Role of Prefrontal Persistent Activity in Working Memory
Riley, Mitchell R.; Constantinidis, Christos
2016-01-01
The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between BOLD activation and spiking activity findings, and point out that fMRI methods do not currently have the spatial resolution necessary to decode information within the prefrontal cortex, which is likely organized at the micrometer scale. Therefore, we make the case that prefrontal persistent activity is both necessary and sufficient for the maintenance of information in working memory. PMID:26778980
Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart
2013-01-01
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076
A Brain System for Auditory Working Memory.
Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D
2016-04-20
The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.
Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart
2013-05-15
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A
2015-09-01
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L
2016-12-14
Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.
Brady, Timothy F.; Störmer, Viola S.; Alvarez, George A.
2016-01-01
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli—colors and orientations—is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up,” revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767
Brady, Timothy F; Störmer, Viola S; Alvarez, George A
2016-07-05
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.
Selective transfer of visual working memory training on Chinese character learning.
Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel
2014-01-01
Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.
Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.
Halahalli, Harsha N; John, John P; Lukose, Ammu; Jain, Sanjeev; Kutty, Bindu M
2015-11-01
Prospective memory paradigms are conventionally classified on the basis of event-, time-, or activity-based intention retrieval. In the vast majority of such paradigms, intention retrieval is provoked by some kind of external event. However, prospective memory retrieval cues that prompt intention retrieval in everyday life are commonly endogenous, i.e., linked to a specific imagined retrieval context. We describe herein a novel prospective memory paradigm wherein the endogenous cue is generated by incremental updating of working memory, and investigated the hemodynamic correlates of this task. Eighteen healthy adult volunteers underwent functional magnetic resonance imaging while they performed a prospective memory task where the delayed intention was triggered by an endogenous cue generated by incremental updating of working memory. Working memory and ongoing task control conditions were also administered. The 'endogenous-cue prospective memory condition' with incremental working memory updating was associated with maximum activations in the right rostral prefrontal cortex, and additional activations in the brain regions that constitute the bilateral fronto-parietal network, central and dorsal salience networks as well as cerebellum. In the working memory control condition, maximal activations were noted in the left dorsal anterior insula. Activation of the bilateral dorsal anterior insula, a component of the central salience network, was found to be unique to this 'endogenous-cue prospective memory task' in comparison to previously reported exogenous- and endogenous-cue prospective memory tasks without incremental working memory updating. Thus, the findings of the present study highlight the important role played by the dorsal anterior insula in incremental working memory updating that is integral to our endogenous-cue prospective memory task.
Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin
2017-01-01
Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.
Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contra-lateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory. PMID:25436671
Working memory delay activity predicts individual differences in cognitive abilities.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2015-05-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contralateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory.
Modeling individual differences in working memory performance: a source activation account
Daily, Larry Z.; Lovett, Marsha C.; Reder, Lynne M.
2008-01-01
Working memory resources are needed for processing and maintenance of information during cognitive tasks. Many models have been developed to capture the effects of limited working memory resources on performance. However, most of these models do not account for the finding that different individuals show different sensitivities to working memory demands, and none of the models predicts individual subjects' patterns of performance. We propose a computational model that accounts for differences in working memory capacity in terms of a quantity called source activation, which is used to maintain goal-relevant information in an available state. We apply this model to capture the working memory effects of individual subjects at a fine level of detail across two experiments. This, we argue, strengthens the interpretation of source activation as working memory capacity. PMID:19079561
Brain activity related to working memory for temporal order and object information.
Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan
2017-06-08
Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.
Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks.
Chen, S H Annabel; Desmond, John E
2005-01-15
Converging evidence has implicated the cerebellum in verbal working memory. The current fMRI study sought to further characterize cerebrocerebellar participation in this cognitive process by revealing regions of activation common to a verbal working task and an articulatory control task, as well as regions that are uniquely activated by working memory. Consistent with our model's predictions, load-dependent activations were observed in Broca's area (BA 44/6) and the superior cerebellar hemisphere (VI/CrusI) for both working memory and motoric rehearsal. In contrast, activations unique to verbal working memory were found in the inferior parietal lobule (BA 40) and the right inferior cerebellum hemisphere (VIIB). These findings provide evidence for two cerebrocerebellar networks for verbal working memory: a frontal/superior cerebellar articulatory control system and a parietal/inferior cerebellar phonological storage system.
Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael
2016-01-01
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411
Persistently active neurons in human medial frontal and medial temporal lobe support working memory
Kamiński, J; Sullivan, S; Chung, JM; Ross, IB; Mamelak, AN; Rutishauser, U
2017-01-01
Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single neurons in the human medial frontal cortex and the medial temporal lobe while subjects held up to three items in memory. We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-specific, formed stable attractors, and was predictive of memory content. Medial frontal cortex persistent activity, on the other hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working memory maintenance. PMID:28218914
Dou, Shewei; Wang, Enfeng; Zhang, Hongju; Tong, Li; Zhang, Xiaoqi; Shi, Dapeng; Cheng, Jingliang; Li, Yongli
2015-06-02
To explore abnormal brain activation of spatial working memory in primary insomnia and its potential neuromechanism. we recruited 30 cases primary insomnia (PI) patients and 30 cases age, gender matched healthy control (HC) subjects from July 2013 to December 2013, the diagnosis of primary insomnia matched the diagnosis criterion of DSM-IV and Classification and diagnostic criteria of mental disorders in China third edition (CCMD-3). All the subjects attended the tests of PSQI, HAMA, HAMD and index of spatial working memory. And then, we collected the data of routine MRI and spatial working memory task fMRI on 3.0 T MRI scanner. After that, we used SPM8 and REST1.8 to analyze the fMRI data, compared difference of PSQI, HAMA, HAMD, index of spatial working memory and brain activation of spatial working memory between PI group and HC group. There were significant difference between PI group and HC group in PSQI, HAMA, HAMD and index of spatial working memory (P < 0.05). In the spatial working memory related activate brain region, compared with HC group, left temporal lobe, occipital lobe and right frontal lobe activation increased and bilateral parahippocampalis, temporal cortex, frontal cortex and superior parietal lobule activation reduced in PI group. Spatial working memory task fMRI revealed the pathological mechanisms of cognitive dysfunction of clinical spatial working memory and emotional disorder in primary insomnia patients.
Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan
2016-01-01
Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2007-01-01
Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…
A theory of working memory without consciousness or sustained activity
Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas
2017-01-01
Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763
Driesen, Naomi R; Leung, Hoi-Chung; Calhoun, Vincent D; Constable, R Todd; Gueorguieva, Ralitza; Hoffman, Ralph; Skudlarski, Pawel; Goldman-Rakic, Patricia S; Krystal, John H
2008-12-15
Comparing prefrontal cortical activity during particular phases of working memory in healthy subjects and individuals diagnosed with schizophrenia might help to define the phase-specific deficits in cortical function that contribute to cognitive impairments associated with schizophrenia. This study featured a spatial working memory task, similar to that used in nonhuman primates, that was designed to facilitate separating brain activation into encoding, maintenance, and response phases. Fourteen patients with schizophrenia (4 medication-free) and 12 healthy comparison participants completed functional magnetic resonance imaging while performing a spatial working memory task with two levels of memory load. Task accuracy was similar in patients and healthy participants. However, patients showed reductions in brain activation during maintenance and response phases but not during the encoding phase. The reduced prefrontal activity during the maintenance phase of working memory was attributed to a greater rate of decay of prefrontal activity over time in patients. Cortical deficits in patients did not appear to be related to antipsychotic treatment. In patients and in healthy subjects, the time-dependent reduction in prefrontal activity during working memory maintenance correlated with poorer performance on the memory task. Overall, these data highlight that basic research insights into the distinct neurobiologies of the maintenance and response phases of working memory are of potential importance for understanding the neurobiology of cognitive impairment in schizophrenia and advancing its treatment.
Activity-based prospective memory in schizophrenia.
Kumar, Devvarta; Nizamie, S Haque; Jahan, Masroor
2008-05-01
The study reports activity-based prospective memory as well as its clinical and neuropsychological correlates in schizophrenia. A total of 42 persons diagnosed with schizophrenia and 42 healthy controls were administered prospective memory, set-shifting, and verbal working memory tasks. The schizophrenia group was additionally administered various psychopathology rating scales. Group differences, with poorer performances of the schizophrenia group, were observed on the measures of prospective memory, working memory, and set shifting. The performance on prospective memory tasks correlated with the performance levels on verbal working memory and set-shifting tasks but not with the clinical measures. This study demonstrated impaired activity-based prospective memory in schizophrenia. The impairment can be due to deficits in various neuropsychological domains.
Sligte, Ilja G; Wokke, Martijn E; Tesselaar, Johannes P; Scholte, H Steven; Lamme, Victor A F
2011-05-01
To guide our behavior in successful ways, we often need to rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). While VSTM is usually broken down into iconic memory (brief and high-capacity store) and visual working memory (sustained, yet limited-capacity store), recent studies have suggested the existence of an additional and intermediate form of VSTM that depends on activity in extrastriate cortex. In previous work, we have shown that this fragile form of VSTM can be dissociated from iconic memory. In the present study, we provide evidence that fragile VSTM is different from visual working memory as magnetic stimulation of the right dorsolateral prefrontal cortex (DLPFC) disrupts visual working memory, while leaving fragile VSTM intact. In addition, we observed that people with high DLPFC activity had superior working memory capacity compared to people with low DLPFC activity, and only people with high DLPFC activity really showed a reduction in working memory capacity in response to magnetic stimulation. Altogether, this study shows that VSTM consists of three stages that have clearly different characteristics and rely on different neural structures. On the methodological side, we show that it is possible to predict individual susceptibility to magnetic stimulation based on functional MRI activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Dissociation of Active Working Memory and Passive Recognition in Rhesus Monkeys
ERIC Educational Resources Information Center
Basile, Benjamin M.; Hampton, Robert R.
2013-01-01
Active cognitive control of working memory is central in most human memory models, but behavioral evidence for such control in nonhuman primates is absent and neurophysiological evidence, while suggestive, is indirect. We present behavioral evidence that monkey memory for familiar images is under active cognitive control. Concurrent cognitive…
Transfer after Working Memory Updating Training
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319
Transfer after Working Memory Updating Training.
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.
Karolis, Vyacheslav; Caldinelli, Chiara; Brittain, Philip J.; Kroll, Jasmin; Rodríguez-Toscano, Elisa; Tesse, Marcello; Colquhoun, Matthew; Howes, Oliver; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murray, Robin M.; Williams, Steven C.R.; Nosarti, Chiara
2015-01-01
The human brain can adapt to overcome injury even years after an initial insult. One hypothesis states that early brain injury survivors, by taking advantage of critical periods of high plasticity during childhood, should recover more successfully than those who suffer injury later in life. This hypothesis has been challenged by recent studies showing worse cognitive outcome in individuals with early brain injury, compared with individuals with later brain injury, with working memory particularly affected. We invited individuals who suffered perinatal brain injury (PBI) for an fMRI/diffusion MRI tractography study of working memory and hypothesized that, 30 years after the initial injury, working memory deficits in the PBI group would remain, despite compensatory activation in areas outside the typical working memory network. Furthermore we hypothesized that the amount of functional reorganization would be related to the level of injury to the dorsal cingulum tract, which connects medial frontal and parietal working memory structures. We found that adults who suffered PBI did not significantly differ from controls in working memory performance. They exhibited less activation in classic frontoparietal working memory areas and a relative overactivation of bilateral perisylvian cortex compared with controls. Structurally, the dorsal cingulum volume and hindrance-modulated orientational anisotropy was significantly reduced in the PBI group. Furthermore there was uniquely in the PBI group a significant negative correlation between the volume of this tract and activation in the bilateral perisylvian cortex and a positive correlation between this activation and task performance. This provides the first evidence of compensatory plasticity of the working memory network following PBI. SIGNIFICANCE STATEMENT Here we used the example of perinatal brain injury (PBI) associated with very preterm birth to study the brain's ability to adapt to injury sustained early in life. In adulthood, individuals with PBI did not show significant deficits in working memory, but exhibited less activation in typical frontoparietal working memory areas. They also showed a relative overactivation of nontask-specific brain areas (perisylvian cortex) compared with controls, and such activation was negatively correlated with the size of white matter pathways involved in working memory (dorsal cingulum). Furthermore, this “extra” activation was associated with better working memory performance and could represent a novel compensatory mechanism following PBI. Such information could inform the development of neuroscience-based cognitive interventions following PBI. PMID:26631462
ERIC Educational Resources Information Center
Jolles, Dietsje D.; Kleibeuker, Sietske W.; Rombouts, Serge A. R. B.; Crone, Eveline A.
2011-01-01
The ability to keep information active in working memory is one of the cornerstones of cognitive development. Prior studies have demonstrated that regions which are important for working memory performance in adults, such as dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and superior parietal cortex, become…
Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control
Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.
2013-01-01
Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923
Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine
2018-01-01
The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.
Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.
Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel
2016-05-15
Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Human Temporal Cortical Single Neuron Activity During Working Memory Maintenance
Zamora, Leona; Corina, David; Ojemann, George
2016-01-01
The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two. Contrary to the Baddeley model, that activity during verbal working memory maintenance often represented activity specific to working memory rather than speech or language. PMID:27059210
Restoration of fMRI Decodability Does Not Imply Latent Working Memory States
Schneegans, Sebastian; Bays, Paul M.
2018-01-01
Recent imaging studies have challenged the prevailing view that working memory is mediated by sustained neural activity. Using machine learning methods to reconstruct memory content, these studies found that previously diminished representations can be restored by retrospective cueing or other forms of stimulation. These findings have been interpreted as evidence for an activity-silent working memory state that can be reactivated dependent on task demands. Here, we test the validity of this conclusion by formulating a neural process model of working memory based on sustained activity and using this model to emulate a spatial recall task with retrocueing. The simulation reproduces both behavioral and fMRI results previously taken as evidence for latent states, in particular the restoration of spatial reconstruction quality following an informative cue. Our results demonstrate that recovery of the decodability of an imaging signal does not provide compelling evidence for an activity-silent working memory state. PMID:28820674
Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.
Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A
2004-11-01
Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.
Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E
2016-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.
Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain
Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.
2015-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567
Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan
2013-02-15
Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Dopaminergic contributions to working memory-related brain activation in postmenopausal women.
Dumas, Julie A; Filippi, Christopher G; Newhouse, Paul A; Naylor, Magdalena R
2017-02-01
The current study examined the effects of pharmacologic dopaminergic manipulations on working memory-related brain activation in postmenopausal women to further understand the neurochemistry underlying cognition after menopause. Eighteen healthy postmenopausal women, mean age 55.21 years, completed three study days with dopaminergic drug challenges during which they performed a functional magnetic resonance imaging visual verbal N-back test of working memory. Acute stimulation with 1.25 mg oral D2 agonist bromocriptine, acute blockade with 1.5 mg oral haloperidol, and matching placebo were administered randomly and blindly on three study days. We found that dopaminergic stimulation increased activation primarily in the posterior regions of the working memory network compared with dopaminergic blockade using a whole brain cluster-level corrected analysis. The dopaminergic medications did not affect working memory performance. Patterns of increased blood-oxygen-level dependent signal activation after dopaminergic stimulation were found in this study in posterior brain regions with no effect on working memory performance. Further studies should examine specific dopaminergic contributions to brain functioning in healthy postmenopausal women to determine the effects of the increased brain activation on cognition and behavior.
Liu, Pei; Zhao, Fengqing; Zhang, Baoshan; Dang, Qingxiu
2017-10-03
Assuming that the principle of an active-self account holds true in real life, priming certain constructs could selectively activate a working self-concept, which in turn guides behavior. The current study involved two experiments that examined the relationships between stereotypic identity, working self-concept, and memory performance in older adults. Specifically, Study 1 tested whether a stereotype threat can affect older adults' working self-concept and memory performance. A modified Stroop color naming task and a separate recognition task showed that a stereotype threat prime altered the activation of the working self-concept and deteriorated the older adults' memory performance. Additionally, the working self-concept mediated the effect of stereotype threat on memory performance. Accordingly, we designed Study 2 to assess whether priming different identities can alter the working self-concept of the elderly and buffer the stereotype threat effect on memory performance. The results not only were the same as Study 1 but also revealed that activating multiple identities could mitigate the stereotype threat. These results support an active-self account and the efficacy of stereotype threat intervention. This intervention strategy may be able to be used in real situations to help the elderly alleviate stereotype threats and memory impairment.
Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred
2014-07-11
Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.
Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control
2014-01-01
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633
Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno
2010-01-01
It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2018-04-26
To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Vermeij, Anouk; van Beek, Arenda H E A; Reijs, Babette L R; Claassen, Jurgen A H R; Kessels, Roy P C
2014-01-01
Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.
López-Vicente, Mónica; Garcia-Aymerich, Judith; Torrent-Pallicer, Jaume; Forns, Joan; Ibarluzea, Jesús; Lertxundi, Nerea; González, Llúcia; Valera-Gran, Desirée; Torrent, Maties; Dadvand, Payam; Vrijheid, Martine; Sunyer, Jordi
2017-09-01
To evaluate the role of extracurricular physical activity and sedentary behavior at preschool and primary school age on working memory at primary school age and adolescence, respectively. This prospective study was based on a birth cohort across 4 Spanish regions. In the 3 younger subcohorts (n = 1093), parents reported lifestyle habits of child at age 4 years of age on a questionnaire, and children performed a computerized working memory task at 7 years of age. In the older subcohort (n = 307), the questionnaire was completed at 6 years of age and working memory was tested at 14 years of age. Adjusted regression models were developed to investigate the associations between lifestyle habits and working memory. Low extracurricular physical activity levels at 4 years of age were associated with a nonsignificant 0.95% (95% CI -2.81 to 0.92) reduction of correct responses in the working memory task at age 7 years of age. Low extracurricular physical activity levels at 6 years of age were associated with a 4.22% (95% CI -8.05 to -0.39) reduction of correct responses at age 14 years. Television watching was not associated with working memory. Other sedentary behaviors at 6 year of age were associated with a 5.07% (95% CI -9.68 to -0.46) reduction of correct responses in boys at 14 years of age. Low extracurricular physical activity levels at preschool and primary school ages were associated with poorer working memory performance at primary school age and adolescence, respectively. High sedentary behavior levels at primary school age were related negatively to working memory in adolescent boys. Copyright © 2017 Elsevier Inc. All rights reserved.
Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli
2014-01-01
Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.
Neural activity reveals perceptual grouping in working memory.
Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S
2017-03-01
There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.
Active suppression of distractors that match the contents of visual working memory.
Sawaki, Risa; Luck, Steven J
2011-08-01
The biased competition theory proposes that items matching the contents of visual working memory will automatically have an advantage in the competition for attention. However, evidence for an automatic effect has been mixed, perhaps because the memory-driven attentional bias can be overcome by top-down suppression. To test this hypothesis, the Pd component of the event-related potential waveform was used as a marker of attentional suppression. While observers maintained a color in working memory, task-irrelevant probe arrays were presented that contained an item matching the color being held in memory. We found that the memory-matching probe elicited a Pd component, indicating that it was being actively suppressed. This result suggests that sensory inputs matching the information being held in visual working memory are automatically detected and generate an "attend-to-me" signal, but this signal can be overridden by an active suppression mechanism to prevent the actual capture of attention.
Haldane, Morgan; Jogia, Jigar; Cobb, Annabel; Kozuch, Eliza; Kumari, Veena; Frangou, Sophia
2008-01-01
Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation.
fMRI characterization of visual working memory recognition.
Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph
2014-04-15
Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in conceptions of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
The Effects of an Afterschool Physical Activity Program on Working Memory in Preadolescent Children
ERIC Educational Resources Information Center
Kamijo, Keita; Pontifex, Matthew B.; O'Leary, Kevin C.; Scudder, Mark R.; Wu, Chien-Ting; Castelli, Darla M.; Hillman, Charles H.
2011-01-01
The present study examined the effects of a 9-month randomized control physical activity intervention aimed at improving cardiorespiratory fitness on changes in working memory performance in preadolescent children relative to a waitlist control group. Participants performed a modified Sternberg task, which manipulated working memory demands based…
Working Memory From the Psychological and Neurosciences Perspectives: A Review.
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.
Ito, Takehito; Kimura, Yasuyuki; Seki, Chie; Ichise, Masanori; Yokokawa, Keita; Kawamura, Kazunori; Takahashi, Hidehiko; Higuchi, Makoto; Zhang, Ming-Rong; Suhara, Tetsuya; Yamada, Makiko
2018-06-14
The histamine H 3 receptor is regarded as a drug target for cognitive impairments in psychiatric disorders. H 3 receptors are expressed in neocortical areas, including the prefrontal cortex, the key region of cognitive functions such as working memory. However, the role of prefrontal H 3 receptors in working memory has not yet been clarified. Therefore, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) techniques, we aimed to investigate the association between the neural activity of working memory and the density of H 3 receptors in the prefrontal cortex. Ten healthy volunteers underwent both fMRI and PET scans. The N-back task was used to assess the neural activities related to working memory. H 3 receptor density was measured with the selective PET radioligand [ 11 C] TASP457. The neural activity of the right dorsolateral prefrontal cortex during the performance of the N-back task was negatively correlated with the density of H 3 receptors in this region. Higher neural activity of working memory was associated with lower H 3 receptor density in the right dorsolateral prefrontal cortex. This finding elucidates the role of H 3 receptors in working memory and indicates the potential of H 3 receptors as a therapeutic target for the cognitive impairments associated with neuropsychiatric disorders.
Dopaminergic contributions to working memory-related brain activation in postmenopausal women
Dumas, Julie A.; Filippi, Christopher G.; Newhouse, Paul A.; Naylor, Magdalena R.
2016-01-01
Objective The current study examined the effects of pharmacologic dopaminergic manipulations on working memory-related brain activation in postmenopausal women to further understand the neurochemistry underlying cognition after menopause. Method Eighteen healthy postmenopausal women, mean age 55.21 years, completed three study days with dopaminergic drug challenges during which they performed an fMRI visual verbal N-back test of working memory. Acute stimulation with 1.25 mg oral D2 agonist bromocriptine, acute blockade with 1.5 mg oral haloperidol, and matching placebo were administered randomly and blindly on three study days. Results We found that dopaminergic stimulation increased activation primarily in the posterior regions of the working memory network compared to dopaminergic blockade using a whole brain cluster-level corrected analysis. The dopaminergic medications did not affect working memory performance. Conclusions Patterns of increased BOLD signal activation after dopaminergic stimulation were found in this study in posterior brain regions with no effect on working memory performance. Further studies should examine specific dopaminergic contributions to brain functioning in healthy postmenopausal women in order to determine the effects of the increased brain activation on cognition and behavior. PMID:27676634
Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P
2014-09-01
Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.
Lim, Sukbin; Goldman, Mark S
2014-05-14
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.
Increased working memory-related brain activity in middle-aged women with cognitive complaints.
Dumas, Julie A; Kutz, Amanda M; McDonald, Brenna C; Naylor, Magdalena R; Pfaff, Ashley C; Saykin, Andrew J; Newhouse, Paul A
2013-04-01
Individuals who report subjective cognitive complaints but perform normally on neuropsychological tests might be at increased risk for pathological cognitive aging. The current study examined the effects of the presence of subjective cognitive complaints on functional brain activity during a working memory task in a sample of middle-aged postmenopausal women. Twenty-three postmenopausal women aged 50-60 completed a cognitive complaint battery of questionnaires. Using 20% of items endorsed as the threshold, 12 women were categorized as cognitive complainers (CC) and 11 were noncomplainers (NC). All subjects then took part in a functional magnetic resonance imaging scanning session during which they completed a visual-verbal N-back test of working memory. Results showed no difference in working memory performance between CC and NC groups. However, the CC group showed greater activation relative to the NC group in a broad network involved in working memory including the middle frontal gyrus (Brodmann area [BA] 9 and 10), the precuneus (BA 7), and the cingulate gyrus (BA 24 and 32). The CC group recruited additional regions of the working memory network compared with the NC group as the working memory load and difficulty of the task increased. This study showed brain activation differences during working memory performance in a middle-aged group of postmenopausal women with subjective cognitive complaints but without objective cognitive deficit. These findings suggest that subjective cognitive complaints in postmenopausal women might be associated with increased cortical activity during effort-demanding cognitive tasks. Copyright © 2013 Elsevier Inc. All rights reserved.
Miskowiak, K W; Kjaerstad, H L; Støttrup, M M; Svendsen, A M; Demant, K M; Hoeffding, L K; Werge, T M; Burdick, K E; Domschke, K; Carvalho, A F; Vieta, E; Vinberg, M; Kessing, L V; Siebner, H R; Macoveanu, J
2017-05-01
Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working memory in BD. Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory test outside the scanner. During high working memory load (2-back vs 1-back), Val homozygotes displayed decreased activity relative to ValMet individuals, with Met homozygotes displaying intermediate levels of activity in the right dorsolateral prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive impairments in BD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Working Memory From the Psychological and Neurosciences Perspectives: A Review
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects. PMID:29636715
Gaming is related to enhanced working memory performance and task-related cortical activity.
Moisala, M; Salmela, V; Hietajärvi, L; Carlson, S; Vuontela, V; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K
2017-01-15
Gaming experience has been suggested to lead to performance enhancements in a wide variety of working memory tasks. Previous studies have, however, mostly focused on adult expert gamers and have not included measurements of both behavioral performance and brain activity. In the current study, 167 adolescents and young adults (aged 13-24 years) with different amounts of gaming experience performed an n-back working memory task with vowels, with the sensory modality of the vowel stream switching between audition and vision at random intervals. We studied the relationship between self-reported daily gaming activity, working memory (n-back) task performance and related brain activity measured using functional magnetic resonance imaging (fMRI). The results revealed that the extent of daily gaming activity was related to enhancements in both performance accuracy and speed during the most demanding (2-back) level of the working memory task. This improved working memory performance was accompanied by enhanced recruitment of a fronto-parietal cortical network, especially the dorsolateral prefrontal cortex. In contrast, during the less demanding (1-back) level of the task, gaming was associated with decreased activity in the same cortical regions. Our results suggest that a greater degree of daily gaming experience is associated with better working memory functioning and task difficulty-dependent modulation in fronto-parietal brain activity already in adolescence and even when non-expert gamers are studied. The direction of causality within this association cannot be inferred with certainty due to the correlational nature of the current study. Copyright © 2016 Elsevier B.V. All rights reserved.
Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.
Druzgal, T Jason; D'Esposito, Mark
2003-08-15
Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.
Bashivan, Pouya; Bidelman, Gavin M; Yeasin, Mohammed
2014-12-01
We investigated the effect of memory load on encoding and maintenance of information in working memory. Electroencephalography (EEG) signals were recorded while participants performed a modified Sternberg visual memory task. Independent component analysis (ICA) was used to factorise the EEG signals into distinct temporal activations to perform spectrotemporal analysis and localisation of source activities. We found 'encoding' and 'maintenance' operations were correlated with negative and positive changes in α-band power, respectively. Transient activities were observed during encoding of information in the bilateral cuneus, precuneus, inferior parietal gyrus and fusiform gyrus, and a sustained activity in the inferior frontal gyrus. Strong correlations were also observed between changes in α-power and behavioral performance during both encoding and maintenance. Furthermore, it was also found that individuals with higher working memory capacity experienced stronger neural oscillatory responses during the encoding of visual objects into working memory. Our results suggest an interplay between two distinct neural pathways and different spatiotemporal operations during the encoding and maintenance of information which predict individual differences in working memory capacity observed at the behavioral level. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Roozendaal, Benno; McGaugh, James L.
2011-01-01
Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145
Klein, Carina; Diaz Hernandez, Laura; Koenig, Thomas; Kottlow, Mara; Elmer, Stefan; Jäncke, Lutz
2016-01-01
Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.
ERIC Educational Resources Information Center
Maehara, Yukio; Saito, Satoru
2007-01-01
In working memory (WM) span tests, participants maintain memory items while performing processing tasks. In this study, we examined the impact of task processing requirements on memory-storage activities, looking at the stimulus order effect and the impact of storage requirements on processing activities, testing the processing time effect in WM…
Active suppression of distractors that match the contents of visual working memory
Sawaki, Risa; Luck, Steven J.
