Science.gov

Sample records for active west antarctic

  1. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  2. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  3. Tectonomorphic evolution of Marie Byrd Land - Implications for Cenozoic rifting activity and onset of West Antarctic glaciation

    NASA Astrophysics Data System (ADS)

    Spiegel, Cornelia; Lindow, Julia; Kamp, Peter J. J.; Meisel, Ove; Mukasa, Samuel; Lisker, Frank; Kuhn, Gerhard; Gohl, Karsten

    2016-10-01

    The West Antarctic Rift System is one of the largest continental rifts on Earth. Because it is obscured by the West Antarctic Ice Sheet, its evolution is still poorly understood. Here we present the first low-temperature thermochronology data from eastern Marie Byrd Land, an area that stretches ~ 1000 km along the rift system, in order to shed light on its development. Furthermore, we petrographically analysed glacially transported detritus deposited in the marine realm, offshore Marie Byrd Land, to augment the data available from the limited terrestrial exposures. Our data provide information about the subglacial geology, and the tectonic and morphologic history of the rift system. Dominant lithologies of coastal Marie Byrd Land are igneous rocks that intruded (presumably early Paleozoic) low-grade meta-sedimentary rocks. No evidence was found for un-metamorphosed sedimentary rocks exposed beneath the ice. According to the thermochronology data, rifting occurred in two episodes. The earlier occurred between ~ 100 and 60 Ma and led to widespread tectonic denudation and block faulting over large areas of Marie Byrd Land. The later episode started during the Early Oligocene and was confined to western Pine Island Bay area. This Oligocene tectonic activity may be linked kinematically to previously described rift structures reaching into Bellingshausen Sea and beneath Pine Island Glacier, all assumed to be of Cenozoic age. However, our data provide the first direct evidence for Cenozoic tectonic activity along the rift system outside the Ross Sea area. Furthermore, we tentatively suggest that uplift of the Marie Byrd Land dome only started at ~ 20 Ma; that is, nearly 10 Ma later than previously assumed. The Marie Byrd Land dome is the only extensive part of continental West Antarctica elevated above sea level. Since the formation of a continental ice sheet requires a significant area of emergent land, our data, although only based on few samples, imply that extensive

  4. Evidence for Subglacial Volcanic Activity Beneath the area of the Divide of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2013-12-01

    There is an increasing body of aeromagnetic, radar ice-sounding, heat flow, subglacial volcanic earthquakes, several exposed active and subglacial volcanoes and other lines of evidence for volcanic activity associated with the West Antarctic Rift System (WR) since the origin (~25 Ma) of the West Antarctic Ice Sheet (WAIS), which flows through it. Exposed late Cenozoic, alkaline volcanic rocks, 34 Ma to present concentrated in Marie Byrd Land (LeMasurier and Thomson, 1990), but also exposed along the rift shoulder on the Transantarctic Mountains flank of the WR, and >1 million cubic kilometers, of mostly subglacially erupted 'volcanic centers' beneath the WAIS inferred from aeromagnetic data, have been interpreted as evidence of a magmatic plume. About 18 high relief, (~600-2000 m) 'volcanic centers' presently beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent, based on the 5-km orthogonally line spaced Central West Antarctica aerogeophysical survey. All would be above sea level after ice removal and isostatic adjustment. Nine of these high relief peaks are in the general area beneath the divide of the WAIS. This high bed relief topography was first interpreted in the 1980s as the volcanic 'Sinuous Ridge ' based on a widely spaced aeromagnetic -radar ice sounding survey (Jankowski et al,. 1983). A 70-km wide, circular ring of interpreted subglacial volcanic rocks was cited as evidence of a volcanic caldera underlying the ice sheet divide based on the CWA survey (Behrendt et al., 1998). A broad magnetic 'low' surrounding the caldera area possibly is evidence of a shallow Curie isotherm. High heat flow reported from temperature logging (Clow et al., 2012) in the WAISCORE and a thick volcanic ash layer in the core (Dunbar et al., 2012) are consistent with this interpretation. A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78.5 degrees S, 111 degrees W) ~ 100 km north from the WAISCORE could be the source of the ash

  5. The ARM West Antarctic Radiation Experiment (AWARE)

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Bromwich, David; Vogelmann, Andrew; Verlinde, Johannes; Russell, Lynn

    2016-04-01

    West Antarctica is one of the most rapidly warming regions on Earth, and its changing climate in both atmosphere and ocean is linked to loss of Antarctic ice mass and global sea level rise. The specific mechanisms for West Antarctic Ice Sheet (WAIS) warming are not fully understood, but are hypothesized to involve linkage between moisture from Southern Ocean storm tracks and the surface energy balance over the WAIS, and related teleconnections with subtropical and tropical meteorology. This present lack of understanding has motivated a climate science and cloud physics campaign jointly supported by the US National Science Foundation (NSF) and Department of Energy (DOE), called the Atmospheric Radiation Measurement Program (ARM) West Antarctic Radiation Experiment (AWARE). The DOE's second ARM Mobile Facility (AMF2) was deployed to McMurdo Station on Ross Island in November 2015 and will operate through December 2016. The AMF2 includes (1) cloud research radars, both scanning and zenith, operating in the Ka- and X-bands, (2) high spectral resolution and polarized micropulse lidars, and (3) a suite of shortwave and longwave broadband and spectral radiometers. A second suite of instruments is deployed at the WAIS Divide Ice Camp on the West Antarctic plateau during December 2015 and January 2016. The WAIS instrument suite provides (1) measurement of all surface energy balance components, (2) a polarized micropulse lidar and shortwave spectroradiometer, (3) microwave total water column measurement, and (4) four times daily rawinsonde launches which are the first from West Antarctica since 1967. There is a direct linkage between the WAIS instrument suite and the AMF2 at McMurdo, in that air masses originating in Southern Ocean storm tracks that are driven up over the WAIS often subsequently descend over the Ross Ice Shelf and arrive at Ross Island. Preliminary data are already illustrating the prevalence of mixed-phase clouds and their role in the surface energy balance

  6. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys

    USGS Publications Warehouse

    Behrendt, John C.; Saltus, R.; Damaske, D.; McCafferty, A.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1996-01-01

    Aeromagnetic surveys, spaced ???5 km, over widely separated areas of the largely ice- and sea-covered West Antarctic rift system, reveal similar patterns of 100- to 1700-nT, shallow-source magnetic anomalies interpreted as evidence of extensive late Cenozoic volcanism. We use the aeromagnetic data to extend the volcanic rift interpretation over West Antarctica starting with anomalies over (1) exposures of highly magnetic, late Cenozoic volcanic rocks several kilometers thick in the McMurdo-Ross Island area and elsewhere; continuing through (2) volcanoes and subvolcanic intrusions directly beneath the Ross Sea continental shelf defined by marine magnetic and seismic reflection data and aeromagnetic data and (3) volcanic structures interpreted beneath the Ross Ice Shelf partly controlled by seismic reflection determinations of seafloor depth to (4) an area of similar magnetic pattern over the West Antarctic Ice Sheet (400 km from the nearest exposed volcanic rock), where interpretations of late Cenozoic volcanic rocks at the base of the ice are controlled in part by radar ice sounding. North trending magnetic rift fabric in the Ross Sea-Ross Ice Shelf and Corridor Aerogeophysics of the Southeast Ross Transect Zone (CASERTZ) areas, revealed by the aeromagnetic surveys, is probably a reactivation of older rift trends (late Mesozoic?) and is superimposed on still older crosscutting structural trends revealed by magnetic terrace maps calculated from horizontal gradient of pseudogravity. Longwavelength (???100-km wide) magnetic terraces from sources within the subvolcanic basement cross the detailed survey areas. One of these extends across the Ross Sea survey from the front of the Transantarctic Mountains with an east-southeast trend crossing the north trending rift fabric. The Ross Sea-Ross Ice Shelf survey area is characterized by highly magnetic northern and southern zones which are separated by magnetically defined faults from a more moderately magnetic central zone

  7. Marine pelagic ecosystems: the west Antarctic Peninsula.

    PubMed

    Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William

    2007-01-29

    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2 degrees C increase in the annual mean temperature and a 6 degrees C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6 degrees C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate

  8. Marine pelagic ecosystems: the West Antarctic Peninsula

    PubMed Central

    Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William

    2006-01-01

    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2°C increase in the annual mean temperature and a 6°C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6°C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients

  9. Bacteria beneath the West Antarctic ice sheet.

    PubMed

    Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann

    2009-03-01

    Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.

  10. West antarctic ice sheet collapse: Chimera or clear danger

    SciTech Connect

    Alley, R.B. ); MacAyeal, D.R. )

    1993-01-01

    The specter of a west antarctic collapse has been with us for 25 years. Recently, certain official assessments concerned primarily with the future response to projected global warming have concluded that Antarctica will not cause much sea-level rise within the planning horizon of a century or so. At the same time startling new results on ice sheet (in)stability have been emerging, pointing to less stability then previously believed. Some recent results are reviewed briefly: Heinrich layers in the North Atlantic show basally lubricated surges of the Laurentide ice sheet; the west antarctic ice sheet collapsed recently; the modern west antarctic ice sheet is changing rapidly locally; the bed of ice stream B is exceptionally well lubricated by water and water-saturated soft sediments; the modern ice sheet is thinning slowly on average; a model west antarctic ice sheet undergoes rapid collapses long after forcing and probably related to penetration of warmth to the bed. 23 refs.

  11. A microbial ecosystem beneath the West Antarctic ice sheet.

    PubMed

    Christner, Brent C; Priscu, John C; Achberger, Amanda M; Barbante, Carlo; Carter, Sasha P; Christianson, Knut; Michaud, Alexander B; Mikucki, Jill A; Mitchell, Andrew C; Skidmore, Mark L; Vick-Majors, Trista J

    2014-08-21

    Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.

  12. West Antarctic Ice Sheet Initiative. Volume 2: Discipline Reviews

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1991-01-01

    Seven discipline review papers are presented on the state of the knowledge of West Antarctica and opinions on how that knowledge must be increased to predict the future behavior of this ice sheet and to assess its potential to collapse, rapidly raising the global sea level. These are the goals of the West Antarctic Ice Sheet Initiative (WAIS).

  13. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: a review

    USGS Publications Warehouse

    Behrendt, John C.

    1999-01-01

    The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post

  14. Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Behrendt, John C.

    1993-01-01

    Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.

  15. The First Annual West Antarctic Ice Sheet (WAIS) Science Workshop

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1993-01-01

    A compilation of abstracts presented at the workshop are presented. The goal was to answer the question, what is the future behavior and potential for rapid collapse of the West Antarctic Ice Sheet (WAIS)? The workshop was organized into four sessions corresponding to the four objectives identified as necessary to reach the WAIS workshop goal: history, current behavior, internal dynamics, and environmental interactions. Presentations were organized by their relevance to each objective, rather than by discipline.

  16. Modeled Aeromagnetic Anomalies, Controlled By Radar Ice Sounding, As Evidence for Subglacial Volcanic Activity in the West Antarctic Rift System (WR) Beneath the Area of the Divide of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2014-12-01

    The Thwaites and Pine Island ice shelves, buttressing the WAIS, have passed the turning point as they are eaten away by warmer ocean waters (Joghin et al., 2014; Rignot et al., 2014). There is an increasing evidence (aeromagnetic, radar ice-sounding, high heat flow, subglacial volcanic seismicity, and several exposed and subglacial active volcanoes), for volcanic activity in the WR beneath the WAIS, which flows through it. The 5-km, orthogonally line spaced, central West Antarctica (CWA) aerogeophysical survey defined >400 high amplitude volcanic magnetic anomalies correlated with glacial bed topography. Modeled anomalies defined magnetic properties; interpreted volcanic edifices were mostly removed by the moving ice into which they were erupted. Very high apparent susceptibility contrasts (.001->.3 SI) are typical of measured properties from volcanic exposures in the WAIS area. About 90% of the magnetic sources have normal magnetization in the present field direction. Two explanations as to why the anomalies are not approximately 50% negative: (1) Volcanic activity resulting in these anomalies occurred in a predominantly normal field (unlikely). (2) Sources are a combination of induced and remanent magnetization resulting in anomalies of low amplitude (induced cancels remanent) and are not recognized because they are <100 nT (most probable). About 18 high relief, (~600-2000 m) "volcanic centers" beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent; nine of these are in the general area beneath the divide of the WAIS. A 70-km wide, ring of interpreted subglacial volcanic rocks may define a volcanic caldera underlying thedivide (Behrendt et al., 1998). A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78o30'S, 111oW) ~ 100 km north of the WAISCORE, could be the source an ash layer observed in the core. Models by Tulaczyk and Hossainzadeh (2011) indicate >4mm/yr basal melting beneath the WAIS, supportive of high heat flow

  17. Geologic controls on the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Anandakrishnan, Sridhar

    1993-01-01

    The stability of the West Antarctic Ice Sheet is intertwined with its geologic history. The sub-ice geology and the possibility of active rifting and associated elevated heat-flux and volcanism might be determining factors in ice-sheet behavior. Seismic monitoring of natural events at the base of Ice Stream C reveals the presence of a young sedimentary basin beneath the ice stream. The sediments are presumed to be of glacio-marine origin, similar to those beneath Ice Stream B and in the Ross Sea. The young sediments are approximately 1/2 km thick at UpC camp, but thin abruptly southward to 100 m or less. We hypothesize the presence of a fault with a throw of 400 m to account for this (though we have not directly detected the fault), rather than invoking unrealistic basement dips. To extend these studies to critical inland regions, we suggest an expanded explosive-source seismic survey of the Byrd Subglacial Basin to determine the extent and character of the hypothesized rift basin. High-resolution seismic monitoring will detect layering in the sedimentary column, as well as possibly imaging faults directly.

  18. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    SciTech Connect

    Lubin, D; Bromwich, DH; Russell, LM; Verlinde, J; Vogelmann, AM

    2015-10-01

    West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation for this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud

  19. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.

    1994-01-01

    The late Cenozoic volcanic and tectonic activity of the enigmatic West Antarctic rift system, the least understood of the great active continental rifts, has been suggested to be plume driven. In 1991-1992, as part of the CASERTZ (Corridor Aerogeophysics of the Southeast Ross Transect Zone) program, an ~25 000 km aeromagnetic survey over the ice-covered Byrd subglacial basin shows magnetic "texture' critical to interpretations of the underlying extended volcanic terrane. The aeromagnetic data reveal numerous semicircular anomalies ~100-1100 nT in amplitude, interpreted as having volcanic sources at the base of the ice sheet; they are concentrated along north-trending magnetic lineations interpreted as rift fabric. The CASERTZ aeromagnetic results, combined with >100 000 km of widely spaced aeromagnetic profiles, indicate at least 106 km3 of probable late Cenozoic volcanic rock (flood basalt?) in the West Antarctic rift beneath the ice sheet and Ross Ice Shelf. -from Authors

  20. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    USGS Publications Warehouse

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (???5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ???40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ???3??C warmer than today and atmospheric CO 2 concentration was as high as ???400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2. ??2009 Macmillan Publishers Limited. All rights reserved.

  1. Latest Word on Retreat of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R.

    2000-01-01

    The West Antarctic ice sheet during the Last Glacial Maximum (LGM) is estimated to have been three times its present volume and to have extended close to the edge of the continental shelf Holocene retreat of this ice sheet in the Ross Sea began between 11,000 and 12,000 years ago. This history implies an average contribution of this ice sheet to sea level of 0.9 mm/a. Evidence of dateable past grounding line positions in the Ross sector are broadly consistent with a linear retreat model. However, inferred rates of retreat for some of these grounding line positions are not consistent with a linear retreat model. More rapid retreat approximately 7600 years ago and possible near-stability in the Ross Sea sector at present suggest a slow rate of initial retreat followed by a more rapid-than-average retreat during the late Holocene, returning to a near-zero rate of retreat currently. This model is also consistent with the mid-Holocene high stand observations of eustatic sea level. Recent compilation of Antarctic bed elevations (BEDMAP) illustrates that the LGM and present grounding lines occur in the shallowest waters, further supporting the model of a middle phase of rapid retreat bracketed by an older and a more recent phase of modest retreat. Extension of these hypotheses into the future make subsequent behavior of the West Antarctic ice sheet more difficult to predict but suggest that if it loses its hold on the present shallow bed, the final retreat of the ice sheet could be very rapid.

  2. A Maturing Tephra Record in the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Dunbar, N. W.; Kurbatov, A.; McIntosh, W. C.

    2011-12-01

    Tephra layers found in many Antarctic ice cores range from sub-centimeter thick, visible layers to cryptotephra consisting of sparse, fine-grained (<10 micron) glass particles. Location of tephra particles has improved with advances in methods of detecting cryptotephra in ice cores. Identification of tephra layers traditionally relied on visible detection or association with sulfate aerosols, but is now supplemented by downhole optical logging (Bay et al., 2001). Improved analytical techniques for glass characterization, such as high quality quantitative electron microprobe analysis, and more complete information on source eruptions has facilitated identification of tephra horizons in ice cores. Two deep ice cores drilled in West Antarctica (Siple Dome and WAIS Divide) contain rich tephra records, with the former containing 37 tephra layers and the latter containing several hundred distinct, visible layers, many of which are likely to be tephra. Most of the tephra layers with strong correlations to sources are derived from Antarctic volcanoes, many from two large West Antarctic stratovolcanoes Mt. Berlin and Mt. Takahe, tephra from which have also been recognized in the marine record (Hillenbrand et al., 1988). A well-defined ash layer is found at a depth of between 190.37-190.39 m depth in the WAIS Divide core, containing 20 um ash shards that are chemically correlated to the the Pleaides volcanoes, in northern Victoria Land. This tephra layer correlates to one found in a Siple Dome (B) ice core (97.2 to 97.7 m depth) and in the Taylor Dome ice core (79.2 m depth). Deeper parts of the WAIS Divide ice core correspond to a time interval of abundant regional volcanism, represented by the large number of visible dust bands and cloudy layers in the core (A. Orsi, pers. comm., 2010). A distinct "visible brown layer" at a depth of 1586.363 m. (8.279 Ky BP preliminary age) is very likely to be from a major eruption of the West Antarctic volcano Mt. Takahe (8.2±5

  3. Tracing West Antarctic Iceberg Origins through Scour Depth Analyses

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Nitsche, F. O.

    2015-12-01

    Icebergs form along coasts at the glacier ice-ocean interface through calving. It is critical that we understand the effects of Antarctic calving in a changing climate. One such effect is that of iceberg scouring: If icebergs are thick enough, they can run aground, leaving scours in the seabed. One recent study relied on radar altimetry to construct hypothetical Antarctic iceberg keel depths, linking them to three different types of parent ice. The purpose of this study is to determine the average water depths at which real scours—digitized from multibeam sonar bathymetry data—occur for several sections of the seafloor off of West Antarctica and compare the depths with those generated by the earlier study. Depth analyses for scours seaward of the Ross Ice Shelf, Getz Ice Shelf, and Pine Island and Thwaites glaciers and in the northeast Bellingshausen Sea indicate a substantial difference from the projected radar altimetry results. All six areas register average depths greater than 450 meters. For five of the six areas examined, the observed scours occur at deeper water depths on average than would the scours projected by the radar altimetry study. This difference holds for four of those five areas even after the application of a 130-meter sea-level correction—an upper-bound estimate for the sea-level drop associated with the Last Glacial Maximum. This suggests a fundamental dissimilarity between the projected calving dimensions and those of the icebergs responsible for the scours examined here. As iceberg geometry is primarily controlled by parent ice mass thickness, we can also extend this difference to the source ice in each study. These results allow us to make inferences about iceberg life cycles, trajectories, and grounding patterns off of West Antarctica. They can help scientists better understand patterns of mass loss and freshwater input into the Southern Ocean, processes that ultimately lead to sea-level rise.

  4. Subglacial volcanic features beneath the West Antarctic Ice Sheet interpreted from aeromagnetic and radar ice sounding

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Finn, C.A.; Bell, R.E.

    2002-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active, late Cenozoic West Antarctic rift system. Active subglacial volcanism and a vast (>106 km3) extent of subglacial volcanic structures have been interpreted from aerogeophysical surveys over central West Antarctica in the past decade, combined with results from 1960s and 1970s aeromagnetic profiles over the WAIS. Modelling of magnetic anomalies constrained by radar ice sounding shows volcanic sources at the base of the ice throughout large areas, whose subglacially erupted hyaloclastite edifices have been eroded by moving ice, as in Iceland. The 1800 m-high divide of the WAIS is underlain by the 400 km-long volcanic Sinuous Ridge, which rises above sea level; most hyaloclastite edifices there have also been glacially removed, indicating migration of the ice divide through time. Northeast of the divide of the WAIS there is a 400-nT positive magnetic anomaly over the shallowest, most rugged bedrock topography (elevation +380 m above sea level), probably comprising subaerially erupted flows erupted when the Sinuous Ridge area was deglaciated. Uplift of the Sinuous Ridge may have forced the advance of the WAIS. Other aspects of the subglacial volcanism in Antarctica can be observed in Iceland and have a direct bearing on our understanding of the subglacial conditions of the WAIS and its dynamics.

  5. A review of precipitation-related aspects of West Antarctic meteorology

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Carleton, Andrew M.; Parish, Thomas R.

    1991-01-01

    An overview is presented of the factors associated with snowfall over the West Antarctic Ice Sheet. The flux of atmospheric moisture across the coast, the synoptic processes over the South Pacific Ocean, the large scale atmospheric controls, and numerical modeling of the West Antarctic environment are all discussed. Suggestions are made for research needed to substantially upgrade the status of knowledge in these closely interrelated topic areas.

  6. Source characteristics of a West Antarctic ice stream

    NASA Astrophysics Data System (ADS)

    Pratt, M.; Winberry, J.; Wiens, D. A.; Anandakrishnan, S.; Alley, R. B.

    2012-12-01

    Whillans Ice Stream (WIS) displays tidally modulated stick-slip motion, with many similarities to an earthquake system including producing surface waves observable up to 1000 km away. WIS motion typically is achieved almost entirely in two events per day; however, decadal slowdown is being accommodated by more-frequent skipping of one of the daily events with no reduction in magnitude of the slips that occur. Each slip event produces teleseismic arrivals from three distinct rupture phases. New data from seismic and GPS deployments during the austral summers of 2010-2011 and 2011-2012, along with seismic observations with data from far-field seismic stations such as VNDA and the West Antarctic POLENET A-NET provide an improved view of these events. Beamforming and frequency-wavenumber analysis of the slip pulse as recorded by broadband seismographs resolve source locations and rupture velocities. Initiation of the first phase of fast rupture occurs from one of two sticky-spots, after a few-minutes interval of 'pre-slip' from the opposite spot. The azimuthal directivity of seismic signals of first phase rupture shows strong asymmetry with a maximum in the downstream direction, suggesting that the initial onset of rupture may be close to the Rayleigh wave velocity (3.8 km s-1) in the direction of ice stream flow. A second-phase of acceleration, also observed teleseismically, starts near the downstream end of a subglacial lake, triggering both faster expansion of the rupture into previously static regions, and a slip pulse that propagates back into already moving areas. A similar re-acceleration is seen when the rupture crosses the grounding zone to the ice shelf. The downstream initial sticky spot, as well as the two later loci of accelerated slip (asperities), are located at or near the grounding line, suggesting the grounding line rheology may be important for controlling the stick-slip behavior.

  7. Global warming and the stability of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Michael

    1998-05-01

    Of today's great ice sheets, the West Antarctic Ice Sheet poses the most immediate threat of a large sea-level rise, owing to its potential instability. Complete release of its ice to the ocean would raise global mean sea level by four to six metres, causing major coastal flooding worldwide. Human-induced climate change may play a significant role in controlling the long-term stability of the West Antarctic Ice Sheet and in determining its contribution to sea-level change in the near future.

  8. Possible Effects on the Stability of the West Antarctic Ice Sheet (WAIS) and Associated Sea-level Rise From Active-Recent Subglacial Volcanism Interpreted from Aeromagnetic and Radar Ice-sounding Observations

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2009-12-01

    Aeromagnetic profiles (>10,000 km) acquired in the early 1960s over the West Antarctic Ice Sheet (WAIS) combined with coincident aeromagnetic and radar ice sounding in 1978-79 indicated numerous high-amplitude, shallow-source, magnetic anomalies over a very extensive area of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. These early aerogeophysical surveys defined this area as >500,000 km2. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice. Behrendt et al, (2005, 2008) interpreted these anomalies as indicating >1000 "volcanic centers". requiring high remanent normal (and at least 10% reversed) magnetizations in the present field direction. These data have shown that >80% of the anomaly sources at the bed of the WAIS, have been modified by the moving ice into which they were injected, requiring a younger age than the WAIS (about 25 Ma). Behrendt et al., (1994; 2007) conservatively estimated >1 x 106 km3 volume of volcanic sources to account for the area of the "volcanic center" anomalies. Although exposed volcanoes surrounding the WAIS extend in age to ~34 m.y., Mt Erebus, (<1 Ma) Mt. Melbourne, (<0.26 Ma), and Mt. Takahae (<0.1 Ma) are examples of exposed active volcanoes in the WAIS area. However, the great volume of volcanic centers is buried beneath the WAIS. If only a very small percentage of these >1000 volcanic, magnetic-anomaly sources are active today, or in the recent past, in the drainage area of the WAIS, subglacial volcanism may still have a significant effect on the dynamics of the WAIS. Interpreted active subglacial volcanism is revealed by aerogeophysical data reported by Blankenship et al., (1993, Mt. Casertz), and Corr and Vaughan

  9. Halogenating activities detected in Antarctic macroalgae

    SciTech Connect

    Laturnus, F.; Adams, F.C.; Gomez, I.; Mehrtens, G.

    1997-03-01

    Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11 {+-} 0.01 U g{sup -1} wet algal weight and 0.18 U g{sup -1} wet algal weight, respectively) and Myriogramme mangini (3.62 {+-} 0.17 U g{sup -1} wet algal weight and 4.5 U g{sup -1} wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g{sup -1} wet algal weight). 30 refs., 2 figs., 1 tab.

  10. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet.

    PubMed

    Schroeder, Dustin M; Blankenship, Donald D; Young, Duncan A; Quartini, Enrica

    2014-06-24

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼ 114 ± 10 mW/m(2) with areas of high flux exceeding 200 mW/m(2) consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site.

  11. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet

    PubMed Central

    Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.; Quartini, Enrica

    2014-01-01

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼114 ± 10 mW/m2 with areas of high flux exceeding 200 mW/m2 consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site. PMID:24927578

  12. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    USGS Publications Warehouse

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  13. Negative magnetic anomaly over Mt. Resnik, a subaerially erupted volcanic peak beneath the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.; Morse, D.L.; Blankenship, D.D.

    2006-01-01

    negative anomalies indicate volcanic activity during a period of magnetic reversal and therefore must also be at least 780 ka. The spatial extent and volume of volcanism can now be reassessed for the 1.2 ?? 106 km2 region of the WAIS characterized by magnetic anomalies defining interpreted volcanic centers associated with the West Antarctic rift system. The CWA covers an area of 3.54 ?? 105 km2; forty-four percent of that area exhibits short-wavelength, high-amplitude anomalies indicative of volcanic centers and subvolcanic intrusions. This equates to an area of 0.51 ?? 105 km2 and a volume of 106 km3 beneath the ice-covered West Antarctic rift system, of sufficient extent to be classified as a large igneous province interpreted to be of Oligocene to recent age.

  14. A window on West Antarctic crustal boundaries: the junction between the Antarctic Peninsula, the Filchner Block, and Weddell Sea oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Ferris, Julie K.; Vaughan, Alan P. M.; King, Edward C.

    2002-03-01

    A new airborne magnetic survey of the southeastern Antarctic Peninsula and adjacent Weddell Sea embayment (WSE) region suggests a continuity of geological structure between the eastern Antarctic Peninsula and the attenuated continental crust of the Filchner Block. This has implications for the reconstructed position of the Ellsworth-Whitmore Mountains block in Gondwana, which is currently uncertain. Palaeomagnetic data indicate that it has migrated from a Palaeozoic position between South Africa and Coats Land to its current position as a microplate embedded in central West Antarctica. The most obvious route for migration is between the Antarctic Peninsula and the Weddell Sea embayment. Evidence that geological structures are continuous across the boundary places constraints on the timing and pathway of migration. Magnetic textures suggest the presence of shallow features extending from the Beaumont Glacier Zone (BGZ) in the west for at least 200 km into the Weddell Sea embayment. These data suggest that the Eastern Domain of the Antarctic Peninsula and the stretched continental crust of the Filchner Block share a common recent, probably post-Early Jurassic, history. However, examination of deep anomalies indicates differences in the magnetic characteristics of the two blocks. The boundary may mark either the edge of extended continental crust, or a discontinuity between two, once separated, blocks. This discontinuity, or pre-Late Jurassic Antarctic Peninsula terrane boundaries to the west, may have allowed the passage of the Ellsworth-Whitmore Mountains block to its present location.

  15. The impacts of local human activities on the Antarctic environment

    NASA Astrophysics Data System (ADS)

    Tin, T.; Fleming, Z. L.; Hughes, K. A.; Ainley, D. G.; Convey, P.; Moreno, C. A.; Pfeiffer, S.; Scott, J.; Snape, I.

    2009-04-01

    An overview of a recently published review of the scientific literature from the past decade on the impacts of human activities on the Antarctic environment is presented. An assessment of the cumulative effects of scientists and accompanying base construction, tourists and fishery activities in Antarctica is timely given a decade since the Protocol on Environmental Protection to the Antarctic Treaty came into force in 1998 and the increasing attention given to and human presence in Antarctica during this 2007-2009 IPY. A range of impacts has been identified at a variety of spatial and temporal scales. Chemical contamination and sewage disposal on the continent have been found to be long-lived, with contemporary sewage management practices at many coastal stations insufficient to prevent local contamination. Human activities, particularly construction and transport, have affected Antarctic flora and fauna and a small number of non-indigenous plant and animal species has become established on some of the Antarctic Peninsula and sub Antarctic islands. There is little indication of recovery of overexploited fish stocks, and ramifications of fishing activity on bycatch species and the ecosystem could also be far-reaching. The Antarctic Treaty System and its instruments, in particular the Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the Environmental Protocol, provide a framework within which management of human activities take place. In order to ensure comprehensive protection of the Antarctic environment, including its intrinsic, wilderness and scientific values in the face of the continuing expansion of human activities in Antarctica, a more effective implementation of a wide range of measures is essential. These include effective environmental impact assessments, long-term monitoring, mitigation measures for non-indigenous species, ecosystem-based management of living resources, and increased regulation of National Antarctic

  16. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet — A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, John C.

    2013-02-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959-64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991-97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100->1000 nT, 5-50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 "volcanic centers" requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are < 34 Ma, but at least four are active. If a few buried volcanic centers are active, subglacial volcanism may well affect the WAIS regime. Aerogeophysical data (Blankenship et al., 1993, Mt. Casertz; Corr and Vaughan, 2008, near Hudson Mts.) indicated active subglacial volcanism. Magnetic data indicate a caldera and a surrounding "low" in the WAISCORE vicinity possibly the result of a shallow Curie isotherm. High heat flow reported from temperature logging in the WAISCORE (Conway et al., 2011; Clow, personal commun.) and a volcanic ash layer (Dunbar, 2012) are consistent with this interpretation. A subaerially erupted subglacial volcano, (Mt Thiel), about 100 km distant, may be the ash source. The present rapid changes resulting from global warming, could be

  17. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    NASA Astrophysics Data System (ADS)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  18. The diatom record from beneath the West Antarctic Ice Sheet and the global proxy perspective

    NASA Technical Reports Server (NTRS)

    Scherer, Reed P.

    1993-01-01

    Recent glaciological evaluation and modeling of the marine-based West Antarctic Ice Sheet (WAIS) support the possibility that the WAIS disintegrated during one or more Pleistocene interglacial period(s). The magnitude of sea level and oxygen isotope variation during certain late-Pleistocene interglacial periods is also consistent with the possibility of major retreat of the WAIS. Although oxygen isotopes from deep-sea sediments provide the best available proxy record for global ice volume (despite the ambiguities in the record), the source of ice volume changes must be hypothesized. Based on the intensity of interglacial isotopic shifts recorded in Southern Ocean marine sedimentary records, stage 11 (400,000 years ago) is the strongest candidate for WAIS collapse, but the records for stages 9, 7, and 5.5 are all consistent with the possibility of multiple late-Pleistocene collapses. Seismic reflection studies through the WAIS have revealed thick successions of strata with seismic characteristics comparable to upper Tertiary marine sediments. Small samples of glacial diamictons from beneath the ice sheet have been collected via hot-water drilled access holes. These sediments include mixed diatom assemblages of varying ages. Late-Miocene diatoms dominate many samples, probably reflecting marine deposition in West Antarctic basins prior to development of a dominantly glacial phase in West Antarctica. In addition to late-Miocene diatoms, samples from Upstream B (1988/89) contain rare post-Miocene diatoms, many of which imply deposition in the West Antarctic interior during one or more Pleistocene deglaciation periods. Age-diagnostic fossils in glacial sediments beneath ice sheets provide relatively coarse chronostratigraphic control, but they do contain direct evidence of regional deglaciation. Thus, sub-glacial till samples provide the evidence regarding the source of ice sheet variability seen in well-dated proxy records. Combined, these independent data sets can

  19. Stability of the West Antarctic ice sheet in a warming world

    NASA Astrophysics Data System (ADS)

    Joughin, Ian; Alley, Richard B.

    2011-08-01

    Ice sheets are expected to shrink in size as the world warms, which in turn will raise sea level. The West Antarctic ice sheet is of particular concern, because it was probably much smaller at times during the past million years when temperatures were comparable to levels that might be reached or exceeded within the next few centuries. Much of the grounded ice in West Antarctica lies on a bed that deepens inland and extends well below sea level. Oceanic and atmospheric warming threaten to reduce or eliminate the floating ice shelves that buttress the ice sheet at present. Loss of the ice shelves would accelerate the flow of non-floating ice near the coast. Because of the slope of the sea bed, the consequent thinning could ultimately float much of the ice sheet's interior. In this scenario, global sea level would rise by more than three metres, at an unknown rate. Simplified analyses suggest that much of the ice sheet will survive beyond this century. We do not know how likely or inevitable eventual collapse of the West Antarctic ice sheet is at this stage, but the possibility cannot be discarded. For confident projections of the fate of the ice sheet and the rate of any collapse, further work including the development of well-validated physical models will be required.

  20. Tectonics of the West Antarctic rift system: new light on the history and dynamics of distributed intracontinental extension

    USGS Publications Warehouse

    Siddoway, C.S.

    2007-01-01

    The West Antarctic rift system (WARS) is the product of multiple stages of intracontinental deformation from Jurassic to Present. The Cretaceous rifting phase accomplished >100 percent extension across the Ross Sea and central West Antarctica, and is widely perceived as a product of pure shear extension orthogonal to the Transantarctic Mountains that led to breakup and opening of the Southern Ocean between West Antarctica and New Zealand. New structural, petrological, and geochronological data from Marie Byrd Land reveal aspects of the kinematics, thermal history, and chronology of the Cretaceous intracontinental extension phase that cannot be readily explained by a single progressive event. Elevated temperatures in "Lachlan-type" crust caused extensive crustal melting and mid-crustal flow within a dextral transcurrent strain environment, leading to rapid extension and locally to exhumation and rapid cooling of a migmatite dome and detachment footwall structures. Peak metamorphism and onset of crustal flow that brought about WARS extension between 105 Ma and 90 Ma is kinematically, temporally, and spatially linked to the active convergent margin system of East Gondwana. West Antarctica-New Zealand breakup is distinguished as a separate event at 83-70 Ma, from the standpoint of kinematics and thermal evolution

  1. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Sutter, Johannes; Gierz, Paul; Grosfeld, Klaus; Thoma, Malte; Lohmann, Gerrit

    2016-03-01

    The West Antarctic Ice Sheet (WAIS) is considered the major contributor to global sea level rise in the Last Interglacial (LIG) and potentially in the future. Exposed fossil reef terraces suggest sea levels in excess of 7 m in the last warm era, of which probably not much more than 2 m are considered to originate from melting of the Greenland Ice Sheet. We simulate the evolution of the Antarctic Ice Sheet during the LIG with a 3-D thermomechanical ice sheet model forced by an atmosphere-ocean general circulation model (AOGCM). Our results show that high LIG sea levels cannot be reproduced with the atmosphere-ocean forcing delivered by current AOGCMs. However, when taking reconstructed Southern Ocean temperature anomalies of several degrees, sensitivity studies indicate a Southern Ocean temperature anomaly threshold for total WAIS collapse of 2-3°C, accounting for a sea level rise of 3-4 m during the LIG. Potential future Antarctic Ice Sheet dynamics range from a moderate retreat to a complete collapse, depending on rate and amplitude of warming.

  2. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  3. Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2015-06-01

    Injection of sulfate aerosols into the stratosphere has the potential to reduce the climate impacts of global warming, including sea level rise (SLR). However, changes in atmospheric and oceanic circulation that can significantly influence the rate of basal melting of Antarctic marine ice shelves and the associated SLR have not previously been considered. Here we use a fully coupled global climate model to investigate whether rapidly increasing stratospheric sulfate aerosol concentrations after a period of global warming could preserve Antarctic ice sheets by cooling subsurface ocean temperatures. We contrast this climate engineering method with an alternative strategy in which all greenhouse gases (GHG) are returned to preindustrial levels. We find that the rapid addition of a stratospheric aerosol layer does not effectively counteract surface and upper level atmospheric circulation changes caused by increasing GHGs, resulting in continued upwelling of warm water in proximity of ice shelves, especially in the vicinity of the already unstable Pine Island Glacier in West Antarctica. By contrast, removal of GHGs restores the circulation, yielding relatively cooler subsurface ocean temperatures to better preserve West Antarctica.

  4. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  5. Question of Ages of Cenozoic Volcanic Centers Inferred Beneath the West Antarctic Ice Sheet (WAIS) in the West Antarctic Rift System (WR) from Coincident Aeromagnetic and Radar Ice Sounding Surveys

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Finn, C. A.; Blankenship, D. D.

    2007-12-01

    The recently acquired radar ice sounding surveys (Holt, et al., 2006) extending the 1990s Central West Antarctica (CWA) aerogeophysical survey to the Amundsen and Bellingshausen sea coasts allows us to revise a thought experiment reported by Behrendt et al., 1991 from very limited bed elevation data. Were the ice of the WAIS flowing through the WR to be compressed to the density of crustal rock, almost all of the area beneath the WAIS would be at or above sea level, much >1 km elevation. There are only about 10-20% of the very deep areas (such as the Bentley subglacial trench and the Byrd Subglacial Basin) filled with 3-4-km thick ice that would be well below sea level. The age of the 5-7-km high rift shoulder bounding the asymmetric WR from northern Victoria Land through the Horlick Mountains (where it diverges from the Transantarctic Mountains) to the Ellsworth Mountains has been reported as old as Cretaceous. Volcanic exposures associated with the West Antarctic rift system in the present WAIS area extend at least to 34 Ma and the West Antarctic ice sheet has flowed through the rift possibly as far back in time as 25 Ma. Active volcanism has been reported for the WR at only a few widely scattered locations, so speculations about present volcanic activity beneath the WAIS are quite uncertain, and it is probably quite rare. The Central West Antarctic aeromagnetic and radar ice sounding survey carried out in the 1990s revealed about 1000 "volcanic centers" characterized by 100-1000 nT shallow source magnetic anomalies, at least 400 of which have associated bed topography. About 80% of these show relief <200 m and have been interpreted as smoothed off as they were erupted (injected) into the moving WAIS. Several kilometer-thick highly magnetic sources are required to fit these anomalies requiring high remanent magnetizations in the present field direction. We interpreted these sources as subvolcanic intrusions which must be younger than about 100 Ma because the

  6. Feedback between magmatic, tectonic and glacial processes in the West Antarctic Rift System (Invited)

    NASA Astrophysics Data System (ADS)

    Rocchi, S.

    2010-12-01

    The western Ross Sea coast of the West Antarctic rift system (WARS) is littered with mid-Eocene to Present alkaline plutons, dike swarms and volcanoes. The mafic igneous products have OIB-HIMU signature, similar to basalts associated with long-lived hotspot tracks, pointing to the possible occurrence of one or more mantle plumes active during the Cenozoic or the Mesozoic. However, He and Pb isotope data suggest alternative views, with a rather shallow magma source not involving deep, undegassed mantle, and affected by a metasomatic episode as young as hundred(s) of million years, an order of magnitude less than typically invoked for mantle plume sources. A shallow rift-driving mechanism is supported also by the geometric relationships between magma emplacement and regional rift-related fault systems. Further, these faults were active coeval with magma emplacement, as demonstrated by the age of a fault-generated pseudotachylyte (34 Ma) and by apatite fission track thermochronology. In a wider perspective, these faults are in striking continuity with Southern Ocean fracture zones, and mantle tomography depicts a low-velocity anomaly of linear (not circular) shape overlapping the belt of these fracture zones. The lack of firm evidence for plume activity is thus at odds with a clear link between large-scale tectonic features and magma emplacement, supporting this three-stage model. (1) The WARS Late Cretaceous amagmatic extension led to metasomatism of the sublithospheric mantle, later rheologically incorporated into the lithosphere. (2) During Eocene-Oligocene times, craton-ward mantle flow under the thinned WARS heated up the mantle at the edge of the Antarctic lithosphere. In mid Eocene, the differential velocity across Southern Ocean fracture zones reactivated Paleozoic translithospheric discontinuities in northern Victoria Land as intraplate dextral strike-slip fault systems, promoting local mantle decompression melting and rise of magmas in plutons and dike

  7. Modelling the Isotopic Response to West Antarctic Ice Sheet Collapse and Sea Ice Retreat During the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Holloway, M. D.

    2015-12-01

    Ice sheet changes can exert major control over spatial water isotope variations in Antarctic surface snow. Consequently a significant mass loss or gain of the West Antarctic Ice Sheet (WAIS) would be expected to cause changes in the water isotope record across Antarctic ice core sites. Analysis of sea level indicators for the last interglacial (LIG; 130,000 to 115,000 years ago) suggest a global sea level peak 6 to 9 m higher than present. Recent NEEM Greenland ice core results imply that Greenland likely provided a modest 2m contribution towards this global sea level rise. This implies that a WAIS contribution is necessary to explain the LIG sea level maxima. In addition, Antarctic ice core records suggest that Antarctic air temperatures during the LIG were up to 6 °C warmer than present. Climate models have been unable to recreate such warmth when only orbital and greenhouse gas forcing are considered. Thus changes to the Antarctic ice sheet and ocean circulation may be required to reconcile model simulations with ice core data. Here we model the isotopic response to differing WAIS deglaciation scenarios, freshwater hosing, and sea ice configurations using a fully coupled General Circulation Model (GCM) to help interpret Antarctic ice core records over the LIG.

  8. Quaternary and Tertiary microfossils from beneath Ice Stream B: Evidence for a dynamic West Antarctic Ice Sheet history

    NASA Astrophysics Data System (ADS)

    Scherer, Reed P.

    1991-10-01

    Some glaciologists have suggested that the West Antarctic Ice Sheet, which is grounded well below sea level, may be susceptible to rapid grounding-line retreat and disintegration. However, until now, geologic evidence of previous ice sheet "collapses" has been lacking. Sediments that have recently been collected from beneath the West Antarctic Ice Sheet at Ice Stream B contain direct evidence of ice-free conditions in the West Antarctic interior during certain Cenozoic intervals, both prior to and subsequent to the development of grounded ice sheets in West Antarctica. The sediments contain rare but diverse microfossils that represent a wide variety of biostratigraphic ages and depositional environments. Microfossils present include relatively common marine and non-marine diatoms and sponge spicules, plus rare foraminifera, nannofossils, radiolarians, silicoflagellates, chrysophyte cysts and palynomorphs. Clasts of Neogene freshwater diatomite demonstrate the former presence of large lake systems in West Antarctica, possibly as part the Cenozoic West Antarctica rift system. Age-diagnostic marine fossils in the sediment include Late Paleogene calcareous nannofossils and planktonic foraminifera, Miocene marine planktonic diatoms and, significantly, late Pleistocene marine diatoms. Relatively common late Miocene diatoms probably reflect marine deposition prior to initiation of a dominantly glacial phase in West Antarctica. It is likely that Pliocene and early Pleistocene diatoms were deposited in the West Antarctic interior during certain warm interglacials, but these have been eroded and transported toward the continental shelf edge during repeated ice sheet expansions. The late Pleistocene diatoms from Upstream B were deposited in the West Antarctic interior basins during a marine phase, subsequent to an ice sheet collapse, during at least one late Pleistocene interglacial. This discovery provides an indication of the complex history of the West Antarctic Ice Sheet

  9. Exploring under the weak underbelly of the West Antarctic Ice Sheet with recent aerogeophysical data

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Jordan, T.; Holt, J.; Vaughan, D. G.; Diehl, T.; Blankenship, D.; Corr, H.; James, M.; Fairhead, D.

    2007-12-01

    There are growing concerns over how the West Antarctic Ice Sheet (WAIS) will respond to global warming and the major societal implications that its potential collapse would have. An area of particular concern is the Amundsen Sea Embayment (ASE), where glaciers such as Pine Island Glacier (PIG) and Thwaites Glacier (THW) have been shown to be melting, thinning, accelerating and retreating rapidly. This part of the WAIS has also been referred to as the "weak underbelly of the WAIS" where rapid deglaciation could occur. Previous aerogeophysical surveys flown over the Siple Coast (SC) ice streams have imaged subglacial geology, and have highlighted the importance of considering geology when assessing the dynamics and long-term stability of the WAIS. The SC ice streams overlie broad and narrow sediment-infilled rift basins of the West Antarctic Rift System (WARS). Subglacial sediments and Cenozoic to Recent magmatic features associated with the WARS may represent geological templates for enhanced glacial flow there. However, whether the WARS extended beneath the catchments of the dynamic ASE glaciers remained poorly constrained due to the paucity of geophysical data. Approximately 100,000 line km of new aerogeophysical data were collected over this region as part of a collaborative effort between the University and Texas and the British Antarctic Survey, comprising airborne radar, aeromagnetic and airborne gravity. The new airborne radar datasets yielded an improved picture of the deep narrow subglacial trough beneath the trunk of PIG, and the broader basin where THW flows, as well as the narrow basins where tributary flow occurs. A bedrock high was imaged on the flank of PIG, which would rise above sea-level after isostatic compensation following deglaciation, and could perhaps impede ice-sheet collapse initiated near the grounding line by preventing its progress into the deep Byrd Sublglacial Basin. The new potential field data uncovers the WARS in ASE region

  10. Marine Ecosystem Response to Rapid Climate Warming on the West Antarctic Peninsula (Invited)

    NASA Astrophysics Data System (ADS)

    Ducklow, H.; Baker, K. S.; Doney, S. C.; Fraser, B.; Martinson, D. G.; Meredith, M. P.; Montes-Hugo, M. A.; Sailley, S.; Schofield, O.; Sherrell, R. M.; Stammerjohn, S. E.; Steinberg, D. K.

    2010-12-01

    The Palmer, Antarctica LTER builds on meteorological, ocean color and seabird observations since the late 1970s. It occupies annually in summer a regional-scale grid extending 700 km northward from Charcot Island to Anvers Island, and 200 km cross-shelf from the coast to the shelfbreak. In addition to routine CTD profiles and zooplankton tows throughout the grid, the observing system also includes Slocum Glider surveys and thermistor moorings. Geophysical changes include +6C atmospheric warming in winter since 1950, a 20% increase in heat content over the continental shelf since 1990, a surface ocean warming of +1C since 1950, an 83-day reduction in sea ice duration (advance 48 days later, retreat 35 days earlier) over the greater southern Bellingshausen Sea region from 1979-2007, intensification of westerly winds and differential changes in cloudiness. In response to these large changes in the regional climate, the marine ecosystem of the western Peninsula is changing at all trophic levels from diatoms to penguins. Ocean color indicates differential changes in phytoplankton stocks in response to regional decreases in sea ice cover. Surface chlorophyll has declined 89% in the north and increased 67% in the south. Antarctic krill and salps have declined and increased in our study area, respectively. Penguin diet sampling suggests changes in populations or distributions of the Antarctic Silverfish in the Anvers Island vicinity, possibly in response to ocean warming. Adélie penguins have declined 75% from 15000 to <3000 pairs at since 1975 in response to changes in food availability and increased late spring snow accumulation. Changes in pygoscelid penguin breeding populations in the Anvers Island vicinity of the West Antarctic Peninsula

  11. Revised East-West Antarctic plate motions since the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J.; Damaske, D.

    2010-12-01

    The middle Cenozoic (43-26 Ma) rifting between East and West Antarctica is defined by an episode of ultraslow seafloor spreading in the Adare Basin, located off northwestern Ross Sea. The absence of fracture zones and the lack of sufficient well-located magnetic anomaly picks have resulted in a poorly constrained kinematic model (Cande et al., 2000). Here we utilize the results from a dense aeromagnetic survey (Damaske et al., 2007) collected as part of GANOVEX IX 2005/06 campaign to re-evaluate the kinematics of the West Antarctic rift system since the Middle Eocene. We identify marine magnetic anomalies (anomalies 12o, 13o, 16y, and 18o) along a total of 25,000 km of the GPS navigated magnetic profiles. The continuation of these anomalies into the Northern Basin has allowed us to use the entire N-S length of this dataset in our calculations. A distinct curvature in the orientation of the spreading axis provides a strong constraint on our calculated kinematic models. The results from two- (East-West Antarctica) and three- (Australia-East Antarctica-West Antarctica) plate solutions agree well and create a cluster of rotation axes located south of the rift system, near the South Pole. These solutions reveal that spreading rate and direction, and therefore motion between East and West Antarctica, were steady between the Middle Eocene and Early Oligocene. Our kinematic solutions confirm the results of Davey and De Santis (2005) that the Victoria Land Basin has accommodated ~95 km of extension since the Middle Eocene. This magnetic pattern also provides valuable constraints on the post-spreading deformation of the Adare Basin (Granot et al., 2010). The Adare Basin has accommodated very little extension since the Late Oligocene (<7 km), but motion has probably increased southward. The details of this younger phase of motion are still crudely constrained.

  12. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin

    PubMed Central

    Feldmann, Johannes; Levermann, Anders

    2015-01-01

    The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades’ enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner–Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. PMID:26578762

  13. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin.

    PubMed

    Feldmann, Johannes; Levermann, Anders

    2015-11-17

    The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades' enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner-Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. PMID:26578762

  14. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula.

    PubMed

    Saba, Grace K; Fraser, William R; Saba, Vincent S; Iannuzzi, Richard A; Coleman, Kaycee E; Doney, Scott C; Ducklow, Hugh W; Martinson, Douglas G; Miles, Travis N; Patterson-Fraser, Donna L; Stammerjohn, Sharon E; Steinberg, Deborah K; Schofield, Oscar M

    2014-07-07

    Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM). Favorable conditions for phytoplankton included increased winter ice extent and duration, reduced spring/summer winds, and increased water column stability via enhanced salinity-driven density gradients. Years of positive chl-a anomalies are associated with the initiation of a robust krill cohort the following summer, which is evident in Adélie penguin diets, thus demonstrating tight trophic coupling. Projected climate change in this region may have a significant, negative impact on phytoplankton biomass, krill recruitment and upper trophic level predators in this coastal Antarctic ecosystem.

  15. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula.

    PubMed

    Saba, Grace K; Fraser, William R; Saba, Vincent S; Iannuzzi, Richard A; Coleman, Kaycee E; Doney, Scott C; Ducklow, Hugh W; Martinson, Douglas G; Miles, Travis N; Patterson-Fraser, Donna L; Stammerjohn, Sharon E; Steinberg, Deborah K; Schofield, Oscar M

    2014-01-01

    Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM). Favorable conditions for phytoplankton included increased winter ice extent and duration, reduced spring/summer winds, and increased water column stability via enhanced salinity-driven density gradients. Years of positive chl-a anomalies are associated with the initiation of a robust krill cohort the following summer, which is evident in Adélie penguin diets, thus demonstrating tight trophic coupling. Projected climate change in this region may have a significant, negative impact on phytoplankton biomass, krill recruitment and upper trophic level predators in this coastal Antarctic ecosystem. PMID:25000452

  16. Macrofossil records of West Antarctic Ice Sheet retreat during the Holocene

    NASA Technical Reports Server (NTRS)

    Berkman, Paul Arthur

    1993-01-01

    Marine macrofossils in emerged beaches around Antarctica represent a geochemical framework for interpreting meltwater signatures associated with variations in the adjacent ice sheet margins during the last 10,000 years. In particular, mollusc species provide ideal experimental templates for assessing hydrochemical variations in Antarctic coastal marine environments because of their excellent preservation, high abundances, circumpolar distributions, and carbonate shells, which incorporate trace elements and stable isotopes. Modern samples of the bivalve Adamussium colbecki, which were collected across a depth gradient in the vicinity of a glacial meltwater stream in West McMurdo Sound, revealed shell trace element concentrations that were significantly higher above 10 meters because of their exposure to meltwater runoff. This meltwater signature also was reflected by the shell oxygen isotopic composition, which was in equilibrium with the ambient seawater, as demonstrated by the overlap between the predicted and actual O-(delta-18)sub w values. These modern samples provide analogs for interpreting the geochemical records in their fossils, which were based solely on molluscan fossils, complement the above geochemical data by suggesting that the rate of beach emergence fluctuated around Antarctica during the mid-Holocene. Paleoenvironmental analysis of macrofossils from emerged beaches represents a new direction in Antarctic research that can be used to assess changes in the margins of the ice sheets since the Last Glacial Maximum. The resolution of these analyses will be enhanced by collaborations that are developing with scientists who are conducting comparable studies in other coastal regions around the continent.

  17. Union Glacier: a new exploration gateway for the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Zamora, R.; Uribe, J. A.; Jaña, R.; Oberreuter, J.

    2014-02-01

    Union Glacier (79°46' S/83°24' W) in the West Antarctic Ice Sheet (WAIS), has been used by the private company Antarctic Logistic and Expeditions (ALE) since 2007 for their landing and commercial operations, providing a unique logistic opportunity to perform glaciological research in a vast region, including the Ice divide between Institute and Pine Island glaciers and the Subglacial Lake Ellsworth. Union glacier is flowing into the Ronne Ice Shelf, where future migrations of the grounding line zone (GLZ) in response to continuing climate and oceanographic changes have been modelled. In order to analyse the potential impacts on Union glacier of this scenario, we installed an array of stakes, where ice elevation, mass balance and ice velocities have been measured since 2007, resulting in near equilibrium conditions with horizontal displacements between 10 and 33 m yr-1. GPS receivers and three radar systems have been also used to map the subglacial topography, the internal structure of the ice and the presence of crevasses along surveyed tracks. The resulting radar data showed a subglacial topography with a minimum of 858 m below sea level, much deeper than estimated before. The below sea level subglacial topography confirms the potential instability of the glacier in foreseen scenarios of GLZ upstream migration during the second half of the XXI century.

  18. Activity and bacterial diversity of snow around Russian Antarctic stations.

    PubMed

    Lopatina, Anna; Krylenkov, Vjacheslav; Severinov, Konstantin

    2013-11-01

    The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants.

