Technolas 217z flying-spot excimer laser system (Bausch & Lomb) was used with 1.0 mm and 2.0 mm spot sizes and an active eye tracker with a 120 Hz tracking rate. The clinical outcomes of wavefront-guided LASIK were evaluated in terms of safety, efficacy, predictability, stability, complications, and preoperative and postoperative aberrations. At 6 months, 10 eyes had no change in best spectacle-correct visual acuity and 10 gained 1 or more lines. The safety index was 1.11 and the efficacy index, 0.82. Slight undercorrections were observed in highly myopic eyes. In all eyes, the postoperative refraction tended slightly toward myopia for 3 months and stabilized after that. No complication such as epithelial ingrowth, diffuse lamellar keratitis, or infection was observed. Comparison of the preoperative and postoperative aberrations showed that 2nd-order aberrations decreased and higher-order aberrations increased. In the 3rd order, aberrations increased in the high-myopia group (-6.0 D or worse) and decreased in the low to moderate-myopia group (better than -6.0 D). Wavefront-guided LASIK was a good option for refractive surgery, although a longer follow-up in a larger study is required.

  10. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.

    2004-01-01

    The most critical element of an adaptive optics system is its wavefront sensor, which must measure the closed-loop difference between the corrected wavefront and an ideal template at high speed, in real time, over a dense sampling of the pupil. Most high-order systems have used Shack-Hartmann wavefront sensors, but a novel approach based on Zernike's phase contrast principle appears promising. In this paper we discuss a simple way to achromatize such a phase contrast wavefront sensor, using the pi/2 phase difference between reflected and transmitted rays in a thin, symmetric beam splitter. We further model the response at a range of wavelengths to show that the required transverse dimension of the focal-plane phase-shifting spot, nominally lambda/D, may not be very sensitive to wavelength, and so in practice additional optics to introduce wavelength-dependent transverse magnification achromatizing this spot diameter may not be required. A very simple broadband implementation of the phase contrast wavefront sensor results.

  11. UTILIZATION OF THE WAVEFRONT SENSOR AND SHORT-EXPOSURE IMAGES FOR SIMULTANEOUS ESTIMATION OF QUASI-STATIC ABERRATION AND EXOPLANET INTENSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazin, Richard A., E-mail: rfrazin@umich.edu

    2013-04-10

    Heretofore, the literature on exoplanet detection with coronagraphic telescope systems has paid little attention to the information content of short exposures and methods of utilizing the measurements of adaptive optics wavefront sensors. This paper provides a framework for the incorporation of the wavefront sensor measurements in the context of observing modes in which the science camera takes millisecond exposures. In this formulation, the wavefront sensor measurements provide a means to jointly estimate the static speckle and the planetary signal. The ability to estimate planetary intensities in as little as a few seconds has the potential to greatly improve the efficiencymore » of exoplanet search surveys. For simplicity, the mathematical development assumes a simple optical system with an idealized Lyot coronagraph. Unlike currently used methods, in which increasing the observation time beyond a certain threshold is useless, this method produces estimates whose error covariances decrease more quickly than inversely proportional to the observation time. This is due to the fact that the estimates of the quasi-static aberrations are informed by a new random (but approximately known) wavefront every millisecond. The method can be extended to include angular (due to diurnal field rotation) and spectral diversity. Numerical experiments are performed with wavefront data from the AEOS Adaptive Optics System sensing at 850 nm. These experiments assume a science camera wavelength {lambda} of 1.1 {mu}, that the measured wavefronts are exact, and a Gaussian approximation of shot-noise. The effects of detector read-out noise and other issues are left to future investigations. A number of static aberrations are introduced, including one with a spatial frequency exactly corresponding the planet location, which was at a distance of Almost-Equal-To 3{lambda}/D from the star. Using only 4 s of simulated observation time, a planetary intensity, of Almost-Equal-To 1 photon ms

  12. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  13. Authentication via wavefront-shaped optical responses

    NASA Astrophysics Data System (ADS)

    Eilers, Hergen; Anderson, Benjamin R.; Gunawidjaja, Ray

    2018-02-01

    Authentication/tamper-indication is required in a wide range of applications, including nuclear materials management and product counterfeit detection. State-of-the-art techniques include reflective particle tags, laser speckle authentication, and birefringent seals. Each of these passive techniques has its own advantages and disadvantages, including the need for complex image comparisons, limited flexibility, sensitivity to environmental conditions, limited functionality, etc. We have developed a new active approach to address some of these short-comings. The use of an active characterization technique adds more flexibility and additional layers of security over current techniques. Our approach uses randomly-distributed nanoparticles embedded in a polymer matrix (tag/seal) which is attached to the item to be secured. A spatial light modulator is used to adjust the wavefront of a laser which interacts with the tag/seal, and a detector is used to monitor this interaction. The interaction can occur in various ways, including transmittance, reflectance, fluorescence, random lasing, etc. For example, at the time of origination, the wavefront-shaped reflectance from a tag/seal can be adjusted to result in a specific pattern (symbol, words, etc.) Any tampering with the tag/seal would results in a disturbance of the random orientation of the nanoparticles and thus distort the reflectance pattern. A holographic waveplate could be inserted into the laser beam for verification. The absence/distortion of the original pattern would then indicate that tampering has occurred. We have tested the tag/seal's and authentication method's tamper-indicating ability using various attack methods, including mechanical, thermal, and chemical attacks, and have verified our material/method's robust tamper-indicating ability.

  14. Weighted spline based integration for reconstruction of freeform wavefront.

    PubMed

    Pant, Kamal K; Burada, Dali R; Bichra, Mohamed; Ghosh, Amitava; Khan, Gufran S; Sinzinger, Stefan; Shakher, Chandra

    2018-02-10

    In the present work, a spline-based integration technique for the reconstruction of a freeform wavefront from the slope data has been implemented. The slope data of a freeform surface contain noise due to their machining process and that introduces reconstruction error. We have proposed a weighted cubic spline based least square integration method (WCSLI) for the faithful reconstruction of a wavefront from noisy slope data. In the proposed method, the measured slope data are fitted into a piecewise polynomial. The fitted coefficients are determined by using a smoothing cubic spline fitting method. The smoothing parameter locally assigns relative weight to the fitted slope data. The fitted slope data are then integrated using the standard least squares technique to reconstruct the freeform wavefront. Simulation studies show the improved result using the proposed technique as compared to the existing cubic spline-based integration (CSLI) and the Southwell methods. The proposed reconstruction method has been experimentally implemented to a subaperture stitching-based measurement of a freeform wavefront using a scanning Shack-Hartmann sensor. The boundary artifacts are minimal in WCSLI which improves the subaperture stitching accuracy and demonstrates an improved Shack-Hartmann sensor for freeform metrology application.

  15. Testing the pyramid wavefront sensor on the sky

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Ghedina, Adriano; Baruffolo, Andrea; Marchetti, Enrico; Farinato, Jacopo; Niero, Tiziano; Crimi, G.; Ghigo, Mauro

    2000-07-01

    The pyramid wavefront sensor is a novel concept device whose features are attractive for adaptive optics for several reasons. We show here the first loop closure of an AO system using this kind of sensor at the focal plane of a 4m-class telescope. One of the critical optical elements of our wavefront sensor is the pyramid that splits the light from the star used for the wavefront correction. This component is essentially a four faces prism having actually a full vertex angle of 7 degrees with specifications on its edges and roof of 4 - 5 microns or better. The best turned edges obtained on the prototypes already built have shown values of the order of 6 microns, with roofs of the same order, not far from the required tolerances. In this article we describe the techniques and the system used for the construction of this optical component and the improvements to the polishing procedure that we plan to adopt in order to increase the quality of its edges and optical surfaces. Pixel processing is suitable to fit with existing Shack-Hartmann systems, making this device an attractive add-on option for existing SH-based AO systems. The plans for future developments in order to firmly establish the performances of the pyramid wavefront sensor are briefed out.

  16. Wavefront metrology for coherent hard X-rays by scanning a microsphere.

    PubMed

    Skjønsfjell, Eirik Torbjørn Bakken; Chushkin, Yuriy; Zontone, Federico; Patil, Nilesh; Gibaud, Alain; Breiby, Dag W

    2016-05-16

    Characterization of the wavefront of an X-ray beam is of primary importance for all applications where coherence plays a major role. Imaging techniques based on numerically retrieving the phase from interference patterns are often relying on an a-priori assumption of the wavefront shape. In Coherent X-ray Diffraction Imaging (CXDI) a planar incoming wave field is often assumed for the inversion of the measured diffraction pattern, which allows retrieving the real space image via simple Fourier transformation. It is therefore important to know how reliable the plane wave approximation is to describe the real wavefront. Here, we demonstrate that the quantitative wavefront shape and flux distribution of an X-ray beam used for CXDI can be measured by using a micrometer size metal-coated polymer sphere serving in a similar way as the hole array in a Hartmann wavefront sensor. The method relies on monitoring the shape and center of the scattered intensity distribution in the far field using a 2D area detector while raster-scanning the microsphere with respect to the incoming beam. The reconstructed X-ray wavefront was found to have a well-defined central region of approximately 16 µm diameter and a weaker, asymmetric, intensity distribution extending 30 µm from the beam center. The phase front distortion was primarily spherical with an effective radius of 0.55 m which matches the distance to the last upstream beam-defining slit, and could be accurately represented by Zernike polynomials.

  17. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of

  18. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  19. Aspheric versus wavefront-guided aspheric photorefractive keratectomy in eyes with significant astigmatism.

    PubMed

    Faramarzi, Amir; Moshirfar, Majid; Karimian, Farid; Delfazayebaher, Siamak; Kheiri, Bahareh

    2017-12-01

    To compare the refractive and higher-order aberrations (HOAs) outcomes after photorefractive keratectomy (PRK) in patients with significant astigmatism using aspheric versus wavefront-guided aspheric profiles. Ophthalmic Research Center and Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Negah Eye Hospital, Tehran, Iran. Prospective randomized case series. One eye of each patient with a refractive astigmatism more than 2.00 diopters (D) randomly received aspheric PRK. In the other eye, wavefront-guided and aspheric treatment was performed using a personalized treatment advanced algorithm. Visual acuity, refractive errors, and HOAs were compared between the 2 groups preoperatively and 12 months postoperatively. The study comprised 32 patients (64 eyes). The mean preoperative refractive astigmatism was -4.07 D ± 1.64 (SD) and -4.02 ± 1.55 D in the aspheric group and wavefront-guided aspheric group, respectively (P = .2). The mean postoperative astigmatism was -0.46 ± 0.37 D and -0.82 ± 0.53 D in the aspheric group and wavefront-guided aspheric group, respectively (P = .02). Postoperatively, the root mean square of total HOAs was significantly increased in both groups. However, compared with wavefront-guided aspheric PRK, aspheric PRK induced fewer HOAs (P = .003). In eyes with high astigmatism, post-PRK residual astigmatism was lower in the aspheric group than in the wavefront-guided aspheric group. The increase in HOAs was significantly higher in the wavefront-guided aspheric group than in the aspheric group. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Wavefront optimized nonlinear microscopy of ex vivo human retinas

    NASA Astrophysics Data System (ADS)

    Gualda, Emilio J.; Bueno, Juan M.; Artal, Pablo

    2010-03-01

    A multiphoton microscope incorporating a Hartmann-Shack (HS) wavefront sensor to control the ultrafast laser beam's wavefront aberrations has been developed. This instrument allowed us to investigate the impact of the laser beam aberrations on two-photon autofluorescence imaging of human retinal tissues. We demonstrated that nonlinear microscopy images are improved when laser beam aberrations are minimized by realigning the laser system cavity while wavefront controlling. Nonlinear signals from several human retinal anatomical features have been detected for the first time, without the need of fixation or staining procedures. Beyond the improved image quality, this approach reduces the required excitation power levels, minimizing the side effects of phototoxicity within the imaged sample. In particular, this may be important to study the physiology and function of the healthy and diseased retina.

  1. Wavefront cellular learning automata.

    PubMed

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  2. Wavefront cellular learning automata

    NASA Astrophysics Data System (ADS)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  3. Adaptable Diffraction Gratings With Wavefront Transformation

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  4. Wavefront Engineering with Phase Discontinuities: Designer Interfaces for High Performance Planar Optical Components

    DTIC Science & Technology

    2015-08-27

    ABSTRACT The PI and his group opened up new directions of research: the generation of vector beams with metasurfaces that control amplitude, phase...and polarization of wavefronts, the detection of wavefronts using metasurfaces , new metasurfaces for controlling surface plasmon wavefronts and high...performance device applications of metasurfaces on graphene. In the vector beam area they generated radially polarized light with a single

  5. CIAO: wavefront sensors for GRAVITY

    NASA Astrophysics Data System (ADS)

    Scheithauer, Silvia; Brandner, Wolfgang; Deen, Casey; Adler, Tobias; Bonnet, Henri; Bourget, Pierre; Chemla, Fanny; Clenet, Yann; Delplancke, Francoise; Ebert, Monica; Eisenhauer, Frank; Esselborn, Michael; Finger, Gert; Gendron, Eric; Glauser, Adrian; Gonte, Frederic; Henning, Thomas; Hippler, Stefan; Huber, Armin; Hubert, Zoltan; Jakob, Gerd; Jochum, Lieselotte; Jocou, Laurent; Kendrew, Sarah; Klein, Ralf; Kolb, Johann; Kulas, Martin; Laun, Werner; Lenzen, Rainer; Mellein, Marcus; Müller, Eric; Moreno-Ventas, Javier; Neumann, Udo; Oberti, Sylvain; Ott, Jürgen; Pallanca, Laurent; Panduro, Johana; Ramos, Jose; Riquelme, Miguel; Rohloff, Ralf-Rainer; Rousset, Gérard; Schuhler, Nicolas; Suarez, Marcos; Zins, Gerard

    2016-07-01

    GRAVITY is a second generation near-infrared VLTI instrument that will combine the light of the four unit or four auxiliary telescopes of the ESO Paranal observatory in Chile. The major science goals are the observation of objects in close orbit around, or spiraling into the black hole in the Galactic center with unrivaled sensitivity and angular resolution as well as studies of young stellar objects and evolved stars. In order to cancel out the effect of atmospheric turbulence and to be able to see beyond dusty layers, it needs infrared wave-front sensors when operating with the unit telescopes. Therefore GRAVITY consists of the Beam Combiner Instrument (BCI) located in the VLTI laboratory and a wave-front sensor in each unit telescope Coudé room, thus aptly named Coudé Infrared Adaptive Optics (CIAO). This paper describes the CIAO design, assembly, integration and verification at the Paranal observatory.