2011-01-01
The biased competition theory proposes that items matching the contents of visual working memory will automatically have an advantage in the competition for attention. However, evidence for an automatic effect has been mixed, perhaps because the memory-driven attentional bias can be overcome by top-down suppression. To test this hypothesis, the Pd component of the event-related potential waveform was used as a marker of attentional suppression. While observers maintained a color in working memory, task-irrelevant probe arrays were presented that contained an item matching the color being held in memory. We found that the memory-matching probe elicited a Pd component, indicating that it was being actively suppressed. This result suggests that sensory inputs matching the information being held in visual working memory are automatically detected and generate an “attend-to-me” signal, but this signal can be overridden by an active suppression mechanism to prevent the actual capture of attention. PMID:22053147
Reactivation in Working Memory: An Attractor Network Model of Free Recall
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690
Reactivation in working memory: an attractor network model of free recall.
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.
ERIC Educational Resources Information Center
Schlosser, Ralf G. M.; Koch, Kathrin; Wagner, Gerd; Nenadic, Igor; Roebel, Martin; Schachtzabel, Claudia; Axer, Martina; Schultz, Christoph; Reichenbach, Jurgen R.; Sauer, Heinrich
2008-01-01
Working memory deficits are a core feature of schizophrenia. Previous working memory studies suggest a load dependent storage deficit. However, explicit studies of higher executive working memory processes are limited. Moreover, few studies have examined whether subcomponents of working memory such as encoding and maintenance of information are…
ERIC Educational Resources Information Center
Injoque-Ricle, Irene; Calero, Alejandra D.; Alloway, Tracy P.; Burin, Debora I.
2011-01-01
The Automated Working Memory Assessment battery was designed to assess verbal and visuospatial passive and active working memory processing in children and adolescents. The aim of this paper is to present the adaptation and validation of the AWMA battery to Argentinean Spanish-speaking children aged 6 to 11 years. Verbal subtests were adapted and…
Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.
2014-01-01
Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an association of physical activity with cognitive functioning among 1,032 midlife volunteers (mean age = 44.59 years), we evaluated participants’ performance on a battery of tests assessing memory, learning, and executive processes, and evaluated their physical activity with the Paffenbarger Physical Activity Questionnaire. BDNF genotype interacted robustly with physical activity to affect working memory, but not other areas of cognitive functioning. In particular, greater levels of physical activity offset a deleterious effect of the Met allele on working memory performance. These findings suggest that physical activity can modulate domain-specific genetic (BDNF) effects on cognition. PMID:23907543
Shen, J; Zhang, G; Yao, L; Zhao, X
2015-03-19
Working memory refers to the ability to temporarily store and manipulate information that is necessary for complex cognition activities. Previous studies have demonstrated that working memory capacity can be improved by behavioral training, and brain activities in the frontal and parietal cortices and the connections between these regions are also altered by training. Our recent neurofeedback training has proven that the regulation of the left dorsal lateral prefrontal cortex (DLPFC) activity using real-time functional magnetic resonance imaging (rtfMRI) can improve working memory performance. However, how working memory training promotes interaction between brain regions and whether this promotion correlates with performance improvement remain unclear. In this study, we employed structural equation modeling (SEM) to calculate the interactions between the regions within the working memory network during neurofeedback training. The results revealed that the direct effect of the frontoparietal connection in the left hemisphere was enhanced by the rtfMRI training. Specifically, the increase in the path from the left DLPFC to the left inferior parietal lobule (IPL) was positively correlated with improved performance in verbal working memory. These findings demonstrate the important role of the frontoparietal connection in working memory training and suggest that increases in frontoparietal connectivity might be a key factor associated with behavioral improvement. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.
2017-01-01
Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324
Storbeck, Justin; Watson, Philip
2014-12-01
Prior research has suggested that emotion and working memory domains are integrated, such that positive affect enhances verbal working memory, whereas negative affect enhances spatial working memory (Gray, 2004; Storbeck, 2012). Simon (1967) postulated that one feature of emotion and cognition integration would be reciprocal connectedness (i.e., emotion influences cognition and cognition influences emotion). We explored whether affective judgments and attention to affective qualities are biased by the activation of verbal and spatial working memory mind-sets. For all experiments, participants completed a 2-back verbal or spatial working memory task followed by an endorsement task (Experiments 1 & 2), word-pair selection task (Exp. 3), or attentional dot-probe task (Exp. 4). Participants who had an activated verbal, compared with spatial, working memory mind-set were more likely to endorse pictures (Exp. 1) and words (Exp. 2) as being more positive and to select the more positive word pair out of a set of word pairs that went 'together best' (Exp. 3). Additionally, people who completed the verbal working memory task took longer to disengage from positive stimuli, whereas those who completed the spatial working memory task took longer to disengage from negative stimuli (Exp. 4). Interestingly, across the 4 experiments, we observed higher levels of self-reported negative affect for people who completed the spatial working memory task, which was consistent with their endorsement and attentional bias toward negative stimuli. Therefore, emotion and working memory may have a reciprocal connectedness allowing for bidirectional influence.
Raffa, R B
2013-08-01
Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
Neural correlates of working memory development in adolescent primates
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Li, Sihai; King, Samson G.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos
2016-01-01
Working memory ability matures after puberty, in parallel with structural changes in the prefrontal cortex, but little is known about how changes in prefrontal neuronal activity mediate this cognitive improvement in primates. To address this issue, we compare behavioural performance and neurophysiological activity in monkeys as they transitioned from puberty into adulthood. Here we report that monkeys perform working memory tasks reliably during puberty and show modest improvement in adulthood. The adult prefrontal cortex is characterized by increased activity during the delay period of the task but no change in the representation of stimuli. Activity evoked by distracting stimuli also decreases in the adult prefrontal cortex. The increase in delay period activity relative to the baseline activity of prefrontal neurons is the best correlate of maturation and is not merely a consequence of improved performance. Our results reveal neural correlates of the working memory improvement typical of primate adolescence. PMID:27827365
Panwar, Karni; Rutherford, Helena J V; Mencl, W Einar; Lacadie, Cheryl M; Potenza, Marc N; Mayes, Linda C
2014-11-01
Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13-18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale-11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, and dorsolateral prefrontal cortex. Therefore these findings suggest that while there may be some overlap in the neural correlates of working memory and their relationship to impulsivity and risk-taking, there are also important differences in these constructs and their relationship to the stages of working memory during adolescence. Copyright © 2013 Elsevier Ltd. All rights reserved.
Panwar, Karni; Rutherford, Helena J.V.; Mencl, W. Einar; Lacadie, Cheryl M.; Potenza, Marc N.; Mayes, Linda C.
2014-01-01
Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13–18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale -11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, dorsolateral and ventrolateral prefrontal cortex. Therefore these findings suggest that while there may be some overlap in the neural correlates of working memory and their relationship to impulsivity and risk-taking, there are also important differences in these constructs and their relationship to the stages of working memory during adolescence. PMID:24582821
Monks, Paul J; Thompson, Jill M; Bullmore, Edward T; Suckling, John; Brammer, Michael J; Williams, Steve C R; Simmons, Andrew; Giles, Nicola; Lloyd, Adrian J; Harrison, C Louise; Seal, Marc; Murray, Robin M; Ferrier, I Nicol; Young, Allan H; Curtis, Vivienne A
2004-12-01
Even when euthymic bipolar disorder patients can have persistent deficits in working memory, but the neural basis of this deficit remains unclear. We undertook an functional magnetic resonance imaging investigation of euthymic bipolar disorder patients performing two working memory paradigms; the two-back and Sternberg tasks, selected to examine the central executive and the phonological loop respectively. We hypothesized that neuronal dysfunction would be specific to the network underlying the executive rather than the phonological loop component of working memory. Twelve right-handed euthymic bipolar I males receiving lithium carbonate monotherapy were matched with 12 controls. The two-back task comprised a single working memory load contrasted with baseline vigilance condition. The Sternberg paradigm used a parametric design incorporating variable working memory load with fixed delay between presentation of an array of items to be remembered and a target item. Functional activation data were acquired during performance of the tasks and were analysed to produce brain activation maps representing significant group differences in activation (ANOVA). Load-response curves were derived from the Sternberg task data set. There were no significant between-group differences (t-test) in performance of the two-back task, or in 2 x 5 group by memory load ANOVA for the performance data from Sternberg task. In the two-back task, compared with controls bipolar disorder patients showed reductions in bilateral frontal, temporal and parietal activation, and increased activations with the left precentral, right medial frontal and left supramarginal gyri. No between-group differences were observed in the Sternberg task at any working memory load. Our findings support the notion that, in euthymic bipolar disorder, failure to engage fronto-executive function underpins the core neuropsychological deficits. Blackwell Munksgaard, 2004
Kuwajima, Mariko; Sawaguchi, Toshiyuki
2010-10-01
General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.
Lange, Nicholas D; Buttaccio, Daniel R; Davelaar, Eddy J; Thomas, Rick P
2014-02-01
Research investigating top-down capture has demonstrated a coupling of working memory content with attention and eye movements. By capitalizing on this relationship, we have developed a novel methodology, called the memory activation capture (MAC) procedure, for measuring the dynamics of working memory content supporting complex cognitive tasks (e.g., decision making, problem solving). The MAC procedure employs briefly presented visual arrays containing task-relevant information at critical points in a task. By observing which items are preferentially fixated, we gain a measure of working memory content as the task evolves through time. The efficacy of the MAC procedure was demonstrated in a dynamic hypothesis generation task in which some of its advantages over existing methods for measuring changes in the contents of working memory over time are highlighted. In two experiments, the MAC procedure was able to detect the hypothesis that was retrieved and placed into working memory. Moreover, the results from Experiment 2 suggest a two-stage process following hypothesis retrieval, whereby the hypothesis undergoes a brief period of heightened activation before entering a lower activation state in which it is maintained for output. The results of both experiments are of additional general interest, as they represent the first demonstrations of top-down capture driven by participant-established WM content retrieved from long-term memory.
Morey, Rajendra A.; Dolcos, Florin; Petty, Christopher M.; Cooper, Debra A.; Hayes, Jasmeet Pannu; LaBar, Kevin S.; McCarthy, Gregory
2009-01-01
The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n = 22) and a trauma-exposed control group (n = 20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing. PMID:19091328
Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.
Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T
2017-06-19
The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rajji, Tarek K; Mulsant, Benoit H; Davies, Simon; Kalache, Sawsan M; Tsoutsoulas, Christopher; Pollock, Bruce G; Remington, Gary
2015-06-01
Clozapine's potent antagonism of muscarinic M1 receptors is thought to worsen working memory deficits associated with schizophrenia. In contrast, its major metabolite, N-desmethylclozapine (NDMC), is thought to enhance working memory via its M1 receptor agonist activity. The authors hypothesized that the ratio of serum clozapine and NDMC concentrations would be inversely associated with working memory performance in schizophrenia. Thirty patients with schizophrenia or schizoaffective disorder who were receiving clozapine monotherapy at bedtime completed the MATRICS Consensus Cognitive Battery (MCCB) on the day their blood was collected to assess concentrations of clozapine and NDMC as well as serum anticholinergic activity. The clozapine/NDMC ratio was significantly and negatively associated with working memory performance after controlling for age, gender, education, and symptom severity. No significant associations were found between individual clozapine and NDMC concentrations and working memory performance. Serum anticholinergic activity was significantly associated with clozapine concentration, but not with working memory performance or NDMC concentration. No significant associations were found between any pharmacological measure and performance on other MCCB cognitive domains. This hypothesis-driven study confirms that clozapine/NDMC ratio is a strong predictor of working memory performance in patients with schizophrenia. This finding suggests that manipulating the clozapine/NDMC ratio could enhance cognition in patients with schizophrenia treated with clozapine. It also supports the study of procholinergic agents, such as M1 receptor-positive allosteric modulators, to enhance cognition in schizophrenia.
Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.
Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K
2018-01-08
Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.
Pulvermüller, Friedemann; Garagnani, Max
2014-08-01
Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Oberauer, Klauss; Lange, Elke B.
2009-01-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…
Functional Topography of the Cerebellum in Verbal Working Memory
Desmond, John E.
2010-01-01
Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms. PMID:20563894
Functional topography of the cerebellum in verbal working memory.
Marvel, Cherie L; Desmond, John E
2010-09-01
Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.
Kawashima, Tomoya; Matsumoto, Eriko
2016-03-23
Items in working memory guide visual attention toward a memory-matching object. Recent studies have shown that when searching for an object this attentional guidance can be modulated by knowing the probability that the target will match an item in working memory. Here, we recorded the P3 and contralateral delay activity to investigate how top-down knowledge controls the processing of working memory items. Participants performed memory task (recognition only) and memory-or-search task (recognition or visual search) in which they were asked to maintain two colored oriented bars in working memory. For visual search, we manipulated the probability that target had the same color as memorized items (0, 50, or 100%). Participants knew the probabilities before the task. Target detection in 100% match condition was faster than that in 50% match condition, indicating that participants used their knowledge of the probabilities. We found that the P3 amplitude in 100% condition was larger than in other conditions and that contralateral delay activity amplitude did not vary across conditions. These results suggest that more attention was allocated to the memory items when observers knew in advance that their color would likely match a target. This led to better search performance despite using qualitatively equal working memory representations.
Soleman, Remi S; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Hompes, Peter G A; Drent, Madeleine L; Lambalk, Cornelis B
2016-05-01
To study effects of overexposure to androgens and subsequent antiandrogenic treatment on brain activity during working memory processes in women with polycystic ovary syndrome (PCOS). In this longitudinal study, working memory function was evaluated with the use of functional magnetic resonance imaging (MRI) in women with PCOS before and after antiandrogenic treatment. Department of reproductive medicine, university medical center. Fourteen women with PCOS and with hyperandrogenism and 20 healthy control women without any features of PCOS or other hormonal disorders. Antiandrogenic hormone treatment. Functional MRI response during a working memory task. At baseline women with PCOS showed more activation than the control group within the right superior parietal lobe and the inferior parietal lobe during task (all memory conditions). Task performance (speed and accuracy) did not differ between the groups. After antiandrogenic treatment the difference in overall brain activity between the groups disappeared and accuracy in the high memory load condition of the working memory task increased in women with PCOS. Women with PCOS may need additional neural resources during a working memory task compared with women without PCOS, suggesting less efficient executive functioning. This inefficiency may have effects on daily life functioning of women with PCOS. Antiandrogenic treatment appears to have a beneficial effect on this area of cognitive functioning. NTR2493. Copyright © 2016. Published by Elsevier Inc.
Park, Hae-Jeong; Chun, Ji-Won; Park, Bumhee; Park, Haeil; Kim, Joong Il; Lee, Jong Doo; Kim, Jae-Jin
2011-05-01
Although blind people heavily depend on working memory to manage daily life without visual information, it is not clear yet whether their working memory processing involves functional reorganization of the memory-related cortical network. To explore functional reorganization of the cortical network that supports various types of working memory processes in the early blind, we investigated activation differences between 2-back tasks and 0-back tasks using fMRI in 10 congenitally blind subjects and 10 sighted subjects. We used three types of stimulus sequences: words for a verbal task, pitches for a non-verbal task, and sound locations for a spatial task. When compared to the sighted, the blind showed additional activations in the occipital lobe for all types of stimulus sequences for working memory and more significant deactivation in the posterior cingulate cortex of the default mode network. The blind had increased effective connectivity from the default mode network to the left parieto-frontal network and from the occipital cortex to the right parieto-frontal network during the 2-back tasks than the 0-back tasks. These findings suggest not only cortical plasticity of the occipital cortex but also reorganization of the cortical network for the executive control of working memory.
Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K
2018-02-01
Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.
How Does Working Memory Work in the Classroom?
ERIC Educational Resources Information Center
Alloway, Tracy Packiam
2006-01-01
Working memory plays a key role in supporting children's learning over the school years, and beyond this into adulthood. It is proposed here that working memory is crucially required to store information while other material is being mentally manipulated during the classroom learning activities that form the foundations for the acquisition of…
Effects of load on the guidance of visual attention from working memory.
Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping
2011-12-08
An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Grot, Stéphanie; Leclerc, Marie-Eve; Luck, David
2018-05-23
We designed an fMRI study to pinpoint the neural correlates of active and passive binding in working memory. Participants were instructed to memorize three words and three spatial locations. In the passive binding condition, words and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were directed to intentionally create associations between them. Our results showed that participants performed better on passive binding relative to active binding. FMRI analysis revealed that both binding conditions induced greater activity within the hippocampus. Additionally, our analyses divulged regions specifically engaged in passive and active binding. Altogether, these data allow us to propose the hippocampus as a central candidate for working memory binding. When needed, a frontal-parietal network can contribute to the rearrangement of information. These findings may inform theories of working memory binding. Copyright © 2018. Published by Elsevier B.V.
Mothersill, David; Dillon, Rachael; Hargreaves, April; Castorina, Marco; Furey, Emilia; Fagan, Andrew J; Meaney, James F; Fitzmaurice, Brian; Hallahan, Brian; McDonald, Colm; Wykes, Til; Corvin, Aiden; Robertson, Ian H; Donohoe, Gary
2018-05-27
Working memory based cognitive remediation therapy (CT) for psychosis has recently been associated with broad improvements in performance on untrained tasks measuring working memory, episodic memory and IQ, and changes in associated brain regions. However, it is unclear if these improvements transfer to the domain of social cognition and neural activity related to performance on social cognitive tasks. We examined performance on the Reading the Mind in the Eyes test (Eyes test) in a large sample of participants with psychosis who underwent working memory based CT (N = 43) compared to a Control Group of participants with psychosis (N = 35). In a subset of this sample, we used functional magnetic resonance imaging (fMRI) to examine changes in neural activity during a facial emotion recognition task in participants who underwent CT (N = 15) compared to a Control Group (N = 15). No significant effects of CT were observed on Eyes test performance or on neural activity during facial emotion recognition, either at p<0.05 family-wise error, or at a p<0.001 uncorrected threshold, within a priori social cognitive regions of interest. This study suggests that working memory based CT does not significantly impact an aspect of social cognition which was measured behaviourally and neurally. It provides further evidence that deficits in the ability to decode mental state from facial expressions are dissociable from working memory deficits, and suggests that future CT programs should target social cognition in addition to working memory for the purposes of further enhancing social function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The polarity-dependent effects of the bilateral brain stimulation on working memory.
Keshvari, Fatemeh; Pouretemad, Hamid-Reza; Ekhtiari, Hamed
2013-01-01
Working memory plays a critical role in cognitive processes which are central to our daily life. Neuroimaging studies have shown that one of the most important areas corresponding to the working memory is the dorsolateral prefrontal cortex (DLFPC). This study was aimed to assess whether bilateral modulation of the DLPFC using a noninvasive brain stimulation, namely transcranial direct current stimulation (tDCS), modifies the working memory function in healthy adults. In a randomized sham-controlled cross-over study, 60 subjects (30 Males) received sham and active tDCS in two subgroups (anode left/cathode right and anode right/cathode left) of the DLPFC. Subjects were presented working memory n-back task while the reaction time and accuracy were recorded. A repeated measures, mixed design ANOVA indicated a significant difference between the type of stimulation (sham vs. active) in anodal stimulation of the left DLPFC with cathodal stimulation of the right DLPFC [F(1,55)= 5.29, P=0.019], but not the inverse polarity worsened accuracy in the 2-back working memory task. There were also no statistically significant changes in speed of working memory [F(1,55)= 0.458,P=0.502] related to type or order of stimulation. The results would imply to a polarity dependence of bilateral tDCS of working memory. Left anodal/ right cathodal stimulation of DLPFC could impair working memory, while the reverser stimulation had no effect. Meaning that bilateral stimulation of DLFC would not be a useful procedure to improve working memory. Further studies are required to understand subtle effects of different tDCS stimulation/inhibition electrode positioning on the working memory.
Age-Related Differences in Working Memory Performance in A 2-Back Task
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2011-01-01
The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328
Neural substrate of initiation of cross-modal working memory retrieval.
Zhang, Yangyang; Hu, Yang; Guan, Shuchen; Hong, Xiaolong; Wang, Zhaoxin; Li, Xianchun
2014-01-01
Cross-modal working memory requires integrating stimuli from different modalities and it is associated with co-activation of distributed networks in the brain. However, how brain initiates cross-modal working memory retrieval remains not clear yet. In the present study, we developed a cued matching task, in which the necessity for cross-modal/unimodal memory retrieval and its initiation time were controlled by a task cue appeared in the delay period. Using functional magnetic resonance imaging (fMRI), significantly larger brain activations were observed in the left lateral prefrontal cortex (l-LPFC), left superior parietal lobe (l-SPL), and thalamus in the cued cross-modal matching trials (CCMT) compared to those in the cued unimodal matching trials (CUMT). However, no significant differences in the brain activations prior to task cue were observed for sensory stimulation in the l-LPFC and l-SPL areas. Although thalamus displayed differential responses to the sensory stimulation between two conditions, the differential responses were not the same with responses to the task cues. These results revealed that the frontoparietal-thalamus network participated in the initiation of cross-modal working memory retrieval. Secondly, the l-SPL and thalamus showed differential activations between maintenance and working memory retrieval, which might be associated with the enhanced demand for cognitive resources.
Schmicker, Marlen; Schwefel, Melanie; Vellage, Anne-Katrin; Müller, Notger G
2016-04-01
Memory training (MT) in older adults with memory deficits often leads to frustration and, therefore, is usually not recommended. Here, we pursued an alternative approach and looked for transfer effects of 1-week attentional filter training (FT) on working memory performance and its neuronal correlates in young healthy humans. The FT effects were compared with pure MT, which lacked the necessity to filter out irrelevant information. Before and after training, all participants performed an fMRI experiment that included a combined task in which stimuli had to be both filtered based on color and stored in memory. We found that training induced processing changes by biasing either filtering or storage. FT induced larger transfer effects on the untrained cognitive function than MT. FT increased neuronal activity in frontal parts of the neuronal gatekeeper network, which is proposed to hinder irrelevant information from being unnecessarily stored in memory. MT decreased neuronal activity in the BG part of the gatekeeper network but enhanced activity in the parietal storage node. We take these findings as evidence that FT renders working memory more efficient by strengthening the BG-prefrontal gatekeeper network. MT, on the other hand, simply stimulates storage of any kind of information. These findings illustrate a tight connection between working memory and attention, and they may open up new avenues for ameliorating memory deficits in patients with cognitive impairments.
ERIC Educational Resources Information Center
Raghubar, Kimberly P.; Barnes, Marcia A.; Hecht, Steven A.
2010-01-01
Working memory refers to a mental workspace, involved in controlling, regulating, and actively maintaining relevant information to accomplish complex cognitive tasks (e.g. mathematical processing). Despite the potential relevance of a relation between working memory and math for understanding developmental and individual differences in…
Cerebellar Damage Produces Selective Deficits in Verbal Working Memory
ERIC Educational Resources Information Center
Ravizza, Susan M.; Mccormick, Cristin A.; Schlerf, John E.; Justus, Timothy; Ivry, Richard B.; Fiez, Julie A.
2006-01-01
The cerebellum is often active in imaging studies of verbal working memory, consistent with a putative role in articulatory rehearsal. While patients with cerebellar damage occasionally exhibit a mild impairment on standard neuropsychological tests of working memory, these tests are not diagnostic for exploring these processes in detail. The…
FMRI of visual working memory in high school football players.
Shenk, Trey E; Robinson, Meghan E; Svaldi, Diana O; Abbas, Kausar; Breedlove, Katherine M; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M
2015-01-01
Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.
Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults
ERIC Educational Resources Information Center
Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.
2010-01-01
The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…
Ng, Kenneth; Reichert, Chelsea P.
2017-01-01
Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change. PMID:29016657
Riediger, Michaela; Wrzus, Cornelia; Klipker, Kathrin; Müller, Viktor; Schmiedek, Florian; Wagner, Gert G
2014-03-01
We investigated age differences in associations among self-reported experiences of tense and energetic arousal, physiological activation indicated by heart rate, and working-memory performance in everyday life. The sample comprised 92 participants aged 14-83 years. Data were collected for 24 hr while participants pursued their normal daily routines. Participants wore an ambulatory biomonitoring system that recorded their cardiac and physical activity. Using mobile phones as assessment devices, they also provided an average of 7 assessments of their momentary experiences of tense arousal (feeling nervous) and energetic arousal (feeling wide-awake) and completed 2 trials of a well-practiced working-memory task. Experiences of higher energetic arousal were associated with higher heart rate in participants younger than 50 years of age but not in participants older than that, and energetic arousal was unrelated to within-person fluctuations in working-memory performance. Experiences of tense arousal were associated with higher heart rate independent of participants' age. Tense arousal and physiological activation were accompanied by momentary impairments in working-memory performance in middle-aged and older adults but not in younger individuals. Results suggest that psychological arousal experiences are associated with lower working-memory performance in middle-aged and older adults when they are accompanied by increased physiological activation and that the same is true for physiological activation deriving from other influences. Hence, age differences in cognitive performance may be exaggerated when the assessment situation itself elicits tense arousal or occurs in situations with higher physiological arousal arising from affective experiences, physical activity, or circadian rhythms. (c) 2014 APA, all rights reserved.
Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A
2012-01-01
In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.
Griffiths, Silja Torvik; Gundersen, Hilde; Neto, Emanuel; Elgen, Irene; Markestad, Trond; Aukland, Stein M; Hugdahl, Kenneth
2013-08-01
Extremely preterm (EPT)/extremely low-birth-weight (ELBW) children attaining school age and adolescence often have problems with executive functions such as working memory and selective attention. Our aim was to investigate a hypothesized difference in blood oxygen level-dependent (BOLD) activation during a selective attention-working memory task in EPT/ELBW children as compared with term-born controls. A regional cohort of 28 EPT/ELBW children and 28 term-born controls underwent functional magnetic resonance imaging (fMRI) scanning at 11 y of age while performing a combined Stroop n-back task. Group differences in BOLD activation were analyzed with Statistical Parametric Mapping 8 analysis software package, and reaction times (RTs) and response accuracy (RA) were compared in a multifactorial ANOVA test. The BOLD activation pattern in the preterm group involved the same areas (cingulate, prefrontal, and parietal cortexes), but all areas displayed significantly less activation than those in the control group, particularly when the cognitive load was increased. The RA results corresponded with the activation data in that the preterm group had significantly fewer correct responses. No group difference was found regarding RTs. Children born EPT/ELBW displayed reduced working memory and selective attention capacity as compared with term-born controls. These impairments had neuronal correlates with reduced BOLD activation in areas responsible for online stimulus monitoring, working memory, and cognitive control.
Sakatani, Kaoru; Tanida, Masahiro; Hirao, Naoyasu; Takemura, Naohiro
2014-01-01
In order to clarify the mechanism through which extract of Ginkgo biloba leaves (EGb) improves cognitive function, we examined the effects of EGb on cerebral blood oxygenation in the prefrontal cortex (PFC) and on performance during a working memory task, using near-infrared spectrometry (NIRS). First, we evaluated differences in behavioral performance of the Sternberg working memory test (ST) and in the activation pattern of the PFC during ST between 15 young and 19 middle-aged healthy women. Then, we examined the effect of EGb (120 mg/day for 6 weeks) on ST performance and PFC activation pattern in the middle-aged group. The middle-aged group exhibited a longer reaction time (RT) in ST than the young group and showed a different PFC activation pattern during ST, i.e., the middle-aged group showed bilateral activation while the young group showed right-dominant activation. In the middle-aged group, administration of EGb for 6 weeks shortened the RT of ST and changed the PFC activation pattern to right-dominant, like that in the young group. The results indicate the PFC plays a role in the physiological cognitive function-enhancing effect of EGb. EGb might improve working memory function in middle-aged individuals by counteracting the occurrence of aging-related hemispheric asymmetry reduction.
Neural effects of cognitive control load on auditory selective attention
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R.; Mangalathu, Jain; Desai, Anjali
2014-01-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210 msec, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. PMID:24946314
A neural correlate of working memory in the monkey primary visual cortex.
Supèr, H; Spekreijse, H; Lamme, V A
2001-07-06
The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Woodman, Geoffrey F.; Luck, Steven J.