  19. West Antarctic Ice Sheet Initiative. Volume 1: Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The Science and Implementation Plan of the West Antarctic Ice Sheet Initiative (WAIS) is described. The goal of this initiative is the prediction of the future behavior of this ice sheet and an assessment of its potential to collapse, rapidly raising global sea level. The multidisciplinary nature of WAIS reflects the complexity of the polar ice sheet environment. The project builds upon past and current polar studies in many fields and meshes with future programs of both the U.S. and other countries. Important tasks in each discipline are described and a coordinated schedule by which the majority of these tasks can be accomplished in 5 years is presented. The companion report (Volume 2) contains seven discipline review papers on the state of knowledge of Antarctica and opinions on how that knowledge must be increased to attain the WAIS goal.

  20. Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts.

    PubMed

    Bingham, Robert G; Ferraccioli, Fausto; King, Edward C; Larter, Robert D; Pritchard, Hamish D; Smith, Andrew M; Vaughan, David G

    2012-07-25

    Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5 kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.

  1. Aspects of the evolution of the West Antarctic margin of Gondwanaland

    SciTech Connect

    Grunow, A.M.

    1989-01-01

    A combination of paleomagnetism, structural field mapping, microprobe analysis, microfabric analysis and {sup 40}Ar/{sup 39}Ar geochronology was used to elucidate the history of the West Antarctic crustal block and the evolution of subduction complexes along the Scotia Ridge. West Antarctica is composed of four crustal blocks whose relationship to East Antarctica and to each other throughout the Phanerozoic is not well known. These blocks are: the Ellsworth-Whitmore Mountains (EWM); the Antarctic Peninsula (AP); Thurston Island (TI); Marie Byrd Land (MBL). Paleomagnetic sampling and analysis were conducted on rocks from the EWM and TI blocks in the hope of constraining the motion of these blocks and the opening history of the Weddell Sea. The paleomagnetic results suggest that the AP, EWM, and TI blocks have moved relative to East Antarctica prior to the mid-Cretaceous and that the main opening of the Weddell Sea was between the Early and mid-Cretaceous. Detailed field mapping was conducted on the subduction complexes of the Scotia Metamorphic Complex (SMC) on Smith Island and Elephant Island (Antarctica). Polyphase ductile deformation characterizes the Smith Island and Elephant Island tectonites. Microprobe analyses indicate that the blue amphiboles from both areas are primary crossite. Pressure-temperature estimates for Smith Island blueschist metamorphism are {approximately}350 C at 6-7 kbars. The {sup 40}Ar/{sup 39}Ar geochronology indicates a complex thermal evolution for the SMC. The north to south increase in intensity of deformation and metamorphism on Elephant Island corresponds to decrease in {sup 40}Ar/{sup 39}Ar age. Uplift of the Smith Island blueschists occurred since 47 Ma while most of the uplift on Elephant Island occurred since {approximately}102 Ma.

  2. Thermal Regime at the Base of the West-Antarctic Ice Stream Tributaries - is the Holocene Decay of the West Antarctic Ice Sheet Coming to an End?

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S.; Joughin, I.

    2001-12-01

    The possible instability of the West-Antarctic Ice Sheet (WAIS) and its effects on global sea level was in the focus of Antarctic research for more then three decades, since Mercer (1968) proposed that the ice sheet collapsed during previous interglacials. Subsequent collection of field and remotely-sensed data has revealed, among other things, a complex structure in the WAIS drainage system and enabled us to better elucidate the basal processes that permit fast ice-stream motion under low driving stresses (e.g. Kamb, 2001). With high basal water pressures and a layer of weak, highly porous water saturated sediments playing a key role in facilitating the fast motion of ice in West-Antarctica, the spatial and temporal availability of basal water has to be incorporated into models simulating the present and future WAIS behavior. Borehole observations in the interior of the WAIS (Robin, 1983) and in the Siple Coast ice streams (Engelhardt and Kamb, 1987) revealed a wet ice sheet bed and the ice at the base of the ice sheet being at its pressure melting. However the recent discovery of an up to 25 m thick basal ice layer at Ice Stream C indicates that basal melting either does not persist along the entire ice stream tributaries or did not persisted in the past. Lacking direct observations from the ice stream tributaries we are currently using finite-difference and analytical models to assess their basal energy balance; heat conduction away from the bed, geothermal flux and shear heating. Taking into account the uncertainty in the estimation of the geothermal flux (50 to 80 mW*m\\^-2 ), the results of our calculations can be summarized as followed 1) the basal ice layer formed in the central part of the northern Ice Stream C tributary; 2) post Last Glacial Maximum conditions favor basal freezing in spite of higher surface temperatures; 3) the presence of a 12-25-m-thick basal ice layer request that either 3a) flow in the ice stream tributaries had stopped in the past

  3. Transect across the West Antarctic rift system in the Ross Sea, Antarctica

    USGS Publications Warehouse

    Trey, H.; Cooper, A. K.; Pellis, G.; Della, Vedova B.; Cochrane, G.; Brancolini, Giuliano; Makris, J.

    1999-01-01

    In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with

  4. Ecological and Pharmacological Activities of Antarctic Marine Natural Products.

    PubMed

    Avila, Conxita

    2016-06-01

    Antarctic benthic communities are regulated by abundant interactions of different types among organisms, such as predation, competition, etc. Predators are usually sea stars, with omnivorous habits, as well as other invertebrates. Against this strong predation pressure, many organisms have developed all sorts of defensive strategies, including chemical defenses. Natural products are thus quite common in Antarctic organisms with an important ecological and pharmacological potential. In this paper, the chemical defenses of the Antarctic organisms studied during the ECOQUIM and ACTIQUIM projects, as well as their pharmacological potential, are reviewed. For the ecological defenses, predation against the sea star Odontaster validus is analyzed and evaluated along depth gradients as well as considering the lifestyle of the organisms. For the pharmacological activity, the anticancer, anti-inflammatory, and antibacterial activities tested are evaluated here. Very often, only crude extracts or fractions have been tested so far, and therefore, the natural products responsible for such activities remain yet to be identified. Even if the sampling efforts are not uniform along depth, most ecologically active organisms are found between 200 and 500 m depth. Also, from the samples studied, about four times more sessile organisms possess chemical defenses against the sea star than the vagile ones; these represent 50 % of sessile organisms and 35 % of the vagile ones, out of the total tested, being active. Pharmacological activity has not been tested uniformly in all groups, but the results show that relevant activity is found in different phyla, especially in Porifera, Cnidaria, Bryozoa, and Tunicata, but also in others. No relationship between depth and pharmacological activity can be established with the samples tested so far. More studies are needed in order to better understand the ecological relationships among Antarctic invertebrates mediated by natural products and

  5. Ecological and Pharmacological Activities of Antarctic Marine Natural Products.

    PubMed

    Avila, Conxita

    2016-06-01

    Antarctic benthic communities are regulated by abundant interactions of different types among organisms, such as predation, competition, etc. Predators are usually sea stars, with omnivorous habits, as well as other invertebrates. Against this strong predation pressure, many organisms have developed all sorts of defensive strategies, including chemical defenses. Natural products are thus quite common in Antarctic organisms with an important ecological and pharmacological potential. In this paper, the chemical defenses of the Antarctic organisms studied during the ECOQUIM and ACTIQUIM projects, as well as their pharmacological potential, are reviewed. For the ecological defenses, predation against the sea star Odontaster validus is analyzed and evaluated along depth gradients as well as considering the lifestyle of the organisms. For the pharmacological activity, the anticancer, anti-inflammatory, and antibacterial activities tested are evaluated here. Very often, only crude extracts or fractions have been tested so far, and therefore, the natural products responsible for such activities remain yet to be identified. Even if the sampling efforts are not uniform along depth, most ecologically active organisms are found between 200 and 500 m depth. Also, from the samples studied, about four times more sessile organisms possess chemical defenses against the sea star than the vagile ones; these represent 50 % of sessile organisms and 35 % of the vagile ones, out of the total tested, being active. Pharmacological activity has not been tested uniformly in all groups, but the results show that relevant activity is found in different phyla, especially in Porifera, Cnidaria, Bryozoa, and Tunicata, but also in others. No relationship between depth and pharmacological activity can be established with the samples tested so far. More studies are needed in order to better understand the ecological relationships among Antarctic invertebrates mediated by natural products and

  6. A 19-year radar altimeter elevation change time-series of the East and West Antarctic ice sheets

    NASA Astrophysics Data System (ADS)

    Sundal, A. V.; Shepherd, A.; Wingham, D.; Muir, A.; Mcmillan, M.; Galin, N.

    2012-12-01

    We present 19 years of continuous radar altimeter observations of the East and West Antarctic ice sheets acquired by the ERS-1, ERS-2, and ENVISAT satellites between May 1992 and September 2010. Time-series of surface elevation change were developed at 39,375 crossing points of the satellite orbit ground tracks using the method of dual cycle crossovers (Zwally et al., 1989; Wingham et al., 1998). In total, 46.5 million individual measurements were included in the analysis, encompassing 74 and 76 % of the East and West Antarctic ice sheet, respectively. The satellites were cross-calibrated by calculating differences between elevation changes occurring during periods of mission overlap. We use the merged time-series to explore spatial and temporal patterns of elevation change and to characterise and quantify the signals of Antarctic ice sheet imbalance. References: Wingham, D., Ridout, A., Scharroo, R., Arthern, R. & Shum, C.K. (1998): Antarctic elevation change from 1992 to 1996. Science, 282, 456-458. Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. & Marsh, J. G. (1989): Growth of Greenland ice-sheet - measurements. Science, 246, 1587-1589.

  7. West Antarctic Ice Sheet dynamics recorded in Plio-Pleistocene strata of the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Loth, A. S.; Bartek, L. R.; Luyendyk, B. P.; Wilson, D. S.

    2008-12-01

    Within the 100,000 square kilometer Eastern Basin of the Ross Sea, a 290 km section, oriented parallel to depostional dip along with 10 intersecting seismic sections that are oriented parallel to depositional strike were analyzed. Using Single-Channel Seismic (SCS) data from three different seismic surveys (NBP 0306, PD9022, and NBP 9308) 36 Plio-Pleistocene sequences were correlated across the basin from the modern ice shelf edge to the contemporary shelf break. Few of the sequences are continuous across the shelf, the majority of the sequences are of limited lateral extent. The facies within the sequences were analyzed to determine ice sheet behavior at the time of deposition. Three distinct depositional environments were interpreted based upon variations in the reflection attributes within the seismic data. Subglacial facies have a spectrum of reflection attributes from reflection-free to parallel, low-amplitude, discontinuous facies. The Grounding Line Zone facies are characterized by high amplitude, mildly discontinuous reflections. Proglacial environments are distinguished by parallel, high amplitude, continuous reflection packages. The facies distribution within many of the sequences consists of Subglacial facies in updip locales, Grounding Line Zone facies widely distributed across the shelf, and Proglacial facies present at downdip sites. The facies distribution within the sequences provides a record of the variation of the extent of the West Antarctic Ice Sheet (WAIS) throughout the Plio-Pleistocene. Not all sequences have a consecutive facies relationship, which may have resulted from several causes: 1) changes in the flow of the WAIS, 2) interplay between the East Antarctic Ice Sheet (EAIS) with the WAIS, or 3) additional grounding of the WAIS on paleobasin highs. Understanding the short-lived glacial events, whether they are a function of non-deposition or cannibalization of previous deposits, provides insight into the dynamics of marine based ice

  8. Aeromagnetic evidence for a volcanic caldera(?) complex beneath the divide of the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1998-01-01

    A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of <1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of < 1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.

  9. Multichannel Seismic Investigations of Sediment Drifts off West Antarctica and the Antarctic Peninsula: Preliminary Results from Research Cruise JR298

    NASA Astrophysics Data System (ADS)

    Larter, R. D.; Graham, A. G. C.; Hernandez-Molina, J.; Channell, J. E. T.; Hillenbrand, C. D.; Hogan, K. A.; Uenzelmann-Neben, G.; Gohl, K.; Rebesco, M.; Hodell, D. A.

    2015-12-01

    The West Antarctic Ice Sheet (WAIS) and Antarctic Peninsula Ice Sheet (APIS) have exhibited significant changes over recent decades but there is still great uncertainty about how rapidly and how far they will retreat in a warmer climate. For example, it remains unclear whether or not the marine-based WAIS "collapsed" during the last interglacial period, resulting in a global sea-level rise contribution of more than 3 m. Previous studies, including Ocean Drilling Program (ODP) Leg 178, have shown that sediment drifts on the continental rise west of the Antarctic Peninsula contain a rich high-resolution archive of Antarctic margin paleoceanography and APIS history that extends back to at least the Late Miocene. The potential of existing ODP cores from the drifts is, however, compromised by the fact that composite sections are incomplete and lack of precise chronological control. A new drilling proposal (732-Full2) has been scientifically approved and is with the JOIDES Resolution Facilities Board of the International Ocean Discovery Program for scheduling. The main aims of the proposal are to obtain continuous, high-resolution records from sites on sediment drifts off both the Antarctic Peninsula and West Antarctica (southern Bellingshausen Sea) and to achieve good chronological control on them using a range of techniques. We present preliminary results from a recent site survey investigation cruise on RRS James Clark Ross (JR298) that obtained high-resolution multichannel seismic reflection data over the proposed sites and adjacent working areas. The new data provide a basis for interpretation of (i) sedimentary processes that operated during the development of the drifts, and (ii) links between depositional systems on the continental rise, paleo-ice-sheet dynamics and paleoceanographic processes. Through further analyses of seismic and other geophysical data, in combination with marine sediment cores retrieved from the proposed sites, we aim to provide insight into

  10. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hein, Andrew; Marrero, Shasta; Woodward, John; Dunning, Stuart; Winter, Kate; Westoby, Matthew; Freeman, Stewart; Sugden, David

    2016-04-01

    The trajectory of thinning of the West Antarctic Ice Sheet during the Holocene is important for questions concerning ice-sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains that suggest a mid-Holocene phase of marine instability in this little known sector of Antarctica. The ice sheet, in the heart of the Weddell Sea embayment, was nourished by increased snowfall until the early Holocene and remained near its Last Glacial Maximum thickness from 49-10 ka. A pulse of rapid thinning at 6.5-3.5 ka, triggered by grounding-line retreat, caused the ice elevation to fall by ~400 m at rates of 29 cm per year or higher and may have contributed 1.4-2 m to global sea level. Ice elevation today is the same as at 3.5 ka and the ice has either stabilised or thickened in recent millennia. These results constrain ice-sheet models in the Weddell Sea sector of the West Antarctic Ice Sheet. Moreover, they imply that the West Antarctic Ice Sheet contributed little to late-glacial sea-level rise but was involved in mid-Holocene rises.

  11. Geoologic controls on the architecture of the Antarctic Ice Sheet's basal interface: New results from West and East Antarctica from long range geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Blankenship, D. D.; Greenbaum, J. S.; Richter, T.; Aitken, A.; Siegert, M. J.; Roberts, J. L.

    2013-12-01

    The ice-rock interface underlying the Antarctic Ice Sheet was shaped by interactions between underlying gondwanan geology and the overlying ice sheet. The ice sheet now preserves from sedimentary infill an incredibly rugged terrain which now plays a critical role in shaping subglacial hydrology, and thus shape ice sheet behavior. This terrain can by imaged through aerogeophysical means, in particular through ice penetrating radar, while airborne potential fields measurements provide insight into the geological framework that controlled erosion. Over the post IPY era, the density of airborne coverage is only now reaching the point where small scale structure can be identified and placed in context. Of particular importance is understanding the formation of focused erosional valleys, 30-50 km wide, representing now buried subglacial fjords. After initial data from the GIMBLE project in West Antarctica, and five years of sustained long range ICECAP surveys over East Antarctica , we now have a better view of the diversity of these features. The local erosion of these valleys, often cutting through significant topographic barriers, irregularly samples the underlying geology, provided a complex story in the sediment to the Antarctic margin. These valleys now provide the subglacial conduits for significant ice sheet catchments, in particular for subglacial water, including the inland catchments of DeVicq, Thwaites, and Pine Island Glaciers in West Antarctica, and Denman Glacier, Totten Glacier, Byrd Glacier and Cook Ice Shelf in East Antarctica. We find that these features, now sometimes hundreds of kilometers inland of the modern grounding line, often nucleate on or are aligned with structure inherited from the assembly of the Antarctic continent. While many of these features currently host active outlet glaciers or their tributaries, some do not, implying avenues for ice sheet change. In West Antarctica, we find a new deep connection between the coast and interior basin

  12. Dynamics of the late Plio-Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core

    NASA Astrophysics Data System (ADS)

    Cowan, Ellen A.; Christoffersen, Poul; Powell, Ross D.; Talarico, Franco M.

    2014-08-01

    Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio-Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201-212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38-49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55-68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites in

  13. A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts

    PubMed Central

    Smith, Craig R.; Grange, Laura J.; Honig, David L.; Naudts, Lieven; Huber, Bruce; Guidi, Lionel; Domack, Eugene

    2012-01-01

    Lithodid crabs (and other skeleton-crushing predators) may have been excluded from cold Antarctic continental shelf waters for more than 14 Myr. The west Antarctic Peninsula shelf is warming rapidly and has been hypothesized to be soon invaded by lithodids. A remotely operated vehicle survey in Palmer Deep, a basin 120 km onto the Antarctic shelf, revealed a large, reproductive population of lithodids, providing the first evidence that king crabs have crossed the Antarctic shelf. DNA sequencing and morphology indicate the lithodid is Neolithodes yaldwyni Ahyong & Dawson, previously reported only from Ross Sea waters. We estimate a N. yaldwyni population density of 10 600 km−2 and a population size of 1.55 × 106 in Palmer Deep, a density similar to lithodid populations of commercial interest around Alaska and South Georgia. The lithodid occurred at depths of more than 850 m and temperatures of more than 1.4°C in Palmer Deep, and was not found in extensive surveys of the colder shelf at depths of 430–725 m. Where N. yaldwyni occurred, crab traces were abundant, megafaunal diversity reduced and echinoderms absent, suggesting that the crabs have major ecological impacts. Antarctic Peninsula shelf waters are warming at approximately 0.01°C yr−1; if N. yaldwyni is currently limited by cold temperatures, it could spread up onto the shelf (400–600 m depths) within 1–2 decades. The Palmer Deep N. yaldwyni population provides an important model for the potential invasive impacts of crushing predators on vulnerable Antarctic shelf ecosystems. PMID:21900324

  14. The Global and Local Climatic Response to the Collapse of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Huybers, K. M.; Singh, H.; Steiger, N. J.; Frierson, D. M.; Steig, E. J.; Bitz, C. M.

    2014-12-01

    Glaciologists have suggested that a relatively small external forcing may compromise the stability of the West Antarctic Ice Sheet (WAIS). Further, there is compelling physical evidence that the WAIS has collapsed in the past, at times when the mean global temperature was only a few degrees warmer than it is today. In addition to a rapid increase in global sea level, the collapse of the WAIS could also affect the global circulation of the atmosphere. Ice sheets are some of the largest topographic features on Earth, causing large regional anomalies in albedo and radiative balance. Our work uses idealized aquaplanet models in tandem with a fully coupled ocean/atmosphere/sea-ice model (CCSM4) to compare the atmospheric, radiative, and oceanic response to a complete loss of the WAIS. Initial findings indicate that the loss of the WAIS leads to a weakening and equator-ward shift of the zonal winds, a development of strong zonal asymmetries in the meridional wind, and a northward migration of the Intertropical Convergence Zone. We aim to characterize how the local and global climate is affected by the presence of the WAIS, and how changes in the distribution of Southern Hemisphere ice may be represented in the proxy record.

  15. Upper ocean variability in west Antarctic Peninsula continental shelf waters as measured using instrumented seals

    NASA Astrophysics Data System (ADS)

    Costa, Daniel P.; Klinck, John M.; Hofmann, Eileen E.; Dinniman, Michael S.; Burns, Jennifer M.

    2008-02-01

    Temperature profile data for the west Antarctic Peninsula (WAP) continental shelf waters, collected from freely ranging instrumented seals (crabeater, Lobodon carcinophagus and leopard, Hydrurga leptonyx), were used to demonstrate that these platforms can be used to supplement traditional oceanographic sampling methods to investigate the physical properties of the upper water column. The seal-derived profiles were combined with temperature profiles obtained from ship-based CTD measurements and from a numerical circulation model developed for the WAP to describe changes in temperature structure, heat content, and heat flux in the upper ocean waters of the WAP continental shelf. The seal-derived data documented the fall-to-winter transition of the surface waters and the shelf-wide presence of modified Circumpolar Deep Water (CDW) below 150-200 m on the WAP continental shelf. The heat content of the upper 200 m calculated from the seal-derived temperature profiles ranged between 1000 and 1500 MJ m -2; similar estimates were obtained from simulated temperature distributions. The seal-derived temperature measurements provided broader space and time resolution than was possible using any other currently available oceanographic sampling method. As such, the seal-derived measurements provided a valuable dataset for evaluation of temperature fields obtained from a numerical circulation model.

  16. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  17. Recent Ice Loss from the Fleming and Other Glaciers, Wordie Bay, West Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Casassa, G.; Gogineni, S.; Kanagaratnam, P.; Krabill, W.; Pritchard, H.; Rivera, A.; Thomas, R.; Turner, J.; Vaughan, D.

    2005-01-01

    Satellite radar interferometry data from 1995 to 2004, and airborne ice thickness data from 2002, reveal that the glaciers flowing into former Wordie Ice Shelf, West Antarctic Peninsula, discharge 6.8 +/- 0.3 km(exp 3)/yr of ice, which is 84 +/- 30 percent larger than a snow accumulation of 3.7 +/- 0.8 km(exp 3)/yr over a 6,300 km(exp 2) drainage basin. Airborne and ICESat laser altimetry elevation data reveal glacier thinning at rates up to 2 m/yr. Fifty km from its ice front, Fleming Glacier flows 50 percent faster than it did in 1974 prior to the main collapse of Wordie Ice Shelf. We conclude that the glaciers accelerated following ice shelf removal, and have been thinning and losing mass to the ocean over the last decade. This and other observations suggest that the mass loss from the northern part of the Peninsula is not negligible at present.

  18. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  19. The environment and evolution of the West Antarctic ice sheet: setting the stage.

    PubMed

    Bindschadler, Robert

    2006-07-15

    The West Antarctic ice sheet is the last ice sheet of the type cradled in a warm, marine geologic basin. Its perimeter stretches into the surrounding seas allowing warmer ocean waters to reach the undersides of its floating ice shelves and its relatively low surface elevation permits snow-carrying storms to extend well into its interior. This special environment has given rise to theories of impending collapse and for the past quarter-century has challenged researchers who seek a quantitative prediction of its future behaviour and the corresponding effect on sea level. Observations confirm changes on a variety of time scales from the quaternary to less than a minute. The dynamics of the ice sheet involve the complex interaction of ice that is warm at its base and cold along the margins of ice streams; subglacial till that is composed of a combination of marine sediment and eroded sedimentary rocks; and water that moves primarily between the ice and bed, but whose flow direction can differ from the direction of ice motion. The pressure of the water system is often sufficient to float the ice sheet locally and small changes in the amount of water in the till can cause it to rapidly switch from very weak to very stiff.

  20. Recent ice dynamic and surface mass balance of Union Glacier in the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Zamora, R.; Uribe, J. A.; Jaña, R.; Oberreuter, J.

    2014-08-01

    Here we present the results of a comprehensive glaciological investigation of Union Glacier (79°46' S/83°24' W) in the West Antarctic Ice Sheet (WAIS), a major outlet glacier within the Ellsworth Mountains. Union Glacier flows into the Ronne Ice Shelf, where recent models have indicated the potential for significant grounding line zone (GLZ) migrations in response to changing climate and ocean conditions. To elaborate a glaciological base line that can help to evaluate the potential impact of this GLZ change scenario, we installed an array of stakes on Union Glacier in 2007. The stake network has been surveyed repeatedly for elevation, velocity, and net surface mass balance. The region of the stake measurements is in near-equilibrium, and ice speeds are 10 to 33 m a-1. Ground-penetrating radars (GPR) have been used to map the subglacial topography, internal structure, and crevasse frequency and depth along surveyed tracks in the stake site area. The bedrock in this area has a minimum elevation of -858 m a.s.l., significantly deeper than shown by BEDMAP2 data. However, between this deeper area and the local GLZ, there is a threshold where the subglacial topography shows a maximum altitude of 190 m. This subglacial condition implies that an upstream migration of the GLZ will not have strong effects on Union Glacier until it passes beyond this shallow ice pinning point.

  1. Increased mantle heat flow with on-going rifting of the West Antarctic rift system inferred from characterisation of plagioclase peridotite in the shallow Antarctic mantle

    NASA Astrophysics Data System (ADS)

    Martin, A. P.; Cooper, A. F.; Price, R. C.

    2014-03-01

    The lithospheric, and shallow asthenospheric, mantle in Southern Victoria Land are known to record anomalously high heat flow but the cause remains imperfectly understood. To address this issue plagioclase peridotite xenoliths have been collected from Cenozoic alkalic igneous rocks at three localities along a 150 km transect across the western shoulder of the West Antarctic rift system in Southern Victoria Land, Antarctica. There is a geochemical, thermal and chronological progression across this section of the rift shoulder from relatively hot, young and thick lithosphere in the west to cooler, older and thinner lithosphere in the east. Overprinting this progression are relatively more recent mantle refertilising events. Melt depletion and refertilisation was relatively limited in the lithospheric mantle to the west but has been more extensive in the east. Thermometry obtained from orthopyroxene in these plagioclase peridotites indicates that those samples most recently affected by refertilising melts have attained the highest temperatures, above those predicted from idealised dynamic rift or Northern Victoria Land geotherms and higher than those prevailing in the equivalent East Antarctic mantle. Anomalously high heat flow can thus be attributed to entrapment of syn-rift melts in the lithosphere, probably since regional magmatism commenced at least 24 Myr ago. The chemistry and mineralogy of shallow plagioclase peridotite mantle can be explained by up to 8% melt extraction and a series of refertilisation events. These include: (a) up to 8% refertilisation by a N-MORB melt; (b) metasomatism involving up to 1% addition of a subduction-related component; and (c) addition of ~ 1.5% average calcio-carbonatite. A high MgO group of clinopyroxenes can be modelled by the addition of up to 1% alkalic melt. Melt extraction and refertilisation mainly occurred in the spinel stability field prior to decompression and uplift. In this region mantle plagioclase originates by a

  2. Tectonics, Microbes and Ice: Subglacial volcanism as a generator for microbial habitat beneath the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Skidmore, M. L.; Blankenship, D. D.; Carter, S. P.

    2010-12-01

    Glaciological processes under ice masses, including ice sheets provide sustainable habitat for microbes, forming an aquatic environment through basal melting and providing nutrients and energy from bedrock comminution. In all subglacial settings investigated to date, viable microbes have been documented. Tectonic activity beneath ice masses, including volcanism is associated with an elevated heat flux, leading to enhanced basal ice melt and may also be accompanied by hydrothermal fluids, often rich in reduced metals including Fe and gases such as CO2, H2 and H2S that are potential chemical energy sources for microbes. However, the importance of subglacial volcanism beneath the West Antarctic Ice Sheet (WAIS) in terms of increasing both water and chemical energy fluxes remains unknown despite evidence for subglacial volcanic features and enhanced heat flux. The role of subglacial volcanism in supporting subglacial microbial communities has been documented in Icelandic caldera lake systems, indicating crustal carbon and energy sources, could support a microbial ecosystem independent of photosynthetic carbon. Further, phylogenetic analysis of 16S rRNA gene sequences from WAIS subglacial sediments suggests that organisms with Fe and S oxidizing metabolisms may be important members of the microbial community in these environments. Given the abundance and interconnectivity of water beneath the WAIS, the distribution of volcanism relative to the subglacial hydrologic catchments could have a significant role in contributing to the water and chemical energy fluxes for downstream environments. Therefore, tectonics may modulate the critical hydrologic and geochemical balance that determines subglacial microbial habitat distribution. We will present potential biological implications of an updated geophysical and hydrological context for West Antarctica’s Whillans and Kamb ice streams with an emphasis on selecting targets for further characterization.

  3. Numerical Modeling of West Antarctic Ice Sheet grounding-line stability under the influence of changing continental shelf physiography

    NASA Astrophysics Data System (ADS)

    Robinson, R.; Fastook, J.; Bart, P.

    2007-12-01

    Bart and Iwai (in prep.) utilize morphologic and biologic evidence to hypothesize that the Antarctic Peninsula's outer continental shelf overdeepened during a transitory period of increased glacial erosion in the early Pliocene. They attribute the enhanced erosion of the continental shelf to a period of regional warming on the peninsula's pacific margin that produced an associated increased flux of snow and ice. On the over-deepened outer continental shelf, the deeper-water sills presumably permitted a larger influx of relatively warm circumpolar deep water. If correct and if early Pliocene overdeepening of the continental shelf was a continent-wide phenomenon, then this relatively recent modification of the Antarctic continental shelf may have greatly altered the way in which the marine terminus of the Antarctic Ice Sheet interacts with global thermohaline circulation. Our ongoing numerical modeling experiments of the Eastern Basin Ross Sea continental shelf are designed to evaluate the influence of changing shelf morphology (primarily water depth) and water-mass properties (primarily, water temperature) on West Antarctic Ice Sheet grounding-line stability.

  4. Bedform signature of a West Antarctic palaeo-ice stream reveals a multi-temporal record of flow and substrate control

    NASA Astrophysics Data System (ADS)

    Graham, Alastair G. C.; Larter, Robert D.; Gohl, Karsten; Hillenbrand, Claus-Dieter; Smith, James A.; Kuhn, Gerhard

    2009-12-01

    The presence of a complex bedform arrangement on the sea floor of the continental shelf in the western Amundsen Sea Embayment, West Antarctica, indicates a multi-temporal record of flow related to the activity of one or more ice streams in the past. Mapping and division of the bedforms into distinct landform assemblages reveals their time-transgressive history, which implies that bedforms can neither be considered part of a single downflow continuum nor a direct proxy for palaeo-ice velocity, as suggested previously. A main control on the bedform imprint is the geology of the shelf, which is divided broadly between rough bedrock on the inner shelf, and smooth, dipping sedimentary strata on the middle to outer shelf. Inner shelf bedform variability is well preserved, revealing information about local, complex basal ice conditions, meltwater flow, and ice dynamics over time. These details, which are not apparent at the scale of regional morphological studies, indicate that past ice streams flowed across the entire shelf at times, and often had onset zones that lay within the interior of the Antarctic Ice Sheet today. In contrast, highly elongated subglacial bedforms on sedimentary strata of the middle to outer shelf represent a timeslice snapshot of the last activity of ice stream flow, and may be a truer representation of fast palaeo-ice flow in these locations. A revised model for ice streams on the shelf captures complicated multi-temporal bedform patterns associated with an Antarctic palaeo-ice stream for the first time, and confirms a strong substrate control on a major ice stream system that drained the West Antarctic Ice Sheet during the Late Quaternary.

  5. Geophysical glimpses into the Ferrigno Rift at the northwestern tip of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Bingham, Robert; Ferraccioli, Fausto

    2014-05-01

    The West Antarctic Rift System (WARS) forms one of the largest continental rift systems on Earth. The WARS is of major significance as it forms the lithospheric cradle for the marine-based and potentially unstable West Antarctic Ice Sheet (WAIS). Seismic refraction, reflection, aeromagnetic, gravity and drilling in the Ross Sea have revealed most of what we know about its structure, tectonic and magmatic patterns and sedimentary basins. Aerogeophysical research and passive seismic networks have considerably extended our knowledge of the WARS and its influence on the overlying WAIS in the Siple Coast and Amundsen Sea Embayment (ASE) regions. The Bellingshausen Sea Embayment region has however remained largely unexplored, and hence the possible extent of the WARS in this sector has remained poorly constrained. Here we use a combination of reconnaissance ground-based and airborne radar observations, airborne gravity, satellite gravity and aeromagnetic data to investigate the WARS in the Bellingshausen Sea Embayment, in the area of the Ferrigno Ice Stream (Bingham et al., 2012, Nature). This region is of high significance, as it one of the main sectors of the WAIS that is currently exhibiting rapid ice loss, thought to be driven primarily by oceanic warming. Assessing geological controls on subice topography and ice dynamics is therefore of prime importance in this part of the WAIS. Ground-based and airborne radar image a subglacial basin beneath the Ferrigno Ice Stream that is up to 1.5 kilometres deep and that connects the ice-sheet interior to the Bellingshausen Sea margin. We interpret this basin as a narrow, glacially overdeepened rift basin that formed at the northwestern tip of the WARS. Satellite gravity data cannot resolve such a narrow rift basin but indicate that the crust beneath the region is likely thinned, lending support to the hypothesis that this area is indeed part of the WARS. Widely-spaced aeromagnetic data image a linear low along the inferred

  6. Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Scarff, Katie; Green, Mattias; Schmittner, Andreas

    2015-04-01

    Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.

  7. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  8. The Ellsworth Subglacial Highlands and the inception and retreat of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ross, N.; Siegert, M. J.; Bingham, R. G.; Corr, H. F. J.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Rippin, D.

    2012-04-01

    Laying on a bed in places >2km below sea level, the West Antarctic Ice Sheet (WAIS) is thought to be prone to major rapid decay due to melting from the ocean, which induces grounding line retreat. A feedback may occur, in which migration of the grounding line to deeper regions leads to further ice loss. Highland regions of the subglacial bed will act both as seeding centres for ice sheet growth and points of stability ('pinning points') during ice sheet recession. While several highland regions exist beneath the WAIS, none have been confirmed as ice sheet seeding centres/pinning points. Studies of subglacial East Antarctica have demonstrated the utility of radio-echo sounding (RES) in the identification of glacial geomorphology from which past ice sheet conditions can be appreciated. Here, we characterise the detailed glacial morphology of the Ellsworth Subglacial Highlands (ESH), from ground-based and airborne RES surveys. We document well-preserved classic features associated with restricted, dynamic, marine-proximal alpine glaciation, with hanging tributary valleys feeding significant over-deepened troughs cut by valley (tidewater) glaciers. Fjord-mouth threshold bars down-ice of overdeepenings define the termini of palaeo outlet-glaciers. We show how MODIS satellite imagery of the ice surface reflects the gross subglacial morphology. The imagery reveals numerous glaciated valleys cutting through the ESH, terminating at the edge of the deep Bentley Subglacial Trench. The landscape obviously predates the present ice sheet, and is likely to have been formed by a small dynamic ice cap at times when the marine sections of the WAIS were absent. As well as acting as a key WAIS seeding point, the ESH would be critical for 'pinning' the ice sheet during any large-scale retreat event.

  9. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing

    USGS Publications Warehouse

    Behrendt, John C.; Cooper, A.

    1991-01-01

    The Cenozoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. Various lines of evidence lead to the following interpretation: the transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of ~1 km/m.y., most recently since mid-Pliocene Time, rather than continuously at the mean rate of 100 m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. It is speculated that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. A possible synergistic relation is suggested between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. -from Authors

  10. Phreatomagmatic eruptions under the West Antarctic Ice Sheet: potential hazard for ice sheet stability

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; Lieb-Lappen, R.; Kim, E. J.; Golden, E. J.; Obbard, R. W.

    2014-12-01

    Volcanic tephra layers have been seen in most ice cores in Antarctica. These tephra layers are deposited almost instantaneously across wide areas of ice sheets, creating horizons that can provide "pinning points" to adjust ice time scales that may otherwise be lacking detailed chronology. A combination of traditional particle morphology characterization by SEM with new non-destructive X-ray micro-computed tomography (Micro-CT) has been used to analyze selected coarse grained tephra in the West Antarctica Ice Sheet (WAIS) Divide WDC06A ice core. Micro-CT has the ability to image particles as small as 50µm in length (15µm resolution), quantifying both particle shape and size. The WDC06A contains hundreds of dusty layers of which 36 have so far been identified as primary tephra layers. Two of these tephra layers have been characterized as phreatomagmatic eruptions based on SEM imagery and are blocky and platy in nature, with rare magmatic particles. These layers are strikingly different in composition from the typical phonolitic and trachytic tephra produced from West Antarctic volcanoes. These two layers are coarser in grain size, with many particles (including feldspar crystals) exceeding 100µm in length. One tephra layer found at 3149.138m deep in the ice core is a coarse ~1mm thick basanitic tephra layer with a WDC06-7 ice core age of 45,381±2000yrs. The second layer is a ~1.3 cm thick zoned trachyandesite to trachydacite tephra found at 2569.205m deep with an ice core age 22,470±835yrs. Micro-CT analysis shows that WDC06A-3149.138 has normal grading with the largest particles at the bottom of the sample (~160μm). WDC06A-2569.205 has a bimodal distribution of particles with large particles at the top and bottom of the layer. These large particles are more spherical in shape at the base and become more irregular and finer grained higher in the layer, likely showing changes in eruption dynamics. The distinct chemistry as well as the blocky and large grain size

  11. Volcanic rocks and subglacial volcanism beneath the West Antarctic Ice Sheet in the West Antarctic Rift System, (WAIS) from aeromagnetic and radar ice sounding - Thiel Subglacial Volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2012-12-01

    Radar ice sounding and aeromagnetic surveys reported over the West Antarctic Ice Sheet (WAIS) have been interpreted as evidence of subglacial volcanic eruptions over a very extensive area (>500,000 km2 ) of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS reported from radar and aeromagnetic data. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km-width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice have been interpreted as evidence of subglacial eruptions. Comparison of a carefully selected subset of ~400 of the >1000 high-amplitude anomalies in the CWA survey having topographic expression at the glacier bed, showed >80% had less than 200-m relief. About 18 high-amplitude subglacial magnetic sources also have high topography and bed relief (>600 m) interpreted as subaerially erupted volcanic peaks when the WAIS was absent, whose competent lava flows protected their edifices from erosion. All of these would have high elevation above sea-level, were the ice removed and glacial rebound to have occurred. Nine of these subaerially erupted volcanoes are concentrated in the WAIS divide area. Behrendt et al., 1998 interpreted a circular ring of positive magnetic anomalies overlying the WAIS divide as caused by a volcanic caldera. The area is characterized by high elevation bed topography. The negative regional magnetic anomaly surrounding the caldera anomalies was interpreted as the result of a shallow Curie isotherm. High heat flow inferred from temperature logging in the WAISCORE (G. Clow 2012, personal communication; Conway, 2011) and a prominent volcanic ash layer in the

  12. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves

    NASA Astrophysics Data System (ADS)

    Dinniman, Michael S.; Klinck, John M.; Smith, Walker O., Jr.

    2011-07-01

    Transport of relatively warm, nutrient-rich Circumpolar Deep Water (CDW) onto continental shelves around Antarctica has important effects on physical and biological processes. However, the characteristics of the CDW along the shelf break, as well as what happens to it once it has been advected onto the continental shelf, differ spatially. In the present study high resolution (4-5 km) regional models of the Ross Sea and the West Antarctic Peninsula coastal ocean are used to compare differences in CDW transport. The models compared very well with observations from both regions. Examining the fluxes not only of heat, but also of a simulated "dye" representing CDW, shows that in both cases CDW crosses the shelf break in specific locations primarily determined by the bathymetry, but eventually floods much of the shelf. The frequency of intrusions in Marguerite Trough was ca. 2-3 per month, similar to recent mooring observations. A significant correlation between the along shelf break wind stress and the cross shelf break dye flux through Marguerite Trough was observed, suggesting that intrusions are at least partially related to short duration wind events. The primary difference between the CDW intrusions on the Ross and west Antarctic Peninsula shelves is that there is more vigorous mixing of the CDW with the surface waters in the Ross Sea, especially in the west where High Salinity Shelf Water is created. The models show that the CDW moving across the Antarctic Peninsula continental shelf towards the base of the ice shelves not only is warmer initially and travels a shorter distance than that advected towards the base of the Ross Ice Shelf, but it is also subjected to less vertical mixing with surface waters, which conserves the heat available to be advected under the ice shelves. This difference in vertical mixing also likely leads to differences in the supply of nutrients from the CDW into the upper water column, and thus modulates the impacts on surface

  13. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  14. Volatiles and subduction-recycled lithologies in the petrogenesis of Cenozoic alkaline magmatism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Fahnestock, M. F.

    2015-12-01

    In the West Antarctic Rift System (WARS), the failure of both passive and active models of decompression melting to explain unusually voluminous Cenozoic volcanism has prompted debate about the roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by ~500 Ma of subduction along the paleo-Pacific margin of Gondwana[1], a process capable of generating easily fusible, volatile-rich lithologies and producing the broad seismic low-velocity anomaly imaged beneath the Southern Ocean[2]. We present new geochemical information from submarine lavas in the Ross Sea and subaerial lavas from Franklin Island, Beaufort Island, and Mt. Melbourne in Northern Victoria Land (NVL) supportive of an evolving fluxed mantle source. Lavas exhibit ocean island basalt (OIB)-like trace element signatures and isotopic affinities for the C/FOZO mantle endmember consistent with subduction processing of recycled ocean lithosphere. Lava major-oxide compositions suggest multiple recycled source components, including pyroxenite (associated with older lavas), amphibole-rich metasomes, and volatilized peridotite (associated with the youngest lavas). In-situ analyses of olivine-hosted melt inclusions (MIs) from a subset of host lavas confirm high H2O and CO2 ranging up to 2.94 wt % and 4657 ppm, respectively. MIs exhibit OIB-like trace element compositions and Ba/Rb and Rb/Sr consistent with melting in the presence of hydrated, amphibole-bearing lithosphere[3,4]. We interpret these observations as evidence that ongoing tectonomagmatic activity in the WARS is facilitated by melting of subduction-modified mantle generated by 550 - 100 Ma Gondwana subduction. Following radiogenic ingrowth in high-µ (U/Pb) domains, Cenozoic extension triggered decompression melting of easily fusible, hydrated metasomes and volatilized mantle. This multistage magma model attempts to reconcile geochemical observations with increasing geophysical evidence that the seismic

  15. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean ( 30-80∘E)

    NASA Astrophysics Data System (ADS)

    Williams, G. D.; Nicol, S.; Aoki, S.; Meijers, A. J. S.; Bindoff, N. L.; Iijima, Y.; Marsland, S. J.; Klocker, A.

    2010-05-01

    Hydrographic CTD and ADCP data were collected during the BROKE-West research voyage (January-March 2006) in the south-west Indian Ocean sector of the Antarctic margin. These data describe the large-scale circulation, water masses, fronts and summertime stratification in the surface layer over the continental shelf, slope and rise region between 30 and 80∘E that forms CCAMLR Statistical Area 58.4.2. The surface circulation matched the full-depth circulation and consisted of the eastward flowing southern Antarctic Circumpolar Current front to the north, and the westward flowing Antarctic Slope Current associated with the Antarctic Slope Front along the continental slope to the south. Two sub-polar gyres were detected south of the Southern Boundary of the Antarctic Circumpolar Current: the eastern Weddell Gyre in the Cosmonaut Sea ( 30-50∘E) and the greater Prydz Bay Gyre in the Cooperation Sea ( 60-80∘E). In the eastern Weddell Gyre, the seasonal mixed layer depths were shallower, warmer and fresher relative to the regions to the east which were deeper, cooler and more saline. This spatial variability is found to be strongly correlated to the large-scale pattern of sea ice melt/retreat in the months preceding the voyage and the accumulated wind stress thereafter. Areas of upwelling warm deep waters into the surface layer are presented from positive anomalies of potential temperature and nutrient concentrations (nitrate and silicate). These anomalies were strongest in the eastern Weddell Gyre in the vicinity of the Cosmonaut Polynya/Embayment, north of Cape Anne and near the Southern Boundary of the Antarctic Circumpolar Current in the eastern sector of the survey. The summertime stratification (seasonal mixed layer, seasonal pycnocline and Tmin layer) are discussed relative to the distributions of chl a and acoustically determined Antarctic Krill ( Euphausia superba) densities. Elevated chl a concentrations were found in the surface layer of the marginal ice

  16. Seasonal dynamics of megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital influx

    PubMed Central

    Sumida, P. Y. G.; Smith, C. R.; Bernardino, A. F.; Polito, P. S.; Vieira, D. R.

    2014-01-01

    The deep West Antarctic Peninsula (WAP) shelf is characterized by intense deposition of phytodetritus during spring/summer months, while very little food material reaches the seafloor during winter. The response of the shelf benthic megafauna to this highly variable food supply is still poorly understood. In order to characterize the deposition of phytodetritus and the megabenthic community response, we deployed a seafloor time-lapse camera at approximately 590 m depth on the mid WAP shelf west of Anvers Island for 15 months. Seafloor photographs were taken at intervals of 12 or 24 h nearly continuously from 9 December 1999 (austral winter) to 20 March 2001 (summer) and analysed for phytodetritus deposition and megafaunal dynamics. Seafloor images indicated a marked seasonal arrival of greenish phytodetritus, with large interannual and seasonal variability in the coverage of depositing phytodetrital particles. The surface-deposit-feeding elasipod holothurians Protelpidia murrayi and Peniagone vignoni dominated the epibenthic megafauna throughout the year, frequently constituting more than 80% of the megafaunal abundance, attaining total densities of up to 2.4 individuals m−2. Elasipod abundances were significantly higher in summer than winter. During summer periods of high phytodetrital flux, Pr. murrayi produced faecal casts at higher rates, indicating intensified population-level feeding activity. In March–June 2000, faecal casts lasted longest, suggesting lower horizontal bioturbation activity during autumn–winter. Our data indicate that the Pr. murrayi population increases its feeding rates in response to increasing amounts and/or lability of organic matter on the sediment surface. Assuming that this species feeds on the top millimetre of the sediment, we estimate that, during periods of high phytodetrital flux, the Pr. murrayi population reworks one square metre of sediment surface in approximately 287 days. We suggest that Pr. murrayi is an

  17. Late Oligocene glacimarine sedimentation of the central Ross Sea and implications for the evolution of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kraus, C.; Mckay, R. M.; Naish, T.; Levy, R. H.; Kulhanek, D. K.

    2015-12-01

    Today the West Antarctic Ice Sheet (WAIS) is grounded mostly below sea level, making it sensitive to oceanic temperature and circulation changes. However, recent reconstructions of the Cenozoic bedrock topographic evolution of West Antarctica have suggested that the West Antarctic Ice Sheet (WAIS) may have first formed as a terrestrial ice sheet at the Eocene-Oligocene boundary (33 Ma), when there was up to 20% more land area in West Antarctica. At some point during the Oligocene or Miocene (23 - 5 Ma) vast areas of West Antarctica became an over-deepened marine-based continental shelf, as is observed today. The evolution of the WAIS through this transition is largely unconstrained, but as atmospheric CO2 fluctuated between 600 and 200 ppm over the past 34 Ma, determining the development of a marine-based WAIS is critical in the context of understanding the sensitivity of ice sheet systems to environmental change. Our research re-examines the sediment cores recovered from the central Ross Sea, a principal drainage area of the WAIS, at Deep Sea Drilling Project Site 270 (77°26.48'S, 178°30.19'W). These cores contain a glacimarine sequence of late Oligocene age (28 - 23.1 Ma). Sedimentological (visual core description, facies, grain size analysis), geochemical (x-ray fluorescence), geophysical (seismic) techniques, and physical properties (magnetic susceptibility) are used to construct a sedimentation model of this sequence, in order to track the late Oligocene evolution of the WAIS. The late Oligocene warming (25 - 23 Ma) is examined in detail because proximal Antarctic geological records of ice sheet extent, proxy environmental data, and atmospheric CO2 appear to be at odds with the composite δ18O record of global temperature and ice volume at this time. Moreover, our research provides insights into the sensitivity of marine-based ice sheets, and supports the hypothesis that they are unstable above a CO2 threshold of 400 ppm. Our preliminary results also

  18. Developmental History of an Intriguing Peat-Forming Community Along the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Yu, Z.; Beilman, D.; Kaiser, K.

    2014-12-01

    Permafrost peatbanks along the West Antarctic Peninsula (WAP) have become valuable high-resolution archives for late-Holocene climatic conditions recently. We recently observed and studied a few water-saturated peatlands that had formed in rocky depressions near Vernadsky Station and in mainland Antarctica (~ 65°S, 64°W). Remarkably, we seem to be the very first ones to analyze these systems for environmental reconstructions. The similarity between these peatlands and fens from the lower latitudes is striking, and the rarity of these systems along the WAP is intriguing. We present a high-resolution, multi-proxy record of ecosystem development and paleoenvironmental conditions for Rasmussen peatland. The ecosystem is ~100 m2 in size and is characterized by a shallow water table depth at 7 cm below the surface. Surface vegetation is dominated by Calliergon spp., a wet-adapted moss found along the WAP. The studied moss deposit is 50 cm thick and has a high organic matter content (> 90% dry weight). Plant macrofossil analysis reveals that the peatland was initially a wet Sanionia spp. carpet and that a sharp transition to Calliergon spp. occurred about half way through the deposit. A distinct layer of highly decomposed organic matter was observed from 32 to 40 cm and could indicate a period of slowed peat formation, potentially due to dry conditions (enhanced peat decay) or perennial snow cover (limited plant growth). Biochemical decomposition indicators such as carbohydrate yields, acid:aldehyde ratios of lignin phenols, and hydroxyproline yields are being determined to better understand the extent of peat decay that has occurred at this site throughout its development, particularly to further address the nature of the observed stratigraphic changes. Preliminary results indicate that carbohydrate yields of the bottom half of the core are about 1/3 smaller than those of the top half, indicating substantial carbon loss due to decomposition. Overall, these peatlands

  19. Diagnostic modeling of dimethylsulfide production in coastal water west of the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Hermann, Maria; Najjar, Raymond G.; Neeley, Aimee R.; Vila-Costa, Maria; Dacey, John W. H.; DiTullio, Giacomo, R.; Kieber, David J.; Kiene, Ronald P.; Matrai, Patricia A.; Simo, Rafel; Vernet, Maria

    2012-01-01

    The rate of gross biological dimethylsulfide (DMS) production at two coastal sites west of the Antarctic Peninsula, off Anvers Island, near Palmer Station, was estimated using a diagnostic approach that combined field measurements from 1 January 2006 through 1 March 2006 and a one-dimensional physical model of ocean mixing. The average DMS production rate in the upper water column (0-60 m) was estimated to be 3.1 +/- 0.6 nM/d at station B (closer to shore) and 2.7 +/- 0.6 nM/d1 at station E (further from shore). The estimated DMS replacement time was on the order of 1 d at both stations. DMS production was greater in the mixed layer than it was below the mixed layer. The average DMS production normalized to chlorophyll was 0.5 +/- nM/d)/(mg cubic m) at station B and 0.7 +/- 0.2 (nM/d)/(mg/cubic m3) at station E. When the diagnosed production rates were normalized to the observed concentrations of total dimethylsulfoniopropionate (DMSPt, the biogenic precursor of DMS), we found a remarkable similarity between our estimates at stations B and E (0.06 +/- 0.02 and 0.04 +/- 0.01 (nM DMS / d1)/(nM DMSP), respectively) and the results obtained in a previous study from a contrasting biogeochemical environment in the North Atlantic subtropical gyre (0.047 =/- 0.006 and 0.087 +/- 0.014 (nM DMS d1)/(nM DMSP) in a cyclonic and anticyclonic eddy, respectively).We propose that gross biological DMS production normalized to DMSPt might be relatively independent of the biogeochemical environment, and place our average estimate at 0.06 +/- 0.01 (nM DMS / d)/(nM DMSPt). The significance of this finding is that it can provide a means to use DMSPt measurements to extrapolate gross biological DMS production, which is extremely difficult to measure experimentally under realistic in situ conditions.

  20. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    The West Antarctic Ice Sheet (WAIS) is assumed to be inherently unstable because it is grounded below sea level in a large part, where the bedrock deepens from today's grounding line towards the interior of the ice sheet. Idealized simulations have shown that bedrock uplift due to isostatic adjustment of the solid Earth and the associated sea-level fall may stop the retreat of such a marine-based ice sheet (Gomez et al., 2012). Here, we employ a coupled model for ice-sheet dynamics and solid-Earth dynamics, including a gravitationally consistent description of sea level, to investigate the influence of the viscoelastic Earth structure on the WAIS' future stability (Konrad et al. 2015). For this, we start from a steady-state condition for the Antarctic Ice Sheet close to present-day observations and apply atmospheric and oceanic forcing of different strength to initiate the retreat of the WAIS and investigate the effect of the viscoelastic deformation on the ice evolution for a range of solid-Earth rheologies. We find that the climate forcing is the primary control on the occurrence of the WAIS collapse. However, for moderate climate forcing and a weak solid-Earth rheology associated with the West Antarctic rift system (asthenosphere viscosities of 3x10^19 Pa s or less), we find that the combined effect of bedrock uplift and gravitational sea-level fall limits the retreat to the Amundsen Sea embayment on millennial time scales. In contrast, a stiffer Earth rheology yields a collapse under these conditions. Under a stronger climate forcing, weak Earth structures do not prevent the WAIS collapse; however, they produce a delay of up to 5000 years in comparison to a stiffer solid-Earth rheology. In an additional experiment, we test the impact of sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet. In cases when the climatic forcing is too weak to force WAIS collapse by itself, the additional rise in sea-level leads to disintegration of the WAIS

  1. Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Accardo, Natalie J.; Wiens, Douglas A.; Hernandez, Stephen; Aster, Richard C.; Nyblade, Andrew; Huerta, Audrey; Anandakrishnan, Sridhar; Wilson, Terry; Heeszel, David S.; Dalziel, Ian W. D.

    2014-07-01

    We constrain azimuthal anisotropy in the West Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS and PKS phases recorded at 37 broad-band seismometres deployed by the POLENET/ANET project. We use an eigenvalue technique to linearize the rotated and shifted shear wave horizontal particle motions and determine the fast direction and delay time for each arrival. High-quality measurements are stacked to determine the best fitting splitting parameters for each station. Overall, fast anisotropic directions are oriented at large angles to the direction of Antarctic absolute plate motion in both hotspot and no-net-rotation frameworks, showing that the anisotropy does not result from shear due to plate motion over the mantle. Further, the West Antarctic directions are substantially different from those of East Antarctica, indicating that anisotropy across the continent reflects multiple mantle regimes. We suggest that the observed anisotropy along the central Transantarctic Mountains (TAM) and adjacent West Antarctic Rift System (WARS), one of the largest zones of extended continental crust on Earth, results from asthenospheric mantle strain associated with the final pulse of western WARS extension in the late Miocene. Strong and consistent anisotropy throughout the WARS indicate fast axes subparallel to the inferred extension direction, a result unlike reports from the East African rift system and rifts within the Basin and Range, which show much greater variation. We contend that ductile shearing rather than magmatic intrusion may have been the controlling mechanism for accumulation and retention of such coherent, widespread anisotropic fabric. Splitting beneath the Marie Byrd Land Dome (MBL) is weaker than that observed elsewhere within the WARS, but shows a consistent fast direction, possibly representative of anisotropy that has been `frozen-in' to remnant thicker lithosphere. Fast directions observed inland from the

  2. Regional sea level change in response to ice mass loss in Greenland, the West Antarctic and Alaska

    NASA Astrophysics Data System (ADS)

    Brunnabend, S.-E.; Schröter, J.; Rietbroek, R.; Kusche, J.

    2015-11-01

    Besides the warming of the ocean, sea level is mainly rising due to land ice mass loss of the major ice sheets in Greenland, the West Antarctic, and the Alaskan Glaciers. However, it is not clear yet how these land ice mass losses influence regional sea level. Here, we use the global Finite Element Sea-ice Ocean Model (FESOM) to simulate sea surface height (SSH) changes caused by these ice mass losses and combine it with the passive ocean response to varying surface loading using the sea level equation. We prescribe rates of fresh water inflow, not only around Greenland, but also around the West Antarctic Ice Sheet and the mountain glaciers in Alaska with approximately present-day amplitudes of 200, 100, and 50 Gt/yr, respectively. Perturbations in sea level and in freshwater distribution with respect to a reference simulation are computed for each source separately and in their combination. The ocean mass change shows an almost globally uniform behavior. In the North Atlantic and Arctic Ocean, mass is redistributed toward coastal regions. Steric sea level change varies locally in the order of several centimeters on advective timescales of decades. Steric effects to local sea level differ significantly in different coastal locations, e.g., at North American coastal regions the steric effects may have the same order of magnitude as the mass driven effect, whereas at the European coast, steric effects remain small during the simulation period.