  6. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2011-09-01

    developed to solve the eikonal equation and calculate wavefront and ray trajectory displacements, which are required to be small over a correlation length...with a direct modeling of acoustic wavefronts in the ocean through numerical solution of the eikonal equation lies in the eikonal (and acoustic...travel time) being a multi-valued function of position. A number of computational approaches to solve the eikonal equation without ray tracing have been

  7. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.

    PubMed

    Robert, Clélia; Michau, Vincent; Fleury, Bruno; Magli, Serge; Vial, Laurent

    2012-07-02

    Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.

  8. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  9. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    NASA Astrophysics Data System (ADS)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  10. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing.

    PubMed

    Allegre, O J; Jin, Y; Perrie, W; Ouyang, J; Fearon, E; Edwardson, S P; Dearden, G

    2013-09-09

    We report on new developments in wavefront and polarization control for ultrashort-pulse laser microprocessing. We use two Spatial Light Modulators in combination to structure the optical fields of a picosecond-pulse laser beam, producing vortex wavefronts and radial or azimuthal polarization states. We also carry out the first demonstration of multiple first-order beams with vortex wavefronts and radial or azimuthal polarization states, produced using Computer Generated Holograms. The beams produced are used to nano-structure a highly polished metal surface. Laser Induced Periodic Surface Structures are observed and used to directly verify the state of polarization in the focal plane and help to characterize the optical properties of the setup.

  11. Preliminary Investigation of an Active PLZT Lens

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  12. Accommodation to Wavefront Vergence and Chromatic Aberration

    PubMed Central

    Wang, Yinan; Kruger, Philip B.; Li, James S.; Lin, Peter L.; Stark, Lawrence R.

    2011-01-01

    Purpose Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In the present study, we examined the effect of pupil size and LCA on accommodation. Methods Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m2) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m2) and two artificial pupil conditions (3 mm and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Results Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Conclusions Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less. PMID:21317666

  13. The wavefront of the radio signal emitted by cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 1017 eV and zenith angles smaller than 45o, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances gtrsim 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c 2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, Xmax, better than 30 g/c 2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  14. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.

    PubMed

    Plantet, C; Meimon, S; Conan, J-M; Fusco, T

    2015-11-02

    Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.

  15. Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2012-01-01

    The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.

  16. Partially coherent wavefront propagation simulations: Mirror and monochromator crystal quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegart, L., E-mail: lwiegart@bnl.gov; Fluerasu, A.; Chubar, O.

    2016-07-27

    We have applied fully-and partially-coherent synchrotron radiation wavefront propagation simulations, implemented in the “Synchrotron Radiation Workshop” (SRW) computer code, to analyse the effects of imperfect mirrors and monochromator at the Coherent Hard X-ray beamline. This beamline is designed for X-ray Photon Correlation Spectroscopy, a technique that heavily relies on the partial coherence of the X-ray beam and benefits from a careful preservation of the X-ray wavefront. We present simulations and a comparison with the measured beam profile at the sample position, which show the impact of imperfect optics on the wavefront.

  17. Military target task performance after wavefront-guided (WFG) and wavefront-optimized (WFO) photorefractive keratectomy (PRK)

    NASA Astrophysics Data System (ADS)

    Maurer, Tana; Deaver, Dawne; Howell, Christopher; Moyer, Steve; Nguyen, Oanh; Mueller, Greg; Ryan, Denise; Sia, Rose K.; Stutzman, Richard; Pasternak, Joseph; Bower, Kraig

    2014-06-01

    Major decisions regarding life and death are routinely made on the modern battlefield, where visual function of the individual soldier can be of critical importance in the decision-making process. Glasses in the combat environment have considerable disadvantages: degradation of short term visual performance can occur as dust and sweat accumulate on lenses during a mission or patrol; long term visual performance can diminish as lenses become increasingly scratched and pitted; during periods of intense physical trauma, glasses can be knocked off the soldier's face and lost or broken. Although refractive surgery offers certain benefits on the battlefield when compared to wearing glasses, it is not without potential disadvantages. As a byproduct of refractive surgery, elevated optical aberrations can be induced, causing decreases in contrast sensitivity and increases in the symptoms of glare, halos, and starbursts. Typically, these symptoms occur under low light level conditions, the same conditions under which most military operations are initiated. With the advent of wavefront aberrometry, we are now seeing correction not only of myopia and astigmatism but of other, smaller optical aberrations that can cause the above symptoms. In collaboration with the Warfighter Refractive Eye Surgery Program and Research Center (WRESP-RC) at Fort Belvoir and Walter Reed National Military Medical Center (WRNMMC), the overall objective of this study is to determine the impact of wavefront guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK) on military task visual performance. Psychophysical perception testing was conducted before and after surgery to measure each participant's performance regarding target detection and identification using thermal imagery. The results are presented here.

  18. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces

    PubMed Central

    Li, Yong; Liang, Bin; Gu, Zhong-ming; Zou, Xin-ye; Cheng, Jian-chun

    2013-01-01

    The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations. PMID:23986034

  19. Design of wavefront coding optical system with annular aperture

    NASA Astrophysics Data System (ADS)

    Chen, Xinhua; Zhou, Jiankang; Shen, Weimin

    2016-10-01

    Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.

  20. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  1. Discovery Channel Telescope active optics system early integration and test

    NASA Astrophysics Data System (ADS)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  2. Safety and efficacy of wavefront-guided myopic laser in situ keratomileusis using a new wavefront sensor technology: first 100 cases.

    PubMed

    Smadja, David; Santhiago, Marcony R; Tellouck, Joy; De Castro, Tania; Lecomte, Fanny; Mello, Glauco R; Touboul, David

    2015-08-01

    To evaluate the safety and efficacy of wavefront-guided laser in situ keratomileusis (LASIK) for the correction of low to high myopia and myopic astigmatism using data derived from a new-generation Hartmann-Shack aberrometer. Refractive Surgery Unit, Bordeaux Hospital University, France. Retrospective case series. This retrospective study analyzed the initial group of eyes treated with wavefront-guided LASIK for myopia and myopic astigmatism using the Visx S4IR excimer laser and wavefront data derived from a new Hartmann-Shack aberrometer (iDesign Advanced Wavescan aberrometer). Refractive (refraction and refractive accuracy) and visual outcomes (uncorrected [UDVA] and corrected [CDVA] distance visual acuities) were recorded 3 months postoperatively. The study included 100 eyes of 50 consecutively treated patients. The mean decimal UDVA improved from 0.1 ± 0.1 (SD) preoperatively to 1.1 ± 0.15 postoperatively (P < .01). A monocular UDVA of 20/16, 20/20, and 20/25 were achieved in 76.6%, 94.4%, and 96.6% of eyes, respectively. The postoperative manifest spherical equivalent was within ±0.5 diopter in all eyes. No eye lost 2 or more lines of CDVA, and 29.2% of the eyes gained 1 or more lines of CDVA. Wavefront-guided LASIK performed using data derived from the new Hartmann-Shack aberrometer was safe, effective, and predictable for treating myopia and myopic astigmatism. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Estimating stochastic noise using in situ measurements from a linear wavefront slope sensor.

    PubMed

    Bharmal, Nazim Ali; Reeves, Andrew P

    2016-01-15

    It is shown how the solenoidal component of noise from the measurements of a wavefront slope sensor can be utilized to estimate the total noise: specifically, the ensemble noise variance. It is well known that solenoidal noise is orthogonal to the reconstruction of the wavefront under conditions of low scintillation (absence of wavefront vortices). Therefore, it can be retrieved even with a nonzero slope signal present. By explicitly estimating the solenoidal noise from an ensemble of slopes, it can be retrieved for any wavefront sensor configuration. Furthermore, the ensemble variance is demonstrated to be related to the total noise variance via a straightforward relationship. This relationship is revealed via the method of the explicit estimation: it consists of a small, heuristic set of four constants that do not depend on the underlying statistics of the incoming wavefront. These constants seem to apply to all situations-data from a laboratory experiment as well as many configurations of numerical simulation-so the method is concluded to be generic.

  4. Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology

    NASA Astrophysics Data System (ADS)

    Rammage, Ron R.; Neal, Daniel R.; Copland, Richard J.

    2002-11-01

    Human vision correction optics must be produced in quantity to be economical. At the same time every human eye is unique and requires a custom corrective solution. For this reason the vision industries need fast, versatile and accurate methodologies for characterizing optics for production and research. Current methods for measuring these optics generally yield a cubic spline taken from less than 10 points across the surface of the lens. As corrective optics have grown in complexity this has become inadequate. The Shack-Hartmann wavefront sensor is a device that measures phase and irradiance of light in a single snapshot using geometric properties of light. Advantages of the Shack-Hartmann sensor include small size, ruggedness, accuracy, and vibration insensitivity. This paper discusses a methodology for designing instruments based on Shack-Hartmann sensors. The method is then applied to the development of an instrument for accurate measurement of transmissive optics such as gradient bifocal spectacle lenses, progressive addition bifocal lenses, intrarocular devices, contact lenses, and human corneal tissue. In addition, this instrument may be configured to provide hundreds of points across the surface of the lens giving improved spatial resolution. Methods are explored for extending the dynamic range and accuracy to meet the expanding needs of the ophthalmic and optometric industries. Data is presented demonstrating the accuracy and repeatability of this technique for the target optics.

  5. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    PubMed

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  6. Selecting appropriate singular values of transmission matrix to improve precision of incident wavefront retrieval

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Du, Jinglei

    2018-06-01

    A method of selecting appropriate singular values of the transmission matrix to improve the precision of incident wavefront retrieval in focusing light through scattering media is proposed. The optimal singular values selected by this method can reduce the degree of ill-conditionedness of the transmission matrix effectively, which indicates that the incident wavefront retrieved from the optimal set of singular values is more accurate than the incident wavefront retrieved from other sets of singular values. The validity of this method is verified by numerical simulation and actual measurements of the incident wavefront of coherent light through ground glass.

  7. The wavefront of the radio signal emitted by cosmic ray air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apel, W.D.; Bekk, K.; Blümer, J.

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirmmore » earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.« less

  8. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  9. End-To-End performance test of the LINC-NIRVANA Wavefront-Sensor system.

    NASA Astrophysics Data System (ADS)

    Berwein, Juergen; Bertram, Thomas; Conrad, Al; Briegel, Florian; Kittmann, Frank; Zhang, Xiangyu; Mohr, Lars

    2011-09-01

    LINC-NIRVANA is an imaging Fizeau interferometer, for use in near infrared wavelengths, being built for the Large Binocular Telescope. Multi-conjugate adaptive optics (MCAO) increases the sky coverage and the field of view over which diffraction limited images can be obtained. For its MCAO implementation, Linc-Nirvana utilizes four total wavefront sensors; each of the two beams is corrected by both a ground-layer wavefront sensor (GWS) and a high-layer wavefront sensor (HWS). The GWS controls the adaptive secondary deformable mirror (DM), which is based on an DSP slope computing unit. Whereas the HWS controls an internal DM via computations provided by an off-the-shelf multi-core Linux system. Using wavefront sensor data collected from a prior lab experiment, we have shown via simulation that the Linux based system is sufficient to operate at 1kHz, with jitter well below the needs of the final system. Based on that setup we tested the end-to-end performance and latency through all parts of the system which includes the camera, the wavefront controller, and the deformable mirror. We will present our loop control structure and the results of those performance tests.

  10. Shack-Hartmann wavefront sensor with large dynamic range.

    PubMed

    Xia, Mingliang; Li, Chao; Hu, Lifa; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2010-01-01

    A new spot centroid detection algorithm for a Shack-Hartmann wavefront sensor (SHWFS) is experimentally investigated. The algorithm is a kind of dynamic tracking algorithm that tracks and calculates the corresponding spot centroid of the current spot map based on the spot centroid of the previous spot map, according to the strong correlation of the wavefront slope and the centroid of the corresponding spot between temporally adjacent SHWFS measurements. That is, for adjacent measurements, the spot centroid movement will usually fall within some range. Using the algorithm, the dynamic range of an SHWFS can be expanded by a factor of three in the measurement of tilt aberration compared with the conventional algorithm, more than 1.3 times in the measurement of defocus aberration, and more than 2 times in the measurement of the mixture of spherical aberration plus coma aberration. The algorithm is applied in our SHWFS to measure the distorted wavefront of the human eye. The experimental results of the adaptive optics (AO) system for retina imaging are presented to prove its feasibility for highly aberrated eyes.

  11. In situ wavefront correction and its application to micromanipulation

    NASA Astrophysics Data System (ADS)

    Čižmár, Tomáš; Mazilu, Michael; Dholakia, Kishan

    2010-06-01

    In any optical system, distortions to a propagating wavefront reduce the spatial coherence of a light field, making it increasingly difficult to obtain the theoretical diffraction-limited spot size. Such aberrations are severely detrimental to optimal performance in imaging, nanosurgery, nanofabrication and micromanipulation, as well as other techniques within modern microscopy. We present a generic method based on complex modulation for true in situ wavefront correction that allows compensation of all aberrations along the entire optical train. The power of the method is demonstrated for the field of micromanipulation, which is very sensitive to wavefront distortions. We present direct trapping with optimally focused laser light carrying power of a fraction of a milliwatt as well as the first trapping through highly turbid and diffusive media. This opens up new perspectives for optical micromanipulation in colloidal and biological physics and may be useful for various forms of advanced imaging.