2007-01-01
In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing. PMID:17469973
Woodman, Geoffrey F; Luck, Steven J
2007-04-01
In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing.
Berggren, Nick; Eimer, Martin
2016-12-01
During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.
Updating working memory in aircraft noise and speech noise causes different fMRI activations
Sætrevik, Bjørn; Sörqvist, Patrik
2015-01-01
The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319
Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe
2010-02-22
Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.
Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Bianco, Luciana Lo; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe
2010-01-01
Background Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Methods Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Results Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Conclusions Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway. PMID:20179754
Associative memory cells and their working principle in the brain
Wang, Jin-Hui; Cui, Shan
2018-01-01
The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741
Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E
2016-08-24
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.
Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate
2016-01-01
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180
Mitchell, Karen J; Mather, Mara; Johnson, Marcia K; Raye, Carol L; Greene, Erich J
2006-10-02
We investigated the hypothesis that arousal recruits attention to item information, thereby disrupting working memory processes that help bind items to context. Using functional magnetic resonance imaging, we compared brain activity when participants remembered negative or neutral picture-location conjunctions (source memory) versus pictures only. Behaviorally, negative trials showed disruption of short-term source, but not picture, memory; long-term picture recognition memory was better for negative than for neutral pictures. Activity in areas involved in working memory and feature integration (precentral gyrus and its intersect with superior temporal gyrus) was attenuated on negative compared with neutral source trials relative to picture-only trials. Visual processing areas (middle occipital and lingual gyri) showed greater activity for negative than for neutral trials, especially on picture-only trials.
ERIC Educational Resources Information Center
Guida, Alessandro; Gobet, Fernand; Tardieu, Hubert; Nicolas, Serge
2012-01-01
Our review of research on PET and fMRI neuroimaging of experts and expertise acquisition reveals two apparently discordant patterns in working-memory-related tasks. When experts are involved, studies show activations in brain regions typically activated during long-term memory tasks that are not observed with novices, a result that is compatible…
Kim, Jae-Jin; Kim, Myung Sun; Lee, Jae Sung; Lee, Dong Soo; Lee, Myung Chul; Kwon, Jun Soo
2002-04-01
Verbal working memory plays a significant role in language comprehension and problem-solving. The prefrontal cortex has been suggested as a critical area in working memory. Given that domain-specific dissociations of working memory may exist within the prefrontal cortex, it is possible that there may also be further functional divisions within the verbal working memory processing. While differences in the areas of the brain engaged in native and second languages have been demonstrated, little is known about the dissociation of verbal working memory associated with native and second languages. We have used H2(15)O positron emission tomography in 14 normal subjects in order to identify the neural correlates selectively involved in working memory of native (Korean) and second (English) languages. All subjects were highly proficient in the native language but poorly proficient in the second language. Cognitive tasks were a two-back task for three kinds of visually presented objects: simple pictures, English words, and Korean words. The anterior portion of the right dorsolateral prefrontal cortex and the left superior temporal gyrus were activated in working memory for the native language, whereas the posterior portion of the right dorsolateral prefrontal cortex and the left inferior temporal gyrus were activated in working memory for the second language. The results suggest that the right dorsolateral prefrontal cortex and left temporal lobe may be organized into two discrete, language-related functional systems. Internal phonological processing seems to play a predominant role in working memory processing for the native language with a high proficiency, whereas visual higher order control does so for the second language with a low proficiency. (C)2002 Elsevier Science (USA).
The Roles of Working Memory and Cognitive Load in Geoscience Learning
ERIC Educational Resources Information Center
Jaeger, Allison J.; Shipley, Thomas F.; Reynolds, Stephen J.
2017-01-01
Working memory is a cognitive system that allows for the simultaneous storage and processing of active information. While working memory has been implicated as an important element for success in many science, technology, engineering, and mathematics (STEM) fields, its specific role in geoscience learning is not fully understood. The major goal of…
ERIC Educational Resources Information Center
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta
2011-01-01
Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working…
Phonological Working Memory for Words and Nonwords in Cerebral Cortex.
Perrachione, Tyler K; Ghosh, Satrajit S; Ostrovskaya, Irina; Gabrieli, John D E; Kovelman, Ioulia
2017-07-12
The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production.
Neural mechanisms of interference control in working memory capacity.
Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N
2018-02-01
The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.
Zhang, Kaihua; Ma, Jun; Lei, Du; Wang, Mengxing; Zhang, Jilei; Du, Xiaoxia
2015-10-01
Nocturnal enuresis is a common developmental disorder in children, and primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype. This study investigated brain functional abnormalities that are specifically related to working memory in children with PMNE using function magnetic resonance imaging (fMRI) in combination with an n-back task. Twenty children with PMNE and 20 healthy children, group-matched for age and sex, participated in this experiment. Several brain regions exhibited reduced activation during the n-back task in children with PMNE, including the right precentral gyrus and the right inferior parietal lobule extending to the postcentral gyrus. Children with PMNE exhibited decreased cerebral activation in the task-positive network, increased task-related cerebral deactivation during a working memory task, and longer response times. Patients exhibited different brain response patterns to different levels of working memory and tended to compensate by greater default mode network deactivation to sustain normal working memory function. Our results suggest that children with PMNE have potential working memory dysfunction.
Changes in Brain Network Efficiency and Working Memory Performance in Aging
Stanley, Matthew L.; Simpson, Sean L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.
2015-01-01
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory. PMID:25875001
Changes in brain network efficiency and working memory performance in aging.
Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J
2015-01-01
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.
Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.
Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng
2016-01-01
Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.
D’Esposito, Mark
2017-01-01
Recent work has established that visual working memory is subject to serial dependence: current information in memory blends with that from the recent past as a function of their similarity. This tuned temporal smoothing likely promotes the stability of memory in the face of noise and occlusion. Serial dependence accumulates over several seconds in memory and deteriorates with increased separation between trials. While this phenomenon has been extensively characterized in behavior, its neural mechanism is unknown. In the present study, we investigate the circuit-level origins of serial dependence in a biophysical model of cortex. We explore two distinct kinds of mechanisms: stable persistent activity during the memory delay period and dynamic “activity-silent” synaptic plasticity. We find that networks endowed with both strong reverberation to support persistent activity and dynamic synapses can closely reproduce behavioral serial dependence. Specifically, elevated activity drives synaptic augmentation, which biases activity on the subsequent trial, giving rise to a spatiotemporally tuned shift in the population response. Our hybrid neural model is a theoretical advance beyond abstract mathematical characterizations, offers testable hypotheses for physiological research, and demonstrates the power of biological insights to provide a quantitative explanation of human behavior. PMID:29244810
fMRI brain activation in patients with insomnia disorder during a working memory task.
Son, Young-Don; Kang, Jae Myeong; Cho, Seong-Jin; Lee, Jung-Sun; Hwang, Hee Young; Kang, Seung-Gul
2018-05-01
This study used functional magnetic resonance imaging (fMRI) to investigate differences in the functional brain activation of patients with insomnia disorder (n = 21, mean age = 36.6) and of good sleepers (n = 26, mean age = 33.2) without other comorbidities or structural brain abnormalities during a working memory task. All participants completed a clinical questionnaire, were subjected to portable polysomnography (PSG), and performed the working memory task during an fMRI scan. The subjects who were suspected of major sleep disorder and comorbid psychiatric disorders except insomnia disorder were excluded. To compare the brain activation on working memory from the insomnia group with those from the good-sleeper group, a two-sample t test was performed. Statistical significance was determined using 3DClustSim with the updated algorithm to obtain a reasonable cluster size and p value for each analysis. We observed higher levels of brain activation in the right lateral inferior frontal cortex and the right superior temporal pole in the insomnia group compared to good sleepers (cluster-based multiple comparison correction, p < 0.001, k = 34 @ α = 0.01). Thus, patients with insomnia disorder showed increased brain activation during working memory relative to good sleepers, and this may be indicative of compensatory brain activation to maintain cognitive performance in patients with insomnia disorder without other comorbidities.
Structural correlates of impaired working memory in hippocampal sclerosis.
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-07-01
Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Structural correlates of impaired working memory in hippocampal sclerosis
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-01-01
Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Significance: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. PMID:23614459
Selective updating of working memory content modulates meso-cortico-striatal activity.
Murty, Vishnu P; Sambataro, Fabio; Radulescu, Eugenia; Altamura, Mario; Iudicello, Jennifer; Zoltick, Bradley; Weinberger, Daniel R; Goldberg, Terry E; Mattay, Venkata S
2011-08-01
Accumulating evidence from non-human primates and computational modeling suggests that dopaminergic signals arising from the midbrain (substantia nigra/ventral tegmental area) mediate striatal gating of the prefrontal cortex during the selective updating of working memory. Using event-related functional magnetic resonance imaging, we explored the neural mechanisms underlying the selective updating of information stored in working memory. Participants were scanned during a novel working memory task that parses the neurophysiology underlying working memory maintenance, overwriting, and selective updating. Analyses revealed a functionally coupled network consisting of a midbrain region encompassing the substantia nigra/ventral tegmental area, caudate, and dorsolateral prefrontal cortex that was selectively engaged during working memory updating compared to the overwriting and maintenance of working memory content. Further analysis revealed differential midbrain-dorsolateral prefrontal interactions during selective updating between low-performing and high-performing individuals. These findings highlight the role of this meso-cortico-striatal circuitry during the selective updating of working memory in humans, which complements previous research in behavioral neuroscience and computational modeling. Published by Elsevier Inc.
Lew, Sergio E; Tseng, Kuei Y
2014-12-01
Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.
The protective effects of brief mindfulness meditation training.
Banks, Jonathan B; Welhaf, Matthew S; Srour, Alexandra
2015-05-01
Mindfulness meditation has gained a great deal of attention in recent years due to the variety of physical and psychological benefits, including improved working memory, decreased mind wandering and reduced impact of stress on working memory. The current study examined a 1-week at home mindfulness meditation intervention compared to an active control intervention. Results suggest that mindfulness meditation does not increase working memory or decrease mind wandering but does prevent stress related working memory impairments. Mindfulness meditation appears to alter the factors that impair working memory such that the negative impact of mind wandering on working memory was only evident at higher levels of negative affect. The use of cognitive mechanism words in narratives of stressful events did not differ by condition but predicted poorer working memory in the control condition. The results support the use of an at home mindfulness meditation intervention for reducing stress-related impairments. Copyright © 2015 Elsevier Inc. All rights reserved.
Owens, Max; Koster, Ernst H W; Derakshan, Nazanin
2013-03-01
Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.
Dodds, Chris M; Clark, Luke; Dove, Anja; Regenthal, Ralf; Baumann, Frank; Bullmore, Ed; Robbins, Trevor W; Müller, Ulrich
2009-11-01
Dopamine (DA) plays an important role in working memory. However, the precise functions supported by different DA receptor subtypes in different neural regions remain unclear. The present study used pharmacological, event-related fMRI to test the hypothesis that striatal dopamine is important for the manipulation of information in working memory. Twenty healthy human subjects were scanned twice, once after placebo and once after sulpiride 400 mg, a selective DA D2 receptor antagonist, while performing a verbal working memory task requiring different levels of manipulation. Whilst there was no overall effect of sulpiride on task-dependent activation, individual variation in sulpiride plasma levels predicted the effect of working memory manipulation on activation in the putamen, suggesting a dose-dependent effect of DA antagonism on a striatally based manipulation process. These effects occurred in the context of a drug-induced improvement in performance on trials requiring the manipulation of information in working memory but not on simple retrieval trials. No significant drug effects were observed in the prefrontal cortex. These results support models of dopamine function that posit a 'gating' function for dopamine D2 receptors in the striatum, which enables the flexible updating and manipulation of information in working memory.
Andre, Julia; Picchioni, Marco; Zhang, Ruibin; Toulopoulou, Timothea
2016-01-01
Working memory ability matures through puberty and early adulthood. Deficits in working memory are linked to the risk of onset of neurodevelopmental disorders such as schizophrenia, and there is a significant temporal overlap between the peak of first episode psychosis risk and working memory maturation. In order to characterize the normal working memory functional maturation process through this critical phase of cognitive development we conducted a systematic review and coordinate based meta-analyses of all the available primary functional magnetic resonance imaging studies (n = 382) that mapped WM function in healthy adolescents (10-17 years) and young adults (18-30 years). Activation Likelihood Estimation analyses across all WM tasks revealed increased activation with increasing subject age in the middle frontal gyrus (BA6) bilaterally, the left middle frontal gyrus (BA10), the left precuneus and left inferior parietal gyri (BA7; 40). Decreased activation with increasing age was found in the right superior frontal (BA8), left junction of postcentral and inferior parietal (BA3/40), and left limbic cingulate gyrus (BA31). These results suggest that brain activation during adolescence increased with age principally in higher order cortices, part of the core working memory network, while reductions were detected in more diffuse and potentially more immature neural networks. Understanding the process by which the brain and its cognitive functions mature through healthy adulthood may provide us with new clues to understanding the vulnerability to neurodevelopmental disorders.
Working memory deficits in adults with ADHD: is there evidence for subtype differences?
Schweitzer, Julie B; Hanford, Russell B; Medoff, Deborah R
2006-01-01
Background Working memory performance is important for maintaining functioning in cognitive, academic and social activities. Previous research suggests there are prevalent working memory deficits in children with attention deficit hyperactivity disorder (ADHD). There is now a growing body of literature characterizing working memory functioning according to ADHD subtypes in children. The expression of working memory deficits in adults with ADHD and how they vary according to subtype, however, remains to be more fully documented. Methods This study assessed differences in working memory functioning between Normal Control (NC) adults (N = 18); patients with ADHD, Combined (ADHD-CT) Type ADHD (N = 17); and ADHD, Inattentive (ADHD-IA) Type (N = 16) using subtests from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III and the Paced Auditory Serial Addition Task (PASAT). Results The ADHD groups displayed significant weaknesses in contrast to the NC group on working memory tests requiring rapid processing and active stimulus manipulation. This included the Letter-Number-Sequencing test of the Wechsler scales, PASAT omission errors and the longest sequence of consecutive correct answers on the PASAT. No overall ADHD group subtype differences emerged; however differences between the ADHD groups and the NC group varied depending on the measure and the gender of the participants. Gender differences in performance were evident on some measures of working memory, regardless of group, with males performing better than females. Conclusion In general, the data support a dimensional interpretation of working memory deficits experienced by the ADHD-CT and ADHD-IA subtypes, rather than an absolute difference between subtypes. Future studies should test the effects of processing speed and load on subtype performance and how those variables interact with gender in adults with ADHD. PMID:17173676
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2015-01-01
Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Cognitive Activation by Central Thalamic Stimulation: The Yerkes-Dodson Law Revisited.
Mair, Robert G.; Onos, Kristen D.; Hembrook, Jacqueline R.
2011-01-01
Central thalamus regulates forebrain arousal, influencing activity in distributed neural networks that give rise to organized actions during alert, wakeful states. Central thalamus has been implicated in working memory by the effects of lesions and microinjected drugs in this part of the brain. Lesions and drugs that inhibit neural activity have been found to impair working memory. Drugs that increase activity have been found to enhance and impair memory depending on the dose tested. Electrical deep brain stimulation (DBS) similarly enhances working memory at low stimulating currents and impairs it at higher currents. These effects are time dependent. They were observed when DBS was applied during the memory delay (retention) or choice response (retrieval) but not earlier in trials during the sample (acquisition) phase. The effects of microinjected drugs and DBS are consistent with the Yerkes-Dodson law, which describes an inverted-U relationship between arousal and behavioral performance. Alternatively these results may reflect desensitization associated with higher levels of stimulation, spread of drugs or current to adjacent structures, or activation of less sensitive neurons or receptors at higher DBS currents or drug doses. PMID:22013395
Arime, Yosefu; Akiyama, Kazufumi
2017-01-01
Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.
Akiyama, Kazufumi
2017-01-01
Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2–3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2–3 of the prelimbic cortex of the PFC. PMID:29253020
Schneider, Daniel; Barth, Anna; Wascher, Edmund
2017-11-15
Attention can be allocated toward mental representations in working memory also after the initial encoding of information has been completed. It was shown that focusing on only one item within working memory transfers this representation into a protected state, reducing its susceptibility to interference by incoming signals. The present study investigated the nature of this retroactive cue (retro-cue) benefit by means of oscillatory activity in the EEG. In a working memory task with a retro-cue indicating one, two or three memory representations as relevant and a block-wise distractor display presented after the retro-cue, participants had to remember the orientation of a colored bar. On behavioral level, we found that the interfering effect of the distractor display on memory performance could be prevented when a retro-cue reduced the number of attended representations in working memory. However, only the one-item retro-cue led to an overall increase in task performance compared to a condition without a retro-cue. The neural basis of this special representational status was investigated by means of oscillatory parameters in the EEG and a clustering approach on level of the independent components (ICs) in the signal. The retroactive reduction of attended working memory representations was reflected in a suppression of alpha power over right parietal and parieto-occipital sites. In addition, we found that an IC cluster representing oscillatory activity in the mu/beta range (10-12 Hz and 20-24 Hz) with a source in sensorimotor cortex revealed a power suppression already prior to the memory probe following the one-item retro-cue. This suggests that the retro-cue benefit results in large parts from the possibility to focus attention on one particular item in working memory and initiate motor planning processes already ahead of the probe stimulus indicating the respective response. Copyright © 2017 Elsevier Inc. All rights reserved.
Deaf Children and Children with ADHD in the Inclusive Classroom: Working Memory Matters
ERIC Educational Resources Information Center
Cockcroft, Kate; Dhana-Dullabh, Hansini
2013-01-01
This study compared the working memory functioning of deaf children, children with ADHD and typically developing children. Working memory is involved in the storage and mental manipulation of information during classroom learning activities that are crucial for the acquisition of complex skills and knowledge. Thus, it is important to determine how…
Paulus, Martin P.; Tapert, Susan F.; Pulido, Carmen; Schuckit, Marc A.
2008-01-01
Background A low level of response to alcohol is a major risk factor for the development of alcohol dependence, but neural correlates of this marker are unclear. Method Ten healthy volunteers were classified by median split on level of response to alcohol and underwent 2 sessions of functional magnetic resonance imaging following ingestion of a moderate dose of alcohol and a placebo. The blood oxygen level–dependent activation to an event-related visual working memory test was examined. Results The subjects exhibited longer response latencies and more errors as a function of increasing working memory load and showed a load-dependent increase in activation in dorsolateral prefrontal cortex, posterior parietal cortex, and visual cortex. Alcohol did not affect performance (errors or response latency), but attenuated the working memory load–dependent activation in the dorsolateral prefrontal cortex. During the placebo condition, individuals with a low level of response to alcohol showed greater activation in dorsolateral prefrontal cortex and posterior parietal cortex than those with a high level of response to alcohol. During the alcohol condition, groups showed similar attenuation of load-dependent brain activation in these regions. Conclusion Low-level responders relative to high-level responders exhibited an increased working memory load–dependent activation in dorsolateral prefrontal cortex and posterior parietal cortex when not exposed to alcohol. This increase in brain response was attenuated in low-level responders after ingesting a moderate dose of alcohol. PMID:16899039
The Relationship between Learning Style Preferences and Memory Strategy use in Adults.
Dirette, Diane Powers; Anderson, Michele A
2016-07-01
Deficits in working memory are pervasive, resistant to remediation and significantly impact a persons ability to perform activities of daily living. Internal strategies are effective for improving working memory. Learning style preferences may influence the use of various internal working memory strategies. This study compares the use of internal working memory strategies among four different learning style preferences; converger, diverger, assimilator and accommodator. A non-experimental group design was used to compare the use of internal working memory strategies and learning style preferences among 110 adults. There were some significant differences in the types of strategies used according to learning style preferences. Knowing the learning style preference of clients may help occupational therapists better tailor cognitive rehabilitation treatments to meet the client's needs.
Konecky, R O; Smith, M A; Olson, C R
2017-06-01
To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or represented within the prefrontal cortex in a cryptic code. Copyright © 2017 the American Physiological Society.
Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson's disease.
Simioni, Alison C; Dagher, Alain; Fellows, Lesley K
2017-08-01
Working memory dysfunction is common in Parkinson's disease, even in its early stages, but its neural basis is debated. Working memory performance likely reflects a balance between corticostriatal dysfunction and compensatory mechanisms. We tested this hypothesis by examining working memory performance with a letter n-back task in 19 patients with mild-moderate Parkinson's disease and 20 demographically matched healthy controls. Parkinson's disease patients were tested after an overnight washout of their usual dopamine replacement therapy, and again after a standard dose of levodopa. FMRI was used to assess task-related activation and resting state functional connectivity; changes in BOLD signal were related to performance to disentangle pathological and compensatory processes. Parkinson's disease patients off dopamine replacement therapy displayed significantly reduced spatial extent of task-related activation in left prefrontal and bilateral parietal cortex, and poorer working memory performance, compared to controls. Amongst the Parkinson's disease patients off dopamine replacement therapy, relatively better performance was associated with greater activation of right dorsolateral prefrontal cortex compared to controls, consistent with compensatory right hemisphere recruitment. Administration of levodopa remediated the working memory deficit in the Parkinson's disease group, and resulted in a different pattern of performance-correlated activity, with a shift to greater left ventrolateral prefrontal cortex activation in patients on, compared to off dopamine replacement therapy. Levodopa also significantly increased resting-state functional connectivity between caudate and right parietal cortex (within the right fronto-parietal attentional network). The strength of this connectivity contributed to better performance in patients and controls, suggesting a general compensatory mechanism. These findings argue that Parkinson's disease patients can recruit additional neural resources, here, the right fronto-parietal network, to optimize working memory performance despite impaired corticostriatal function. Levodopa seems to both boost engagement of a task-specific prefrontal region, and strengthen a putative compensatory caudate-cortical network to support this executive function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Does PKM(zeta) maintain memory?
Kwapis, Janine L; Helmstetter, Fred J
2014-06-01
Work on the long-term stability of memory has identified a potentially critical role for protein kinase Mzeta (PKMζ) in maintaining established memory. PKMζ, an autonomously active isoform of PKC, is hypothesized to sustain those changes that occurred during memory formation in order to preserve the memory engram over time. Initial studies investigating the role of PKMζ were largely successful in demonstrating a role for the kinase in memory maintenance; disrupting PKMζ activity with ζ-inhibitory peptide (ZIP) was successful in disrupting a variety of established associations in a number of key brain regions. More recent work, however, has questioned both the role of PKMζ in memory maintenance and the effectiveness of ZIP as a specific inhibitor of PKMζ activity. Here, we outline the research both for and against the idea that PKMζ is a memory maintenance mechanism and discuss how these two lines of research can be reconciled. We conclude by proposing a number of studies that would help to clarify the role of PKMζ in memory and define other mechanisms the brain may use to maintain memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".
Başar, Erol
2005-01-01
According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.
Neural effects of cognitive control load on auditory selective attention.
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali
2014-08-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Orban, Sarah A; Rapport, Mark D; Friedman, Lauren M; Eckrich, Samuel J; Kofler, Michael J
2018-05-01
Children with ADHD exhibit clinically impairing inattentive behavior during classroom instruction and in other cognitively demanding contexts. However, there have been surprisingly few attempts to validate anecdotal parent/teacher reports of intact sustained attention during 'preferred' activities such as watching movies. The current investigation addresses this omission, and provides an initial test of how ADHD-related working memory deficits contribute to inattentive behavior during classroom instruction. Boys ages 8-12 (M = 9.62, SD = 1.22) with ADHD (n = 32) and typically developing boys (TD; n = 30) completed a counterbalanced series of working memory tests and watched two videos on separate assessment days: an analogue math instructional video, and a non-instructional video selected to match the content and cognitive demands of parent/teacher-described 'preferred' activities. Objective, reliable observations of attentive behavior revealed no between-group differences during the non-instructional video (d = -0.02), and attentive behavior during the non-instructional video was unrelated to all working memory variables (r = -0.11 to 0.19, ns). In contrast, the ADHD group showed disproportionate attentive behavior decrements during analogue classroom instruction (d = -0.71). Bias-corrected, bootstrapped, serial mediation revealed that 59% of this between-group difference was attributable to ADHD-related impairments in central executive working memory, both directly (ER = 41%) and indirectly via its role in coordinating phonological short-term memory (ER = 15%). Between-group attentive behavior differences were no longer detectable after accounting for ADHD-related working memory impairments (d = -0.29, ns). Results confirm anecdotal reports of intact sustained attention during activities that place minimal demands on working memory, and indicate that ADHD children's inattention during analogue classroom instruction is related, in large part, to their underdeveloped working memory abilities.
Brown, Louise A.
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood. PMID:27757096
Brown, Louise A
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years) and older (64-85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale - Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood.
Karbach, Julia; Verhaeghen, Paul
2014-11-01
This meta-analysis examined the effects of process-based executive-function and working memory training (49 articles, 61 independent samples) in older adults (> 60 years). The interventions resulted in significant effects on performance on the trained task and near-transfer tasks; significant results were obtained for the net pretest-to-posttest gain relative to active and passive control groups and for the net effect at posttest relative to active and passive control groups. Far-transfer effects were smaller than near-transfer effects but were significant for the net pretest-to-posttest gain relative to passive control groups and for the net gain at posttest relative to both active and passive control groups. We detected marginally significant differences in training-induced improvements between working memory and executive-function training, but no differences between the training-induced improvements observed in older adults and younger adults, between the benefits associated with adaptive and nonadaptive training, or between the effects in active and passive control conditions. Gains did not vary with total training time. © The Author(s) 2014.
Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu
2018-03-01
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Kozora, E; Uluğ, A M; Erkan, D; Vo, A; Filley, C M; Ramon, G; Burleson, A; Zimmerman, R; Lockshin, M D
2016-11-01
Standardized cognitive tests and functional magnetic resonance imaging (fMRI) studies of systemic lupus erythematosus (SLE) patients demonstrate deficits in working memory and executive function. These neurobehavioral abnormalities are not well studied in antiphospholipid syndrome, which may occur independently of or together with SLE. This study compares an fMRI paradigm involving motor skills, working memory, and executive function in SLE patients without antiphospholipid antibody (aPL) (the SLE group), aPL-positive non-SLE patients (the aPL-positive group), and controls. Brain MRI, fMRI, and standardized cognitive assessment results were obtained from 20 SLE, 20 aPL-positive, and 10 healthy female subjects with no history of neuropsychiatric abnormality. Analysis of fMRI data showed no differences in performance across groups on bilateral motor tasks. When analysis of variance was used, significant group differences were found in 2 executive function tasks (word generation and word rhyming) and in a working memory task (N-Back). Patients positive for aPL demonstrated higher activation in bilateral frontal, temporal, and parietal cortices compared to controls during working memory and executive function tasks. SLE patients also demonstrated bilateral frontal and temporal activation during working memory and executive function tasks. Compared to controls, both aPL-positive and SLE patients had elevated cortical activation, primarily in the frontal lobes, during tasks involving working memory and executive function. These findings are consistent with cortical overactivation as a compensatory mechanism for early white matter neuropathology in these disorders. © 2016, American College of Rheumatology.
The irrelevant speech effect and working memory load.
Gisselgård, Jens; Petersson, Karl Magnus; Ingvar, Martin
2004-07-01
Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation. Copyright 2004 Elsevier Inc.