  3. Impact of a projected future Antarctic sea-ice reduction on the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Bader, Juergen; Voigt, Aiko; Zanchettin, Davide

    2013-04-01

    Several model and observational studies have demonstrated a strong relationship between Sahel rainfall variability and sea-surface temperatures anomalies during the 20th century. However, this relationship does not explain Sahel rainfall changes in model projections of the 21st century. This raises the possibility that other forcing factors might become predominant at the end of the 21st century. Here, simulations with the atmosphere general circulaton model ECHAM5 are performed to investigate to which extent reductions in Antarctic sea ice affect Sahel rainfall during boreal summer. To this end, the model is forced by the present and a projected future seasonal cycle of Antarctic sea ice with sea-surface temperatures outside tha Antarctic sea-ice region kept constant. Reducing the Antarctic sea ice leads to an equatorward shift of the tropical rainbelt over sub-Saharan Africa. The shift entails a strong decline of summer Sahel rainfall and a substantial rainfall increase along the Guinea Coast. The shift is associated with an atmospheric bridge that does not require changes in tropical sea-surface temperatures. While Antarctic sea-ice reductions clearly impact Sahel rainfall in our idealized ECHAM5 simulatons, they do not seem to substantially influence Sahel rainfall in the ECHAM5 CMIP3 A1B simulation.

  4. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula.

    PubMed

    Shevenell, A E; Ingalls, A E; Domack, E W; Kelly, C

    2011-02-10

    The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Niño/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.

  5. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  6. Influence of the West Antarctic Ice Sheet and its collapse on the wind and precipitation regimes of the Ross Embayment

    NASA Astrophysics Data System (ADS)

    Seles, D.; Kowalewski, D. E.

    2015-12-01

    Marine Isotope Stage 31 (MIS 31) is a key analogue for current warming trends yet the extent of the East Antarctic Ice Sheet (EAIS) and the West Antarctic Ice Sheet (WAIS) during this interglacial remains unresolved. Inconsistencies persist between offshore records (suggesting the instability of WAIS) and McMurdo Dry Valley (MDV) terrestrial datasets (indicating long-term ice sheet stability). Here we use a high-resolution regional scale climate model (RegCM3_Polar) to reconstruct paleoclimate during MIS 31 (warm orbit, 400 ppm CO2) and assess changes in precipitation and winds (including katabatic) with WAIS present versus WAIS absent. The MIS 31 scenario with WAIS present resulted in minimal changes in wind magnitude compared with current climate conditions. With WAIS absent, the model predicts a decrease in coastal and highland monthly mean average wind velocities. The greatest rates of snowfall remain along the coast but shift towards higher latitudes with the interior continent remaining dry when WAIS is removed. Focusing on the Ross Embayment, this decreased monthly mean wind velocity and shift of winds to the east indicate a greater influence of offshore winds from the Ross Sea, enabling the increase of precipitation southward along the Transantarctic Mountains (TAM) (i.e. MDV). The apparent decrease of katabatic winds with no WAIS implies that offshore winds may be responsible for bringing the warmer, wetter air into the TAM. The change in wind and precipitation in the Ross Embayment and specifically the MDV highlights the impact of WAIS on Antarctic climate and its subsequent influence on the mass balance of peripheral EAIS domes (i.e. Taylor Dome). Modeling suggests that if WAIS was absent during MIS 31, we would expect (1) greater accumulation at such domes and (2) MDV terrestrial records that reflect a wetter climate, and (3) weaker winds suggesting possibly lower ablation/erosion rates compared to if WAIS was present.

  7. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  8. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  9. Antarctic Meteorite Location Map Series

    NASA Technical Reports Server (NTRS)

    Schutt, John (Editor); Fessler, Brian (Editor); Cassidy, William (Editor)

    1989-01-01

    Antarctica has been a prolific source of meteorites since meteorite concentrations were discovered in 1969. The Antarctic Search For Meteorites (ANSMET) project has been active over much of the Trans-Antarctic Mountain Range. The first ANSMET expedition (a joint U.S.-Japanese effort) discovered what turned out to be a significant concentration of meteorites at the Allan Hills in Victoria Land. Later reconnaissance in this region resulted in the discovery of meteorite concentrations on icefields to the west of the Allan Hills, at Reckling Moraine, and Elephant Moraine. Antarctic meteorite location maps (reduced versions) of the Allan Hills main, near western, middle western, and far western icefields and the Elephant Moraine icefield are presented. Other Antarctic meteorite location maps for the specimens found by the ANSMET project are being prepared.

  10. Comparison of glacial isostasy contribution to the sea level changes during the Holocene in West and East Antarctic regions.

    NASA Astrophysics Data System (ADS)

    Poleshchuk, Ksenia; Verkulich, Sergey; Pushina, Zina

    2016-04-01

    Antarctica as geographically completed and tectonically compound continent is an interesting object for study of glacial isostatic adjustment (GIA) and sea level changes in the Holocene. The analysis of relative sea level curves is one of the most indicative approaches for glacio-isostasy estimation. The present study focuses on two different regions of Antarctic margin which sea-level changes are well researched. We compare our relative sea-level curves for Bunger Oasis (East Antarctica) and King George Island (West Antarctica) that were obtained from new geomorphological, paleogeographical and micropaleontological data. The results showed notable difference: the maximum relative water altitude had occurred between 8 000 - 6 000 yr BP and had reached 12 m a. s. l. in the Bunger Oasis and 18-20 m a. s. l. in King George Island. Furthermore, the research of other Antarctic regions revealed significant differences in sea-level altitudes. Following analysis of constructed curves and computative GIA models allow us to estimate the possible extent of glacial isostatic adjustment. Besides, this observation has indicated the importance of deglaciation rates and local tectonic features. The reported study was funded by RFBR according to the research project No. 16-35-00346 mol_a.

  11. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years

    NASA Astrophysics Data System (ADS)

    Hein, Andrew S.; Woodward, John; Marrero, Shasta M.; Dunning, Stuart A.; Steig, Eric J.; Freeman, Stewart P. H. T.; Stuart, Finlay M.; Winter, Kate; Westoby, Matthew J.; Sugden, David E.

    2016-02-01

    Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial-interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present.

  12. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years

    PubMed Central

    Hein, Andrew S.; Woodward, John; Marrero, Shasta M.; Dunning, Stuart A.; Steig, Eric J.; Freeman, Stewart P. H. T.; Stuart, Finlay M.; Winter, Kate; Westoby, Matthew J.; Sugden, David E.

    2016-01-01

    Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial–interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present. PMID:26838462

  13. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years.

    PubMed

    Hein, Andrew S; Woodward, John; Marrero, Shasta M; Dunning, Stuart A; Steig, Eric J; Freeman, Stewart P H T; Stuart, Finlay M; Winter, Kate; Westoby, Matthew J; Sugden, David E

    2016-01-01

    Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial-interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present. PMID:26838462

  14. Multiple 'Stable' States of Antarctic Intermediate Water: A Study from the Subantarctic South-West Atlantic.

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Hodell, D. A.; Peck, V. L.; Kender, S.

    2014-12-01

    Modelling studies suggest that density changes in Antarctic Intermediate Water (AAIW) played a significant role in the reorganisation of Atlantic Meridional Overturning Circulation over the last glacial period. From its principal site of formation in the SE Pacific, a significant proportion of AAIW is entrained in the Antarctic circumpolar current and enters the Atlantic through Drake Passage. Air-sea interaction within the subAntarctic SW Atlantic modifies this AAIW further, producing a cooler and fresher Atlantic end member of AAIW. Our core site is located where this branch of AAIW subducts and travels northwards along the western margin of the Atlantic basin. We present the first high-resolution, multi-proxy study of AAIW in the sub-Antarctic SW Atlantic over the last 140 kyrs. Here, we focus on the temperature and salinity records over the last two glacial terminations and at the onset of the last glaciation. We use a combination of benthic stable isotopes and elemental ratios (Mg/Ca) on the shallow infaunal species Uvigerina peregrina to reconstruct AAIW temperature and salinity. Our records suggest that AAIW temperature both increased and decreased in a step-wise manner over the last 120 kyrs hinting at 3 'stable' states for AAIW through the last glacial cycle (see shaded areas within figure). Another common feature is a transient interval of apparently warm, saline AAIW observed at the onset of both glacial terminations - could this be evidence of the 'deep, salty blob' or of increased outflow of Pacific surface waters? We identify some fundamental differences between termination I and termination II; AAIW appears to have been markedly warmer during MIS6 than at the LGM. Furthermore, the glacial-interglacial potential density difference is much greater over termination I than termination II.

  15. Upper Mantle Structure Beneath the Whitmore Mountains, West Antarctic Rift System, and Marie Byrd Land from Body-Wave Tomography

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; Lloyd, A. J.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.; Zhao, D.

    2011-12-01

    As part of the International Polar Year in Antarctica, 37 seismic stations have been installed across West Antarctica as part of the Polar Earth Observing Network (POLENET). 23 stations form a sparse backbone network of which 21 are co-located on rock sites with a network of continuously recording GPS stations. The remaining 14 stations, in conjunction with 2 backbone stations, form a seismic transect extending from the Ellsworth Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land. Here we present preliminary P and S wave velocity models of the upper mantle from regional body wave tomography using P and S travel times from teleseismic events recorded by the seismic transect during the first year (2009-2010) of deployment. Preliminary P wave velocity models consisting of ~3,000 ray paths from 266 events indicate that the upper mantle beneath the Whitmore Mountains is seismically faster than the upper mantle beneath Marie Byrd Land and the WARS. Furthermore, we observe two substantial upper mantle low velocity zones located beneath Marie Byrd Land and near the southern boundary of the WARS.

  16. ANDRILL Targets Coulman High, Ross Sea, Antarctica, to Recover Early History of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, Richard; Luyendyk, Bruce; Rack, Frank; Wilson, Doug; Sorlien, Chris; Fischbein, Steve; Harwood, David; Pyne, Alex; Falconer, Tamsin; Science Committee, Andrill

    2010-05-01

    The international Antarctic Geological Drilling (ANDRILL) Program recently recovered long (> 1000 m) rock and sediment cores from two sites in McMurdo Sound, and now aims to recover new stratigraphic sections from sites beneath the Ross Ice Shelf east of Ross Island on the structural Coulman High. ANDRILL will utilize new drilling capabilities to operate from a fast moving ice shelf platform (~700 m/year northward) and complete two deep holes. The drilling target for the Coulman High Project is a Cretaceous (?) to lower Miocene section. Recovery of these strata will allow our team to investigate: (1) the behaviour of ice sheets in West Antarctica during periods of moderate to high greenhouse gas levels; (2) the Antarctic environment in warm greenhouse periods; and (3) tectonic processes within the West Antarctic Rift System. In 2003 and 2004 a marine multichannel seismic grid was completed across Coulman High as close as 500 m from the front of the Ross Ice Shelf. The ice shelf has advanced 4 km north and now sits over several seismic lines providing a platform from which to drill into sites located on those lines. Selected drill sites target ~600 m of laterally continuous sediments underlain by a major regional unconformity and 350 - 850 m of faulted sediments and basement beneath it. Seismic correlation from Deep Sea Drilling Project Sites 272 and 273 to the Coulman High sites implies that the section proposed to be drilled predates 19 Ma. Several new operational challenges exist at the Coulman High sites and work is underway to modify existing technology and develop new approaches to address them. Access to the sea-floor requires melting through 250 meters of ice shelf using the ANDRILL hot water drill, which has previously be used to maintain an open hole through 80 meters of ice. The amount of lateral deflection that ANDRILL's sea-riser can accommodate is limited by water column thickness (630 m) and amount of ice shelf movement of ~2 m/day. These parameters

  17. Using blue-ice moraines to constrain elevation changes of the West Antarctic Ice Sheet in the southern Ellsworth Mountains

    NASA Astrophysics Data System (ADS)

    Sugden, David; Woodward, John; Dunning, Stuart; Hein, Andy; Marrero, Shasta; Le-Brocq, Anne

    2014-05-01

    Observations in the Weddell Sea sector of the Antarctic Ice Sheet have not yet allowed the dating of elevated glacier trimlines and associated deposits in the Ellsworth Mountains. This uncertainty limits the value of models of changing ice-sheet configuration, volume and, by extension, sea level during glacial cycles and earlier. Here we present the emerging results of a study into the origin and evolution of blue-ice moraines in the Heritage Range, southern Ellsworth Mountains, and begin to unravel the long record of ice-sheet history they hold. Our findings so far are: (a) Ground Penetrating Radar shows that the blue-ice moraines are equilibrium forms bringing basal debris to the ice surface; the compressive ice flow is caused by enhanced ablation at the mountain foot. (b) Moraines are concentrated in embayments that focus katabatic winds and their location is largely controlled by topography. (c) The elevated blue-ice moraines in the southern Ellsworth Mountains hold a continuous record of West Antarctic Ice Sheet history going back 600,000 years; so far we have not found evidence of de-glacial intervals. (d) Thinning since the LGM (~40 ka?) is < 450 m and agrees with views of modest changes in the Weddell Sea sector during glacial cycles; most thinning occurred in the Holocene (6-3 ka). (e) Downslope flow of debris-covered ice in embayments follows ice surface lowering; it transports old clasts downslope and exposes fresh clasts, thus complicating the interpretation of exposure ages. We hope that a second field season in 2014 to re-measure 90 stakes for horizontal movement and ablation will help quantify the rate of blue-ice moraine formation.

  18. Submarine and subaerial lavas in the West Antarctic Rift System: Temporal record of shifting magma source components from the lithosphere and asthenosphere

    NASA Astrophysics Data System (ADS)

    Aviado, Kimberly B.; Rilling-Hall, Sarah; Bryce, Julia G.; Mukasa, Samuel B.

    2015-12-01

    The petrogenesis of Cenozoic alkaline magmas in the West Antarctic Rift System (WARS) remains controversial, with competing models highlighting the roles of decompression melting due to passive rifting, active plume upwelling in the asthenosphere, and flux melting of a lithospheric mantle metasomatized by subduction. In this study, seamounts sampled in the Terror Rift region of the Ross Sea provide the first geochemical information from submarine lavas in the Ross Embayment in order to evaluate melting models. Together with subaerial samples from Franklin Island, Beaufort Island, and Mt. Melbourne in Northern Victoria Land (NVL), these Ross Sea lavas exhibit ocean island basalt (OIB)-like trace element signatures and isotopic affinities for the C or FOZO mantle endmember. Major-oxide compositions are consistent with the presence of multiple recycled lithologies in the mantle source region(s), including pyroxenite and volatile-rich lithologies such as amphibole-bearing, metasomatized peridotite. We interpret these observations as evidence that ongoing tectonomagmatic activity in the WARS is facilitated by melting of subduction-modified mantle generated during 550-100 Ma subduction along the paleo-Pacific margin of Gondwana. Following ingrowth of radiogenic daughter isotopes in high-µ (U/Pb) domains, Cenozoic extension triggered decompression melting of easily fusible, hydrated metasomes. This multistage magma generation model attempts to reconcile geochemical observations with increasing geophysical evidence that the broad seismic low-velocity anomaly imaged beneath West Antarctica and most of the Southern Ocean may be in part a compositional structure inherited from previous active margin tectonics.

  19. Primary productivity off the Antarctic coast from 30°-80°E; BROKE-West survey, 2006

    NASA Astrophysics Data System (ADS)

    Westwood, Karen J.; Brian Griffiths, F.; Meiners, Klaus M.; Williams, Guy D.

    2010-05-01

    Primary productivity was measured in the Indian Sector of the Southern Ocean (30° to 80°E) as part of a multi-disciplinary study during austral summer; Baseline Research on Oceanography, Krill and the Environment, West (BROKE-West Survey, 2006). Gross integrated (0-150 m) productivity rates within the marginal ice zone (MIZ) were significantly higher than within the open ocean, with averages of 2110.2±1347.1 and 595.0±283.0 mg C m -2 d -1, respectively. In the MIZ, high productivity was associated with shallow mixed-layer depths and increased P max up to 5.158 mg C (mg chl a) -1 h -1. High Si:N drawdown ratios in the open ocean (4.1±1.5) compared to the MIZ (2.2±0.79) also suggested that iron limitation was important for the control of productivity. This was supported by higher F v/F m ratios in the MIZ (0.50±0.11 above 40 m) compared to the open ocean (0.36±0.08). As well, in the open ocean there were regions of elevated productivity associated with the seasonal pycnocline where iron availability was possibly increased. High silicate drawdown in the north-eastern section of the BROKE-West survey area suggested significant diatom growth and was linked to the presence of the southern Antarctic Circumpolar Current front (sACCF). However, low assimilation numbers (12.8-23.2 mg C mg chl a-1 d -1) and F v/F m ratios indicated that cells were senescent with initial growth occurring earlier in the season. In the western section of the survey area within the MIZ, high NO 3 drawdown but relatively low silicate drawdown were associated with a Phaeocystis bloom. NO 3 concentrations were strongly negatively correlated with column-integrated productivity and chlorophyll biomass which was expected given the requirement for this nutrient by all phytoplankton groups. Regardless, concentrations of both NO 3 and silicate were above limiting levels within the entire BROKE-West survey area (N>15.7 μM, Si>18.3 μM) supporting the high-nutrient low-chlorophyll status of the

  20. Evidence for a substantial West Antarctic ice sheet contribution to meltwater pulses and abrupt global sea level rise

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.

    2015-12-01

    During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.

  1. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Hein, Andrew S.; Marrero, Shasta M.; Woodward, John; Dunning, Stuart A.; Winter, Kate; Westoby, Matthew J.; Freeman, Stewart P. H. T.; Shanks, Richard P.; Sugden, David E.

    2016-08-01

    Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall ~400 m to the present level at 6.5-3.5 ka, and could have contributed 1.4-2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet.

  2. The rapid disintegration of projections: the West Antarctic Ice Sheet and the intergovernmental panel on climate change.

    PubMed

    O'Reilly, Jessica; Oreskes, Naomi; Oppenheimer, Michael

    2012-10-01

    How and why did the scientific consensus about sea level rise due to the disintegration of the West Antarctic Ice Sheet (WAIS), expressed in the third Intergovernmental Panel on Climate Change (IPCC) assessment, disintegrate on the road to the fourth? Using ethnographic interviews and analysis of IPCC documents, we trace the abrupt disintegration of the WAIS consensus. First, we provide a brief historical overview of scientific assessments of the WAIS. Second, we provide a detailed case study of the decision not to provide a WAIS prediction in the Fourth Assessment Report. Third, we discuss the implications of this outcome for the general issue of scientists and policymakers working in assessment organizations to make projections. IPCC authors were less certain about potential WAIS futures than in previous assessment reports in part because of new information, but also because of the outcome of cultural processes within the IPCC, including how people were selected for and worked together within their writing groups. It became too difficult for IPCC assessors to project the range of possible futures for WAIS due to shifts in scientific knowledge as well as in the institutions that facilitated the interpretations of this knowledge.

  3. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet.

    PubMed

    Hein, Andrew S; Marrero, Shasta M; Woodward, John; Dunning, Stuart A; Winter, Kate; Westoby, Matthew J; Freeman, Stewart P H T; Shanks, Richard P; Sugden, David E

    2016-08-22

    Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall ∼400 m to the present level at 6.5-3.5 ka, and could have contributed 1.4-2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet.

  4. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet

    PubMed Central

    Hein, Andrew S.; Marrero, Shasta M.; Woodward, John; Dunning, Stuart A.; Winter, Kate; Westoby, Matthew J.; Freeman, Stewart P. H. T.; Shanks, Richard P.; Sugden, David E.

    2016-01-01

    Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall ∼400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet. PMID:27545202

  5. Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile

    NASA Astrophysics Data System (ADS)

    Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.

    2016-01-01

    Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.

  6. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    NASA Astrophysics Data System (ADS)

    Cornford, S. L.; Martin, D. F.; Payne, A. J.; Ng, E. G.; Le Brocq, A. M.; Gladstone, R. M.; Edwards, T. L.; Shannon, S. R.; Agosta, C.; van den Broeke, M. R.; Hellmer, H. H.; Krinner, G.; Ligtenberg, S. R. M.; Timmermann, R.; Vaughan, D. G.

    2015-08-01

    We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet, deploying sub-kilometer resolution around the grounding line since coarser resolution results in substantial underestimation of the response. Each of the simulations begins with a geometry and velocity close to present-day observations, and evolves according to variation in meteoric ice accumulation rates and oceanic ice shelf melt rates. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rate anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions and ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Within the Amundsen Sea Embayment the largest single source of variability is the onset of sustained retreat in Thwaites Glacier, which can triple the rate of eustatic sea level rise.

  7. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Payne, A. J.; Ng, E. G.; Le Brocq, A. M.; Gladstone, R. M.; Edwards, T. L.; Shannon, S. R.; Agosta, C.; van den Broeke, M. R.; et al

    2015-03-23

    We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves overmore » a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.« less

  8. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet.

    PubMed

    Hein, Andrew S; Marrero, Shasta M; Woodward, John; Dunning, Stuart A; Winter, Kate; Westoby, Matthew J; Freeman, Stewart P H T; Shanks, Richard P; Sugden, David E

    2016-01-01

    Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall ∼400 m to the present level at 6.5-3.5 ka, and could have contributed 1.4-2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet. PMID:27545202

  9. Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic.

    PubMed

    Schlensog, Mark; Green, T G Allan; Schroeter, Burkhard

    2013-09-01

    Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vegetation is mainly cryptogamic. Cryptogams are poikilohydric and are only metabolically and photosynthetically active when hydrated. Activity patterns of the main life forms present, bryophytes (10 species, ecto- and endohydric), lichens (5 species) and phanerogams (2 species), were monitored for 21 days using chlorophyll a fluorescence as an indicator of metabolic activity and, therefore, of water regime at a mesic (hydration by meltwater) and a xeric (hydration by precipitation) site on Léonie Island/West Antarctic Peninsula (67°36'S). Length of activity depended mainly on site and form of hydration. Plants at the mesic site that were hydrated by meltwater were active for long periods, up to 100 % of the measurement period, whilst activity was much shorter at the xeric site where hydration was entirely by precipitation. There were also differences due to life form, with phanerogams and mesic bryophytes being most active and lichens generally much less so. The length of the active period for lichens was longer than in continental Antarctica but shorter than in the more northern Antarctic Peninsula. Light intensity when hydrated was positively related to the length of the active period. High activity species were strongly coupled to the incident light whilst low activity species were active under lower light levels and essentially uncoupled from incident light. Temperatures were little different between sites and also almost identical to temperatures, when active, for lichens in continental and peninsular Antarctica. Gradients in vegetation cover and growth rates across Antarctica are, therefore, not likely to be due to differences in temperature but more likely to

  10. Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic.

    PubMed

    Schlensog, Mark; Green, T G Allan; Schroeter, Burkhard

    2013-09-01

    Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vegetation is mainly cryptogamic. Cryptogams are poikilohydric and are only metabolically and photosynthetically active when hydrated. Activity patterns of the main life forms present, bryophytes (10 species, ecto- and endohydric), lichens (5 species) and phanerogams (2 species), were monitored for 21 days using chlorophyll a fluorescence as an indicator of metabolic activity and, therefore, of water regime at a mesic (hydration by meltwater) and a xeric (hydration by precipitation) site on Léonie Island/West Antarctic Peninsula (67°36'S). Length of activity depended mainly on site and form of hydration. Plants at the mesic site that were hydrated by meltwater were active for long periods, up to 100 % of the measurement period, whilst activity was much shorter at the xeric site where hydration was entirely by precipitation. There were also differences due to life form, with phanerogams and mesic bryophytes being most active and lichens generally much less so. The length of the active period for lichens was longer than in continental Antarctica but shorter than in the more northern Antarctic Peninsula. Light intensity when hydrated was positively related to the length of the active period. High activity species were strongly coupled to the incident light whilst low activity species were active under lower light levels and essentially uncoupled from incident light. Temperatures were little different between sites and also almost identical to temperatures, when active, for lichens in continental and peninsular Antarctica. Gradients in vegetation cover and growth rates across Antarctica are, therefore, not likely to be due to differences in temperature but more likely to

  11. Seasonal climate information preserved within West Antarctic ice cores and its relation to large-scale atmospheric circulation and regional sea ice variations

    NASA Astrophysics Data System (ADS)

    Küttel, M.; Steig, E. J.; Ding, Q.; Battisti, D. S.

    2010-12-01

    Recent evidence suggests that West Antarctica has been warming since at least the 1950s. With the instrumental record being limited to the mid-20th century, indirect information from stable isotopes (δ18O and δD, hereafter collectively δ) preserved within ice cores have commonly been used to place this warming into a long term context. Here, using a large number of δ records obtained during the International Trans-Antarctic Scientific Expedition (ITASE), past variations in West Antarctic δ are not only investigated over time but also in space. This study therefore provides an important complement to longer records from single locations as e.g. the currently being processed West Antarctic ice sheet (WAIS) Divide ice core. Although snow accumulation rates at the ITASE sites in West Antarctica are variable, they are generally high enough to allow studies on sub-annual scale over the last 50-100 years. Here, we show that variations in δ in this region are strongly related to the state of the large-scale atmospheric circulation as well as sea ice variations in the adjacent Southern Ocean, with important seasonal changes. While a strong relationship to sea ice changes in the Ross and Amundsen Sea as well as to the atmospheric circulation offshore is found during austral fall (MAM) and winter (JJA), only modest correlations are found during spring (SON) and summer (DJF). Interestingly, the correlations with the atmospheric circulation in the latter two seasons have the strongest signal over the Antarctic continent, but not offshore - an important difference to MAM and JJA. These seasonal changes are in good agreement with the seasonally varying predominant circulation: meridional with more frequent storms in the Amundsen Sea during MAM and JJA and more zonal and stable during SON and DJF. The relationship to regional temperature is similarly seasonally variable with highest correlations found during MAM and JJA. Notably, the circulation pattern found to be strongest

  12. Comparing ice discharge through West Antarctic Gateways: Weddell vs. Amundsen Sea warming

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Levermann, A.; Winkelmann, R.

    2015-03-01

    Future changes in Antarctic ice discharge will be largely controlled by the fate of the floating ice shelves, which exert a back-stress onto Antarctica's marine outlet glaciers. Ice loss in response to warming of the Amundsen Sea has been observed and investigated as a potential trigger for the marine ice-sheet instability. Recent observations and simulations suggest that the Amundsen Sea Sector might already be unstable which would have strong implications for global sea-level rise. At the same time, regional ocean projections show much stronger warm-water intrusion into ice-shelf cavities in the Weddell Sea compared to the observed Amundsen warming. Here we present results of numerical ice sheet modelling with the Parallel Ice Sheet Model (PISM) which show that idealized, step-function type ocean warming in the Weddell Sea leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. This is consistent with the specific combination of bedrock and ice topography in the Weddell Sea Sector which results in an ice sheet close to floatation. In response to even slight ocean warming, ice loss increases rapidly, peaks and declines within one century. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels. Although there is more marine ice stored above sea level in close vicinity of the grounding line compared to the Weddell Sea Sector, the ice sheet is farther from floatation and the grounding line initially retreats more slowly.

  13. Large-Ensemble Modeling of Past Variations in West Antarctic Embayments

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Deconto, R. M.

    2014-12-01

    Recent observations of thinning and retreat of the Pine Island and Thwaites Glaciers identify this sector of West Antarctica as particularly vulnerable to future climate change. To date, most future modeling of these glaciers has beenvalidated using recent and modern observations. As an alternate approach,we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat in this sector, making use of geologic data of ice extents from ~20,000 years BP to present, both for the Amundsen Sea sector and also for the Ross and Weddellembayments.Following recent ice-sheet studies, we use Large-Ensemble statistical techniques, performing sets of ~500 to 1000 runs with varying model parameters. The model is run for the last 20 kyrs on 5 to 20-km grids spanning West Antarctica, with lateral boundary conditions from a prior continental-scale simulation. An objective score for each run is calculated using reconstructed past grounding lines, shelf extents, relative sea levels, and modern conditions. Runs are extended into the future (few millennia) with simple atmospheric and oceanic forcing. The goal is to produce calibrated probabilistic envelopes of model parameter ranges and simulated ice retreat.Preliminary results are presented for Large Ensembles with (i) Latin HyperCube sampling in high-dimensional parameter space, and (ii) dense sampling with a lower number of parameters. We focus on optimal parameter differencesbetween the 3 embayments, validation with other paleo data, contribution to meltwater pulses ~14 to 12 ka, and future projections. Most reasonable parameter combinations produce drastic future retreat into the interior Pine Island and Thwaites basins within ~2000 years, adding ~2 m to global sea-level rise.

  14. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing

    SciTech Connect

    Behrendt, J.C. ); Cooper, A. )

    1991-04-01

    The Cenzoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. It is bounded on one side by a spectacular 4-to 5-km-high rift-shoulder scarp (maximum bedrock relief 5 to 7 km) from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. Jurassic tholeiites crop out with the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed discontinuously along the lower elevation (1-2 km) section of the Transantarctic Mountains to the Weddell Sea. Various lines of evidence, no one of which is independently conclusive, lead the authors (as others have also suggested) to interpret the following. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of {approximately}1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. The authors speculate that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. They suggest a possible synergistic relation between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time.

  15. A Prediction of Increase in Subglacial Volcanism Beneath the West Antarctic Ice Sheet (WAIS) as Future Deglaciation Caused by Ocean Circulation Proceeds

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; LeMasurier, W. E.

    2015-12-01

    Many decades of aeromagnetic surveying (e.g. Behrendt, 1964; 2013; and others) over the West Antarctic Ice sheet (WAIS) have shown >1000 high amplitude, shallow source magnetic anomalies interpreted as as indicating subglacial volcanic centers of late Cenozoic age to presently active. Similar anomalies exist over exposed volcanic rocks bordering the WAIS in places.Recent papers (e.g. Wouters et al., 2015; Paolo, et al.; 2015 and others) based on satellite altimetry have shown dramatic thinning and retreat of ice shelves, particularly those bordering the Amundsen and Bellingshausen Seas, caused by melting from circulation of warming sea water. Previous workers have shown that when ice shelves collapse, the ice streams previously dammed by them accelerate an order of magnitude higher velocity, and surface elevation decreases. GRACE satellite interpretations (e.g. Velicogna et al., and others) indicate mass loss of WAIS in recent years.The bed elevation beneath the WAIS deepens inland from the Amundsen and Bellingshausen coasts, although high relief volcanic topography is present in a number of areas beneath the ice.Crowley et a. (2015) have shown that glacial cycles may drive production of oceanic crust by lowering pressure in the mantle resulting in increased melting and magma production. Increased volcanism due to deglaciation in Iceland has apparently produced increased in volcanic activity there. Deglaciation of the Norwegian continental shelf has resulted in faulting of the sea floor and similar faulting has been reported of the Ross Sea shelf following deglaciation there.I suggest here that as the WAIS collapses in the future resulting from climate change, an increase in volcanic activity beneath the ice might be expected. This may provide a feedback mechanism for increase in ice melting.

  16. West Antarctic Ice Sheet retreat from Pine Island Bay during the Holocene: New insights into forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Claus-Dieter; Smith, James; Kuhn, Gerhard; Poole, Chris; Hodell, David; Elderfield, Harry; Kender, Sev; Williams, Mark; Peck, Victoria; Larter, Robert; Klages, Johann; Graham, Alastair; Forwick, Matthias; Gohl, Karsten

    2013-04-01

    The Amundsen Sea sector of the largely marine-based and therefore conditionally unstable West Antarctic Ice Sheet (WAIS) contains enough ice to raise global sea level by ca. 1.5 metres. At present, ice streams draining this sector into the Southern Ocean, especially glaciers flowing into Pine Island Bay in the eastern Amundsen Sea embayment, are undergoing considerable mass loss characterised by major thinning, flow acceleration and rapid grounding-line retreat. Sub-ice shelf melting by relatively warm Circumpolar Deep Water (CDW) upwelling onto the continental shelf is held responsible for these dynamical changes but atmospheric warming in West Antarctica may also have contributed to them. In contrast to the modern situation, the long-term history of the Amundsen Sea sector and the mechanisms forcing its deglaciation during the Holocene are only poorly constrained. We will present new palaeoenvironmenal data obtained from marine sediment cores collected in Pine Island Bay. The cores targeted shallow sites on the inner continental shelf and successfully recovered sedimentary sequences bearing calcareous microfossils. Radiocarbon ages on these microfossils demonstrate that the grounding line of the WAIS retreated to within ~100 km of its modern position before ca. 10 kyr BP (thousand years before present), which is consistent with an early WAIS retreat from near-coastal locations in the western Amundsen Sea embayment. Currently, there is no evidence that the grounding line had retreated landward of its modern position during the Holocene. Therefore, the chronological constraints may imply that during the last 10 kyr any episodes of fast grounding-line retreat similar to those observed today were short-lived and rare. Preliminary geochemical data from benthic and planktonic foraminifera tests in the cores from Pine Island Bay reveals that intense CDW upwelling coincided with and may have forced the deglaciation of the inner continental shelf. Furthermore, we observe

  17. The case for nearly continuous extension of the West Antarctic Rift System, 105-25 Ma (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, D. S.; Luyendyk, B. P.

    2010-12-01

    It is a common perception that extension in the West Antarctic Rift System (WARS) was a two-phase process, with a Cretaceous phase ending when the Campbell Plateau rifted from West Antarctica (~80 Ma), and a mid-Cenozoic phase synchronous with sea floor spreading in the Adare trough (~45-25 Ma). Several lines of evidence indicate that significant extension probably occurred in the intervening 80-45 Ma interval. The strongest evidence comes from subsidence rates on the Central High and Coulman High structures in the central-western Ross Sea, where DSDP Site 270 and other areas with shallow basement have subsided 1 km or more since Oligocene time. With sediment load, these subsidence rates are reasonable for thermal subsidence resulting from extension with a stretching factor of about 2.0-2.5 at about 50-70 Ma, but are hard to reconcile with an extension age around 90 Ma. The seismic velocity structure of the WARS inferred from global surface-wave dispersion is similar to that of oceanic lithosphere of age 40-60 Ma [Ritzwoller et al., 2001 JGR]. Geometric relations of sea floor between Adare Trough and Iselen Bank, northwest Ross Sea, suggest sea floor spreading of about 130 km during early Cenozoic, before the Adare Trough spreading episode started. Numerous cooling ages in the Transantarctic Mountains in the range of 55-45 Ma [Fitzgerald, 1992 Tectonics; Miller et al., 2010 Tectonics] support the interpretation of significant extension prior to 45 Ma. Present crustal thickness of about 22 km near DSDP Site 270 [Trey et al., 1999 Tectonophysics] suggests a pre-extension crustal thickness exceeding 50 km. A simple overall interpretation follows that the WARS has a tectonic history similar to the Basin and Range of western North America: a thick-crust orogenic highland extended for many tens of million years. The main difference between the WARS and the Basin and Range is the post-tectonic cooling and subsidence in the WARS.

  18. Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin

    NASA Astrophysics Data System (ADS)

    Mengel, M.; Feldmann, J.; Levermann, A.

    2016-01-01

    Antarctica's contribution to global sea-level rise has recently been increasing. Whether its ice discharge will become unstable and decouple from anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance. Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deep water into the cavity below West Antarctica's Filchner-Ronne ice shelf within the next two centuries. The ice basin's retrograde bed slope would allow for an unstable ice-sheet retreat, but the buttressing of the large ice shelf and the narrow glacier troughs tend to inhibit such instability. It is unclear whether future ice loss will be dominated by ice instability or anthropogenic forcing. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding-line retreat, that the sea-level response of the Filchner-Ronne ice basin is not dominated by ice instability and follows the strength of the forcing quasi-linearly. We find that the ice loss reduces after each pulse of projected warm water intrusion. The long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice-sheet instability.

  19. Unique Aeromagnetic-radar Ice-sounding Survey over the West Antarctic Ice Sheet Allows Three Dimensional Definition of Sources of Magnetic Anomalies Caused by Subglacial Volcanic Sources at the Bed of the Ice

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Casertz; Soar Teams

    2011-12-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has proven the most useful geophysical tool for studying subglacial volcanic rocks beneath the WAIS since early surveys in the 1950s. The Central West Antarctica (CWA) aerogeophysical survey covering ~354,000 km2 (about the area of Nevada and California combined) over the WAIS, consisting of a 5-km line-spaced, orthogonal set of aeromagnetic, radar ice-sounding and aerogravity measurements, is a unique Antarctic data set. This 1990-97 survey (CASERTZ and SOAR), still provides invaluable information on subglacial volcanic rocks, particularly when combined with widely spaced older aeromagnetic flight lines over a much greater area. These combined survey data indicate numerous high-amplitude (100->1000 nT), 5-50 km width, shallow-source, magnetic anomalies over a very extensive area (>1.2 x 106 km2) mostly resulting from subglacial volcanic eruptions. I interpreted the anomalies sampled in the CWA survey as defining ~1000 "volcanic centers" requiring high remanent normal magnetizations in the present field direction. About 400 of these anomaly sources (conservatively selected) are correlated with bed topography. The tops of >80% of these anomaly sources have <200 m relief at the bed of the WAIS. They appear modified by moving ice, requiring a younger age than the WAIS (~25 Ma). The 5 km by 5 km orthogonal flight line survey obviated aliasing of the magnetic and radar ice sounding data, because it is approximately equivalent to the flight elevation above the ice (1 km) surface plus the ice thickness (2-3 km); it reveals the magnetic anomalies and the tops of volcanic sources at its bed in three dimensions. Models (2 1/2 D) fit to a number of the magnetic anomalies, whose sources are at the bed of the ice sheet are constrained by topography measured by the radar ice sounding. Volcanoes in the WARS are <34 Ma, but at least four are active

  20. A history of leisure activities at SANAE, an Antarctic research base (1970-93).

    PubMed

    van der Merwe, F J

    1998-04-01

    Leisure activities of the crew at the South African National Antarctic Expedition (SANAE) are reported for the period from 1970-1993. Favorite pastimes at the underground base were card games, pool, darts, movies and videos, music, reading, and mind-games. Cliques and hierarchies developed among the men. Outdoor activities were limited to the summer. The significance of physical activities in social isolation is explored. PMID:11541838

  1. Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications.

    PubMed

    Figuerola, Blanca; Sala-Comorera, Laura; Angulo-Preckler, Carlos; Vázquez, Jennifer; Jesús Montes, M; García-Aljaro, Cristina; Mercadé, Elena; Blanch, Anicet R; Avila, Conxita

    2014-10-01

    The antimicrobial activity of Antarctic bryozoans and the ecological functions of the chemical compounds involved remain largely unknown. To determine the significant ecological and applied antimicrobial effects, 16 ether and 16 butanol extracts obtained from 13 different bryozoan species were tested against six Antarctic (including Psychrobacter luti, Shewanella livingstonensis and 4 new isolated strains) and two bacterial strains from culture collections (Escherichia coli and Bacillus cereus). Results from the bioassays reveal that all ether extracts exhibited antimicrobial activity against some bacteria. Only one butanol extract produced inhibition, indicating that antimicrobial compounds are mainly lipophilic. Ether extracts of the genus Camptoplites inhibited the majority of bacterial strains, thus indicating a broad-spectrum of antimicrobial activity. Moreover, most ether extracts presented activities against bacterial strains from culture collections, suggesting the potential use of these extracts as antimicrobial drugs against pathogenic bacteria.

  2. Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications.

    PubMed

    Figuerola, Blanca; Sala-Comorera, Laura; Angulo-Preckler, Carlos; Vázquez, Jennifer; Jesús Montes, M; García-Aljaro, Cristina; Mercadé, Elena; Blanch, Anicet R; Avila, Conxita

    2014-10-01

    The antimicrobial activity of Antarctic bryozoans and the ecological functions of the chemical compounds involved remain largely unknown. To determine the significant ecological and applied antimicrobial effects, 16 ether and 16 butanol extracts obtained from 13 different bryozoan species were tested against six Antarctic (including Psychrobacter luti, Shewanella livingstonensis and 4 new isolated strains) and two bacterial strains from culture collections (Escherichia coli and Bacillus cereus). Results from the bioassays reveal that all ether extracts exhibited antimicrobial activity against some bacteria. Only one butanol extract produced inhibition, indicating that antimicrobial compounds are mainly lipophilic. Ether extracts of the genus Camptoplites inhibited the majority of bacterial strains, thus indicating a broad-spectrum of antimicrobial activity. Moreover, most ether extracts presented activities against bacterial strains from culture collections, suggesting the potential use of these extracts as antimicrobial drugs against pathogenic bacteria. PMID:25232675

  3. Preparation and anti-osteoporotic activities in vivo of phosphorylated peptides from Antarctic krill (Euphausia superba).

    PubMed

    Wang, Yanchao; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu; Chang, Yaoguang; Xue, Yong

    2015-06-01

    Antarctic krill (Euphausia superba) protein serves as a novel sustainable protein source for human. Krill protein isolate was phosphorylated by the dry-heating method with sodium pyrophosphate. Phosphorylated peptides from Antarctic krill (PP-AKP) were obtained from phosphorylated protein through tryptic hydrolysis. Two types of phosphate bonds were introduced by phosphorylation, i.e. PO and PO bonds. The anti-osteoporotic activities of PP-AKP at two doses (400 and 800mg/kg body weight) were investigated with an osteoporotic rat model, which was established with bilateral ovariectomy surgery. Different doses of PP-AKP were given intraperitoneal injections to rats once a day with alendronate as a positive control. Phosphorylated peptides from Antarctic krill dose-dependently preserved bone mineral density in osteoporotic rats by increasing the degree of bone mineralization. Both trabecular and cortical bone strength in osteoporotic rats was significantly improved with PP-AKP treatment. The mechanism by which PP-AKP augmented bone mineral density and bone strength was relation to the reduction in osteoclast-mediated bone remodeling, as was supported by the decrease in bone resorption markers. Phosphorylated peptides from Antarctic krill could be developed as functional food or nutritional supplements.

  4. Antifouling activity in some benthic Antarctic invertebrates by "in situ" experiments at Deception Island, Antarctica.

    PubMed

    Angulo-Preckler, Carlos; Cid, Cristina; Oliva, Francesc; Avila, Conxita

    2015-04-01

    Competition for space is a remarkable ecological force, comparable to predation, producing a strong selective pressure on benthic invertebrates. Some invertebrates, thus, possess antimicrobial compounds to reduce surface bacterial growth. Antimicrobial inhibition is the first step in avoiding being overgrown by other organisms, which may have a negative impact in feeding, respiration, reproduction … The in situ inhibition of bacterial biofilm was used here as an indicator of antifouling activity by testing hydrophilic extracts of twelve Antarctic invertebrates. Using two different approaches (genetics and confocal techniques) different levels of activity were found in the tested organisms. In fact, differences within body parts of the studied organisms were determined, in agreement with the Optimal Defense Theory. Eight out of 15 extracts tested had negative effects on fouling after 28 days submerged in Antarctic waters. Thus, although chemical defenses may be quite species-specific in their ecological roles, these results suggest that different chemical strategies exist to deal with space competition.

  5. Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic Ice Sheet Divide Ice Core

    NASA Astrophysics Data System (ADS)

    Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.

    2009-12-01

    Concentrations of cosmogenic 10Be in polar ice samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in ice cores also provides independent chronological markers to tie Antarctic to Greenland ice cores and to tie Holocene ice cores to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide core, WDC06A. The ice samples are typically 1-2 kg and represent 2-4 m of ice, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC core, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) ice cores, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar ice cores, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide ice core with that in other Antarctic as well as Greenland ice cores and with the 14C treering record. Acknowledgment. This

  6. Permafrost and Active Layer Monitoring in the Maritime Antarctic: A Contribution to TSP and ANTPAS projects

    NASA Astrophysics Data System (ADS)

    Vieira, G.; Ramos, M.; Batista, V.; Caselli, A.; Correia, A.; Fragoso, M.; Gruber, S.; Hauck, C.; Kenderova, R.; Lopez-Martinez, J.; Melo, R.; Mendes-Victor, L. A.; Miranda, P.; Mora, C.; Neves, M.; Pimpirev, C.; Rocha, M.; Santos, F.; Blanco, J. J.; Serrano, E.; Trigo, I.; Tome, D.; Trindade, A.

    2008-12-01

    Permafrost and active layer monitoring in the Maritime Antarctic (PERMANTAR) is a Portuguese funded International Project that, in cooperation with the Spanish project PERMAMODEL, will assure the installation and the maintenance of a network of boreholes and active layer monitoring sites, in order to characterize the spatial distribution of the physical and thermal properties of permafrost, as well as the periglacial processes in Livingston and Deception Islands (South Shetlands). The project is part of the International Permafrost Association IPY projects Thermal State of Permafrost (TSP) and Antarctic and Sub-Antarctic Permafrost, Soils and Periglacial Environments (ANTPAS). It contributes to GTN-P and CALM-S networks. The PERMANTAR-PERMAMODEL permafrost and active layer monitoring network includes several boreholes: Reina Sofia hill (since 2000, 1.1m), Incinerador (2000, 2.3m), Ohridski 1 (2008, 5m), Ohridski 2 (2008, 6m), Gulbenkian-Permamodel 1 (2008, 25m) and Gulbenkian- Permamodel 2 (2008, 15m). For active layer monitoring, several CALM-S sites have been installed: Crater Lake (2006), Collado Ramos (2007), Reina Sofia (2007) and Ohridski (2007). The monitoring activities are accompanied by detailed geomorphological mapping in order to identify and map the geomorphic processes related to permafrost or active layer dynamics. Sites will be installed in early 2009 for monitoring rates of geomorphological activity in relation to climate change (e.g. solifluction, rockglaciers, thermokarst). In order to analyse the spatial distribution of permafrost and its ice content, electrical resistivity tomography (ERT), and seismic refraction surveys have been performed and, in early 2009, continuous ERT surveying instrumentation will be installed for monitoring active layer evolution. The paper presents a synthesis of the activities, as well as the results obtained up to the present, mainly relating to ground temperature monitoring and from permafrost characteristics and

  7. Geophysical evidence of a Large Igneous Province (LIP) in the West Antarctic Rift System (WARS), and its potential influence on the stability of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2010-12-01

    The WAIS flows through the volcanically active WARS. The inland rift shoulder ranges from 4-5 km elevation, (5-7 km relief, the greatest in the world); it is coincident with the Transantarctic Mountains from northern Victoria land bordering the Ross Sea, south along the west and south side of the Ross Ice Shelf to the Horlick Mountains. It forms the boundary between East and West Antarctica in this area, but diverges to the Ellsworth Mountains and forms the inland boundary of the WAIS and WARS there. Throughout the WARS shoulder to the Horlick Mountains, exposures of mostly late Cenozoic alkaline volcanic rocks are reported, as is the case in the coastal Marie Byrd Land area on the Southern Ocean aide of the WARS. The Transantarctic Mountains, continue at a much lower elevation (2000-750 m) to form the boundary between East and West Antarctica in the Filchner Ice Shelf area. Aeromagnetic and radar ice-sounding surveys over the WAIS indicated numerous high-amplitude (100->1000 nT),5-50-km width, shallow-source, magnetic anomalies over a very extensive area (>500,000 km2 ) that has been interpreted as evidence of mostly subglacial volcanic eruptions (“volcanic centers”). Behrendt et al, (2005, 2008) interpreted these anomalies as >1000 "volcanic centers" requiring high remanent normal (and at least 10% reversed) magnetizations in the present field direction. These data were interpreted to show that >80% of the anomaly sources at the bed of the WAIS, were modified by the moving ice, requiring a younger age than the WAIS (~25 Ma). Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS. Although exposed volcanoes surrounding the WAIS extend in age to ~34 Ma., Mt Erebus (<1 Ma), Mt. Melbourne (<0.26 Ma), and Mt. Takahe (<0.1 Ma) are examples of active volcanoes in the WAIS area. However, most "volcanic centers" are buried beneath the WAIS. If only a very small percentage of these >1000

  8. Photoprotective and toxicological activities of extracts from the Antarctic moss Sanionia uncinata

    PubMed Central

    Fernandes, Andréia da Silva; Alencar, Alexandre Santos; Evangelista, Heitor; Mazzei, José Luiz; Felzenszwalb, Israel

    2015-01-01

    Background: The Antarctic moss Sanionia uncinata (Hedw.) Loeske has shown high ultraviolet (UV)-absorbers content after exposition to high levels of UV-B radiation and can be an important source of antioxidants. Objective: The aim was to investigate photoprotection and mutagenicity by the aqueous extract (AE) and hydroethanolic extract (HE) from the Antarctic moss S. uncinata. Materials and Methods: Photoprotective activities were determined through survival curves of Escherichia coli strains, after UV irradiation in an aqueous solution of thymine and in vitro sun protection factor (SPF). The Salmonella/microsome assays were applied to assess the mutagenicity. Results: Both extracts induced photoprotection against UV-C radiation. The AE showed a higher protection than the hydroethanolic one against UV-induced thymine dimerization. The SPFs were low in both extracts. In association to benzophenone-3 a significant increase in the SPF was detected for the AE, and a significant decrease was induced by the HE. No mutagenicity was found in the both extracts. Furthermore, it was observed absence of cytotoxicity. Conclusion: Water-extractable compounds seem to contribute on photoprotection of this Antarctic moss. PMID:25709208

  9. The Stability of the West Antarctic Ice Sheet During the Last Interglacial (127-110 ka): A New Record From the Patriot Hills

    NASA Astrophysics Data System (ADS)

    Turney, C. S.; Fogwill, C. J.; Etheridge, D. M.; Bird, M. I.; Rubino, M.; Thornton, D.; Munksgaard, N.; Cooper, A.; Millman, H.; Rootes, C.; Rivera, A.; Baker, A.; Weyrich, L.

    2015-12-01

    The Last Interglacial (LIG; ca. 127 - 110 ka) is increasingly being investigated as a possible analogue for future climate change. Quantified estimates of LIG temperatures suggest global mean temperatures were approximately 2˚C warmer than the pre-industrial period, similar to the RCP2.6 scenario for the end of the twenty-first century. Importantly this period is associated with a global sea level between 6.6 and 9.4 m higher than present day, of which a significant component most probably derived from Antarctica. However, the contribution from the marine-based West Antarctic Ice Sheet (WAIS) remains highly uncertain. To investigate the stability of the WAIS we report new results from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. A multi proxy study of the ice (including water stable isotopes and atmospheric gas concentrations) provides a unique record of changing WAIS extent over the last glacial-interglacial cycle. We present evidence for the presence of LIG ice at Patriot Hills and discuss the implications for Antarctic ice sheet stability and global sea level rise during super-interglacials.

  10. Continuous activity and no cycling of clock genes in the Antarctic midge during the polar summer.

    PubMed

    Kobelkova, Alena; Goto, Shin G; Peyton, Justin T; Ikeno, Tomoko; Lee, Richard E; Denlinger, David L

    2015-10-01

    The extreme seasonal shifts of day length in polar regions, ranging from constant light in the summer to constant darkness in the winter, pose an intriguing environment for probing activity rhythms and the functioning of circadian clocks. Here, we monitor locomotor activity during the summer on the Antarctic Peninsula and under laboratory conditions, as well as the accompanying patterns of clock gene expression in the Antarctic midge, the only insect endemic to Antarctica. Larvae and adults are most active during the warmest portion of the day, but at a constant temperature they remain continuously active regardless of the photoregime, and activity also persists in constant darkness. The canonical clock genes period, timeless, Clock, and vrille are expressed in the head but we detected no cycling of expression in either the field or under diverse photoregimes in the laboratory. The timekeeping function of the clock has possibly been lost, enabling the midge to opportunistically exploit the unpredictable availability of permissive thermal conditions for growth, development, and reproduction during the short summer in Antarctica.

  11. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme

  12. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3

    NASA Astrophysics Data System (ADS)

    Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang

    2016-09-01

    An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.

  13. Human Impacts on the Antarctic.

    ERIC Educational Resources Information Center

    Riddle, Martin

    1995-01-01

    Outlines the history of human activity in the Antarctic and discusses environmental impact, responsibility, and management in the Antarctic. Reviews the development of an informational database by the Australian National Antarctic Data Centre that will inform environmental research and decision making. (LZ)

  14. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    NASA Astrophysics Data System (ADS)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  15. Regional seismic stratigraphic correlations of the Ross Sea: Implications for the tectonic history of the West Antarctic Rift System

    USGS Publications Warehouse

    Decesari, Robert C.; Sorlien, Christopher C.; Luyendyk, Bruce P.; Wilson, Douglas S.; Bartek, Louis; Diebold, John; Hopkins, Sarah E.

    2007-01-01

    Using existing and new seismic reflection data, new and updated correlations of late Oligocene-early Miocene RSS-2 strata were made between the southern parts of Ross Sea basins. Previous studies documented Cretaceous extension across much of Ross Sea. We interpret that Cenozoic extension also occurred across Ross Sea. Subsidence during and following this extension deepened existing basins and may have initiated basins in the west, subsiding ridges between basins below sea level during the late Oligocene. Pre-Oligocene strata record cessation of L. Cretaceous extension in easternmost Ross Sea. Successively younger Cenozoic extension occurred from east to west across the rest of Ross Sea.

  16. Could a new ice core offer an insight into the stability of the West Antarctic Ice Sheet during the last interglacial?

    NASA Astrophysics Data System (ADS)

    Mulvaney, R.; Hindmarsh, R. C.

    2013-12-01

    Vaughan et al., in their 2011 paper 'Potential Seaways across West Antarctica' (Geochem. Geophys. Geosyst., 12, Q10004, doi:10.1029/2011GC003688), offer the intriguing prospect that substantial ice loss from the West Antarctic Ice Sheet during the previous interglacial period might have resulted in the opening of a seaway between the Weddell Sea and the Amundsen Sea. One of their potential seaways passes between the south western corner of the present Ronne Ice Shelf and the Pine Island Bay, through what is currently the course of the Rutford Ice Stream, between the Ellsworth Mountains and the Fletcher Promontory. To investigate whether this seaway could have existed (and to recover a paleoclimate and ice sheet history from the Weddell Sea), a team from the British Antarctic Survey and the Laboratoire de Glaciologie et Géophysique de l'Environnement drilled an ice core from a close to a topographic dome in the ice surface on the Fletcher Promontory in January 2012, reaching the bedrock at 654.3m depth from the surface. The site was selected to penetrate directly through the centre of a Raymond cupola observed in internal radar reflections from the ice sheet, with the intention that this would ensure we obtained the oldest ice available from the Fletcher Promontory. The basal ice sheet temperature measured was -18°C, implying the oldest ice would not have melted away from the base, while the configuration of the Raymond cupola in the radar horizons suggested stability in the ice dome topography during the majority of the Holocene. Our hypothesis is that chemical analysis of the ice core will reveal whether the site was ever relatively close to open sea water or ice shelf in the Rutford channel 20 km distant, rather than the current 700 km distance to sea ice/open water in either the Weddell Sea or the Amundsen Sea. While we do not yet have the chemistry data to test this hypothesis, in this poster we will discuss whether there is in reality any potential local

  17. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    PubMed

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  18. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  19. Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.

    2000-01-01

    Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.

  20. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %). PMID:27469174

  1. How can blue-ice moraines constrain elevation changes of the West Antarctic Ice Sheet in the southern Ellsworth Mountains?