  12. Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors.

    PubMed

    Wang, Lianqi; Schöck, Matthias; Chanan, Gary

    2008-04-10

    The slope detection and ranging (SLODAR) method recovers atmospheric turbulence profiles from time averaged spatial cross correlations of wavefront slopes measured by Shack-Hartmann wavefront sensors. The Palomar multiple guide star unit (MGSU) was set up to test tomographic multiple guide star adaptive optics and provided an ideal test bed for SLODAR turbulence altitude profiling. We present the data reduction methods and SLODAR results from MGSU observations made in 2006. Wind profiling is also performed using delayed wavefront cross correlations along with SLODAR analysis. The wind profiling analysis is shown to improve the height resolution of the SLODAR method and in addition gives the wind velocities of the turbulent layers.

  13. Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan

    2012-03-26

    LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.

  14. Differences between wavefront and subjective refraction for infrared light.

    PubMed

    Teel, Danielle F W; Jacobs, Robert J; Copland, James; Neal, Daniel R; Thibos, Larry N

    2014-10-01

    To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light. Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality. Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises. Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.

  15. Improving Focal Photostimulation of Cortical Neurons with Pre-derived Wavefront Correction

    PubMed Central

    Choy, Julian M. C.; Sané, Sharmila S.; Lee, Woei M.; Stricker, Christian; Bachor, Hans A.; Daria, Vincent R.

    2017-01-01

    Recent progress in neuroscience to image and investigate brain function has been made possible by impressive developments in optogenetic and opto-molecular tools. Such research requires advances in optical techniques for the delivery of light through brain tissue with high spatial resolution. The tissue causes distortions to the wavefront of the incoming light which broadens the focus and consequently reduces the intensity and degrades the resolution. Such effects are detrimental in techniques requiring focal stimulation. Adaptive wavefront correction has been demonstrated to compensate for these distortions. However, iterative derivation of the corrective wavefront introduces time constraints that limit its applicability to probe living cells. Here, we demonstrate that we can pre-determine and generalize a small set of Zernike modes to correct for aberrations of the light propagating through specific brain regions. A priori identification of a corrective wavefront is a direct and fast technique that improves the quality of the focus without the need for iterative adaptive wavefront correction. We verify our technique by measuring the efficiency of two-photon photolysis of caged neurotransmitters along the dendrites of a whole-cell patched neuron. Our results show that encoding the selected Zernike modes on the excitation light can improve light propagation through brain slices of rats as observed by the neuron's evoked excitatory post-synaptic potential in response to localized focal uncaging at the spines of the neuron's dendrites. PMID:28507508

  16. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes.

    PubMed

    Mao, Xinjie; Banta, James T; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye.

  17. Iris registration in wavefront-guided LASIK to correct mixed astigmatism.

    PubMed

    Khalifa, Mounir; El-Kateb, Mohamed; Shaheen, Mohamed Shafik

    2009-03-01

    To investigate the predictability, safety, and efficiency of wavefront-guided laser in situ keratomileusis (LASIK) with iris-registration technology to correct mixed astigmatism. Vision correction center, Alexandria, Egypt. This retrospective double-blind study included randomly selected patients with mixed astigmatism who sought laser refractive surgery. Patients were divided equally into 3 groups and treated with conventional LASIK and manual marking, wavefront-guided LASIK and manual marking, or wavefront-guided LASIK with iris registration (LASIK+IR group). Eyes were analyzed preoperatively and up to 3 months postoperatively. The LASIK+IR group had better postoperative uncorrected visual acuity (100% 20/30 or better; 90% 20/20 or better; 20% 20/16 or better) than the other groups and did not lose preoperative best spectacle-corrected visual acuity, unlike the other groups. This group also had the highest percentage of eyes that gained lines of acuity (20% 1 line; 10% 2 lines). The LASIK+IR group had the highest predictability of spherical refraction (80% within +/-0.50 diopter [D]; 100% within +/-1.00 D [P<.05] and the highest predictability of cylinder refraction. The LASIK+IR eyes had a significantly smaller increase postoperatively in coma, trefoil, and secondary astigmatism. There was no significant difference between groups in spherical aberration or quadrafoil. The LASIK-IR group had the most improvement in scotopic contrast sensitivity (P<.05). Wavefront-guided LASIK with iris registration was more predictable, safe, and efficient than conventional or wavefront-guided LASIK with manual marking in correcting mixed astigmatism. Further studies are needed to confirm these results.

  18. Variability of higher order wavefront aberrations after blinks.

    PubMed

    Hagyó, Krisztina; Csákány, Béla; Lang, Zsolt; Németh, János

    2009-01-01

    To investigate the rapid alterations in value and fluctuation of ocular wavefront aberrations during the interblink interval. Forty-two volunteers were examined with a WASCA Wavefront Analyzer (Carl Zeiss Meditec AG) using modified software. For each subject, 150 images (about 6 frames/second) were registered during an interblink period. The outcome measures were spherical and cylindrical refraction and root-mean-square (RMS) values for spherical, coma, and total higher order aberrations. Fifth order polynomials were fitted to the data and the fluctuation trends of the parameters were determined. We calculated the prevalence of the trends with an early local minimum (type 1). The tear production status (Schirmer test) and tear film break-up time (BUT) were also measured. Fluctuation trends with an early minimum (type 1) were significantly more frequent than trends with an early local maximum (type 2) for total higher order aberrations RMS (P=.036). The incidence of type 1 fluctuation trends was significantly greater for coma and total higher order aberrations RMS (P=.041 and P=.003, respectively) in subjects with normal results in the BUT or Schirmer test than in those with abnormal results. In the normal subjects, the first minimum of type 1 RMS fluctuation trends occurred, on average, between 3.8 and 5.1 seconds after blink. We suggest that wavefront aberrations can be measured most accurately at the time after blink when they exhibit a decreased degree of dispersion. We recommend that a snapshot of wavefront measurements be made 3 to 5 seconds after blink.

  19. Wavefront Control Toolbox for James Webb Space Telescope Testbed

    NASA Technical Reports Server (NTRS)

    Shiri, Ron; Aronstein, David L.; Smith, Jeffery Scott; Dean, Bruce H.; Sabatke, Erin

    2007-01-01

    We have developed a Matlab toolbox for wavefront control of optical systems. We have applied this toolbox to the optical models of James Webb Space Telescope (JWST) in general and to the JWST Testbed Telescope (TBT) in particular, implementing both unconstrained and constrained wavefront optimization to correct for possible misalignments present on the segmented primary mirror or the monolithic secondary mirror. The optical models implemented in Zemax optical design program and information is exchanged between Matlab and Zemax via the Dynamic Data Exchange (DDE) interface. The model configuration is managed using the XML protocol. The optimization algorithm uses influence functions for each adjustable degree of freedom of the optical mode. The iterative and non-iterative algorithms have been developed to converge to a local minimum of the root-mean-square (rms) of wavefront error using singular value decomposition technique of the control matrix of influence functions. The toolkit is highly modular and allows the user to choose control strategies for the degrees of freedom to be adjusted on a given iteration and wavefront convergence criterion. As the influence functions are nonlinear over the control parameter space, the toolkit also allows for trade-offs between frequency of updating the local influence functions and execution speed. The functionality of the toolbox and the validity of the underlying algorithms have been verified through extensive simulations.

  20. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.

    PubMed

    Dong, Bing; Booth, Martin J

    2018-01-22

    In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.

  1. Accelerated wavefront determination technique for optical imaging through scattering medium

    NASA Astrophysics Data System (ADS)

    He, Hexiang; Wong, Kam Sing

    2016-03-01

    Wavefront shaping applied on scattering light is a promising optical imaging method in biological systems. Normally, optimized modulation can be obtained by a Liquid-Crystal Spatial Light Modulator (LC-SLM) and CCD hardware iteration. Here we introduce an improved method for this optimization process. The core of the proposed method is to firstly detect the disturbed wavefront, and then to calculate the modulation phase pattern by computer simulation. In particular, phase retrieval method together with phase conjugation is most effective. In this way, the LC-SLM based system can complete the wavefront optimization and imaging restoration within several seconds which is two orders of magnitude faster than the conventional technique. The experimental results show good imaging quality and may contribute to real time imaging recovery in scattering medium.

  2. 5-D interpolation with wave-front attributes

    NASA Astrophysics Data System (ADS)

    Xie, Yujiang; Gajewski, Dirk

    2017-11-01

    Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that

  3. Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting

    NASA Astrophysics Data System (ADS)

    Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen

    2017-06-01

    The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.

  4. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  5. Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.

    PubMed

    Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-10-01

    A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.

  6. Athermalization of infrared dual field optical system based on wavefront coding

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha

    2017-02-01

    Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.

  7. Model-based sensor-less wavefront aberration correction in optical coherence tomography.

    PubMed

    Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel

    2015-12-15

    Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.

  8. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.

    PubMed

    Villegas, Eloy A; Artal, Pablo

    2003-02-01

    To measure the wavefront aberration at different locations in progressive-power lenses (PPL's) isolated and in situ (PPL's plus eye). A Hartmann-Shack wavefront sensor was used to measure progressive-power lenses and human eyes either independently or in combination. In each selected zone, the lens was placed and tilted accordingly to simulate natural viewing conditions. We measured 21 relevant locations across an isolated PPL (plano lens of power addition of 2 D). In six of the locations, the wavefront aberration of the eye plus PPL were obtained in two ways: (1) by direct measurement of the system and (2) by adding the individual wavefront aberrations of the eye and the lens for each appropriate zone. In every case, we obtained the wavefront aberration as Zernike polynomials expansions, the root mean square error, the point-spread function, and the Strehl ratio. Along the corridor of the PPL, third-order coma and trefoil, and astigmatism were the dominant aberrations. In areas of the PPL outside the corridor, astigmatism increased, whereas other aberrations remained similar to the lens center. Small differences were found between the direct and calculated methods used to obtain the wavefront aberration of the eye with the lens, and the possible sources of errors were discussed. In some lenses zones, the aberrations of the lens may be compensated by the particular aberrations of the eye, yielding improved optical performance over that present in the lens alone. We designed and built a wavefront sensor to perform spatially resolved aberration measurements in ophthalmic lenses, in particular in PPL's, either isolated or in combination with the eye. The aberrations appearing in the PPL were compared with those in normal aged eyes.

  9. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes

    PubMed Central

    Mao, Xinjie; Banta, James T.; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    Purpose To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Methods Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Results Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. Conclusions The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye. PMID:27010674

  10. First laboratory results with the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Gaessler, Wolfgang; Conrad, Albert R; Bertram, Thomas; Arcidiacono, Carmelo; Herbst, Thomas M; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Schreiber, Laura; Ragazzoni, Roberto; Diolaiti, Emiliano

    2011-08-15

    In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV. © 2011 Optical Society of America

  11. Wavefront aberration changes caused by a gradient of increasing accommodation stimuli

    PubMed Central

    Zhou, X-Y; Wang, L; Zhou, X-T; Yu, Z-Q

    2015-01-01

    Purpose The aim of this study was to investigate the wavefront aberration changes in human eyes caused by a gradient of increasing accommodation stimuli. Design This is a prospective, single-site study. Methods Healthy volunteers (n=22) aged 18–28 years whose refraction states were emmetropia or mild myopia, with astigmatism <1 diopter (D), were included in this study. After dilating the right pupil with 0.5% phenylephrine drops, the wavefront aberration of the right eye was measured continuously either without or with 1, 2, 3, 4, 5, or 6D accommodation stimuli (WFA1000B psychophysical aberrometer). The root mean square (RMS) values of the total wavefront aberrations, higher-order aberrations, and 35 individual Zernike aberrations under different accommodation stimuli were calculated and compared. Results The average induced accommodations using 1, 2, 3, 4, 5, or 6D accommodation stimuli were 0.848, 1.626, 2.375, 3.249, 4.181, or 5.085 D, respectively. The RMS of total wavefront aberrations, as well as higher-order aberrations, showed no significant effects with 1–3 D accommodation stimuli, but increased significantly under 4, 5, and 6 D accommodation stimuli compared with relaxed accommodation. Zernike coefficients of significantly decreased with increasing levels of accommodation. Conclusion Higher-order wavefront aberrations in human eyes changed with increased accommodation. These results are consistent with Schachar's accommodation theory. PMID:25341432

  12. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  13. Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines

    PubMed Central

    Teodoro, George; Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2013-01-01

    We address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50× and 85× with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively. PMID:23908562

  14. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.

    PubMed

    Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri

    2009-01-20

    In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

  15. Comparison of astigmatic correction after femtosecond lenticule extraction and wavefront-guided LASIK for myopic astigmatism.

    PubMed

    Ali, Mohamed A; Kobashi, Hidenaga; Kamiya, Kazutaka; Igarashi, Akihito; Miyake, Toshiyuki; Elewa, Mohamed Ehab M; Komatsu, Mari; Shimizu, Kimiya

    2014-12-01

    To compare postoperative astigmatic correction between femtosecond lenticule extraction (FLEx) and wavefront-guided LASIK in eyes with myopic astigmatism. Fifty-eight eyes of 41 patients undergoing FLEx and 49 eyes of 29 patients undergoing wavefront-guided LASIK to correct myopic astigmatism were examined. Visual acuity, cylindrical refraction, predictability of the astigmatic correction, and astigmatic vector components were compared between groups 6 months after surgery. There was no statistically significant difference in manifest cylindrical refraction (P = .08) or percentage of eyes within ± 0.50 diopter (D) of its refraction (P = .11) between the surgical procedures. The index of success in FLEx was statistically significantly better than that of wavefront-guided LASIK (P = .02), although there was no significant difference between the groups in other indices (eg, surgically induced astigmatism, target-induced astigmatism, astigmatic correction index, angle of error, difference vector, and flattening index). Subgroup analysis showed that FLEx had a better index of success (P = .02) and difference vector (P = .04) than wavefront-guided LASIK in the low cylinder subgroup; the angle of error in FLEx was significantly smaller than that of wavefront-guided LASIK in the moderate cylinder subgroup (P = .03). Both FLEx and wavefront-guided LASIK worked well for the correction of myopic astigmatism by the 6-month follow-up visit. Although FLEx had a better index of success than wavefront-guided LASIK when using vector analysis, it appears equivalent to wavefront-guided LASIK in terms of visual acuity and the correction of astigmatism. Copyright 2014, SLACK Incorporated.