[Efficacy of frequency-neurofeedback and Cogmed JM-working memory training in children with ADHD].
van Dongen-Boomsma, M; Vollebregt, M A; Slaats-Willemse, D; Buitelaar, J K
2015-01-01
The need for and the interest in non-pharmacological treatments for children with ADHD are increasing. The treatments include electro-encephalogram (EEG) frequency-neurofeedback and Cogmed working memory training. To investigate the efficacy of frequency-neurofeedback and Cogmed working memory training in children with ADHD. Forty-one children with ADHD (aged 8-15 years) were assigned to frequency-neurofeedback or to placebo-neurofeedback in a randomized double-blind trial. We took measurements to find out whether frequency-neurofeedback had reduced the severity of the ADHD-symptoms, and/or had improved neurocognitive ability and global clinical functioning. Fifty-one children with ADHD (aged 5-7 years) were assigned to the active Cogmed JM-working memory training or to the placebo working memory training in a randomised double-blind trial. We took measurements to find out whether Cogmed JM-working memory training had reduced the ADHD symptoms, and/or had improved neurocognitive ability, daily performance and global clinical functioning. The ADHD symptoms and global clinical functioning of the children in both neurofeedback groups improved. However, frequency-neurofeedback did nor produce any significantly better treatment results than did the placebo neurofeedback. At the neurocognitive level, frequency-neurofeedback did not yield any measurements that were significantly superior to those achieved with placebo feedback. Various outcome measurements improved in both groups with memory training. However, the active working memory training was not found to have produced significantly better results than the placebo training with regards to the ADHD symptoms, neurocognitive ability and daily and global functioning. Children from the active working memory training group showed improvements in trained working memory tasks but not on untrained tasks. Neither study produced any conclusive evidence for the efficacy of the investigated treatments in children with ADHD. However, both types of treatments can be further improved. Furthermore, the controlled designs may have restricted the embedding of the treatments. Because of possible improvements in the treatments in the future and because of the design restrictions affecting the treatments in their present form, it is still too early to draw any definitive conclusions about the validity and advantages of the two treatment methods.
Muthukumaraswamy, Suresh D.; Hibbs, Carina S.; Shapiro, Kimron L.; Bracewell, R. Martyn; Singh, Krish D.; Linden, David E. J.
2011-01-01
The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80–100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination. PMID:21940605
Transcranial direct current stimulation to enhance cognition in euthymic bipolar disorder.
Martin, Donel M; Chan, Herng-Nieng; Alonzo, Angelo; Green, Melissa J; Mitchell, Philip B; Loo, Colleen K
2015-12-01
To investigate the use of transcranial direct current stimulation (tDCS) for enhancing working memory and sustained attention in euthymic patients with bipolar disorder. Fifteen patients with bipolar disorder received anodal left prefrontal tDCS with an extracephalic cathode (prefrontal condition), anodal left prefrontal and cathodal cerebellar tDCS (fronto-cerebellar condition), and sham tDCS given 'online' during performance on a working memory and sustained attention task in an intra-individual, cross-over, sham-controlled experimental design. Exploratory cluster analyses examined responders and non-responders for the different active tDCS conditions on both tasks. For working memory, approximately one-third of patients in both active tDCS conditions showed performance improvement. For sustained attention, three of 15 patients showed performance improvement with prefrontal tDCS. Responders to active tDCS for working memory performed more poorly on the task during sham tDCS compared to non-responders. A single session of active prefrontal or fronto-cerebellar tDCS failed to improve working memory or sustained attention performance in euthymic patients with bipolar disorder. Several important considerations are discussed in relation to future studies investigating tDCS for enhancing cognition in patients with bipolar disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Updating working memory in aircraft noise and speech noise causes different fMRI activations.
Saetrevik, Bjørn; Sörqvist, Patrik
2015-02-01
The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. © 2014 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Interference control in working memory: comparing groups of children with atypical development.
Palladino, Paola; Ferrari, Marcella
2013-01-01
The study aimed to test whether working memory deficits in children at risk of Learning Disabilities (LD) and/or attention deficit/hyperactivity disorder (ADHD) can be attributed to deficits in interference control, thereby implicating prefrontal systems. Two groups of children known for showing poor working memory (i.e., children with poor comprehension and children with ADHD) were compared to a group of children with specific reading decoding problems (i.e., having severe problems in phonological rather than working memory) and to a control group. All children were tested with a verbal working memory task. Interference control of irrelevant items was examined by a lexical decision task presented immediately after the final recall in about half the trials, selected at random. The interference control measure was therefore directly related to working memory performance. Results confirmed deficient working memory performance in poor comprehenders and children at risk of ADHD + LD. More interestingly, this working memory deficit was associated with greater activation of irrelevant information than in the control group. Poor decoders showed more efficient interference control, in contrast to poor comprehenders and ADHD + LD children. These results indicated that interfering items were still highly accessible to working memory in children who fail the working memory task. In turn, these findings strengthen and clarify the role of interference control, one of the most critical prefrontal functions, in working memory.
Visuospatial working memory in very preterm and term born children--impact of age and performance.
Mürner-Lavanchy, I; Ritter, B C; Spencer-Smith, M M; Perrig, W J; Schroth, G; Steinlin, M; Everts, R
2014-07-01
Working memory is crucial for meeting the challenges of daily life and performing academic tasks, such as reading or arithmetic. Very preterm born children are at risk of low working memory capacity. The aim of this study was to examine the visuospatial working memory network of school-aged preterm children and to determine the effect of age and performance on the neural working memory network. Working memory was assessed in 41 very preterm born children and 36 term born controls (aged 7-12 years) using functional magnetic resonance imaging (fMRI) and neuropsychological assessment. While preterm children and controls showed equal working memory performance, preterm children showed less involvement of the right middle frontal gyrus, but higher fMRI activation in superior frontal regions than controls. The younger and low-performing preterm children presented an atypical working memory network whereas the older high-performing preterm children recruited a working memory network similar to the controls. Results suggest that younger and low-performing preterm children show signs of less neural efficiency in frontal brain areas. With increasing age and performance, compensational mechanisms seem to occur, so that in preterm children, the typical visuospatial working memory network is established by the age of 12 years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Working Memory in the Service of Executive Control Functions.
Mansouri, Farshad A; Rosa, Marcello G P; Atapour, Nafiseh
2015-01-01
Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.
Shielding cognition from nociception with working memory.
Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André
2013-01-01
Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Festini, Sara B.; Reuter-Lorenz, Patricia A.
2017-01-01
Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and…
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta
2011-10-01
Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working memory performance has been suggested based on the analysis of individuals with varying pathologies. This study aimed to identify correlations between white matter and individual differences in verbal working memory performance in normal young subjects. We performed voxel-based morphometry (VBM) analyses using T1-weighted structural images as well as voxel-based analyses of fractional anisotropy (FA) using diffusion tensor imaging. Using the letter span task, we measured verbal working memory performance in normal young adult men and women (mean age, 21.7 years, SD=1.44; 42 men and 13 women). We observed positive correlations between working memory performance and regional white matter volume (rWMV) in the frontoparietal regions. In addition, FA was found to be positively correlated with verbal working memory performance in a white matter region adjacent to the right precuneus. These regions are consistently recruited by working memory. Our findings suggest that, among normal young subjects, verbal working memory performance is associated with various regions that are recruited during working memory tasks, and this association is not limited to specific parts of the working memory network. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phonological Working Memory for Words and Nonwords in Cerebral Cortex
Ghosh, Satrajit S.; Ostrovskaya, Irina; Gabrieli, John D. E.; Kovelman, Ioulia
2017-01-01
Purpose The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. Method We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. Results Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. Conclusion These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production. PMID:28631005
Lawlor-Savage, Linette; Goghari, Vina M.
2016-01-01
Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141
Li, Ke; Huang, Xiaoyan; Han, Yingping; Zhang, Jun; Lai, Yuhan; Yuan, Li; Lu, Jiaojiao; Zeng, Dong
2015-01-01
Hormone therapy (HT) has long been thought beneficial for controlling menopausal symptoms and human cognition. Studies have suggested that HT has a positive association with working memory, but no consistent relationship between HT and neural activity has been shown in any cognitive domain. The purpose of this meta-analysis was to assess the convergence of findings from published randomized control trials studies that examined brain activation changes in postmenopausal women. A systematic search for fMRI studies of neural responses during working memory tasks in postmenopausal women was performed. Studies were excluded if they were not treatment studies and did not contain placebo or blank controls. For the purpose of the meta-analysis, 8 studies were identified, with 103 postmenopausal women taking HT and 109 controls. Compared with controls, postmenopausal women who took HT increased activation in the left frontal lobe, including superior frontal gyrus (BA 8), right middle frontal gyrus (BA 9), anterior lobe, paracentral lobule (BA 7), limbic lobe, and anterior cingulate (BA 32). Additionally, decreased activation is noted in the right limbic lobe, including parahippocampal gyrus (BA 28), left parietal lobe, and superior parietal lobule (BA 7). All regions were significant at p ≤ 0.05 with correction for multiple comparisons. Hormone treatment is associated with BOLD signal activation in key anatomical areas during fMRI working memory tasks in healthy hormone-treated postmenopausal women. A positive correlation between activation and task performance suggests that hormone use may benefit working memory.
Kim, Sun Mi; Han, Doug Hyun; Lee, Young Sik; Kim, Jieun E; Renshaw, Perry F
2012-06-01
Several studies have suggested that addictive disorders including substance abuse and pathologic gambling might be associated with dysfunction on working memory and prefrontal activity. We hypothesized that excessive online game playing is associated with deficits in prefrontal cortex function and that recovery from excessive online game playing might improve prefrontal cortical activation in response to working memory stimulation. Thirteen adolescents with excessive online game playing (AEOP) and ten healthy adolescents (HC) agreed to participate in this study. The severity of online game play and playing time were evaluated for a baseline measurement and again following four weeks of treatment. Brain activation in response to working memory tasks (simple and complex calculations) at baseline and subsequent measurements was assessed using BOLD functional magnetic resonance imaging (fMRI). Compared to the HC subjects, the AEOP participants exhibited significantly greater activity in the right middle occipital gyrus, left cerebellum posterior lobe, left premotor cortex and left middle temporal gyrus in response to working memory tasks during baseline measurements. After four weeks of treatment, the AEOP subjects showed increased activity within the right dorsolateral prefrontal cortex and left occipital fusiform gyrus. After four weeks of treatment, changes in the severity of online game playing were negatively correlated with changes in the mean β value of the right dorsolateral prefrontal cortex in response to complex stimulation. We suggest that the effects of online game addiction on working memory may be similar to those observed in patients with substance dependence.
Working Memory Training: Improving Intelligence--Changing Brain Activity
ERIC Educational Resources Information Center
Jausovec, Norbert; Jausovec, Ksenija
2012-01-01
The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…
Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.
Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui
2015-09-01
Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Working from Memory: Artists and Actors
ERIC Educational Resources Information Center
Hurwitz, Al
2004-01-01
In this article, the author discusses the art of memory-based drawing. Memory-based drawing represents but one part of a broad range of activities used in drawing instruction. Other sources involve the use of fantasy, doodling, problem-solving, and illustrating. Other ways of working from one's personal history involve keeping illustrated…
Long-term effects of frequent cannabis use on working memory and attention: an fMRI study.
Jager, Gerry; Kahn, Rene S; Van Den Brink, Wim; Van Ree, Jan M; Ramsey, Nick F
2006-04-01
Excessive use of cannabis may have long-term effects on cognitive abilities. Mild impairments have been found in several cognitive domains, particularly in memory and attention. It is not clear, however, whether these effects also occur with moderate, recreational use of cannabis. Furthermore, little is known about underlying brain correlates. The aim of this study is to assess brain function in frequent but relatively moderate cannabis users in the domains of working memory and selective attention. Functional magnetic resonance imaging was used to examine verbal working memory and visuo-auditory selective attention in ten frequent cannabis users (after 1 week of abstinence) and ten non-using healthy controls. Groups were similar in age, gender and estimated IQ. Cannabis users and controls performed equally well during the working memory task and the selective attention task. Furthermore, cannabis users did not differ from controls in terms of overall patterns of brain activity in the regions involved in these cognitive functions. However, for working memory, a more specific region-of-interest analysis showed that, in comparison to the controls, cannabis users displayed a significant alteration in brain activity in the left superior parietal cortex. No evidence was found for long-term deficits in working memory and selective attention in frequent cannabis users after 1 week of abstinence. Nonetheless, frequent cannabis use may affect brain function, as indicated by altered neurophysiological dynamics in the left superior parietal cortex during working memory processing.
Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung
2017-01-01
The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by alterations in activity patterns of the visual association areas, their connectivity with the prefrontal cortex, and their relationship with core clinical characteristics. These results highlight the role of information updating deficits in the cognitive control and symptomatology of depression.
Geiger, Lena S; Moessnang, Carolin; Schäfer, Axel; Zang, Zhenxiang; Zangl, Maria; Cao, Hengyi; van Raalten, Tamar R; Meyer-Lindenberg, Andreas; Tost, Heike
2018-05-11
The functional role of the basal ganglia (BG) in the gating of suitable motor responses to the cortex is well established. Growing evidence supports an analogous role of the BG during working memory encoding, a task phase in which the "input-gating" of relevant materials (or filtering of irrelevant information) is an important mechanism supporting cognitive capacity and the updating of working memory buffers. One important aspect of stimulus relevance is the novelty of working memory items, a quality that is understudied with respect to its effects on corticostriatal function and connectivity. To this end, we used functional magnetic resonance imaging (fMRI) in 74 healthy volunteers performing an established Sternberg working memory task with different task phases (encoding vs. retrieval) and degrees of stimulus familiarity (novel vs. previously trained). Activation analyses demonstrated a highly significant engagement of the anterior striatum, in particular during the encoding of novel working memory items. Dynamic causal modeling (DCM) of corticostriatal circuit connectivity identified a selective positive modulatory influence of novelty encoding on the connection from the dorsolateral prefrontal cortex (DLPFC) to the anterior striatum. These data extend prior research by further underscoring the relevance of the BG for human cognitive function and provide a mechanistic account of the DLPFC as a plausible top-down regulatory element of striatal function that may facilitate the "input-gating" of novel working memory materials.
Wang, Lei; Apple, Alexandra C; Schroeder, Matthew P; Ryals, Anthony J; Voss, Joel L; Gitelman, Darren; Sweet, Jerry J; Butt, Zeeshan A; Cella, David; Wagner, Lynne I
2016-01-15
Patients who receive adjuvant chemotherapy have reported cognitive impairments that may last for years after the completion of treatment. Working memory-related and long-term memory-related changes in this population are not well understood. The objective of this study was to demonstrate that cancer-related cognitive impairments are associated with the under recruitment of brain regions involved in working and recognition memory compared with controls. Oncology patients (n = 15) who were receiving adjuvant chemotherapy and had evidence of cognitive impairment according to neuropsychological testing and self-report and a group of age-matched, education group-matched, cognitively normal control participants (n = 14) underwent functional magnetic resonance imaging. During functional magnetic resonance imaging, participants performed a nonverbal n-back working memory task and a visual recognition task. On the working memory task, when 1-back and 2-back data were averaged and contrasted with 0-back data, significantly reduced activation was observed in the right dorsolateral prefrontal cortex for oncology patients versus controls. On the recognition task, oncology patients displayed decreased activity of the left-middle hippocampus compared with controls. Neuroimaging results were not associated with patient-reported cognition. Decreased recruitment of brain regions associated with the encoding of working memory and recognition memory was observed in the oncology patients compared with the control group. These results suggest that there is a reduction in neural functioning postchemotherapy and corroborate patient-reported cognitive difficulties after cancer treatment, although a direct association was not observed. Cancer 2016;122:258-268. © 2015 American Cancer Society. © 2015 American Cancer Society.
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Load matters: neural correlates of verbal working memory in children with autism spectrum disorder.
Vogan, Vanessa M; Francis, Kaitlyn E; Morgan, Benjamin R; Smith, Mary Lou; Taylor, Margot J
2018-06-01
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterised by diminished social reciprocity and communication skills and the presence of stereotyped and restricted behaviours. Executive functioning deficits, such as working memory, are associated with core ASD symptoms. Working memory allows for temporary storage and manipulation of information and relies heavily on frontal-parietal networks of the brain. There are few reports on the neural correlates of working memory in youth with ASD. The current study identified the neural systems underlying verbal working memory capacity in youth with and without ASD using functional magnetic resonance imaging (fMRI). Fifty-seven youth, 27 with ASD and 30 sex- and age-matched typically developing (TD) controls (9-16 years), completed a one-back letter matching task (LMT) with four levels of difficulty (i.e. cognitive load) while fMRI data were recorded. Linear trend analyses were conducted to examine brain regions that were recruited as a function of increasing cognitive load. We found similar behavioural performance on the LMT in terms of reaction times, but in the two higher load conditions, the ASD youth had lower accuracy than the TD group. Neural patterns of activations differed significantly between TD and ASD groups. In TD youth, areas classically used for working memory, including the lateral and medial frontal, as well as superior parietal brain regions, increased in activation with increasing task difficulty, while areas related to the default mode network (DMN) showed decreasing activation (i.e., deactivation). The youth with ASD did not appear to use this opposing cognitive processing system; they showed little recruitment of frontal and parietal regions across the load but did show similar modulation of the DMN. In a working memory task, where the load was manipulated without changing executive demands, TD youth showed increasing recruitment with increasing load of the classic fronto-parietal brain areas and decreasing involvement in default mode regions. In contrast, although they modulated the default mode network, youth with ASD did not show the modulation of increasing brain activation with increasing load, suggesting that they may be unable to manage increasing verbal information. Impaired verbal working memory in ASD would interfere with the youths' success academically and socially. Thus, determining the nature of atypical neural processing could help establish or monitor working memory interventions for ASD.
Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.
Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608
Engström, Maria; Landtblom, Anne-Marie; Karlsson, Thomas
2013-01-01
Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network [involving the anterior insular cortex (AIC) and the anterior cingulate cortex (ACC)] might be of particular importance to working memory tasks that require complex, effortful processing. Healthy participants (n = 26) and participants suffering from working memory problems related to the Kleine-Levin syndrome (KLS) (a specific form of periodic idiopathic hypersomnia; n = 18) participated in the study. Participants were further divided into a high- and low-capacity group, according to performance on a working memory task (listening span). In a functional magnetic resonance imaging (fMRI) study, participants were administered the reading span complex working memory task tapping cognitive effort. The fMRI-derived blood oxygen level dependent (BOLD) signal was modulated by (1) effort in both the central executive and the salience network and (2) capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive) network so that high-capacity participants evidence a lower signal and possibly hence a larger dynamic response.
Engström, Maria; Landtblom, Anne-Marie; Karlsson, Thomas
2013-01-01
Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network [involving the anterior insular cortex (AIC) and the anterior cingulate cortex (ACC)] might be of particular importance to working memory tasks that require complex, effortful processing. Method: Healthy participants (n = 26) and participants suffering from working memory problems related to the Kleine–Levin syndrome (KLS) (a specific form of periodic idiopathic hypersomnia; n = 18) participated in the study. Participants were further divided into a high- and low-capacity group, according to performance on a working memory task (listening span). In a functional magnetic resonance imaging (fMRI) study, participants were administered the reading span complex working memory task tapping cognitive effort. Principal findings: The fMRI-derived blood oxygen level dependent (BOLD) signal was modulated by (1) effort in both the central executive and the salience network and (2) capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. Conclusion: The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive) network so that high-capacity participants evidence a lower signal and possibly hence a larger dynamic response. PMID:23616756
MacNamara, Annmarie; Schmidt, Joseph; Zelinsky, Gregory J; Hajcak, Greg
2012-12-01
Working memory load reduces the late positive potential (LPP), consistent with the notion that functional activation of the DLPFC attenuates neural indices of sustained attention. Visual attention also modulates the LPP. In the present study, we sought to determine whether working memory load might exert its influence on ERPs by reducing fixations to arousing picture regions. We simultaneously recorded eye-tracking and EEG while participants performed a working memory task interspersed with the presentation of task-irrelevant fearful and neutral faces. As expected, fearful compared to neutral faces elicited larger N170 and LPP amplitudes; in addition, working memory load reduced the N170 and the LPP. Participants made more fixations to arousing regions of neutral faces and faces presented under high working memory load. Therefore, working memory load did not induce avoidance of arousing picture regions and visual attention cannot explain load effects on the N170 and LPP. Copyright © 2012 Elsevier B.V. All rights reserved.
Xie, Yuanjun; Feng, Zhengquan; Xu, Yuanyuan; Bian, Chen; Li, Min
2016-10-28
A putative functional role for alpha oscillations in working memory remains controversial. However, recent evidence suggests that such oscillation may reflect distinct phases of working memory processing. The present study investigated alpha band (8-13Hz) activity during the maintenance stage of working memory using a modified Sternberg working memory task. Our results reveal that alpha power was concentrated primarily in the occipital cortex and was decreased during the early stage of maintenance (0-600ms), and subsequently increased during the later stage of maintenance (1000-1600ms). We suggest that reduced alpha power may be involved in focused attention during the working memory maintenance, whereas increased alpha power may reflect suppression of visual stimuli to facilitate internal processing related to the task. This interpretation is generally consistent with recent reports suggesting that variations in alpha power are associated with the representation and processing of information in the discrete time intervals during the working memory maintenance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
ERIC Educational Resources Information Center
Holscher, Christian; Schmid, Susanne; Pilz, Peter K. D.; Sansig, Gilles; van der Putten, Herman; Plappert, Claudia F.
2005-01-01
Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in…
Nonverbal working memory of humans and monkeys: rehearsal in the sketchpad?
NASA Technical Reports Server (NTRS)
Washburn, D. A.; Astur, R. S.; Rumbaugh, D. M. (Principal Investigator)
1998-01-01
Investigations of working memory tend to focus on the retention of verbal information. The present experiments were designed to characterize the active maintenance rehearsal process used in the retention of visuospatial information. Rhesus monkeys (Macaca mulatta; N = 6) were tested as well as humans (total N = 90) because these nonhuman primates have excellent visual working memory but, unlike humans, cannot verbally recode the stimuli to employ verbal rehearsal mechanisms. A series of experiments was conducted using a distractor-task paradigm, a directed forgetting procedure, and a dual-task paradigm. No evidence was found for an active maintenance process for either species. Rather, it appears that information is maintained in the visuospatial sketchpad without active rehearsal.
Intrusion errors in visuospatial working memory performance.
Cornoldi, Cesare; Mammarella, Nicola
2006-02-01
This study tested the hypothesis that failure in active visuospatial working memory tasks involves a difficulty in avoiding intrusions due to information that is already activated. Two experiments are described, in which participants were required to process several series of locations on a 4 x 4 matrix and then to produce only the final location of each series. Results revealed a higher number of errors due to already activated locations (intrusions) compared with errors due to new locations (inventions). Moreover, when participants were required to pay extra attention to some irrelevant (non-final) locations by tapping on the table, intrusion errors increased. Results are discussed in terms of current models of working memory functioning.
Levels of processing and language modality specificity in working memory.
Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker
2013-03-01
Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
2016-05-31
auditory working memory task to vary cognitive workload by altering the number of digits held in memory during the simultaneous retention of a sentence...in memory . Cognitive efficacy is assessed based on accuracy in recalling digits from memory . A Gaussian classifier is used to discriminate cognitive...effectiveness of cognition under the existing load. One major factor that impacts cognitive load is the amount of working memory required in a task
The Impact of Sex Work Interruption on Blood-Derived T Cells in Sex Workers from Nairobi, Kenya.
Omollo, Kenneth; Boily-Larouche, Geneviève; Lajoie, Julie; Kimani, Makobu; Cheruiyot, Julianna; Kimani, Joshua; Oyugi, Julius; Fowke, Keith Raymond
Unprotected sexual intercourse exposes the female genital tract (FGT) to semen-derived antigens, which leads to a proinflammatory response. Studies have shown that this postcoital inflammatory response can lead to recruitment of activated T cells to the FGT, thereby increasing risk of HIV infection. The purpose of this study was to evaluate the impact of sex work on activation and memory phenotypes of peripheral T cells among female sex workers (FSW) from Nairobi, Kenya. Thirty FSW were recruited from the Pumwani Sex Workers Cohort, 10 in each of the following groups: HIV-exposed seronegative (at least 7 years in active sex work), HIV positive, and New Negative (HIV negative, less than 3 years in active sex work). Blood was obtained at three different phases (active sex work, abstinence from sex work-sex break, and following resumption of sex work). Peripheral blood mononuclear cells were isolated and stained for phenotypic markers (CD3, CD4, CD8, and CD161), memory phenotype markers (CD45RA and CCR7), activation markers (CD69, HLA-DR, and CD95), and the HIV coreceptor (CCR5). T-cell populations were compared between groups. In HIV-positive women, CD8+CCR5+ T cells declined at the sex break period, while CD4+CD161+ T cells increased when returning to sex work. All groups showed no significant changes in systemic T-cell activation markers following the interruption of sex work, however, significant reductions in naive CD8+ T cells were noted. For each of the study points, HIV positives had higher effector memory and CD8+CD95+ T cells and lower naive CD8+ T cells than the HIV-uninfected groups. Interruption of sex work had subtle effects on systemic T-cell memory phenotypes.
Parallel effects of memory set activation and search on timing and working memory capacity.
Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles
2014-01-01
Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent correct, which was found.
Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory
NASA Astrophysics Data System (ADS)
Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.
2004-10-01
The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.
Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.
Birnbaum, S G; Yuan, P X; Wang, M; Vijayraghavan, S; Bloom, A K; Davis, D J; Gobeske, K T; Sweatt, J D; Manji, H K; Arnsten, A F T
2004-10-29
The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.
ERIC Educational Resources Information Center
Rapport, Mark D.; Bolden, Jennifer; Kofler, Michael J.; Sarver, Dustin E.; Raiker, Joseph S.; Alderson, R. Matt
2009-01-01
Hyperactivity is currently considered a core and ubiquitous feature of attention-deficit/hyperactivity disorder (ADHD); however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory (WM) and activity level. The current study investigated whether children's activity level is functionally…
Modulation of working memory updating: Does long-term memory lexical association matter?
Artuso, Caterina; Palladino, Paola
2016-02-01
The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.
Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko
2015-05-01
Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.
MacNamara, Annmarie; Ferri, Jamie; Hajcak, Greg
2011-09-01
Emotion regulation decreases the processing of arousing stimuli, as indexed by the late positive potential (LPP), an electrocortical component that varies in amplitude with emotional arousal. Emotion regulation increases activity in the prefrontal areas associated with cognitive control, including the dosolateral prefrontal cortex (DLPFC). The present study manipulated working memory load, known to activate the DLPFC, and recorded the LPP elicited by aversive and neutral IAPS pictures presented during the retention interval. The LPP was larger on low-load compared to high-load trials, and on trials with aversive compared to neutral pictures. These LPP data suggest that emotional content and working memory load have opposing effects on attention to distracting stimuli. State anxiety was associated with reduced modulation of the LPP by working memory load. Results are discussed in terms of competition for attention between emotion and cognition and suggest a relationship between DLPFC activation and the allocation of attentional resources to distracting visual stimuli-a relationship that may be disrupted with increasing anxiety.
Gender differences in working memory networks: A BrainMap meta-analysis
Hill, Ashley C.; Laird, Angela R.; Robinson, Jennifer L.
2014-01-01
Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigation using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. PMID:25042764
Nelson, James K.; Reuter-Lorenz, Patricia A.; Persson, Jonas; Sylvester, Ching-Yune C.; Jonides, John
2009-01-01
Work in functional neuroimaging has mapped interference resolution processing onto left inferior frontal regions for both verbal working memory and a variety of semantic processing tasks. The proximity of the identified regions from these different tasks suggests the existence of a common, domain-general interference resolution mechanism. The current research specifically tests this idea in a within-subject design using fMRI to assess the activation associated with variable selection requirements in a semantic retrieval task (verb generation) and a verbal working memory task with a trial-specific proactive interference manipulation (recent-probes). High interference trials on both tasks were associated with activity in the midventrolateral region of the left inferior frontal gyrus, and the regions activated in each task strongly overlapped. The results indicate that an elemental component of executive control associated with interference resolution during retrieval from working memory and from semantic memory can be mapped to a common portion of the left inferior frontal gyrus. PMID:19111526
Gender differences in working memory networks: a BrainMap meta-analysis.
Hill, Ashley C; Laird, Angela R; Robinson, Jennifer L
2014-10-01
Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigations using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiple social identities and stereotype threat: imbalance, accessibility, and working memory.