    NASA Astrophysics Data System (ADS)

    Sugden, D.; Woodward, J.; Marrero, S.; Hein, A.; Dunning, S.

    2013-12-01

    Observational data in the Weddell Sea sector of the Antarctic Ice Sheet has not yet allowed the dating of elevated glacier trimlines and associated deposits in the Ellsworth Mountains. This uncertainty limits the value of models of changing ice-sheet configuration, volume and, by extension, sea level during glacial cycles and earlier. Here we present the first results of a study into the origin and evolution of blue-ice moraines in the Heritage Range, southern Ellsworth Mountains and begin to unravel the long record of ice-sheet history they hold. Our findings so far are: (a) ground penetrating radar shows boulders and finer debris in the glacier ice and that they are related to ice structures and to basal debris emerging at the glacier surface, (b) exposure ages of surface debris reveals boulders both recently exposed and those pre-dating the Last Glacial Maximum (LGM), (c) during the LGM the ice was thicker and the limit is marked by a zone of perched boulders and, in topographic hollows, by buried glacier ice, (d) weathered high elevation deposits with exposure ages in excess of 400 ka have been overridden by glacier ice and thus may represent deposits of much greater age, (e) the relationship between blue-ice moraines and deposits from local wind-drift glaciers makes it possible to constrain the date and duration of Holocene thinning. A forthcoming field season in 2013-2014 to re-measure 90 stakes for horizontal movement and ablation should help quantify the rate of blue-ice moraine formation. We will also obtain rock cores to establish rates of weathering of the older deposits and thus constrain their age more tightly.

  2. Response of marine sedimentation to upper Holocene climate variability in Maxwell Bay, King George Island, West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wittenberg, Nina; Hass, Christian; Kuhn, Gerhard

    2013-04-01

    The Western Antarctic Peninsula experiences a temperature increase that is higher than in other parts of Antarctica. Within the last 50 years the tidewater glaciers in the tributary fjords of Maxwell Bay (King George Island) have retreated landwards with increasing speed. Meltwaters mobilize fine-grained sediments and transport those in plumes out of the coves into Maxwell Bay. Our hypothesis is that meltwater sediments characterize warmer climate periods of the Holocene. Marine sediment cores recovered along a profile of the eastern slope of Maxwell Bay were studied. The cores were taken in high-accumulation areas at the entrances of Collins Harbor, Marian and Potter coves. We measured the grain-size distribution in 1-cm steps in each core with a Laser diffraction particle analyzer (range 0.04-2500 µm) in order to resolve shifts in grain size compositions in very high resolution. We undertook different approaches for reliable age determination of the sediments. Since marine biogenic carbonate suitable for radiocarbon age determination is sparse, radiocarbon dating of the extracted humic acid fraction of the bulk sediment was included. Unfortunately, these age determinations turned out to be not reliable, likely because they are overprinted by an unknown older radiocarbon source. Preliminary results suggest that the cores cover approximately the last 2000 years. The magnetic susceptibility (MS) parameter fluctuates throughout the cores. It is negatively correlated to the amount of total organic carbon (TOC) and biogenic opal, suggesting dilution of the MS signal through higher input of organic material. Together with the bathymetry data, sub-bottom profiles reveal information on the interior of the topography and the geometry of the deposited sediments. The profiles obtained in Potter Cove show almost no sediment penetration suggesting either a very thin sediment cover and/or highly reworked unsorted sediments. The sub-bottom profiles from Maxwell Bay penetrate

  3. Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993 2004

    NASA Astrophysics Data System (ADS)

    Ross, Robin M.; Quetin, Langdon B.; Martinson, Douglas G.; Iannuzzi, Rich A.; Stammerjohn, Sharon E.; Smith, Raymond C.

    2008-09-01

    Variability in the temporal-spatial distribution and abundance of zooplankton was documented each summer on the Palmer Long-Term Ecological Research (LTER) grid west of the Antarctic Peninsula between Anvers and Adelaide Islands during a 12-yr time series. Oblique tows to 120 m with a 2×2 m fixed-frame net were made at about 50 stations each January/February between 1993 and 2004. The numerically dominant macro- and mesozooplanktonic species >2 mm included three species of euphausiids ( Euphausia superba, Antarctic krill; Thysanoëssa macrura; Euphausia crystallorophias, ice krill), a shelled pteropod ( Limacina helicina), and a salp ( Salpa thompsoni). Life cycles, life spans, and habitat varied among these species. Abundance data from each year were allocated to 100 km by 20 km (alongshore by on/offshore) grid cells centered on cardinal transect lines and stations within the Palmer LTER grid. The long-term mean or climatology and means for each year were used to calculate annual anomalies across the grid. Principal components analysis (PCA) was used to analyze for patterns and trends in the temporal-spatial variability of the five species. Questions included whether there are groups of species with similar patterns, and whether population cycles, species interactions or seasonal sea-ice parameters were correlated with detected patterns. Patterns in the climatology were distinct, and matched those of physical parameters. Common features included higher abundance in the north than in the south, independent of the cross-shelf gradients, and cross-shelf gradients with higher abundance either inshore ( E. crystallorophias) or offshore ( S. thompsoni). Anomalies revealed either cycles in the population, as episodic recruitment in Antarctic krill, or changes in anomaly pattern between the first and second half of the sampling period. The 1998 year, which coincided with a rapid change from a negative to a positive phase in the SOI, emerged as a year with either

  4. Cenozoic motion between East and West Antarctica

    PubMed

    Cande; Stock; Muller; Ishihara

    2000-03-01

    The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Ross Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Cenozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world.

  5. Cenozoic motion between East and West Antarctica

    PubMed

    Cande; Stock; Muller; Ishihara

    2000-03-01

    The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Ross Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Cenozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world. PMID:10724159

  6. Benzo(a)pyrene Metabolism and EROD and GST Biotransformation Activity in the Liver of Red- and White-Blooded Antarctic Fish.

    PubMed

    Strobel, Anneli; Burkhardt-Holm, Patricia; Schmid, Peter; Segner, Helmut

    2015-07-01

    Climate change and anthropogenic pollution are of increasing concern in remote areas such as Antarctica. The evolutionary adaptation of Antarctic notothenioid fish to the cold and stable Southern Ocean led to a low plasticity of their physiological functions, what may limit their capacity to deal with altered temperature regimes and pollution in the Antarctic environment. Using a biochemical approach, we aimed to assess the hepatic biotransformation capacities of Antarctic fish species by determining (i) the activities of ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), and (ii) the metabolic clearance of benzo(a)pyrene by hepatic S9 supernatants. In addition, we determined the thermal sensitivity of the xenobiotic biotransformation enzymes. We investigated the xenobiotic metabolism of the red-blooded Gobionotothen gibberifrons and Notothenia rossii, the hemoglobin-less Chaenocephalus aceratus and Champsocephalus gunnari, and the rainbow trout Oncorhynchus mykiss as a reference. Our results revealed similar metabolic enzyme activities and metabolic clearance rates between red- and white-blooded Antarctic fish, but significantly lower rates in comparison to rainbow trout. Therefore, bioaccumulation factors for metabolizable lipophilic contaminants may be higher in Antarctic than in temperate fish. Likewise, the thermal adaptive capacities and flexibilities of the EROD and GST activities in Antarctic fish were significantly lower than in rainbow trout. As a consequence, increasing water temperatures in the Southern Ocean will additionally compromise the already low detoxification capacities of Antarctic fish. PMID:25965896

  7. Benzo(a)pyrene Metabolism and EROD and GST Biotransformation Activity in the Liver of Red- and White-Blooded Antarctic Fish.

    PubMed

    Strobel, Anneli; Burkhardt-Holm, Patricia; Schmid, Peter; Segner, Helmut

    2015-07-01

    Climate change and anthropogenic pollution are of increasing concern in remote areas such as Antarctica. The evolutionary adaptation of Antarctic notothenioid fish to the cold and stable Southern Ocean led to a low plasticity of their physiological functions, what may limit their capacity to deal with altered temperature regimes and pollution in the Antarctic environment. Using a biochemical approach, we aimed to assess the hepatic biotransformation capacities of Antarctic fish species by determining (i) the activities of ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), and (ii) the metabolic clearance of benzo(a)pyrene by hepatic S9 supernatants. In addition, we determined the thermal sensitivity of the xenobiotic biotransformation enzymes. We investigated the xenobiotic metabolism of the red-blooded Gobionotothen gibberifrons and Notothenia rossii, the hemoglobin-less Chaenocephalus aceratus and Champsocephalus gunnari, and the rainbow trout Oncorhynchus mykiss as a reference. Our results revealed similar metabolic enzyme activities and metabolic clearance rates between red- and white-blooded Antarctic fish, but significantly lower rates in comparison to rainbow trout. Therefore, bioaccumulation factors for metabolizable lipophilic contaminants may be higher in Antarctic than in temperate fish. Likewise, the thermal adaptive capacities and flexibilities of the EROD and GST activities in Antarctic fish were significantly lower than in rainbow trout. As a consequence, increasing water temperatures in the Southern Ocean will additionally compromise the already low detoxification capacities of Antarctic fish.

  8. Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Papa, Rosanna; Parrilli, Ermenegilda; Sannino, Filomena; Barbato, Gaetano; Tutino, Maria Luisa; Artini, Marco; Selan, Laura

    2013-06-01

    Considering the increasing impact of bacterial biofilms on human health, industrial and food-processing activities, the interest in the development of new approaches for the prevention and treatment of adhesion and biofilm formation capabilities has increased. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the rapid appearance of escape mutants. It is known that marine bacteria belonging to the genus Pseudoalteromonas produce compounds of biotechnological interest, including anti-biofilm molecules. Pseudoalteromonas haloplanktis TAC125 is the first Antarctic Gram-negative strain whose genome was sequenced. In this work the anti-biofilm activity of P. haloplanktis supernatant was examined on different staphylococci. Results obtained demonstrated that supernatant of P. haloplanktis, grown in static condition, inhibits biofilm of Staphylococcus epidermidis. In order to define the chemical nature of the biofilm-inhibiting compound, the supernatant was subject to various treatments. Data reported demonstrated that the biologically active component is sensible to treatment with sodium periodate suggesting its saccharidic nature. PMID:23411371

  9. New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Hillenbrand, Claus-Dieter; Kuhn, Gerhard; Klages, Johann Phillip; Graham, Alastair G. C.; Larter, Robert D.; Ehrmann, Werner; Moreton, Steven G.; Wiers, Steffen; Frederichs, Thomas

    2014-11-01

    Glaciers flowing into the Amundsen Sea Embayment (ASE) account for > 35% of the total discharge of the West Antarctic Ice Sheet (WAIS) and have thinned and retreated dramatically over the past two decades. Here we present detailed marine geological data and an extensive new radiocarbon dataset from the eastern ASE in order to constrain the retreat of the WAIS since the Last Glacial Maximum (LGM) and assess the significance of these recent changes. Our dating approach, relying mainly on the acid insoluble organic (AIO) fraction, utilises multi-proxy analyses of the sediments to characterise their lithofacies and determine the horizon in each core that would yield the most reliable age for deglaciation. In total, we dated 69 samples and show that deglaciation of the outer shelf was underway before 20,600 calibrated years before present (cal yr BP), reaching the mid-shelf by 13,575 cal yr BP and the inner shelf to within ca. 150 km of the present grounding line by 10,615 cal yr BP. The timing of retreat is broadly consistent with previously published radiocarbon dates on biogenic carbonate from the eastern ASE as well as AIO 14C ages from the western ASE and provides new constraints for ice sheet models. The overall retreat trajectory - slow on the outer shelf, more rapid from the middle to inner shelf - clearly highlights the importance of reverse bedslopes in controlling phases of accelerated groundling line retreat. Despite revealing these broad scale trends, the current dataset does not capture detailed changes in ice flow, such as stillstands during grounding line retreat (i.e., deposition of grounding zone wedges) and possible readvances as depicted in the geomorphological record.

  10. Microbial Communities Can Be Described by Metabolic Structure: A General Framework and Application to a Seasonally Variable, Depth-Stratified Microbial Community from the Coastal West Antarctic Peninsula

    PubMed Central

    Bowman, Jeff S.; Ducklow, Hugh W.

    2015-01-01

    Taxonomic marker gene studies, such as the 16S rRNA gene, have been used to successfully explore microbial diversity in a variety of marine, terrestrial, and host environments. For some of these environments long term sampling programs are beginning to build a historical record of microbial community structure. Although these 16S rRNA gene datasets do not intrinsically provide information on microbial metabolism or ecosystem function, this information can be developed by identifying metabolisms associated with related, phenotyped strains. Here we introduce the concept of metabolic inference; the systematic prediction of metabolism from phylogeny, and describe a complete pipeline for predicting the metabolic pathways likely to be found in a collection of 16S rRNA gene phylotypes. This framework includes a mechanism for assigning confidence to each metabolic inference that is based on a novel method for evaluating genomic plasticity. We applied this framework to 16S rRNA gene libraries from the West Antarctic Peninsula marine environment, including surface and deep summer samples and surface winter samples. Using statistical methods commonly applied to community ecology data we found that metabolic structure differed between summer surface and winter and deep samples, comparable to an analysis of community structure by 16S rRNA gene phylotypes. While taxonomic variance between samples was primarily driven by low abundance taxa, metabolic variance was attributable to both high and low abundance pathways. This suggests that clades with a high degree of functional redundancy can occupy distinct adjacent niches. Overall our findings demonstrate that inferred metabolism can be used in place of taxonomy to describe the structure of microbial communities. Coupling metabolic inference with targeted metagenomics and an improved collection of completed genomes could be a powerful way to analyze microbial communities in a high-throughput manner that provides direct access to

  11. Microbial Communities Can Be Described by Metabolic Structure: A General Framework and Application to a Seasonally Variable, Depth-Stratified Microbial Community from the Coastal West Antarctic Peninsula.

    PubMed

    Bowman, Jeff S; Ducklow, Hugh W

    2015-01-01

    Taxonomic marker gene studies, such as the 16S rRNA gene, have been used to successfully explore microbial diversity in a variety of marine, terrestrial, and host environments. For some of these environments long term sampling programs are beginning to build a historical record of microbial community structure. Although these 16S rRNA gene datasets do not intrinsically provide information on microbial metabolism or ecosystem function, this information can be developed by identifying metabolisms associated with related, phenotyped strains. Here we introduce the concept of metabolic inference; the systematic prediction of metabolism from phylogeny, and describe a complete pipeline for predicting the metabolic pathways likely to be found in a collection of 16S rRNA gene phylotypes. This framework includes a mechanism for assigning confidence to each metabolic inference that is based on a novel method for evaluating genomic plasticity. We applied this framework to 16S rRNA gene libraries from the West Antarctic Peninsula marine environment, including surface and deep summer samples and surface winter samples. Using statistical methods commonly applied to community ecology data we found that metabolic structure differed between summer surface and winter and deep samples, comparable to an analysis of community structure by 16S rRNA gene phylotypes. While taxonomic variance between samples was primarily driven by low abundance taxa, metabolic variance was attributable to both high and low abundance pathways. This suggests that clades with a high degree of functional redundancy can occupy distinct adjacent niches. Overall our findings demonstrate that inferred metabolism can be used in place of taxonomy to describe the structure of microbial communities. Coupling metabolic inference with targeted metagenomics and an improved collection of completed genomes could be a powerful way to analyze microbial communities in a high-throughput manner that provides direct access to

  12. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Larter, Robert D.; Anderson, John B.; Graham, Alastair G. C.; Gohl, Karsten; Hillenbrand, Claus-Dieter; Jakobsson, Martin; Johnson, Joanne S.; Kuhn, Gerhard; Nitsche, Frank O.; Smith, James A.; Witus, Alexandra E.; Bentley, Michael J.; Dowdeswell, Julian A.; Ehrmann, Werner; Klages, Johann P.; Lindow, Julia; Cofaigh, Colm Ó.; Spiegel, Cornelia

    2014-09-01

    Marine and terrestrial geological and marine geophysical data that constrain deglaciation since the Last Glacial Maximum (LGM) of the sector of the West Antarctic Ice Sheet (WAIS) draining into the Amundsen Sea and Bellingshausen Sea have been collated and used as the basis for a set of time-slice reconstructions. The drainage basins in these sectors constitute a little more than one-quarter of the area of the WAIS, but account for about one-third of its surface accumulation. Their mass balance is becoming increasingly negative, and therefore they account for an even larger fraction of current WAIS discharge. If all of the ice in these sectors of the WAIS were discharged to the ocean, global sea level would rise by ca 2 m. There is compelling evidence that grounding lines of palaeo-ice streams were at, or close to, the continental shelf edge along the Amundsen Sea and Bellingshausen Sea margins during the last glacial period. However, the few cosmogenic surface exposure ages and ice core data available from the interior of West Antarctica indicate that ice surface elevations there have changed little since the LGM. In the few areas from which cosmogenic surface exposure ages have been determined near the margin of the ice sheet, they generally suggest that there has been a gradual decrease in ice surface elevation since pre-Holocene times. Radiocarbon dates from glacimarine and the earliest seasonally open marine sediments in continental shelf cores that have been interpreted as providing approximate ages for post-LGM grounding-line retreat indicate different trajectories of palaeo-ice stream recession in the Amundsen Sea and Bellingshausen Sea embayments. The areas were probably subject to similar oceanic, atmospheric and eustatic forcing, in which case the differences are probably largely a consequence of how topographic and geological factors have affected ice flow, and of topographic influences on snow accumulation and warm water inflow across the continental

  13. Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys.

    PubMed

    Niederberger, Thomas D; Sohm, Jill A; Tirindelli, Joëlle; Gunderson, Troy; Capone, Douglas G; Carpenter, Edward J; Cary, Stephen C

    2012-11-01

    Eolian transport of biomass from ephemerally wetted soils, associated with summer glacial meltwater runoffs and lake edges, to low-productivity areas of the Antarctic Dry Valleys (DV) has been postulated to be an important source of organic matter (fixed nitrogen and fixed carbon) to the entire DV ecosystem. However, descriptions and identification of the microbial members responsible for N(2) fixation within these wetted sites are limited. In this study, N(2) fixers from wetted soils were identified by direct nifH gene sequencing and their in situ N(2) fixation activities documented via acetylene reduction and RNA-based quantitative PCR assays. Shannon-index nifH diversity levels ranged between 1.8 and 2.6 and included the expected cyanobacterial signatures and a large number of phylotypes related to the gamma-, beta-, alpha-, and delta-proteobacteria. N(2) fixation rates ranged between approximately 0.5 and 6 nmol N cm(-3) h(-1) with measurements indicating that approximately 50% of this activity was linked with sulfate reduction at some sites. Comparisons with proximal dry soils also suggested that these communities are not ubiquitously distributed, and conditions unrelated to moisture content may define the composition, diversity, or habitat suitability of the microbial communities within wetted soils of the DVs.

  14. Antarctic Crabs: Invasion or Endurance?

    PubMed Central

    Griffiths, Huw J.; Whittle, Rowan J.; Roberts, Stephen J.; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the “discovery” of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This “invasion hypothesis” suggests that decapod crabs were driven out of Antarctica 40–15 million years ago and are only now returning as “warm” enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60°S. All are restricted to waters warmer than 0°C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day “crab invasion”. We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  15. Antarctic crabs: invasion or endurance?

    PubMed

    Griffiths, Huw J; Whittle, Rowan J; Roberts, Stephen J; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the "invasion hypothesis

  16. Antarctic crabs: invasion or endurance?

    PubMed

    Griffiths, Huw J; Whittle, Rowan J; Roberts, Stephen J; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the "invasion hypothesis".

  17. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  18. Antarctic Fishes.

    ERIC Educational Resources Information Center

    Eastman, Joseph T.; DeVries, Arthur L.

    1986-01-01

    Explains the adaptations to Antarctic waters that Notothenioidei, a group of advanced bony fishes, have exhibited. Discusses the fishes' mechanisms of production of antifreeze properties and their capacities for neutral buoyancy in water. (ML)

  19. Antarctic Entomology.

    PubMed

    Chown, Steven L; Convey, Peter

    2016-01-01

    The Antarctic region comprises the continent, the Maritime Antarctic, the sub-Antarctic islands, and the southern cold temperate islands. Continental Antarctica is devoid of insects, but elsewhere diversity varies from 2 to more than 200 species, of which flies and beetles constitute the majority. Much is known about the drivers of this diversity at local and regional scales; current climate and glacial history play important roles. Investigations of responses to low temperatures, dry conditions, and varying salinity have spanned the ecological to the genomic, revealing new insights into how insects respond to stressful conditions. Biological invasions are common across much of the region and are expected to increase as climates become warmer. The drivers of invasion are reasonably well understood, although less is known about the impacts of invasion. Antarctic entomology has advanced considerably over the past 50 years, but key areas, such as interspecific interactions, remain underexplored.

  20. Seeking the True Antarctic Ocean

    NASA Astrophysics Data System (ADS)

    Miller, R. G.

    2007-12-01

    With World Ocean warming a corrected name use is recommend with a universal adoption of the name, "Antarctic Ocean. This one large body of circumpolar water lies adjacent to - and south of - the Antarctic Convergence, on its northern perimeter, and is bordered to the south by the shoreline of the Antarctic continent. The Antarctic Ocean has a distinct water mass, with a true perimeter, and with a homogeneity, comprizing a unique environment for a specialized flora and fauna. It is recognized generally by its surface waters, ranging from 3.5 - 4.5 degrees Celsius (summer) and one degree C (winter).While its northern boundary, ' The Antarctic Convergence', has a water quality and thermal difference, this polar front is continuous and circumpolar, and it abuts -- and streams along with -- the ultimate southern extremities of the Atlantic, Pacific and Indian Ocean waters. Parameters, characteristics and dynamics of water exchange are considered, here, with some water exchanges, with Intermediate and Antarctic Bottom water noted. It maintains its own forceful 'West Wind Drift', a current driven and emboldened by Earth's Geostrophic West Wind. Features defining the Antarctic Ocean: (1)Washing all shores of the continent named Antarctica; it is .the only ocean reaching this Antarctic Continent.; (2) it is one of Earth's two Polar (and coldest) oceans, the other, named Arctic Ocean, of which it is the opposite (the Anti); (3) its distinctive cold waters of the Antarctic Ocean and its peripheral seas, floating ice tongues, the frigid stamp of Antarctica's continental glaciers and ice fields; (4) the Antarctic Continent is the source of continual replenishment from her ice cap and melt-water derived from the great mountains, valleys and the massive polar dome of ice. Further, in the literature the present usage, 'Southern Ocean', by some authors, confuses the true Antarctic environmental waters (i.e. south of - and within the South Polar Front - Convergence) with southern

  1. Activation of RAW 264.7 cells by a polysaccharide isolated from Antarctic bacterium Pseudoaltermonas sp. S-5.

    PubMed

    Li, Jing; Qian, Wen; Xu, Yanghui; Chen, Guochuang; Wang, Guodong; Nie, Songliu; Shen, Bingxiang; Zhao, Zhigang; Liu, Chunyan; Chen, Kaoshan

    2015-10-01

    The aim of this study was to examine the effect of extracellular polysaccharide (PEP) from Antarctic bacterium Pseudoaltermonas sp. S-5 on RAW 264.7 cells together with the underlying signaling pathways. Our results illustrated that PEP induced dendritic-like morphological change in RAW 264.7 cells, and increased the productions of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). PEP could also enhance phagocytic activity of RAW 264.7 cells. Results of immunofluorescence staining and immunoblotting indicated that PEP caused the nuclear translocation of nuclear factor (NF)-κB subunit p65, the degradation of IκB-α and up-expression of phosphorylated p38 mitogen-activated protein kinase (MAPK) in RAW 264.7 cells. According to pharmacological evaluation with specific enzyme inhibitors, both NF-κB and p38 MAPK signaling pathways were involved in the generation of NO and TNF-α induced by PEP. All these results indicated that PEP from Antarctic bacterium Pseudoaltermonas sp. S-5 activated RAW 264.7 cells through NF-κB and p38 MAPK signaling pathways.

  2. Carbon dioxide effects research and assessment program. Environmental and societal consequences of a possible CO/sub 2/-induced climate change: volume II, part I. Response of the West Antarctic ice sheet to CO/sub 2/-induced climatic warming

    SciTech Connect

    Bentley, C.

    1982-04-01

    The paper proposes a research plan to deal with the question of what the response of the West Antarctic Ice Sheet would be to a rise in global temperatures caused by an anthropogenic CO/sub 2/ buildup in the atmosphere. The plan is designed to answer the following questions: (1) how fast is the ice mass changing now, and why; (2) how will the boundary conditions that affect the ice sheet respond to an atmospheric temperature change and how are those boundary conditions changing now; (3) what will be the response of the ice sheet to changes in boundary conditions; and (4) what can be learned by analogy with what has happened in the past. (ACR)

  3. Seabird assemblages observed during the BROKE-West survey of the Antarctic coastline (30°E-80°E), January - March 2006

    NASA Astrophysics Data System (ADS)

    Woehler, Eric J.; Raymond, Ben; Boyle, Adrian; Stafford, Andrew

    2010-05-01

    Seabird surveys in January - March 2006 of a poorly known area of the Southern Ocean adjacent to the East Antarctic coast identified six seabird communities, several of which were comparable to seabird communities identified both in adjacent sectors of the Antarctic, and elsewhere in the Southern Ocean. These results support previous proposals that the Southern Ocean seabird community is characterised by an ice-associated assemblage and an open-water assemblage, with the species composition of the assemblages reflecting local (Antarctic-resident) breeding species, and the migratory routes and feeding areas of distant-breeding taxa, respectively. Physical environmental covariates such as sea-ice cover, distance to continental shelf and time of year influenced the distribution and abundance of seabirds observed, but the roles of these factors in the observed spatial and temporal patterns in seabird assemblages was confounded by the duration of the survey. Occurrence of a number of seabird taxa exhibited significant correlations with krill densities at one or two spatial scales, but only three taxa (Arctic tern, snow petrel and dark shearwaters, i.e. sooty and short-tailed shearwaters) showed significant correlations at a range of spatial scales. Dark shearwater abundances showed correlations with krill densities across the range of spatial scales examined.

  4. 77 FR 23766 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of Permit Applications Received under the Antarctic Conservation Act of... of permit applications received to conduct activities regulated under the Antarctic Conservation...

  5. Psychological factors in the antarctic.

    PubMed

    Rothblum, E D

    1990-05-01

    For the people who live and work in the Antarctic, isolation and extreme physical conditions cause considerable stress. This article reviews psychological research on Antarctic residents, focusing on factors related to the isolation (effective personnel selection, positive adjustment, conflict, and reintegration into the home environment) and factors related to the physical environment (the extreme cold, high altitude, increased radiation, sensory deprivation, and seasonal changes in activity level). Finally, Antarctic research has been applied to the study of future space travel and space station habitation.

  6. Field Training Activities for Hydrologic Science in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Agustina, C.; Fajri, P. N.; Fathoni, F.; Gusti, T. P.; Harifa, A. C.; Hendra, Y.; Hertanti, D. R.; Lusiana, N.; Rohmat, F. I.; Agouridis, C.; Fryar, A. E.; Milewski, A.; Pandjaitan, N.; Santoso, R.; Suharyanto, A.

    2013-12-01

    In hydrologic science and engineering, one challenge is establishing a common framework for discussion among workers from different disciplines. As part of the 'Building Opportunity Out of Science and Technology: Helping Hydrologic Outreach (BOOST H2O)' project, which is supported by the U.S. Department of State, nine current or recent graduate students from four Indonesian universities participated in a week of training activities during June 2013. Students had backgrounds in agricultural engineering, civil and environmental engineering, water resources engineering, natural resources management, and soil science. Professors leading the training, which was based at Bogor Agricultural University (IPB) in west Java, included an agricultural engineer, civil engineers, and geologists. Activities in surface-water hydrology included geomorphic assessment of streams (measuring slope, cross-section, and bed-clast size) and gauging stream flow (wading with top-setting rods and a current meter for a large stream, and using a bucket and stopwatch for a small stream). Groundwater-hydrology activities included measuring depth to water in wells, conducting a pumping test with an observation well, and performing vertical electrical soundings to infer hydrostratigraphy. Students also performed relatively simple water-quality measurements (temperature, electrical conductivity, pH, and alkalinity) in streams, wells, and springs. The group analyzed data with commercially-available software such as AQTESOLV for well hydraulics, freeware such as the U.S. Geological Survey alkalinity calculator, and Excel spreadsheets. Results were discussed in the context of landscape position, lithology, and land use.

  7. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  8. Sea ice structure and biological activity in the Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Clarke, D. B.; Ackley, S. F.

    1984-03-01

    Ice cores obtained during October-November 1981 from Weddell Sea pack ice were analyzed for physical, chemical, and biological parameters. Frazil ice, which is associated with dynamic, turbulent conditions in the water column, predominated (70%). Both floe thickness and salinity indicate ice which is less than 1 year old. Chemical analyses, particularly with regard to the nutrients, revealed a complex picture. Phosphate values are scattered relative to the dilution curve. Nitrate and silicate values are lower than expected from simple scaling with salinity and suggest diatom growth within the ice. Nitrite values are higher in the ice than in adjacent waters. Frazil ice formation which probably concentrates algal cells from the water column into ice floes results in higher initial chlorophyll a concentrations in the ice than in adjacent waters. This mechanical concentration is further enhanced by subsequent reproduction within the ice. Ice core chlorophyll ranged from 0.09 to 3.8 mg/m3, comparable to values previously reported for this area but significantly lower than values for Antarctic coastal fast ice. The dominance of frazil ice in the Weddell is one of the major differences between this area and others. Consequently, we believe that ice structural conditions significantly influence the biological communities in the ice.

  9. United States Antarctic Resource Center (USARC)

    USGS Publications Warehouse

    ,

    2001-01-01

    The U.S. Antarctic Resource Center (USARC) is our Nation?s depository for Antarctic maps, charts, geodetic ground control, satellite images, aerial photographs, publications, slides, and video tapes. These resources are items produced by Antarctic Treaty nations in support of their activities in Antarctica and provided to the USARC in compliance with a standing resolution of the treaty providing for exchange of information. The U.S. Geological Survey (USGS) maintains these materials through an interagency cooperative agreement with the National Science Foundation (NSF), which also supports the USGS Antarctic Mapping Program. The USARC develops and maintains the Antarctic Web site (usarc.usgs.gov) and its supporting data bases, as well as providing access to other online digital data bases, such as the Atlas of Antarctic Resources.

  10. Solution Structures, Dynamics, and Ice Growth Inhibitory Activity of Peptide Fragments Derived from an Antarctic Yeast Protein

    PubMed Central

    Asmawi, Azren A.; Rahman, Mohd Basyaruddin A.; Murad, Abdul Munir A.; Mahadi, Nor M.; Basri, Mahiran; Rahman, Raja Noor Zaliha A.; Salleh, Abu B.; Chatterjee, Subhrangsu; Tejo, Bimo A.; Bhunia, Anirban

    2012-01-01

    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities. PMID:23209600

  11. Antarctic science

    NASA Astrophysics Data System (ADS)

    Summerhayes, Colin

    Once upon a time, dinosaurs roamed Antarctica and swam in its seas. Since then, life evolved as the climate cooled into the ice ages. Life will no doubt continue to evolve there as the globe now warms. But nowadays, humans are having a profound and direct effect on life in Antarctica, the sub-Antarctic islands, and the surrounding Southern Ocean, which are being invaded by a wide range of alien species including microbes, algae, fungi, bryophytes, land plants, invertebrates, fish, birds, and mammals.

  12. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  13. Antarctic science preserve polluted

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Geophysicists are alarmed at the electromagnetic pollution of a research site in the Antarctic specifically set aside to study the ionosphere and magnetosphere. A private New Zealand communications company called Telecom recently constructed a satellite ground station within the boundaries of this Site of Special Scientific Interest (SSSI), protected since the mid-1970s. The placement of a commercial facility within this site sets an ominous precedent not only for the sanctity of other SSSIs, but also for Specially Protected Areas—preserves not even open to scientific research, such as certain penguin rookeries.The roughly rectangular, one-by-one-half mile site, located at Arrival Heights not far from McMurdo Station, is one of a number of areas protected under the Antarctic treaty for designated scientific activities. Many sites are set aside for geological or biological research, but this is the only one specifically for physical science.

  14. The Antarctic Planet Interferometer

    NASA Technical Reports Server (NTRS)

    Swain, Mark R.; Walker, Christopher K.; Traub, Wesley A.; Storey, John W.; CoudeduForesto, Vincent; Fossat, Eric; Vakili, Farrok; Stark, Anthony A.; Lloyd, James P.; Lawson, Peter R.; Burrows, Adam S.; Ireland, Michael; Millan-Gabet, Rafael; vanBelle, Gerard T.; Lane, Benjamin; Vasisht, Gautam; Travouillon, Tony

    2004-01-01

    The Antarctic Planet Interferometer is an instrument concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an interferometer with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.

  15. Is there a linkage between the tropical cyclone activity in the southern Indian Ocean and the Antarctic Oscillation?

    NASA Astrophysics Data System (ADS)

    Mao, Rui; Gong, Dao-Yi; Yang, Jing; Zhang, Zi-Yin; Kim, Seong-Joong; He, Hao-Zhe

    2013-08-01

    this article, the relationship between the Antarctic Oscillation (AAO) and the tropical cyclone (TC) activity in the southern Indian Ocean (SIO) was examined. It was found that on the interannual time scale, the AAO is well linked with the TC activity in the SIO during TC season (December-March). The rank correlation coefficient between the AAO index and the TC frequency (TCF) in the SIO is 0.37, which is significant at the 95% confidence level. When the AAO is in a positive phase, TC passage in the northwestern coast of Australia (100E°-120°E and 10°S-30°S) increases by approximately 50%-100% from the climatology. The increase in the TC passage is primarily the result of more frequent TCs originating in this region due to enhanced water vapor convergence and ascending motions, which are caused by a cyclonic height anomaly over the western coast of Australia associated with the positive AAO phases. In addition, the AAO-height covariations, which are essential to the formation of the AAO-TC links in the SIO, were investigated through a historical climate simulation using the Community Climate System Model 4 from the Coupled Model Intercomparison Project Phase 5. The AAO-height links were well reproduced in the simulation. The similarity in the AAO-height links between the observation and the simulation supports the physical robustness of the AAO-TC links in the SIO.

  16. Robust Decision Making and Scenario Based Engineering Hazard Analysis Regarding the Potential Abrupt Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet: An Overview Paper

    NASA Astrophysics Data System (ADS)

    Berner, D. E.

    2012-12-01

    Recently scientific researchers have made significant advances in better understanding the risks of abrupt sea-level rise, SLR, but they have not adequately conveyed this understanding to decision makers who need to have sufficient information to decide what actions to take. The state-of-the-art in SLR projection is currently not sufficient to provide fully probabilistic risk functions to decision makers. Nevertheless, using the tools of Robust Decision Making, RDM, and Scenario Based Engineering Hazard Analysis, SBEHA, this article will present sufficient information to characterize a Maximum Credible Event, MCE, for abrupt SLR this century to allow decision makers to better understand the risks and timing that they are facing from the potential collapse of the West Antarctic Ice Sheet, WAIS, coupled together with other concurrent dynamic ice mass loss events. The article presents an overview of published research related topics including: paleo-evidence regarding abrupt SLR; radiative forcing scenarios; both RDM and SBEHA methodologies; and direct cause and effect evidence of an MCE scenario for the potential partial, or full, collapse of the WAIS the century. Findings of the article are presented in the form of summary graphs of projected relative sea-level rise, RSLR, and probability density functions, PDFs, for California.

  17. Interannual and seasonal variability in short-term grazing impact of Euphausia superba in nearshore and offshore waters west of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Ross, R. M.; Quetin, L. B.; Haberman, K. L.

    1998-11-01

    Our focus in this paper is the interaction between macrozooplanktonic grazers and primary producers, and the interannual and seasonal variability in the Palmer Long-Term Ecological Research (Palmer LTER) study region from Anvers Island to Adelaide Island. Short-term grazing estimates are calculated by integrating (1) theoretical and experimental estimates of ingestion rates in response to the standing stock of phytoplankton, and (2) field measurements of phytoplankton standing stock and grazer biomass. Field data come from three austral summer cruises (January/February of 1993, 1994, and 1995) and one sequence of seasonal cruises (summer, fall and winter 1993). The relative and absolute abundance of the dominant macrozooplankton grazers, Euphausia superba and Salpa thompsoni, varied by at least an order of magnitude on the spatial and temporal scales observed. Mean grazing rates ranged from 0.4 to 9.0 μg chlorophyll m -2 h -1 for the Antarctic krill and salp populations over the three summer cruises. This leads to variability in the flow of carbon from the primary producers through the grazers on the same scales. Temporal and spatial variability in grazing impact and faecal pellet production are high.

  18. Influence of organic matter content and human activities on the occurrence of organic pollutants in antarctic soils, lichens, grass, and mosses.

    PubMed

    Cabrerizo, Ana; Dachs, Jordi; Barceló, Damià; Jones, Kevin C

    2012-02-01

    Banned pesticides such as HCB and p,p'-DDE, and other legacy and ongoing pollutants such as PCBs and PAHs, were measured in different vegetation types and soil samples collected at selected areas from Antarctic Peninsula (Deception and Livingstone Islands, Southern Shetlands). Two Antarctic expeditions (in 2005 and 2009) were carried out to assess POPs levels at remote areas, and close to current and abandoned Antarctic research settlements, to assess potential sources of pollutants. Overall, the patterns in lichens, mosses, and grass were dominated by low molecular PCB congeners and PAHs and the presence of HCB and p,p'-DDE rather than heavier compounds, suggesting the importance of long-range atmospheric transport of POPs as the main vector for the introduction of these chemicals to Antarctica. Statistically significant correlations (p-level < 0.05) between concentrations in vegetation of PCBs, p,p'-DDE, and the more volatile PAHs with lipid content were found with r(2) of 0.22-0.52 for PCBs, 0.42 for p,p'-DDE, and 0.44-0.72 for the more volatile PAHs. Thus, lipid content is an important factor controlling POPs in Antarctic lichens, mosses, and grass. A strong significant dependence of HCB (r(2) = 0.83), p,p'-DDE (r(2) = 0.60), and PCBs (r(2) = 0.36-0.47) concentrations in soil on its organic carbon content was also observed, indicating the important role of soil organic matter (SOM) in the retention of PCBs and OCPs in Polar Regions, where SOM content is low. Penguin colonies enhance the SOM content in some areas which is reflected in higher concentrations of all POPs, especially of persistent compounds such as p,p'-DDE. Higher concentrations of PCBs and PAHs found at the currently active Byers Camp (in an Antarctic Specially Protected Area) were explained by higher SOM content, thus indicating that Antarctic regulations are being successfully fulfilled in this small research area. On the other hand, PAHs in soils proximate to current Juan Carlos I research

  19. Environmental contamination in Antarctic ecosystems.

    PubMed

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  20. Environmental contamination in Antarctic ecosystems.

    PubMed

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  1. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363.

    PubMed

    Abrashev, Radoslav; Feller, Georges; Kostadinova, Nedelina; Krumova, Ekaterina; Alexieva, Zlatka; Gerginova, Maria; Spasova, Boryana; Miteva-Staleva, Jeni; Vassilev, Spassen; Angelova, Maria

    2016-05-01

    The Antarctic fungal strain Aspergillus glaucus 363 produces cold-active (CA) Cu/Zn-superoxide dismutase (SOD). The strain contains at least one gene encoding Cu/Zn-SOD that exhibited high homology with the corresponding gene of other Aspergillus species. To our knowledge, this is the first nucleotide sequence of a CA Cu/Zn-SOD gene in fungi. An effective laboratory technology for A. glaucus SOD production in 3 L bioreactors was developed on the basis of transient cold-shock treatment. The temperature downshift to 10 °C caused 1.4-fold increase of specific SOD activity compared to unstressed culture. Maximum enzyme productivity was 64 × 10(3) U kg(-1) h(-1). Two SOD isoenzymes (Cu/Zn-SODI and Cu/Zn-SODII) were purified to electrophoretic homogeneity. The specific activity of the major isoenzyme, Cu/Zn-SODII, after Q-Sepharose chromatography was 4000 U mg(-1). The molecular mass of SODI (38 159 Da) and of SODII (15 835 Da) was determined by electrospray quadropole time-of-flight (ESI-Q-TOF) mass spectrometry and dynamic light scattering (DLS). The presence of Cu and Zn were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The N-terminal amino acid sequence of Cu/Zn-SODII revealed a high degree of structural homology with Cu/Zn-SOD from other fungi, including Aspergillus species.

  2. Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity.

    PubMed

    Parra, Loreto P; Espina, Giannina; Devia, Javier; Salazar, Oriana; Andrews, Barbara; Asenjo, Juan A

    2015-01-01

    Cold-active enzymes are valuable catalysts showing high activity at low and moderate temperatures and low thermostability. Among cold-active enzymes, lipases offer a great potential in detergent, cosmetic, biofuel and food or feed industries. In this paper we describe the identification of novel lipase coding genes and the expression of a lipase with high activity at low temperatures. The genomic DNA from Antarctic seawater bacteria showing lipolytic activity at 4°C was used to amplify five DNA fragments that partially encode novel lipases using specifically designed COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP). All the fragments were found to have a high identity with an α/β-hydrolase domain-containing protein identified by the sequencing of the complete genome of Shewanella frigidimarina NCIMB 400. The complete sequence of one of the lipase-coding gene fragments, lipE13, was obtained by genome walking. Considering that the other fragments had a high identity to the putative lipase from S. frigidimarina NCIMB 400, the complete lipase genes were amplified using oligonucleotide primers designed based on the 5' and 3' regions of the coding sequence of the related protein. This strategy allowed the amplification of 3 lipase-encoding genes of which one was expressed in the periplasm using the Escherichia coli BL21(DE3)/pET-22b(+) expression system. The recombinant protein was obtained with activity toward p-nitrophenyl caproate showing a high specific activity between 15 and 25°C.

  3. Onset of deglacial warming in West Antarctica driven by local orbital forcing.

    PubMed

    2013-08-22

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

  4. Onset of deglacial warming in West Antarctica driven by local orbital forcing

    USGS Publications Warehouse

    WAIS Divide Project Members,; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Chen, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Fitzpatrick, Joan J.; Hargreaves, Geoffrey; ,

    2013-01-01

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

  5. Dusk to dawn activity patterns of anopheline mosquitoes in West Timor and Java, Indonesia.

    PubMed

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2011-05-01

    Malaria is a serious health issue in Indonesia. We investigated the dusk to dawn anopheline mosquito activity patterns, host-seeking and resting locations in coastal plain, hilly and highland areas in West Timor and Java. Adult mosquitoes were captured landing on humans or resting in houses or animal barns. Data analyzed were: mosquito night-time activities; period of peak activity; night-time activity in specific periods of time and for mosquito resting locations. Eleven species were recorded; data were sparse for some species therefore detailed analyses were performed for four species only. In Java Anopheles vagus was common, with a bimodal pattern of high activity. In West Timor, its activity peaked around midnight. Other species with peak activity around the middle of the night were An. barbirostris and An. subpictus. Most species showed no biting and resting preference for indoors or outdoors, although An. barbirostris preferred indoors in West Timor, but outdoors in Java. An. aconitus and An. annularis preferred resting in human dwellings; An. subpictus and An. vagus preferred resting in animal barns. An. barbirostris preferred resting in human dwellings in West Timor and in animal barns in Java. The information is useful for planning the mosquito control aspect of malaria management. For example, where mosquito species have peak activity at night indoors, bednets and indoor residual spraying should reduce malaria risk, but where mosquitoes are most active outdoors, other options may be more effective.

  6. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-11-25

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today.

  7. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-01-01

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today. PMID:26601753

  8. Phosphatase Activities of Endolithic Communities in Rocks of the Antarctic Dry Valleys.

    PubMed

    Banerjee; Whitton; Wynn-Williams

    2000-01-01

    Phosphorus is scarce in Beacon Sandstone of the McMurdo Dry Valleys, Antarctica, and any input from precipitation is minimal. In endolithic microbial communities recycling of P by the action of phosphatases may therefore be important. The phosphatase activities of three different types of endolithic communities in the McMurdo Dry Valley, Antarctica, were studied in the laboratory. The dominant phototrophs were Chroococcidiopsis, mixed Gloeocapsa and Trebouxia, and Trebouxia. Bacteria were also visually conspicuous in the latter two communities, and the Trebouxia in both cases formed a lichenized association with fungal hyphae. In each case marked phosphomonoesterase (PMEase) activity was found in assays with 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate as substrate, and phosphodiesterase activity with bis-p-nitrophenyl phosphate as substrate. The pH optimum of PMEase (assayed at 0.5 pH intervals) of the Chroococcidiopsis, Gloeocapsa-Trebouxia, and Trebouxia communities was 9.5, 5.5, and 8.0, respectively. These values are similar for aqueous extracts of the respective rocks (pH 9.2, 6.2, 7.5). All three communities showed significantly higher PMEase activity at 5 degrees than 1 degrees C, and the first two also showed much higher activity at 5 degrees than 10 degrees C. All three communities also showed slightly lower activity in the light (7 µmol photon m(-2) s(-1)) than the dark; this was found with all substrates and substrate concentrations. Prior exposure of a moistened sample to light for 2 h led to a reduction in activity even when the subsequent assay was done in the dark. The rate of PMEase activity (using 100 µM MUP) in the Gloeocapsa-Trebouxia and Trebouxia communities was approximately linear with time up to 24 h, whereas the Chroococcidiopsis community showed a marked decrease after 6 h. At least part of this was due to retention of the 4-methylumbelliferone (MU) hydrolysis product. In spite of the assays being conducted on a whole

  9. Phosphatase Activities of Endolithic Communities in Rocks of the Antarctic Dry Valleys.

    PubMed

    Banerjee; Whitton; Wynn-Williams

    2000-01-01

    Phosphorus is scarce in Beacon Sandstone of the McMurdo Dry Valleys, Antarctica, and any input from precipitation is minimal. In endolithic microbial communities recycling of P by the action of phosphatases may therefore be important. The phosphatase activities of three different types of endolithic communities in the McMurdo Dry Valley, Antarctica, were studied in the laboratory. The dominant phototrophs were Chroococcidiopsis, mixed Gloeocapsa and Trebouxia, and Trebouxia. Bacteria were also visually conspicuous in the latter two communities, and the Trebouxia in both cases formed a lichenized association with fungal hyphae. In each case marked phosphomonoesterase (PMEase) activity was found in assays with 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate as substrate, and phosphodiesterase activity with bis-p-nitrophenyl phosphate as substrate. The pH optimum of PMEase (assayed at 0.5 pH intervals) of the Chroococcidiopsis, Gloeocapsa-Trebouxia, and Trebouxia communities was 9.5, 5.5, and 8.0, respectively. These values are similar for aqueous extracts of the respective rocks (pH 9.2, 6.2, 7.5). All three communities showed significantly higher PMEase activity at 5 degrees than 1 degrees C, and the first two also showed much higher activity at 5 degrees than 10 degrees C. All three communities also showed slightly lower activity in the light (7 µmol photon m(-2) s(-1)) than the dark; this was found with all substrates and substrate concentrations. Prior exposure of a moistened sample to light for 2 h led to a reduction in activity even when the subsequent assay was done in the dark. The rate of PMEase activity (using 100 µM MUP) in the Gloeocapsa-Trebouxia and Trebouxia communities was approximately linear with time up to 24 h, whereas the Chroococcidiopsis community showed a marked decrease after 6 h. At least part of this was due to retention of the 4-methylumbelliferone (MU) hydrolysis product. In spite of the assays being conducted on a whole

  10. Higher Temperature and Hydrogen Availability Stimulated the Methanogenic Activity in East Antarctic Subglacial Sediment

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2014-12-01

    Subglacial ecosystem has been recognized as an environment with considerable methanogenic activity, and therefore is of significant impact on global methane budget and climate change. Although the methanogens have been discovered at a few subglacial environments, the methanogenic activity there is yet insufficiently studied, especially on the effects of environmental parameters, due to technical difficulties on sampling and cultivation. Here, in this study, we attempt to access the methanogenic activity and community structure in response to temperature and substrate availability. An integrated approach including in vitro cultivation and molecular techniques were employed. A subglacial sediment from Larsemann Hills, East Antarctica was incubated at different temperatures (1, 4, 12 oC) supplied with H2+CO2 or sodium acetate to estimate the methanogenic activity. The McrA gene which is a specific marker for methanogens was amplified with primer ME and ML to construct phylogenetic trees. This functional gene was also quantified by Q-PCR before and after the incubation to estimate the increase of methanogens. After 8 months a highest methanogenesis rate of 226 pmol/ day/ gram sediment was observed at 12 oC with H2 supplying, which was 2 times higher than that with acetate supplying, clearly suggesting that H2 is a preferable substrate than acetate. The methanogenesis rate without supplying extra substrate showed positive temperature dependence with rate of 23.3, 24.8, 131 pmol/day/gram sediment at 1 oC, 4 oC, and 12 oC, respectively. The McrA copy number was increased more than 300 times and 50 times with H2 and acetate supplying respectively after the incubation. 94% and 67% of the mcrA gene sequences were classed into methanomicrobiales which were hydrogen-trophic methanogens in the two clone libraries with primer ML and ME respectively. This finding suggests the potential effect of methanogenesis under glacier on the climate change.

  11. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile

    PubMed Central

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-01-01

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800–2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400–1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today. PMID:26601753

  12. Improving Antarctic infrastructure

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-07-01

    Noting that U.S. activities in Antarctica “are very well managed but suffer from an aging infrastructure, lack of a capital budget, and the effects of operating in an extremely unforgiving environment,” a 23 July report from the U.S. Antarctic Program Blue Ribbon Panel recommends a number of measures to improve the infrastructure, logistics, and other concerns. The panel's recommendations include continued use of the McMurdo, South Pole, and Palmer stations as the primary U.S. science and logistics hubs in Antarctica—because there are no reasonable alternatives, according to the panel—while upgrading or replacing some facilities, restoring the U.S. polar ocean feet, implementing state of-the-art logistics and transportation support, and establishing a long-term facilities capital plan and budget for the U.S. Antarctic Program. “The essence of our findings is that the lack of capital budgeting has placed operations at McMurdo, and to a somewhat lesser extent at Palmer Station, in unnecessary jeopardy—at least in terms of prolonged inefficiency due to deteriorating or otherwise inadequate physical assets,” the panel wrote in the cover letter accompanying the report entitled, More and Better Science in Antarctica Through Increased Logistical Effectiveness. “The Antarctica Blue Ribbon Panel encourages us to take a hard look at how we support Antarctic science and to make the structural changes, however difficult in the current fiscal environment, that will allow us to do more science in the future,” said U.S. National Science Foundation (NSF) Director Subra Suresh.

  13. Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth.

    PubMed

    Fields, Lauren G; DeVries, Arthur L

    2015-07-01

    High latitude waters in the Southern Ocean can be near their freezing point and remain ice-covered throughout the year whereas lower latitude Southern Ocean waters have seasonal ice coverage and comparatively large (6 °C) annual temperature changes. The genus Trematomus (suborder Notothenioidei) is regarded primarily as a high latitude group because of its abundance there, they also inhabit the warmer regions in smaller numbers. Freeze avoidance in the notothenioids is linked to the presence of two antifreeze proteins (AFPs); the antifreeze glycoproteins (AFGPs) and antifreeze potentiating protein (AFPP), both of which adsorb to internal ice crystals inhibiting growth. Both high and low latitude trematomids possess sufficient AFP to lower their blood freezing point below that of seawater (-1.9 °C). We investigated the contributions of AFGPs and AFPP to the blood freezing point depression to determine how they varied with depth, water temperature, and the presence of ice. High latitude trematomids had lower blood freezing points than those inhabiting lower latitude waters indicating differences in their freeze avoidance capacities. Lower freezing points were associated with higher levels of antifreeze activity due to higher levels of both AFGP and AFPP. Populations of Trematomus hansoni and Trematomus bernacchii from shallow depths appear more freeze avoidant than populations inhabiting deep, ice-free water based on their lower freezing points and higher antifreeze activities. Gel electrophoresis of the trichloroacetic acid-soluble AFGPs indicates that only high molecular weight isoforms, which contribute more to AFGP activity, vary across species as well as between individuals of a species. PMID:25770668

  14. Prokaryotic Metabolic Activity and Community Structure in Antarctic Continental Shelf Sediments

    PubMed Central

    Bowman, J. P.; McCammon, S. A.; Gibson, J. A. E.; Robertson, L.; Nichols, P. D.

    2003-01-01

    The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66°S, 143°E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15°C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top

  15. Cosmogenic records in Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.; Nishiizumi, K.

    1983-01-01

    Aliquot samples of 29 Antarctic L and H chondrites are analyzed for their nuclear track records and Mn-53 activities. The track density in the analyzed samples ranges from 10 to the 4th to approximately 6 x 10 to the 6th per sq cm. A significant finding is the observation of track-rich grains in a set of four L3 chondrites (ALHA 77215, 77216, 77217, and 77252), suspected of belonging to the same fall based on petrographic observations. An additional sample, ALHA 78105, an L6 chondrite, also has track-rich grains. Mn-53 activity is at near saturation level in approximately 65 percent of the analyzed samples, suggesting exposure ages of greater than 10 m.y. in these cases. Very few H chondrites from the 7-m.y. exposure age peak are apparently sampled among the ones investigated in this study. Approximately 6 percent and 4 percent, respectively, of the Antarctic H and L chondrites analyzed thus far for their cosmogenic records have precompaction irradiation features. A combined analysis of Mn-53 and nuclear track data makes it possible to confirm or rule out the proposed pairing of several sets of Antarctic meteorites and to estimate the preatmospheric sizes of some of these meteorites. The results suggest that most of the small Antarctic meteorites (less than 1 kg) have suffered high (greater than 95 percent) ablation mass-loss.

  16. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice - Release of active chlorine

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.; Tso, Tai-Ly; Molina, Luisa T.; Wang, Frank C.-Y.

    1987-01-01

    The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO2) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO2 on the surface of ice with HCl in the mole fraction range from about 0.003 to 0.010 is in the range from about 0.05 to 0.1 for temperatures near 200 K. Chlorine is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO3), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO3 and thus removes nitrogen dioxide from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals.

  17. The changing form of Antarctic biodiversity.

    PubMed

    Chown, Steven L; Clarke, Andrew; Fraser, Ceridwen I; Cary, S Craig; Moon, Katherine L; McGeoch, Melodie A

    2015-06-25

    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere. PMID:26108852

  18. The Prediction of the Saturated Activity of 26Al in Non-Antarctic Stony Meteorites from their Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Keith, J. E.; Heydegger, H. R.