  16. Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.

    PubMed

    Shatokhina, Iuliia; Ramlau, Ronny

    2017-08-01

    In this paper, we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor data. An overview of the current state-of-the-art in the application of pyramid-type wavefront sensors shows that the novel algorithms can be applied in various scientific fields such as astronomy, ophthalmology, and microscopy. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics (XAO) on the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and compare the achieved AO correction quality (in terms of the long-exposure Strehl ratio) to other methods, such as matrix-vector multiplication and preprocessed cumulative reconstructor with domain decomposition. Also, we provide a comparison in terms of applicability and computational complexity and closed-loop performance of our novel algorithms to other methods existing for this type of sensor.

  17. Analysis of target wavefront error for secondary mirror of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Chang, Shenq-Tsong; Lin, Wei-Cheng; Kuo, Ching-Hsiang; Chan, Chia-Yen; Lin, Yu-Chuan; Huang, Ting-Ming

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  18. Preliminary investigation of an active PLZT lens

    NASA Astrophysics Data System (ADS)

    Peters, Bruce R.; Reardon, Patrick J.; Wong, K. J.

    2001-05-01

    The design analysis and preliminary testing of a prototype AFOCL is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro- optic lens. The AFOCL was developed to perform optical re- alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories. The AFOCL would be an active optical component within a larger optical system. Information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sense4d wavefront tot he desired shape and location. While offering variable and rapid focusing capability similar to liquid crystal based spatial light modulators, the AFOCL offers some potential advantages because it is a solid-stat, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometers wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. Preliminary data was analyzed and compared to idealized performance available from computer-based models of the AFOCL.

  19. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  20. Parallel Implementation of a Frozen Flow Based Wavefront Reconstructor

    NASA Astrophysics Data System (ADS)

    Nagy, J.; Kelly, K.

    2013-09-01

    Obtaining high resolution images of space objects from ground based telescopes is challenging, often requiring the use of a multi-frame blind deconvolution (MFBD) algorithm to remove blur caused by atmospheric turbulence. In order for an MFBD algorithm to be effective, it is necessary to obtain a good initial estimate of the wavefront phase. Although wavefront sensors work well in low turbulence situations, they are less effective in high turbulence, such as when imaging in daylight, or when imaging objects that are close to the Earth's horizon. One promising approach, which has been shown to work very well in high turbulence settings, uses a frozen flow assumption on the atmosphere to capture the inherent temporal correlations present in consecutive frames of wavefront data. Exploiting these correlations can lead to more accurate estimation of the wavefront phase, and the associated PSF, which leads to more effective MFBD algorithms. However, with the current serial implementation, the approach can be prohibitively expensive in situations when it is necessary to use a large number of frames. In this poster we describe a parallel implementation that overcomes this constraint. The parallel implementation exploits sparse matrix computations, and uses the Trilinos package developed at Sandia National Laboratories. Trilinos provides a variety of core mathematical software for parallel architectures that have been designed using high quality software engineering practices, The package is open source, and portable to a variety of high-performance computing architectures.

  1. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    NASA Astrophysics Data System (ADS)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  2. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  3. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  4. Focal plane wavefront sensor achromatization: The multireference self-coherent camera

    NASA Astrophysics Data System (ADS)

    Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.

    2016-04-01

    Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the

  5. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  6. Generation of atmospheric wavefronts using binary micromirror arrays.

    PubMed

    Anzuola, Esdras; Belmonte, Aniceto

    2016-04-10

    To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.

  7. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  8. Visual Outcomes After LASIK Using Topography-Guided vs Wavefront-Guided Customized Ablation Systems.

    PubMed

    Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Tsubota, Kazuo

    2016-11-01

    To evaluate the visual performance of two customized ablation systems (wavefront-guided ablation and topography-guided ablation) in LASIK. In this prospective, randomized clinical study, 68 eyes of 35 patients undergoing LASIK were enrolled. Patients were randomly assigned to wavefront-guided ablation using the iDesign aberrometer and STAR S4 IR Excimer Laser system (Abbott Medical Optics, Inc., Santa Ana, CA) (wavefront-guided group; 32 eyes of 16 patients; age: 29.0 ± 7.3 years) or topography-guided ablation using the OPD-Scan aberrometer and EC-5000 CXII excimer laser system (NIDEK, Tokyo, Japan) (topography-guided group; 36 eyes of 19 patients; age: 36.1 ± 9.6 years). Preoperative manifest refraction was -4.92 ± 1.95 diopters (D) in the wavefront-guided group and -4.44 ± 1.98 D in the topography-guided group. Visual function and subjective symptoms were compared between groups before and 1 and 3 months after LASIK. Of seven subjective symptoms evaluated, four were significantly milder in the wavefront-guided group at 3 months. Contrast sensitivity with glare off at low spatial frequencies (6.3° and 4°) was significantly higher in the wavefront-guided group. Uncorrected and corrected distance visual acuity, manifest refraction, and higher order aberrations measured by OPD-Scan and iDesign were not significantly different between the two groups at 1 and 3 months after LASIK. Both customized ablation systems used in LASIK achieved excellent results in predictability and visual function. The wavefront-guided ablation system may have some advantages in the quality of vision. It may be important to select the appropriate system depending on eye conditions such as the pattern of total and corneal higher order aberrations. [J Refract Surg. 2016;32(11):727-732.]. Copyright 2016, SLACK Incorporated.

  9. Computational test bench and flow chart for wavefront sensors

    NASA Astrophysics Data System (ADS)

    Abecassis, Úrsula V.; de Lima Monteiro, Davies W.; Salles, Luciana P.; Stanigher, Rafaela; Borges, Euller

    2014-05-01

    The wavefront reconstruction diagram has come to supply the need in literature of an ampler vision over the many methods and optronic devices used for the reconstruction of wavefronts and to show the existing interactions between those. A computational platform has been developed using the diagram's orientation for the taking of decision over the best technique and the photo sensible and electronic structures to be implemented. This work will be directed to an ophthalmological application in the development of an instrument of help for the diagnosis of optical aberrations of the human eye.

  10. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  11. Wavefront-Guided Scleral Lens Correction in Keratoconus

    PubMed Central

    Marsack, Jason D.; Ravikumar, Ayeswarya; Nguyen, Chi; Ticak, Anita; Koenig, Darren E.; Elswick, James D.; Applegate, Raymond A.

    2014-01-01

    Purpose To examine the performance of state-of-the-art wavefront-guided scleral contact lenses (wfgSCLs) on a sample of keratoconic eyes, with emphasis on performance quantified with visual quality metrics; and to provide a detailed discussion of the process used to design, manufacture and evaluate wfgSCLs. Methods Fourteen eyes of 7 subjects with keratoconus were enrolled and a wfgSCL was designed for each eye. High-contrast visual acuity and visual quality metrics were used to assess the on-eye performance of the lenses. Results The wfgSCL provided statistically lower levels of both lower-order RMS (p < 0.001) and higher-order RMS (p < 0.02) than an intermediate spherical equivalent scleral contact lens. The wfgSCL provided lower levels of lower-order RMS than a normal group of well-corrected observers (p < < 0.001). However, the wfgSCL does not provide less higher-order RMS than the normal group (p = 0.41). Of the 14 eyes studied, 10 successfully reached the exit criteria, achieving residual higher-order root mean square wavefront error (HORMS) less than or within 1 SD of the levels experienced by normal, age-matched subjects. In addition, measures of visual image quality (logVSX, logNS and logLIB) for the 10 eyes were well distributed within the range of values seen in normal eyes. However, visual performance as measured by high contrast acuity did not reach normal, age-matched levels, which is in agreement with prior results associated with the acute application of wavefront correction to KC eyes. Conclusions Wavefront-guided scleral contact lenses are capable of optically compensating for the deleterious effects of higher-order aberration concomitant with the disease, and can provide visual image quality equivalent to that seen in normal eyes. Longer duration studies are needed to assess whether the visual system of the highly aberrated eye wearing a wfgSCL is capable of producing visual performance levels typical of the normal population. PMID:24830371

  12. New Objective Refraction Metric Based on Sphere Fitting to the Wavefront.

    PubMed

    Jaskulski, Mateusz; Martínez-Finkelshtein, Andreí; López-Gil, Norberto

    2017-01-01

    To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. A sphere is fitted to the ocular wavefront at the center and at a variable distance, t . The optimal fitting distance, t opt , is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r 0 , and used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent dataset of 200 eyes. For pupil radii r 0 ≤ 2 mm, the new metric predicts the equivalent sphere with similar accuracy (<0.1D), however, for r 0 > 2 mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full spherocylindrical refraction for the desired illumination conditions and corresponding pupil size.

  13. New derivation of the wavefront curvature transformation at an interface between two inhomogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzsin, B.

    The principles for ray-tracing and wavefront curvature calculations in a three-dimensional medium are reviewed. A new derivation of the transformation of the wavefront curvature matrix at an interface between two inhomogeneous media is given. The derivation is based on a Taylor series expansion of the ray refraction equation at the interface between two inhomogeneous media, and only elementary geometric arguments are used. The wavefront curvature transformation at the interface is obtained by neglecting all terms in the direction of the surface normal. With proper definition of the variables, the derivation is also valid for a reflected wavefront. A simplified transformationmore » rule is derived for a reflected wave of the same type as the incident wave.« less

  14. Focusing light through dynamical samples using fast continuous wavefront optimization.

    PubMed

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  15. Validation of a Hartmann-Moiré wavefront sensor with large dynamic range.

    PubMed

    Wei, Xin; Van Heugten, Tony; Thibos, Larry

    2009-08-03

    Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurement. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument's full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.

  16. Wavefront measurements of phase plates combining a point-diffraction interferometer and a Hartmann-Shack sensor.

    PubMed

    Bueno, Juan M; Acosta, Eva; Schwarz, Christina; Artal, Pablo

    2010-01-20

    A dual setup composed of a point diffraction interferometer (PDI) and a Hartmann-Shack (HS) wavefront sensor was built to compare the estimates of wavefront aberrations provided by the two different and complementary techniques when applied to different phase plates. Results show that under the same experimental and fitting conditions both techniques provide similar information concerning the wavefront aberration map. When taking into account all Zernike terms up to 6th order, the maximum difference in root-mean-square wavefront error was 0.08 microm, and this reduced up to 0.03 microm when excluding lower-order terms. The effects of the pupil size and the order of the Zernike expansion used to reconstruct the wavefront were evaluated. The combination of the two techniques can accurately measure complicated phase profiles, combining the robustness of the HS and the higher resolution and dynamic range of the PDI.

  17. Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Munger, Rejean; Priest, David

    2005-08-01

    Wavefront-guided laser eye surgery has been recently introduced and holds the promise of correcting not only defocus and astigmatism in patients but also higher-order aberrations. Research is just beginning on the implementation of wavefront-guided methods in optical solutions, such as phase-plate-based spectacles, as alternatives to surgery. We investigate the theoretical differences between the implementation of wavefront-guided surgical and phase plate corrections. The residual aberrations of 43 model eyes are calculated after simulated refractive surgery and also after a phase plate is placed in front of the untreated eye. In each case, the current wavefront-guided paradigm that applies a direct map of the ocular aberrations to the correction zone is used. The simulation results demonstrate that an ablation map that is a Zernike fit of a direct transform of the ocular wavefront phase error is not as efficient in correcting refractive errors of sphere, cylinder, spherical aberration, and coma as when the same Zernike coefficients are applied to a phase plate, with statistically significant improvements from 2% to 6%.

  18. Wavefront correction by target-phase-locking technology in a 500 TW laser facility

    NASA Astrophysics Data System (ADS)

    Wang, D. E.; Dai, W. J.; Zhou, K. N.; Su, J. Q.; Xue, Q.; Yuan, Q.; Zhang, X.; Deng, X. W.; Yang, Y.; Wang, Y. C.; Xie, N.; Sun, L.; Hu, D. X.; Zhu, Q. H.

    2017-03-01

    We demonstrate a novel approach termed target-phase-locking that could improve the entire beam wavefront quality of a 500 TW Nd3+:phosphate glass laser facility. The thermal and static wavefront from front-end to target is corrected by using one deformable mirror that receives feedback from both the focal-spot sensor and wavefront sensor, and only the main laser of the laser system is employed in the correction process, with auxiliary calibration light no longer necessary. As a result, a static focal spot with full width at half maximum of 8.87  ×  5.74 µm is achieved, the thermal wavefront induced by flash-lamp-pumped Nd3+:phosphate glass is compensated with PV from 3.54-0.43 µm, and a dynamic focal spot with intensity exceeding 1020 W cm-2 is precisely predicted at the target with such an approach.

  19. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  20. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  1. Research in the Optical Sciences.