Rydell, Robert J; McConnell, Allen R; Beilock, Sian L
2009-05-01
In 4 experiments, the authors showed that concurrently making positive and negative self-relevant stereotypes available about performance in the same ability domain can eliminate stereotype threat effects. Replicating past work, the authors demonstrated that introducing negative stereotypes about women's math performance activated participants' female social identity and hurt their math performance (i.e., stereotype threat) by reducing working memory. Moving beyond past work, it was also demonstrated that concomitantly presenting a positive self-relevant stereotype (e.g., college students are good at math) increased the relative accessibility of females' college student identity and inhibited their gender identity, eliminating attendant working memory deficits and contingent math performance decrements. Furthermore, subtle manipulations in questions presented in the demographic section of a math test eliminated stereotype threat effects that result from women reporting their gender before completing the test. This work identifies the motivated processes through which people's social identities became active in situations in which self-relevant stereotypes about a stigmatized group membership and a nonstigmatized group membership were available. In addition, it demonstrates the downstream consequences of this pattern of activation on working memory and performance. Copyright (c) 2009 APA, all rights reserved.
ERIC Educational Resources Information Center
Acheson, Daniel J.; MacDonald, Maryellen C.
2009-01-01
Many accounts of working memory posit specialized storage mechanisms for the maintenance of serial order. We explore an alternative, that maintenance is achieved through temporary activation in the language production architecture. Four experiments examined the extent to which the phonological similarity effect can be explained as a sublexical…
Time-Related Decay or Interference-Based Forgetting in Working Memory?
ERIC Educational Resources Information Center
Portrat, Sophie; Barrouillet, Pierre; Camos, Valerie
2008-01-01
The time-based resource-sharing model of working memory assumes that memory traces suffer from a time-related decay when attention is occupied by concurrent activities. Using complex continuous span tasks in which temporal parameters are carefully controlled, P. Barrouillet, S. Bernardin, S. Portrat, E. Vergauwe, & V. Camos (2007) recently…
Developmental Change in Working Memory Strategies: From Passive Maintenance to Active Refreshing
ERIC Educational Resources Information Center
Camos, Valerie; Barrouillet, Pierre
2011-01-01
Change in strategies is often mentioned as a source of memory development. However, though performance in working memory tasks steadily improves during childhood, theories differ in linking this development to strategy changes. Whereas some theories, such as the time-based resource-sharing model, invoke the age-related increase in use and…
3 CFR 8507 - Proclamation 8507 of April 28, 2010. Workers Memorial Day, 2010
Code of Federal Regulations, 2011 CFR
2011-01-01
... and activities in memory of those who have been killed due to unsafe working conditions. IN WITNESS... done, and my Administration is dedicated to renewing our Nation’s commitment to achieve safe working... their memory, we rededicate ourselves to preventing such tragedies, and to securing a safer workplace...
Working Memory: Maintenance, Updating, and the Realization of Intentions
Nyberg, Lars; Eriksson, Johan
2016-01-01
“Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287
Oberauer, Klaus; Lange, Elke B
2009-02-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.
Hippocampal-prefrontal input supports spatial encoding in working memory.
Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A
2015-06-18
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.
Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.
Katus, Tobias; Grubert, Anna; Eimer, Martin
2015-12-01
Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pereira, Jacinto; Wang, Xiao-Jing
2015-01-01
Recent studies have shown that reverberation underlying mnemonic persistent activity must be slow, to ensure the stability of a working memory system and to give rise to long neural transients capable of accumulation of information over time. Is the slower the underlying process, the better? To address this question, we investigated 3 slow biophysical mechanisms that are activity-dependent and prominently present in the prefrontal cortex: Depolarization-induced suppression of inhibition (DSI), calcium-dependent nonspecific cationic current (ICAN), and short-term facilitation. Using a spiking network model for spatial working memory, we found that these processes enhance the memory accuracy by counteracting noise-induced drifts, heterogeneity-induced biases, and distractors. Furthermore, the incorporation of DSI and ICAN enlarges the range of network's parameter values required for working memory function. However, when a progressively slower process dominates the network, it becomes increasingly more difficult to erase a memory trace. We demonstrate this accuracy–flexibility tradeoff quantitatively and interpret it using a state-space analysis. Our results supports the scenario where N-methyl-d-aspartate receptor-dependent recurrent excitation is the workhorse for the maintenance of persistent activity, whereas slow synaptic or cellular processes contribute to the robustness of mnemonic function in a tradeoff that potentially can be adjusted according to behavioral demands. PMID:25253801
Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro
2008-07-01
We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.
Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E
2016-01-01
Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will not emerge from candidate gene studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thalamic Activation in the Kleine-Levin Syndrome
Engström, Maria; Karlsson, Thomas; Landtblom, Anne-Marie
2014-01-01
Study Objectives: The objective of this study was to investigate if combined measures of activation in the thalamus and working memory capacity could guide the diagnosis of Kleine-Levin Syndrome (KLS). A second objective was to obtain more insight into the neurobiological causes of KLS. Design: Matched group and consecutive recruitment. Setting: University hospital neurology department and imaging center. Patients or Participants: Eighteen patients with KLS diagnosed according to the International Classification of Sleep Disorders and 26 healthy controls were included. Interventions: N/A. Measurements and Results: Working memory capacity was assessed by the listening span task. A version of this task (reading span) was presented to the participants during functional magnetic resonance imaging (fMRI). Activation in the thalamus was measured in a region of interest analysis. A combination of the working memory capacity and the thalamic activation measures resulted in 80% prediction accuracy, 81% sensitivity, and 78% specificity regarding the ability to separate KLS patients from healthy controls. The controls had an inverse relation between working memory capacity and thalamic activation; higher performing participants had lower thalamic activation (r = -0.41). KLS patients showed the opposite relationship; higher performing participants had a tendency to higher thalamic activation (r = -0.35). Conclusions: This study shows that functional neuroimaging of the thalamus combined with neuropsychological assessment of working memory function provides a means to guide diagnosis of Kleine-Levin Syndrome. Results in this study also indicate that imaging of brain function and evaluation of cognitive capacity can give insights into the neurobiological mechanisms of Kleine-Levin Syndrome. Citation: Engström M; Karlsson T; Landtblom AM. Thalamic activation in the Kleine-Levin Syndrome. SLEEP 2014;37(2):379-386. PMID:24497666
Kagan Structures, Processing, and Excellence in College Teaching
ERIC Educational Resources Information Center
Kagan, Spencer
2014-01-01
Frequent student processing of lecture content (1) clears working memory, (2) increases long-term memory storage, (3) produces retrograde memory enhancement, (4) creates episodic memories, (5) increases alertness, and (6) activates many brain structures. These outcomes increase comprehension of and memory for content. Many professors now…
Yuan, Weihong; Leach, James; Maloney, Thomas; Altaye, Mekibib; Smith, David; Gubanich, Paul J; Barber Foss, Kim D; Thomas, Staci; DiCesare, Christopher A; Kiefer, Adam W; Myer, Gregory D
2017-08-15
Emerging evidence indicates that repetitive head impacts, even at a sub-concussive level, may result in exacerbated or prolonged neurological deficits in athletes. This study aimed to: 1) quantify the effect of repetitive head impacts on the alteration of neuronal activity based on functional magnetic resonance imaging (fMRI) of working memory after a high school football season; and 2) determine whether a neck collar that applies mild jugular vein compression designed to reduce brain energy absorption in head impact through "slosh" mitigation can ameliorate the altered fMRI activation during a working memory task. Participants were recruited from local high school football teams with 27 and 25 athletes assigned to the non-collar and collar group, respectively. A standard N-Back task was used to engage working memory in the fMRI at both pre- and post-season. The two study groups experienced similar head impact frequency and magnitude during the season (all p > 0.05). fMRI blood oxygen level dependent (BOLD) signal response (a reflection of the neuronal activity level) during the working memory task increased significantly from pre- to post-season in the non-collar group (corrected p < 0.05), but not in the collar group. Areas displaying less activation change in the collar group (corrected p < 0.05) included the precuneus, inferior parietal cortex, and dorsal lateral prefrontal cortex. Additionally, BOLD response in the non-collar group increased significantly in direct association with the total number of impacts and total g-force (p < 0.05). Our data provide initial neuroimaging evidence for the effect of repetitive head impacts on the working memory related brain activity, as well as a potential protective effect that resulted from the use of the purported brain slosh reducing neck collar in contact sports.
Huang, Ran-Ran; Jia, Bao-Hui; Xie, Lei; Ma, Shu-Hua; Yin, Jing-Jing; Sun, Zong-Bo; Le, Hong-Bo; Xu, Wen-Can; Huang, Jin-Zhuang; Luo, Dong-Xue
2016-01-01
To explore mild cognitive dysfunction and/or spatial working memory impairment in patients with primary onset middle-age type 2 diabetes mellitus (T2DM] using ethology (behavior tests) and blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). Eighteen primary onset T2DM patients and 18 matched subjects with normal blood glucose levels were all tested using the Montreal cognitive assessment scale test, the Wechsler Memory Scale Chinese-revised test, and scanned using BOLD-fMRI (1.5T, EPI sequence) while performing the n-back task to find the activation intensity of some cognition-related areas. The ethology results showed that T2DM patients had a mild cognitive impairment and memory dysfunction (P < 0.05). The fMRI scan identified a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), bilateral premotor area (PreMA), bilateral parietal lobe (PA), and anterior cingulate cortex (ACC) / supplementary motor area (SMA) that was activated during the n-back task, with right hemisphere dominance. However, only the right PA and ACC/SMA showed a load effect via quantitative analysis in the T2DM group; the activation intensity of most working memory-related brain areas for the T2DM group were lower than for the control group under three memory loads. Furthermore, we found that the activation intensity of some cognition-related areas, including the right insular lobe, left caudate nucleus, and bilateral hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. Diabetes-related brain damage of primary onset middle-age T2DM patients with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial working memory and mild cognitive dysfunction. © 2015 Wiley Periodicals, Inc.
van Ewijk, Hanneke; Weeda, Wouter D; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, Jaap
2015-08-30
Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in VSWM-related brain abnormalities in ADHD. Functional magnetic resonance imaging (fMRI) data were collected from 109 individuals with ADHD (60% male) and 103 controls (53% male), aged 8-25 years, during a spatial span working memory task. VSWM-related brain activation was found in a widespread network, which was more widespread compared with N-back tasks used in the previous literature. Higher brain activation was associated with higher age and male gender. In comparison with controls, individuals with ADHD showed greater activation in the left inferior frontal gyrus (IFG) and the lateral frontal pole during memory load increase, effects explained by reduced activation on the low memory load in the IFG pars triangularis and increased activation during high load in the IFG pars opercularis. Age and gender effects did not differ between controls and individuals with ADHD. Results indicate that individuals with ADHD have difficulty in efficiently and sufficiently recruiting left inferior frontal brain regions with increasing task difficulty. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Ono, Yumie; Nanjo, Tatsuya; Ishiyama, Atsushi
2013-01-01
Using Magnetoencephalography (MEG) we studied functional connectivity of cortical areas during phonological working memory task. Six subjects participated in the experiment and their neuronal activity was measured by a 306-channel MEG system. We used a modified version of the visual Sternberg paradigm, which required subjects to memorize 8 alphabet letters in 2s for a late recall period. We estimated functional connectivity of oscillatory regional brain activities during the encoding session for each trial of each subject using beamformer source reconstruction and Granger causality analysis. Regional brain activities were mostly found in the bilateral premotor cortex (Brodmann area (BA) 6: PMC), the right dorsolateral prefrontal cortex (BA 9: DLPFC), and the right frontal eye field (BA 8). Considering that the left and right PMCs participate in the functions of phonological loop (PL) and the visuospatial sketchpad (VS) in the Baddeley's model of working memory, respectively, our result suggests that subjects utilized either single function or both functions of working memory circuitry to execute the task. Interestingly, the accuracy of the task was significantly higher in the trials where the alpha band oscillatory activities in the bilateral PMCs established functional connectivity compared to those where the PMC was not working in conjunction with its counterpart. Similar relationship was found in the theta band oscillatory activities between the right PMC and the right DLPFC, however in this case the establishment of functional connectivity significantly decreased the accuracy of the task. These results suggest that sharing the memory load with both PL- and VS- type memory storage circuitries contributed to better performance in the highly-demanding cognitive task.
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
Cabrera-Pastor, Andrea; Hernandez-Rabaza, Vicente; Taoro-Gonzalez, Lucas; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente
2016-10-01
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165
Teipel, Stefan; Ehlers, Inga; Erbe, Anna; Holzmann, Carsten; Lau, Esther; Hauenstein, Karlheinz; Berger, Christoph
2015-01-01
Working memory impairment is among the earliest signs of cognitive decline in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We aimed to study the functional and structural substrate of working memory impairment in early AD dementia and MCI. We studied a group of 12 MCI and AD subjects compared to 12 age- and gender-matched healthy elderly controls using diffusion tensor imaging (DTI), and functional magnetic resonance imaging (fMRI) during a 2-back versus 1-back letter recognition task. We performed a three-way image fusion analysis with joint independent component analysis of cortical activation during working memory, and DTI derived measures of fractional anisotropy (FA) and the mode of anisotropy. We found significant hypoactivation in posterior brain areas and relative hyperactivation in anterior brain areas during working memory in AD/MCI subjects compared to controls. Corresponding independent components from DTI data revealed reduced FA and reduced mode of anisotropy in intracortical projecting fiber tracts with posterior predominance and increased FA and increased mode along the corticospinal tract in AD/MCI compared to controls. Our findings suggest that impairments of structural fiber tract integrity accompany breakdown of posterior and relatively preserved anterior cortical activation during working memory performance in MCI/AD subjects. Copyright © 2014 by the American Society of Neuroimaging.
Effect of tobacco craving cues on memory encoding and retrieval in smokers.
Heishman, Stephen J; Boas, Zachary P; Hager, Marguerite C; Taylor, Richard C; Singleton, Edward G; Moolchan, Eric T
2006-07-01
Previous studies have shown that cue-elicited tobacco craving disrupted performance on cognitive tasks; however, no study has examined directly the effect of cue-elicited craving on memory encoding and retrieval. A distinction between encoding and retireval has been reported such that memory is more impaired when attention is divided at encoding than at retrieval. This study tested the hypothesis that active imagery of smoking situations would impair encoding processes, but have little effect on retrieval. Imagery scripts (cigarette craving and neutral content) were presented either before presentation of a word list (encoding trials) or before word recall (retrieval trials). A working memory task at encoding and free recall of words were assessed. Results indicated that active imagery disrupted working memory on encoding trials, but not on retrieval trials. There was a trend toward impaired working memory following craving scripts compared with neutral scripts. These data support the hypothesis that the cognitive underpinnings of encoding and retrieval processes are distinct.
Hernández-González, Marisela; Almanza-Sepúlveda, Mayra Linné; Olvera-Cortés, María Esther; Gutiérrez-Guzmán, Blanca Erika; Guevara, Miguel Angel
2012-08-01
The prefrontal cortex is involved in working memory functions, and several studies using food or drink as rewards have demonstrated that the rat is capable of performing tasks that involve working memory. Sexual activity is another highly-rewarding, motivated behaviour that has proven to be an efficient incentive in classical operant tasks. The objective of this study was to determine whether the functional activity of the medial prefrontal cortex (mPFC) changes in relation to the working memory processes involved in a sexually motivated task performed in male rats. Thus, male Wistar rats implanted in the mPFC were subjected to a nonmatching-to-sample task in a T-maze using sexual interaction as a reinforcer during a 4-day training period. On the basis of their performance during training, the rats were classified as 'good-learners' or 'bad-learners'. Only the good-learner rats showed an increase in the absolute power of the 8-13 Hz band during both the sample and test runs; a finding that could be related to learning of the working memory elements entailed in the task. During the maintenance phase only (i.e., once the rule had been learned well), the good-learner rats also showed an increased correlation of the 8-13 Hz band during the sample run, indicating that a high degree of coupling between the prefrontal cortices is necessary for the processing required to allow the rats to make correct decisions in the maintenance phase. Taken together, these data show that mPFC activity changes in relation to the working memory processes involved in a sexually motivated task in male rats.
Nocturnal sleep enhances working memory training in Parkinson's disease but not Lewy body dementia
Trotti, Lynn Marie; Wilson, Anthony G.; Greer, Sophia A.; Bliwise, Donald L.
2012-01-01
Working memory is essential to higher order cognition (e.g. fluid intelligence) and to performance of daily activities. Though working memory capacity was traditionally thought to be inflexible, recent studies report that working memory capacity can be trained and that offline processes occurring during sleep may facilitate improvements in working memory performance. We utilized a 48-h in-laboratory protocol consisting of repeated digit span forward (short-term attention measure) and digit span backward (working memory measure) tests and overnight polysomnography to investigate the specific sleep-dependent processes that may facilitate working memory performance improvements in the synucleinopathies. We found that digit span backward performance improved following a nocturnal sleep interval in patients with Parkinson's disease on dopaminergic medication, but not in those not taking dopaminergic medication and not in patients with dementia with Lewy bodies. Furthermore, the improvements in patients with Parkinson's disease on dopaminergic medication were positively correlated with the amount of slow-wave sleep that patients obtained between training sessions and negatively correlated with severity of nocturnal oxygen desaturation. The translational implication is that working memory capacity is potentially modifiable in patients with Parkinson's disease but that sleep disturbances may first need to be corrected. PMID:22907117
Nocturnal sleep enhances working memory training in Parkinson's disease but not Lewy body dementia.
Scullin, Michael K; Trotti, Lynn Marie; Wilson, Anthony G; Greer, Sophia A; Bliwise, Donald L
2012-09-01
Working memory is essential to higher order cognition (e.g. fluid intelligence) and to performance of daily activities. Though working memory capacity was traditionally thought to be inflexible, recent studies report that working memory capacity can be trained and that offline processes occurring during sleep may facilitate improvements in working memory performance. We utilized a 48-h in-laboratory protocol consisting of repeated digit span forward (short-term attention measure) and digit span backward (working memory measure) tests and overnight polysomnography to investigate the specific sleep-dependent processes that may facilitate working memory performance improvements in the synucleinopathies. We found that digit span backward performance improved following a nocturnal sleep interval in patients with Parkinson's disease on dopaminergic medication, but not in those not taking dopaminergic medication and not in patients with dementia with Lewy bodies. Furthermore, the improvements in patients with Parkinson's disease on dopaminergic medication were positively correlated with the amount of slow-wave sleep that patients obtained between training sessions and negatively correlated with severity of nocturnal oxygen desaturation. The translational implication is that working memory capacity is potentially modifiable in patients with Parkinson's disease but that sleep disturbances may first need to be corrected.
Item-location binding in working memory: is it hippocampus-dependent?
Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D
2014-07-01
A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J
2012-06-01
The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.
Goozee, Rhianna; Reinders, Antje A T S; Handley, Rowena; Marques, Tiago; Taylor, Heather; O'Daly, Owen; McQueen, Grant; Hubbard, Kathryn; Mondelli, Valeria; Pariante, Carmine; Dazzan, Paola
2016-06-01
Antipsychotic drugs target neurotransmitter systems that play key roles in working memory. Therefore, they may be expected to modulate this cognitive function via their actions at receptors for these neurotransmitters. However, the precise effects of antipsychotic drugs on working memory function remain unclear. Most studies have been carried out in clinical populations, making it difficult to disentangle pharmacological effects from pathology-related brain activation. In this study, we aim to investigate the effects of two antipsychotic compounds on brain activation during working memory in healthy individuals. This would allow elucidation of the effects of current antipsychotic treatments on brain function, independently of either previous antipsychotic use or disease-related pathology. We carried out a fully counterbalanced, randomised within-subject, double-blinded and placebo-controlled, cross-over study of the effects of two antipsychotic drugs on working memory function in 17 healthy individuals, using the n-back task. Participants completed the functional MRI task on three separate occasions (in randomised order): following placebo, haloperidol, and aripiprazole. For each condition, working memory ability was investigated, and maps of neural activation were entered into a random effects general linear regression model to investigate main working memory function and linear load. Voxel-wise and region of interest analyses were conducted to attain regions of altered brain activation for each intervention. Aripiprazole did not lead to any changes in neural activation compared with placebo. However, reaction time to a correct response was significantly increased following aripiprazole compared to both placebo (p=0.046) and haloperidol (p=0.02). In contrast, compared to placebo, haloperidol dampened activation in parietal (BA 7/40; left: FWE-corr. p=0.005; FWE-corr. right: p=0.007) and frontal (including prefrontal; BA 9/44/46; left: FWE-corr. p=0.009; right: FWE-corr. p=0.014) cortices and the left putamen (FWE-corr. p=0.004). Compared with aripiprazole, haloperidol dampened activation in parietal cortex (BA7/40; left: FWE-corr. p=0.034; right: FWE-corr. p=0.045) and the left putamen (FWE-corr.p=0.015). Haloperidol had no effect on working memory performance compared with placebo. Cognitive functions are known to be impaired in schizophrenia and as such are an important target of treatments. Elucidating the mechanisms by which antipsychotic medications alter brain activation underlying cognition is essential to advance pharmacological treatment of this disorder. Studies in healthy individuals can help elucidate some of these mechanisms, whilst limiting the confounding effect of the underlying disease-related pathology. Our study provides evidence for immediate and differential effects of single-dose haloperidol and aripiprazole on brain activation during working memory in healthy individuals. We propose that these differences likely reflect their different receptor affinity profiles, although the precise mechanisms underlying these differences remain unclear. Copyright © 2015 Elsevier B.V. All rights reserved.
Working memory, long-term memory, and medial temporal lobe function
Jeneson, Annette; Squire, Larry R.
2012-01-01
Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053
A neural measure of precision in visual working memory.
Ester, Edward F; Anderson, David E; Serences, John T; Awh, Edward
2013-05-01
Recent studies suggest that the temporary storage of visual detail in working memory is mediated by sensory recruitment or sustained patterns of stimulus-specific activation within feature-selective regions of visual cortex. According to a strong version of this hypothesis, the relative "quality" of these patterns should determine the clarity of an individual's memory. Here, we provide a direct test of this claim. We used fMRI and a forward encoding model to characterize population-level orientation-selective responses in visual cortex while human participants held an oriented grating in memory. This analysis, which enables a precise quantitative description of multivoxel, population-level activity measured during working memory storage, revealed graded response profiles whose amplitudes were greatest for the remembered orientation and fell monotonically as the angular distance from this orientation increased. Moreover, interparticipant differences in the dispersion-but not the amplitude-of these response profiles were strongly correlated with performance on a concurrent memory recall task. These findings provide important new evidence linking the precision of sustained population-level responses in visual cortex and memory acuity.
Working Memory in the Processing of Long-Distance Dependencies: Interference and Filler Maintenance
ERIC Educational Resources Information Center
Ness, Tal; Meltzer-Asscher, Aya
2017-01-01
During the temporal delay between the filler and gap sites in long-distance dependencies, the "active filler" strategy can be implemented in two ways: the filler phrase can be actively maintained in working memory ("maintenance account"), or it can be retrieved only when the parser posits a gap ("retrieval account").…
The Influence of Activation Level on Belief Bias in Relational Reasoning
ERIC Educational Resources Information Center
Banks, Adrian P.
2013-01-01
A novel explanation of belief bias in relational reasoning is presented based on the role of working memory and retrieval in deductive reasoning, and the influence of prior knowledge on this process. It is proposed that belief bias is caused by the believability of a conclusion in working memory which influences its activation level, determining…
A Role for Prefrontal Calcium-Sensitive Protein Phosphatase and Kinase Activities in Working Memory
ERIC Educational Resources Information Center
Runyan, Jason D.; Moore, Anthony N.; Dash, Pramod K.
2005-01-01
The prefrontal cortex is involved in the integration and interpretation of information for directing thoughts and planning action. Working memory is defined as the active maintenance of information in mind and is thought to lie at the core of many prefrontal functions. Although dopamine and other neurotransmitters have been implicated, the…
Weight and See: Loading Working Memory Improves Incidental Identification of Irrelevant Faces
Carmel, David; Fairnie, Jake; Lavie, Nilli
2012-01-01
Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie’s load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified. PMID:22912623
ERIC Educational Resources Information Center
Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam
2013-01-01
The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…
Control of the Contents of Working Memory--A Comparison of Two Paradigms and Two Age Groups
ERIC Educational Resources Information Center
Oberauer, Klaus
2005-01-01
Two experiments investigated whether young and old adults can temporarily remove information from a capacity-limited central component of working memory (WM) into another component, the activated part of long-term memory (LTM). Experiment 1 used a modified Sternberg recognition task (S. Sternberg, 1969); Experiment 2 used an arithmetic…
Forward Inferences: From Activation to Long-Term Memory.
ERIC Educational Resources Information Center
Klin, Celia M.; Murray, John D.; Levine, William H.; Guzman, Alexandria E.
1999-01-01
Investigates the extent to which forward inferences are activated and encoded during reading, as well as their prevalence and their time course. Finds that inferences were encoded and retained in working memory in both high- and low-predictability conditions, and that high-predictability forward inferences were encoded into long-term memory.…
Li, Yuanyuan; Li, Fei; He, Ning; Guo, Lanting; Huang, Xiaoqi; Lui, Su; Gong, Qiyong
2014-08-04
Impaired working memory is thought to be a core feature of attention deficit hyperactivity disorder (ADHD). Previous imaging studies investigating working memory in ADHD have used tasks involving different cognitive resources and ignoring the categorical judgments about objects that are essential parts of performance in visual working memory tasks, thus complicating the interpretation of their findings. In the present study, we explored differential neural activation in children and adolescents with ADHD and in healthy controls using functional magnetic resonance imaging (fMRI) with the categorical n-back task (CN-BT), which maximized demands for executive reasoning while holding memory demands constant. A total of 33 drug-naive, right-handed male ADHD without comorbidity (mean age 9.9±2.4 years) and 27 right-handed, healthy male controls (mean age 10.9±2.7 years) were recruited in the present study. Event-related fMRI was used to study differences in brain activity during the CN-BT between the two groups. The two groups did not differ in their accuracy in the CN-BT, although the ADHD patients showed significantly shorter reaction times to correct responses than did the controls. During the CN-BT, both ADHD patients and controls showed significant positive and negative activations by the correct responses, mainly in the sensory-motor pathways and the striato-cerebellum circuit. Additionally, the ADHD patients showed significantly higher activation in the bilateral globus pallidus and the right hippocampus compared with the controls. There was also a positive correlation between hyperactivation of the left globus pallidus and the reaction time to correct responses in ADHD. In contrast to controls, ADHD patients showed neural hyperactivation in the striatum and mediotemporal areas during a working memory task involving categorization. Hyperfunction in these areas might be the pathophysiological foundation of ADHD, related to the deficits of working memory and the impulsive symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.
Mesbah-Oskui, Lia; Georgiou, John; Roder, John C
2015-01-01
Background: Despite the prevalence of working memory deficits in schizophrenia, the neuronal mechanisms mediating these deficits are not fully understood. Importantly, deficits in spatial working memory are identified in numerous mouse models that exhibit schizophrenia-like endophenotypes. The hippocampus is one of the major brain regions that actively encodes spatial location, possessing pyramidal neurons, commonly referred to as ‘place cells’, that fire in a location-specific manner. This study tests the hypothesis that mice with a schizophrenia-like endophenotype exhibit impaired encoding of spatial location in the hippocampus. Aims: To characterize hippocampal place cell activity in mice that exhibit a schizophrenia-like endophenotype. Methods: We recorded CA1 place cell activity in six control mice and six mice that carry a point mutation in the disrupted-in-schizophrenia-1 gene (Disc1-L100P) and have previously been shown to exhibit deficits in spatial working memory. Results: The spatial specificity and stability of Disc1-L100P place cells were similar to wild-type place cells. Importantly, however, Disc1-L100P place cells exhibited a higher propensity to increase their firing rate in a single, large location of the environment, rather than multiple smaller locations, indicating a generalization in their spatial selectivity. Alterations in the signaling and numbers of CA1 putative inhibitory interneurons and decreased hippocampal theta (5–12 Hz) power were also identified in the Disc1-L100P mice. Conclusions: The generalized spatial selectivity of Disc1-L100P place cells suggests a simplification of the ensemble place codes that encode individual locations and subserve spatial working memory. Moreover, these results suggest that deficient working memory in schizophrenia results from an impaired ability to uniquely code the individual components of a memory sequence. PMID:27280123
Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.
Schneegans, Sebastian; Bays, Paul M
2018-05-23
Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time, such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no systematic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time. SIGNIFICANCE STATEMENT Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay, whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage. Copyright © 2018 Schneegans and Bays.