    1992-07-01

    We have assembled from the literature a database of over 300 non-Antarctic stony meteorites, containing information about their chemical composition, date of fall, total mass, and gas exposure age, etc. We have developed an iterative algorithm using weighted linear multivariate regression, which surveys all the independent variables in the database, recommends the best 26 models (combinations of variables) for the prediction of Al activity, and using those models, performs weighted linear multivariate regressions. By requiring that the residuals be normally distributed, under- and super-saturated meteorites are discovered and eliminated. This process is iterated until a stable solution is obtained. As a result, we obtained a set of 128 saturated, 50 unsaturated, and 10 supersaturated meteorites. We find that the expression: ^26Al = (5.28+-0.81) . Al + (2.59+- 0.06) . Si + (1.57+-0.39) . S + (1.52+-0.59) . Ca, Chi^2(sub)nu = 2.59, where the elemental concentration is given in weight 26%, is the best predictor of the saturated ^26Al content of a stony meteorite. We find no evidence of bias or crippling multicollinearity in this expression. About one half of the remaining variability cannot be attributed to uncertainties in the determination of the ^26Al content and thus must be attributed to variations in orbit, shielding, etc. We compare our results (see figure) with those of other workers (1,2,3,4), and examine the probable causes of the disagreements displayed there. We show that saturated ^26Al is distributed among all classes of meteorites in about the same way, with the exception of the carbonaceous chondrites and the eucrites, which both have about the same excess proportion of unsaturation. We examine the question of the convergence of expressions derived from regressions on chemical composition to the predictive expressions derived from integrals of particle fluxes and nuclear reaction cross sections and show that they need not converge. We examine the

  19. Marine bacterioplankton biomass, activity and community structure in the vicinity of Antarctic icebergs

    NASA Astrophysics Data System (ADS)

    Murray, Alison E.; Peng, Vivian; Tyler, Charlotte; Wagh, Protima

    2011-06-01

    We studied marine bacterioplankton in the Scotia Sea in June 2008 and in the northwest Weddell Sea in March to mid April 2009 in waters proximal to three free-drifting icebergs (SS-1, A-43k, and C-18a), in a region with a high density of smaller icebergs (iceberg alley), and at stations that were upstream of the iceberg trajectories designated as far-field reference sites that were between 16-75 km away. Hydrographic parameters were used to define water masses in which comparisons between bacterioplankton-associated characteristics (abundance, leucine incorporation into protein, aminopeptidase activities and community structure) within and between water masses could be made. Early winter Scotia Sea bacterioplankton had low levels of cells and low heterotrophic production rates in the upper 50 m. Influences of the icebergs on bacterioplankton at this time of year were minimal, if not deleterious, as we found lower levels of heterotrophic production near A-43k in comparison to stations >16 km away. Additionally, the results point to small but significant differences in cell abundance, heterotrophic production, and community structure between the two icebergs studied. These icebergs differed greatly in size and the findings suggest that the larger iceberg had a greater effect. In the NW Weddell Sea in March-mid April bacterioplankton were twice as abundant and had heterotrophic productions rates that were 8-fold higher than what we determined in the Scotia Sea, though levels were still quite low, which is typical for autumn. We did not detect direct iceberg-related influences on the bacterioplankton characteristics studied here. Clues to understanding bacterioplankton responses may lie in the details of community structure, as there were some significant differences in community structure in the winter water and underlying upper circumpolar deep-water masses between stations occupied close to C-18a and at stations 18 km away (i.e. Polaribacter and Pelagibacter

  20. Year-round West Nile Virus Activity, Gulf Coast Region, Texas and Louisiana

    PubMed Central

    Parsons, Ray; Siirin, Marina; Randle, Yvonne; Sargent, Chris; Guzman, Hilda; Wuithiranyagool, Taweesak; Higgs, Stephen; Vanlandingham, Dana L.; Bala, Adil A.; Haas, Keith; Zerinque, Brian

    2004-01-01

    West Nile virus (WNV) was detected in 11 dead birds and two mosquito pools collected in east Texas and southern Louisiana during surveillance studies in the winter of 2003 to 2004. These findings suggest that WNV is active throughout the year in this region of the United States. PMID:15498169

  1. Feeding repellence in Antarctic bryozoans.

    PubMed

    Figuerola, Blanca; Núñez-Pons, Laura; Moles, Juan; Avila, Conxita

    2013-11-01

    The Antarctic sea star Odontaster validus and the amphipod Cheirimedon femoratus are important predators in benthic communities. Some bryozoans are part of the diet of the asteroid and represent both potential host biosubstrata and prey for this omnivorous lysianassid amphipod. In response to such ecological pressure, bryozoans are expected to develop strategies to deter potential predators, ranging from physical to chemical mechanisms. However, the chemical ecology of Antarctic bryozoans has been scarcely studied. In this study we evaluated the presence of defenses against predation in selected species of Antarctic bryozoans. The sympatric omnivorous consumers O. validus and C. femoratus were selected to perform feeding assays with 16 ether extracts (EE) and 16 butanol extracts (BE) obtained from 16 samples that belonged to 13 different bryozoan species. Most species (9) were active (12 EE and 1 BE) in sea star bioassays. Only 1 BE displayed repellence, indicating that repellents against the sea star are mainly lipophilic. Repellence toward C. femoratus was found in all species in different extracts (10 EE and 12 BE), suggesting that defenses against the amphipod might be both lipophilic and hydrophilic. Interspecific and intraspecific variability of bioactivity was occasionally detected, suggesting possible environmental inductive responses, symbiotic associations, and/or genetic variability. Multivariate analysis revealed similarities among species in relation to bioactivities of EE and/or BE. These findings support the hypothesis that, while in some cases alternative chemical or physical mechanisms may also provide protection, repellent compounds play an important role in Antarctic bryozoans as defenses against predators.

  2. Feeding repellence in Antarctic bryozoans

    NASA Astrophysics Data System (ADS)

    Figuerola, Blanca; Núñez-Pons, Laura; Moles, Juan; Avila, Conxita

    2013-11-01

    The Antarctic sea star Odontaster validus and the amphipod Cheirimedon femoratus are important predators in benthic communities. Some bryozoans are part of the diet of the asteroid and represent both potential host biosubstrata and prey for this omnivorous lysianassid amphipod. In response to such ecological pressure, bryozoans are expected to develop strategies to deter potential predators, ranging from physical to chemical mechanisms. However, the chemical ecology of Antarctic bryozoans has been scarcely studied. In this study we evaluated the presence of defenses against predation in selected species of Antarctic bryozoans. The sympatric omnivorous consumers O. validus and C. femoratus were selected to perform feeding assays with 16 ether extracts (EE) and 16 butanol extracts (BE) obtained from 16 samples that belonged to 13 different bryozoan species. Most species (9) were active (12 EE and 1 BE) in sea star bioassays. Only 1 BE displayed repellence, indicating that repellents against the sea star are mainly lipophilic. Repellence toward C. femoratus was found in all species in different extracts (10 EE and 12 BE), suggesting that defenses against the amphipod might be both lipophilic and hydrophilic. Interspecific and intraspecific variability of bioactivity was occasionally detected, suggesting possible environmental inductive responses, symbiotic associations, and/or genetic variability. Multivariate analysis revealed similarities among species in relation to bioactivities of EE and/or BE. These findings support the hypothesis that, while in some cases alternative chemical or physical mechanisms may also provide protection, repellent compounds play an important role in Antarctic bryozoans as defenses against predators.

  3. Feeding repellence in Antarctic bryozoans.

    PubMed

    Figuerola, Blanca; Núñez-Pons, Laura; Moles, Juan; Avila, Conxita

    2013-11-01

    The Antarctic sea star Odontaster validus and the amphipod Cheirimedon femoratus are important predators in benthic communities. Some bryozoans are part of the diet of the asteroid and represent both potential host biosubstrata and prey for this omnivorous lysianassid amphipod. In response to such ecological pressure, bryozoans are expected to develop strategies to deter potential predators, ranging from physical to chemical mechanisms. However, the chemical ecology of Antarctic bryozoans has been scarcely studied. In this study we evaluated the presence of defenses against predation in selected species of Antarctic bryozoans. The sympatric omnivorous consumers O. validus and C. femoratus were selected to perform feeding assays with 16 ether extracts (EE) and 16 butanol extracts (BE) obtained from 16 samples that belonged to 13 different bryozoan species. Most species (9) were active (12 EE and 1 BE) in sea star bioassays. Only 1 BE displayed repellence, indicating that repellents against the sea star are mainly lipophilic. Repellence toward C. femoratus was found in all species in different extracts (10 EE and 12 BE), suggesting that defenses against the amphipod might be both lipophilic and hydrophilic. Interspecific and intraspecific variability of bioactivity was occasionally detected, suggesting possible environmental inductive responses, symbiotic associations, and/or genetic variability. Multivariate analysis revealed similarities among species in relation to bioactivities of EE and/or BE. These findings support the hypothesis that, while in some cases alternative chemical or physical mechanisms may also provide protection, repellent compounds play an important role in Antarctic bryozoans as defenses against predators. PMID:24221581

  4. The Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1988-01-01

    Observations of Antarctic ozone levels and the discovery of a hole in the Antarctic region are examined. The effects of chlorofluorocarbons (CFCs) on the level of stratospheric ozone are analyzed. Three cycles explaining the cause of ozone depletion in the poles are proposed. A comparison of field data and proposed depletion cycles reveals that the chemical origin of the ozone hole is due to CFCs. The potential global effects of the Antarctic ozone hole are discussed.

  5. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  6. Tephrochronology of the Siple Dome ice core, West Antarctica: correlations and sources

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Kurbatov, Andrei V.

    2011-06-01

    A total of 24 tephra-bearing volcanic layers have been recognized between 550 and 987 m depth in the Siple Dome A (SDM-A) ice core, in addition to a number already recognized tephra in the upper 550 m ( Dunbar et al., 2003; Kurbatov et al., 2006). The uniform composition and distinctive morphological of the particles composing these tephra layers suggest deposition as a result of explosive volcanic eruptions and that the layers therefore represent time-stratigraphic markers in the ice core. Despite the very fine grain size of these tephra (mostly less than 20 microns), robust geochemical compositions were determined by electron microprobe analysis. The source volcanoes for these tephra layers are largely found within the Antarctic plate. Statistical geochemical correlations tie nine of the tephra layers to known eruptions from Mt. Berlin, a West Antarctic volcano that has been very active for the past 100,000 years. Previous correlations were made to an eruption of Mt. Takahe, another West Antarctic volcano, and one to Mt. Hudson, located in South America ( Kurbatov et al., 2006). The lowest tephra layer in the ice core, located at 986.21 m depth, is correlated to a source eruption with an age of 118.1 ± 1.3 ka, suggesting a chronological pinning point for the lower ice. An episode of anomalously high volcanic activity in the ice in the SDM-A core between 18 and 35 ka ( Gow and Meese, 2007) appears to be related to eruptive activity of Mt. Berlin volcano. At least some of the tephra layers found in the SDM-A core appear to be the result of very explosive eruptions that spread ash across large parts of West Antarctica, off the West Antarctic coast, as well as also being recognized in East Antarctica ( Basile et al., 2001; Narcisi et al., 2005, 2006). Some of these layers would be expected to should be found in other deep Antarctic ice cores, particularly ones drilled in West Antarctica, providing correlative markers between different cores. The analysis of the

  7. Recent Aeromagnetic Anomaly views of the Antarctic continent

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.

    2012-04-01

    hypothesis further and contribute towards understanding the role that the inherited Precambrian architecture exerted on the location and development of the East Antarctic Rift System, which was active both before and during Gondwana break-up. Over Wilkes Land, aeromagnetic data offer tantalizing new glimpses into the extent of Precambrian basement provinces that have been extensively studied in formerly adjacent Australia. An over 1,900 km long magnetic low is traced from a new magnetic anomaly compilation along the margin of the Archean-Proterozoic Mawson continent, and is interpreted as delineating part of a Neoproterozoic rift system that heralded Rodinia break-up. Aeromagnetic data are also helping in deciphering Phanerozoic crustal growth along the paleo-Pacific active margin of Gondwana. In northern Victoria Land aeromagnetic anomaly interpretation, coupled with geochemical and structural observations is clarifying the architecture and evolution of Cambro-Ordovician terranes that were affected by the Ross Orogen. In the Antarctic Peninsula aeromagnetic and aerogravity data suggest the existence of several distinct arc provinces that may have docked against the Gondwana margin during the Cretaceous age Palmer Land event. Aeromagnetic interpretation over the West Antarctic ice sheet provides new insights into the extent of Cenozoic magmatism and rift basins within the West Antarctic Rift System and into the inland extent of the Jurassic Weddell Sea Rift

  8. Drilling reaches Antarctic subglacial Lake Whillans

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    A decade-long planning effort to drill through 800 meters of ice to directly and cleanly sample the waters and sediments of subglacial Lake Whillans in West Antarctica succeeded at 5:00 A.M. local time on 28 January. The effort "marks the first successful retrieval of clean whole samples from an Antarctic subglacial lake," according to a 28 January statement from the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project team.

  9. Population dynamics of Salpa thompsoni near the Antarctic Peninsula: Growth rates and interannual variations in reproductive activity (1993-2009)

    NASA Astrophysics Data System (ADS)

    Loeb, V. J.; Santora, J. A.

    2012-04-01

    The salp Salpa thompsoni has exhibited increased abundance in high latitude portions of the Southern Ocean in recent decades and is now frequently the numerically dominant zooplankton taxon in the Antarctic Peninsula region. The abundance increase of this species in high latitude waters is believed related to ocean warming. Due to its continuous filter feeding and production of dense rapidly sinking fecal pellets S. thompsoni is considered to be an important link in the export of particulate carbon from the surface waters. Hence basic information on the life history of this component of the Antarctic marine ecosystem is essential for assessing its impact given continued climate warming. Here we cover various aspects of the life history of S. thompsoni collected in the north Antarctic Peninsula during annual austral summer surveys of the US Antarctic Marine Living Resources (AMLR) Program between 1993 and 2009. We focus on seasonal and interannual variations in the size composition and abundance of the aggregate (sexual) and solitary (asexual) stages. This information is valuable for refining components of Southern Ocean food web models that explicitly deal with size-structured and life history information on zooplankton. Intraseasonal changes in length-frequency distribution of both stages are used to estimate their growth rates. These average 0.40 mm day-1 for aggregates and 0.23 mm day-1 for solitaries; together these represent ∼7 week and ∼7.5 month generation times, respectively, and a 9 month life cycle (i.e., onset of aggregate production year 1 to aggregate production year 2). Based on the maximum lengths typically found during January-March, the life spans of the aggregate and solitary stages can reach at least ∼5 and ∼15 months, respectively. Length-frequency distributions each year reflect interannual differences in timing of the initiation and peak reproductive output. Interannual differences in the abundance of total salps and proportions of the

  10. 33 CFR 334.762 - Naval Support Activity Panama City; North Bay and West Bay; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... City; North Bay and West Bay; restricted areas. 334.762 Section 334.762 Navigation and Navigable Waters... REGULATIONS § 334.762 Naval Support Activity Panama City; North Bay and West Bay; restricted areas. (a) The..., 085°45′34″ W; East point—30°14′56″ N, 085°43′45″ W; South point—30°14′01″ N, 085°44′59″ W; West...

  11. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Wiens, Douglas A.; Anandakrishnan, Sridhar; Aster, Richard C.; Dalziel, Ian W. D.; Huerta, Audrey D.; Nyblade, Andrew A.; Wilson, Terry J.; Winberry, J. Paul

    2016-03-01

    The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two-plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three-dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70-100 km thick lithosphere, underlain by a low-velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow-velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher-velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth-Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.

  12. Antarctic subglacial lake exploration: first results and future plans.

    PubMed

    Siegert, Martin J; Priscu, John C; Alekhina, Irina A; Wadham, Jemma L; Lyons, W Berry

    2016-01-28

    After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future.

  13. Antarctic news clips, 1991

    NASA Astrophysics Data System (ADS)

    1991-08-01

    Published stories are presented that sample a year's news coverage of Antarctica. The intent is to provide the U.S. Antarctic Program participants with a digest of current issues as presented by a variety of writers and popular publications. The subject areas covered include the following: earth science; ice studies; stratospheric ozone; astrophysics; life science; operations; education; antarctic treaty issues; and tourism

  14. The Antarctic Ozone Hole.

    ERIC Educational Resources Information Center

    Stolarski, Richard S.

    1988-01-01

    Discusses the Airborne Antarctic Ozone Experiment (1987) and the findings of the British Antarctic Survey (1985). Proposes two theories for the appearance of the hole in the ozone layer over Antarctica which appears each spring; air pollution and natural atmospheric shifts. Illustrates the mechanics of both. Supports worldwide chlorofluorocarbon…

  15. The Antarctic Ice.

    ERIC Educational Resources Information Center

    Radok, Uwe

    1985-01-01

    The International Antarctic Glaciological Project has collected information on the East Antarctic ice sheet since 1969. Analysis of ice cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the ice sheet and its changes over time will aid in predicting the future. (DH)

  16. Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    PubMed Central

    Hauquier, Freija; Ingels, Jeroen; Gutt, Julian; Raes, Maarten; Vanreusel, Ann

    2011-01-01

    Background Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. Principal Findings The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between −21.97±0.86‰ and −24.85±1.89‰) were indicative of a phytoplankton-derived food source. Conclusion The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine

  17. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  18. A 16,000-yr tephra framework for the Antarctic ice sheet: a contribution from the new Talos Dome core

    NASA Astrophysics Data System (ADS)

    Narcisi, Biancamaria; Petit, Jean Robert; Delmonte, Barbara; Scarchilli, Claudio; Stenni, Barbara

    2012-08-01

    A detailed tephra record for the last 16,000 years of the TALDICE ice core drilled at Talos Dome (East Antarctica, Pacific/Ross Sea sector) is documented. Traces of 26 different explosive volcanic eruptions, dated by ice core chronology and framed within the climate (δ18O) record for the core, have been identified. Glass major element composition and grain size data indicate that all prominent tephra layers derive from Antarctic volcanic activity and likely originated in proximal volcanoes of the Melbourne Volcanic Province (Northern Victoria Land). Two other Antarctic horizons may have originated from the more distant volcanoes of Mount Berlin (Marie Byrd Land, West Antarctica) and Mount Erebus (Ross Island, Southern Victoria Land). Moreover, based on glass-shard geochemistry and a 20-year analysis of atmospheric back trajectories suggesting ash transport from South America to the drilling site by the circumpolar westerly circulation, a few faint microtephra horizons are attributed to Andean volcanic activity. Two of these tephras are interpreted to be related to known Holocene explosive eruptions from the volcanoes of Mount Hudson and Mount Burney. Finally, by comparing compositional features in conjunction with age data, three TALDICE tephras have been successfully correlated with volcanic layers in other ice records of the Antarctic ice sheet. Altogether, our results expand the Antarctic tephrostratigraphic framework and add value to the prospects for continental-scale correlations between ice cores and Southern Hemisphere sediment archives.

  19. 33 CFR 334.762 - Naval Support Activity Panama City; North Bay and West Bay; restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... City; North Bay and West Bay; restricted areas. 334.762 Section 334.762 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.762 Naval Support Activity Panama City; North Bay and West Bay; restricted areas. (a)...

  20. 33 CFR 334.762 - Naval Support Activity Panama City; North Bay and West Bay; restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... City; North Bay and West Bay; restricted areas. 334.762 Section 334.762 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.762 Naval Support Activity Panama City; North Bay and West Bay; restricted areas. (a)...

  1. Controls and variability of solute and sedimentary fluxes in Antarctic and sub-Antarctic Environments

    NASA Astrophysics Data System (ADS)

    Zwolinski, Zbigniew

    2015-04-01

    The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). The book comprises five parts. One of them is part about sub-Antarctic and Antarctic Environments. This part "Sub-Antarctic and Antarctic Environments" describes two different environments, namely oceanic and continental ones. Each part contains results of research on environmental drivers and rates of contemporary solute and sedimentary fluxes in selected sites. Apart from describing the environmental conditions of the whole continent of Antarctica and sub-Antarctic islands (Zb.Zwolinski, M.Kejna, A.N.Lastochkin, A.Zhirov, S.Boltramovich) this part of the book characterizes terrestrial polar oases free from multi-year ice and snow covers (Zb.Zwolinski). The detailed results of geoecological and sedimentological research come from different parts of Antarctica. Antarctic continental shelf (E.Isla) is an example of sub-Antarctic oceanic environment. South Shetlands, especially King George Island (Zb.Zwolinski, M.Kejna, G.Rachlewicz, I.Sobota, J.Szpikowski), is an example of sub-Antarctic terrestrial environment. Antarctic Peninsula (G.Vieira, M.Francelino, J.C.Fernandes) and surroundings of McMurdo Dry Valleys (W.B.Lyons, K.A.Welch, J.Levy, A.Fountain, D.McKnight) are examples of Antarctic continental environments. The key goals of the Antarctic and sub-Antarctic book chapters are following: (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments

  2. Lidar and CTIPe model studies of the fast amplitude growth with altitude of the diurnal temperature "tides" in the Antarctic winter lower thermosphere and dependence on geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Fong, Weichun; Chu, Xinzhao; Lu, Xian; Chen, Cao; Fuller-Rowell, Timothy J.; Codrescu, Mihail; Richmond, Arthur D.

    2015-02-01

    Four years of lidar observations at McMurdo reveal that the fast amplitude growth with altitude of diurnal temperature tides from 100 to 110 km during Antarctic winters, exceeding that of the freely propagating tides from the lower atmosphere, increases in strength with the Kp magnetic activity index. Simulations with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model reproduce the lidar observations and exhibit concentric ring structures of diurnal amplitudes encircling the south geomagnetic pole and overlapping the auroral zone. These findings point to a magnetospheric source origin. Mechanistic studies using CTIPe show that the adiabatic cooling/heating associated with Hall ion drag is the dominant source of this feature, while Joule heating is a minor contributor due to the counteraction by Joule-heating-induced adiabatic cooling. The sum of total dynamical effects and Joule heating explains ~80% of the diurnal amplitudes. Auroral particle heating, lower atmosphere tides, and direct solar heating have minor contributions.

  3. Volume loss from Antarctic ice shelves is accelerating

    NASA Astrophysics Data System (ADS)

    Paolo, Fernando S.; Fricker, Helen A.; Padman, Laurie

    2015-04-01

    The floating ice shelves surrounding the Antarctic Ice Sheet restrain the grounded ice-sheet flow. Thinning of an ice shelf reduces this effect, leading to an increase in ice discharge to the ocean. Using 18 years of continuous satellite radar altimeter observations, we have computed decadal-scale changes in ice-shelf thickness around the Antarctic continent. Overall, average ice-shelf volume change accelerated from negligible loss at 25 ± 64 cubic kilometers per year for 1994-2003 to rapid loss of 310 ± 74 cubic kilometers per year for 2003-2012. West Antarctic losses increased by ~70% in the past decade, and earlier volume gain by East Antarctic ice shelves ceased. In the Amundsen and Bellingshausen regions, some ice shelves have lost up to 18% of their thickness in less than two decades.

  4. Holocene Deglaciation of Marie Byrd Land, West Antarctica

    NASA Astrophysics Data System (ADS)

    Stone, John O.; Balco, Gregory A.; Sugden, David E.; Caffee, Marc W.; Sass, Louis C.; Cowdery, Seth G.; Siddoway, Christine

    2003-01-01

    Surface exposure ages of glacial deposits in the Ford Ranges of western Marie Byrd Land indicate continuous thinning of the West Antarctic Ice Sheet by more than 700 meters near the coast throughout the past 10,000 years. Deglaciation lagged the disappearance of ice sheets in the Northern Hemisphere by thousands of years and may still be under way. These results provide further evidence that parts of the West Antarctic Ice Sheet are on a long-term trajectory of decline. West Antarctic melting contributed water to the oceans in the late Holocene and may continue to do so in the future.

  5. Nocturnal activity patterns of northern myotis (Myotis septentrionalis) during the maternity season in West Virginia (USA)

    USGS Publications Warehouse

    Johnson, J.B.; Edwards, J.W.; Ford, W.M.

    2011-01-01

    Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined nocturnal activity patterns of northern myotis maternity colonies during pregnancy and lactation at diurnal roost trees situated in areas that were and were not subjected to recent prescribed fires at the Fernow Experimental Forest, West Virginia from 2007 to 2009. According to exit counts and acoustic data, northern myotis colony sizes were similar between reproductive periods and roost tree settings. However, intra-night activity patterns differed slightly between reproductive periods and roost trees in burned and non-burned areas. Weather variables poorly explained variation in activity patterns during pregnancy, but precipitation and temperature were negatively associated with activity patterns during lactation. ?? Museum and Institute of Zoology PAS.

  6. Antarctic skuas recognize individual humans.

    PubMed

    Lee, Won Young; Han, Yeong-Deok; Lee, Sang-Im; Jablonski, Piotr G; Jung, Jin-Woo; Kim, Jeong-Hoon

    2016-07-01

    Recent findings report that wild animals can recognize individual humans. To explain how the animals distinguish humans, two hypotheses are proposed. The high cognitive abilities hypothesis implies that pre-existing high intelligence enabled animals to acquire such abilities. The pre-exposure to stimuli hypothesis suggests that frequent encounters with humans promote the acquisition of discriminatory abilities in these species. Here, we examine individual human recognition abilities in a wild Antarctic species, the brown skua (Stercorarius antarcticus), which lives away from typical human settlements and was only recently exposed to humans due to activities at Antarctic stations. We found that, as nest visits were repeated, the skua parents responded at further distances and were more likely to attack the nest intruder. Also, we demonstrated that seven out of seven breeding pairs of skuas selectively responded to a human nest intruder with aggression and ignored a neutral human who had not previously approached the nest. The results indicate that Antarctic skuas, a species that typically inhabited in human-free areas, are able to recognize individual humans who disturbed their nests. Our findings generally support the high cognitive abilities hypothesis, but this ability can be acquired during a relatively short period in the life of an individual as a result of interactions between individual birds and humans.

  7. Adult antarctic krill feeding at abyssal depths.

    PubMed

    Clarke, Andrew; Tyler, Paul A

    2008-02-26

    Antarctic krill (Euphausia superba) is a large euphausiid, widely distributed within the Southern Ocean [1], and a key species in the Antarctic food web [2]. The Discovery Investigations in the early 20(th) century, coupled with subsequent work with both nets and echosounders, indicated that the bulk of the population of postlarval krill is typically confined to the top 150 m of the water column [1, 3, 4]. Here, we report for the first time the existence of significant numbers of Antarctic krill feeding actively at abyssal depths in the Southern Ocean. Biological observations from the deep-water remotely operated vehicle Isis in the austral summer of 2006/07 have revealed the presence of adult krill (Euphausia superba Dana), including gravid females, at unprecedented depths in Marguerite Bay, western Antarctic Peninsula. Adult krill were found close to the seabed at all depths but were absent from fjords close inshore. At all locations where krill were detected they were seen to be actively feeding, and at many locations there were exuviae (cast molts). These observations revise significantly our understanding of the depth distribution and ecology of Antarctic krill, a central organism in the Southern Ocean ecosystem.

  8. Non-extensivity and complexity in the earthquake activity at the West Corinth rift (Greece)

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos; Sammonds, Peter

    2013-04-01

    Earthquakes exhibit complex phenomenology that is revealed from the fractal structure in space, time and magnitude. For that reason other tools rather than the simple Poissonian statistics seem more appropriate to describe the statistical properties of the phenomenon. Here we use Non-Extensive Statistical Physics [NESP] to investigate the inter-event time distribution of the earthquake activity at the west Corinth rift (central Greece). This area is one of the most seismotectonically active areas in Europe, with an important continental N-S extension and high seismicity rates. NESP concept refers to the non-additive Tsallis entropy Sq that includes Boltzmann-Gibbs entropy as a particular case. This concept has been successfully used for the analysis of a variety of complex dynamic systems including earthquakes, where fractality and long-range interactions are important. The analysis indicates that the cumulative inter-event time distribution can be successfully described with NESP, implying the complexity that characterizes the temporal occurrences of earthquakes. Further on, we use the Tsallis entropy (Sq) and the Fischer Information Measure (FIM) to investigate the complexity that characterizes the inter-event time distribution through different time windows along the evolution of the seismic activity at the West Corinth rift. The results of this analysis reveal a different level of organization and clusterization of the seismic activity in time. Acknowledgments. GM wish to acknowledge the partial support of the Greek State Scholarships Foundation (IKY).

  9. Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field

    PubMed

    McAdoo; Laxon

    1997-04-25

    A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago. PMID:9110969

  10. Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field

    PubMed

    McAdoo; Laxon

    1997-04-25

    A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago.

  11. Assessment of alpha activity of building materials commonly used in West Bengal, India.

    PubMed

    Ghosh, Dipak; Deb, Argha; Bera, Sukumar; Sengupta, Rosalima; Patra, Kanchan Kumar

    2008-02-01

    This paper, reports for the first time, an extensive study of alpha activity of all widely used building materials (plaster of Paris, stone chips, marble, white cement, mosaic stone, limestone, sand, granite, cement brick, asbestos, red brick, cement tile, ceramic tile and ceramics) in West Bengal, India. The alpha activities have been measured using Solid State Nuclear Track Detector (SSNTD), a very sensitive detector for alpha particles. The samples were collected from local markets of Kolkata. The measured average alpha activities ranged from 22.7+/-2.5 to 590.6+/-16.8Bqkg(-1). The alpha activity of ceramic tiles was highest and provides additional data to estimate the effect of environmental radiation exposure on human health.

  12. The use of early summer mosquito surveillance to predict late summer West Nile virus activity

    USGS Publications Warehouse

    Ginsberg, Howard S.; Rochlin, Ilia; Campbell, Scott R.

    2010-01-01

    Utility of early-season mosquito surveillance to predict West Nile virus activity in late summer was assessed in Suffolk County, NY. Dry ice-baited CDC miniature light traps paired with gravid traps were set weekly. Maximum-likelihood estimates of WNV positivity, minimum infection rates, and % positive pools were generally well correlated. However, positivity in gravid traps was not correlated with positivity in CDC light traps. The best early-season predictors of WNV activity in late summer (estimated using maximum-likelihood estimates of Culex positivity in August and September) were early date of first positive pool, low numbers of mosquitoes in July, and low numbers of mosquito species in July. These results suggest that early-season entomological samples can be used to predict WNV activity later in the summer, when most human cases are acquired. Additional research is needed to establish which surveillance variables are most predictive and to characterize the reliability of the predictions.

  13. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal.

    PubMed

    Bhattacharyya, Pradip; Tripathy, Subhasish; Kim, Kangjoo; Kim, Seok-Hwi

    2008-09-01

    A study for the effect of arsenic (As) contamination on beta-glucosidase, urease, acid-/alkaline-phosphatase, and arylsulphatase activities was conducted in As contaminated soils of West Bengal, India. The studied soils show low total As contents relative to those in other As-contaminated sites. A sequential extraction technique was used to quantify water soluble, exchangeable, carbonate bound, Fe/Mn oxide bound, organic bound, and residual As fractions. Arsenic concentrations in the two most labile fractions (i.e., water soluble and exchangeable fractions) were generally low. The studied enzymes were significantly and negatively correlated with water soluble and exchangeable As forms but did not show any significant correlations with other forms, indicating that water soluble and exchangeable forms exert a strong inhibitory effect on the soil enzyme activities. It is thus suggested that the enzyme activity can be helpful in assessing the effects of As on biochemical quality of soils.

  14. Solutions to problems of weathering in Antarctic eucrites

    NASA Technical Reports Server (NTRS)

    Strait, Melissa M.

    1990-01-01

    Neutron activation analysis was performed for major and trace elements on a suite of eucrites from both Antarctic and non-Antarctic sources. The chemistry was examined to see if there was an easy way to distinguish Antarctic eucrites that had been disturbed in their trace elements systematics from those that had normal abundances relative to non-Antarctic eucrites. There was no simple correlation found, and identifying the disturbed meteorites still remains a problem. In addition, a set of mineral separates from an eucrite were analyzed. The results showed no abnormalities in the chemistry and provides a possible way to use Antarctic eucrites that were disturbed in modelling of the eucrite parent body.

  15. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  16. Satellites reveal Antarctic mass imbalance

    NASA Astrophysics Data System (ADS)

    Shepherd, A.

    2004-05-01

    Satellite radar observations have revealed a widespread mass imbalance in western Antarctica and rapid thinning of ice shelves at the Antarctic Peninsula. The former shows grounded ice retreat in a region previously considered unstable to such events, and the latter illuminates an ongoing debate as to the mechanism through which ice shelves have disintegrated over the past decade. Both measurements inform us as to the present state of balance of the cryosphere and its interactions with the southern oceans. Since 1992, the Amundsen Sea sector of the West Antarctic Ice Sheet has lost 39 cubic kilometers of its volume each year due to an imbalance between snow accumulation and ice discharge. A flow disturbance is responsible for removing the majority of that ice from the trunks of the Pine Island, Thwaites and Smith glacier drainage systems, raising global sea level by over 1 mm during the past decade alone. The coincidence of rapid ice thinning at the Amundsen Coast and warm circumpolar deep water intrusion in Pine Island Bay, coupled with a ~ 50 cubic kilometre annual freshening of the Ross Sea Gyre downstream, makes ocean melting an attractive proposition for the origin of the regional disturbance. At the same time, the Larsen Ice Shelf surface has lowered by up to 0.27 m per year, in tandem with a period of atmospheric warming and ice shelf collapse. The lowering cannot be explained by increased summer melt-water production alone, and must reflect a loss of basal ice through melting. Ocean temperature measurements close to the ice shelf barrier support this conclusion, making enhanced basal ice melting a likely factor linking the regional climate warming and the successive disintegration of sections of the Larsen Ice Shelf.

  17. Ice scour disturbance in Antarctic waters.

    PubMed

    Smale, Dan A; Brown, Kirsty M; Barnes, David K A; Fraser, Keiron P P; Clarke, Andrew

    2008-07-18

    The West Antarctic Peninsula is one of the fastest warming regions on Earth, and, as a consequence, most maritime glaciers and ice shelves in the region have significantly retreated over the past few decades. We collected a multiyear data set on ice scouring frequency from Antarctica by using unique experimental markers and scuba diving surveys. We show that the annual intensity of ice scouring is negatively correlated with the duration of the winter fast ice season. Because fast ice extent and duration is currently in decline in the region after recent rapid warming, it is likely that marine benthic communities are set for even more scouring in the near future.

  18. Antarctic Peninsula Tidewater Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.

    2015-12-01

    The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers

  19. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  20. Relics of Mining Activities in West Bohemia - Mapping by Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Faltýnová, M.; Pavelka, K.

    2013-07-01

    The part of the Czech Republic - West Bohemia is well known for mining activities, different types of raw materials have been extracted from mines near Jáchymov, Sokolov and other sites since medieval times till today. There are original maps of some sites, as well there is effort of some geologists to find and map relics of mining activities (such as digs visible in terrain) by land survey. The quality of these available maps is unfortunately questionable - due to its age or used methods. Our aim was to find resource useful for searching for these sites, than to use field survey to confirm our findings. We used available digital terrain model (DTM) based on airborne laser scanning (ALS) technology to map relics of mining activities in West Bohemia. The Czech Office for Surveying, Mapping and Cadastre started in 2008 project for terrain mapping using the ALS method. The aim of mapping was to get authentic and detailed DTM of the Czech Republic. About 2/3 of area is currently covered by the DTM based on ALS, this year the mapping should be complete. The dataset is characterised by the density of 1-2 points/m2 and the standard deviation in altitude of model points is up to 30 cm (in forested areas). We had DTM in form of shaded surface for one third of the Czech Republic. The shaded surface enables to highlight terrain break lines, which is suitable for archaeological research. Terrain modifications caused by human activity are characterized by terrain break lines, local tops or pits, which do not fit to local geomorphology. Visual image interpretation of the dataset is in the process.

  1. Navy closes Antarctic unit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    After 42 years as a key participant in the United States Antarctic Program (USAP), the U.S. Navy held a ceremony on February 20 to commemorate the closing of its Naval Antarctic Support Unit stationed in New Zealand. The Navy originally had announced its decision to "disestablish" the unit in 1993, citing new global priorities with the end of the Cold War.The Navy will continue to provide limited flight support to the USAP through the end of the 1998-1999 austral research season.

  2. Antarctic terrestrial ecosystems

    SciTech Connect

    Walton, D.W.H.

    1987-01-01

    The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

  3. Antarctic subglacial lake exploration: first results and future plans.

    PubMed

    Siegert, Martin J; Priscu, John C; Alekhina, Irina A; Wadham, Jemma L; Lyons, W Berry

    2016-01-28

    After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. PMID:26667917

  4. Antarctic subglacial lake exploration: first results and future plans

    PubMed Central

    Siegert, Martin J.; Priscu, John C.; Wadham, Jemma L.; Lyons, W. Berry

    2016-01-01

    After more than a decade of planning, three attempts were made in 2012–2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. PMID:26667917

  5. Antarctic analogs for Enceladus

    NASA Astrophysics Data System (ADS)

    Murray, A. E.; Andersen, D. T.; McKay, C. P.

    2014-12-01

    Enceladus is a new world for Astrobiology. The Cassini discovery of the icy plume emanating from the South Polar region indicates an active world, where detection of water, organics, sodium, and nano-particle silica in the plume strongly suggests that the source is a subsurface salty ocean reservoir. Recent gravity data from Cassini confirms the presence of a regional sea extending north to 50°S. An ocean habitat under a thick ice cover is perhaps a recurring theme in the Outer Solar System, but what makes Enceladus unique is that the plume jetting out into space is carrying samples of this ocean. Therefore, through the study of Enceladus' plumes we can gain new insights not only of a possible habitable world in the Solar Systems, but also about the formation and evolution of other icy-satellites. Cassini has been able to fly through this plume - effectively sampling the ocean. It is time to plan for future missions that do more detailed analyses, possibly return samples back to Earth and search for evidence of life. To help prepare for such missions, the need for earth-based analog environments is essential for logistical, methodological (life detection) and theoretical development. We have undertaken studies of two terrestrial environments that are close analogs to Enceladus' ocean: Lake Vida and Lake Untersee - two ice-sealed Antarctic lakes that represent physical, chemical and possibly biological analogs for Enceladus. By studying the diverse biology and physical and chemical constraints to life in these two unique lakes we will begin to understand the potential habitability of Enceladus and other icy moons, including possible sources of nutrients and energy, which together with liquid water are the key ingredients for life. Analog research such as this will also enable us to develop and test new strategies to search for evidence of life on Enceladus.

  6. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    PubMed Central

    Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Adkins, W.

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new

  7. Evidence for an extensive Antarctic Ice Sheet by 37 Ma

    NASA Astrophysics Data System (ADS)

    Carter, Andrew; Riley, Teal; Hillenbrand, Claus-Dieter; Rittner, Martin

    2016-04-01

    We present observational evidence that both the East and West Antarctic ice sheets had expanded to the coast by 37 Ma, predating, by at least 3 Myr, a major drop in atmospheric CO2 at the Eocene-Oligocene boundary widely considered responsible for Antarctic Ice Sheet expansion. Our evidence comes from the provenance (geochronology, thermochronometry, mineralogy) of iceberg-rafted debris identified in Late Eocene marine sediments from (ODP) Leg 113 Site 696 in the NW Weddell Sea. The existence of an significant Antarctic Ice Sheet in a Late Eocene high pCO2 world calls into question the role of atmospheric CO2 concentrations as the dominant mechanism for ice sheet expansion and whether topography and ocean circulation only play a secondary role.

  8. Diagnosing Antarctic Fog

    NASA Astrophysics Data System (ADS)

    Lazzara, M. A.

    2010-07-01

    Fog affects aviation and other logistical operations in the Antarctic; nevertheless limited studies have been conducted to understand fog behavior in this part of the world. A study has been conducted in the Ross Island region of Antarctica, the location of McMurdo Station and Scott Base - the main stations of the United States and New Zealand Antarctic programs, respectively. Using tools such as multi-channel satellites observations and supported by in situ radiosonde and ground-based automatic weather station observations, combined with back trajectory and mesoscale numerical models, discover that austral summer fog events are "advective" in temperament. The diagnosis finds a primary source region from the southeast over the Ross Ice Shelf (over 72% of the cases studied) while a minority of cases point toward a secondary fog source region to the north along the Scott Coast of the Ross Sea with influences from the East Antarctic Plateau. Part of this examination confirms existing anecdotes from forecasters and weather observers, while refuting others about fog and its behavior in this environment. This effort marks the beginning of our understanding of Antarctic fog behavior.

  9. Unveiling the Antarctic subglacial landscape.

    NASA Astrophysics Data System (ADS)

    Warner, Roland; Roberts, Jason

    2010-05-01

    revealed by this approach, and we advocate its consideration in future ice thickness data syntheses. REFERENCES Budd, W.F., and R.C. Warner, 1996. A computer scheme for rapid calculations of balance-flux distributions. Annals of Glaciology 23, 21-27. Bamber, J.L., J.L. Gomez Dans and J.A. Griggs, 2009. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data. Part I: Data and methods. The Cryosphere 3 (2), 101-111. Griggs, J.A., and J.L. Bamber, 2009. A new digital elevation model of Antarctica derived from combined radar and laser altimetry data. Part II: Validation and error estimates, The Cryosphere, 3(2), 113-123. Le Brocq, A.M., A.J. Payne and M.J. Siegert, 2006. West Antarctic balance calculations: Impact of flux-routing algorithm, smoothing algorithm and topography. Computers and Geosciences 23(10): 1780-1795. Lythe, M. B., D.G. Vaughan, and the BEDMAP Consortium 2001, BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. of Geophys. Res., 106(B6),11,335-11,351. van de Berg, W.J., M.R. van den Broeke, C.H. Reijmer, and E. van Meijgaard, 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model, J. Geophys. Res., 111, D11104,doi:10.1029/2005JD006495. Warner, R.C., and W.F. Budd, 2000. Derivation of ice thickness and bedrock topography in data-gap regions over Antarctica, Annals of Glaciology, 31, 191-197. Wright, A.P., M.J. Siegert, A.M. Le Brocq, and D.B. Gore, 2008. High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes, Geophys. Res. Lett., 35, L17504, doi:10.1029/2008GL034937.

  10. Antarctic regional ice loss rates from GRACE

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Blankenship, D.; Young, D.

    2008-02-01

    Using recent improved time-variable gravity solutions from the Gravity Recovery and Climate Experiment (GRACE), we estimate rates of Antarctic ice mass change for the period January 2003 through September 2006. Combined improvements in data and filtering techniques allow observation of ice loss in the northern Antarctic Peninsula (AP) and along the coast of the west and central Amundsen Sea Embayment (ASE) in West Antarctica. There is also evidence of ice loss along the coast near the Stancomb-Wills (STA) and Jutulstraumen (JUT) glaciers in Queen Maud Land. Apparent rates are adjusted for influences of limited spatial resolution, filtering, and estimated postglacial rebound (PGR) to obtain ice loss rates for the northern AP, coastal ASE, and STA/JUT of - 28.8 ± 7.9, - 81 ± 17, and - 16.7 ± 9.7 km 3/yr, respectively. This is the first estimate for the northern AP from satellite gravity data. The ASE estimate (- 81 ± 17 km 3/yr) is consistent with a previous value (- 77 ± 14 km 3/yr) using an earlier GRACE data release. These results indicate significant improvement in GRACE data quality, increased spatial resolution, and applicability of GRACE data to a wider class of problems than previously possible.

  11. Microbial biomass and basal respiration in Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations

    NASA Astrophysics Data System (ADS)

    Abakumov, E.; Mukhametova, N.

    2014-03-01

    Antarctica is the unique place for pedological investigations. Soils of Antarctica have been studied intensively during the last century. Antarctic logistic provides the possibility to scientists access the terrestrial landscapes mainly in the places of polar stations. That is why the main and most detailed pedological investigations were conducted in Mc Murdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann hills and Schirmacher Oasis. Investigations were conducted during the 53rd and 55th Russian Antarctic expeditions on the base of soil pits and samples collected in Sub-Antarctic and Antarctic regions. Soils of diverse Antarctic landscapes were studied with aim to assess the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. The investigation conducted shows that soils of Antarctic are quite different in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as the upper organic layer. The most developed organic layers were revealed in peat soils of King-George Island, where its thickness reach even 80 cm. These soils as well as soils under guano are characterized by the highest amount of total organic carbon (TOC) 7.22-33.70%. Coastal and continental soils of Antarctic are presented by less developed Leptosols, Gleysols, Regolith and rare Ornhitosol with TOC levels about 0.37-4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones which can be interpreted as result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. Also the soils of King-George island have higher portion of microbial biomass (max 1.54 mg g-1) than coastal (max 0.26 mg g-1) and continental (max 0.22 mg g-1) Antarctic soils. Sub-Antarctic soils mainly differ from Antarctic ones in increased organic layers thickness and total organic carbon content

  12. Ebola active monitoring system for travelers returning from West Africa—Georgia, 2014-2015.

    PubMed

    Parham, Mary; Edison, Laura; Soetebier, Karl; Feldpausch, Amanda; Kunkes, Audrey; Smith, Wendy; Guffey, Taylor; Fetherolf, Romana; Sanlis, Kathryn; Gabel, Julie; Cowell, Alex; Drenzek, Cherie

    2015-04-10

    The Ebola virus disease (Ebola) epidemic in West Africa has so far produced approximately 25,000 cases, more than 40 times the number in any previously documented Ebola outbreak. Because of the risk for imported disease from infected travelers, in October 2014 CDC recommended that all travelers to the United States from Ebola-affected countries receive enhanced entry screening and postarrival active monitoring for Ebola signs or symptoms until 21 days after their departure from an Ebola-affected country. The state of Georgia began its active monitoring program on October 25, 2014. The Georgia Department of Public Health (DPH) modified its existing, web-based electronic notifiable disease reporting system to create an Ebola Active Monitoring System (EAMS). DPH staff members developed EAMS from conceptualization to implementation in 6 days. In accordance with CDC recommendations, "low (but not zero) risk" travelers are required to report their daily health status to DPH, and the EAMS dashboard enables DPH epidemiologists to track symptoms and compliance with active monitoring. Through March 31, 2015, DPH monitored 1,070 travelers, and 699 (65%) used their EAMS traveler login instead of telephone or e-mail to report their health status. Medical evaluations were performed on 30 travelers, of whom three were tested for Ebola. EAMS has enabled two epidemiologists to monitor approximately 100 travelers daily, and to rapidly respond to travelers reporting signs and symptoms of potential Ebola virus infection. Similar electronic tracking systems might be useful for other jurisdictions.

  13. In Vitro Activity of Selected West African Medicinal Plants against Mycobacterium ulcerans Disease.

    PubMed

    Tsouh Fokou, Patrick Valere; Kissi-Twum, Abena Adomah; Yeboah-Manu, Dorothy; Appiah-Opong, Regina; Addo, Phyllis; Tchokouaha Yamthe, Lauve Rachel; Ngoutane Mfopa, Alvine; Fekam Boyom, Fabrice; Nyarko, Alexander Kwadwo

    2016-01-01

    Buruli ulcer (BU) is the third most prevalent mycobacteriosis, after tuberculosis and leprosy. The currently recommended combination of rifampicin-streptomycin suffers from side effects and poor compliance, which leads to reliance on local herbal remedies. The objective of this study was to investigate the antimycobacterial properties and toxicity of selected medicinal plants. Sixty-five extracts from 27 plant species were screened against Mycobacterium ulcerans and Mycobacterium smegmatis, using the Resazurin Microtiter Assay (REMA). The cytotoxicity of promising extracts was assayed on normal Chang liver cells by an MTT assay. Twenty five extracts showed activity with minimal inhibitory concentration (MIC) values ranging from 16 µg/mL to 250 µg/mL against M. smegmatis, while 17 showed activity against M. ulcerans with MIC values ranging from 125 µg/mL to 250 µg/mL. In most of the cases, plant extracts with antimycobacterial activity showed no cytotoxicity on normal human liver cells. Exception were Carica papaya, Cleistopholis patens, and Polyalthia suaveolens with 50% cell cytotoxic concentrations (CC50) ranging from 3.8 to 223 µg/mL. These preliminary results support the use of some West African plants in the treatment of Buruli ulcer. Meanwhile, further studies are required to isolate and characterize the active ingredients in the extracts. PMID:27089314

  14. Geomagnetic field observations at a new Antarctic site, within the AIMNet project

    NASA Astrophysics Data System (ADS)

    Lepidi, Stefania; Cafarella, Lili; Santarelli, Lucia; Pietrolungo, Manuela; Urbini, Stefano; Piancatelli, Andrea; Biasini, Fulvio; di Persio, Manuele; Rose, Mike

    2010-05-01

    During the 2007-2008 antarctic campaign, the Italian PNRA installed a Low Power Magnetometer within the framework of the AIMNet (Antarctic International Magnetometer Network) project, proposed and coordinated by BAS. The magnetometer is situated at Talos Dome, around 300 km geographically North-West from Mario Zucchelli Station (MZS), and approximately at the same geomagnetic latitude as MZS. In this work we present a preliminary analysis of the geomagnetic field 1-min data, and a comparison with simultaneous data from different Antarctic stations.

  15. Relative changes in krill abundance inferred from Antarctic fur seal.

    PubMed

    Huang, Tao; Sun, Liguang; Stark, John; Wang, Yuhong; Cheng, Zhongqi; Yang, Qichao; Sun, Song

    2011-01-01

    Antarctic krill Euphausia superba is a predominant species in the Southern Ocean, it is very sensitive to climate change, and it supports large stocks of fishes, seabirds, seals and whales in Antarctic marine ecosystems. Modern krill stocks have been estimated directly by net hauls and acoustic surveys; the historical krill density especially the long-term one in the Southern Ocean, however, is unknown. Here we inferred the relative krill population changes along the West Antarctic Peninsula (WAP) over the 20th century from the trophic level change of Antarctic fur seal Arctocephalus gazella using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes of archival seal hairs. Since Antarctic fur seals feed preferentially on krill, the variation of δ(15)N in seal hair indicates a change in the proportion of krill in the seal's diets and thus the krill availability in local seawater. For the past century, enriching fur seal δ(15)N values indicated decreasing krill availability. This is agreement with direct observation for the past ∼30 years and suggests that the recently documented decline in krill populations began in the early parts of the 20th century. This novel method makes it possible to infer past krill population changes from ancient tissues of krill predators.

  16. Relative Changes in Krill Abundance Inferred from Antarctic Fur Seal

    PubMed Central

    Huang, Tao; Sun, Liguang; Stark, John; Wang, Yuhong; Cheng, Zhongqi; Yang, Qichao; Sun, Song

    2011-01-01

    Antarctic krill Euphausia superba is a predominant species in the Southern Ocean, it is very sensitive to climate change, and it supports large stocks of fishes, seabirds, seals and whales in Antarctic marine ecosystems. Modern krill stocks have been estimated directly by net hauls and acoustic surveys; the historical krill density especially the long-term one in the Southern Ocean, however, is unknown. Here we inferred the relative krill population changes along the West Antarctic Peninsula (WAP) over the 20th century from the trophic level change of Antarctic fur seal Arctocephalus gazella using stable carbon (δ13C) and nitrogen (δ15N) isotopes of archival seal hairs. Since Antarctic fur seals feed preferentially on krill, the variation of δ15N in seal hair indicates a change in the proportion of krill in the seal's diets and thus the krill availability in local seawater. For the past century, enriching fur seal δ15N values indicated decreasing krill availability. This is agreement with direct observation for the past ∼30 years and suggests that the recently documented decline in krill populations began in the early parts of the 20th century. This novel method makes it possible to infer past krill population changes from ancient tissues of krill predators. PMID:22087294

  17. Chemical studies of H chondrites. 6: Antarctic/non-Antarctic compositional differences revisited

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen F.; Lipschutz, Michael E.

    1995-02-01

    We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, T1, and In (ordered by putative volatility during nebular condensation and accretion) determined by radiochemical neutron activation analysis of 14 additional H5 and H6 chondrite falls. Data for the 10 most volatile elements (Rb to In) treated by the multivariate techniques of linear discriminant analysis and logistic regression in these and 44 other falls are compared with those of 59 H4-6 chondrites from Antarctica. Various populations are tested by the multivariate techniques, using the previously developed method of randomization-simulation to assess significance levels. An earlier conclusion, based on fewer examples, that H4-6 chondrite falls are compositionally distinguishable from the Antarctic suite is verified by the additional data. This distinctiveness is highly significant because of the presence of samples from Victoria Land in the Antarctic population, which differ compositionally from falls beyond any reasonable doubt. However, it cannot be proven unequivocally that falls and Antarctic samples from Queen Maud Land are compositionally distinguishable. Trivial causes (e.g., analyst bias, weathering) cannot explain the Victoria Land (Antarctic)/non-Antarctic compositional difference for paradigmatic H4-6 chondrites. This seems to reflect a time-dependent variation of near-Earth meteoroid source regions differing in average thermal history.

  18. Chemical studies of H chondrites. 6: Antarctic/non-Antarctic compositional differences revisited

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen F.; Lipschutz, Michael E.

    1995-01-01

    We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, T1, and In (ordered by putative volatility during nebular condensation and accretion) determined by radiochemical neutron activation analysis of 14 additional H5 and H6 chondrite falls. Data for the 10 most volatile elements (Rb to In) treated by the multivariate techniques of linear discriminant analysis and logistic regression in these and 44 other falls are compared with those of 59 H4-6 chondrites from Antarctica. Various populations are tested by the multivariate techniques, using the previously developed method of randomization-simulation to assess significance levels. An earlier conclusion, based on fewer examples, that H4-6 chondrite falls are compositionally distinguishable from the Antarctic suite is verified by the additional data. This distinctiveness is highly significant because of the presence of samples from Victoria Land in the Antarctic population, which differ compositionally from falls beyond any reasonable doubt. However, it cannot be proven unequivocally that falls and Antarctic samples from Queen Maud Land are compositionally distinguishable. Trivial causes (e.g., analyst bias, weathering) cannot explain the Victoria Land (Antarctic)/non-Antarctic compositional difference for paradigmatic H4-6 chondrites. This seems to reflect a time-dependent variation of near-Earth meteoroid source regions differing in average thermal history.

  19. Dynamic Antarctic ice-sheet response to deglacial meltwater pulses

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Clark, Peter U.; Timmermann, Axel; Lohmann, Gerrit; Kuhn, Gerhard; Sprenk, Daniela; Gladstone, Rupert

    2013-04-01

    Reconstruction of the last global sea level rise faces uncertainties because only a few robust data evidences are available for Antarctic ice sheets. Deglacial dynamics have mostly been inferred from shallow-water cores on the shelf, where decisive changes are either erased by grounding ice or occur in condensed, lithologically complex successions with partially reversed and generally unreliable 14C ages. Previous modeling studies reconstruct a late ice-sheet retreat starting around 12 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, new findings from two deepwater cores from the Scotia Sea challenge these reconstructions and call for a principal revision of the Antarctic deglacial history. The well-dated sites (Weber et al., 2012, Quaternary Science Reviews) provide the first integrative and representative record of Antarctic Ice Sheet instability. They are located in the central transport route of virtually all Antarctic icebergs, the so-called Iceberg Alley, and demonstrate a highly dynamic Antarctic Ice Sheet during the last deglaciation with eight distinct phases of enhanced iceberg routing, dubbed Antarctic Ice Sheet Events (AIE), in contrast to existing models of a late and monotonous ice-sheet retreat which implied only little contribution to the last, natural, sea-level rise 19,000 to 9,000 years ago. We found the first direct evidence for an Antarctic contribution to Meltwater Pulse 1A in the flux rates of ice-rafted debris. Using an ensemble of transient deglacial model simulations we could show that increased export of warmer Circumpolar Deep Water towards Antarctica contributed to Antarctic Ice Sheet melt by ocean thermal forcing (Weber et al., Science, in review). These new findings hold the potential to substantially revise and improve our understanding of the transient response of the ice sheet to external and internal forcings

  20. Cenozoic uplift on the West Greenland margin: active sedimentary basins in quiet Archean terranes.

    NASA Astrophysics Data System (ADS)

    Jess, Scott; Stephenson, Randell; Brown, Roderick

    2016-04-01

    The North Atlantic is believed by some authors to have experienced tectonically induced uplift within the Cenozoic. Examination of evidence, onshore and offshore, has been interpreted to imply the presence of kilometre scale uplift across the margins of the Barents Sea, North Sea, Baffin Bay and Greenland Sea. Development of topography on the West Greenland margin (Baffin Bay), in particular, has been subject to much discussion and dispute. A series of low temperature thermochronological (AFT and AHe) studies onshore and interpretation of seismic architecture offshore have suggested uplift of the entire margin totalling ~3km. However, challenges to this work and recent analysis on the opposing margin (Baffin Island) have raised questions about the validity of this interpretation. The present work reviews and remodels the thermochronological data from onshore West Greenland with the aim of re-evaluating our understanding of the margin's history. New concepts within the discipline, such as effect of radiation damage on Helium diffusivity, contemporary modelling approaches and denudational mapping are all utilised to investigate alternative interpretations to this margins complex post rift evolution. In contrast to earlier studies our new approach indicates slow protracted cooling across much of the region; however, reworked sedimentary samples taken from the Cretaceous Nuussuaq Basin display periods of rapid reheating and cooling. These new models suggest the Nuussuaq Basin experienced a tectonically active Cenozoic, while the surrounding Archean basement remained quiet. Faults located within the basin appear to have been reactivated during the Palaeocene and Eocene, a period of well-documented inversion events throughout the North Atlantic, and may have resulted in subaerial kilometre scale uplift. This interpretation of the margin's evolution has wider implications for the treatment of low temperature thermochronological data and the geological history of the North

  1. Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope

    NASA Astrophysics Data System (ADS)

    Goswami, Bedanta K.; Weitemeyer, Karen A.; Minshull, Timothy A.; Sinha, Martin C.; Westbrook, Graham K.; Marín-Moreno, Héctor

    2016-11-01

    The Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSRs) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5-12 Ωm) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3-4 Ωm) at 390-600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4-8 Ωm) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20-50 per cent hydrate within the lower slope sediments and less than 12 per cent within the upper slope sediments. A free gas zone beneath the GHSZ (10-20 per cent gas saturation) is connected to the high free gas saturated (10-45 per cent) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf.