    DTIC Science & Technology

    1987-12-15

    been chosen for the wavefront sensor. REFERENCES 1. C. L. Koliopoulos, " Wavefront sensing of the turbulent atmosphere using a lateral shearing...technique would permit wavefront sensing in the image plane without employing an elaborate method to obtain a reference wavefront . Background Initial...and R. H. Potoff ......... 87 0rd . . .. El WAVEFRONT SENSING AND ADAPTIVE OPTICS C . K oliopoulos ............................................. 97

  2. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  3. Scene-based Shack-Hartmann wavefront sensor for light-sheet microscopy

    NASA Astrophysics Data System (ADS)

    Lawrence, Keelan; Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Light-sheet microscopy is an ideal imaging modality for long-term live imaging in model organisms. However, significant optical aberrations can be present when imaging into an organism that is hundreds of microns or greater in size. To measure and correct optical aberrations, an adaptive optics system must be incorporated into the microscope. Many biological samples lack point sources that can be used as guide stars with conventional Shack-Hartmann wavefront sensors. We have developed a scene-based Shack-Hartmann wavefront sensor for measuring the optical aberrations in a light-sheet microscopy system that does not require a point-source and can measure the aberrations for different parts of the image. The sensor has 280 lenslets inside the pupil, creates an image from each lenslet with a 500 micron field of view and a resolution of 8 microns, and has a resolution for the wavefront gradient of 75 milliradians per lenslet. We demonstrate the system on both fluorescent bead samples and zebrafish embryos.

  4. Random generation of the turbulence slopes of a Shack-Hartmann wavefront sensor.

    PubMed

    Conan, Rodolphe

    2014-03-15

    A method to generate the turbulence measurements of a Shack-Hartmann wavefront sensor is presented. Numerical simulations demonstrate that the spatial and temporal statistic properties of the slopes are respected, allowing us to generate the turbulence wavefront gradient corresponding to both natural and laser guide stars, as well as time series in accordance with the frozen flow model.

  5. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™.

    PubMed

    Gomes, Jeremias M; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H

    2015-10-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel ® Xeon Phi ™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP's irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63 × on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7 × and 1.62 × , respectively, as compared to efficient CPU and GPU implementations.

  6. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™

    PubMed Central

    Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.

    2016-01-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63× on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7× and 1.62×, respectively, as compared to efficient CPU and GPU implementations. PMID:27298591

  7. Intraocular straylight and contrast sensitivity after contralateral wavefront-guided LASIK and wavefront-guided PRK for myopia.

    PubMed

    Barreto, Jackson; Barboni, Mirella T S; Feitosa-Santana, Claudia; Sato, João R; Bechara, Samir J; Ventura, Dora F; Alves, Milton Ruiz

    2010-08-01

    To compare intraocular straylight measurements and contrast sensitivity after wavefront-guided LASIK (WFG LASIK) in one eye and wavefront-guided photorefractive keratectomy (WFG PRK) in the fellow eye for myopia and myopic astigmatism correction. A prospective, randomized study of 22 eyes of 11 patients who underwent simultaneous WFG LASIK and WFG PRK (contralateral eye). Both groups were treated with the NIDEK Advanced Vision Excimer Laser System, and a microkeratome was used for flap creation in the WFG LASIK group. High and low contrast visual acuity, wavefront analysis, contrast sensitivity, and retinal straylight measurements were performed preoperatively and at 3, 6, and 12 months postoperatively. A third-generation straylight meter, C-Quant (Oculus Optikgeräte GmbH), was used for measuring intraocular straylight. Twelve months postoperatively, mean uncorrected distance visual acuity was -0.06 +/- 0.07 logMAR in the WFG LASIK group and -0.10 +/- 0.10 logMAR in the WFG PRK group. Mean preoperative intraocular straylight was 0.94 +/- 0.12 logs for the WFG LASIK group and 0.96 +/- 0.11 logs for the WFG PRK group. After 12 months, the mean straylight value was 1.01 +/- 0.1 log s for the WFG LASIK group and 0.97 +/- 0.12 log s for the WFG PRK group. No difference was found between techniques after 12 months (P = .306). No significant difference in photopic and mesopic contrast sensitivity between groups was noted. Intraocular straylight showed no statistically significant increase 1 year after WFG LASIK and WFG PRK. Higher order aberrations increased significantly after surgery for both groups. Nevertheless, WFG LASIK and WFG PRK yielded excellent visual acuity and contrast sensitivity performance without significant differences between techniques.

  8. Dark tip-tilt sensing

    NASA Astrophysics Data System (ADS)

    Arcidiacono, Carmelo; Ragazzoni, Roberto; Viotto, Valentina; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Dima, Marco; Gullieuszik, Marco; Marafatto, Luca

    2016-07-01

    Dark wavefront sensing in its simplest and more crude form is a quad-cell with a round spot of dark ink acting as occulting disk at the center. This sensor exhibits fainter limiting magnitude than a conventional quad-cell, providing that the size of the occulting disk is slightly smaller than the size of the spot and smaller than the residual jitter movement in closed loop. We present simulations focusing a generic Adaptive Optics system using Natural Guide Stars to provide the tip-tilt signal. We consider a jitter spectrum of the residual correction including amplitudes exceeding the dark disk size.

  9. Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control

    NASA Astrophysics Data System (ADS)

    Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel

    2014-08-01

    We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.

  10. Comparison of wavefront aberrations under cycloplegic, scotopic and photopic conditions using WaveScan.

    PubMed

    Fan, Rong; He, Tao; Qiu, Yan; Di, Yu-Lan; Xu, Su-yun; Li, Yao-yu

    2012-01-01

    To evaluate the differences of wavefront aberrations under cycloplegic, scotopic and photopic conditions. A total of 174 eyes of 105 patients were measured using the wavefront sensor (WaveScan® 3.62) under different pupil conditions: cycloplegic 8.58 ± 0.54 mm (6.4 mm - 9.5 mm), scotopic 7.53 ± 0.69 mm (5.7 mm - 9.1 mm) and photopic 6.08 ± 1.14 mm (4.1 mm - 8.8 mm). The pupil diameter, standard Zernike coefficients, root mean square of higher-order aberrations and dominant aberrations were compared between cycloplegic and scotopic conditions, and between scotopic and photopic conditions. The pupil diameter was 7.53 ± 0.69 mm under the scotopic condition, which reached the requirement of about 6.5 mm optical zone design in the wavefront-guided surgery and prevented measurement error due to the pupil centroid shift caused by mydriatics. Pharmacological pupil dilation induced increase of standard Zernike coefficients Z(3)(-3), Z(4)(0) and Z(5)(-5). The higher-order aberrations, third-order aberration, fourth-order aberration, fifth-order aberration, sixth-order aberration, and spherical aberration increased statistically significantly, compared to the scotopic condition (P<0.010). When the scotopic condition shifted to the photopic condition, the standard Zernike coefficients Z(4)(0), Z(4)(2), Z(6)(-4), Z(6)(-2), Z(6)(2) decreased and all the higher-order aberrations decreased statistically significantly (P<0.010), demonstrating that accommodative miosis can significantly improve vision under the photopic condition. Under the three conditions, the vertical coma aberration appears the most frequently within the dominant aberrations without significant effect by pupil size variance, and the proportion of spherical aberrations decreased with the decrease of the pupil size. The wavefront aberrations are significantly different under cycloplegic, scotopic and photopic conditions. Using the wavefront sensor (VISX WaveScan) to measure scotopic wavefront aberrations is

  11. Optical-beam wavefront control based on the atmospheric backscatter signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banakh, V A; Razenkov, I A; Rostov, A P

    2015-02-28

    The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)

  12. New Objective Refraction Metric Based on Sphere Fitting to the Wavefront

    PubMed Central

    Martínez-Finkelshtein, Andreí

    2017-01-01

    Purpose To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. Methods A sphere is fitted to the ocular wavefront at the center and at a variable distance, t. The optimal fitting distance, topt, is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r0, and used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent dataset of 200 eyes. Results For pupil radii r0 ≤ 2 mm, the new metric predicts the equivalent sphere with similar accuracy (<0.1D), however, for r0 > 2 mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full spherocylindrical refraction for the desired illumination conditions and corresponding pupil size. PMID:29104804

  13. Amplitude and phase beam characterization using a two-dimensional wavefront sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1996-09-01

    We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam. This sensor uses an array of lenslets that dissects the beam into a number of samples. The focal spot location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase distribution can be determined. Since the power focused by each lenslet is also easily determined, this allows a complete measurementmore » of the intensity and phase distribution of the laser beam. Furthermore, all the information is obtained in a single measurement. Knowing the complete scalar field of the beam allows the detailed prediction of the actual beam`s characteristics along its propagation path. In particular, the space- beamwidth product M{sup 2}, can be obtained in a single measurement. The intensity and phase information can be used in concert with information about other elements in the optical train to predict the beam size, shape, phase and other characteristics anywhere in the optical train. We present preliminary measurements of an Ar{sup +} laser beam and associated M{sup 2} calculations.« less

  14. Determining the wedge angle and optical homogeneity of a glass plate by statistically analyzing the deformation in the wavefront surface.

    PubMed

    Yang, Pao-Keng

    2017-08-01

    By using a light-emitting diode as the probing light source and a Shack-Hartmann wavefront sensor as the recorder for the wavefront surface to execute a relative measurement, we present a useful method for determining the small wedge angle and optical homogeneity of a nominally planar glass plate from the wavefront measurements. The measured wavefront surface from the light source was first calibrated to be a horizontal plane before the plate under test was inserted. The wedge angle of the plate can be determined from the inclining angle of the regression plane of the measured wavefront surface after the plate was inserted between the light source and the wavefront sensor. Despite the annoying time-dependent altitude fluctuation in measured wavefront topography, the optical homogeneity of the plate can be estimated from the increment on the average variance of the wavefront surface to its regression plane after the light passes through it by using the Bienaymé formula.

  15. Efficient level set methods for constructing wavefronts in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Tien

    2007-10-01

    Wavefront construction in geometrical optics has long faced the twin difficulties of dealing with multi-valued forms and resolution of wavefront surfaces. A recent change in viewpoint, however, has demonstrated that working in phase space on bicharacteristic strips using eulerian methods can bypass both difficulties. The level set method for interface dynamics makes a suitable choice for the eulerian method. Unfortunately, in three-dimensional space, the setting of interest for most practical applications, the advantages of this method are largely offset by a new problem: the high dimension of phase space. In this work, we present new types of level set algorithms that remove this obstacle and demonstrate their abilities to accurately construct wavefronts under high resolution. These results propel the level set method forward significantly as a competitive approach in geometrical optics under realistic conditions.

  16. Experimental study of an adaptive CFRC reflector for high order wave-front error correction

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang

    2018-03-01

    The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.

  17. Wavefront sensor based on the Talbot effect with the precorrected holographic grating.

    PubMed

    Podanchuk, Dmytro; Kurashov, Vitalij; Goloborodko, Andrey; Dan'ko, Volodymyr; Kotov, Myhaylo; Goloborodko, Natalya

    2012-04-01

    A holographic wavefront sensor based on the Talbot effect is proposed. Optical wavefronts are measured by sampling the light amplitude distribution with a two-dimensional (2D) precorrected holographic grating. The factors that allow changing an angular measurement range and a spatial resolution of the sensor are discussed. A comparative analysis with the Shack-Hartmann sensor is illustrated with some experimental results.

  18. Stability of therapeutic retreatment of corneal wavefront customized ablation with the SCHWIND CAM: 4-year data.

    PubMed

    Aslanides, Ioannis M; Kolli, Sai; Padroni, Sara; Padron, Sara; Arba Mosquera, Samuel

    2012-05-01

    To evaluate the long-term outcomes of aspheric corneal wavefront ablation profiles for excimer laser retreatment. Eighteen eyes that had previously undergone LASIK or photorefractive keratectomy (PRK) were retreated with LASIK using the corneal wavefront ablation profile. Custom Ablation Manager (SCHWIND eye-tech-solutions, Kleinostheim, Germany) software and the ESIRIS flying spot excimer laser system (SCHWIND) were used to perform the ablations. Refractive outcomes and wavefront data are reported up to 4 years after retreatment. Pre- and postoperative data were compared with Student t tests and (multivariate) correlation tests. P<.05 was considered statistically significant. A bilinear correlation of various postoperative wavefront aberrations versus planned correction and preoperative aberration was performed. Mean manifest refraction spherical equivalent (MRSE) before retreatment was -0.38±1.85 diopters (D) and -0.09±0.22 D at 6 months and -0.10±0.38 D at 4 years postoperatively. The reduction in MRSE was statistically significant at both postoperative time points (P<.005). Postoperative aberrations were statistically lower (spherical aberration P<.05; coma P<.005; root-mean-square higher order aberration P<.0001) at 4 years postoperatively. Distribution of the postoperative uncorrected distance visual acuity (P<.0001) and corrected distance visual acuity (P<.01) were statistically better than preoperative values. Aspheric corneal wavefront customization with the ESIRIS yields visual, optical, and refractive results comparable to those of other wavefront-guided customized techniques for the correction of myopia and myopic astigmatism. The corneal wavefront customized approach shows its strength in cases where abnormal optical systems are expected. Systematic wavefront customized corneal ablation appears safe and efficacious for retreatment cases. Copyright 2012, SLACK Incorporated.

  19. Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    2000-07-01

    I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.

  20. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1993-01-26

    92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers

  1. Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon

    2018-03-01

    Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.

  2. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  3. Maximum-likelihood estimation of parameterized wavefronts from multifocal data

    PubMed Central

    Sakamoto, Julia A.; Barrett, Harrison H.