Working Memory, Motivation, and Teacher-Initiated Learning
NASA Astrophysics Data System (ADS)
Brooks, David W.; Shell, Duane F.
2006-03-01
Working memory is where we "think" as we learn. A notion that emerges as a synthesis from several threads in the research literatures of cognition, motivation, and connectionism is that motivation in learning is the process whereby working memory resource allocation is instigated and sustained. This paper reviews much literature on motivation and working memory, and concludes that the apparent novelty of the proposal offered to describe motivation in terms of working memory results from the apparent lack of cross-channel exchange among these research traditions. The relation between working memory and motivation is explored in the context of the interactive compensatory model of learning (ICML) in which learning is considered to result from the interaction of ability, motivation, and prior learning. The ICML is recast in light of the revised definition of motivation offered here. This paper goes on to suggest ways in which a range of teaching and learning issues and activities may be reconceptualized in the context of a model emphasizing a learner's working memory that makes use of chunks of previously acquired knowledge.
Working memory can enhance unconscious visual perception.
Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying
2012-06-01
We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.
Modulation of selective attention by polarity-specific tDCS effects.
Pecchinenda, Anna; Ferlazzo, Fabio; Lavidor, Michal
2015-02-01
Selective attention relies on working memory to maintain an attention set of task priorities. Consequently, selective attention is more efficient when working memory resources are not depleted. However, there is some evidence that distractors are processed even when working memory load is low. We used tDCS to assess whether boosting the activity of the Dorsolateral Prefrontal Cortex (DLPFC), involved in selective attention and working memory, would reduce interference from emotional distractors. Findings showed that anodal tDCS over the DLPFC was not sufficient to reduce interference from angry distractors. In contrast, cathodal tDCS over the DLPFC reduced interference from happy distractors. These findings show that altering the DLPFC activity is not sufficient to establish top-down control and increase selective attention efficiency. Although, when the neural signal in the DLPFC is altered by cathodal tDCS, interference from emotional distractors is reduced, leading to an improved performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marvel, Cherie L; Faulkner, Monica L; Strain, Eric C; Mintzer, Miriam Z; Desmond, John E
2012-03-01
Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging to examine brain activity associated with working memory in five opioid-dependent, methadone-maintained patients and five matched, healthy controls. An item recognition task was administered in two conditions: (1) a low working memory load "match" condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and (2) a high working memory load "manipulation" condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load ("manipulation" condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit and shed light on the neuroanatomical basis of working memory impairments in this population.
Marvel, Cherie L.; Faulkner, Monica L.; Strain, Eric C.; Mintzer, Miriam Z.; Desmond, John E.
2011-01-01
Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging (fMRI) to examine brain activity associated with working memory in 5 opioid-dependent, methadone-maintained patients and 5 matched, healthy controls. An item recognition task was administered in two conditions: 1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and 2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit, and shed light on the neuroanatomical basis of working memory impairments in this population. PMID:21892700
Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David
2017-10-01
Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Hancock, Laura M; Bruce, Jared M; Bruce, Amanda S; Lynch, Sharon G
2015-01-01
Between 40-65% of multiple sclerosis patients experience cognitive deficits, with processing speed and working memory most commonly affected. This pilot study investigated the effect of computerized cognitive training focused on improving processing speed and working memory. Participants were randomized into either an active or a sham training group and engaged in six weeks of training. The active training group improved on a measure of processing speed and attention following cognitive training, and data trended toward significance on measures of other domains. Results provide preliminary evidence that cognitive training with multiple sclerosis patients may produce moderate improvement in select areas of cognitive functioning.
Attention and working memory: two basic mechanisms for constructing temporal experiences
Marchetti, Giorgio
2014-01-01
Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language, and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activity, which has a discrete and periodic nature, and working memory, which allows for the combination of discrete attentional operations. An explanation is also provided of how past and future events are constructed. PMID:25177305
The cortisol awakening response and memory performance in older men and women.
Almela, Mercedes; van der Meij, Leander; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia
2012-12-01
The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory). Copyright © 2012 Elsevier Ltd. All rights reserved.
Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.
Zhao, Xiaojie; Li, Xiaoyun; Yao, Li
2017-01-01
Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.
‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework
Stokes, Mark G.
2015-01-01
Working memory (WM) provides the functional backbone to high-level cognition. Maintenance in WM is often assumed to depend on the stationary persistence of neural activity patterns that represent memory content. However, accumulating evidence suggests that persistent delay activity does not always accompany WM maintenance but instead seems to wax and wane as a function of the current task relevance of memoranda. Furthermore, new methods for measuring and analysing population-level patterns show that activity states are highly dynamic. At first glance, these dynamics seem at odds with the very nature of WM. How can we keep a stable thought in mind while brain activity is constantly changing? This review considers how neural dynamics might be functionally important for WM maintenance. PMID:26051384
Mackenzie, Michael J.; Zuniga, Krystle E.; Raine, Lauren B.; Awick, Elizabeth A.; Hillman, Charles H.; Kramer, Arthur F.
2016-01-01
Abstract Background: This study examined the effects of cardiorespiratory fitness, heart rate recovery, and physical activity on working memory in breast cancer survivors and age-matched controls. Method: Using a case-control design, 32 women who had received a breast cancer diagnosis and completed primary treatment within the past 36-months (11 radiation only; 21 chemotherapy) and 30 age-matched women with no previous cancer diagnosis completed a n-back continuous performance task commonly used as an assessment of working memory. In addition, cardiorespiratory fitness and heart rate recovery were measured during a submaximal graded exercise test and physical activity was measured using 7-days of accelerometer monitoring. Results: Breast cancer survivors who had received chemotherapy had poorer heart rate recovery (p = .010) and engaged in less physical activity than women who had received radiation only (p = .004) or non-cancer controls (p = .029). Cancer treatment (radiation; chemotherapy) predicted differences in reaction times on the 1-back working memory task (p = .029). However, more rapid heart rate recovery predicted shorter reaction times on the 1-back task in the age-matched control group (p = .002). All participants with greater cardiorespiratory fitness displayed greater accuracy independent of disease status on the 1-back task (p = .017). No significant group differences in reaction times were observed for 2-back target trials between breast cancer survivors and controls. However, greater total physical activity predicted shorter reaction times in breast cancer survivors (radiation, chemotherapy) on the 2-back task (p = .014). In addition, all participants who exhibited more rapid heart rate recovery demonstrated better greater accuracy regardless of disease status (p = .013). Conclusion: These findings support differences in physical activty participation, heart rate recovery, and 1- and 2-back working memory reaction times between breast cancer survivors and age-matched controls. Greater cardiorespiratory fitness, heart rate recovery, and physical activity were positively associated with better working memory performance across conditions. PMID:26418463
Festini, Sara B; Reuter-Lorenz, Patricia A
2017-01-01
Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and attention-demanding secondary task, on directed forgetting efficacy, and by (b) assessing the ability of people to perform forgetting in the absence of to-be-remembered competitors to rehearse. In Experiment 1, articulatory suppression interfered with directed forgetting, increasing the proportion of false alarms to to-be-forgotten probes in the working memory phase and decreasing the magnitude of the directed forgetting effect as assessed by an incidental long-term memory recognition test. Experiment 2 replicated the effects of articulatory suppression and tested whether the simultaneous requirement to retain, and presumably rehearse, to-be-remembered items was necessary for successful forgetting. The long-term directed forgetting effect was equivalent whether or not participants had to-be-remembered items to rehearse during the working memory phase. Experiment 3 included an additional comparison condition and confirmed that articulatory suppression interfered with directed forgetting and that participants were as efficient at directed forgetting with and without competitors to remember. In combination, these experiments suggest that directed forgetting in working memory requires an active control process that is limited by articulatory suppression, and that the demand to remember a concurrent memory set is unnecessary for this control process to operate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Pauly, Katharina; Seiferth, Nina Y; Kellermann, Thilo; Ruhrmann, Stephan; Daumann, Bianca; Backes, Volker; Klosterkötter, Joachim; Shah, N Jon; Schneider, Frank; Kircher, Tilo T; Habel, Ute
2010-07-01
Subtle emotional and cognitive dysfunctions may already be apparent in individuals at risk for psychosis. However, there is a paucity of research on the neural correlates of the interaction of both domains. It remains unclear whether those correlates are already dysfunctional before a transition to psychosis. We used functional magnetic resonance imaging to examine the interaction of working memory and emotion in 12 persons clinically at high risk for psychosis (CHR) and 12 healthy subjects individually matched for age, gender and parental education. Participants performed an n-back task while negative or neutral emotion was induced by olfactory stimulation. Although healthy and psychosis-prone subjects did not differ in their working memory performance or the evaluation of the induced emotion, decreased activations were found in CHR subjects in the superior parietal lobe and the precuneus during working memory and in the insula during emotion induction. Looking at the interaction, CHR subjects, showed decreased activation in the right superior temporal gyrus, which correlated negatively with psychopathological scores. Decreased activation was also found in the thalamus. However, an increase of activation emerged in several cerebellar regions. Dysfunctions in areas associated with controlling whether incoming information is linked to emotional content and in the integration of multimodal information might lead to compensatory activations of cerebellar regions known to be involved in olfactory and working memory processes. Our study underlines that cerebral dysfunctions related to cognitive and emotional processes, as well as their interaction, can emerge in persons with CHR, even in absence of behavioral differences. (c) 2009 Elsevier B.V. All rights reserved.
Ferreira, Nicola; Owen, Adrian; Mohan, Anita; Corbett, Anne; Ballard, Clive
2015-04-01
Emerging literature suggests that lifestyle factors may play an important role in reducing age-related cognitive decline. There have, however, been few studies investigating the role of cognitively stimulating leisure activities in maintaining cognitive health. This study sought to identify changes in cognitive performance with age and to investigate associations of cognitive performance with several key cognitively stimulating leisure activities. Over 65,000 participants provided demographic and lifestyle information and completed tests of grammatical reasoning, spatial working memory, verbal working memory and episodic memory. Regression analyses suggested that frequency of engaging in Sudoku or similar puzzles was significantly positively associated with grammatical reasoning, spatial working memory and episodic memory scores. Furthermore, for participants aged under 65 years, frequency of playing non-cognitive training computer games was also positively associated with performance in the same cognitive domains. The results also suggest that grammatical reasoning and episodic memory are particularly vulnerable to age-related decline. Further investigation to determine the potential benefits of participating in Sudoku puzzles and non-cognitive computer games is indicated, particularly as they are associated with grammatical reasoning and episodic memory, cognitive domains found to be strongly associated with age-related cognitive decline. Results of this study have implications for developing improved guidance for the public regarding the potential value of cognitively stimulating leisure activities. The results also suggest that grammatical reasoning and episodic memory should be targeted in developing appropriate outcome measures to assess efficacy of future interventions, and in developing cognitive training programmes to prevent or delay cognitive decline. Copyright © 2014 John Wiley & Sons, Ltd.
Guo, Wei; Wang, Biye; Lu, Yue; Zhu, Qin; Shi, Zhihao; Ren, Jie
2016-01-01
The purpose of the study was to investigate the relationship between different exercise modes and visuospatial working memory in healthy older adults. A cross-sectional design was adopted. A total of 111 healthy older adults were enrolled in the study. They were classified by the exercise-related questionnaire to be in an open-skill group, closed-skill group or sedentary group. In experiment 1, the participants performed a visuospatial working memory task. The results indicated that both closed-skill (p < 0.05) and open-skill (p < 0.01) groups reached a higher accuracy than the sedentary group. Experiment 2 examined whether the exercise-induced benefit of working memory was manifested in passive maintenance or active manipulation of working memory which was assessed by visuospatial short-term memory task and visuospatial mental rotation task, respectively. The results showed that the open-skill (p < 0.01) group was more accurate than the sedentary group in the visuospatial short-term memory task, whereas the group difference in the visuospatial mental rotation task was not significant. These findings combined to suggest that physical exercise was associated with better visuospatial working memory in older adults. Furthermore, open-skill exercises that demand higher cognitive processing showed selective benefit for passive maintenance of working memory.
ERIC Educational Resources Information Center
Kyttala, Minna; Lehto, Juhani E.
2008-01-01
Passive and active visuospatial working memory (VSWM) were investigated in relation to maths performance. The mental rotation task was employed as a measure of active VSWM whereas passive VSWM was investigated using a modified Corsi Blocks task and a matrix pattern task. The Raven Progressive Matrices Test measured fluid intelligence. A total of…
Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious.
Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.
2012-01-01
Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505
Vergauwe, Evie; Hartstra, Egbert; Barrouillet, Pierre; Brass, Marcel
2015-07-15
Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once. Copyright © 2015 Elsevier Inc. All rights reserved.
Intracranial recordings and human memory.
Johnson, Elizabeth L; Knight, Robert T
2015-04-01
Recent work involving intracranial recording during human memory performance provides superb spatiotemporal resolution on mnemonic processes. These data demonstrate that the cortical regions identified in neuroimaging studies of memory fall into temporally distinct networks and the hippocampal theta activity reported in animal memory literature also plays a central role in human memory. Memory is linked to activity at multiple interacting frequencies, ranging from 1 to 500Hz. High-frequency responses and coupling between different frequencies suggest that frontal cortex activity is critical to human memory processes, as well as a potential key role for the thalamus in neocortical oscillations. Future research will inform unresolved questions in the neuroscience of human memory and guide creation of stimulation protocols to facilitate function in the damaged brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Memory Activation and the Availability of Explanations in Sequential Diagnostic Reasoning
ERIC Educational Resources Information Center
Mehlhorn, Katja; Taatgen, Niels A.; Lebiere, Christian; Krems, Josef F.
2011-01-01
In the field of diagnostic reasoning, it has been argued that memory activation can provide the reasoner with a subset of possible explanations from memory that are highly adaptive for the task at hand. However, few studies have experimentally tested this assumption. Even less empirical and theoretical work has investigated how newly incoming…
Kuschpel, Maxim S; Liu, Shuyan; Schad, Daniel J; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A
2015-01-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.
Kuschpel, Maxim S.; Liu, Shuyan; Schad, Daniel J.; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A.
2015-01-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “Angry Birds” video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity. PMID:26579055
Oculomotor preparation as a rehearsal mechanism in spatial working memory.
Pearson, David G; Ball, Keira; Smith, Daniel T
2014-09-01
There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Humidity-activated shape memory effect on plasticized starch-based biomaterials.
Sessini, Valentina; Arrieta, Marina P; Fernández-Torres, Alberto; Peponi, Laura
2018-01-01
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Working memory training in older adults: Bayesian evidence supporting the absence of transfer.
Guye, Sabrina; von Bastian, Claudia C
2017-12-01
The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Working Memory Maturation: Can We Get at the Essence of Cognitive Growth?
Cowan, Nelson
2016-03-01
The theoretical and practical understanding of cognitive development depends on working memory, the limited information temporarily accessible for such daily activities as language processing and problem solving. In this article, I assess many possible reasons that working memory performance improves with development. A first glance at the literature leads to the weird impression that working memory capacity reaches adult levels during infancy but then regresses during childhood. In place of that unlikely explanation, I consider how infant studies may lead to overestimates of capacity if one neglects supports that the tasks provide, compared with adult-level tasks. Further development of working memory during the school years is also considered. Many investigators have come to suspect that working memory capacity may be constant after infancy because of various factors such as developmental increases in knowledge, filtering out of irrelevant distractions, encoding and rehearsal strategies, and pattern formation. With each of these factors controlled, though, working memory still improves during the school years. Suggestions are made for research to bridge the gap between infant and child developmental research, to understand the focus and control of attention in working memory and how these skills develop, and to pinpoint the nature of capacity and its development from infancy forward. © The Author(s) 2016.
Working Memory Maturation: Can We Get At the Essence of Cognitive Growth?
Cowan, Nelson
2015-01-01
Our theoretical and practical understanding of cognitive development depends on working memory, the limited information temporarily accessible for such daily activities as language processing and problem-solving. Here I assess many possible reasons why working memory performance improves with development. A first glance at the literature leads to the weird impression that working memory capacity reaches adult-like levels during infancy but then regresses during childhood. In place of that unlikely surmise, I consider how infant studies may lead to overestimates of capacity if one neglects supports that the tasks provide, compared to adult-like tasks. Further development of working memory during the school years is also considered. Various confounding factors have led many investigators to suspect that working memory capacity may be constant after infancy; the factors include developmental increases in knowledge, filtering out of irrelevant distractions, encoding and rehearsal strategies, and pattern formation. With each of these factors controlled, though, working memory still improves during the school years. Suggestions are made for research to bridge the gap between infant and child developmental research, to understand the focus and control of attention in working memory and how they develop, and to pinpoint the nature of capacity and its development from infancy on. PMID:26993277
Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin
2018-07-01
Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.
Regional brain activity that determines successful and unsuccessful working memory formation.
Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie
2016-08-01
Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.
Keightley, Michelle L; Saluja, Rajeet Singh; Chen, Jen-Kai; Gagnon, Isabelle; Leonard, Gabriel; Petrides, Michael; Ptito, Alain
2014-03-01
Abstract In children, the importance of detecting deficits after mild traumatic brain injury (mTBI) or concussion has grown with the increasing popularity of leisure physical activities and contact sports. Whereas most postconcussive symptoms (PCS) are similar for children and adults, the breadth of consequences to children remains largely unknown. To investigate the effect of mTBI on brain function, we compared working memory performance and related brain activity using blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 15 concussed youths and 15 healthy age-matched control subjects. Neuropsychological tests, self-perceived PCS, and levels of anxiety and depression were also assessed. Our results showed that, behaviorally, concussed youths had significantly worse performances on the working memory tasks, as well as on the Rey figure delayed recall and verbal fluency. fMRI results revealed that, compared to healthy children, concussed youths had significantly reduced task-related activity in bilateral dorsolateral prefrontal cortex, left premotor cortex, supplementary motor area, and left superior parietal lobule during performance of verbal and nonverbal working memory tasks. Additionally, concussed youths also showed less activation than healthy controls in the dorsal anterior cingulate cortex, left thalamus, and left caudate nucleus during the nonverbal task. Regression analysis indicated that BOLD signal changes in bilateral dorsolateral prefrontal cortex were significantly correlated with performance such that greater activities in these regions, relative to the control condition, were associated with greater accuracy. Our findings confirmed functional alterations in brain activity after concussion in youths, a result similar to that observed in adults. However, significant differences were noted. In particular, the observation of reduced working memory accuracy suggests that youths may be unable to engage compensatory strategies to maintain cognitive performance after mTBI. This has significant implications for safe return to daily activities, including competitive sport.
Singh Saluja, Rajeet; Chen, Jen-Kai; Gagnon, Isabelle; Leonard, Gabriel; Petrides, Michael; Ptito, Alain
2014-01-01
Abstract In children, the importance of detecting deficits after mild traumatic brain injury (mTBI) or concussion has grown with the increasing popularity of leisure physical activities and contact sports. Whereas most postconcussive symptoms (PCS) are similar for children and adults, the breadth of consequences to children remains largely unknown. To investigate the effect of mTBI on brain function, we compared working memory performance and related brain activity using blood-oxygen-level–dependent (BOLD) functional magnetic resonance imaging (fMRI) in 15 concussed youths and 15 healthy age-matched control subjects. Neuropsychological tests, self-perceived PCS, and levels of anxiety and depression were also assessed. Our results showed that, behaviorally, concussed youths had significantly worse performances on the working memory tasks, as well as on the Rey figure delayed recall and verbal fluency. fMRI results revealed that, compared to healthy children, concussed youths had significantly reduced task-related activity in bilateral dorsolateral prefrontal cortex, left premotor cortex, supplementary motor area, and left superior parietal lobule during performance of verbal and nonverbal working memory tasks. Additionally, concussed youths also showed less activation than healthy controls in the dorsal anterior cingulate cortex, left thalamus, and left caudate nucleus during the nonverbal task. Regression analysis indicated that BOLD signal changes in bilateral dorsolateral prefrontal cortex were significantly correlated with performance such that greater activities in these regions, relative to the control condition, were associated with greater accuracy. Our findings confirmed functional alterations in brain activity after concussion in youths, a result similar to that observed in adults. However, significant differences were noted. In particular, the observation of reduced working memory accuracy suggests that youths may be unable to engage compensatory strategies to maintain cognitive performance after mTBI. This has significant implications for safe return to daily activities, including competitive sport. PMID:24070614
Krivitzky, Lauren S; Roebuck-Spencer, Tresa M; Roth, Robert M; Blackstone, Kaitlin; Johnson, Chad P; Gioia, Gerard
2011-11-01
The current pilot study examined functional magnetic resonance imaging (fMRI) activation in children with mild traumatic brain injury (mTBI) during tasks of working memory and inhibitory control, both of which are vulnerable to impairment following mTBI. Thirteen children with symptomatic mTBI and a group of controls completed a version of the Tasks of Executive Control (TEC) during fMRI scanning. Both groups showed greater prefrontal activation in response to increased working memory load. Activation patterns did not differ between groups on the working memory aspects of the task, but children with mTBI showed greater activation in the posterior cerebellum with the addition of a demand for inhibitory control. Children with mTBI showed greater impairment on symptom report and "real world" measures of executive functioning, but not on traditional "paper and pencil" tasks. Likewise, cognitive testing did not correlate significantly with imaging results, whereas increased report of post-concussive symptoms were correlated with increased cerebellar activation. Overall, results provide some evidence for the utility of symptom report as an indicator of recovery and the hypothesis that children with mTBI may experience disrupted neural circuitry during recovery. Limitations of the study included a small sample size, wide age range, and lack of in-scanner accuracy data.
Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.
2016-01-01
The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513
Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L; Rayhan, Rakib; VanMeter, John W; Gracely, Richard H
2016-01-01
The subjective experience of cognitive dysfunction ("fibrofog") is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, "fibrofog" appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks.
The neural correlates of age effects on verbal-spatial binding in working memory.
Meier, Timothy B; Nair, Veena A; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek
2014-06-01
In this study, we investigated the neural correlates of age-related differences in the binding of verbal and spatial information utilizing event-related working memory tasks. Twenty-one right handed younger adults and twenty-one right handed older adults performed two versions of a dual task of verbal and spatial working memory. In the unbound dual task version letters and locations were presented simultaneously in separate locations, while in the bound dual task version each letter was paired with a specific location. In order to identify binding-specific differences, mixed-effects ANOVAs were run with the interaction of age and task as the effect of interest. Although older adults performed worse in the bound task than younger adults, there was no significant interaction between task and age on working memory performance. However, interactions of age and task were observed in brain activity analyses. Older adults did not display the greater unbound than bound task activity that younger adults did at the encoding phase in bilateral inferior parietal lobule, right putamen, and globus pallidus as well as at the maintenance phase in the cerebellum. We conclude that the binding of letters and locations in working memory is not as efficient in older adults as it is in younger adults, possibly due to the decline of cognitive control processes that are specific to working memory binding. Copyright © 2014 Elsevier B.V. All rights reserved.
The contribution of attentional lapses to individual differences in visual working memory capacity.
Adam, Kirsten C S; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K
2015-08-01
Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe.
The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity
Adam, Kirsten C. S.; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K.
2015-01-01
Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe. PMID:25811710
Johnston, Kevin; Everling, Stefan
2009-05-01
Visuospatial working memory is one of the most extensively investigated functions of the dorsolateral prefrontal cortex (DLPFC). Theories of prefrontal cortical function have suggested that this area exerts cognitive control by modulating the activity of structures to which it is connected. Here, we used the oculomotor system as a model in which to characterize the output signals sent from the DLPFC to a target structure during a classical spatial working memory task. We recorded the activity of identified DLPFC-superior colliculus (SC) projection neurons while monkeys performed a memory-guided saccade task in which they were required to generate saccades toward remembered stimulus locations. DLPFC neurons sent signals related to all aspects of the task to the SC, some of which were spatially tuned. These data provide the first direct evidence that the DLPFC sends task-relevant information to the SC during a spatial working memory task, and further support a role for the DLPFC in the direct modulation of other brain areas.
Selective involvement of superior frontal cortex during working memory for shapes.
Yee, Lydia T S; Roe, Katherine; Courtney, Susan M
2010-01-01
A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.
Manktelow, Anne E; Menon, David K; Sahakian, Barbara J; Stamatakis, Emmanuel A
2017-01-01
Traumatic brain injury (TBI) often results in cognitive impairments for patients. The aim of this proof of concept study was to establish the nature of abnormalities, in terms of activity and connectivity, in the working memory network of TBI patients and how these relate to compromised behavioral outcomes. Further, this study examined the neural correlates of working memory improvement following the administration of methylphenidate. We report behavioral, functional and structural MRI data from a group of 15 Healthy Controls (HC) and a group of 15 TBI patients, acquired during the execution of the N-back task. The patients were studied on two occasions after the administration of either placebo or 30 mg of methylphenidate. Between group tests revealed a significant difference in performance when HCs were compared to TBI patients on placebo [ F (1, 28) = 4.426, p < 0.05, η p 2 = 0.136]. This difference disappeared when the patients took methylphenidate [ F (1, 28) = 3.665, p = 0.66]. Patients in the middle range of baseline performance demonstrated the most benefit from methylphenidate. Changes in the TBI patient activation levels in the Left Cerebellum significantly and positively correlated with changes in performance ( r = 0.509, df = 13, p = 0.05). Whole-brain connectivity analysis using the Left Cerebellum as a seed revealed widespread negative interactions between the Left Cerebellum and parietal and frontal cortices as well as subcortical areas. Neither the TBI group on methylphenidate nor the HC group demonstrated any significant negative interactions. Our findings indicate that (a) TBI significantly reduces the levels of activation and connectivity strength between key areas of the working memory network and (b) Methylphenidate improves the cognitive outcomes on a working memory task. Therefore, we conclude that methylphenidate may render the working memory network in a TBI group more consistent with that of an intact working memory network.
Guevara, Miguel Angel; Cruz Paniagua, Edwin Iván; Hernández González, Marisela; Sandoval Carrillo, Ivett Karina; Almanza Sepúlveda, Mayra Linné; Hevia Orozco, Jorge Carlos; Amezcua Gutiérrez, Claudia
2018-03-15
Short-term memory and working memory are two closely-related concepts that involve the prefrontal and parietal areas. These two types of memory have been evaluated by means of the spatial span task in its forward and backward conditions, respectively. To determine possible neurofunctional differences between them, this study recorded electroencephalographic activity (EEG) in the frontopolar (Fp1, Fp2), dorsolateral (F3, F4), and parietal (P3 and P4) areas during performance of the forward and backward conditions of this task in young men. The backward condition (an indicator of working memory) was characterized by fewer correct answers, higher absolute power (AP) of the delta band in dorsolateral areas, and a lower correlation between frontopolar and dorsolateral regions in the fast bands (alpha, beta and gamma), mainly in the right hemisphere. The prefrontal EEG changes during backward performance may be associated with the higher attentional demands and inhibition processes required to invert the order of reproduction of a sequence. These data provide evidence that the forward and backward conditions of the spatial span task can be distinguished on the basis of neurofunctional activity and performance, and that each one is associated with a distinct pattern of electrical activity and synchronization between prefrontal areas. The higher AP of the delta band and lower correlation of the fast bands, particularly between right prefrontal areas during the backward condition of this visuospatial task, suggest greater participation by the right prefrontal areas in working memory. Copyright © 2018 Elsevier B.V. All rights reserved.
Sandry, Joshua; Schwark, Jeremy D; MacDonald, Justin
2014-10-01
The focus of attention seems to be a static element within working memory when verbal information is serially presented, unless additional time is available for processing or active maintenance. Experiment 1 manipulated the reward associated with early and medial list positions in a probe recognition paradigm and found evidence that these nonterminal list positions could be retrieved faster and more accurately if participants were appropriately motivated-without additional time for processing or active maintenance. Experiment 2 used articulatory suppression and demonstrated that the underlying maintenance mechanism cannot be attributed to rehearsal, leaving attentional refreshing as the more likely mechanism. These findings suggest that the focus of attention within working memory can flexibly maintain nonterminal early and medial list representations at the expense of other list representations even when there is not additional time for processing or active maintenance. Maintenance seems to be accomplished through an attentional refreshing mechanism.