  2. Differences between Antarctic and non-Antarctic meteorites: An assessment

    SciTech Connect

    Koeberl, C. ); Cassidy, W.A. )

    1991-01-01

    The discovery of a statistically significant number of meteorites in Antarctica over the past 20 years has posed many questions. One of the most intriguing suggestions that came up during the study of the Antarctic samples was that there might be a difference between the parent populations of Antarctic and non-Antarctic samples was that there might be a difference between the parent populations of Antarctic and non-Antarctic meteorites. This interpretation was put forward after the detection of a significant difference in the abundances of volatile and mobile trace elements in H, L, and C chondrites and achondrites. Other major differences include the occurrence of previously rare or unknown meteorites, different meteorite-type frequencies, petrographic characteristics, oxygen isotopic compositions, and smaller average masses. Not all differences between the Antarctic and non-Antarctic meteorite populations can be explained by weathering, pairing, or different collection procedures. Variable trace element abundances and distinct differences in the thermal history and thermoluminescence characteristics have to be interpreted as being pre-terrestrial in origin. Such differences imply the existence of meteoroid streams, whose existence poses problems in the framework of our current knowledge of celestial mechanics. In this paper we summarize the contributions in this series and provide a review of the current state of the question for the reality and cause of differences between Antarctic and non-Antarctic meteorites.

  3. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  4. Modelling the Isotopic Response to Antarctic Ice Sheet Change During the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Holloway, Max; Sime, Louise; Singarayer, Joy; Tindall, Julia; Valdes, Paul

    2015-04-01

    Ice sheet changes can exert major control over spatial water isotope variations in Antarctic surface snow. Consequently a significant mass loss or gain of the West Antarctic Ice Sheet (WAIS) would be expected to cause changes in the water isotope record across Antarctic ice core sites. Analysis of sea level indicators for the last interglacial (LIG), around 125 to 128 ka, suggest a global sea level peak 6 to 9 m higher than present. Recent NEEM Greenland ice core results imply that Greenland likely provided a modest ~2m contribution towards this global sea level rise. This implies that a WAIS contribution is necessary to explain the LIG sea level maxima. In addition, Antarctic ice core records suggest that Antarctic air temperatures during the LIG were up to 6°C warmer than present. Climate models have been unable to recreate such warmth when only orbital and greenhouse gas forcing are considered. Thus changes to the Antarctic ice sheet and ocean circulation may be required to reconcile model simulations with ice core data. Here we model the isotopic response to differing WAIS deglaciation scenarios, freshwater hosing, and sea ice configurations using a fully coupled General Circulation Model (GCM) to help interpret Antarctic ice core records over the LIG. This approach can help isolate the contribution of individual processes and feedbacks to final isotopic signals recorded in Antarctic ice cores.

  5. State of the Antarctic and Southern Ocean climate system

    NASA Astrophysics Data System (ADS)

    Mayewski, P. A.; Meredith, M. P.; Summerhayes, C. P.; Turner, J.; Worby, A.; Barrett, P. J.; Casassa, G.; Bertler, N. A. N.; Bracegirdle, T.; Naveira Garabato, A. C.; Bromwich, D.; Campbell, H.; Hamilton, G. S.; Lyons, W. B.; Maasch, K. A.; Aoki, S.; Xiao, C.; van Ommen, Tas

    2009-03-01

    This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between ˜6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A.D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine

  6. Viruses in Antarctic lakes

    NASA Technical Reports Server (NTRS)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Suttle, C. A.; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Water samples collected from four perennially ice-covered Antarctic lakes during the austral summer of 1996-1997 contained high densities of extracellular viruses. Many of these viruses were found to be morphologically similar to double-stranded DNA viruses that are known to infect algae and protozoa. These constitute the first observations of viruses in perennially ice-covered polar lakes. The abundance of planktonic viruses and data suggesting substantial production potential (relative to bacteria] secondary and photosynthetic primary production) indicate that viral lysis may be a major factor in the regulation of microbial populations in these extreme environments. Furthermore, we suggest that Antarctic lakes may be a reservoir of previously undescribed viruses that possess novel biological and biochemical characteristics.

  7. Antarctic Meteorite Newsletter

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn

    2000-01-01

    This newsletter contains something for everyone! It lists classifications of about 440 meteorites mostly from the 1997 and 1998 ANSMET (Antarctic Search for Meteorites) seasons. It also gives descriptions of about 45 meteorites of special petrologic type. These include 1 iron, 17 chondrites (7 CC, 1 EC, 9 OC) and 27 achondrites (25 HED, UR). Most notable are an acapoloite (GRA98028) and an olivine diogenite (GRA98108).

  8. High resolution Antarctic glaciochemical climate proxy records and their global implications

    NASA Astrophysics Data System (ADS)

    Dixon, Daniel Arthur

    2011-12-01

    The first section of this study presents major ion, trace element, heavy metal, rare earth element and oxygen isotope data from a series of surface snow samples and shallow firn sections collected along four US ITASE traverses across extensive regions of East and West Antarctica. In each sample the dissolved major ion, total trace element, and delta18 O concentrations are measured. This provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere. Satellite remote sensing measurements of microwave backscatter and grain size assist in the identification of glaze/dune areas across Antarctica and show how chemical concentrations are higher in these areas, precluding them from containing useful high-resolution chemical climate records. The majority of the non-glaze/dune samples in this study exhibit similar, or lower, concentrations to those from previous studies. Consequently, the results presented here comprise a conservative baseline for Antarctic surface snow chemical concentrations. The second section of this study presents a 200-year proxy for Northerly Air Mass Incursions (NAMI) into central and western West Antarctica. The NAMI proxy is developed from the examination of 19 shallow (21m -- 150m deep) Antarctic ice core non-sea-salt (nss) Ca2+ concentration records and it exhibits a significant rise in recent decades. This rise is unprecedented for at least the last 200 years and is coincident with anthropogenically-driven changes in other large-scale Southern Hemisphere (SH) environmental phenomena such as greenhouse gas induced warming, ozone depletion and the associated intensification of the SH westerlies. Statistical analysis suggests that atmospheric circulation is the dominant factor affecting nssCa2+ concentrations throughout central and western West Antarctica.

  9. Thermoluminescence and Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Hasan, F. A.

    1986-01-01

    The level of natural thermoluminescence (TL) in meteorites is the result of competition between build-up, due to exposure to cosmic radiation, and thermal decay. Antarctic meteorites tend to have lower natural TL than non-Antarctic meteorites because of their generally larger terrestrial ages. However, since a few observed falls have low TL due to a recent heating event, such as passage within approximately 0.7 astronomical units of the Sun, this could also be the case for some Antarctic meteorites. Dose rate variations due to shielding, heating during atmospheric passage, and anomalous fading also cause natural TL variations, but the effects are either relatively small, occur infrequently, or can be experimentally circumvented. The TL sensitivity of meteorites reflects the abundance and nature of the feldspar. Thus intense shock, which destroys feldspar, causes the TL sensitivity to decrease by 1 to 2 orders of magnitude, while metamorphism, which generates feldspar through the devitrification of glass, causes TL sensitivity to increase by a factor of approximately 10000. The TL-metamorphism relationship is particularly strong for the lowest levels of metamorphism. The order-disorder transformation in feldspar also affect the TL emission characteristics and thus TL provides a means of paleothermometry.

  10. Antarctic Photochemistry: Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; McConnell, Joseph R.

    1999-01-01

    Understanding the photochemistry of the Antarctic region is important for several reasons. Analysis of ice cores provides historical information on several species such as hydrogen peroxide and sulfur-bearing compounds. The former can potentially provide information on the history of oxidants in the troposphere and the latter may shed light on DMS-climate relationships. Extracting such information requires that we be able to model the photochemistry of the Antarctic troposphere and relate atmospheric concentrations to deposition rates and sequestration in the polar ice. This paper deals with one aspect of the uncertainty inherent in photochemical models of the high latitude troposphere: that arising from imprecision in the kinetic data used in the calculations. Such uncertainties in Antarctic models tend to be larger than those in models of mid to low latitude clean air. One reason is the lower temperatures which result in increased imprecision in kinetic data, assumed to be best characterized at 298K. Another is the inclusion of a DMS oxidation scheme in the present model. Many of the rates in this scheme are less precisely known than are rates in the standard chemistry used in many stratospheric and tropospheric models.

  11. [Helminths of Antarctic fishes].

    PubMed

    Rocka, Anna

    2008-01-01

    Antarctic fishes are represented by sharks, skates (Chondrichthyes) and bony fishes (Teleostei). Teleosts play an important role in the completion of life cycles of many helminth species. They serve as either definitive or intermediate and paratenic hosts. Chondrichthyes are definitive hosts only. Seventy three helminth species occur as the adult stage in fishes: Digenea (45), Cestoda (14), Nematoda (6), Acanthocephala (8), Also, 11 larval stages of Cestoda (7) and Nematoda (4) are known, together with 7 species of Acanthocephala in the cystacanth stage. One digenean species, Otodistomum cestoides, matures in skates. Among cestodes maturing in fishes only one, Parabothriocephalus johnstoni, occurs in a bony fish, Macrourus whitsoni. Antarctic Chondrichthyes are not infected with nematodes and acanthocephalans. Cestode larvae from teleosts belong to Tetraphyllidea (parasites of skates), and Tetrabothriidae and Diphyllobothriidae (parasites of birds and mammals). Larval nematodes represent Anisakidae, parasites of fishes, birds and mammals. Acanthocephalan cystacanths mature in pinnipeds and birds. The majority of parasites maturing in Antarctic fishes are endemics. Only 4 digenean and one nematode species, Hysterothylacium aduncum, are cosmopolitan. All acanthocephalans, almost all digeneans, the majority of cestodes and some nematodes occur mainly or exclusively in benthic fishes. Specificity of the majority of helminths utilizing teleosts as intermediate and/or paratenic hosts is low. Among parasites using fishes as definitive hosts, all Cestoda, most Digenea and Nematoda, and almost all Acanthocephala have a range of hosts restricted to one order or even to 1-2 host species. PMID:18664106

  12. The Role of Blowing Snow in the Activation of Bromine over First-Year Antarctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Lieb-Lappen, R.; Obbard, R. W.

    2014-12-01

    It is well known that during the polar springtime, halide sea salt ions, in particular Br-, are through a series of heterogeneous reactions photochemically activated into reactive halogen species, such as Br and BrO, that breakdown polar tropospheric ozone. This research investigated the role of blowing snow in transporting salts from the sea ice/snow surface into reactive bromine species in the air. For two different locations over first-year ice in the Ross Sea, Antarctica, collection baskets captured blowing snow at four different heights on October 25, following a blowing snow event the day before. In addition, sea ice cores and surface snow samples were collected throughout the month long campaign. Cl-/Br- ratios were constant in sea ice and surface snow, and only in lofted snow did bromide become depleted relative to chloride. This suggests that replenishment of bromide in the snowpack occurs faster than bromine activation in mid-strength wind conditions (approximately 10 m/s). Sulfate concentrations were stable through the bottom half of sea ice cores, but were quite variable in the upper half and in surface snow. Lofted snow was greatly depleted in sulfate, likely as a result of mirabilite precipitation in brine prior to brine uptake in the snow and subsequent lofting. Nitrate was found in greater quantities for upper level baskets and in some surface snow samples, consistent with active cycling through atmospheric chemical reactions.

  13. Hazard categorization of 100K east and 100K west in-basin fuel characterization program activities

    SciTech Connect

    Alwardt, L.D.

    1994-11-16

    This report documents the determination that the in-basin activities at 105 K East (KE) and 105 K West (KW) on the Hanford Reservation associated with the fuel characterization program are classified as Hazard Category 3 (hazard analysis shows the potential for only significant localized consequences). Potential accident consequences, a description of significant activities around the site, and hazard identification and management were explored.

  14. Screening of microorganisms from Antarctic surface water and cytotoxicity metabolites from Antarctic microorganisms.

    PubMed

    Zheng, Lanhong; Yang, Kangli; Liu, Jia; Sun, Mi; Zhu, Jiancheng; Lv, Mei; Kang, Daole; Wang, Wei; Xing, Mengxin; Li, Zhao

    2016-03-01

    The Antarctic is a potentially important library of microbial resources and new bioactive substances. In this study, microorganisms were isolated from surface water samples collected from different sites of the Antarctic. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay-based cytotoxicity-tracking method was used to identify Antarctic marine microorganism resources for antitumor lead compounds. The results showed that a total of 129 Antarctic microorganism strains were isolated. Twelve strains showed potent cytotoxic activities, among which a Gram-negative, rod-shaped bacterium, designated as N11-8 was further studied. Phylogenetic analysis based on 16S rRNA gene sequence showed that N11-8 belongs to the genus Bacillus. Fermented active products of N11-8 with molecular weights of 1-30 kDa had higher inhibitory effects on different cancaer cells, such as BEL-7402 human hepatocellular carcinoma cells, U251 human glioma cells, RKO human colon carcinoma cells, A549 human lung carcinoma cells, and MCF-7 human breast carcinoma cells. However, they displayed lower cytotoxicity against HFL1 human normal fibroblast lung cells. However, they displayed lower cytotoxicity against HFL1 human normal fibroblast lung cells. Microscopic observations showed that the fermented active products have inhibitory activity on BEL-7402 cells similar to that of mitomycin C. Further studies indicated that the fermented active products have high pH and high thermal stability. In conclusion, most strains isolated in this study may be developed as promising sources for the discovery of antitumor bioactive substances. The fermented active products of Antarctic marine Bacillus sp. N11- 8 are expected to be applied in the prevention and treatment of cancer.

  15. Biological invasions in the Antarctic: extent, impacts and implications.

    PubMed

    Frenot, Yves; Chown, Steven L; Whinam, Jennie; Selkirk, Patricia M; Convey, Peter; Skotnicki, Mary; Bergstrom, Dana M

    2005-02-01

    Alien microbes, fungi, plants and animals occur on most of the sub-Antarctic islands and some parts of the Antarctic continent. These have arrived over approximately the last two centuries, coincident with human activity in the region. Introduction routes have varied, but are largely associated with movement of people and cargo in connection with industrial, national scientific program and tourist operations. The large majority of aliens are European in origin. They have both direct and indirect impacts on the functioning of species-poor Antarctic ecosystems, in particular including substantial loss of local biodiversity and changes to ecosystem processes. With rapid climate change occurring in some parts of Antarctica, elevated numbers of introductions and enhanced success of colonization by aliens are likely, with consequent increases in impacts on ecosystems. Mitigation measures that will substantially reduce the risk of introductions to Antarctica and the sub-Antarctic must focus on reducing propagule loads on humans, and their food, cargo, and transport vessels.

  16. Some possible correlations between electro magnetic emission and seismic activity during West Bohemia 2008 earthquake swarm

    NASA Astrophysics Data System (ADS)

    Kolář, Petr; R寎ek, Bohuslav; Jedlička, Petr; Horálek, Josef; Boušková, Alena; Hruška, František; Baše, Jiří; Chum, Jaroslav

    2010-05-01

    There are long lasting speculations about electro-magnetic phenomena (hereafter EME) connected with seismic activity. In the present contribution we study such relation in West Bohemia region (hereafter W.B.) during 2008 earthquake swarm. Seismic activity in W.B. region is the most important seismic phenomenon in Czech Republic. It is characterized by occurrence of seismic swarms (it was most recently confirmed by 2008 swarm, the strongest one for the last 3 decades. High activity lasted approximately from October 10 to November 5, more than 20.000 events (Ml > -0.5), about 100 events with Ml > 2.0, the strongest event with Ml=3.7). In addition to ongoing standard seismic measurement performed by WEBNET seismic network, we recorded experimentally also electro-magnetic emission (detected by an antenna and digitized, we observed in range cca 0.1-10 Hz with sampling 25 Hz, continuous registration practically in the epicentrum of the swarm). Analysis of the data showed, that in the region there is no direct link between EME signal and seismic events neither for individual events nor statistically. However statistical analysis indicates that it could be some increase of EME activity in time 60 to 30 minutes before an event on periods 17-14 minutes, some gap in EME activity approximately 2 hours after the event and a maximum 4 hours after the events (only events with Ml > 1.8 were considered in the analysis). We practically excluded possibility that the effect could be caused by particular timing of prevent(s) and/or after event(s) - i.e. there is no correlation between observed extremes in EME signal and swarm energy flux or standard seismic signal. Also global decrease of EME activity with the decay of the swarm activity was observed. However due to incomplete EME data and short time of observation these results must be understand rather as indication of possible correlation rather than reliable relation. Further EME observations in the region are intended.

  17. The role of blowing snow in the activation of bromine over first-year Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Lieb-Lappen, R. M.; Obbard, R. W.

    2015-07-01

    It is well known that during polar springtime halide sea salt ions, in particular Br-, are photochemically activated into reactive halogen species (e.g., Br and BrO), where they break down tropospheric ozone. This research investigated the role of blowing snow in transporting salts from the sea ice/snow surface into reactive bromine species in the air. At two different locations over first-year ice in the Ross Sea, Antarctica, collection baskets captured blowing snow at different heights. In addition, sea ice cores and surface snow samples were collected throughout the month-long campaign. Over this time, sea ice and surface snow Br- / Cl- mass ratios remained constant and equivalent to seawater, and only in lofted snow did bromide become depleted relative to chloride. This suggests that replenishment of bromide in the snowpack occurs faster than bromine activation in mid-strength wind conditions (approximately 10 m s-1) or that blowing snow represents only a small portion of the surface snowpack. Additionally, lofted snow was found to be depleted in sulfate and enriched in nitrate relative to surface snow.

  18. The role of blowing snow in the activation of bromine over first-year Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Lieb-Lappen, R. M.; Obbard, R. W.

    2015-04-01

    It is well known that during polar springtime halide sea salt ions, in particular Br-, are photochemically activated into reactive halogen species (e.g. Br and BrO), where they break down tropospheric ozone. This research investigated the role of blowing snow in transporting salts from the sea ice/snow surface into reactive bromine species in the air. At two different locations over first-year ice in the Ross Sea, Antarctica, collection baskets captured blowing snow at different heights. In addition, sea ice cores and surface snow samples were collected throughout the month-long campaign. Over this time, sea ice and surface snow Cl-/Br- mass ratios remained constant and equivalent to seawater, and only in lofted snow did bromide become depleted relative to chloride. This suggests that replenishment of bromide in the snowpack occurs faster than bromine activation in mid-strength wind conditions (approximately 10 m s-1). Additionally, lofted snow was found to be depleted in sulfate and enriched in nitrate relative to surface snow.

  19. A new 10Be record recovered from an Antarctic ice core: validity and limitations to record the solar activity

    NASA Astrophysics Data System (ADS)

    Baroni, Mélanie; Bard, Edouard; Aster Team

    2015-04-01

    Cosmogenic nuclides provide the only possibility to document solar activity over millennia. Carbon-14 (14C) and beryllium-10 (10Be) records are retrieved from tree rings and ice cores, respectively. Recently, 14C records have also proven to be reliable to detect two large Solar Proton Events (SPE) (Miyake et al., Nature, 2012, Miyake et al., Nat. Commun., 2013) that occurred in 774-775 A.D. and in 993-994 A.D.. The origin of these events is still under debate but it opens new perspectives for the interpretation of 10Be ice core records. We present a new 10Be record from an ice core from Dome C (Antarctica) covering the last millennium. The chronology of this new ice core has been established by matching volcanic events on the WAIS Divide ice core (WDC06A) that is the best dated record in Antarctica over the Holocene (Sigl et al., JGR, 2013, Sigl et al., Nat. Clim. Change, 2014). The five minima of solar activity (Oort, Wolf, Spörer, Maunder and Dalton) are detected and characterized by a 10Be concentration increase of ca. 20% above average in agreement with previous studies of ice cores drilled at South Pole and Dome Fuji in Antarctica (Bard et al., EPSL, 1997; Horiuchi et al., Quat. Geochrono., 2008) and at NGRIP and Dye3 in Greenland (Berggren et al., GRL, 2009). The high resolution, on the order of a year, allows the detection of the 11-year solar cycle. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. We confirm the systematic relationship between stratospheric eruptions and 10Be concentration increases, first evidenced by observations of the stratospheric volcanic eruptions of Agung in 1963 and Pinatubo in 1991 (Baroni et al., GCA, 2011). This relationship is due to an increase in 10Be deposition linked to the role played by the sedimentation of volcanic aerosols. In the light of these new elements, we will discuss the limitations and

  20. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae).

    PubMed

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens.

  1. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria revealed no West Nile virus activity

    PubMed Central

    Sule, Waidi Folorunso; Oluwayelu, Daniel Oladimeji

    2016-01-01

    Introduction Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods In order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes were sorted and tested in pools with real-time RT-PCR to detect WNV (or flavivirus) RNA using WNV-specific primers and probes, as well as, pan-flavivirus-specific primers in two-step real-time RT-PCR. Minimum infection rate (MIR) was used to estimate mosquito infection rate. Results Only two genera of mosquitoes were caught (Culex, 98.9% and Aedes, 1.0%) totalling 4,112 females. None of the 424 mosquito pools tested was positive for WNV RNA; consequently the MIR was zero. Sequencing and BLAST analysis of amplicons detected in pan-flavivirus primer-mediated RT-PCR gave a consensus sequence of 28S rRNA of Culex quinquefasciatus suggesting integration of flaviviral RNA into mosquito genome. Conclusion While the latter finding requires further investigation, we conclude there was little or no risk of human infection with WNV in the study areas during sampling. There was predominance of Culex mosquito, a competent WNV vector, around horse stables in the study areas. However, mosquito surveillance needs to continue for prompt detection of WNV activity in mosquitoes. PMID:27279943

  2. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae)

    PubMed Central

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  3. International Workshop on Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Annexstad, J. O.; Schultz, L.; Waenke, H.

    1986-01-01

    Topics addressed include: meteorite concentration mechanisms; meteorites and the Antarctic ice sheet; iron meteorites; iodine overabundance in meteorites; entrainment, transport, and concentration of meteorites in polar ice sheets; weathering of stony meteorites; cosmic ray records; radiocarbon dating; element distribution and noble gas isotopic abundances in lunar meteorites; thermoanalytical characterization; trace elements; thermoluminescence; parent sources; and meteorite ablation and fusion spherules in Antarctic ice.

  4. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia

    NASA Astrophysics Data System (ADS)

    Römer, M.; Torres, M.; Kasten, S.; Kuhn, G.; Graham, A. G. C.; Mau, S.; Little, C. T. S.; Linse, K.; Pape, T.; Geprägs, P.; Fischer, D.; Wintersteller, P.; Marcon, Y.; Rethemeyer, J.; Bohrmann, G.

    2014-10-01

    An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.

  5. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    USGS Publications Warehouse

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  6. Stratospheric variability of wave activity and parameters in equatorial coastal and tropical sites during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Kafando, P.; Chane-Ming, F.; Petitdidier, M.

    2015-08-01

    Recent numerical studies in stratospheric dynamics and its variability as well as climate, have highlighted the need of more observational analyses to improve simulation of the West African monsoon (WAM). In this paper, activity and spectral characteristics of short-scale vertical waves (wavelengths <4 km) are analysed in equatorial coastal and tropical lower stratosphere during the WAM. A first detailed description of such waves over West Africa is derived from high-resolution vertical profiles of temperature and horizontal wind obtained during Intensive Observation Period of the African Monsoon Multidisciplinary Analyses (AMMA) Campaign 2006. Monthly variation of wave energy density is revealed to trace the progression of the inter-tropical convergence zone (ITCZ) over West Africa. Mesoscale inertia gravity-waves structures with vertical and horizontal wavelengths of 1.5-2.5 and 400-1100 km respectively and intrinsic frequencies of 1.1-2.2 f or periods <2 days are observed in the tropical LS with intense activity during July and August when the WAM is installed over the tropical West Africa. Over equatorial region, gravity waves with intrinsic frequencies of 1.4-4 f or periods <5.2 days, vertical wavelength of 2.1 km and long horizontal wavelengths of 1300 km are intense during the WAM coastal phase. From July to October, gravity waves with intrinsic frequencies of 1.2-3.8 f or periods <6 days, vertical wavelength of 2.1 km and horizontal wavelengths of 1650 km are less intense during the WAM Sahelian phase of the WAM, March-June. Unlike potential energy density, kinetic energy density is observed to be a good proxy for the activity of short-scale vertical waves during the WAM because quasi-inertial waves are dominant. Long-term wave activity variation from January 2001 to December 2009, highlights strong year-to-year variation superimposed on convective activity and quasi-biennial oscillation-like variations especially above tropical stations.

  7. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics

    PubMed Central

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-01-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas. PMID:25908601

  8. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  9. Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca

    NASA Astrophysics Data System (ADS)

    Linse, Katrin; Griffiths, Huw J.; Barnes, David K. A.; Clarke, Andrew

    2006-04-01

    For many decades molluscan data have been critical to the establishment of the concept of a global-scale increase in species richness from the poles to the equator. Low polar diversity is key to this latitudinal cline in diversity. Here we investigate richness patterns in the two largest classes of molluscs at both local and regional scales throughout the Southern Ocean. We show that biodiversity is very patchy in the Southern Ocean (at the 1000-km scale) and test the validity of historical biogeographic sub-regions and provinces. We used multivariate analysis of biodiversity patterns at species, genus and family levels to define richness hotspots within the Southern Ocean and transition areas. This process identified the following distinct sub-regions in the Southern Ocean: Antarctic Peninsula, Weddell Sea, East Antarctic—Dronning Maud Land, East Antarctic—Enderby Land, East Antarctic—Wilkes Land, Ross Sea, and the independent Scotia arc and sub Antarctic islands. Patterns of endemism were very different between the bivalves and gastropods. On the basis of distributional ranges and radiation centres of evolutionarily successful families and genera we define three biogeographic provinces in the Southern Ocean: (1) the continental high Antarctic province excluding the Antarctic Peninsula, (2) the Scotia Sea province including the Antarctic Peninsula, and (3) the sub Antarctic province comprising the islands in the vicinity of the Antarctic Circumpolar Current.

  10. Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations

    NASA Astrophysics Data System (ADS)

    Abakumov, E.; Mukhametova, N.

    2014-07-01

    Antarctica is a unique place for soil, biological, and ecological investigations. Soils of Antarctica have been studied intensively during the last century, when different national Antarctic expeditions visited the sixth continent with the aim of investigating nature and the environment. Antarctic investigations are comprised of field surveys mainly in the terrestrial landscapes, where the polar stations of different countries are situated. That is why the main and most detailed soil surveys were conducted in the McMurdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann Hills and the Schirmacher Oasis. Our investigations were conducted during the 53rd and 55th Russian Antarctic expeditions in the base of soil pits, and samples were collected in Sub-Antarctic and Antarctic regions. Sub-Antarctic or maritime landscapes are considered to be very different from Antarctic landscapes due to differing climatic and geogenic conditions. Soils of diverse zonal landscapes were studied with the aim of assessing the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. This investigation shows that Antarctic soils are quite diverse in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as by an upper organic layer. The most developed organic layers were revealed in peat soils of King George Island, where its thickness reach, in some cases, was 80 cm. These soils as well as soils formed under guano are characterized by the highest amount of total organic carbon (TOC), between 7.22 and 33.70%. Coastal and continental Antarctic soils exhibit less developed Leptosols, Gleysols, Regolith and rare Ornhitosol, with TOC levels between 0.37 and 4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones, which can be interpreted as a result of higher amounts of fresh organic

  11. Discovery of an Active Submarine Mud Volcano Along the Nootka Fault West of Vancouver Island

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Riedel, M.; Kelly, D. S.; Delaney, J. R.; Spence, G. D.; Hyndman, R. D.; Hyndman, R. D.; Mayer, L.; Calder, B.; Lilley, M. D.; Olson, E. O.; Schrenk, M. O.; Coffin, R.

    2001-12-01

    Submarine mud volcanoes are a common feature in margin environments, but few of them have been documented in the Northeast Pacific. However, during a Hydrosweep bathymetric survey in July, 2001, and a follow-on sub-surface seismic survey in August two mud volcanoes were imaged along the Nootka Fault, 16-18 km west of Vancouver Island at a water depth of 2500 m. The southern volcano, called Maquinna, lies directly along the southern expression of the left lateral, strike slip Nootka Fault. It is 1.5 km across, has a breached caldera and two small summit craters, and it stands about 30 m above the seafloor. The base is bounded by a narrow moat, partially filled by Holocene sediments that are flat lying; older, underlying sediments show steep downwarping towards the sides of the volcano. Subsurface imaging shows a dramatic loss of reflectivity beneath the volcano mound, which may indicate significant mobilization of material. However, a very bright reflector is seen at about 400 m depth below the volcano. This reflector is too deep for stability of methane clathrate, and is interpreted as a zone of high fluid content. A CTD vertical cast above the summit of the volcano showed strong, co-registered thermal, particulate, and oxygen anomalies that extend 50 m up into the overlying water column. These data indicate that the volcano is actively venting warm hydrothermal fluids. The fluids are depleted in CO2, contain background concentrations of CH4, but show elevated H2 concentrations above ocean background water. Microscopic examination of the Nootka hydrothermal samples shows that they contain dense and morphologically diverse microbial communities in comparison to background seawater with cell densities of 106 cells/ml. Enrichment culturing indicates that these communities include both anaerobic and aerobic organisms, some of which are thermophilic with optimal growth temperatures in excess of 50 deg C. Some of these cultures can use methane oxidation as an energy

  12. Sudden sea-level change from melting Antarctic ice: How likely?

    SciTech Connect

    Bentley, C.R.

    1995-12-31

    There has been concern that the West Antarctic marine ice sheet could collapse catastrophically, leading to a 5-meter rise in sea level in a single century. However, that idea was based on a modeled instability at the grounding line that reflected a discontinuity between the mathematical models used for the grounded and floating parts of the ice sheet, respectively. Improved knowledge about ice streams, the active portions of the marine ice sheet, reveals that in the Ross Sea sector, at least, there is in reality a broad, gradual transition zone, rather than a discontinuity, between the inland ice and the ice shelf. Consequently, there probably is no instability; total disappearance of the ice sheet would take a millenium or more. The resulting average contribution to sea-level rise thus would be only a few millimeters per year, comparable to the present rate of rise (from all sources). Furthermore, dynamic response to present-day climate change would not even begin in less than a century. It is still uncertain whether the Antarctic ice sheet is making a positive or negative contribution to sea-level rise now. Whichever the case, however, during the next century or two the effect of climatic warming almost surely will be to increase the mass input to the ice sheet, thus yielding a negative contribution to sea-level rise of the order of a millimeter per year.

  13. Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow

    NASA Astrophysics Data System (ADS)

    Jiang, Su; Cox, Thomas S.; Cole-Dai, Jihong; Peterson, Kari M.; Shi, Guitao

    2016-09-01

    Perchlorate concentration ranges from a few to a few hundred ng kg-1 in surface and shallow-depth snow at three Antarctic locations (South Pole, Dome A, and central West Antarctica), with significant spatial variations dependent on snow accumulation rate and/or atmospheric production rate. An obvious trend of increasing perchlorate since the 1970s is seen in South Pole snow. The trend is possibly the result of stratospheric chlorine levels elevated by anthropogenic chlorine emissions; this is supported by the timing of a similar trend at Dome A. Alternatively, the trend may stem from postdepositional loss of snowpack perchlorate or a combination of both. The possible impact of stratospheric chlorine is consistent with evidence of perchlorate production in the stratosphere. Additionally, perchlorate concentration appears to be directly affected by the springtime Antarctic ozone hole. Therefore, perchlorate variations in Antarctic snow are likely linked to stratospheric chemistry and ozone over the Antarctic.

  14. Carbon-dioxide flow measurement in geodynamically active area of West Bohemia

    NASA Astrophysics Data System (ADS)

    Vlcek, Josef; Fischer, Tomas; Heinicke, Jens

    2016-04-01

    Geodynamically active area of West Bohemia is interesting not only due to its earthquake swarms occurrence but also due to degassing flux of magmatic origin occurring in natural moffettes and mineral springs. While monitoring of earthquakes is done by a standard local seismic network, monitoring of amount of CO2 is at its initial stage. Despite lack of data, the 2014 earthquake swarm showed also very interesting increase in CO2 flow. This correlation with seismicity motivated us to develop robust and reliable methods of CO2 flow measurement, which would be sufficient to create denser monitoring network. Standard usage of gas-flowmeter for the purpose of gas flow measurement is dependent on the weather and device conditions, which makes the measurement instable in time and unreliable. Although gas-flowmeter is also accompanied with measurement of the gas pressure in the well to check flow rate value, reliability of this method is still low. This problematic behavior of the flow measurement was the reason to test new methods to measure CO2 amount - the first is based on measuring the density water with bubbles in the well by differential pressure gauge. The second one utilizes electric conductivity measurement to determine the density of bubbles in the water-gas mixture. Advantage of these methods is that their probes are directly in the well or moffette, where the concentration is measured. This approach is free of the influence of moving parts and assures the independence of measurements of environmental conditions. In this paper we show examples of obtained data series from selected sites and compare the trend of the curves, the mutual relations of the measured quantities and the influence of environmental conditions.

  15. AVHRR imagery reveals Antarctic ice dynamics

    SciTech Connect

    Bindschadler, R.A.; Vornberger, P.L. STX Corp., Lanham, MD )

    1990-06-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf. 21 refs.

  16. Hazard categorization of 100K East and 100K West in-basin fuel characterization program activities. Revision 1

    SciTech Connect

    Alwardt, L.D.

    1995-02-28

    This report provides a hazard categorization of the 105 K East and 105 K West in-basin activities associated with the fuel sampling and transport preparations. It is limited to those characterization activities performed in the 105 KE and 105 KW fuel storage basin structures. The methodology of DOE standard DOE-STD-10227-92 is used. The report documents the determination that the in-basin activities associated with the fuel characterization program are classified as Hazard Category 3 (hazard analysis shows the potential for only significant localized consequences).

  17. Emerging spatial patterns in Antarctic prokaryotes.

    PubMed

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  18. Emerging spatial patterns in Antarctic prokaryotes

    PubMed Central

    Chong, Chun-Wie; Pearce, David A.; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  19. Emerging spatial patterns in Antarctic prokaryotes.

    PubMed

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  20. Stardust in Antarctic Micrometeorites

    SciTech Connect

    Yada, Toru; Floss, Christine; Stadermann, Frank J.; Zinner, E.; Nakamura, T.; Noguchi, T.; Lea, Alan S.

    2008-03-07

    We report the discovery of presolar silicate, oxide (hibonite) and (possibly) SiC grains from four Antarctic micrometeorites. The oxygen isotopic compositions of the eighteen presolar silicate (and one oxide) grains found are consistent with those observed previously in primitive meteorites and interplanetary dust particles, and indicate origins in oxygen-rich red giant or asymptotic giant branch stars. Four grains with anomalous C isotopic compositions were also detected. 12C/13C as well as Si ratios are similar to those of mainstream SiC grains; the N isotopic composition of one grain is also consistent with a mainstream SiC classification. Presolar silicate grains were found in three of the seven AMMs studied, and are heterogeneously distributed within these micrometeorites. Fourteen of the 18 presolar silicate grains and 3 of the 4 C-anomalous grains were found within one AMM, T98G8. The presence of magnesiowüstite, which forms mainly through the decomposition of carbonates, in AMMs without presolar silicates, and its absence in the presolar silicate-bearing micrometeorites, suggests that parent body processes (specifically aqueous alteration) may determine the presence or absence of presolar silicates in Antarctic micrometeorites.

  1. Gazetteer of the Antarctic

    USGS Publications Warehouse

    ,; ,; ,; ,

    1989-01-01

    This gazetteer lists antarctic names approved by the United States Board on Geographic Names and by the Secretary of the Interior. The Board is the interagency body created by law to standardize and promulgate geographic names for official purposes. As the official standard for names in Antarctica, the gazetteer assures accuracy and uniformity for the specialist and the general user alike. Unlike the last (1981) edition, now out of print, the book contains neither historical notes nor textual descriptions of features. The gazetteer contains names of features in Antarctica and the area extending northward to the Antarctic Convergence that have been approved by the Board as recently as mid-1989. It supersedes previous Board gazetteers for the area. For each geographic feature, the book contains the name, cross references if any, and latitude and longitude. Coverage corresponds to that of maps at the scale of 1:250,000 or larger for islands, coastal Antarctica, and mountains and ranges of the continent. Much of the interior of Antarctica, an ice plateau, has been mapped at a smaller scale and is nearly devoid of features and toponyms. All of the names are for natural features; scientific stations are not listed. For the names of submarine features, reference should be made to the Gazetteer of Undersea Features, U.S. Board on Geographic Names (1981).

  2. Thermochronologic constraints on the tectonic evolution of the western Antarctic Peninsula in late Mesozoic and Cenozoic times

    USGS Publications Warehouse

    Brix, M.R.; Faundez, V.; Hervé, F.; Solari, M.; Fernandez, J.; Carter, A.; Stöckhert, B.

    2007-01-01

    West of the Antarctic Peninsula, oceanic lithosphere of the Phoenix plate has been subducted below the Antarctic plate. Subduction has ceased successively from south to north over the last 65 Myr. An influence of this evolution on the segmentation of the crust in the Antarctic plate is disputed. Opposing scenarios consider effects of ridge crest – trench interactions with the subduction zone or differences in slip along a basal detachment in the overriding plate. Fission track (FT) analyses on apatites and zircons may detect thermochronologic patterns to test these hypotheses. While existing data concentrate on accretionary processes in Palmer Land, new data extend information to the northern part of the Antarctic Peninsula. Zircons from different geological units over wide areas of the Antarctic Peninsula yield fission track ages between 90 and 80 Ma, indicating a uniform regional cooling episode. Apatite FT ages obtained so far show considerable regional variability

  3. Antarctic sea ice change and variability - Physical and ecological implications

    NASA Astrophysics Data System (ADS)

    Massom, Robert A.; Stammerjohn, Sharon E.

    2010-08-01

    Although Antarctic sea ice is undergoing a slight increase in overall extent, major regional changes are occurring in its spatio-temporal characteristics (most notably in sea ice seasonality). Biologically significant aspects of Antarctic sea ice are evaluated, emphasising the importance of scale and thermodynamics versus dynamics. Changing sea ice coverage is having major direct and indirect though regionally-dependent effects on ecosystem structure and function, with the most dramatic known effects to date occurring in the West Antarctic Peninsula region. There is mounting evidence that loss of sea ice has affected multiple levels of the marine food web in a complex fashion and has triggered cascading effects. Impacts on primary production, Antarctic krill, fish, marine mammals and birds are assessed, and are both negative and positive. The review includes recent analysis of change/variability in polynyas and fast ice, and also highlights the significance of extreme events (which have paradoxical impacts). Possible future scenarios are investigated in the light of the predicted decline in sea ice by 2100 e.g. increased storminess/waviness, numbers of icebergs and snowfall. Our current lack of knowledge on many aspects of sea ice-related change and biological response is emphasised.

  4. Plate tectonic evolution of circum-Antarctic passive margins

    SciTech Connect

    Scotese, C.R.; Lawver, L.A.; Sclater, J.G.; Mayes, C.L.; Norton, I.; Royer, J.

    1987-05-01

    Passive margins that formed during the Late Jurassic and Cretaceous account for approximately 80% of the 15,000-km circumference of Antarctica. There are no passive margins younger than Late Cretaceous. Approximately 28% of these margins are Late Jurassic in age, 24% are Early Cretaceous in age, and the remaining 48% formed during the Late Cretaceous. The tectonic style of the rifting events that formed these margins varies considerably along the perimeter of Antarctica. In several areas the initiation of sea-floor spreading was preceded by a long period of extension and predrift stretching (Wilkes Land). Along other portions of the margin, rifting proceeded rapidly with little evidence for a lengthy phase of pre-drift extension (Queen Maud Land). Though extension is the dominant tectonic style, there is evidence for large-scale strike-slip movement associated with the early phases of continental breakup along the coasts of Crown Princess Martha Land and Victoria Land. Except for a short segment of the margin between the West Antarctic peninsula and Marie Byrdland, the Antarctic passive margins have not been affected by subsequent subduction-related compressive deformation. This presentation will review the plate tectonic evolution of the Circum-Antarctic passive margins during five time intervals: Early Jurassic, Late Jurassic, Early Cretaceous, mid-Cretaceous, and latest Cretaceous. A map illustrating the relative amounts of extension along the margin of Antarctica will be presented, and a computer animation illustrating the breakup of Gondwana from an Antarctic perspective will be shown.

  5. Mass Gains of the Antarctic Ice Sheet Exceed Losses

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui; Brenner, Anita; Bromwich, David

    2012-01-01

    During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change. The net gain (86 Gt/yr) over the West Antarctic (WA) and East Antarctic ice sheets (WA and EA) is essentially unchanged from revised results for 1992 to 2001 from ERS radar altimetry. Imbalances in individual drainage systems (DS) are large (-68% to +103% of input), as are temporal changes (-39% to +44%). The recent 90 Gt/yr loss from three DS (Pine Island, Thwaites-Smith, and Marie-Bryd Coast) of WA exceeds the earlier 61 Gt/yr loss, consistent with reports of accelerating ice flow and dynamic thinning. Similarly, the recent 24 Gt/yr loss from three DS in the Antarctic Peninsula (AP) is consistent with glacier accelerations following breakup of the Larsen B and other ice shelves. In contrast, net increases in the five other DS of WA and AP and three of the 16 DS in East Antarctica (EA) exceed the increased losses. Alternate interpretations of the mass changes driven by accumulation variations are given using results from atmospheric-model re-analysis and a parameterization based on 5% change in accumulation per degree of observed surface temperature change. A slow increase in snowfall with climate waRMing, consistent with model predictions, may be offsetting increased dynamic losses.

  6. The ANGWIN Antarctic Research Program: First Results on Coordinated Trans-Antarctic Gravity Wave Measurements

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.

    2014-12-01

    ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.

  7. Measurements of ethane in Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.

    2011-12-01

    Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears

  8. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  9. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  10. Metazoan Parasites of Antarctic Fishes.

    PubMed

    Oğuz, Mehmet Cemal; Tepe, Yahya; Belk, Mark C; Heckmann, Richard A; Aslan, Burçak; Gürgen, Meryem; Bray, Rodney A; Akgül, Ülker

    2015-06-01

    To date, there have been nearly 100 papers published on metazoan parasites of Antarctic fishes, but there has not yet been any compilation of a species list of fish parasites for this large geographic area. Herein, we provide a list of all documented occurrences of monogenean, cestode, digenean, acanthocephalan, nematode, and hirudinean parasites of Antarctic fishes. The list includes nearly 250 parasite species found in 142 species of host fishes. It is likely that there are more species of fish parasites, which are yet to be documented from Antarctic waters.

  11. Antarctic total ozone in 1958

    SciTech Connect

    Newman, P.A. )

    1994-04-22

    The Antarctic ozone hole results from catalytic destruction of ozone by chlorine radicals. The hole develops in August, reaches its full depth in early October, and is gone by early December of each year. Extremely low total ozone measurements were made at the Antarctic Dumont d'Urville station in 1958. These measurements were derived from spectrographic plates of the blue sky, the moon, and two stars. These Dumont plate data are inconsistent with 1958 Dobson spectrophotometer ozone measurements, inconsistent with present-day Antarctic observations, and inconsistent with meteorological and theoretical information. There is no credible evidence for an ozone hole in 1958.

  12. Geological and geomorphological insights into Antarctic ice sheet evolution.

    PubMed

    Sugden, David E; Bentley, Michael J; O Cofaigh, Colm

    2006-07-15

    Technical advances in the study of ice-free parts of Antarctica can provide quantitative records that are useful for constraining and refining models of ice sheet evolution and behaviour. Such records improve our understanding of system trajectory, influence the questions we ask about system stability and help to define the ice-sheet processes that are relevant on different time-scales. Here, we illustrate the contribution of cosmogenic isotope analysis of exposed bedrock surfaces and marine geophysical surveying to the understanding of Antarctic ice sheet evolution on a range of time-scales. In the Dry Valleys of East Antarctica, 3He dating of subglacial flood deposits that are now exposed on mountain summits provide evidence of an expanded and thicker Mid-Miocene ice sheet. The survival of surface boulders for approximately 14Myr, the oldest yet measured, demonstrates exceptionally low rates of subsequent erosion and points to the persistence and stability of the dry polar desert climate since that time. Increasingly, there are constraints on West Antarctic ice sheet fluctuations during Quaternary glacial cycles. In the Sarnoff Mountains of Marie Byrd Land in West Antarctica, 10Be and 26Al cosmogenic isotope analysis of glacial erratics and bedrock reveal steady thinning of the ice sheet from 10400 years ago to the present, probably as a result of grounding line retreat. In the Antarctic Peninsula, offshore analysis reveals an extensive ice sheet at the last glacial maximum. Based on radiocarbon dating, deglaciation began by 17000cal yr BP and was complete by 9500cal yr BP. Deglaciation of the west and east sides of the Antarctic Peninsula ice sheet occurred at different times and rates, but was largely complete by the Early Holocene. At that time ice shelves were less extensive on the west side of the Antarctic Peninsula than they are today. The message from the past is that individual glacier drainage basins in Antarctica respond in different and distinctive

  13. Improvements in the chronology, geochemistry and correlation techniques of tephra in Antarctic ice

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Pearce, N. J.; Kyle, P. R.

    2013-12-01

    Visible and crypto tephra layers found in West Antarctic ice provide an excellent record of Antarctic volcanism over the past 100ka. Tephra layers are deposited almost instantaneously across wide areas creating horizons that, if found in several locations, provide 'pinning points' to adjust ice time scales that may otherwise be lacking detailed chronology. Individual tephra layers can have distinct chemical fingerprints allowing them to correlate over great distances. Advances in sample preparation, geochemical analyses (major and trace elements) of fine grained tephra and higher precision 40Ar/39Ar dating of young (<100ka) proximal volcanic deposits are improving an already established tephra record in West Antarctica. Forty three of the potential hundreds of silicate layers found in a recently drilled deep West Antarctic Ice Sheet Divide core (WDC06A) have been analyzed for major elements and a subset for trace elements. Of these layers, at least 16 are homogenous tephra that could be correlated to other ice cores (e.g. Siple Dome, SDMA) and/or to source volcanoes found throughout Antarctica and even extra-continental eruptions (e.g. Sub-Antarctic islands and South America). Combining ice core tephra with those exposed in blue ice areas provide more locations to correlate widespread eruptions. For example, a period of heightened eruptive activity at Mt. Berlin, West Antarctica between 24 and 28ka produced a set of tephra layers that are found in WDC06A and SDMA ice cores, as well as at a nearby blue ice area at Mt. Moulton (BIT-151 and BIT-152). Possible correlative tephra layers are found at ice ages of 26.4, 26.9 and 28.8ka in WDC06A and 26.5, 27.0, and 28.7ka in SDMA cores. The geochemical similarities of major elements in these layers mean that ongoing trace element analyses will be vital to decipher the sequence of events during this phase of activity at Mt. Berlin. Sample WDC06A-2767.117 (ice age of 28.6×1.0ka) appears to correlate to blue ice tephra BIT

  14. 76 FR 57765 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541) AGENCY: National Science Foundation. ACTION: Notice of Permit Applications Received under the Antarctic... publish notice of permit applications received to conduct activities regulated under the...

  15. West Nile Virus Activity--United States, October 13-19, 2004.

    PubMed

    2004-10-22

    During October 13-19, a total of 200 cases of human West Nile virus (WNV) illness were reported from 20 states (Arizona, Arkansas, California, Colorado, Illinois, Indiana, Iowa, Kansas, Maryland, Michigan, Mississippi, Missouri, Nevada, New Mexico, North Carolina, Oklahoma, Pennsylvania, South Dakota, Wisconsin, and Wyoming). PMID:15499683

  16. An Active Classroom: The Emerging Scholars Program at West Virginia University

    ERIC Educational Resources Information Center

    Deshler, Jessica M.; Miller, David; Pascal, Matthew

    2016-01-01

    In an effort to support the success of minority students and to incorporate inquiry-based learning (IBL) into the calculus sequence of courses at West Virginia University, a modified version of the Emerging Scholars Program (ESP) was implemented in the fall of 2009. Since then, approximately 100 students have taken ESP Calculus I, with many of…

  17. A source-to-sink, multi-proxy provenance study of CRP-1 and AND-2/2A core records: implications for sediment dispersal and ice dynamics models in the West Antarctic Rift System of South Victoria Land in Early Miocene time

    NASA Astrophysics Data System (ADS)

    Strada, Eleonora; Florindo, Fabio; Sandroni, Sonia; Talarico, Franco Maria

    2014-05-01

    The study of the lithosphere-cryosphere system interactions in response to climate and tectonic forcings during the Cenozoic long-term cooling and the reconstruction of the past glacial volumes and regimes (ice mountains caps vs ice sheets, warm-based vs polar/cold-based) represents a priority area for recent and current geosciences and climate science research. A unique case-history to investigate these issues is represented by the South Victoria Land sector of the West Antarctic Rift System, where several high-quality sediment drill-cores provide a benchmark for integrating paleoenvironmental information stored in a cumulative ca. 4.8 km-long stratigraphic record of late Eocene to Pleistocene age, with the erosion and exhumation histories recorded in several mountain blocks in the adjacent Transantarctic Mountains (TAM). Previous provenance studies on Victoria Land Basin cores highlight the high value of different provenance tools in the reconstruction of paleoenvironmental variability during the Cenozoic glacial and paleoclimatic evolution in the Ross Embayment in a number of time windows. However, integration of different datasets has been so far very limited, particularly for what concerns correlations of key Cenozoic tectonic and paleoclimatic events across the entire length of the TAM in Victoria Land. The Cape Roberts Project CRP-1 and the ANDRILL SMS AND2-2A cores, with their correlative core sections, provide the opportunity to reconstruct ice dynamic and paleoenvironmental scenarios at a regional scale, comprising a wide area of the western Ross Sea and the adjacent segment of the TAM in Early Miocene time. Our study includes a tighter data integration of all available provenance/compositional datasets in each core, and new mineralogical data (on both silicate and opaque mineralogy and in different sedimentary grain fractions). The overall new and existing datasets consistently highlight the presence of significant differences in provenance, suggesting

  18. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  19. Objectively determined physical activity levels of primary school children in south-west Germany

    PubMed Central

    2013-01-01

    Background Only a small proportion of children and adolescents meet current recommendations of at least 60 min of moderate to vigorous physical activity (MVPA) daily. Most of the available data, however, relies on subjective reports; there is limited objective data on physical activity (PA) levels in German primary school children. The purpose of this study, therefore, was to accurately determine how much time children spend undertaking different intensities of PA and being sedentary during weekdays and weekend using objective assessment tools. Gender-specific and age-related differences were examined along with differences between normal weight and overweight/obese children. Methods Children’s height and weight were measured according to standard procedures and objective PA measurements were determined in a sub-cohort of 384 primary school children (20% of the whole cohort), participating in a large school-based intervention study in south-west Germany (n = 1947). Baseline data collection occurred on six consecutive days, including weekend days, using multi-sensor accelerometry (Actiheart, CamNtech Ltd., Cambridge UK). 318 children (7.1 ± 0.6 years, male: 50%, first grade: 51%) provided data for at least 3 days including one weekend day. According to the amount of energy expended, defined as metabolic equivalents (METs), different activity intensities were categorised as follows: sedentary < 1.5 METs; light = 1.5-3.0 METs; moderate = 3.0-6.0 METs, and vigorous > 6.0 METs. Results Average wear time was 1403 ± 94 min/day. Children spent 808 ± 97 min/day being sedentary; 497 ± 72 min/day in light; 128 ± 54 min/day in moderate, and 8 ± 10 min/day in vigorous intensity. 48% of children met the current MVPA guidelines. MVPA was significantly higher on weekdays compared to weekend days (144 ± 66 vs. 113 ± 66 min/day; p < 0.001). Furthermore, boys displayed higher MVPA levels compared to girls (164

  20. [Effects of simulated nitrogen deposition on soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China].

    PubMed

    Tu, Li-Hua; Hu, Hong-Ling; Hu, Ting-Xing; Zhang, Jian; Xiao, Yin-Long; Luo, Shou-Hua; Li, Ren-Hong; Dai, Hong-Zhong

    2012-08-01

    From January 2008 to January 2009, a field experiment was conducted to investigate the effects of simulated nitrogen (N) deposition (0, 5, 15, and 30 g N x m(-2) x a(-1)) on the soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China. As compared with the control (0 g N x m(-2) x a(-1)), simulated N deposition stimulated the activities of soil hydrolases (beta-fructofuranosidase, cellulase, acid phosphatase, and urease) significantly, but depressed the activities of soil oxidases (polyphenol oxidase and peroxidase). These results suggested that the increased exogenous inorganic N could stimulate soil microbial activity and increase the demands of both B. luminifera and soil microbes for C and P, whereas the depress of soil polyphenol oxidase and peroxidase activities under N addition could inhibit the degradation of litter and promote its accumulation in soil, leading to the increase of soil C storage in the B. luminifera plantation ecosystem.

  1. [Effects of simulated nitrogen deposition on soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China].

    PubMed

    Tu, Li-Hua; Hu, Hong-Ling; Hu, Ting-Xing; Zhang, Jian; Xiao, Yin-Long; Luo, Shou-Hua; Li, Ren-Hong; Dai, Hong-Zhong

    2012-08-01

    From January 2008 to January 2009, a field experiment was conducted to investigate the effects of simulated nitrogen (N) deposition (0, 5, 15, and 30 g N x m(-2) x a(-1)) on the soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China. As compared with the control (0 g N x m(-2) x a(-1)), simulated N deposition stimulated the activities of soil hydrolases (beta-fructofuranosidase, cellulase, acid phosphatase, and urease) significantly, but depressed the activities of soil oxidases (polyphenol oxidase and peroxidase). These results suggested that the increased exogenous inorganic N could stimulate soil microbial activity and increase the demands of both B. luminifera and soil microbes for C and P, whereas the depress of soil polyphenol oxidase and peroxidase activities under N addition could inhibit the degradation of litter and promote its accumulation in soil, leading to the increase of soil C storage in the B. luminifera plantation ecosystem. PMID:23189689

  2. The Antarctic ozone depletion caused by Erebus volcano gas emissions

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Zueva, N. E.; Savelieva, E. S.; Gerasimov, V. V.