    2012-01-01

    A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282

  4. Initial Demonstration of Mercury Wavefront Correction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Z M

    2006-02-01

    High average power operation of the Mercury Laser induces dynamic aberrations to the laser beam wavefront. Analysis of recent data indicates that up to 4 waves of low order aberration (mainly focus error or power, with spatial resolution < 0.5 cm{sup -1}) could be expected at each pass. Because of the magnitude of the wavefront error, the logical position is to place a deformable mirror (DM) at the M11 position, where the DM will correct the beam between passes 1 & 2 and 3 & 4. Currently, there are only two established commercial vendors offering complete adaptive optic (AO) systemsmore » that can accommodate the Mercury beam size (45 x 75 mm) which are compatible with high damage threshold coatings. Xinetics (MA, USA) offers a complete AO system along with a Shack-Hartmann wavefront sensor. The Xinetics DM is based on lead magnesium niobate (PMN) technology. A number of US aerospace firms as well as NIF use Xinetics PMN technology for their DMs. Phasics (Paris, France) offers a complete AO solution with its proprietary SID-4, a four-way shearing interferometric wavefront sensor capable of high resolution (over 100 x 100 sampling points). The Phasics system includes a bimorph deformable mirror from Night-n-Opt (Moscow, Russia) that uses lead zirconate titanate (PZT) technology. Various high power laser laboratories around the world such as LULI (France), HELEN (UK), and GEKKO (Japan) are using the PZT-based bimorph DM in their system. While both DM technologies are equivalent and have been deployed in high-energy laser systems, the PZT based bimorph DM offers two distinct features that makes it more attractive for high average power laser systems. The bimorph DM uses two layers of PZT actuators with the outer layer acting as power correctors, capable of correcting up to 20 waves of power. The Xinetics DM offers a maximum stroke of 4 waves. In addition, Night-N-Opt has also designed a water-cooled DM with a silicon based substrate (as opposed to a glass substrate

  5. On-Orbit Multi-Field Wavefront Control with a Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David

    2008-01-01

    A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system

  6. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1985-01-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness

  7. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  8. Wavefront reconstruction for multi-lateral shearing interferometry using difference Zernike polynomials fitting

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Wang, Jiannian; Wang, Hai; Li, Yanqiu

    2018-07-01

    For the multi-lateral shearing interferometers (multi-LSIs), the measurement accuracy can be enhanced by estimating the wavefront under test with the multidirectional phase information encoded in the shearing interferogram. Usually the multi-LSIs reconstruct the test wavefront from the phase derivatives in multiple directions using the discrete Fourier transforms (DFT) method, which is only suitable to small shear ratios and relatively sensitive to noise. To improve the accuracy of multi-LSIs, wavefront reconstruction from the multidirectional phase differences using the difference Zernike polynomials fitting (DZPF) method is proposed in this paper. For the DZPF method applied in the quadriwave LSI, difference Zernike polynomials in only two orthogonal shear directions are required to represent the phase differences in multiple shear directions. In this way, the test wavefront can be reconstructed from the phase differences in multiple shear directions using a noise-variance weighted least-squares method with almost no extra computational burden, compared with the usual recovery from the phase differences in two orthogonal directions. Numerical simulation results show that the DZPF method can maintain high reconstruction accuracy in a wider range of shear ratios and has much better anti-noise performance than the DFT method. A null test experiment of the quadriwave LSI has been conducted and the experimental results show that the measurement accuracy of the quadriwave LSI can be improved from 0.0054 λ rms to 0.0029 λ rms (λ = 632.8 nm) by substituting the DFT method with the proposed DZPF method in the wavefront reconstruction process.

  9. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  10. Transient establishment of the wavefronts for negative, zero, and positive refraction.

    PubMed

    Zhao, Wenjuan; Wu, Qiang; Wang, Ride; Gao, Jianshun; Lu, Yao; Zhang, Qi; Qi, Jiwei; Zhang, Chunling; Pan, Chongpei; Rupp, Romano; Xu, Jingjun

    2018-01-22

    We quantitatively demonstrate transient establishment of wavefronts for negative, zero, and positive refraction through a wedge-shaped metamaterial consisting of periodically arranged split-ring resonators and metallic wires. The wavefronts for the three types of refractions propagate through the second interface of the wedge along positive refraction angles at first, then reorganize, and finally propagate along the effective refraction angles after a period of establishment time respectively. The establishment time of the wavefronts prevents violating causality or superluminal propagation for negative and zero refraction. The establishment time for negative or zero refraction is longer than that for positive refraction. For all three refraction processes, transient establishment processes precede the establishment of steady propagation. Moreover, some detailed characters are proven in our research, including infinite wavelength, uniform phase inside the zero-index material, and the phase velocity being antiparallel to the group velocity in the negative-index material.

  11. Transformation of a Plane Wavefront in Hemispherical Lenses Made of Leuco-Sapphire

    NASA Astrophysics Data System (ADS)

    Vetrov, V. N.; Ignatenkov, B. A.; Yakobson, V. E.

    2018-01-01

    An algorithm for wavefront calculation of ordinary and extraordinary waves after propagation through hemispherical components made of a uniaxial crystal is developed. The influence of frequency dispersion of n o and n e , as well as change in the direction of the optic axis of the crystal, on extraordinary wavefront in hemispheres made of from leuco-sapphire and a plastically deformed analog thereof is determined.

  12. Design of pre-optics for laser guide star wavefront sensor for the ELT

    NASA Astrophysics Data System (ADS)

    Muslimov, Eduard; Dohlen, Kjetil; Neichel, Benoit; Hugot, Emmanuel

    2017-12-01

    In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI instrument, the first-light, integral field spectrograph for the European (E)-ELT. The system must provide a refocusing of the laser guide as a function of telescope pointing and large decentring of the incoming beam. The system considers four moving lens groups, each of them being a doublet with one aspherical surface. The advantages and shortcomings of such a solution in terms of the component displacements and complexity of the surfaces are described in detail. It is shown that the system can provide the median value of the residual wavefront error of 13.8-94.3 nm and the maximum value <206 nm, while the exit pupil distortion is 0.26-0.36% for each of the telescope pointing directions.

  13. The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; Mackay, Craig

    2013-12-01

    Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.

  14. Evaluation of anterior lenticonus in alport syndrome using tracey wavefront aberrometry and transmission electron microscopy.

    PubMed

    Kim, Kwan Soo; Kim, Mo Sae; Kim, Joon Mo; Choi, Chul Young

    2010-01-01

    To evaluate the efficacy of Tracey wavefront aberrometry (Tracey Technologies, Houston, TX) and transmission electron microscopy for the detection of anterior lenticonus in Alport syndrome. Tracey wavefront aberrometry was used to treat a patient with bilateral anterior lenticonus who had a history of Alport syndrome. For transmission electron microscopic examination, anterior lens capsules were obtained during clear lens phacoemulsification and intraocular lens implantation. Spherical aberrations were the predominant higher-order aberrations in the internal optics of both eyes. The Tracey wavefront aberrometer showed that most of the irregular astigmatism originated from the lenticular portion. Transmission electron microscopy of the specimens showed anterior lens capsules with decreased thickness and multiple dehiscences. Tracey wavefront aberrometry and transmission electron microscopy are effective tools for evaluation of anterior lenticonus in Alport syndrome. Copyright 2010, SLACK Incorporated.

  15. Optical Modeling Activities for the James Webb Space Telescope (JWST) Project. II; Determining Image Motion and Wavefront Error Over an Extended Field of View with a Segmented Optical System

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.

    2004-01-01

    This is part two of a series on the optical modeling activities for JWST. Starting with the linear optical model discussed in part one, we develop centroid and wavefront error sensitivities for the special case of a segmented optical system such as JWST, where the primary mirror consists of 18 individual segments. Our approach extends standard sensitivity matrix methods used for systems consisting of monolithic optics, where the image motion is approximated by averaging ray coordinates at the image and residual wavefront error is determined with global tip/tilt removed. We develop an exact formulation using the linear optical model, and extend it to cover multiple field points for performance prediction at each instrument aboard JWST. This optical model is then driven by thermal and dynamic structural perturbations in an integrated modeling environment. Results are presented.

  16. Analysis of Spacelab-III Reconstructed Wavefronts by Non-Holographic Methods

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Holography has been used in several past space missions. One popular experimental mode deals with study of fluid refractive properties in the crystal growth cell. The perceived advantage of holography is that it stores and reconstructs wavefronts so that a complete information is available later on ground. That means the wavefront can be analyzed not only by traditional holographic interferometry but other means as well. We have successfully demonstrated two such means being described here. One is deflectometry using a Ronchi grating and the other confocal optical processing. These results, using holograms from Spacelab-III mission dealing with triglycine sulfate crystal growth clearly demonstrate that a single hardware (holography) can do the task of several fluid experimental systems. Finally, not experimentally demonstrated, the possibility of some other analysis modes like speckle techniques and video holography using the reconstructed wavefronts have been described. Since only traditional holographic interferometry has been used in the past leading to the argument that non-holographic interferometry hardware in space could do the job, the present study firmly establishes advantage of holography.

  17. Wavefront-aberration measurement and systematic-error analysis of a high numerical-aperture objective

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Xing, Tingwen; Jiang, Yadong; Lv, Baobin

    2018-02-01

    A two-dimensional (2-D) shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high numerical-aperture (NA) objective. Chessboard gratings offer better diffraction efficiencies and fewer disturbing diffraction orders than traditional cross gratings. The wavefront aberration of the tested objective was retrieved from the shearing interferogram using the Fourier transform and differential Zernike polynomial-fitting methods. Grating manufacturing errors, including the duty-cycle and pattern-deviation errors, were analyzed with the Fourier transform method. Then, according to the relation between the spherical pupil and planar detector coordinates, the influence of the distortion of the pupil coordinates was simulated. Finally, the systematic error attributable to grating alignment errors was deduced through the geometrical ray-tracing method. Experimental results indicate that the measuring repeatability (3σ) of the wavefront aberration of an objective with NA 0.4 was 3.4 mλ. The systematic-error results were consistent with previous analyses. Thus, the correct wavefront aberration can be obtained after calibration.

  18. Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.

    PubMed

    Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae

    2017-08-07

    Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.

  19. Smoldering wave-front velocity in fiberboard

    Treesearch

    John J. Brenden; Erwin L. Schaffer

    1980-01-01

    In fiberboard, the phenomena of smoldering can be visualized as decomposition resulting from the motion of a thermal wave-front through the material. The tendency to smolder is then directly proportional to the velocity of the front. Velocity measurements were made on four fiberboards and were compared to values given in the literature for several substances....

  20. Power maps and wavefront for progressive addition lenses in eyeglass frames.

    PubMed

    Mejía, Yobani; Mora, David A; Díaz, Daniel E

    2014-10-01

    To evaluate a method for measuring the cylinder, sphere, and wavefront of progressive addition lenses (PALs) in eyeglass frames. We examine the contour maps of cylinder, sphere, and wavefront of a PAL assembled in an eyeglass frame using an optical system based on a Hartmann test. To reduce the data noise, particularly in the border of the eyeglass frame, we implement a method based on the Fourier analysis to extrapolate spots outside the eyeglass frame. The spots are extrapolated up to a circular pupil that circumscribes the eyeglass frame and compared with data obtained from a circular uncut PAL. By using the Fourier analysis to extrapolate spots outside the eyeglass frame, we can remove the edge artifacts of the PAL within its frame and implement the modal method to fit wavefront data with Zernike polynomials within a circular aperture that circumscribes the frame. The extrapolated modal maps from framed PALs accurately reflect maps obtained from uncut PALs and provide smoothed maps for the cylinder and sphere inside the eyeglass frame. The proposed method for extrapolating spots outside the eyeglass frame removes edge artifacts of the contour maps (wavefront, cylinder, and sphere), which may be useful to facilitate measurements such as the length and width of the progressive corridor for a PAL in its frame. The method can be applied to any shape of eyeglass frame.

  1. High stability wavefront reference source

    DOEpatents

    Feldman, M.; Mockler, D.J.

    1994-05-03

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.

  2. High stability wavefront reference source

    DOEpatents

    Feldman, Mark; Mockler, Daniel J.

    1994-01-01

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.

  3. Tomographic wavefront retrieval by combined use of geometric and plenoptic sensors

    NASA Astrophysics Data System (ADS)

    Trujillo-Sevilla, J. M.; Rodríguez-Ramos, L. F.; Fernández-Valdivia, Juan J.; Marichal-Hernández, José G.; Rodríguez-Ramos, J. M.

    2014-05-01

    Modern astronomic telescopes take advantage of multi-conjugate adaptive optics, in which wavefront sensors play a key role. A single sensor capable of measuring wavefront phases at any angle of observation would be helpful when improving atmospheric tomographic reconstruction. A new sensor combining both geometric and plenoptic arrangements is proposed, and a simulation demonstrating its working principle is also shown. Results show that this sensor is feasible, and also that single extended objects can be used to perform tomography of atmospheric turbulence.

  4. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  5. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  6. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  7. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    NASA Astrophysics Data System (ADS)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  8. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of

  9. Improvements to the modal holographic wavefront sensor.

    PubMed

    Kong, Fanpeng; Lambert, Andrew

    2016-05-01

    The Zernike coefficients of a light wavefront can be calculated directly by intensity ratios of pairs of spots in the reconstructed image plane of a holographic wavefront sensor (HWFS). However, the response curve of the HWFS heavily depends on the position and size of the detector for each spot and the distortions introduced by other aberrations. In this paper, we propose a method to measure the intensity of each spot by setting a threshold to select effective pixels and using the weighted average intensity within a selected window. Compared with using the integral intensity over a small window for each spot, we show through a numerical simulation that the proposed method reduces the dependency of the HWFS's response curve on the selection of the detector window. We also recorded a HWFS on a holographic plate using a blue laser and demonstrated its capability to detect the strength of encoded Zernike terms in an aberrated beam.

  10. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    PubMed

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  11. Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.

    PubMed

    Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel

    2013-12-01

    We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.

  12. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  13. An Inquiry-Based Vision Science Activity for Graduate Students and Postdoctoral Research Scientists

    NASA Astrophysics Data System (ADS)

    Putnam, N. M.; Maness, H. L.; Rossi, E. A.; Hunter, J. J.