McDermott, Timothy J.; Badura-Brack, Amy S.; Becker, Katherine M.; Ryan, Tara J.; Khanna, Maya M.; Heinrichs-Graham, Elizabeth; Wilson, Tony W.
2016-01-01
Background Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Methods Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Results Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. Limitations This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Conclusion Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder. PMID:26645740
Effects of Preretirement Work Complexity and Postretirement Leisure Activity on Cognitive Aging
Finkel, Deborah; Pedersen, Nancy L.
2016-01-01
Objectives: We examined the influence of postretirement leisure activity on longitudinal associations between work complexity in main lifetime occupation and trajectories of cognitive change before and after retirement. Methods: Information on complexity of work with data, people, and things, leisure activity participation in older adulthood, and four cognitive factors (verbal, spatial, memory, and speed) was available from 421 individuals in the longitudinal Swedish Adoption/Twin Study of Aging. Participants were followed for an average of 14.2 years (SD = 7.1 years) and up to 23 years across eight cognitive assessments. Most of the sample (88.6%) completed at least three cognitive assessments. Results: Results of growth curve analyses indicated that higher complexity of work with people significantly attenuated cognitive aging in verbal skills, memory, and speed of processing controlling for age, sex, and education. When leisure activity was added, greater cognitive and physical leisure activity was associated with reduced cognitive aging in verbal skills, speed of processing, and memory (for cognitive activity only). Discussion: Engagement in cognitive or physical leisure activities in older adulthood may compensate for cognitive disadvantage potentially imposed by working in occupations that offer fewer cognitive challenges. These results may provide a platform to encourage leisure activity participation in those retiring from less complex occupations. PMID:25975289
Repetition suppression and reactivation in auditory-verbal short-term recognition memory.
Buchsbaum, Bradley R; D'Esposito, Mark
2009-06-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related "increases" should be observed in the same posterior temporal regions that have been previously associated with "persistent activity" in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory-verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe.
Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.
Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M
2015-07-01
The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain. Copyright © 2015 the authors 0270-6474/15/359666-10$15.00/0.
ERIC Educational Resources Information Center
Wolfe, Christy D.; Bell, Martha Ann
2007-01-01
This study investigated age-related differences in working memory and inhibitory control (WMIC) in 3 1/2-, 4-, and 4 1/2-year-olds and how these differences were associated with differences in regulatory aspects of temperament, language comprehension, and brain electrical activity. A series of cognitive control tasks was administered to measure…
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J
2018-01-01
Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.
2018-01-01
Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769
Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work.
McKendrick, Ryan; Mehta, Ranjana; Ayaz, Hasan; Scheldrup, Melissa; Parasuraman, Raja
2017-02-01
The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.
Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.
Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong
2018-06-01
Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.
Emotional Modulation of Learning and Memory: Pharmacological Implications.
LaLumiere, Ryan T; McGaugh, James L; McIntyre, Christa K
2017-07-01
Memory consolidation involves the process by which newly acquired information becomes stored in a long-lasting fashion. Evidence acquired over the past several decades, especially from studies using post-training drug administration, indicates that emotional arousal during the consolidation period influences and enhances the strength of the memory and that multiple different chemical signaling systems participate in this process. The mechanisms underlying the emotional influences on memory involve the release of stress hormones and activation of the basolateral amygdala, which work together to modulate memory consolidation. Moreover, work suggests that this amygdala-based memory modulation occurs with numerous types of learning and involves interactions with many different brain regions to alter consolidation. Additionally, studies suggest that emotional arousal and amygdala activity in particular influence synaptic plasticity and associated proteins in downstream brain regions. This review considers the historical understanding for memory modulation and cellular consolidation processes and examines several research areas currently using this foundational knowledge to develop therapeutic treatments. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
The influence of activation level on belief bias in relational reasoning.
Banks, Adrian P
2013-04-01
A novel explanation of belief bias in relational reasoning is presented based on the role of working memory and retrieval in deductive reasoning, and the influence of prior knowledge on this process. It is proposed that belief bias is caused by the believability of a conclusion in working memory which influences its activation level, determining its likelihood of retrieval and therefore its effect on the reasoning process. This theory explores two main influences of belief on the activation levels of these conclusions. First, believable conclusions have higher activation levels and so are more likely to be recalled during the evaluation of reasoning problems than unbelievable conclusions, and therefore, they have a greater influence on the reasoning process. Secondly, prior beliefs about the conclusion have a base level of activation and may be retrieved when logically irrelevant, influencing the evaluation of the problem. The theory of activation and memory is derived from the Atomic Components of Thought-Rational (ACT-R) cognitive architecture and so this account is formalized in an ACT-R cognitive model. Two experiments were conducted to test predictions of this model. Experiment 1 tested strength of belief and Experiment 2 tested the impact of a concurrent working memory load. Both of these manipulations increased the main effect of belief overall and in particular raised belief-based responding in indeterminately invalid problems. These effects support the idea that the activation level of conclusions formed during reasoning influences belief bias. This theory adds to current explanations of belief bias by providing a detailed specification of the role of working memory and how it is influenced by prior knowledge. Copyright © 2012 Cognitive Science Society, Inc.
1988-02-29
reciprocity: An event- related brain potentials analysis. Acta Psychologica. Submitted for publication. 21. Stolar, N., Sparenborg, S., Donchin, E...in press) argued that it is a manifestation of a process related to the updating of models of the environment or context in working memory. Such an...suggemng " ees ud e may involve working memory, but they do am hold any privileged relation to working memory.u However, he immedi- ately proceeds to narrow
An interference model of visual working memory.
Oberauer, Klaus; Lin, Hsuan-Yu
2017-01-01
The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study.
Rahko, Jukka S; Vuontela, Virve A; Carlson, Synnöve; Nikkinen, Juha; Hurtig, Tuula M; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K; Remes, Jukka J; Jansson-Verkasalo, Eira M; Aronen, Eeva T; Pauls, David L; Ebeling, Hanna E; Tervonen, Osmo; Moilanen, Irma K; Kiviniemi, Vesa J
2016-06-01
The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.
Barendse, Evelien M; Hendriks, Marc Ph; Jansen, Jacobus Fa; Backes, Walter H; Hofman, Paul Am; Thoonen, Geert; Kessels, Roy Pc; Aldenkamp, Albert P
2013-06-04
Working memory is a temporary storage system under attentional control. It is believed to play a central role in online processing of complex cognitive information and may also play a role in social cognition and interpersonal interactions. Adolescents with a disorder on the autism spectrum display problems in precisely these domains. Social impairments, communication difficulties, and repetitive interests and activities are core domains of autism spectrum disorders (ASD), and executive function problems are often seen throughout the spectrum. As the main cognitive theories of ASD, including the theory of mind deficit hypotheses, weak central coherence account, and the executive dysfunction theory, still fail to explain the broad spectrum of symptoms, a new perspective on the etiology of ASD is needed. Deficits in working memory are central to many theories of psychopathology, and are generally linked to frontal-lobe dysfunction. This article will review neuropsychological and (functional) brain imaging studies on working memory in adolescents with ASD. Although still disputed, it is concluded that within the working memory system specific problems of spatial working memory are often seen in adolescents with ASD. These problems increase when information is more complex and greater demands on working memory are made. Neuroimaging studies indicate a more global working memory processing or connectivity deficiency, rather than a focused deficit in the prefrontal cortex. More research is needed to relate these working memory difficulties and neuroimaging results in ASD to the behavioral difficulties as seen in individuals with a disorder on the autism spectrum.
DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory
Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro
2014-01-01
Background Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. Methods A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. Results We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. Conclusions The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5. PMID:24819610
DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.
Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro
2014-01-01
Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.
Beatty, Erin L; Muller-Gass, Alexandra; Wojtarowicz, Dorothy; Jobidon, Marie-Eve; Smith, Ingrid; Lam, Quan; Vartanian, Oshin
2018-04-11
Humans rely on topographical memory to encode information about spatial aspects of environments. However, even though people adopt different strategies when learning new maps, little is known about the impact of those strategies on topographical memory, and their neural correlates. To examine that issue, we presented participants with 40 unfamiliar maps, each of which displayed one major route and three landmarks. Half were instructed to memorize the maps by focusing on the route, whereas the other half memorized the maps by focusing on the landmarks. One day later, the participants were tested on their ability to distinguish previously studied 'old' maps from completely unfamiliar 'new' maps under conditions of high and low working memory load in the functional MRI scanner. Viewing old versus new maps was associated with relatively greater activation in a distributed set of regions including bilateral inferior temporal gyrus - an important region for recognizing visual objects. Critically, whereas the performance of participants who had followed a route-based strategy dropped to chance level under high working memory load, participants who had followed a landmark-based strategy performed at above chance levels under both high and low working memory load - reflected by relatively greater activation in the left inferior parietal lobule (i.e. rostral part of the supramarginal gyrus known as area PFt). Our findings suggest that landmark-based learning may buffer against the effects of working memory load during recognition, and that this effect is represented by the greater involvement of a brain region implicated in both topographical and working memory.
Does learning to read shape verbal working memory?
Demoulin, Catherine; Kolinsky, Régine
2016-06-01
Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.
Working memory differences in long-distance dependency resolution
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component. PMID:25852623
Working memory differences in long-distance dependency resolution.
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component.
The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture.
Silvis, Jeroen D; Belopolsky, Artem V; Murris, Jozua W I; Donk, Mieke
2015-01-01
Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection.
The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture
Silvis, Jeroen D.; Belopolsky, Artem V.; Murris, Jozua W. I.; Donk, Mieke
2015-01-01
Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection. PMID:26566137
Verrico, Christopher D.; Gu, Hong; Peterson, Melanie L.; Sampson, Allan R.; Lewis, David A.
2014-01-01
Objective Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Method Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Results Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Conclusions Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing. PMID:24577206
Verrico, Christopher D; Gu, Hong; Peterson, Melanie L; Sampson, Allan R; Lewis, David A
2014-04-01
Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing.
Reward acts on the pFC to enhance distractor resistance of working memory representations.
Fallon, Sean James; Cools, Roshan
2014-12-01
Working memory and reward processing are often thought to be separate, unrelated processes. However, most daily activities involve integrating these two types of information, and the two processes rarely, if ever, occur in isolation. Here, we show that working memory and reward interact in a task-dependent manner and that this task-dependent interaction involves modulation of the pFC by the ventral striatum. Specifically, BOLD signal during gains relative to losses in the ventral striatum and pFC was associated not only with enhanced distractor resistance but also with impairment in the ability to update working memory representations. Furthermore, the effect of reward on working memory was accompanied by differential coupling between the ventral striatum and ignore-related regions in the pFC. Together, these data demonstrate that reward-related signals modulate the balance between cognitive stability and cognitive flexibility by altering functional coupling between the ventral striatum and the pFC.
Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity
Zeidman, Peter; Mullally, Sinéad L.; Maguire, Eleanor A.
2015-01-01
In recent years, evidence has accumulated to suggest the hippocampus plays a role beyond memory. A strong hippocampal response to scenes has been noted, and patients with bilateral hippocampal damage cannot vividly recall scenes from their past or construct scenes in their imagination. There is debate about whether the hippocampus is involved in the online processing of scenes independent of memory. Here, we investigated the hippocampal response to visually perceiving scenes, constructing scenes in the imagination, and maintaining scenes in working memory. We found extensive hippocampal activation for perceiving scenes, and a circumscribed area of anterior medial hippocampus common to perception and construction. There was significantly less hippocampal activity for maintaining scenes in working memory. We also explored the functional connectivity of the anterior medial hippocampus and found significantly stronger connectivity with a distributed set of brain areas during scene construction compared with scene perception. These results increase our knowledge of the hippocampus by identifying a subregion commonly engaged by scenes, whether perceived or constructed, by separating scene construction from working memory, and by revealing the functional network underlying scene construction, offering new insights into why patients with hippocampal lesions cannot construct scenes. PMID:25405941
Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.
Liu, Shuyan; Schad, Daniel J; Kuschpel, Maxim S; Rapp, Michael A; Heinz, Andreas
2016-01-01
Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.
Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making
Kuschpel, Maxim S.; Rapp, Michael A.; Heinz, Andreas
2016-01-01
Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes. PMID:26982326
West, Robert; Braver, Todd
2009-01-01
Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581
Pereira, Jacinto; Wang, Xiao-Jing
2015-10-01
Recent studies have shown that reverberation underlying mnemonic persistent activity must be slow, to ensure the stability of a working memory system and to give rise to long neural transients capable of accumulation of information over time. Is the slower the underlying process, the better? To address this question, we investigated 3 slow biophysical mechanisms that are activity-dependent and prominently present in the prefrontal cortex: Depolarization-induced suppression of inhibition (DSI), calcium-dependent nonspecific cationic current (ICAN), and short-term facilitation. Using a spiking network model for spatial working memory, we found that these processes enhance the memory accuracy by counteracting noise-induced drifts, heterogeneity-induced biases, and distractors. Furthermore, the incorporation of DSI and ICAN enlarges the range of network's parameter values required for working memory function. However, when a progressively slower process dominates the network, it becomes increasingly more difficult to erase a memory trace. We demonstrate this accuracy-flexibility tradeoff quantitatively and interpret it using a state-space analysis. Our results supports the scenario where N-methyl-d-aspartate receptor-dependent recurrent excitation is the workhorse for the maintenance of persistent activity, whereas slow synaptic or cellular processes contribute to the robustness of mnemonic function in a tradeoff that potentially can be adjusted according to behavioral demands. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W.
2017-01-01
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver’s cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous ‘n’ speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing. PMID:28424602
Boissoneault, Jeff; Frazier, Ian; Lewis, Ben; Nixon, Sara Jo
2016-01-01
Background Previous studies suggest older adults may be differentially susceptible to the acute neurobehavioral effects of moderate alcohol intake. To our knowledge, no studies have addressed acute moderate alcohol effects on the electrophysiological correlates of working memory in younger and older social drinkers. This study characterized alcohol-related effects on frontal theta (FTP) and posterior alpha power (PAP) associated with maintenance of visual information during a working memory task. Methods Older (55–70 years of age; n = 51, 29 women) and younger (25–35 years of age; n = 70, 39 women) community-dwelling moderate drinkers were recruited for this study. Participants were given either placebo or an active dose targeting breath alcohol concentrations (BrACs) of 0.04 or 0.065 g/dL. Following absorption, participants completed a visual working memory task assessing cue recognition following a 9s delay. FTP and PAP were determined via Fourier transformation and subjected to 2 (age group) X 3 (dose) X 2 (repeated: working memory task condition) mixed models analysis. Results In addition to expected age-related reductions in PAP, a significant age group X dose interaction was detected for PAP such that 0.04 g/dL dose level was associated with greater PAP in younger adults but lower PAP in their older counterparts. PAP was lower in older vs younger adults at both active doses. Further mixed models revealed a significant negative association between PAP and working memory efficiency for older adults. No effects of age, dose, or their interaction were noted for FTP. Conclusions Results bolster the small but growing body of evidence that older adults exhibit differential sensitivity to the neurobehavioral effects of moderate alcohol use. Given the theoretical role of PAP in attentional and working memory function, these findings shed light on the attentional mechanisms underlying effects of acute moderate alcohol on working memory efficiency in older adults. PMID:27419803
Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W
2017-01-01
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver's cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous 'n' speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing.
Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.
2013-01-01
The dorsolateral prefrontal cortex matures late into adolescence or early adulthood. This pattern of maturation mirrors working memory abilities, which continue to improve into adulthood. However, the nature of the changes that prefrontal neuronal activity undergoes during this process is poorly understood. We investigated behavioral performance and neural activity in working memory tasks around the time of puberty, a developmental event associated with the release of sex hormones and significant neurological change. The developmental stages of male rhesus monkeys were evaluated with a series of morphometric, hormonal, and radiographic measures. Peripubertal monkeys were trained to perform an oculomotor delayed response task and a variation of this task involving a distractor stimulus. We found that the peripubertal monkeys tended to abort a relatively large fraction of trials, and these were associated with low levels of task-related neuronal activity. However, for completed trials, accuracy in the delayed saccade task was high and the appearance of a distractor stimulus did not impact performance significantly. In correct trials delay period activity was robust and was not eliminated by the presentation of a distracting stimulus, whereas in trials that resulted in errors the sustained cue-related activity was significantly weaker. Our results show that in peripubertal monkeys the prefrontal cortex is capable of generating robust persistent activity in the delay periods of working memory tasks, although in general it may be more prone to stochastic failure than in adults. PMID:24047904
O'Hanlon, Erik; Howley, Sarah; Prasad, Sarah; McGrath, Jane; Leemans, Alexander; McDonald, Colm; Garavan, Hugh; Murphy, Kieran C
2016-12-01
Impaired spatial working memory is a core cognitive deficit observed in people with 22q11 Deletion syndrome (22q11DS) and has been suggested as a candidate endophenotype for schizophrenia. However, to date, the neuroanatomical mechanisms describing its structural and functional underpinnings in 22q11DS remain unclear. We quantitatively investigate the cognitive processes and associated neuroanatomy of spatial working memory in people with 22q11DS compared to matched controls. We examine whether there are significant between-group differences in spatial working memory using task related fMRI, Voxel based morphometry and white matter fiber tractography. Multimodal magnetic resonance imaging employing functional, diffusion and volumetric techniques were used to quantitatively assess the cognitive and neuroanatomical features of spatial working memory processes in 22q11DS. Twenty-six participants with genetically confirmed 22q11DS aged between 9 and 52 years and 26 controls aged between 8 and 46 years, matched for age, gender, and handedness were recruited. People with 22q11DS have significant differences in spatial working memory functioning accompanied by a gray matter volume reduction in the right precuneus. Gray matter volume was significantly correlated with task performance scores in these areas. Tractography revealed extensive differences along fibers between task-related cortical activations with pronounced differences localized to interhemispheric commissural fibers within the parietal section of the corpus callosum. Abnormal spatial working memory in 22q11DS is associated with aberrant functional activity in conjunction with gray and white matter structural abnormalities. These anomalies in discrete brain regions may increase susceptibility to the development of psychiatric disorders such as schizophrenia. Hum Brain Mapp 37:4689-4705, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lawlor-Savage, Linette; Goghari, Vina M.
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious. PMID:28558000
Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie
2016-08-01
The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Conway, Martin A.
2005-01-01
The Self-Memory System (SMS) is a conceptual framework that emphasizes the interconnectedness of self and memory. Within this framework memory is viewed as the data base of the self. The self is conceived as a complex set of active goals and associated self-images, collectively referred to as the "working self." The relationship between the…
Forsyth, Jennifer; Bachman, Peter; Asarnow, Robert
2017-01-01
Abstract Background: Gamma band oscillations (30–80 Hz) are associated with numerous sensory and higher cognitive functions and are abnormal in patients with schizophrenia. Glutamate signaling at the N-methyl-D-aspartate receptor (NMDAR) is theorized to play a key role in the pathophysiology of schizophrenia and NMDAR antagonists disrupt working memory and gamma oscillations in healthy individuals. It has therefore been suggested that NMDAR dysfunction may contribute to abnormalities in gamma oscillations and working memory in schizophrenia. In the current study, we examined the effects of acutely augmenting NMDAR signaling using the NMDAR agonist, d-cycloserine (DCS), on working memory and gamma power in patients with schizophrenia. Methods: In a double-blind design, patients with schizophrenia were randomized to receive a single dose of 100 mg DCS (SZ-DCS; n = 24) or Placebo (SZ-PLC; n = 21). Patients completed a spatial n-back task involving a 0-back control condition and 1-back and 2-back working memory loads while undergoing EEG recording. Gamma power (30–80 Hz) during the 0-back condition assessed gamma power associated with basic perceptual, motor, and attentive processes. Change in gamma power for correct working memory trials relative to the 0-back condition assessed gamma power associated with working memory function. Results: Among patients who performed above chance (SZ-DCS = 17, SZ-PLC = 16), patients who received DCS showed superior working memory performance compared to patients who received Placebo. Gamma power during the 0-back control condition was similar between SZ-DCS and SZ-PLC who performed above chance. However, gamma power associated with working memory function was significantly suppressed in SZ-DCS compared to SZ-PLC, particularly over frontal right channels. In addition, whereas higher working memory gamma power over frontal right channels was associated with better working memory performance in SZ-PLC, this relationship was not evident in SZ-DCS. Conclusion: Results suggest that augmenting NMDAR signaling enhanced working memory performance and suppressed gamma activity associated with working memory function in patients with schizophrenia. Given prior reports that schizophrenia patients may utilize excessive gamma power for successful working memory performance, these findings suggest that augmenting NMDAR signaling may improve the efficiency of neural encoding for successful working memory function in schizophrenia.
Mochizuki, Kei
2015-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287
Detailed sensory memory, sloppy working memory.
Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F
2010-01-01
Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.
White, David J; Cox, Katherine H M; Hughes, Matthew E; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B
2016-01-01
This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18-40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment ( n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.
White, David J.; Cox, Katherine H. M.; Hughes, Matthew E.; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B.
2016-01-01
This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18–40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity. PMID:27994548
The cortical basis of true memory and false memory for motion.
Karanian, Jessica M; Slotnick, Scott D
2014-02-01
Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Divided attention interferes with fulfilling activity-based intentions.
Brewer, Gene A; Ball, B Hunter; Knight, Justin B; Dewitt, Michael R; Marsh, Richard L
2011-09-01
Two experiments were conducted to examine the effects of divided attention on activity-based prospective memory. After establishing a goal to fulfill an intention upon completion of an ongoing activity, successful completion of the intention generally suffered when attention was being devoted to an additional task (Experiment 1). Forming an implementation intention at encoding ameliorated the negative effects of divided attention (Experiment 2). The results from the present experiments demonstrate that activity-based prospective memory is susceptible to distraction and that implementing encoding strategies that enhance prospective memory performance can reduce this interference. The current work raises interesting questions about the similarities and differences between event- and activity-based prospective memories. Published by Elsevier B.V.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco
2015-01-01
The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E. J.; Re, Marta; Esposito, Fabrizio; Sack, Alexander T.; Salle, Francesco Di
2015-01-01
Introduction The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. Methods To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. Results We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks. Conclusions Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network. PMID:25848951
Hudec, Kristen L; Alderson, R Matt; Patros, Connor H G; Lea, Sarah E; Tarle, Stephanie J; Kasper, Lisa J
2015-01-01
Motor activity of boys (age 8-12 years) with (n=19) and without (n=18) ADHD was objectively measured with actigraphy across experimental conditions that varied with regard to demands on executive functions. Activity exhibited during two n-back (1-back, 2-back) working memory tasks was compared to activity during a choice-reaction time (CRT) task that placed relatively fewer demands on executive processes and during a simple reaction time (SRT) task that required mostly automatic processing with minimal executive demands. Results indicated that children in the ADHD group exhibited greater activity compared to children in the non-ADHD group. Further, both groups exhibited the greatest activity during conditions with high working memory demands, followed by the reaction time and control task conditions, respectively. The findings indicate that large-magnitude increases in motor activity are predominantly associated with increased demands on working memory, though demands on non-executive processes are sufficient to elicit small to moderate increases in motor activity as well. Published by Elsevier Ltd.
Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.
2014-01-01
Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex. PMID:24691395
Sanz-Martin, Araceli; Hernández-González, Marisela; Guevara, Miguel Ángel; Santana, Gloria; Gumá-Díaz, Emilio
2014-02-01
The metabolism of alcohol and cognitive functions can vary during the menstrual cycle. Also, both alcohol ingestion and hormonal variations during menstruation have been associated with characteristic changes in electroencephalographic (EEG) activity. AIM. To determine whether EEG activity during a working memory task is affected by acute alcohol consumption, and if these EEG patterns vary in relation to different phases of the menstrual cycle. 24 women who drank a moderate dose of alcohol or placebo during the follicular and early luteal phases of the menstrual cycle. The EEG activity was recorded during performance of viso-spatial working memory task. Although the alcohol did not deteriorate the performance of working memory task, it caused in the EEG a decrease of relative theta power and lower right fronto-parietal correlation in theta and alpha2 bands. Only women who drank alcohol in the follicular phase had a higher relative potency of alpha1, which could indicate a lower level of arousal and attention. These results contribute to a better understanding of the brain mechanisms underlying cognitive changes with alcohol and its relationship to the menstrual cycle.
Hsu, Chien-Chang; Cheng, Ching-Wen; Chiu, Yi-Shiuan
2017-02-15
Electroencephalograms can record wave variations in any brain activity. Beta waves are produced when an external stimulus induces logical thinking, computation, and reasoning during consciousness. This work uses the beta wave of major scale working memory N-back tasks to analyze the differences between young musicians and non-musicians. After the feature analysis uses signal filtering, Hilbert-Huang transformation, and feature extraction methods to identify differences, k-means clustering algorithm are used to group them into different clusters. The results of feature analysis showed that beta waves significantly differ between young musicians and non-musicians from the low memory load of working memory task. Copyright © 2017 Elsevier B.V. All rights reserved.
The ERP research about the influence of the music of Chopin on working memory
NASA Astrophysics Data System (ADS)
Sun, C. A.; Wei, Hong-tao; Yue, Li-juan
2011-10-01
This study is to examine the effect of the music of Chopin on working memory and the electrical activity of the brain in different conditions by using event-related potentials (ERPs), adopting n-back experimental paradigm and to study the neuromechanism. Thirty adults performed behavioral experiments with three conditions of music and two levels of n-back task. Fourteen normal adults performed ERP experiments with the same program as the behavioral experiment and the EEG were recorded. Chopin music improved people's working memory and pilot music improved most effectively.P3 peak amplitude decreased as working memory load increased. Especially in high load task, P3 peak amplitude decreased gradually in pilot music, background music and free music condition.
N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.
Yaple, Zachary; Arsalidou, Marie
2018-05-07
The n-back task is likely the most popular measure of working memory for functional magnetic resonance imaging (fMRI) studies. Despite accumulating neuroimaging studies with the n-back task and children, its neural representation is still unclear. fMRI studies that used the n-back were compiled, and data from children up to 15 years (n = 260) were analyzed using activation likelihood estimation. Results show concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. Findings are discussed in terms of developmental methodology and potential contribution to developmental theories of cognition. © 2018 Society for Research in Child Development.
Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.
Holper, L; Van Brussel, L D; Schmidt, L; Schulthess, S; Burke, C J; Louie, K; Seifritz, E; Tobler, P N
2017-01-01
Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain's capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations.
Li, Xiaobo; Thermenos, Heidi W; Wu, Ziyan; Momura, Yoko; Wu, Kai; Keshavan, Matcheri; Seidman, Lawrence; DeLisi, Lynn E
2016-10-01
Working memory impairment (especially in verbal and spatial domains) is the core neurocognitive impairment in schizophrenia and the familial high-risk (FHR) population. Inconsistent results have been reported in clinical and neuroimaging studies examining the verbal- and spatial-memory deficits in the FHR subjects, due to sample differences and lack of understanding on interactions of the brain regions for processing verbal- and spatial-working memory. Functional MRI data acquired during a verbal- vs. spatial-memory task were included from 51 young adults [26 FHR and 25 controls]. Group comparisons were conducted in brain activation patterns responding to 1) verbal-memory condition (A), 2) spatial-memory condition (B), 3) verbal higher than spatial (A-B), 4) spatial higher than verbal (B-A), 5) conjunction of brain regions that were activated during both A and B (A∧B). Group difference of the laterality index (LI) in inferior frontal lobe for condition A was also assessed. Compared to controls, the FHR group exhibited significantly decreased brain activity in left inferior frontal during A, and significantly stronger involvement of ACC, PCC, paracentral gyrus for the contrast of A-B. The LI showed a trend of reduced left-higher-than-right pattern for verbal-memory processing in the HR group. Our findings suggest that in the entire functional brain network for working-memory processing, verbal information processing associated brain pathways are significantly altered in people at familial high risk for developing schizophrenia. Future studies will need to examine whether these alterations may indicate vulnerability for predicting the onset of Schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural correlates of working memory performance in primary insomnia.