    2015-12-01

    Heterogeneous chemical reactions releasing photochemically active molecular chlorine play a key role in Antarctic stratospheric ozone destruction, resulting in the Antarctic ozone hole. Hydrogen chloride (HCl) is one of the principal components in these reactions on the surfaces of polar stratospheric clouds (PSCs). PSCs form during polar nights at extremely low temperatures (lower than -78 °C) mainly on sulfuric acid (H2SO4) aerosols, acting as condensation nuclei and formed from sulfur dioxide (SO2). However, the cause of HCl and H2SO4 high concentrations in the Antarctic stratosphere, leading to considerable springtime ozone depletion, is still not clear. Based on the NCEP/NCAR reanalysis data over the last 35 years and by using the NOAA HYSPLIT trajectory model, we show that Erebus volcano gas emissions (including HCl and SO2) can reach the Antarctic stratosphere via high-latitude cyclones with the annual average probability Pbarann. of at least ∼0.235 (23.5%). Depending on Erebus activity, this corresponds to additional annual stratospheric HCl mass of 1.0-14.3 kilotons (kt) and SO2 mass of 1.4-19.7 kt. Thus, Erebus volcano is the natural and powerful source of additional stratospheric HCl and SO2, and hence, the cause of the Antarctic ozone depletion, together with man-made chlorofluorocarbons.

  3. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    PubMed

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change.

  4. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    PubMed

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. PMID:26394097

  5. The Antarctic Master Directory -- a resource for Antarctic Scientists

    NASA Astrophysics Data System (ADS)

    Scharfen, G.; Bauer, R.

    2002-12-01

    Under the auspices of the Antarctic Treaty, a group of nations conducting Antarctic scientific research have created the Antarctic Master Directory (AMD), a resource for Antarctic scientists. The AMD is a Web-based, searchable directory containing data descriptions (metadata in the form of DIF entries) of Antarctic scientific data, and is a node of the International Directory Network/Global Change Master Directory (IDN/GCMD). The data descriptions in the AMD, essentially a data catalog of Antarctic scientific data, include information about what data were collected, where they were collected, when they were collected, who the scientists are, who the point of contact is, and information about the format of the data and what documentation and bibliographic information exists. As part of the AMD effort, the National Science Foundation Office of Polar Programs (OPP) funds the National Snow and Ice Data Center to operate the U.S. Antarctic Data Coordination Center (USADCC), the US focal point for the AMD. The USADCC assists PIs as they meet the requirements of the OPP "Guidelines and Award Conditions for Scientific Data", which identify the conditions for awards and responsibilities of PIs regarding the archival of data, and submission of metadata, resulting from their NSF OPP grants. The USADCC offers access to free, easy-to-use online tools that PIs can use to create the data descriptions that the NSF policy data requires. We provide advice to PIs on how to meet the data policy requirements, and can answer specific questions on related issues. Scientists can access data set descriptions submitted to the AMD, by thousands of scientists around the world, from the USADCC web pages.

  6. Cloud properties during active and break spells of the West African summer monsoon from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Efon, E.; Lenouo, A.; Monkam, D.; Manatsa, D.

    2016-07-01

    High resolution of daily rainfall dataset from the Tropical Rainfall Measuring Mission (TRMM) was used to identify active and break cloud formation periods. The clouds were characterized based on CloudSat-CALIPSO satellite images over West Africa during the summer monsoon during the period 2006-2010. The active and break periods are defined as the periods during the peak monsoon months of June to August when the normalized anomaly of rainfall over the monsoon core zone is greater than 0.9 or less than -0.9 respectively, provided the criteria is satisfied for at least three consecutive days. It is found that about 90% of the break period and 66.7% of the active spells lasted 3-4 days. Active spells lasting duration of about a week were observed while no break spell had such a long span. Cloud macrophysical (cloud base height (CBH), cloud top height (CTH) and cloud geometric depth (∆H), microphysical (cloud liquid water content, (LWC), liquid number concentration (LNC), liquid effective radius, ice water content (IWC), ice number concentration (INC) and ice effective radius) and radiative (heating rate properties) over South Central West Africa (5-15°N; 15°W-10°E) during the active and break spells were also analyzed. High-level clouds are more predominant during the break periods compared to the active periods. Active spells have lower INC compared to the break spells. Liquid water clouds are observed to have more radiative forcing during the active than break periods while ice phase clouds bring more cooling effect during the break spells compared to the active spells.

  7. Insights on Antarctic climate variability from paleo-temperature proxies

    NASA Astrophysics Data System (ADS)

    Orsi, A. J.; Landais, A.; Stenni, B.; Severinghaus, J. P.

    2015-12-01

    Few direct meteorological observations exist in Antarctica, which limits our understanding of the modes of climate variability in this region. In particular, atmospheric reanalyses do not produce a coherent picture of the known warming trend since 1979. Here we analyze a suite of paleo-temperature proxies to gain insight into both the recent temperature trend and the multi-decadal climate variability in Antarctica over the last 1000 years. We present temperature records from two sites in Antarctica: WAIS Divide (79°S, 112°W, 1766 m a.s.l), and Talos Dome (72°S, 159°E, 2315 m a.s.l), reconstructed from the combination of inert gas isotopes from the ice core and borehole temperature measurements. Borehole temperature provides an absolute estimate of long-term trends, while noble gases track decadal to centennial scale changes. In addition, we use water isotopes to infer information about circulation changes. We find a strong warming trend in West Antarctica over the last 50 years (+0.23°C/decade), which is accelerating (+0.8°C/decade since 1980). The longer temperature record shows that such a trend has analogs happening about every 200 years. However, the study of other climate proxies suggests that the recent trend is due to a different mechanism than the previous events. We also find a long term cooling trend over the last 1000 years, which is stronger in East Antarctica (Talos Dome) than in West Antarctica (WAIS-Divide). At WAIS Divide, we find that "Little Ice Age" cold period of 1400-1800 was 0.52°C colder than the last century. Overall, both records are consistent with the idea that the solar minima and persistent volcanic activity of the Little Ice Age (1400-1850 A.D.) had a significant impact on the surface temperature in Antarctica. The feedbacks amplifying the forcing were likely stronger on the East Antarctic plateau than on the more marine-influenced West Antarctica.

  8. Revealing archaeal diversity patterns and methane fluxes in Admiralty Bay, King George Island, and their association to Brazilian Antarctic Station activities

    NASA Astrophysics Data System (ADS)

    Nakayama, C. R.; Kuhn, E.; Araújo, A. C. V.; Alvalá, P. C.; Ferreira, W. J.; Vazoller, R. F.; Pellizari, V. H.

    2011-03-01

    The study of Antarctic archaeal communities adds information on the biogeography of this group and helps understanding the dynamics of biogenic methane production in such extreme habitats. Molecular methods were combined to methane flux determinations in Martel Inlet, Admiralty Bay, to assess archaeal diversity, to obtain information about contribution of the area to atmospheric methane budget and to detect possible interferences of the Antarctic Brazilian Station Comandante Ferraz (EACF) wastewater discharge on local archaeal communities and methane emissions. Methane fluxes in Martel Inlet ranged from 3.2 to 117.9 μmol CH 4 m -2 d -1, with an average of 51.3±8.5 μmol CH 4 m -2 d -1 and a median of 57.6 μmol CH 4 m -2d -1. However, three negative fluxes averaging -11.3 μmol CH 4 m -2 d -1 were detected in MacKellar Inlet, indicating that Admiralty Bay can be either a source or sink of atmospheric methane. Denaturing gradient gel electrophoresis (DGGE) showed that archaeal communities at EACF varied with depth and formed a group separated from the reference sites. Granulometric analysis indicated that differences observed may be mostly related to sediment type. However, an influence of wastewater input could not be discarded, since higher methane fluxes were found at CF site, suggesting stimulation of local methanogenesis. DGGE profile of the wastewater sample grouped separated from all other samples, suggesting that methanogenesis stimulation may be due to changes in environmental conditions rather than to the input of allochtonous species from the wastewater. 16S ribosomal DNA clone libraries analysis showed that all wastewater sequences were related to known methanogenic groups belonging to the hydrogenotrophic genera Methanobacterium and Methanobrevibacter and the aceticlastic genus Methanosaeta. EACF and Botany Point sediment clone libraries retrieved only groups of uncultivated Archaea, with predominance of Crenarchaeota representatives (MCG, MG1, MBG

  9. Antarctic Miocene Climate

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A. R.

    2013-12-01

    Fossils from Antarctic Miocene terrestrial deposits, coupled with stratigraphic, geochemical and paleontological data from marine boreholes, provide new insights into the climatic history of the continent. During the Miocene, ice caps coalesced to form ice sheets and vegetated surfaces gave way to barren expanses. The cryospheric changes especially have global climatic implications. The fossil data consists of diatoms, pollen and spores, and macroscopic remains of plants, ostracods, insects, molluscs and a fish. Plant fossils include wood and leaves of Nothofagus (southern beech), seeds of several vascular plants, including Ranunculus (buttercup), Hippuris (mare's-tail) and Myriophyllum (watermilfoil), megaspores of Isoetes (quillwort), and moss species. The insect chitin consists of larval head capsules of Chironomidae (midges) and exoskeletal parts of Coleoptera (beetles). The molluscs include freshwater gastropods and bivalves. The majority of these taxa are likely descendants of taxa that had survived on the continent from the Paleogene or earlier. Even though early Miocene glaciations may have been large, the climate was never cold enough to cause the extinction of the biota, which probably survived in coastal refugia. Early Miocene (c. 20 Ma) macrofossils from the McMurdo Dry Valleys (77°S) support palynological interpretations from the Cape Roberts and ANDRILL marine records that the upland vegetation was a shrub tundra. Mean summer temperature (MST) in the uplands was c. 6°C and possibly higher at the coast. The climate was wet, supporting mires and lakes. By the mid-Miocene, even though the climate continued to be wet. MST was c. 4°C which was too cold to support Nothofagus and most vascular plant species. Stratigraphic evidence indicates that the time between the Early and Mid-Miocene was a time of repeated ice advances and retreats of small glaciers originating from ice caps. At c. 14 Ma there appears to have been a modal shift in climate to

  10. Cardiovascular control in Antarctic fish

    NASA Astrophysics Data System (ADS)

    Egginton, Stuart; Campbell, Hamish; Davison, William

    2006-04-01

    The capacity for synthesis and plasma levels of stress hormones in species with a range of activity patterns suggest that depressed catecholamine synthesis is typical of notothenioid fishes regardless of life style, although they are able to release extensive stores under conditions of extreme trauma. Cortisol does not appear to be an important primary stress hormone in these species. In general, vascular reactivity shows a modest α and β adrenergic tonus, but with greater potency for cholinergic and serotonergic vasoconstrictor agonists, although a dominance of vasodilatation over vasoconstriction is observed in one species. Vasomotor control mechanisms appear to be primarily a consequence of evolutionary lineage rather than low environmental temperature, but the pattern may be modified according to functional demand. These and other data confirm the cardiovascular system is dominated by cholinergic control: the heart apparently lacks adrenergic innervation, but receives inhibitory parasympathetic input that regulates heart rate (HR) by setting a resting vagal tonus. Oxygen consumption (MO 2) determined at rest and varied via specific dynamic action, in intact fish and fish that had undergone bilateral sectioning of the vagus nerve, show that HR is a good predictor of MO 2, and that the major influence on HR is the degree of vagal tone—these fish work by removing the brake rather than applying the accelerator. However, whether these traits actually represent adaptation to the Antarctic environment or merely represent ancestral characteristics and their relative phylogenetic position is at present unclear.

  11. Reproductive biology of two species of holothurian from the deep-sea order Elasipoda, on the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Galley, E. A.; Tyler, P. A.; Smith, C. R.; Clarke, A.

    2008-11-01

    Antarctic shallow-water and deep-sea echinoderms are known to have seasonal gametogenic cycles linked to seasonal pulses of phytodetritus produced in surface waters. We suggest that phytodetritus reaching the Antarctic continental shelf may persist for longer timescales than in shallow or deep waters as a result of the low temperatures, low flow velocities, and the relatively short descent. If this food source remains available for extended periods throughout the year, Antarctic continental shelf megabenthos may not entrain seasonal gametogenic periodicity. To explore the reproductive response of the elpidiid holothurians, Protelpidia murrayi and Peniagone vignoni, a seasonal series of samples were taken on the West Antarctic Peninsula (WAP) at depths of 550-600 m between November 1999 and March 2001. Gonad indices were measured, and gonad tissues were analysed using histological and image analysis techniques. Oocyte size-frequency distributions were constructed from measurements of oocyte diameter, and analysed to describe reproductive patterns. Histological analyses of gonads tissue from P. murrayi suggest that gametogenesis is synchronised and seasonal, with spawning occurring between March and June. The onset of vitellogenesis appears to be initiated and synchronised by the arrival of the phytodetritus pulse. While, oocyte size-frequency distributions of P. vignoni suggest that oogenesis is synchronous between individuals, and infer a seasonal variation in gametogenic intensity, with an increase in production of vitellogenic oocytes that may be associated with an increase in food supply. The seasonal series of oocyte size-frequency distributions suggests that spawning commenced during October and November. We propose that both P. murrayi and P. vignoni have opportunistic reproductive patterns. In P. murrayi, the distinct gametogenic response to the summer Antarctic-shelf food pulse may be well adapted to any trophic regime with a pulsed food supply. In contrast

  12. Crustal motion in the Antarctic interior from a decade of Global Positioning System measurements

    NASA Astrophysics Data System (ADS)

    Willis, Michael J.

    A decade of Global Positioning System (GPS) data have been collected at bedrock sites in southern Victoria Land, Antarctica. Measured motions of the crust have been examined to determine if ongoing tectonic deformation occurs within the study area, across the structural boundary between East and West Antarctica. Crustal motions are used to test for activity over the offshore Terror Rift, where young faulting is documented, and to assess locally whether the active Erebus volcano deforms the crust. Bedrock motions caused by large scale ice-mass changes that have occurred in the area since the Last Glacial Maximum are also a major focus of the study. The horizontal GPS motions record Antarctic plate motion of ˜15 mm/yr to the southeast. No deformation is observed over the Transantarctic Mountains Front Zone. Very small amounts of deformation are observed along the Terror Rift, however the recorded direction of motions may be the result of Glacial Isostatic Adjustment (GIA), rather than active tectonics. Recorded motions observed to the south of Ross Island suggest that the Terror Rift continues beneath the Ross Ice Shelf. No volcanic loading signal is observed. Vertical crustal motions exhibit a down-to-the-east tilt over the study area. A suite of earth models, including more than three hundred different mantle viscosity profiles, three different lithospheric thicknesses and three different ice histories, were used to model uplift due to Glacial Isostatic Adjustment driven by ice mass change. None replicate the observed tilt. Two Relative Sea Level curves for the region also could not be replicated by GIA models examined. Comparison of GPS vertical velocities and our GIA models produce well-constrained earth models for the study area, but suggest that current ice history models for the region must be revised to replicate measured crustal motions. We compare the output of our GPS-constrained models with published crustal uplift rates used in modern ice mass balance

  13. The role of glacial and tectonic genesis in forming of the Antarctic Peninsula's shelf topography

    NASA Astrophysics Data System (ADS)

    Greku, Rudolf; Greku, Tatyana

    2015-04-01

    The influence of endogenous and exogenous factors on the topography of the West Antarctic shelf is shown. 1. The gravity tomography models [Atlas…] show that the non-geotectonic depressions about 300 m of depth extends to the south from the Bransfield Rift along the western and eastern shelves of the Antarctic Peninsula (AP) up to 69 °S. This is due to the glacial tectonic, which was caused by lithostatic pressure of ice mass and the corresponding deviatoric stress (as а horizontal stretching) in a period of an intense glaciation. Ice mass increases towards the south, therefore the deviatoric stretch and the width of the shelves increases also. 2. Besides such external factors, deep tomography data were taken into account. Results of tomographic modelling show the structure of the AP along its crest and along several cross sections. The AP body, as a single structure, is submerged into the lithospheres of the Pacific Ocean and the Weddell Sea to the depth of 150 km. Some layers of its deepened part are displaced concerning the AP's crest axis. The largest of these shifts are observed up to 50 km from the axis to the east at the latitude of 63°S at the depths of 6-7 km, then a shift up to 100 km to the west at 66°S at the depth of 9 km and at 67°S to the east up to 150 km at the depth of 13 km. 3. After breakup of the ice shelf to the west of the AP, the outflow of ice weight from the main ice board on the Peninsula increased. The consumption of the ice is evaluated now by the discharge of glaciers. Informative data for that are the satellite radar altimetry and interferometry. Several pairs of the ERS1/2 images of 1995-2008 were processed for the area of the Vernadsky Ukrainian Antarctic Station. These 100km x 100km images show 4 glaciers (Deloncle, Girard, Waddington and Collins) along transverse faults. The Collins glacier is the most active one. It starts at the crest of the Bruce Plateau АР at the height of 1450 m. Three smaller glaciers provide an

  14. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the

  15. Australian-Antarctic discordance

    NASA Astrophysics Data System (ADS)

    Sempeéreé, Jean-Christophe; Palmer, Jeb; Christie, David M.; Phipps Morgan, Jason; Shor, Alexander N.

    1991-05-01

    The Australian-Antarctic discordance is a region of anomalous geophysical and geochemical properties along the mid-ocean ridge system. It includes the isotopic boundary between Pacific Ocean and Indian Ocean basalts. Its lavas have compositions consistent with low mantle temperatures and a relatively low overall extent of melting. These characteristics have been attributed to downward flow in the underlying mantle. New bathymetric and side-scan sonar data show that (1) the spreading axis within the discordance is predominantly characterized by a broad rift valley and segmentation characteristics typical of slow-spreading centers, (2) the isotopic boundary appears to be associated with unusual, chaotic sea floor, and (3) the spreading axis east of the discordance is characterized by an axial ridge typical of fast-spreading centers. These extreme variations, at an essentially constant (intermediate) spreading rate are consistent with differences in melt supply and mantle properties along the spreading axis within and east of the discordance, as suggested in previous studies.

  16. Thermoregulation in Antarctic fulmarine petrels.

    PubMed

    Weathers, W W; Gerhart, K L; Hodum, P J

    2000-12-01

    We measured resting metabolic rates at air temperatures between ca. -5 and 30 degrees C in snow petrels (Pagodroma nivea), cape petrels (Daption capense), Antarctic petrels (Thalassoica antarctica), and Antarctic fulmars (Fulmarus glacialoides). We measured seven age classes for each species: adults, and nestlings that were 3, 8, 15, 28, 35, and 42 days old. Basal metabolic rate (BMR) and thermal conductance (C) of adults averaged, respectively, 140% and 100% of values predicted allometrically for nonpasserine birds. Minimum metabolic rates of unfasted nestlings aged 15-42 days averaged, respectively, 97% and 98% of predicted adult BMR in Antarctic petrels and snow petrels, versus 119% and 126% of predicted in Antarctic fulmars and cape petrels. Nestlings of the southerly breeding snow petrel and Antarctic petrel were relatively well insulated compared with nestlings of other high-latitude seabirds. Adult lower critical temperature (T1c) was inversely related to body mass and averaged 9 degrees C lower than predicted allometrically. As nestlings grew, their T1c decreased with increasing body mass from ca. 14 to 22 degrees C (depending upon species) at 3 days of age, to -4 to 8 degrees C when nestlings attained peak mass. Nestling T1c subsequently increased as body mass decreased during pre-fledging weight recession. Nestling T1c was close to mean air temperature from the end of brooding until fledging in the three surface nesting species. PMID:11192262

  17. [Soil enzyme activities in a Pleioblastus amurus plantation in Rainy Area of West China under simulated nitrogen deposition].

    PubMed

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Li, Ren-hong; Dai, Hong-zhong; Luo, Shou-hua; Xiang, Yuan-bin; Huang, Li-hua

    2009-12-01

    From November 2007 to May 2009, a simulation test was conducted in a Pleioblastus amarus plantation in Rainy Area of West China to study the effects of nitrogen deposition on the activities of soil enzymes. Four treatments were installed, i.e., control (0 g N x m(-2) x a(-1)), low nitrogen (5 g N x m(-2) x a(-1)), medium nitrogen (15 g N x m(-2) x a(-1)), and high nitrogen (30 g N x m(-2) x a(-1)). Half year after N deposition, 0-20 cm soil samples were collected monthly, and the activities of peroxidase, polyphenol oxidase, cellulase, sucrase, urease, and acid phosphatase were determined. All test enzyme activities had apparent, seasonal variation, with the peak of cellulase, suerase, and acid phosphatase activities in spring, of urease activity in autumn, and of peroxidase and polyphenol oxidase activities in winter. Nitrogen deposition stimulated the activities of polyphenol oxidase, sucrase, urease, and acid phosphatase, inhibited cellulase activity, but had no significant effects on peroxidase activity. The test P. amurus plantation ecosystem was N-limited, and nitrogen deposition stimulated the decomposition of soil organic matter by microbe-enzyme system.

  18. [Soil enzyme activities in a Pleioblastus amurus plantation in Rainy Area of West China under simulated nitrogen deposition].

    PubMed

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Li, Ren-hong; Dai, Hong-zhong; Luo, Shou-hua; Xiang, Yuan-bin; Huang, Li-hua

    2009-12-01

    From November 2007 to May 2009, a simulation test was conducted in a Pleioblastus amarus plantation in Rainy Area of West China to study the effects of nitrogen deposition on the activities of soil enzymes. Four treatments were installed, i.e., control (0 g N x m(-2) x a(-1)), low nitrogen (5 g N x m(-2) x a(-1)), medium nitrogen (15 g N x m(-2) x a(-1)), and high nitrogen (30 g N x m(-2) x a(-1)). Half year after N deposition, 0-20 cm soil samples were collected monthly, and the activities of peroxidase, polyphenol oxidase, cellulase, sucrase, urease, and acid phosphatase were determined. All test enzyme activities had apparent, seasonal variation, with the peak of cellulase, suerase, and acid phosphatase activities in spring, of urease activity in autumn, and of peroxidase and polyphenol oxidase activities in winter. Nitrogen deposition stimulated the activities of polyphenol oxidase, sucrase, urease, and acid phosphatase, inhibited cellulase activity, but had no significant effects on peroxidase activity. The test P. amurus plantation ecosystem was N-limited, and nitrogen deposition stimulated the decomposition of soil organic matter by microbe-enzyme system. PMID:20353060

  19. Antarctic DNA moving forward: genomic plasticity and biotechnological potential.

    PubMed

    Martínez-Rosales, Cecilia; Fullana, Natalia; Musto, Héctor; Castro-Sowinski, Susana

    2012-06-01

    Antarctica is the coldest, driest, and windiest continent, where only cold-adapted organisms survive. It has been frequently cited as a pristine place, but it has a highly diverse microbial community that is continually seeded by nonindigenous microorganisms. In addition to the intromission of 'alien' microorganisms, global warming strongly affects microbial Antarctic communities, changing the genes (qualitatively and quantitatively) potentially available for horizontal gene transfer. Several mobile genetic elements have been described in Antarctic bacteria (including plasmids, transposons, integrons, and genomic islands), and the data support that they are actively involved in bacterial evolution in the Antarctic environment. In addition, this environment is a genomic source for the identification of novel molecules, and many investigators have used culture-dependent and culture-independent approaches to identify cold-adapted proteins. Some of them are described in this review. We also describe studies for the design of new recombinant technologies for the production of 'difficult' proteins.

  20. Antarctic mass balance changes from GRACE

    NASA Astrophysics Data System (ADS)

    Kallenberg, B.; Tregoning, P.

    2012-04-01

    The Antarctic ice sheet contains ~30 million km3 of ice and constitutes a significant component of the global water balance with enough freshwater to raise global sea level by ~60 m. Altimetry measurements and climate models suggest variable behaviour across the Antarctic ice sheet, with thickening occurring in a vast area of East Antarctica and substantial thinning in West Antarctica caused by increased temperature gradients in the surrounding ocean. However, the rate at which the polar ice cap is melting is still poorly constrained. To calculate the mass loss of an ice sheet it is necessary to separate present day mass balance changes from glacial isostatic adjustment (GIA), the response of the Earth's crust to mass loss, wherefore it is essential to undertake sufficient geological and geomorphological sampling. As there is only a limited possibility for this in Antarctica, all models (i.e. geological, hydrological as well as atmospheric) are very poorly constrained. Therefore, space-geodetic observations play an important role in detecting changes in mass and spatial variations in the Earth's gravity field. The Gravity Recovery And Climate Experiment (GRACE) observed spatial variations in the Earth's gravity field over the past ten years. The satellite detects mass variations in the Earth system including geophysical, hydrological and atmospheric shifts. GRACE itself is not able to separate the GIA from mass balance changes and, due to the insufficient geological and geomorphological database, it is not possible to model the GIA effect accurately for Antarctica. However, the results from GRACE can be compared with other scientific results, coming from other geodetic observations such as satellite altimetry and GPS or by the use of geological observations. In our contribution we compare the GRACE data with recorded precipitation patterns and mass anomalies over East Antarctica to separate the observed GRACE signal into its two components: GIA as a result of mass

  1. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-01

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  2. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  3. Multidecadal warming of Antarctic waters.

    PubMed

    Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru

    2014-12-01

    Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. PMID:25477461

  4. Occurrence of a taurine derivative in an antarctic glass sponge.

    PubMed

    Carbone, Marianna; Núñez-Pons, Laura; Ciavatta, M Letizia; Castelluccio, Francesco; Avila, Conxita; Gavagnin, Margherita

    2014-04-01

    The n-butanol extract of an Antarctic hexactinellid sponge, Anoxycalyx (Scolymastra) joubini, was found to contain a taurine-conjugated anthranilic acid, never reported so far either as a natural product or by synthesis. The compound was inactive against human cancer cells in an in vitro growth inhibitory test, and also showed no antibacterial activity.

  5. Occurrence of a taurine derivative in an antarctic glass sponge.

    PubMed

    Carbone, Marianna; Núñez-Pons, Laura; Ciavatta, M Letizia; Castelluccio, Francesco; Avila, Conxita; Gavagnin, Margherita

    2014-04-01

    The n-butanol extract of an Antarctic hexactinellid sponge, Anoxycalyx (Scolymastra) joubini, was found to contain a taurine-conjugated anthranilic acid, never reported so far either as a natural product or by synthesis. The compound was inactive against human cancer cells in an in vitro growth inhibitory test, and also showed no antibacterial activity. PMID:24868857

  6. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  7. GPS observations of glacial isostatic adjustment into the Antarctic Interior

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Heeszel, D.; Wiens, D. A.

    2013-12-01

    Continuous GPS measurements of crustal motions made on bedrock along the Transantarctic Mountains (TAM) into the interior of Antarctica have been acquired by the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET). Vertical motions increase into the interior, in broad agreement with current models of GIA, but the magnitudes of observed motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to several factors, including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Observed horizontal motions in the same region are toward, rather than away from, the site of major ice mass loss in the Ross Embayment adjacent to the TAM. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, with motion toward the weaker, West Antarctic side from the stronger, East Antarctic side. 3D representation of crustal displacements highlights the correlation between observed motions and the earth properties gradient in the region. These new results are perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed in response to lateral variations in earth properties. Laterally-varying earth models, incorporating the new GPS and seismology constraints, are required for more accurate estimates of GIA in Antarctica.

  8. Mitochondrial Function in Antarctic Nototheniids with ND6 Translocation

    PubMed Central

    Mark, Felix C.; Lucassen, Magnus; Strobel, Anneli; Barrera-Oro, Esteban; Koschnick, Nils; Zane, Lorenzo; Patarnello, Tomaso; Pörtner, Hans O.; Papetti, Chiara

    2012-01-01

    Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system. This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH∶Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts. During acute thermal challenge (0–15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish. PMID

  9. Environmental microarray analyses of Antarctic soil microbial communities.

    PubMed

    Yergeau, Etienne; Schoondermark-Stolk, Sung A; Brodie, Eoin L; Déjean, Sébastien; DeSantis, Todd Z; Gonçalves, Olivier; Piceno, Yvette M; Andersen, Gary L; Kowalchuk, George A

    2009-03-01

    Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size ( approximately 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats. PMID:19020556

  10. Cenozoic evolution of the Antarctic Peninsula continental margin

    SciTech Connect

    Anderson, J.B. )

    1990-05-01

    Cenozoic evolution of the Antarctic Peninsula continental margin has involved a series of ridge (Aluk Ridge)-trench collisions between the Pacific and Antarctic plates. Subduction occurred episodically between segments of the Pacific plate that are bounded by major fracture zones. The age of ridge-trench collisions decreases from south to north along the margin. The very northern part of the margin, between the Hero and Shackleton fracture zones, has the last surviving Aluk-Antarctic spreading ridge segments and the only remaining trench topography. The sedimentary cover on the northern margin is relatively thin generally less than 1.5 km, thus providing a unique setting in which to examine margin evolution using high resolution seismic methods. Over 5,000 km of high resolution (water gun) seismic profiles were acquired from the Antarctic Peninsula margin during four cruises to the region. The margin is divided into discrete fracture-zone-bounded segments; each segment displays different styles of development. Highly tectonized active margin sequences have been buried beneath a seaward-thickening sediment wedge that represents the passive stage of margin development Ice caps, which have existed in the Antarctic Peninsula region since at least the late Oligocene, have advanced onto the continental shelf on numerous occasions, eroding hundreds of meters into the shelf and depositing a thick sequence of deposits characterized by till tongues and glacial troughs. Glacial erosion has been the main factor responsible for overdeepening of the shelf; isostasy is of secondary importance. As the shelf was lowered by glacial erosion, it was able to accommodate thicker and more unstable marine ice sheets. The shelf also became a vast reservoir for cold, saline shelf water, one of the key ingredients of Antarctic bottom water.

  11. Antarctic Data at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Leitzell, K.; Bohlander, J. A.; Bauer, R. J.; Scambos, T. A.

    2010-12-01

    The National Snow and Ice Data Center (NSIDC) archives and distributes data related to the Earth’s cryosphere. The center has a unique and extensive archive of data related to Antarctica, supported by the National Science Foundation (NSF) Office of Polar Programs, and various NASA projects. This poster will highlight some of our newest and most significant data holdings for Antarctic ice and climate research. Antarctic data at NSIDC include: -New P.I.-contributed data sets from the Antarctic Glaciological Data Center (AGDC), an NSF-funded data archive facility at NSIDC. AGDC has been active for 12 years, and houses data sets from over 150 researchers, spanning all types of research in the Antarctic. -MODIS Mosaic of Antarctica (MOA) 2009 was released in fall of 2010. This is a 125 meter, resolution-enhanced seamless mosaic of Antarctica, compiled from over 250 MODIS images acquired between 20 November 2008 and 01 March 2009. It provides a uniquely clear and detailed view of the continent's subtle ice flow and surface features. The new version offers the opportunity for change detection (ice flow, iceberg calving events, changes in ice flow and wind features) in the five years between early 2009 and an identically processed mosaic assembled in 2004. -NASA’s “Making Earth Science Data Records for Use in Research Environments” (MEaSUREs) provides ice velocity data for all of Antarctica, derived from Interferometric Synthetic Aperture radar (InSAR) analysis. We will show the access and browse software to be used for MEaSURES/Antarctic Ice Velocity, called the Antarctic Cryosphere Access Portal (A-CAP).

  12. Environmental microarray analyses of Antarctic soil microbial communities.

    PubMed

    Yergeau, Etienne; Schoondermark-Stolk, Sung A; Brodie, Eoin L; Déjean, Sébastien; DeSantis, Todd Z; Gonçalves, Olivier; Piceno, Yvette M; Andersen, Gary L; Kowalchuk, George A

    2009-03-01

    Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size ( approximately 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats.

  13. The environmental physiology of Antarctic terrestrial nematodes: a review.

    PubMed

    Wharton, D A

    2003-11-01

    The environmental physiology of terrestrial Antarctic nematodes is reviewed with an emphasis on their cold-tolerance strategies. These nematodes are living in one of the most extreme environments on Earth and face a variety of stresses, including low temperatures and desiccation. Their diversity is low and declines with latitude. They show resistance adaptation, surviving freezing and desiccation in a dormant state but reproducing when conditions are favourable. At high freezing rates in the surrounding medium the Antarctic nematode Panagrolaimus davidi freezes by inoculative freezing but can survive intracellular freezing. At slow freezing rates this nematode does not freeze but undergoes cryoprotective dehydration. Cold tolerance may be aided by rapid freezing, the production of trehalose and by an ice-active protein that inhibits recrystallisation. P. davidi relies on slow rates of water loss from its habitat, and can survive in a state of anhydrobiosis, perhaps aided by the ability to synthesise trehalose. Teratocephalus tilbrooki and Ditylenchus parcevivens are fast-dehydration strategists. Little is known of the osmoregulatory mechanisms of Antarctic nematodes. Freezing rates are likely to vary with water content in Antarctic soils. Saturated soils may produce slow freezing rates and favour cryoprotective dehydration. As the soil dries freezing rates may become faster, favouring freezing tolerance. When the soil dries completely the nematodes survive anhydrobiotically. Terrestrial Antarctic nematodes thus have a variety of strategies that ensure their survival in a harsh and variable environment. We need to more fully understand the conditions to which they are exposed in Antarctic soils and to apply more natural rates of freezing and desiccation to our studies.

  14. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO₂).

    PubMed

    Saba, Grace K; Schofield, Oscar; Torres, Joseph J; Ombres, Erica H; Steinberg, Deborah K

    2012-01-01

    Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO(2) concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO(2) perturbation experiment at ambient and elevated atmospheric CO(2) levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO(2) conditions (∼672 ppm), ingestion rates of krill averaged 78 µg C individual(-1) d(-1) and were 3.5 times higher than krill ingestion rates at ambient, present day CO(2) concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO(2) treatment than at ambient CO(2) concentrations. Excretion of urea, however, was ∼17% lower in the high CO(2) treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO(2) treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.

  15. Increased Feeding and Nutrient Excretion of Adult Antarctic Krill, Euphausia superba, Exposed to Enhanced Carbon Dioxide (CO2)

    PubMed Central

    Saba, Grace K.; Schofield, Oscar; Torres, Joseph J.; Ombres, Erica H.; Steinberg, Deborah K.

    2012-01-01

    Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO2 perturbation experiment at ambient and elevated atmospheric CO2 levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO2 conditions (∼672 ppm), ingestion rates of krill averaged 78 µg C individual−1 d−1 and were 3.5 times higher than krill ingestion rates at ambient, present day CO2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO2 treatment than at ambient CO2 concentrations. Excretion of urea, however, was ∼17% lower in the high CO2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP. PMID:23300621

  16. Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: a baseline study.

    PubMed

    Bengtson Nash, S M; Poulsen, A H; Kawaguchi, S; Vetter, W; Schlabach, M

    2008-12-15

    A baseline for persistent organohalogen compound (POC) accumulation in the Antarctic keystone species, Antarctic krill (Euphausia superba) has been established for a 50 degrees longitudinal range of the eastern Antarctic sector. Samples of adult krill, caught from 12 sites distributed between 30 degrees and 80 degrees E (60-70 degrees S), were analysed for >100 organohalogen compounds including chlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated organic compounds and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Organochlorine pesticides dominated measured krill contaminant burdens with hexachlorobenzene (HCB) as the single most abundant compound quantified. Krill HCB concentrations were comparable to those detected at this trophic level in both the Arctic and temperate northwest Atlantic, lending support for the hypothesis that HCB will approach global equilibrium at a faster rate than other POCs. Para, para'-dichlorodiphenylethene (p,p'-DDE) was detected at notable concentrations. Measurements of DDT and its degradation products provide an important baseline for monitoring the temporal and geographical influence of renewed, DDT usage for malaria-control in affected southern hemisphere countries. In contrast to the Arctic, PCBs did not feature prominently in contaminant burdens of Antarctic krill. The major commercial polybrominated diphenyl ether (PBDE) congeners -99 and -47 were quantified at low background levels with clear concentration spikes observed at around 70 degrees E , in the vicinity of modern, active research stations. The likelihood that local anthropogenic activities are supplementing low PBDE levels, delivered otherwise primarily via long range environmental transport, is discussed. The suspected naturally occurring brominated organic compound, 2,4,6-tribromoanisole (TBA), was a ubiquitous contaminant in all samples whereas the only PCDD/Fs quantifiable were trace levels of octachlorodibenzo-p-dioxin (OCDD) and 1,2,3

  17. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.

    PubMed

    Williams, G D; Herraiz-Borreguero, L; Roquet, F; Tamura, T; Ohshima, K I; Fukamachi, Y; Fraser, A D; Gao, L; Chen, H; McMahon, C R; Harcourt, R; Hindell, M

    2016-08-23

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65-34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate.

  18. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse.

    PubMed

    Holloway, Max D; Sime, Louise C; Singarayer, Joy S; Tindall, Julia C; Bunch, Pete; Valdes, Paul J

    2016-01-01

    Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming. PMID:27526639

  19. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay

    PubMed Central

    Williams, G. D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K. I.; Fukamachi, Y.; Fraser, A. D.; Gao, L.; Chen, H.; McMahon, C. R.; Harcourt, R.; Hindell, M.

    2016-01-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011–2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65–34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate. PMID:27552365

  20. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse

    PubMed Central

    Holloway, Max D.; Sime, Louise C.; Singarayer, Joy S.; Tindall, Julia C.; Bunch, Pete; Valdes, Paul J.

    2016-01-01

    Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming. PMID:27526639

  1. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse.

    PubMed

    Holloway, Max D; Sime, Louise C; Singarayer, Joy S; Tindall, Julia C; Bunch, Pete; Valdes, Paul J

    2016-01-01

    Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming.

  2. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.

    PubMed

    Williams, G D; Herraiz-Borreguero, L; Roquet, F; Tamura, T; Ohshima, K I; Fukamachi, Y; Fraser, A D; Gao, L; Chen, H; McMahon, C R; Harcourt, R; Hindell, M

    2016-01-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65-34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate. PMID:27552365

  3. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay

    NASA Astrophysics Data System (ADS)

    Williams, G. D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K. I.; Fukamachi, Y.; Fraser, A. D.; Gao, L.; Chen, H.; McMahon, C. R.; Harcourt, R.; Hindell, M.

    2016-08-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65-34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate.

  4. Antarctic Sea Ice Patterns and Its Relationship with Climate

    NASA Astrophysics Data System (ADS)

    Barreira, S.

    2015-12-01

    Antarctic sea ice concentration fields show a strong seasonal and interannual variation closely tied to changes in climate patterns. The Ross, Amundsen, Bellingshausen, and Weddell Seas during Summer-Autumn and the Southern Ocean regions north of these areas during Winter-Spring have the greatest sea ice variability. Principal components analysis in T- mode, Varimax-rotated applied on Antarctic monthly sea ice concentration anomaly (SICA) fields for 1979-2015 (NASA Team algorithm data sets available at nsidc.org) revealed the main spatial characteristics of Antarctic sea ice patterns and their relationship with atmospheric circulation. This analysis yielded five patterns of sea ice for winter-spring and three patterns for summer-autumn, each of which has a positive and negative phase. To understand the links between the SICA patterns and climate, we extracted the mean pressure and temperature fields for the months with high loadings (positive or negative) of the sea ice patterns. The first pattern of winter-spring sea ice concentration is a dipole structure between the Drake Passage and northern regions of the Bellingshausen and Weddell Seas and, the South Atlantic Ocean. The negative phase shows a strong negative SICA over the Atlantic basin. This pattern can be associated with to the atmospheric structures related to a positive SAM index and a wave-3 arrangement around the continent. That is, a strong negative pressure anomaly centered over the Bellingshausen Sea accompanied by three positive pressure anomalies in middle-latitudes. For summer-autumn, the first pattern shows two strong positive SICA areas, in the eastern Weddell Sea and the northwestern Ross Sea. A negative SICA covers the Amundsen-Bellingshausen Seas and northwest of the Antarctic Peninsula. This pattern, frequently seen in summers since 2008, is associated with cool conditions over the Weddell Sea but warmer temperatures and high surface air pressure west, north and northwest of the Peninsula.

  5. Principles of the Antarctic Treaty

    NASA Astrophysics Data System (ADS)

    Candidi, M.

    The operation of any base or expedition to Antarctica is regulated by the mutual agreement among nations in the “Antarctic Treaty”. This treaty deals with the major aspects of life in Antarctica and its main principles and provisions are described in what follows.

  6. Modelling the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Crutzen, P. J.; Bruhl, C.

    1988-01-01

    Researchers performed model calculations of the ozone depletions taking place in the Antarctic lower stratosphere. Making the assumption that odd nitrogen is frozen out on stratospheric haze particles, an analysis is given of how much homogeneous reactions can contribute to ozone loss during September-October. Comparisons with observations indicate the potential importance of reactions with HCl in the polar stratospheric cloud particles.

  7. Spatially Extensive Standardized Surveys Reveal Widespread, Multi-Decadal Increase in East Antarctic Adélie Penguin Populations

    PubMed Central

    Southwell, Colin; Emmerson, Louise; McKinlay, John; Newbery, Kym; Takahashi, Akinori; Kato, Akiko; Barbraud, Christophe; DeLord, Karine; Weimerskirch, Henri

    2015-01-01

    Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980’s and have been increasing since the earliest counts in the 1960’s. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations. PMID:26488299

  8. Spatially Extensive Standardized Surveys Reveal Widespread, Multi-Decadal Increase in East Antarctic Adélie Penguin Populations.

    PubMed

    Southwell, Colin; Emmerson, Louise; McKinlay, John; Newbery, Kym; Takahashi, Akinori; Kato, Akiko; Barbraud, Christophe; DeLord, Karine; Weimerskirch, Henri

    2015-01-01

    Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980's and have been increasing since the earliest counts in the 1960's. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations.

  9. Spatially Extensive Standardized Surveys Reveal Widespread, Multi-Decadal Increase in East Antarctic Adélie Penguin Populations.

    PubMed

    Southwell, Colin; Emmerson, Louise; McKinlay, John; Newbery, Kym; Takahashi, Akinori; Kato, Akiko; Barbraud, Christophe; DeLord, Karine; Weimerskirch, Henri

    2015-01-01

    Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980's and have been increasing since the earliest counts in the 1960's. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations. PMID:26488299

  10. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. PMID:27073166

  11. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  12. Did tectonic activity stimulate oligo-miocene speciation in the Indo-West Pacific?

    PubMed

    Williams, Suzanne T; Duda, Thomas F

    2008-07-01

    Analyses of molecular phylogenies of three unrelated tropical marine gastropod genera, Turbo, Echinolittorina, and Conus, reveal an increase in the rate of cladogenesis of some Indo-West Pacific (IWP) clades beginning in the Late Oligocene or Early Miocene between 23.7 and 21.0 million years ago. In all three genera, clades with an increased rate of diversification reach a maximum of diversity, in terms of species richness, in the central IWP. Congruence in both the geographical location and the narrow interval of timing suggests a common cause. The collision of the Australia and New Guinea plate with the southeast extremity of the Eurasian plate approximately 25 Mya resulted in geological changes to the central IWP, including an increase in shallow-water areas and length of coastline, and the creation of a mosaic of distinct habitats. This was followed by a period of rapid diversification of zooxanthellate corals between 20 and 25 Mya. The findings reported here provide the first molecular evidence from multiple groups that part of the present-day diversity of shallow-water gastropods in the IWP arose from a rapid pulse of speciation when new habitats became available in the Late Oligocene to Early Miocene. After the new habitats were filled, the rate of speciation likely decreased and this combined with high levels of extinction (in some groups), resulted in a slow down in the rate of diversification in the genera examined.

  13. Did tectonic activity stimulate oligo-miocene speciation in the Indo-West Pacific?

    PubMed

    Williams, Suzanne T; Duda, Thomas F

    2008-07-01

    Analyses of molecular phylogenies of three unrelated tropical marine gastropod genera, Turbo, Echinolittorina, and Conus, reveal an increase in the rate of cladogenesis of some Indo-West Pacific (IWP) clades beginning in the Late Oligocene or Early Miocene between 23.7 and 21.0 million years ago. In all three genera, clades with an increased rate of diversification reach a maximum of diversity, in terms of species richness, in the central IWP. Congruence in both the geographical location and the narrow interval of timing suggests a common cause. The collision of the Australia and New Guinea plate with the southeast extremity of the Eurasian plate approximately 25 Mya resulted in geological changes to the central IWP, including an increase in shallow-water areas and length of coastline, and the creation of a mosaic of distinct habitats. This was followed by a period of rapid diversification of zooxanthellate corals between 20 and 25 Mya. The findings reported here provide the first molecular evidence from multiple groups that part of the present-day diversity of shallow-water gastropods in the IWP arose from a rapid pulse of speciation when new habitats became available in the Late Oligocene to Early Miocene. After the new habitats were filled, the rate of speciation likely decreased and this combined with high levels of extinction (in some groups), resulted in a slow down in the rate of diversification in the genera examined. PMID:18410535

  14. Interaction between the North-West Sahara Aquifer and the seismically active intraplate Hun Graben Fault system, Libya

    NASA Astrophysics Data System (ADS)

    Hamling, I. J.; Aoudia, A.

    2011-12-01

    The North-West Sahara Aquifer System (NWSAS) covers an area of ~1 million km2 spanning the countries of Algeria, Tunisia and Libya. The system is composed of two main aquifers, the Complexe Terminal (CT) and the deeper Continental Intercalaire (CI). Over the last ~40 years these aquifers have been increasingly exploited in order to provide water to these countries. There are estimated to be ~7000 drill sites across the aquifer, 4000 in Algeria, 2000 in Tunisia and a further ~1000 in Libya. Land subsidence, caused by anthropogenic activities such as groundwater pumping, is a global problem and has been observed in a number of places around the world. Here we investigate fault controlled subsidence related to the extraction of water in North Western Libya. Located ~600 km south east of Tripoli, the Hun Graben separates the Sirte Basin to the east from the Hamada al Hamra Platform to the west and lies on the eastern boundary of the North-West Sahara Aquifer System (NWSAS). The graben is composed of two border faults extending for ~130 km from the town of Hun to the north west. These faults, bounding the eastern and western margins of the graben, are known to be seismically active and were responsible for the magnitude 7.1 earthquake in 1935. Due to the lack of ground based instrumentation, there are currently no estimates of slip along these structures. Here we use ERS and Envisat SAR images acquired over the last 20 years and form a number of interferograms to study interseismic strain accumulation along these structures. Satellite Radar Interferometry (InSAR) is a widely used technique for monitoring deformation of the Earth's surface. By differencing the phase from two radar images acquired at different times, maps of range change between the radar and ground can be obtained with millimetre precision. Our analysis over the graben suggests that neither of the two border faults are actively deforming and therefore the causes of intraplate large earthquakes such as

  15. Occupational and Environmental Health Risks Associated with Informal Sector Activities-Selected Case Studies from West Africa.

    PubMed

    Basu, Niladri; Ayelo, Paul Ahoumènou; Djogbénou, Luc S; Kedoté, Marius; Lawin, Herve; Tohon, Honesty; Oloruntoba, Elizabeth O; Adebisi, Nurudeen A; Cazabon, Danielle; Fobil, Julius; Robins, Thomas; Fayomi, Benjamin

    2016-08-01

    Most in the Economic Community of West African States region are employed in the informal sector. While the informal sector plays a significant role in the region's economy, policymakers and the scientific community have long neglected it. To better understand informal-sector work conditions, the goal here is to bring together researchers to exchange findings and catalyze dialogue. The article showcases research studies on several economic systems, namely agriculture, resource extraction, transportation, and trade/commerce. Site-specific cases are provided concerning occupational health risks within artisanal and small-scale gold mining, aggregate mining, gasoline trade, farming and pesticide applications, and electronic waste recycling. These cases emphasize the vastness of the informal sector and that the majority of work activities across the region remain poorly documented, and thus no data or knowledge is available to help improve conditions and formulate policies and programs to promote and ensure decent work conditions. PMID:27231011

  16. Occupational and Environmental Health Risks Associated with Informal Sector Activities-Selected Case Studies from West Africa.

    PubMed

    Basu, Niladri; Ayelo, Paul Ahoumènou; Djogbénou, Luc S; Kedoté, Marius; Lawin, Herve; Tohon, Honesty; Oloruntoba, Elizabeth O; Adebisi, Nurudeen A; Cazabon, Danielle; Fobil, Julius; Robins, Thomas; Fayomi, Benjamin

    2016-08-01

    Most in the Economic Community of West African States region are employed in the informal sector. While the informal sector plays a significant role in the region's economy, policymakers and the scientific community have long neglected it. To better understand informal-sector work conditions, the goal here is to bring together researchers to exchange findings and catalyze dialogue. The article showcases research studies on several economic systems, namely agriculture, resource extraction, transportation, and trade/commerce. Site-specific cases are provided concerning occupational health risks within artisanal and small-scale gold mining, aggregate mining, gasoline trade, farming and pesticide applications, and electronic waste recycling. These cases emphasize the vastness of the informal sector and that the majority of work activities across the region remain poorly documented, and thus no data or knowledge is available to help improve conditions and formulate policies and programs to promote and ensure decent work conditions.

  17. Cloning of a prothrombin activator-like metalloproteinase from the West African saw-scaled viper, Echis ocellatus.

    PubMed

    Hasson, S S; Theakston, R D G; Harrison, R A

    2003-11-01

    Systemic envenoming by the saw-scaled viper, Echis ocellatus, is responsible for more deaths than any other snake in West Africa. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here we describe the isolation of E. ocellatus venom gland cDNAs encoding a protein of 514 amino acids that showed 91% sequence similarity to Ecarin, a prothrombin-activating metalloproteinase from the venom of the East African viper, E. pyramidum leakeyi, that induces severe consumption coagulopathy. Structural similarities between the E. ocellatus metalloproteinase and analogues in venoms of related vipers suggest that antibodies raised to phylogenetically conserved E. ocellatus metalloproteinase domains may have potential for cross-specific and cross-generic neutralisation of analogous venom toxins. PMID:14602118

  18. West Antarctic Ice Sheet formed earlier than thought

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    About 34 million years ago, Earth transitioned from a warm "greenhouse" climate to a cold "icehouse" climate, marking the transition between the Eocene and Oligocene epochs. This transition has been associated with the formation of a large ice sheet on Antarctica.

  19. 78 FR 76862 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ...The National Science Foundation (NSF) is required to publish a notice of permit applications received to conduct activities regulated under the Antarctic Conservation Act of 1978. NSF has published regulations under the Antarctic Conservation Act at Title 45 Part 670 of the Code of Federal Regulations. This is the required notice of permit applications...

  20. 75 FR 57299 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541) AGENCY: National Science Foundation. ACTION: Notice of Permit Applications Received under the Antarctic... publish notice of permit applications received to conduct activities regulated under the...

  1. 78 FR 53789 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541) AGENCY: National Science Foundation. ] ACTION: Notice of Permit Applications Received Under the Antarctic... publish a notice of permit applications received to conduct activities regulated under the...

  2. [Analysis of some species of magnolia introduced to west georgia, on content of aporphine alkaloids and their biological activity].

    PubMed

    Vachnadze, N; Bakuridze, A; Bakuridze, K; Bozhadze, A; Berashvili, D; Vachnadze, V

    2015-04-01

    The goal of research was study of vegetative organs of Magnolia species introduced to west Georgia on qualitative and quantitative content of aporphine alkaloids and evaluate cytotoxic activity of total alkaloids from M. officinalis and M. glauca against A-549, DLD-1 and WS-1. Qualitative and quantitative content of aporphine alkaloids in different vegetative organs were determined by chromatographic methods. Based on the researches alkaloids - liriodenine and lanuginozine are characteristic for leaves, for bark of branches - liriodenine, d-caaverine; for bark of trunk - a liriodenine, a caaverine and a magnoflorine. Liriodenine may be considered as is chemotaxonomic sign of genus Magnolia, as it was found in all analyzed vegetative organs. In vitro cytotoxic activity of total alkaloids of M. officinalis and M. glauca has been investigated against DLD-1, WS-1 and A-549. Total alkaloids of M. glauca expressed significant cytotoxic activity against DLD-1 and WS-1, and medium cytotoxicity against A-549; M. officinalis exerted middle activity against A-549, DLD-1, WS-1.

  3. Nesting Ardeid colonies are not a focus of elevated West Nile virus activity in southern California.

    PubMed

    Reisen, W K; Wheeler, S S; Yamamoto, S; Fang, Y; Garcia, S

    2005-01-01

    A large nesting colony of Ardeid birds at the Finney-Ramer Wildlife Refuge in Imperial County, California, did not appear to be a focus of West Nile virus (WNV) amplification during the summer of 2004. Blood samples taken during June and July from 155 nestlings of four species of Ardeid birds (cattle egrets, black-crowned night herons, great egrets, and snowy egrets) and five nestling double-crested cormorants yielded a single WNV isolation from a 3-week-old cattle egret. Antibody was detected by enzyme immunoassay from 20 nestlings (13%), 14 (70%) of which were confirmed as positive by plaque reduction neutralization test (PRNT). However, titration end points against WNV and St. Louis encephalitis virus (SLEV) were similar precluding viral identification. The grouping of positives within few nests, highest PRNT titers in youngest birds (<1 weeks of age), the decline of titer with nestling age, and the lack of antibody specificity indicated that antibody may have been acquired maternally and did not represent new infections. Infection rates in Culex tarsalis mosquitoes collected near the Ardeid colony at Ramer Lake (3.1 per 1,000) were statistically similar to rates estimated at the nearby Wister Unit wetlands (5.3 per 1,000) that lacked an Ardeid nesting colony. Black-crowned night heron nestlings experimentally infected with the NY99 strain of WNV produced viremias >5 log10 plaque forming units (PFU)/mL and were considered moderately competent hosts, whereas cattle egret nestlings had viremias that remained <5 log10 PFU/mL and were incompetent hosts.

  4. Extremophiles in an Antarctic Marine Ecosystem.

    PubMed

    Dickinson, Iain; Goodall-Copestake, William; Thorne, Michael A S; Schlitt, Thomas; Ávila-Jiménez, Maria L; Pearce, David A

    2016-01-11

    Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  5. Extremophiles in an Antarctic Marine Ecosystem

    PubMed Central

    Dickinson, Iain; Goodall-Copestake, William; Thorne, Michael A.S.; Schlitt, Thomas; Ávila-Jiménez, Maria L.; Pearce, David A.

    2016-01-01

    Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  6. Extremophiles in an Antarctic Marine Ecosystem

    PubMed Central

    Dickinson, Iain; Goodall-Copestake, William; Thorne, Michael A.S.; Schlitt, Thomas; Ávila-Jiménez, Maria L.; Pearce, David A.

    2016-01-01

    Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles. PMID:27681902

  7. Extremophiles in an Antarctic Marine Ecosystem.

    PubMed

    Dickinson, Iain; Goodall-Copestake, William; Thorne, Michael A S; Schlitt, Thomas; Ávila-Jiménez, Maria L; Pearce, David A

    2016-01-01

    Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles. PMID:27681902

  8. Detailed GPR survey at 84 South, Antarctic

    NASA Astrophysics Data System (ADS)

    Martins, S. S.; Travassos, J. D.; Simoes, J. C.