    2010-12-01

    The vision science activity was originally designed for the 2007 Center for Adaptive Optics (CfAO) Summer School. Participants were graduate students, postdoctoral researchers, and professionals studying the basics of adaptive optics. The majority were working in fields outside vision science, mainly astronomy and engineering. The primary goal of the activity was to give participants first-hand experience with the use of a wavefront sensor designed for clinical measurement of the aberrations of the human eye and to demonstrate how the resulting wavefront data generated from these measurements can be used to assess optical quality. A secondary goal was to examine the role wavefront measurements play in the investigation of vision-related scientific questions. In 2008, the activity was expanded to include a new section emphasizing defocus and astigmatism and vision testing/correction in a broad sense. As many of the participants were future post-secondary educators, a final goal of the activity was to highlight the inquiry-based approach as a distinct and effective alternative to traditional laboratory exercises. Participants worked in groups throughout the activity and formative assessment by a facilitator (instructor) was used to ensure that participants made progress toward the content goals. At the close of the activity, participants gave short presentations about their work to the whole group, the major points of which were referenced in a facilitator-led synthesis lecture. We discuss highlights and limitations of the vision science activity in its current format (2008 and 2009 summer schools) and make recommendations for its improvement and adaptation to different audiences.

  14. FPGA-based real time processing of the Plenoptic Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Marín, Y.; Díaz, J. J.; Piqueras, J.; García-Jiménez, J.; Rodríguez-Ramos, J. M.

    The plenoptic wavefront sensor combines measurements at pupil and image planes in order to obtain simultaneously wavefront information from different points of view, being capable to sample the volume above the telescope to extract the tomographic information of the atmospheric turbulence. The advantages of this sensor are presented elsewhere at this conference (José M. Rodríguez-Ramos et al). This paper will concentrate in the processing required for pupil plane phase recovery, and its computation in real time using FPGAs (Field Programmable Gate Arrays). This technology eases the implementation of massive parallel processing and allows tailoring the system to the requirements, maintaining flexibility, speed and cost figures.

  15. Quantitative absorption data from thermally induced wavefront distortions on UV, Vis, and NIR optics

    NASA Astrophysics Data System (ADS)

    Mann, Klaus; Schäfer, Bernd; Leinhos, Uwe; Lübbecke, Maik

    2017-11-01

    A photothermal absorption measurement system was set up, deploying a Hartmann-Shack wavefront sensor with extreme sensitivity to accomplish spatially resolved monitoring of thermally induced wavefront distortions. Photothermal absorption measurements in the near-infrared and deep ultra-violet spectral range are performed for the characterization of optical materials, utilizing a Yb fiber laser (λ = 1070 nm) and an excimer laser (193nm, 248nm) to induce thermal load. Wavefront deformations as low as 50pm (rms) can be registered, allowing for a rapid assessment of material quality. Absolute calibration of the absorption data is achieved by comparison with a thermal calculation. The method accomplishes not only to measure absorptances of plane optical elements, but also wavefront deformations and focal shifts in lenses as well as in complex optical systems, such as e.g. F-Theta objectives used in industrial high power laser applications. Along with a description of the technique we present results from absorption measurements on coated and uncoated optics at various laser wavelengths ranging from deep UV to near IR.

  16. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  17. Algorithms to eliminate the influence of non-uniform intensity distributions on wavefront reconstruction by quadri-wave lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-jun; Dong, Li-zhi; Wang, Shuai; Yang, Ping; Xu, Bing

    2017-11-01

    In quadri-wave lateral shearing interferometry (QWLSI), when the intensity distribution of the incident light wave is non-uniform, part of the information of the intensity distribution will couple with the wavefront derivatives to cause wavefront reconstruction errors. In this paper, we propose two algorithms to reduce the influence of a non-uniform intensity distribution on wavefront reconstruction. Our simulation results demonstrate that the reconstructed amplitude distribution (RAD) algorithm can effectively reduce the influence of the intensity distribution on the wavefront reconstruction and that the collected amplitude distribution (CAD) algorithm can almost eliminate it.

  18. Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam

    NASA Astrophysics Data System (ADS)

    Ji, Zhong-Ye; Zhang, Xiao-Fang

    2018-01-01

    The mathematical relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam is important in beam quality control theory of the high-energy laser weapon system. In order to obtain this mathematical relation, numerical simulation is used in the research. Firstly, the Zernike representations of typically distorted atmospheric wavefront aberrations caused by the Kolmogoroff turbulence are generated. And then, the corresponding beam quality β factors of the different distorted wavefronts are calculated numerically through fast Fourier transform. Thus, the statistical distribution rule between the beam quality β factors of high-energy laser and the wavefront aberrations of the beam can be established by the calculated results. Finally, curve fitting method is chosen to establish the mathematical fitting relationship of these two parameters. And the result of the curve fitting shows that there is a quadratic curve relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam. And in this paper, 3 fitting curves, in which the wavefront aberrations are consisted of Zernike Polynomials of 20, 36, 60 orders individually, are established to express the relationship between the beam quality β factor and atmospheric wavefront aberrations with different spatial frequency.

  19. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.

    PubMed

    Murphy, Kevin; Burke, Daniel; Devaney, Nicholas; Dainty, Chris

    2010-07-19

    Laboratory experiments are carried out to detect optical vortices in conditions typical of those experienced when a laser beam is propagated through the atmosphere. A Spatial Light Modulator (SLM) is used to mimic atmospheric turbulence and a Shack-Hartmann wavefront sensor is utilised to measure the slopes of the wavefront surface. A matched filter algorithm determines the positions of the Shack-Hartmann spot centroids more robustly than a centroiding algorithm. The slope discrepancy is then obtained by taking the slopes measured by the wavefront sensor away from the slopes calculated from a least squares reconstruction of the phase. The slope discrepancy field is used as an input to the branch point potential method to find if a vortex is present, and if so to give its position and sign. The use of the slope discrepancy technique greatly improves the detection rate of the branch point potential method. This work shows the first time the branch point potential method has been used to detect optical vortices in an experimental setup.

  20. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  1. NGS2: a focal plane array upgrade for the GeMS multiple tip-tilt wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Price, Ian; d'Orgeville, Céline; Bennet, Francis; Herrald, Nick; Paulin, Nicolas; Uhlendorf, Kristina; Garrel, Vincent; Sivo, Gaetano; Montes, Vanessa; Trujillo, Chad

    2016-07-01

    NGS2 is an upgrade for the multi-natural guide star tip-tilt & plate scale wavefront sensor for GeMS (Gemini Multi-Conjugate Adaptive Optics system). It uses a single Nüvü HNü-512 Electron-Multiplied CCD array that spans the entire GeMS wavefront sensor focal plane. Multiple small regions-of-interest are used to enable frame rates up to 800Hz. This set up will improve the optical throughput with respect to the current wavefront sensor, as well as streamline acquisition and allow for distortion compensation.

  2. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.

    PubMed

    Clare, Richard M; Le Louarn, Miska; Béchet, Clementine

    2011-02-01

    We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42 m European Extremely Large Telescope. Shack-Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10×10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100 s) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile.

  3. Transient Ocular Wavefront Data in Type 1 Diabetes Mellitus.

    PubMed

    Blendowske, Ralf; Kalb, Max

    2016-07-01

    We report transient ocular wavefront and blood glucose data for one patient with acute type 1 diabetes mellitus after the treatment with insulin has been initiated. The wavefront data for both eyes of a 34-year-old male patient were examined by a Hartmann-Shack wavefront sensor. Refraction data and higher-order aberrations were recorded during 130 days for eyes in natural conditions, without cycloplegia. At the beginning, we sampled data every 3 to 4 days and enlarged the intervals, when values settled. In total, we report 20 measurements and 1 baseline entry. Blood glucose levels were recorded at least six times a day during the complete period. For the equivalent sphere, we recorded a bilateral hyperopic shift of 5 D from -2.75 DS to +2.25 DS, followed by a reverse myopic shift of the same amount. The equivalent sphere peaked about 15 to 18 days after the treatment with insulin had begun. Cylinder values kept remarkably stable. Higher-order aberrations are dominated by the spherical aberration. The Zernike coefficient c12 for both eyes changed substantially from OD 0.036 μm and OS 0.062 μm to OD 0.24 μm and OS 0.22 μm (5 mm pupil diameter) following the time pattern of the equivalent sphere. About 60 days after they had reached their peak, all refraction values and higher-order aberrations stabilized at their baseline levels. The baseline was defined by records taken 4 years before the treatment with insulin was commenced. Wavefront aberrometry gives quantitative insights in the transient alteration and recovering of the eye's optics whilst the therapy of acute type 1 diabetes mellitus is being initiated. The data of this case support the assumption that variations in the crystalline lens, most probably the modification of its refractive gradient index, as a cause for the transient behavior. An explanation is still missing.

  4. Wavefront aberrations and retinal image quality in different lenticular opacity types and densities.

    PubMed

    Wu, Cheng-Zhe; Jin, Hua; Shen, Zhen-Nv; Li, Ying-Jun; Cui, Xun

    2017-11-10

    To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.

  5. A Novel Method of High Accuracy, Wavefront Phase and Amplitude Correction for Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-01-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10(exp -4)lambda(rms) must be achieved over the critical range of spatial frequencies to produce the approx. 10(exp 10) contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (approx. 10(exp -4)) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  6. Use of atmospheric backscattering for adaptive formation of the initial wave front of a laser beam by the method of aperture sensing

    NASA Astrophysics Data System (ADS)

    Gordeev, E. V.; Kuskov, V. V.; Razenkov, I. A.; Shesternin, A. N.

    2017-11-01

    The quality of adaptive suppression of initial aberrations of the wave front of a main laser beam with the use of the method of aperture sensing by the signal of atmospheric backscattering of the additional (sensing) laser radiation at a different wavelength has been studied experimentally. It is shown that wavefront distortions of the main laser beam were decreased significantly during the setup operation.

  7. Modularization of gradient-index optical design using wavefront matching enabled optimization.

    PubMed

    Nagar, Jogender; Brocker, Donovan E; Campbell, Sawyer D; Easum, John A; Werner, Douglas H

    2016-05-02

    This paper proposes a new design paradigm which allows for a modular approach to replacing a homogeneous optical lens system with a higher-performance GRadient-INdex (GRIN) lens system using a WaveFront Matching (WFM) method. In multi-lens GRIN systems, a full-system-optimization approach can be challenging due to the large number of design variables. The proposed WFM design paradigm enables optimization of each component independently by explicitly matching the WaveFront Error (WFE) of the original homogeneous component at the exit pupil, resulting in an efficient design procedure for complex multi-lens systems.

  8. 110 °C range athermalization of wavefront coding infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  9. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.

    PubMed

    Tong, Qing; Lei, Yu; Xin, Zhaowei; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2016-02-08

    In this paper, we present a kind of dual-mode photosensitive arrays (DMPAs) constructed by hybrid integration a liquid crystal microlens array (LCMLA) driven electrically and a CMOS sensor array, which can be used to measure both the conventional intensity images and corresponding wavefronts of objects. We utilize liquid crystal materials to shape the microlens array with the electrically tunable focal length. Through switching the voltage signal on and off, the wavefronts and the intensity images can be acquired through the DMPAs, sequentially. We use white light to obtain the object's wavefronts for avoiding losing important wavefront information. We separate the white light wavefronts with a large number of spectral components and then experimentally compare them with single spectral wavefronts of typical red, green and blue lasers, respectively. Then we mix the red, green and blue wavefronts to a composite wavefront containing more optical information of the object.

  10. Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor.

    PubMed

    Cousin, Seth L; Bueno, Juan M; Forget, Nicolas; Austin, Dane R; Biegert, J

    2012-08-01

    We demonstrate a simplified arrangement for spatiotemporal ultrashort pulse characterization called Hartmann-Shack assisted, multidimensional, shaper-based technique for electric-field reconstruction. It employs an acousto-optic pulse shaper in combination with a second-order nonlinear crystal and a Hartmann-Shack wavefront sensor. The shaper is used as a tunable bandpass filter, and the wavefronts and intensities of quasimonochromatic spectral slices of the pulse are obtained using the Hartmann-Shack wavefront sensor. The wavefronts and intensities of the spectral slices are related to one another using shaper-assisted frequency-resolved optical gating measurements, performed at particular points in the beam. This enables a three-dimensional reconstruction of the amplitude and phase of the pulse. We present some example pulse measurements and discuss the operating parameters of the device.

  11. On spontaneous emission into guided modes with curved wavefronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yariv, A.; Margalit, S.

    1982-11-01

    The problem of spontaneous emission into guided modes with curved wavefronts is examined quantum mechanically. A classical result due to Petermann, which shows an increased emission rate relative to modes with planar phase fronts, is corroborated.

  12. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    NASA Astrophysics Data System (ADS)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  13. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  14. Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics

    NASA Astrophysics Data System (ADS)

    Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai

    2016-09-01

    Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  15. Atmospheric turbulence temperature on the laser wavefront properties

    NASA Astrophysics Data System (ADS)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  16. Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy.

    PubMed

    Fuentes-Fernández, Jorge; Cuevas, Salvador; Álvarez-Nuñez, Luis C; Watson, Alan

    2013-10-20

    Curvature wavefront sensors (WFSs), which obtain the wavefront aberrations from two defocused intensity images at each side of the pupil plane, have shown to be highly efficient for astronomical applications. We propose here an alternative defocusing mechanism for curvature sensors, based on an electrowetting-based variable focus liquid lens. Typically, the sampling rates of a WFS for active optics are of the order of 0.01 Hz, and the focus modulation can be done by simply moving the detector back and forth. On the other hand, adaptive optics may require speeds of up to several hundred hertz, and the modulation is then done by using a fast vibrating membrane mirror. We believe variable focus liquid lenses may be able to perform this focus modulation, reducing the overall size of the system and without the need of extra moving parts. We have done a full characterization of the Varioptic Arctic 416 liquid lens, and we have evaluated its potential performance in different curvature configurations.

  17. Manufacturing and testing of wavefront filters for DARWIN

    NASA Astrophysics Data System (ADS)

    Flatscher, R.; Artjushenko, V.; Sakharova, T.; Pereira do Carmo, Joao

    2017-11-01

    Wavefront filtering is mandatory in the realisation of nulling interferometers with high star light suppression capability required to detect extrasolar planets, such as the one foreseen for the ESA Darwin mission. This paper presents the design, manufacturing, and test results of single mode fibres to be used as wavefront filters in mid-infrared range. Fibres made from chalcogenide glass and silver halide crystals were produced. The first class can serve as wavefront filters up to a wavelength of 11 microns, while silver halide fibres can be used over the full Darwin wavelength range from 6.5 to 18 micron. The chalcogenide glass fibres were drawn by double crucible method whereas polycrystalline fibres from silver halides were fabricated by multiple extrusion from a crystalline preform. Multi-layer AR-coatings for fibre ends were developed and environmentally tested for both types of fibres. Special fibre facet polishing procedures were established, in particular for the soft silver halide fibre ends. Cable design and assembly process were also developed, including termination by SMA-connectors with ceramic ferrules and fibre protection by loose PEEK-tubings to prevent excessive bending and chemical attacks for fibres. The wavefront filtering capability of the fibres was demonstrated on a high quality Mach-Zehnder interferometer. Two different groups of laser sources were used to measure the wavefront filtering of the fibres by using a CO-laser for testing in the lower sub-band and a CO2-laser to check the upper sub-band. Measurements of the fibres far field intensity distribution and transmission were performed for numerous cable samples. Single mode behaviour was observed in more than 25 silver halide fibre cables before AR-coating of their ends, while after that 17 cables were compliant with all technical requirements. Residual cladding modes existing in short single mode fibres were effectively removed by applying of a proper absorbing jacket to the fibre

  18. Imaging the Gouy phase shift in photonic jets with a wavefront sensor.

    PubMed

    Bon, Pierre; Rolly, Brice; Bonod, Nicolas; Wenger, Jérôme; Stout, Brian; Monneret, Serge; Rigneault, Hervé

    2012-09-01

    A wavefront sensor is used as a direct observation tool to image the Gouy phase shift in photonic nanojets created by micrometer-sized dielectric spheres. The amplitude and phase distributions of light are found in good agreement with a rigorous electromagnetic computation. Interestingly the observed phase shift when travelling through the photonic jet is a combination of the awaited π Gouy shift and a phase shift induced by the bead refraction. Such direct spatial phase shift observation using wavefront sensors would find applications in microscopy, diffractive optics, optical trapping, and point spread function engineering.

  19. Correlator optical wavefront sensor COWS

    NASA Astrophysics Data System (ADS)

    1991-02-01

    This report documents the significant upgrades and improvements made to the correlator optical wavefront sensor (COWS) optical bench during this phase of the program. Software for the experiment was reviewed and documented. Flowcharts showing the program flow are included as well as documentation for programs which were written to calculate and display Zernike polynomials. The system was calibrated and aligned and a series of experiments to determine the optimum settings for the input and output MOSLM polarizers were conducted. In addition, design of a simple aberration generation is included.

  20. Manipulations of Wavefront Propagation: Useful Methods and Applications for Interferometric Measurements and Scanning

    PubMed Central

    Novoselski, Eitan; Yifrach, Ariel; Lanzmann, Emmanuel; Arieli, Yoel

    2017-01-01

    Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram's modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article. PMID:29109825

  1. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  2. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1984-09-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from

  3. Optimization of wavefront coding imaging system using heuristic algorithms

    NASA Astrophysics Data System (ADS)

    González-Amador, E.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zermeño-Loreto, O.

    2017-08-01

    Wavefront Coding (WFC) systems make use of an aspheric Phase-Mask (PM) and digital image processing to extend the Depth of Field (EDoF) of computational imaging systems. For years, several kinds of PM have been designed to produce a point spread function (PSF) near defocus-invariant. In this paper, the optimization of the phase deviation parameter is done by means of genetic algorithms (GAs). In this, the merit function minimizes the mean square error (MSE) between the diffraction limited Modulated Transfer Function (MTF) and the MTF of the system that is wavefront coded with different misfocus. WFC systems were simulated using the cubic, trefoil, and 4 Zernike polynomials phase-masks. Numerical results show defocus invariance aberration in all cases. Nevertheless, the best results are obtained by using the trefoil phase-mask, because the decoded image is almost free of artifacts.

  4. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    PubMed

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  5. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  6. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  7. Tomographic flow cytometry assisted by intelligent wavefronts analysis

    NASA Astrophysics Data System (ADS)

    Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.

    2017-06-01

    High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.

  8. Terahertz wavefront control by tunable metasurface made of graphene ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji

    2015-08-03

    We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THzmore » within a switching time shorter than 0.6 ps.« less

  9. Longitudinal measurements of luminance and chromatic contrast sensitivity: comparison between wavefront-guided LASIK and contralateral PRK for myopia.

    PubMed

    Barboni, Mirella Telles Salgueiro; Feitosa-Santana, Claudia; Barreto Junior, Jackson; Lago, Marcos; Bechara, Samir Jacob; Alves, Milton Ruiz; Ventura, Dora Fix

    2013-10-01

    The present study aimed to compare the postoperative contrast sensitivity functions between wavefront-guided LASIK eyes and their contralateral wavefront-guided PRK eyes. The participants were 11 healthy subjects (mean age=32.4 ± 6.2 years) who had myopic astigmatism. The spatial contrast sensitivity functions were measured before and three times after the surgery. Psycho and a Cambridge graphic board (VSG 2/4) were used to measure luminance, red-green, and blue-yellow spatial contrast sensitivity functions (from 0.85 to 13.1 cycles/degree). Longitudinal analysis and comparison between surgeries were performed. There was no significant contrast sensitivity change during the one-year follow-up measurements neither for LASIK nor for PRK eyes. The comparison between procedures showed no differences at 12 months postoperative. The present data showed similar contrast sensitivities during one-year follow-up of wave-front guided refractive surgeries. Moreover, one year postoperative data showed no differences in the effects of either wavefront-guided LASIK or wavefront-guided PRK on the luminance and chromatic spatial contrast sensitivity functions.

  10. High speed real-time wavefront processing system for a solid-state laser system

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  11. Apparatus and method for measuring and imaging traveling waves

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  12. Deep search for companions to probable young brown dwarfs. VLT/NACO adaptive optics imaging using IR wavefront sensing

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Faherty, J.; Boccaletti, A.; Cruz, K.; Lagrange, A.-M.; Zuckerman, B.; Bessell, M. S.; Beuzit, J.-L.; Bonnefoy, M.; Dumas, C.; Lowrance, P.; Mouillet, D.; Song, I.

    2012-12-01

    Aims: We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASS J04351455-1414468, SDSS J044337.61+000205.1, 2MASS J06085283-2753583 and 2MASS J06524851-5741376 (hereafter 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. Methods: We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28'' × 28''. Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. Results: With a typical contrast ΔKs = 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12'' (i.e. about 2 to 250 AU at 20 pc). 2MASS0652-57 is resolved as a ~230 mas binary. Follow-up observations reject a background contaminate, resolve the orbital motion of the pair, and confirm with high confidence that the system is physically bound. The J, Ks and L' photometry suggest a q ~ 0.7-0.8 mass ratio binary with a probable semi-major axis of 5-6 AU. Among the four systems, 2MASS0652-57 is probably the less constrained in terms of age determination. Further analysis would be necessary to confirm its youth. It would then be interesting to determine its orbital and physical properties to derive the system's dynamical mass and to test evolutionary model predictions. Based on observations collected at the European Southern Observatory, Chile (ESO programmes 076.C-0554(A), 076.C-0554(B) and 085.C-0257(A).

  13. Virulent poxviruses inhibit DNA sensing by preventing STING activation.

    PubMed

    Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos

    2018-02-28

    Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as

  14. Virulent Poxviruses Inhibit DNA Sensing by Preventing STING Activation

    PubMed Central

    Georgana, Iliana; Sumner, Rebecca P.; Towers, Greg J.

    2018-01-01

    ABSTRACT Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerizes and translocates from the endoplasmic reticulum (ER) to a perinuclear region to mediate IRF-3 activation. Poxviruses are double-stranded DNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here, we investigated the activation of innate immune signaling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerized and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerization and phosphorylation during infection and in response to transfected DNA and cyclic GMP-AMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are double-stranded DNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine

  15. Update on laser vision correction using wavefront analysis with the CustomCornea system and LADARVision 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Salz, James J.; McDonald, Marguerite B.; Pettit, George H.; Papaioannou, Thanassis; Grundfest, Warren S.

    2002-06-01

    A study was undertaken to assess whether results of laser vision correction with the LADARVISION 193-nm excimer laser (Alcon-Autonomous technologies) can be improved with the use of wavefront analysis generated by a proprietary system including a Hartman-Schack sensor and expressed using Zernicke polynomials. A total of 82 eyes underwent LASIK in several centers with an improved algorithm, using the CustomCornea system. A subgroup of 48 eyes of 24 patients was randomized so that one eye undergoes conventional treatment and one eye undergoes treatment based on wavefront analysis. Treatment parameters were equal for each type of refractive error. 83% of all eyes had uncorrected vision of 20/20 or better and 95% were 20/25 or better. In all groups, uncorrected visual acuities did not improve significantly in eyes treated with wavefront analysis compared to conventional treatments. Higher order aberrations were consistently better corrected in eyes undergoing treatment based on wavefront analysis for LASIK at 6 months postop. In addition, the number of eyes with reduced RMS was significantly higher in the subset of eyes treated with a wavefront algorithm (38% vs. 5%). Wavefront technology may improve the outcomes of laser vision correction with the LADARVISION excimer laser. Further refinements of the technology and clinical trials will contribute to this goal.

  16. Spoof surface plasmon polaritons excitation and wavefront control by Pancharatnam–Berry phase manipulating metasurface

    NASA Astrophysics Data System (ADS)

    Meng, Yueyu; Ma, Hua; Li, Yongfeng; Feng, Mingde; Wang, Jiafu; Li, Zhiqiang; Qu, Shaobo

    2018-05-01

    Realizing fine control of surface plasmon polaritons (SPPs) and spoof surface plasmon polaritons (SSPPs) is highly desired in many integrated photonic and microwave applications, but the flexibility to control the wavefront of SPPs and SSPPs still need addressing. In this paper, a Pancharatnam–Berry (PB) phase manipulating metasurface (PMM) was designed to achieve SSPPs excitation and wavefront control. Under circular polarization (CP) incidence, simply by designing the rotation angle of the unit cells the reflection phase spatial distribution can be manipulated. By means of different phase profiles on the 2D unit cells array, the SSPPs can be excited with various wavefront shapes, without the need of special excitation structure pattern. Meanwhile, a plasmonic metal is also designed to support SSPPs with both TE and TM polarizations, which can efficiently guide out the energies from the input CP waves. As a proof of concept, a PB PMM composed of N-shape metallic structure was designed. Through designing the rotation of the unit cells, two typical phase profiles were designed to excite SSPPs in arbitrary slant direction or focusing. This scheme could be used to achieve SSPPs excitation with many other wavefront shapes, and would also enable promising applications in other spectra.

  17. Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul

    2017-02-01

    Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.

  18. Care System Versus Transmitted Light Wavefront Pattern of Contact Lenses.

    PubMed

    Chiericati, Stefano; Borghesi, Alessandro; Cozza, Federica; Ferraro, Lorenzo; Acciarri, Maurizio; Farris, Stefano; Tavazzi, Silvia

    2017-05-01

    This article compares the optical performance of soft contact lenses (CLs) treated with multipurpose or hydrogen peroxide care systems. The investigated care systems were (1) 3% hydrogen peroxide solution Oxysept (Abbot Medical Optics, Abbott Park, IL) and (2) multipurpose solution Regard (Vita Research, Ariccia, Italy). Three types of silicone hydrogel CLs were studied (comfilcon A, lotrafilcon B, and balafilcon A), unworn and exposed for 30 times to the solutions, which were replaced every 8 hr. The optical performance of the CLs was evaluated through the on-eye transmitted light wavefront patterns by considering new CLs as references. The surface morphology of the CLs was investigated by scanning electron microscopy. Statistically significant modifications in the range 0.1 to 0.3 μm of Zernicke coefficients and modifications of the root mean square of the wavefront aberration function were found for CLs treated with multipurpose solution, in agreement with the observed modifications of the surface morphology. Statistically significant changes were also found after exposure to the hydrogen peroxide solution, but the variation of the Zernicke coefficients was found lower than 0.1 μm, thus being negligible in CL optical performances. In addition to disinfection ability and ocular surface reactions, CL care systems are different in solution-related CL optical performance. Multipurpose solutions may affect the CL surface morphology with significant modifications of the transmitted light wavefront pattern.

  19. Correlation among auto-refractor, wavefront aberration, and subjective manual refraction

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ren, Qiushi

    2005-01-01

    Three optometry methods which include auto-refractor, wavefront aberrometer and subjective manual refraction were studied and compared in measuring low order aberrations of 60 people"s 117 normal eyes. Paired t-test and linear regression were used to study these three methods" relationship when measuring myopia with astigmatism. In order to make the analysis more clear, we divided the 117 normal eyes into different groups according to their subjective manual refraction and redid the statistical analysis. Correlations among three methods show significant in sphere, cylinder and axis in all groups, with sphere"s correlation coefficients largest(R>0.98, P<0.01) and cylinder"s smallest (0.900.01). Auto-refractor had significant change from the other two methods when measuring cylinder (P<0.01). The results after grouping differed a little from the analysis among total people. Although three methods showed significant change from each other in certain parameters, the amplitude of these differences were not large, which indicated that the coherence of auto-refractor, wavefront aberrometer and subjective refraction is good. However, we suggested that wavefront aberration measurement could be a good starting point of optometry, subjective refraction is still necessary for refinement.

  20. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.