    2012-12-01

    A total of 10 km geophysical data set were collected with a Sensors & Software GPR, fitted with 1 kV 100 MHz antennae in broadside parallel configuration around an ice core site (83°59'57"S, 79°29'59"W and 1253 m a.s.l.) in the West Antarctic Sheet during the 2011/2012 summer. We use two methods with different spatial and temporal scale and resolution: firn and ice cores and GPR. We concentrate our study in the first 100 m, enough to probe past the firn-ice transition in the region. Our geophysical data is georeferenced using a differential post-processed GPS to a local base. That base in turn is referenced to a remote base about 480 km to the north in Union Glacier (Ellsworth Mountains). Part of that geophysical data set was acquired with a man-hauled acquisition train of 5 sledges thus yielding a finer lateral resolution, which is comparable to the vertical one. That time-consuming data collection strategy paid itself through a data quality that allowed a very good correlation with the ice core borehole data. The proximity of the local GPS base yielded a positioning accuracy of the geophysical data at a centimeter level. We have done the depth conversion with the best velocity estimation as determined by the CMP measurements. Notwithstanding the depth limit of interest for this work, our geophysical data revealed the rocky basement lying 900 m deep.

  9. Geophysical Investigation of Australian-Antarctic Ridge Using High-Resolution Gravity and Bathymetry

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Lin, J.; Park, S. H.; Choi, H.

    2015-12-01

    Much of the Australian-Antarctic Ridge (AAR) has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. From 2011, the multidisciplinary ridge program initiated by the Korea Polar Research Institute (KOPRI) surveyed the little-explored eastern ends of the AAR to characterize the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. In this study, we present a detailed analysis of a 300-km-long supersegment of the AAR to quantify the spatial variations in ridge morphology and axial and off-axis volcanisms as constrained by high-resolution shipboard bathymetry and gravity. The ridge axis morphology alternates between rift valleys and axial highs within relatively short ridge segments. To obtain a geological proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for neighboring seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the KR1 supersegment of the AAR. The axial topography of the KR1 supersegment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more robust magma supply as indicated by more negative RMBA. We also compare and contrast the characteristics of the AAR supersegment with that of other ridges of intermediate spreading rates, including the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to investigate the influence of ridge-hotspot interaction on ridge magma supply and tectonics.

  10. Is the Wilkins Ice Shelf a Firn Aquifer? Spaceborne Observation of Subsurface Winter Season Liquid Meltwater Storage on the Antarctic Peninsula using Multi-Frequency Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, J.; Scambos, T.; Forster, R. R.; Long, D. G.; Ligtenberg, S.; van den Broeke, M.; Vaughan, D. G.

    2015-12-01

    Near-surface liquid meltwater on ice shelves has been inferred to influence ice shelf stability if it induces hydrofracture and is linked to disintegration events on the Larsen B and the Wilkins ice shelves on the Antarctic Peninsula during the summer months. While the initial Wilkins disintegration event occurred in March of 2009, two smaller disintegration events followed in May and in July of that year. It has long been assumed meltwater refreezes soon after surface melt processes cease. Given this assumption, an earlier hypothesis for the two winter season disintegration events was hydrofracture via a brine infiltration layer. Two lines of evidence supported this hypothesis 1) early airborne radar surveys did not record a reflection from the bottom of the ice shelf, and 2) a shallow core drilled in 1972 on the Wilkins encountered liquid water at a depth of ~7 m. The salinity of the water and the temperature at the base of the core, however, were not described. The recent discovery of winter season liquid meltwater storage on the Greenland ice sheet has changed perceptions on meltwater longevity at depth in firn. Evidence of Greenland's firn aquifer includes liquid meltwater encountered in shallow firn cores at 5 m depth and a lack of reflections from the base of the ice sheet in airborne surveys. Thus, previous lines of evidence suggesting brine infiltration may alternatively suggest the presence of a perennial firn aquifer. We recently demonstrated the capability for observation of Greenland's firn aquifer from space using multi-frequency active and passive microwave remote sensing. This research exploits the retrieval technique developed for Greenland to provide the first spaceborne mappings of winter season liquid meltwater storage on the Wilkins. We combine L-band brightness temperature and backscatter data from the MIRAS instrument (1.4 GHz) aboard ESA's Soil Moisture and Ocean Salinity mission and the radar (1.3 GHZ) and radiometer(1.4 GHz) aboard NASA

  11. Radarsat Antarctic Mapping Project: Antarctic Imaging Campaign 2

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Radarsat Antarctic Mapping Project is a collaboration between NASA and the Canadian Space Agency to map Antarctica using synthetic aperture radar (SAR). The first Antarctic Mapping Mission (AMM-1) was successfully completed in October 1997. Data from the acquisition phase of the 1997 campaign have been used to achieve the primary goal of producing the first, high-resolution SAR image map of Antarctica. The limited amount of data suitable for interferometric analysis have also been used to produce remarkably detailed maps of surface velocity for a few selected regions. Most importantly, the results from AMM-1 are now available to the general science community in the form of various resolution, radiometrically calibrated and geometrically accurate image mosaics. The second Antarctic imaging campaign occurred during the fall of 2000. Modified from AMM-1, the satellite remained in north looking mode during AMM-2 restricting coverage to regions north of about -80 degrees latitude. But AMM-2 utilized for the first time RADARSAT-1 fine beams providing an unprecedented opportunity to image many of Antarctica's fast glaciers whose extent was revealed through AMM-1 data. AMM-2 also captured extensive data suitable for interferometric analysis of the surface velocity field. This report summarizes the science goals, mission objectives, and project status through the acquisition phase and the start of the processing phase. The reports describes the efforts of team members including Alaska SAR Facility, Jet Propulsion Laboratory, Vexcel Corporation, Goddard Space Flight Center, Wallops Flight Facility, Ohio State University, Environmental Research Institute of Michigan, White Sands Facility, Canadian Space Agency Mission Planning and Operations Groups, and the Antarctic Mapping Planning Group.

  12. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  13. Chemical studies of differentiated meteorites. I - Labile trace elements in Antarctic and non-Antarctic eucrites

    NASA Technical Reports Server (NTRS)

    Paul, Rick L.; Lipschutz, Michael E.

    1990-01-01

    Element contents of Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U, and Zn were analyzed, using RNAA, in 25 Antarctic and nine non-Antarctic eucrites to determine whether these two populations differ significantly in thermal history and derive from the same or different eucrite parent body. Data for these 15 elements indicate that basaltic Antarctic and non-Antarctic eucrite populations reflect the same genetic processes and, hence, come from the same parent asteroid.

  14. Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45.

    PubMed

    Friedrich, Susann; Schmidt, Tobias; Schierhorn, Angelika; Lilie, Hauke; Szczepankiewicz, Grit; Bergs, Sandra; Liebert, Uwe G; Golbik, Ralph P; Behrens, Sven-Erik

    2016-10-01

    A prerequisite for the intracellular replication process of the Flavivirus West Nile virus (WNV) is the cyclization of the viral RNA genome, which enables the viral replicase to initiate RNA synthesis. Our earlier studies indicated that the p45 isoform of the cellular AU-rich element binding protein 1 (AUF1) has an RNA chaperone activity, which supports RNA cyclization and viral RNA synthesis by destabilizing a stem structure at the WNV RNA's 3'-end. Here we show that in mammalian cells, AUF1 p45 is consistently modified by arginine methylation of its C terminus. By a combination of different experimental approaches, we can demonstrate that the methyltransferase PRMT1 is necessary and sufficient for AUF1 p45 methylation and that PRMT1 is required for efficient WNV replication. Interestingly, in comparison to the nonmethylated AUF1 p45, the methylated AUF1 p45(aDMA) exhibits a significantly increased affinity to the WNV RNA termini. Further data also revealed that the RNA chaperone activity of AUF1 p45(aDMA) is improved and the methylated protein stimulates viral RNA synthesis considerably more efficiently than the nonmethylated AUF1 p45. In addition to its destabilizing RNA chaperone activity, we identified an RNA annealing activity of AUF1 p45, which is not affected by methylation. Arginine methylation of AUF1 p45 thus represents a specific determinant of its RNA chaperone activity while functioning as a WNV host factor. Our data suggest that the methylation modifies the conformation of AUF1 p45 and in this way affects its RNA binding and restructuring activities.

  15. Multibranch Antarctic Seismic Data Library facilitates research

    NASA Astrophysics Data System (ADS)

    Cooper, Alan K.

    In 1991, investigators from 11 nations involved in Antarctic multichannel seismic (MCS) reflection research sought a way to keep the Antarctic Treaty's promise of open access to data, and in the process to encourage Earth-science research using seismic data. The Antarctic Seismic Data Library System for Cooperative Research (SDLS) was the solution, and is now a recommendation of the Antarctic Treaty Consultative Parties (ATCP). Today—at 12 branches spanning the world—researchers can access over 68,000 km of marine MCS data to use for cooperative research.More than 150,000 km of MCS data have been accumulated since 1976 by 13 countries on nearly 70 cruises. The majority of data now in the library cover the Ross Sea, Wilkes Land, and Prydz Bay sectors of the Antarctic margin, with smaller amounts from the Weddell Sea and the Antarctic Peninsula.

  16. The Antarctic Region: Geological Evolution and Processes

    NASA Astrophysics Data System (ADS)

    Quilty, Patrick G.

    The Scientific Committee on Antarctic Research (SCAR) supports discipline- and issue-based meetings in Antarctic research, and these are forums for announcing developments in Antarctic science. Refereed symposia proceedings normally follow and generate a number of volumes that almost constitute serial publication. Meetings in the Earth sciences occur at roughly 4-year intervals. The resulting volumes cover Antarctic Earth science generally and provide convenient access to periodic bibliographic updates.The Antarctic Region: Geological Evolution and Processes is a collection of the Proceedings of the VII International Symposium on Antarctic Earth Sciences, held in Siena, Italy, in 1995 and sponsored by SCAR. It was by far the largest such meeting held to date—the next will be in New Zealand in 1999—but the book, even as large as it is, contains only a portion of the papers presented.

  17. Central and South West Corporation`s avian activity study - preconstruction phase

    SciTech Connect

    Hamilton, J.; Randell, S.; Bouchard, D.C.

    1995-12-31

    A pre-construction avian activity study at the CSW wind farm site is underway. Resident and migratory avian species are being monitored with special emphasis on the incidence of birds passing over or through the wind turbine line and within the circumference of the turbine blades. Diurnal activity is monitored by unaided visual and field glass observation, while nocturnal activity is monitored with marine radar and image intensifying optics. This report reviews the study`s design, methodology, and preliminary data. A total of 872 birds were seen in 194 hours from December 1993 to November 1994. The turkey vulture, vesper sparrow, American kestrel, golden eagle, and white-throated swift were the species most frequently observed flying through wind turbine blade space. Monitoring will continue after construction. This is one of few studies we know of that looks at pre- and post-construction avian activity.

  18. Enzymatic activities and prokaryotic abundance in relation to organic matter along a West-East Mediterranean transect (TRANSMED cruise).

    PubMed

    Zaccone, R; Boldrin, A; Caruso, G; La Ferla, R; Maimone, G; Santinelli, C; Turchetto, M

    2012-07-01

    The distribution of extracellular enzymatic activities (EEA) [leucine aminopeptidase (LAP), ß-glucosidase (GLU), alkaline phosphatase (AP)], as well as that of prokaryotic abundance (PA) and biomass (PB), dissolved organic carbon (DOC), particulate organic carbon and particulate total nitrogen (POC, PTN), was determined in the epi-, meso-, and bathypelagic waters of the Mediterranean Sea along a West-East transect and at one Atlantic station located outside the Strait of Gibraltar. This study represents a synoptical evaluation of the microbial metabolism during early summer. Decreasing trends with depth were observed for most of the parameters (PA, PB, AP, DOC, POC, PTN). Significant differences between the western and eastern basins of the Mediterranean Sea were found, displaying higher rates of LAP and GLU and lower C/N ratios more in the eastern than in the western areas. Conversely, in the epipelagic layer, PA and PB were found to be higher in the western than in the eastern basins. PB was significantly related to DOC concentration (all data, n = 145, r = 0.53, P < 0.01), while significant correlations of EEA with POC and PTN were found in the epipelagic layer, indicating an active response of microbial metabolism to organic substrates. Specific enzyme activities normalized to cell abundance pointed out high values of LAP and GLU in the bathypelagic layer, especially in the eastern basin, while cell-specific AP was high in the epi- and bathypelagic zone of the eastern basin indicating a rapid regeneration of inorganic P for both prokaryotes and phytoplankton needs. Low activity and abundance characterized the Atlantic station, while opposite trends of these parameters were observed along the Mediterranean transect, showing the uncoupling between abundance and activity data. In the east Mediterranean Sea, decomposition processes increased probably in response to mesoscale structures which lead to organic matter downwelling. PMID:22349935

  19. Unreviewed safety question evaluation of 100K East and 100K West in-basin fuel characterization program activities

    SciTech Connect

    Alwardt, L.D.

    1995-01-12

    The purpose of this report is to provide the basis for answers to an Unreviewed Safety Question (USQ) safety evaluation of the 105K East (KE) and 105K West (KW) in-basin activities associated with the fuel characterization program as described in the characterization shipping plan. The significant activities that are common to both 105 KE and 105 KW basins are the movement of canisters from their main basin storage locations (or potentially from the 105 KE Tech View Pit if a dump table is available) to the south loadout pit transfer channel, hydrogen generation testing in the single element fuel container, loading the single element fuel container into the shipping cask, loading of the shipping cask onto a flat-bed trailer, return of the test fuel elements or element pieces from the 327 facility, placement of the fuel elements back into Mark 2 canisters, and placement of the canisters in the main storage basin. Decapping of canisters in the south loadout pit transfer channel and re-encapsulation of canisters are activities specific to the 105 KW basin. The scope of this safety evaluation includes only those characterization fuel shipment activities performed in the 105 KE and 105 KW fuel storage basin structures up to installation of the overpack. The packaging safety evaluation report governs the shipment of the fuel elements. The K Basins Plant Review Committee has determined that the in-basin activities associated with the fuel characterization program fuel shipments are bounded by the current safety envelop and do not constitute an unreviewed safety question. This determination is documented on Attachment 1.

  20. A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere

    NASA Astrophysics Data System (ADS)

    Dixon, D. A.; Mayewski, P. A.; Korotkikh, E.; Sneed, S. B.; Handley, M. J.; Introne, D. S.; Scambos, T. A.

    2011-03-01

    East and West Antarctica and for a significant fraction of the Cd in East Antarctica. Nonetheless, global volcanic outgassing cannot account for the enriched values of Pb or As. Local volcanic outgassing from Mount Erebus may account for a significant fraction of the As and Cd in West Antarctica and for a significant fraction in East Antarctic glaze/dune areas. However, despite potential contributions from local and global volcanic sources, significant concentrations of Pb, Cd, and As remain across much of Antarctica. Most importantly, this study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere.

  1. Geographic names of the Antarctic

    USGS Publications Warehouse

    ,; ,; ,; ,; Alberts, Fred G.

    1995-01-01

    This gazetteer contains 12,710 names approved by the United States Board on Geographic Names and the Secretary of the Interior for features in Antarctica and the area extending northward to the Antarctic Convergence. Included in this geographic area, the Antarctic region, are the off-lying South Shetland Islands, the South Orkney Islands, the South Sandwich Islands, South Georgia, Bouvetøya, Heard Island, and the Balleny Islands. These names have been approved for use by U.S. Government agencies. Their use by the Antarctic specialist and the public is highly recommended for the sake of accuracy and uniformity. This publication, which supersedes previous Board gazetteers or lists for the area, contains names approved as recently as December 1994. The basic name coverage of this gazetteer corresponds to that of maps at the scale of 1:250,000 or larger for coastal Antarctica, the off-lying islands, and isolated mountains and ranges of the continent. Much of the interior of Antarctica is a featureless ice plateau. That area has been mapped at a smaller scale and is nearly devoid of toponyms. All of the names are for natural features, such as mountains, glaciers, peninsulas, capes, bays, islands, and subglacial entities. The names of scientific stations have not been listed alphabetically, but they may appear in the texts of some decisions. For the names of submarine features, reference should be made to the Gazetteer of Undersea Features, 4th edition, U.S. Board on Geographic Names, 1990.

  2. Heavy metals in Antarctic organisms

    SciTech Connect

    Moreno, J.E.A. de; Moreno, V.J.; Gerpe, M.S.; Vodopivez, C.

    1997-02-01

    To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

  3. USGS field activity 08FSH01 on the west Florida shelf, Gulf of Mexico, in August 2008

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Liu, Xuewu; Byrne, Robert H.; Raabe, Ellen A.

    2009-01-01

    From August 11 to 15, 2008, a cruise led by the U.S. Geological Survey (USGS) collected air and sea surface partial pressure of carbon dioxide (pCO2), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) data on the west Florida shelf. Approximately 1,600 data points were collected underway over a 650-kilometer (km) trackline using the Multiparameter Inorganic Carbon Analyzer (MICA). The collection of data extended from Crystal River southward to Marco Island, Florida (~400 km), and westward up to 160 km off the Florida coast. Discrete water samples from approximately 40 locations were also taken at specific localities to corroborate underway data measurements. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 08FSH01 tells us the data were collected in 2008 for the Response of Florida Shelf (FSH) Ecosystems to Climate Change project, and the data were collected during the first field activity for that study in that calendar year.

  4. USGS field activity 09FSH02 on the west Florida shelf, Gulf of Mexico, in August 2009

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Liu, Xuewu; Byrne, Robert H.; Raabe, Ellen A.

    2009-01-01

    From August 17 to 21, 2009, a cruise led by the U.S. Geological Survey (USGS) collected air and sea surface partial pressure of carbon dioxide (pCO2), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) data on the west Florida shelf. Approximately 2,000 data points were collected underway over a 1,320-kilometer (km) track line using the Multiparameter Inorganic Carbon Analyzer (MICA). The collection of data extended from Crystal River to Marco Island, Florida (~400 km), and westward up to 160 km off the Florida coast. Discrete water samples were also taken at specific localities to corroborate underway data measurements. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 09FSH02 tells us that the data were collected in 2009 for the Response of Florida Shelf (FSH) Ecosystems to Climate Change project, and the data were collected during the second field activity for that study in that calendar year.

  5. USGS field activity 09FSH01 on the west Florida shelf, Gulf of Mexico, in February 2009

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Liu, Xuewu; Byrne, Robert H.; Raabe, Ellen A.

    2009-01-01

    From February 24 to 28, 2009, a cruise led by the U.S. Geological Survey (USGS) collected air and sea surface partial pressure of carbon dioxide (pCO2), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) data on the west Florida shelf. Approximately 1,800 data points were collected underway over a 1,300-kilometer (km) trackline using the Multiparameter Inorganic Carbon Analyzer (MICA). The collection of data extended from Crystal River to Marco Island, Florida (~400 km), and westward up to 160 km off the Florida coast. Discrete water samples were also taken at specific localities to corroborate underway data measurements. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 09FSH01 tells us that the data were collected in 2009 for the Response of Florida Shelf (FSH) Ecosystems to Climate Change project, and the data were collected during the first field activity for that study in that calendar year.

  6. The Antarctic POLENET Project: Status, Initial Results, Future Challenges

    NASA Astrophysics Data System (ADS)

    Wilson, T. J.; Wiens, D. A.; Winberry, J.; Smalley, R.; Raymond, C. A.; Nyblade, A.; Huerta, A. D.; Dalziel, I. W.; Bevis, M. G.; Aster, R. C.; Anandakrishnan, S.

    2010-12-01

    Synoptic observational data are being provided by new arrays of GNSS and seismic sensors distributed across West Antarctica from the Antarctic Network (A-NET) component of the IPY Polar Earth Observing Network (POLENET). Providing this invaluable new trove of data to the global science community and the major increase in observational capacity are the foremost achievements of POLENET during the IPY. Scientific investigations on a broad range of topics utilizing the new polar geophysical observations are underway and results are beginning to emerge. Initial results of GPS and gravity measurements show that uplift predictions from existing models of glacial isostatic adjustment do not match measured vertical crustal motion rates. These results have important implications for ancient and modern ice mass balance and modeling of sea level change. Seismic methods are revealing thinner crust and slow upper mantle velocities under West Antarctica compared with East Antarctica, compatible with warm, weak mantle beneath rifted crust. These results bear on modeling glacial isostatic adjustment and the dynamics of the west antarctic ice sheet, as well as continental evolution and intraplate deformation processes. Interdisciplinary studies between communities studying geophysical, climate, atmospheric and space weather phenomena have recently been initiated. The new observational capacity of the autonomous remote sensor network has clearly accelerated understanding of large-scale earth system processes, particularly feedbacks between the solid earth and ice sheets. However, enhanced modeling capabilities must be developed to integrate data sets, assimilate the improved data sets and boundary conditions effectively, and improve model predictions. POLENET infrastructure provides a framework for a collaborative, interdisciplinary, international observational network, highlighting a key challenge for future polar research.

  7. Learning from the past: Antarctic Eemian ice sheet dynamics as an analogy for future warming.

    NASA Astrophysics Data System (ADS)

    Sutter, Johannes; Thoma, Malte; Grosfeld, Klaus; Gierz, Paul; Lohmann, Gerrit

    2015-04-01

    Facing considerable warming during this century the stability of the West Antarctic Ice Sheet is under increasing scrutiny. Recent observations suggest that the marine ice sheet instability of the WAIS has already started . We investigate the dynamic evolution of the Antarctic Ice Sheet during the last interglacial, forcing a state of the art 3D ice sheet model with Eemian boundary conditions. We elucidate the role of ocean warming and surface mass balance on the coupled ice sheet/shelf and grounding line dynamics. Special focus lies on an ice sheet modeling assessment of Antarctica's potential contribution to global sea level rise during the Eemian. The transient model runs are forced by time slice experiments of a fully coupled atmosphere-ocean global circulation model, as well as different sets of sea level and bedrock reconstructions. The model result show strong evidences for a severe ice-sheet retreat in West Antartica, leading to substantical contribution to global sea level from the Southern Hemisphere. Additionally we compare future warming scenarios of West Antarctic Ice Sheet dynamics to our paleo ice sheet modeling studies.

  8. Evidence for widespread endemism among Antarctic micro-organisms

    NASA Astrophysics Data System (ADS)

    Vyverman, Wim; Verleyen, Elie; Wilmotte, Annick; Hodgson, Dominic A.; Willems, Anne; Peeters, Karolien; Van de Vijver, Bart; De Wever, Aaike; Leliaert, Frederik; Sabbe, Koen

    2010-08-01

    Understanding the enormous diversity of microbes, their multiple roles in the functioning of ecosystems, and their response to large-scale environmental and climatic changes, are at the forefront of the international research agenda. In Antarctica, where terrestrial and lacustrine environments are predominantly microbial realms, an active and growing community of microbial ecologists is probing this diversity and its role in ecosystem processes. In a broader context, this work has the potential to make a significant contribution to the long-standing debate as to whether microbes are fundamentally different from macroorganisms in their biogeography. According to the ubiquity hypothesis, microbial community composition is not constrained by dispersal limitation and is solely the result of species sorting along environmental gradients. However, recent work on several groups of microalgae is challenging this view. Global analyses using morphology-based diatom inventories have demonstrated that, in addition to environmental harshness, geographical isolation underlies the strong latitudinal gradients in local and regional diversity in the Southern hemisphere. Increasing evidence points to a strong regionalization of diatom floras in the Antarctic and sub-Antarctic regions, mirroring the biogeographical regions that have been recognized for macroorganisms. Likewise, the application of molecular-phylogenetic techniques to cultured and uncultured diversity revealed a high number of Antarctic endemics among cyanobacteria and green algae. Calibration of these phylogenies suggests that several clades have an ancient evolutionary history within the Antarctic continent, possibly dating back to 330 Ma. These findings are in line with the current view on the origin of Antarctic terrestrial metazoa, including springtails, chironomids and mites, with most evidence suggesting a long history of geographic isolation on a multi-million year, even pre-Gondwana break-up timescale.

  9. Observations and theories related to Antarctic ozone changes

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; Watson, R. T.; Cox, Richard A.; Kolb, C.; Mahlman, J.; Mcelroy, M.; Plumb, A.; Ramanathan, V.; Schoeberl, M.; Solomon, S.

    1989-01-01

    In 1985, there was a report of a large, sudden, and unanticipated decrease in the abundance of springtime Antarctic ozone over the last decade. By 1987, ozone decreases of more than 50 percent in the total column, and 95 percent locally between 15 and 20 km, had been observed. The scientific community quickly rose to the challenge of explaining this remarkable discovery; theoreticians soon developed a series of chemical and dynamical hypotheses to explain the ozone loss. Three basic theories were proposed to explain the springtime ozone hole. (1) The ozone hole is caused by the increasing atmospheric loadings of manmade chemicals containing chlorine (chlorofluorocarbons (CFC's) and bromine (halons)). These chemicals efficiently destroy ozone in the lower stratosphere in the Antarctic because of the special geophysical conditions, of an isolated air mass (polar vortex) with very cold temperatures, that exist there. (2) The circulation of the atmosphere in spring has changed from being predominantly downward over Antarctica to upward. This would mean that ozone poor air from the troposphere, instead of ozone rich air from the upper stratosphere, would be transported into the lower Antarctic stratosphere. (3) The abundance of the oxides of nitrogen in the lower Antarctic stratosphere is periodically enhanced by solar activity. Nitrogen oxides are produced in the upper mesosphere and thermosphere and then transported downward into the lower stratosphere in Antarctica, resulting in the chemical destruction of ozone. The climatology and trends of ozone, temperature, and polar stratospheric clouds are discussed. Also, the transport and chemical theories for the Antarctic ozone hole are presented.

  10. Human activities and microbial geographies. An anthropological approach to the risk of infections in West African hospitals.

    PubMed

    d'Alessandro, Eugénie

    2015-07-01

    In hospital care, management of the risk of infection represents a crucial issue. Nevertheless, this question remains a neglected area in anthropological research, especially in African countries. To shed new light on this question, we conducted an anthropological investigation in the infectious disease department of a hospital in Niger. Daily observation of the work of the hospital staff for a total period of 6 months was spread out over 2008 and 2009. During our prolonged stay, we also collected 64 in-depth interviews of health care workers and attendants in the department. This study method made it possible to describe many of the practices and discourses related to the issues of medical and personal care and hospital hygiene and to compare the practices observed to standard principles for preventing hospital-acquired infections. Our ethnographic attention to the behavior of the actors showed the absence of formal spatial segmentations between different activities. The care provided by the untrained relatives serving as personal attendants introduced territorial enclaves governed by home hygiene standards into the interior of technical spaces. At the same time, privatizing equipment and space for their diverse activities, the medical staff disrupted technical chains and generated the recurrent crossing of microbial geographies. These results allow us to offer two principal guidelines for improving the quality of care and the management of risks of infection in hospitals in West Africa: (1) the essential role of the attendants in the care provided to hospital inpatients must be officially taken into account, especially by including them in the organization of medical hygiene procedures; (2) the different overlapping technical activities and social activities in the work space must be limited by their geographic and architectural segmentation.

  11. Heat Flow on the South West Indian Ridge at 14°E and the Consequences for Microbiological Activity

    NASA Astrophysics Data System (ADS)

    Kaul, N. E.; Molari, M.; Boetius, A.

    2014-12-01

    During RV POLARSTERN cruise PS81 to the South West Indian Ridge (SWIR) at 52°S, 14°E an integrated study was carried out in more than 4000 m water depth employing seismology, geology, microbiology, deep-sea ecology, heat flow and others. Heat flow is supposed to be an indicator for the varying depth of the magma chamber beneath the ridge axis. Bottom observations from previous work on the SWIR are scarce and visual information about geostructures, habitat landscapes, benthic faunal communities and their distribution in this area have so far been missing. Vigorous fluid flow in the form of black smokers or shimmering water could not be detected but enhanced heat flow due to upward pore water migration occurred. This leads to values of very high heat flow (up to 850 mW/m2) and advection rates up to 25 cm/a Darcy velocity. Enhanced biomass and a greater variation of megafauna along those sites of high heat flow could be inferred from reconnaissance observations with a camera sledge. A closer investigation of microbial activity in the material of gravity corers revealed favorable living conditions for microorganisms. We find the inorganic carbon fixation rates, here applied like a proxy of microbial metabolic activity, were significantly higher (up to 7 times higher) in surficial sediments in proximity of the station PS 81/640 compared to other stations along the ridge. Conversely the extracellular enzymatic activities did not show any significant difference in the potential organic matter degradation between the stations investigated. These results suggest an increase of chemosynthetic activities at St PS 81/649, possibly related to increase of availability of reduced compounds (i.e. sulphide, reduced metals) in presence of pore water flow.

  12. Biomarkers and Microbial Fossils In Antarctic Rocks

    NASA Astrophysics Data System (ADS)

    Wierzchos, J.; Ascaso, C.

    Lithobiontic microbial communities living within Antarctic rocks are an example of survival in an extremely cold and dry environment. Any unfavourable change in ex- ternal conditions can result in the death and disappearance of microscopic organisms, and this may be followed by the appearance of trace biomarkers and microbial fossils. The extinction of these microorganisms in some zones of the Ross Desert, probably provoked by the hostile environment, might be considered a good terrestrial analogue of the first stage of the disappearance of possible life on early Mars. Granite samples from maritime Antarctica (Granite Harbour) and sandstone rocks from the continental Ross Desert were collected with the aim of searching for biomarkers and microbial fossils at the microscopic level of observation. To this end, a novel in situ applica- tion of scanning electron microscopy with backscattered electron imaging was com- bined with the simultaneous use of X-ray energy dispersive spectroscopy techniques. Our findings confirm the existence of inorganic biomarkers in the form of physico- chemically bioweathered minerals within the granitic rocks. The presence of Fe-rich diagenetic minerals, such as iron hydroxide nanocrystals and biogenic clays around chasmoendolithic hyphae and bacterial cells was also observed. Others biomarkers, including inorganic deposits such as calcium oxalates and silica accumulations, are clear signs of endolithic microorganism activity. The interior of the sandstone rocks (Ross Desert, Mt. Fleming) reveal the presence of microbial fossils of algae and other endolithic microorganisms. These microbial fossils, detected for the first time within Antarctic rocks, contain well preserved and morphologically distinguishable relics of ultrastructural cytoplasm elements, such as cell walls, chloroplast membranes, and oc- casionally, pyrenoids and traces of organic matter. These structures are similar to those observed in live cells also found in Antarctic

  13. Diffuse CO2 degassing and volcanic activity at Cape Verde islands, West Africa

    NASA Astrophysics Data System (ADS)

    Dionis, Samara M.; Pérez, Nemesio M.; Hernández, Pedro A.; Melián, Gladys; Rodríguez, Fátima; Padrón, Eleazar; Sumino, Hirochika; Barrrancos, Jose; Padilla, Germán D.; Fernandes, Paulo; Bandomo, Zuleyka; Silva, Sónia; Pereira, Jose M.; Semedo, Hélio; Cabral, Jeremias

    2015-04-01

    Diffuse CO2 emission surveys were carried out at São Vicente, Brava, and Fogo islands, Cape Verde, archipelago to investigate the relationship between diffuse CO2 degassing and volcanic activity. Total amounts of diffuse CO2 discharged through the surface environment of the islands of São Vicente, Brava, and Fogo were estimated in 226, 50, and 828 t d-1, respectively. The highest CO2 efflux values of the three volcanic islands systems were observed at the summit crater of Pico do Fogo (up to 15.7 kg m-2 d-1). Statistical graphical analysis of the data suggests two geochemical populations for the diffuse CO2 emission surveys. The geometric mean of the peak population, expressed as a multiple of the geometric mean of the background population, seems to be the best diffuse CO2 emission geochemical parameter to correlate with the volcanic activity (age of the volcanism) for these three island volcanic systems at Cape Verde. This observation is also supported by helium isotopic signature observed in the Cape Verde's fluids, fumaroles, and ground waters. This study provides useful information about the relationship between diffuse CO2 degassing and volcanic activity at Cape Verde enhancing the use of diffuse CO2 emission as a good geochemical tool, for volcanic monitoring at Cape Verde as well as other similar volcanic systems.

  14. Comparisons of Antarctic and non-Antarctic achondrites and possible origin of the differences

    NASA Astrophysics Data System (ADS)

    Takeda, H.

    1991-01-01

    Pairing information on Yamato chondrites was obtained using mineralogical techniques, and the results are used to discuss differences between Antarctic and non-Antarctic achondrites, their sources, and their relation to asteroids. It was found that the Antarctic HED (howardites, eucrites, diogenites) achondrites and ureilites differ from non-Antarctic specimens by the following two criteria: (1) polymict eucrites excluding those with howarditic affinity are not found in the non-Antarctic collections, and (2) magnesian ureilites and augite-bearing ureilites are found only in Antarctica. It is suggested that the Yamato diogenites may represent falls on restricted areas in the distant past.

  15. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.

  16. Bromoalkane production by Antarctic ice algae

    NASA Technical Reports Server (NTRS)

    Sturges, W. T.; Sullivan, C. W.; Schnell, R. C.; Heidt, L. E.; Pollock, W. H.

    1993-01-01

    Ice microalgae, collected from the underside of annual sea ice in McMurdo Sound, Antarctica, were found to contain and release to seawater a number of brominated hydrocarbons. These included bromoform, dibromomethane, mixed bromochloromethanes, and methyl bromide. Atmospheric measurements in the McMurdo Sound vicinity revealed the presence of bromoform and methyl bromide in the lower atmosphere, with lowest concentrations inland, further indicating that biogenic activity in the Sound is a source of organic bromine gases to the Antarctic atmosphere. This may have important implications for boundary layer chemistry in Antarctica. In the Arctic, the presence of bromoform has been linked to loss of surface ozone in the spring. We report here preliminary evidence for similar surface ozone loss at McMurdo Station.

  17. Nauclea latifolia: biological activity and alkaloid phytochemistry of a West African tree.

    PubMed

    Boucherle, Benjamin; Haudecoeur, Romain; Queiroz, Emerson Ferreira; De Waard, Michel; Wolfender, Jean-Luc; Robins, Richard J; Boumendjel, Ahcène

    2016-09-25

    Covering up to 2016Nauclea latifolia (syn. Sarcocephalus latifolius, Rubiaceae), commonly called the African pincushion tree, is a plant widely used in folk medicine in different regions of Africa for treating a variety of illnesses, including malaria, epilepsy and pain. N. latifolia has not only drawn the interest of traditional healers but also of phytochemists, who have identified a range of bioactive indole alkaloids in its tissue. More recently, following up on the traditional use of extracts in pain management, a bio-guided purification from the roots of the tree led to the identification of the active ingredient as tramadol, available as a synthetic analgesic since the 1970s. The discovery of this compound as a natural phytochemical was highlighted worldwide. This review focuses on the correlation between extracted compounds and pharmacological activities, paying special attention to infectious diseases and neurologically-related disorders. A critical analysis of the data reported so far on the natural origin of tramadol and its proposed biosynthesis is also presented. PMID:27346294

  18. Nauclea latifolia: biological activity and alkaloid phytochemistry of a West African tree.

    PubMed

    Boucherle, Benjamin; Haudecoeur, Romain; Queiroz, Emerson Ferreira; De Waard, Michel; Wolfender, Jean-Luc; Robins, Richard J; Boumendjel, Ahcène

    2016-09-25

    Covering up to 2016Nauclea latifolia (syn. Sarcocephalus latifolius, Rubiaceae), commonly called the African pincushion tree, is a plant widely used in folk medicine in different regions of Africa for treating a variety of illnesses, including malaria, epilepsy and pain. N. latifolia has not only drawn the interest of traditional healers but also of phytochemists, who have identified a range of bioactive indole alkaloids in its tissue. More recently, following up on the traditional use of extracts in pain management, a bio-guided purification from the roots of the tree led to the identification of the active ingredient as tramadol, available as a synthetic analgesic since the 1970s. The discovery of this compound as a natural phytochemical was highlighted worldwide. This review focuses on the correlation between extracted compounds and pharmacological activities, paying special attention to infectious diseases and neurologically-related disorders. A critical analysis of the data reported so far on the natural origin of tramadol and its proposed biosynthesis is also presented.

  19. Bacterial production, glucosidase activity and particle-associated carbohydrates in Dona Paula bay, west coast of India

    NASA Astrophysics Data System (ADS)

    Bhaskar, P. V.; Bhosle, N. B.

    2008-11-01

    Size-fractionated bacterial production, abundance and α- and β- glucosidase enzyme activities were studied with respect to changes in hydrography, total suspended matter (TSM), chlorophyll a, particulate organic carbon and nitrogen ratio (POC:PON), 1.5 M NaCl-soluble and 10 mM EDTA-soluble carbohydrates (Sal-PCHO and CPCHO) and transparent exopolymeric particles (TEP) in the surface waters from July 1999-2000 at a shallow coastal station in Dona Paula Bay, west coast of India. The bulk of the total bacterial production and glucosidase activity were associated with particles (75% and >80%, respectively). Total bacterial production was linearly correlated to chlorophyll a ( r = 0.513; p < 0.05) whereas enzyme activity was significantly correlated to TSM (α-glucosidase: r = 0.721 ( p < 0.001); β-glucosidase: r = 0.596 ( p < 0.01)). Both α-glucosidase ( r = 0.514; p < 0.05) and β-glucosidase enzymes ( r = 0.598; p < 0.01) appeared to be involved in the degradation of CPCHO and Sal-PCHO, respectively. Changes in α-glucosidase/β-glucosidase ratios highlighted the varying composition of particulate organic matter. The bacterial uptake of 14C-labeled bacterial extracellular carbohydrate measured over 11 days showed a strong linear correlation between 14C-uptake and bacterial production using tritiated thymidine. The turnover rate of 14C-labeled carbohydrate-C was 0.52 d -1, higher than the estimated annual mean potential carbohydrate carbon turnover rate of 0.33 ± 0.2 d -1. Our study suggests that carbohydrates derived from sediments may serve as an important alternative carbon source sustaining the bacterial carbon demand in the surface waters of Dona Paula Bay.

  20. Seasonal variation of fibre follicle activity and wool growth in fat-tailed Sanjabi sheep in west Iran.

    PubMed

    Salehian, Zahra; Naderi, Noshin; Souri, Manochehr; Mirmahmoudi, Rouhollah; Hozhabri, Fardin

    2015-03-01

    This experiment was conducted to investigate the seasonal pattern of hair follicle activity, wool growth and fibre diameter (FD) in Sanjabi sheep in west Iran, Kermanshah (34° 18' N and 47° 3' E, elevation 1420 m). Ten male and 10 female Sanjabi sheep with an initial live weight of 32.1 ± 1.3 and 32.7 ± 1.5 (means ± SD), respectively, were used in a 365-day study. A diet was offered with an estimated concentration of 2.18 Mcal metabolizable energy and 130.0 g/kg DM crude protein. Body weight, average daily gain (ADG) and dry matter intake (DMI) were recorded weekly. The percentages of active primary and secondary wool follicles (PAP and PAS), follicle density and the ratio of secondary to primary follicles (S/P) were determined from skin biopsies, taken from the right mid-side of the sheep at monthly intervals. Raw and clean fibre growth rates and FD were measured from left mid-side patches (10 × 10 cm) harvested at the end of every month. There was a gradual increase in live weight throughout the experiment, while ADG and DMI changed in concert with day length. The greatest values for PAP and PAS were observed in summer, whereas lowest were obtained in winter (p < 0.001). Clean wool growth rate and FD were greatest (p < 0.001) in summer and lowest (p < 0.001) in winter. It is concluded that a seasonal cycle of feed intake, body growth, fibre follicle activity, wool growth and FD occur in fat-tailed Sanjabi sheep.

  1. WEST Physics Basis

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.; Artaud, J. F.; Basiuk, V.; Bécoulet, M.; Brémond, S.; Bucalossi, J.; Bufferand, H.; Ciraolo, G.; Colas, L.; Corre, Y.; Courtois, X.; Decker, J.; Delpech, L.; Devynck, P.; Dif-Pradalier, G.; Doerner, R. P.; Douai, D.; Dumont, R.; Ekedahl, A.; Fedorczak, N.; Fenzi, C.; Firdaouss, M.; Garcia, J.; Ghendrih, P.; Gil, C.; Giruzzi, G.; Goniche, M.; Grisolia, C.; Grosman, A.; Guilhem, D.; Guirlet, R.; Gunn, J.; Hennequin, P.; Hillairet, J.; Hoang, T.; Imbeaux, F.; Ivanova-Stanik, I.; Joffrin, E.; Kallenbach, A.; Linke, J.; Loarer, T.; Lotte, P.; Maget, P.; Marandet, Y.; Mayoral, M. L.; Meyer, O.; Missirlian, M.; Mollard, P.; Monier-Garbet, P.; Moreau, P.; Nardon, E.; Pégourié, B.; Peysson, Y.; Sabot, R.; Saint-Laurent, F.; Schneider, M.; Travère, J. M.; Tsitrone, E.; Vartanian, S.; Vermare, L.; Yoshida, M.; Zagorski, R.; Contributors, JET

    2015-06-01

    With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.

  2. Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study

    SciTech Connect

    Devey, C.W.; Albarede, F.; Michard, A. ); Cheminee, J.L. ); Muehe, R.; Stoffers, P. )

    1990-04-10

    The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. Both basaltic and phonolitic samples are incompatible-element enriched. The trachy-phonolite patterns show middle (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts. All smaples, with the exception of a sample from Moua Pihaa which has elevated {sup 206}Pb/{sup 204}Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO{sub 2} variations, idicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of {sup 207}Pb/{sup 204}Pb with {sup 87}Sr/{sup 86}Sr suggests that the subducted material is geochemically old. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Superswell, all lead to the conclusion that the latter is unlikely to be caused by a large convective plume.

  3. The 1988 Antarctic ozone depletion: Comparison with previous year depletions

    SciTech Connect

    Schoeberl, M.R.; Stolarski, R.S.; Krueger, A.J. )

    1989-05-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15% during September 1988 compared to nearly 50% during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30{degree}-60{degree}S. The standard deviation also correlates with the QBO cycling of the tropical winds. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  4. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  5. Viable Bacteria in Antarctic Soils and - Two Models for Extraterrestrial Search of Life

    NASA Astrophysics Data System (ADS)

    Soina, Vera; Vorobyova, Elena; Lysak, Ludmila; Mergelov, Nikita

    Antarctic soils and permafrost are the most convenient models for search life preservation in extraterrestrial cryogenic environment. Study of life activity and preservation of prokaryotes in such extreme environment allow assuming, that those habitats must be viewed as two models for astrobiology extrapolations. Antarctic permafrost due to long term freezing can be regarded as the most stable environment for life preservation and expanding of potential physiological cell activity due to stabilization of cell structures and biomolecules. Antarctic soils seem to be not less attractive as a model for study of life on the surface of Antarctic rocks, but in contrast to permafrost are characterized by less stable external factors. Presumably, it is due to changing cycles of freezing and thawing and high doses of UV radiation, that make such biotopes more extreme for microbial survival. A combination of culture- depended and - independent techniques, including SEM and TEM methods were used to characterize bacteria community in earlier not investigated Antarctic soils in the oases of Larsemann Hills (East Antarctic Coast). Several important characteristics of Antarctic soil and permafrost bacteria as models for possible signs of life in extraterrestrial habitats are discussed (cytomorphological and physiological characteristics of bacteria both in situ, and cells isolated from permafrost and exposed to various external stress factors). Our data indicate that significant discrepancy between indexes of total and viable number of cells and irregularity of such indexes in horizons of developing soils and permafrost sediments can be explained by specification of physical and chemical processes in those habitats. Also, in Antarctic and extraterrestrial investigations is important to take into account the leading role of microbial biofilms, where microorganisms are intimately associated with each other and mineral particles through binding and inclusion within exopolymer matrix

  6. Host Competence and Helicase Activity Differences Exhibited by West Nile Viral Variants Expressing NS3-249 Amino Acid Polymorphisms

    PubMed Central

    Langevin, Stanley A.; Bowen, Richard A.; Reisen, William K.; Andrade, Christy C.; Ramey, Wanichaya N.; Maharaj, Payal D.; Anishchenko, Michael; Kenney, Joan L.; Duggal, Nisha K.; Romo, Hannah; Bera, Aloke Kumar; Sanders, Todd A.; Bosco-Lauth, Angela; Smith, Janet L.; Kuhn, Richard; Brault, Aaron C.

    2014-01-01

    A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs) following West Nile virus (WNV) infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P) and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs) and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature. PMID:24971589

  7. Interactions between human activity, volcanic eruptions and vegetation during the Holocene at Garua and Numundo, West New Britain, PNG

    NASA Astrophysics Data System (ADS)

    Boyd, W. E.; Lentfer, C. J.; Parr, J.

    2005-11-01

    This paper reviews recent fossil phytolith analysis from wet tropical West New Britain (Papua New Guinea). The Holocene vegetation has been influenced by spatially and temporally diverse patterns of both prehistoric human settlement and catastrophic volcanic events. We have hypothesized different landscape responses and recovery pathways to events during the last six millennia. Phytolith sequences on the coastal lowlands, the Willaumez Peninsula, and nearby island of Garua provide details of vegetational change and human interactions at different landscape scales since c. 5900 cal yr B.P. During this period four major volcanic eruptions (c. 5900, 3600, 1700 and 1400 cal yr B.P.) have disrupted the landscape. The evidence provides detailed descriptions of temporal and spatial patterning in the impacts and changes in the vegetation. In particular, vegetation responded differently from one event to another, reflecting both forest recovery from seed bank and shooting, and the influence of prehistoric people on recovering vegetation. Furthermore, after some events landscape recovery was moderately uniform, while after others there was considerable landscape partitioning. Although these differences largely relate to airfall tephra type, distribution and magnitude, the partitioning is more strongly influenced by human activity.

  8. Peroxy radical observations over West Africa during AMMA 2006: photochemical activity in the outflow of convective systems

    NASA Astrophysics Data System (ADS)

    Andrés-Hernández, M. D.; Kartal, D.; Reichert, L.; Burrows, J. P.; Meyer Arnek, J.; Lichtenstern, M.; Stock, P.; Schlager, H.

    2009-06-01

    Peroxy radical measurements made on board the DLR-Falcon research aircraft over West Africa within the African Monsoon Multidisciplinary Analysis (AMMA) campaign during the 2006 wet monsoon are presented in this study. The analysis of data focuses on the photochemical activity of air masses sampled during episodes of intense convection and biomass burning. Generally, the total sum of peroxy radical mixing ratios, measured in the outflow of convective clouds, are quite variable but occasionally are coupled with the NO variations indicating the coexistence or simultaneous emission of NOx, with a potential radical precursor (i.e. formaldehyde, acetone or peroxides), which has likely been transported to higher atmospheric altitudes. Based on the measurements, significant O3 production rates around 1 ppb/h in the MCS outflow are estimated by using a box model with simplified chemistry. Peroxy radicals having mixing ratios around 20-25 pptv and with peak values of up to 60-70 pptv are measured within biomass burning plumes, detected at the coast in Ghana. Calculations of back-trajectory densities confirm the origin of these air masses being a biomass burning region at southern latitudes and close to the Gulf of Guinea, according to satellite pictures. Measured peroxy radical concentrations agree reasonably with modelled estimations taking into account simple local chemistry. Moreover, the vertical profiles taken at the aircraft base in Ouagadougou, Burkina Faso, indicate the common feature of having maximum concentrations between 2 and 4 km, in agreement with other literature values obtained under similar conditions.

  9. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Huckstadt, L.; Costa, D. P.; McDonald, B. I.; Tremblay, Y.; Crocker, D. E.; Goebel, M. E.; Fedak, M. E.

    2006-12-01

    We examined the foraging behavior of 18 southern elephant seals foraging over two seasons in the Western Antarctic Peninsula. The foraging behavior and habitat utilization of 7 females in 2005 and 12 in 2006 were followed using satellite linked Satellite Relay Data Loggers that measured diving behavior as well collected salinity and temperature profiles as the animals dove. Animals were tagged after the annual molt during February at Cape Shirreff Livngston Island, South Shetland Islands. There was significant interannual variation in the regions of the Southern Ocean used by seals from Livingston Island. In 2005 of the 7 animals tagged one foraged 4700 km due west of the Antarctic Peninsula going as far as 150 W. The remaining females headed south along the Western Antarctic Peninsula bypassing Marguerite Bay moving south along Alexander Island. Three of these animals continued to forage in the pack ice as it developed. On their return trip all females swam past Livingston Island, continuing on to South Georgia Island where they apparently bred in the austral spring. One animal returned to Cape Shirreff to molt and her tag was recovered. During 2006 animals initially followed a similar migratory pattern going south along the Antarctic Peninsula, but unlike 2005 where the majority of the animals remained in the immediate vicinity of the Western Antarctic Peninsula, most of the animals in 2006 moved well to the west foraging as far as the Amundsen Sea. We compared the area restricted search (focal foraging areas) areas of these animals using a newly developed fractal landscape technique that identifies and quantifies areas of intensive search. The fractal analysis of area restricted search shows that the area, distance and coverage (Fractal D) searched were not different between years, while the time spent in the search areas was higher in 2005. Further analysis will examine how the physical properties of the water column as determined from the CTD data derived from

  10. On interannual variations of the winter temperature at Faraday/Vernadsky Antarctic Station

    NASA Astrophysics Data System (ADS)

    Evtushevsky, A.; Kravchenko, V.; Grytsai, A.; Milinevsky, G.

    2009-04-01

    The interannual variations of the winter temperature at Faraday/Vernadsky Station, West Antarctic Peninsula are investigated. The meteorological READER surface air temperature and wind velocity/direction data for 1947-2007 period as well as the temperature and zonal/meridional wind distribution at 1000 hPa from the NCEP-NCAR reanalysis data (1979-2007) were used. The possible reasons of observed winter warming are discussed. The winter warming is accompanied by narrowing of the temperature variation range between -14°C and -4°C during 1950s to -8°C and -4°C in last decade. Positive trend in annual mean and winter mean temperature corresponds to lowering of the "depth" of cold winter anomalies, which can relate to the area located to the east of Antarctic Peninsula. The indications are seen from agreement between the interannual variations in winter temperature at Faraday/Vernadsky and the east-west migrations of quasistationary distribution of surface air temperature and zonal/meridional wind in Antarctic Peninsula region. The meteorological observations at Faraday/Vernadsky station display long-term changes in the wind distribution pattern: the appearance frequency of the "continental" wind (0°E±45° azimuth) observation has been reduced but the appearance frequency of the "ocean" wind (180°E±45° azimuth) has been increased threefold in the last two decades in comparison to 1950s-1970s. That is evidence of the structural change-over of circulation pattern in the region which is advantageous for warming. Results show that the changes in the quasistationary pattern in Antarctic troposphere contribute to the local climate change in Antarctic Peninsula region. The research was partly supported by National Taras Shevchenko University of Kyiv, project 06BF051-12.

  11. JCADM, new directions in Antarctic data management

    NASA Astrophysics Data System (ADS)

    Campbell, H.; de Bruin, T. F.

    2008-12-01

    The Joint Committee on Antarctic Data Management (JCADM) was established by the Scientific Committee on Antarctic Research (SCAR) and the Council of Managers of National Antarctic Programs (COMNAP), to assist in the fulfilment of the data management obligations imposed by the Antarctic Treaty (section III.1.c): "Scientific observations and results from Antarctica shall be exchanged and made freely available." JCADM comprises representatives of the National Antarctic Data Centres or national points of contact. Currently 31 nations around the world are represented in JCADM. So far, JCADM has been focussing on the coordination of the Antarctic Master Directory (AMD), the internationally accessible, web-based, searchable record of Antarctic and Southern Ocean data set descriptions. The AMD is directly integrated into the international Global Change Master Directory (GCMD) to help further merge Antarctic science into global science. The AMD is a resource for scientists to advertise the data they have collected and to search for data they may need. Currently, JCADM is in a transition phase, moving forward to provide data access. Existing systems and web services technology will be used as much as possible, to increase efficiency and prevent 're-inventing the wheel' This poster will give an overview of this process, the current status and the expected results.

  12. Antarctic Meteorite Newsletter, Volume 28, Number 2

    NASA Technical Reports Server (NTRS)

    Righter, Kevin (Editor); Satterwhite, Cecilia (Editor)

    2005-01-01

    This newsletter contains classifications for 274 new meteorites from the 2003 and 2004 ANtarctic Search for METeorites (ANSMET) collections. They include samples from the Cumulus Hills, Larkman Nunatak, LaPaz Ice Field, MacAlpine Hills, Dominion Range, Miller Range, Roberts Massif, and Sandford Cliffs. Tables are provided of the newly classified Antarctic meteorites, meteorites classified by type, and tentative pairings petrographic descriptions.

  13. IHY activities in West Asia: Research and Education in Astronomy and Space Sciences for Arab Countries

    NASA Astrophysics Data System (ADS)

    Al-Naimiy, H. M. K.

    2006-11-01

    alnaimiy2@yahoo.com Astronomy and Space Sciences (ASS) are important fields of research, study, knowledge and culture. They have been the cradle of both eastern and western sciences. We all know, from education and psychology, about the effective teaching and learning of ASS. Unfortunately, a small percentage of this knowledge is actually used in teaching at schools, universities level and any other academic institutions in the Arab countries. The challenge is to provide effective professional development for ASS educators and researchers at all levels, from elementary school to university. ASS is the most appealing subject to young students and very important tool to convey scientific knowledge? Once students have understood the importance of science, they might be more easily pursued to continue their education in science and technology. The aim of this paper is to show the importance of the formal and informal ASS research, and education, giving an example of a possible curriculum, projects, and comments on the activities that have been carried out in a few Arab countries. We feel the need for a new communication channel among the Arab people based on our common scientific ground. ASS is, in this respect, the best possible choice in the vast cultural heritage of the Arab basin. The final purpose is scientific and economical. Building modern and good observatories, planetariums and research centers in the region jointly by Arab astronomers and space scientists is essential and will be an excellent step toward developing astronomy and astrophysics (for research, education and knowledge).

  14. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.

    PubMed

    Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M

    2016-01-01

    Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site. PMID:26687090

  15. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.

    PubMed

    Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M

    2016-01-01

    Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site.

  16. Extreme late chronotypes and social jetlag challenged by Antarctic conditions in a population of university students from Uruguay.

    PubMed

    Tassino, Bettina; Horta, Stefany; Santana, Noelia; Levandovski, Rosa; Silva, Ana

    2016-01-01

    In humans, a person's chronotype depends on environmental cues and on individual characteristics, with late chronotypes prevailing in youth. Social jetlag (SJL), the misalignment between an individual׳s biological clock and social time, is higher in late chronotypes. Strong SJL is expected in Uruguayan university students with morning class schedules and very late entertainment activities. Sleep disorders have been reported in Antarctic inhabitants, that might be a response to the extreme environment or to the strictness of Antarctic life. We evaluated, for the first time in Uruguay, the chronotypes and SJL of 17 undergraduate students of the First Uruguayan Summer School on Antarctic Research, using Munich Chronotype Questionnaire (MCTQ) and sleep logs (SL) recorded during 3 phases: pre-Antarctic, Antarctic, and post-Antarctic. The midsleep point of free days corrected for sleep debt on work days (MSFsc,) was used as proxy of individuals' chronotype, whose values (around 6 a.m.) are the latest ever reported. We found a SJL of around 2 h in average, which correlated positively with MSFsc, confirming that late chronotypes generate a higher sleep debt during weekdays. Midsleep point and sleep duration significantly decreased between pre-Antarctic and Antarctic phases, and sleep d