Drummond, Sean P A; Walker, Matthew; Almklov, Erin; Campos, Manuel; Anderson, Dane E; Straus, Laura D
2013-09-01
To examine neural correlates of working memory performance in patients with primary insomnia (PIs) compared with well-matched good sleepers (GSs). Twenty-five PIs and 25 GSs underwent functional MRI while performing an N-back working memory task. VA hospital sleep laboratory and University-based functional imaging center. 25 PIs, 25 GSs. N/A. Although PIs did not differ from GSs in cognitive performance, PIs showed the expected differences from GSs in both self-reported and objective sleep measures. PIs, relative to GSs, showed reduced activation of task-related working memory regions. This manifested both as an overall reduction in activation of task-related regions and specifically as reduced modulation of right dorsolateral prefrontal cortex with increasing task difficulty. Similarly, PIs showed reduced modulation (i.e., reduced deactivation) of default mode regions with increasing task difficulty, relative to GSs. However, PIs showed intact performance. These data establish a profile of abnormal neural function in primary insomnia, reflected both in reduced engagement of task-appropriate brain regions and an inability to modulate task-irrelevant (i.e., default mode) brain areas during working memory performance. These data have implications for better understanding the neuropathophysiology of the well established, yet little understood, discrepancy between ubiquitous subjective cognitive complaints in primary insomnia and the rarely found objective deficits during testing.
Bollmann, Steffen; Ghisleni, Carmen; Poil, Simon-Shlomo; Martin, Ernst; Ball, Juliane; Eich-Höchli, Dominique; Klaver, Peter; O'Gorman, Ruth L; Michels, Lars; Brandeis, Daniel
2017-06-01
Attention-deficit/hyperactivity disorder (ADHD) has been associated with spatial working memory as well as frontostriatal core deficits. However, it is still unclear how the link between these frontostriatal deficits and working memory function in ADHD differs in children and adults. This study examined spatial working memory in adults and children with ADHD, focussing on identifying regions demonstrating age-invariant or age-dependent abnormalities. We used functional magnetic resonance imaging to examine a group of 26 children and 35 adults to study load manipulated spatial working memory in patients and controls. In comparison to healthy controls, patients demonstrated reduced positive parietal and frontostriatal load effects, i.e., less increase in brain activity from low to high load, despite similar task performance. In addition, younger patients showed negative load effects, i.e., a decrease in brain activity from low to high load, in medial prefrontal regions. Load effect differences between ADHD and controls that differed between age groups were found predominantly in prefrontal regions. Age-invariant load effect differences occurred predominantly in frontostriatal regions. The age-dependent deviations support the role of prefrontal maturation and compensation in ADHD, while the age-invariant alterations observed in frontostriatal regions provide further evidence that these regions reflect a core pathophysiology in ADHD.
Chang, L; Løhaugen, G C; Douet, V; Miller, E N; Skranes, J; Ernst, T
2016-02-02
Potent combined antiretroviral therapy decreased the incidence and severity of HIV-associated neurocognitive disorders (HAND); however, no specific effective pharmacotherapy exists for HAND. Patients with HIV commonly have deficits in working memory and attention, which may negatively impact many other cognitive domains, leading to HAND. Since HAND may lead to loss of independence in activities of daily living and negative emotional well-being, and incur a high economic burden, effective treatments for HAND are urgently needed. This study aims to determine whether adaptive working memory training might improve cognitive functions and neural network efficiency and possibly decrease neuroinflammation. This study also aims to assess whether subjects with the LMX1A-rs4657412 TT(AA) genotype show greater training effects from working memory training than TC(AG) or CC(GG)-carriers. 60 HIV-infected and 60 seronegative control participants will be randomized to a double-blind active-controlled study, using adaptive versus non-adaptive Cogmed Working Memory Training® (CWMT), 20-25 sessions over 5-8 weeks. Each subject will be assessed with near- and far-transfer cognitive tasks, self-reported mood and executive function questionnaires, and blood-oxygenation level-dependent functional MRI during working memory (n-back) and visual attention (ball tracking) tasks, at baseline, 1-month, and 6-months after CWMT. Furthermore, genotyping for LMX1A-rs4657412 will be performed to identify whether subjects with the TT(AA)-genotype show greater gain or neural efficiency after CWMT than those with other genotypes. Lastly, cerebrospinal fluid will be obtained before and after CWMT to explore changes in levels of inflammatory proteins (cytokines and chemokines) and monoamines. Improving working memory in HIV patients, using CWMT, might slow the progression or delay the onset of HAND. Observation of decreased brain activation or normalized neural networks, using fMRI, after CWMT would lead to a better understanding of how neural networks are modulated by CWMT. Moreover, validating the greater training gain in subjects with the LMX1A-TT(AA) genotype could lead to a personalized approach for future working memory training studies. Demonstrating and understanding the neural correlates of the efficacy of CWMT in HIV patients could lead to a safe adjunctive therapy for HAND, and possibly other brain disorders. ClinicalTrial.gov, NCT02602418.
Working Memory in the Prefrontal Cortex
Funahashi, Shintaro
2017-01-01
The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453
Pratt, Nikki; Willoughby, Adrian; Swick, Diane
2011-01-01
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict.
Pratt, Nikki; Willoughby, Adrian; Swick, Diane
2011-01-01
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict. PMID:21716633
ERIC Educational Resources Information Center
Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark
2007-01-01
Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…
ERIC Educational Resources Information Center
Kyriakopoulos, Marinos; Dima, Danai; Roiser, Jonathan P.; Corrigall, Richard; Barker, Gareth J.; Frangou, Sophia
2012-01-01
Objective: Disruption within the working memory (WM) neural network is considered an integral feature of schizophrenia. The WM network, and the dorsolateral prefrontal cortex (DLPFC) in particular, undergo significant remodeling in late adolescence. Potential interactions between developmental changes in the WM network and disease-related…
Recurrent Network models of sequence generation and memory
Rajan, Kanaka; Harvey, Christopher D; Tank, David W
2016-01-01
SUMMARY Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here, we demonstrate that starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network training (PINning), to model and match cellular-resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced choice task [Harvey, Coen and Tank, 2012]. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures. PMID:26971945
Low working memory capacity is only spuriously related to poor reading comprehension.
Van Dyke, Julie A; Johns, Clinton L; Kukona, Anuenue
2014-06-01
Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order-but not simple verbal memory or working memory-were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. Copyright © 2014 Elsevier B.V. All rights reserved.
Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony
Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S.
2016-01-01
Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity, the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations. PMID:28154616
Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony.
Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S
2016-01-01
Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity , the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations.
Finn, Peter R
2002-09-01
This article presents a cognitive-motivational theory (CMT) of the mechanisms associated with three basic dimensions of personality vulnerability to alcoholism, impulsivity/novelty seeking, harm avoidance, and excitement seeking. CMT describes the interrelationships between activity in basic motivational systems and attentional, decision-making and working memory processes as the mechanisms associated with variation in each personality trait. Impulsivity/novelty seeking reflects activity in both appetitive and inhibitory motivational systems, greater attention to reward cues, and increased emotional reactivity to reward and frustration. Harm avoidance reflects individual differences in fearfulness and activity in specific inhibitory systems. Excitement seeking reflects the need to engage in appetitive behaviors in less predictable environments to experience positive affect. CMT also describes the impact of working memory and the specific motivational processes underlying each trait dimension on the dynamics of decision making from the perspective of decision field theory.
Generalized memory associativity in a network model for the neuroses
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2009-03-01
We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.
Dolcos, Florin; Iordan, Alexandru D.; Kragel, James; Stokes, Jared; Campbell, Ryan; McCarthy, Gregory; Cabeza, Roberto
2013-01-01
A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM), whereas emotional distracters tend to impair working memory (WM) maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME) and WM impairing (WMI) effects, and the second goal was to explore individual differences in these mechanisms. During event-related functional magnetic resonance imaging (fMRI), participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1) emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala (AMY) and hippocampal activity (ventral system) coupled with reduced dorsolateral PFC (dlPFC) activity (dorsal system); (2) trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3) participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4) AMY activity increased and dlPFC activity decreased with measures of attentional impulsivity. Taken together, these results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory, and provide insights into the role of individual differences in the impact of emotional distraction. PMID:23761770
Effects of emotional content on working memory capacity.
Garrison, Katie E; Schmeichel, Brandon J
2018-02-13
Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.
López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther
2014-07-05
Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Janes, AC; Ross, RS; Farmer, S; Frederick, BB; Nickerson, L; Lukas, SE; Stern, CE
2013-01-01
Nicotine dependence is a chronic and difficult to treat disorder. While environmental stimuli associated with smoking precipitate craving and relapse, it is unknown whether smoking cues are cognitively processed differently than neutral stimuli. To evaluate working memory differences between smoking-related and neutral stimuli, we conducted a delay-match-to-sample (DMS) task concurrently with functional magnetic resonance imaging (fMRI) in nicotine dependent participants. The DMS task evaluates brain activation during the encoding, maintenance, and retrieval phases of working memory. Smoking images induced significantly more subjective craving, and greater midline cortical activation during encoding in comparison to neutral stimuli that were similar in content yet lacked a smoking component. The insula, which is involved in maintaining nicotine dependence, was active during the successful retrieval of previously viewed smoking vs. neutral images. In contrast, neutral images required more prefrontal cortex-mediated active maintenance during the maintenance period. These findings indicate that distinct brain regions are involved in the different phases of working memory for smoking-related vs. neutral images. Importantly the results implicate the insula in the retrieval of smoking-related stimuli, which is relevant given the insula’s emerging role in addiction. PMID:24261848
Janes, Amy C; Ross, Robert S; Farmer, Stacey; Frederick, Blaise B; Nickerson, Lisa D; Lukas, Scott E; Stern, Chantal E
2015-03-01
Nicotine dependence is a chronic and difficult to treat disorder. While environmental stimuli associated with smoking precipitate craving and relapse, it is unknown whether smoking cues are cognitively processed differently than neutral stimuli. To evaluate working memory differences between smoking-related and neutral stimuli, we conducted a delay-match-to-sample (DMS) task concurrently with functional magnetic resonance imaging (fMRI) in nicotine-dependent participants. The DMS task evaluates brain activation during the encoding, maintenance and retrieval phases of working memory. Smoking images induced significantly more subjective craving, and greater midline cortical activation during encoding in comparison to neutral stimuli that were similar in content yet lacked a smoking component. The insula, which is involved in maintaining nicotine dependence, was active during the successful retrieval of previously viewed smoking versus neutral images. In contrast, neutral images required more prefrontal cortex-mediated active maintenance during the maintenance period. These findings indicate that distinct brain regions are involved in the different phases of working memory for smoking-related versus neutral images. Importantly, the results implicate the insula in the retrieval of smoking-related stimuli, which is relevant given the insula's emerging role in addiction. © 2013 Society for the Study of Addiction.
Computational principles of working memory in sentence comprehension.
Lewis, Richard L; Vasishth, Shravan; Van Dyke, Julie A
2006-10-01
Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of cross-linguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.
Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.
2013-01-01
A common source of variance (i.e., “general intelligence”) underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals’ GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training. PMID:24129098
Obesity and unhealthy lifestyle associated with poor executive function among Malaysian adolescents.
Tee, Joyce Ying Hui; Gan, Wan Ying; Tan, Kit-Aun; Chin, Yit Siew
2018-01-01
The understanding on the roles of obesity and lifestyle behaviors in predicting executive function of adolescents has been limited. Low executive function proficiency may have adverse effects on adolescents' school academic performance. This cross-sectional study aimed to examine the relationship between BMI-for-age and multiple lifestyle behaviors (operationalized as meal consumption, physical activity, and sleep quality) with executive function (operationalized as inhibition, working memory, and cognitive flexibility) on a sample of Malaysian adolescents aged between 12 and 16 years (N = 513). Participants were recruited from two randomly selected schools in the state of Selangor in Malaysia. Using a self-administered questionnaire, parent participants provided information concerning their sociodemographic data, whereas adolescent participants provided information regarding their meal consumptions, physical activity, and sleep quality. The modified Harvard step test was used to assess adolescents' aerobic fitness, while Stroop color-word, digit span, and trail-making tests were used to assess adolescents' inhibition, working memory, and cognitive flexibility, respectively. Three separate hierarchical regression analyses were conducted for each outcome namely, inhibition, working memory, and cognitive flexibility. After adjusted for sociodemographic factors and BMI-for-age, differential predictors of inhibition and working memory were found. Habitual sleep efficiency significantly and positively predicted inhibition. Regular dinner intakes, physical activity levels, and sleep quality significantly and positively predicted working memory. Household income emerged as a consistent predictor for all executive function domains. In conclusion, an increased trend of obesity and unhealthy lifestyles among adolescents were found to be associated with poorer executive function. Regular dinner intakes, higher physical activity levels and better sleep quality predicted better executive function despite the inverse relationship between obesity and executive function. Future studies may explore how lifestyle modifications can optimize the development of executive function in adolescents as well as relieve the burden of obesity.
Nikolaidis, Aki; Voss, Michelle W.; Lee, Hyunkyu; Vo, Loan T. K.; Kramer, Arthur F.
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research. PMID:24711792
Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D
2013-10-15
A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals' GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.
Nikolaidis, Aki; Voss, Michelle W; Lee, Hyunkyu; Vo, Loan T K; Kramer, Arthur F
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David
2017-06-01
The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.
Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J
2016-01-01
Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.
Yuan, Weihong; Dudley, Jonathan; Barber Foss, Kim D; Ellis, Jonathan D; Thomas, Staci; Galloway, Ryan T; DiCesare, Christopher A; Leach, James L; Adams, Janet; Maloney, Thomas; Gadd, Brooke; Smith, David; Epstein, Jeff N; Grooms, Dustin R; Logan, Kelsey; Howell, David R; Altaye, Mekibib; Myer, Gregory D
2018-06-01
Recent neuroimaging studies have suggested that repetitive subconcussive head impacts, even after only one sport season, may lead to pre- to post-season structural and functional alterations in male high school football athletes. However, data on female athletes are limited. In the current investigation, we aimed to (1) assess the longitudinal pre- to post-season changes in functional MRI (fMRI) of working memory and working memory performance, (2) quantify the association between the pre- to post-season change in fMRI of working memory and the exposure to head impact and working memory performance, and (3) assess whether wearing a neck collar designed to reduce intracranial slosh via mild compression of the jugular veins can ameliorate the changes in fMRI brain activation observed in the female high school athletes who did not wear collars after a full soccer season. A total of 48 female high school soccer athletes (age range: 14.00-17.97 years) were included in the study. These athletes were assigned to the non-collar group (n = 21) or to the collar group (n = 27). All athletes undewent MRI at both pre-season and post-season. In each session, a fMRI verbal N-Back task was used to engage working memory. A significant pre- to post-season increase in fMRI blood oxygen level dependent (BOLD) signal was demonstrated when performing the N-back working memory task in the non-collar group but not in the collar group, despite the comparable exposure to head impacts during the season between the two groups. The collar group demonstrated significantly smaller pre- to post-season change in fMRI BOLD signal than the non-collar group, suggesting a potential protective effect from the collar device. Significant correlations were also found between the pre- to post-season increase in fMRI brain activation and the decrease in task accuracy in the non-collar group, indicating an association between the compensatory mechanism in underlying neurophysiology and the alteration in the behavioral outcomes.
Strategic trade-offs between quality and quantity in working memory
Fougnie, Daryl; Cormiea, Sarah M.; Kanabar, Anish; Alvarez, George A.
2016-01-01
Is working memory capacity determined by an immutable limit—e.g. four memory storage slots? The fact that performance is typically unaffected by task instructions has been taken as support for such structural models of memory. Here, we modified a standard working memory task to incentivize participants to remember more items. Participants were asked to remember a set of colors over a short retention interval. In one condition, participants reported a random item’s color using a color wheel. In the modified task, participants responded to all items and their response was only considered correct if all responses were on the correct half of the color wheel. We looked for a trade-off between quantity and quality—participants storing more items, but less precisely, when required to report them all. This trade-off was observed when tasks were blocked, when task-type was cued after encoding, but not when task-type was cued during the response, suggesting that task differences changed how items were actively encoded and maintained. This strategic control over the contents of working memory challenges models that assume inflexible limits on memory storage. PMID:26950383
Prehn, Kristin; Schulze, Lars; Rossmann, Sabine; Berger, Christoph; Vohs, Knut; Fleischer, Monika; Hauenstein, Karlheinz; Keiper, Peter; Domes, Gregor; Herpertz, Sabine C
2013-02-01
OBJECTIVE. In the present study, we aimed to investigate the influence of concurrently presented emotional stimuli on cognitive task processing in violent criminal offenders primarily characterized by affective instability. METHODS. Fifteen male criminal offenders with antisocial and borderline personality disorder (ASPD and BPD) and 17 healthy controls underwent functional magnetic resonance imaging (fMRI) while performing a working memory task with low and high working memory load. In a second experimental run, to investigate the interaction of emotion and cognition, we presented emotionally neutral, low, or high salient social scenes in the background of the task. RESULTS. During the memory task without pictures, both groups did not differ in general task performance and neural representation of working memory processes. During the memory task with emotional background pictures, however, ASPD-BPD subjects compared to healthy controls showed delayed responses and enhanced activation of the left amygdala in the presence of emotionally high salient pictures independent of working memory load. CONCLUSIONS. These results illustrate an interaction of emotion and cognition in affective instable individuals with enhanced reactivity to emotionally salient stimuli which might be an important factor regarding the understanding of aggressive and violent behaviour in these individuals.
Rapid Forgetting Results From Competition Over Time Between Items in Visual Working Memory
2016-01-01
Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other’s representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. PMID:27668485
Prehn-Kristensen, Alexander; Krauel, Kerstin; Hinrichs, Hermann; Fischer, Jochen; Malecki, Ulrike; Schuetze, Hartmut; Wolff, Stephan; Jansen, Olav; Duezel, Emrah; Baving, Lioba
2011-05-04
Patients with attention-deficit/hyperactivity disorder (ADHD) show deficits in working memory (WM) which may be related to prefrontal dysfunction. Methylphenidate (MPH) can restore WM deficits in ADHD by enhancing prefrontal activity. At the same time, changes in striatal activation could cause ADHD patients to be more interference-sensitive during working memory tasks. However, it is unclear whether MPH reduces WM distractibility in ADHD. In this fMRI study, 12 ADHD patients and 12 healthy controls participated on two separate days in a delayed-match-to-sample test. During the delay interval, a distractor stimulus was presented in half of the trials. Children and adolescents with ADHD received MPH only on one of the two sessions. Behavioral data analyses revealed that MPH normalized WM in ADHD. However, MPH did not improve WM performance when a distractor was presented during the delay interval. Functional images showed that MPH enhanced prefrontal activity during the delay in ADHD patients when no distractor was present. If the delay was interrupted by a distractor, only healthy controls showed activation of the caudate. In patients with ADHD, however, in line with behavioral data, MPH did not enhance caudate activity. In healthy youth, caudate activity is involved in interference control allowing the successful maintenance of information in working memory even in the presence of distraction. Our findings suggest that interference control, linked to caudate activity, is not adequately enhanced by MPH in ADHD. Copyright © 2011 Elsevier B.V. All rights reserved.
Working memory in Farsi-speaking children with normal development and cochlear implant.
Soleymani, Zahra; Amidfar, Meysam; Dadgar, Hooshang; Jalaie, Shohre
2014-04-01
Working memory has an important role in language acquisition and development of cognition skills. The ability of encoding, storage and retrieval of phonological codes, as activities of working memory, acquired by audition sense. Children with cochlear implant experience a period that they are not able to perceive sounds. In order to assess the effect of hearing on working memory, we investigated working memory as a cognition skill in children with normal development and cochlear implant. Fifty students with normal hearing and 50 students with cochlear implant aged 5-7 years participated in this study. Children educated in the preschool, the first and second grades. Children with normal development were matched based on age, gender, and grade of education with cochlear implant. Two components of working memory including phonological loop and central executive were compared between two groups. Phonological loop assessed by nonword repetition task and forward digit span. To assess central executive component backward digit span was used. The developmental trend was studied in children with normal development and cochlear implant as well. The effect of age at implantation in children with cochlear implants on components of working memory was investigated. There are significant differences between children with normal development and cochlear implant in all tasks that assess working memory (p < 0.001). The children's age at implantation was negatively correlated with all tasks (p < 0.001). In contrast, duration of usage of cochlear implant set was positively correlated with all tasks (p < 0.001). The comparison of working memory between different grades showed significant differences both in children with normal development and in children with cochlear implant (p < 0.05). These results implied that children with cochlear implant may experience difficulties in working memory. Therefore, these children have problems in encoding, practicing, and repeating phonological units. The results also suggested working memory develops when the child grows up. In cochlear implant children, with decreasing age at implantation and increasing their experience in perceiving sound, working memory skills improved. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cognition in school-aged children with "active" epilepsy: A population-based study.
Reilly, Colin; Atkinson, Patricia; Das, Krishna B; Chin, Richard F M; Aylett, Sarah E; Burch, Victoria; Gillberg, Christopher; Scott, Rod C; Neville, Brian G R
2015-01-01
There is a lack of population-based data on specific cognitive profiles in childhood epilepsy. This study sought to determine the frequency of impairments in global cognition and aspects of working memory and processing speed in a population-based sample of children with "active" epilepsy (on antiepileptic Drugs (AEDs), and/or had a seizure in the last year). Factors significantly associated with global and specific difficulties in cognition were also identified. A total of 85 (74% of eligible population) school-aged children (5-15 years) with "active" epilepsy underwent comprehensive psychological assessment including assessment of global cognition, working memory, and processing speed. Scores on cognitive subtests were compared via paired-samples t tests. The factors associated with cognitive difficulties were analyzed via linear regression. A total of 24% of children were functioning below IQ 50, and 40% had IQ scores below 70. Scores on the Processing Speed Index were significantly lower than scores on the Verbal or Performance indexes on Wechsler instruments. The Coding subtest was a significant weakness compared with the other Wechsler subtests. A total of 58% of children displayed "memory underachievement" (memory score 1 SD below assessed IQ) on at least one of the four administered working memory subtests. Factors significantly associated with globally impaired cognition included being on polytherapy (β = -13.0; 95% CI [-19.3, -6.6], p = .000) and having attention-deficit/hyperactivity disorder (ADHD; β = -11.1, 95% CI [-3.0, -19.3], p = .008). Being on polytherapy was also associated with lower scores on the working memory and processing speed composite scores. Having developmental coordination disorder (DCD) was associated with a lower score on the processing speed composite. There is a high rate of global and specific cognitive difficulties in childhood epilepsy. Difficulties are most pronounced in aspects of working memory and processing speed. Predictors of cognitive impairment in childhood epilepsy include epilepsy-related and behavioral factors, which may differ depending on the domain of cognition assessed.
Modelling neural correlates of working memory: A coordinate-based meta-analysis
Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B.
2011-01-01
Working memory subsumes the capability to memorize, retrieve and utilize information for a limited period of time which is essential to many human behaviours. Moreover, impairments of working memory functions may be found in nearly all neurological and psychiatric diseases. To examine what brain regions are commonly and differently active during various working memory tasks, we performed a coordinate-based meta-analysis over 189 fMRI experiments on healthy subjects. The main effect yielded a widespread bilateral fronto-parietal network. Further meta-analyses revealed that several regions were sensitive to specific task components, e.g. Broca’s region was selectively active during verbal tasks or ventral and dorsal premotor cortex were preferentially involved in memory for object identity and location, respectively. Moreover, the lateral prefrontal cortex showed a division in a rostral and a caudal part based on differential involvement in task-set and load effects. Nevertheless, a consistent but more restricted “core” network emerged from conjunctions across analyses of specific task designs and contrasts. This “core” network appears to comprise the quintessence of regions, which are necessary during working memory tasks. It may be argued that the core regions form a distributed executive network with potentially generalized functions for focusing on competing representations in the brain. The present study demonstrates that meta-analyses are a powerful tool to integrate the data of functional imaging studies on a (broader) psychological construct, probing the consistency across various paradigms as well as the differential effects of different experimental implementations. PMID:22178808
Working Memory Replay Prioritizes Weakly Attended Events.
Jafarpour, Anna; Penny, Will; Barnes, Gareth; Knight, Robert T; Duzel, Emrah
2017-01-01
One view of working memory posits that maintaining a series of events requires their sequential and equal mnemonic replay. Another view is that the content of working memory maintenance is prioritized by attention. We decoded the dynamics for retaining a sequence of items using magnetoencephalography, wherein participants encoded sequences of three stimuli depicting a face, a manufactured object, or a natural item and maintained them in working memory for 5000 ms. Memory for sequence position and stimulus details were probed at the end of the maintenance period. Decoding of brain activity revealed that one of the three stimuli dominated maintenance independent of its sequence position or category; and memory was enhanced for the selectively replayed stimulus. Analysis of event-related responses during the encoding of the sequence showed that the selectively replayed stimuli were determined by the degree of attention at encoding. The selectively replayed stimuli had the weakest initial encoding indexed by weaker visual attention signals at encoding. These findings do not rule out sequential mnemonic replay but reveal that attention influences the content of working memory maintenance by prioritizing replay of weakly encoded events. We propose that the prioritization of weakly encoded stimuli protects them from interference during the maintenance period, whereas the more strongly encoded stimuli can be retrieved from long-term memory at the end of the delay period.
Mochizuki, Kei; Funahashi, Shintaro
2016-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.
Working memory training in survivors of pediatric cancer: a randomized pilot study.
Hardy, Kristina K; Willard, Victoria W; Allen, Taryn M; Bonner, Melanie J
2013-08-01
Survivors of pediatric brain tumors and acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive deficits, but few empirically supported treatment options exist. We examined the feasibility and preliminary efficacy of a home-based, computerized working memory training program, CogmedRM, with survivors of childhood cancer. Survivors of brain tumors or ALL (n = 20) with identified deficits in attention and/or working memory were randomized to either the success-adapted computer intervention or a non-adaptive, active control condition. Specifically, children in the adaptive condition completed exercises that became more challenging with each correct trial, whereas those in the non-adaptive version trained with exercises that never increased in difficulty. All participants were asked to complete 25 training sessions at home, with weekly, phone-based coaching support. Brief assessments were completed pre-intervention and post-intervention; outcome measures included both performance-based and parent-report measures of working memory and attention. Eighty-five percent of survivors were compliant with the intervention, with no adverse events reported. After controlling for baseline intellectual functioning, survivors who completed the intervention program evidenced significant post-training improvements in their visual working memory and in parent-rated learning problems compared with those in the active control group. No differences in verbal working memory functioning were evident between groups, however. Home-based, computerized cognitive training demonstrates good feasibility and acceptability in our sample. Children with higher intellectual functioning at baseline appeared to benefit more from the training, although further study is needed to clarify the strength, scope, and particularly the generalizability of potential treatment effects. Copyright © 2012 John Wiley & Sons, Ltd.
Do the effects of working memory training depend on baseline ability level?
Foster, Jeffrey L; Harrison, Tyler L; Hicks, Kenny L; Draheim, Christopher; Redick, Thomas S; Engle, Randall W
2017-11-01
There is a debate about the ability to improve cognitive abilities such as fluid intelligence through training on tasks of working memory capacity. The question addressed in the research presented here is who benefits the most from training: people with low cognitive ability or people with high cognitive ability? Subjects with high and low working memory capacity completed a 23-session study that included 3 assessment sessions, and 20 sessions of training on 1 of 3 training regiments: complex span training, running span training, or an active-control task. Consistent with other research, the authors found that training on 1 executive function did not transfer to ability on a different cognitive ability. High working memory subjects showed the largest gains on the training tasks themselves relative to the low working memory subjects-a finding that suggests high spans benefit more than low spans from training with executive function tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Remembering the time: a continuous clock.
Lewis, Penelope A; Miall, R Chris
2006-09-01
The neural mechanisms for time measurement are currently a subject of much debate. This article argues that our brains can measure time using the same dorsolateral prefrontal cells that are known to be involved in working memory. Evidence for this is: (1) the dorsolateral prefrontal cortex is integral to both cognitive timing and working memory; (2) both behavioural processes are modulated by dopamine and disrupted by manipulation of dopaminergic projections to the dorsolateral prefrontal cortex; (3) the neurons in question ramp their activity in a temporally predictable way during both types of processing; and (4) this ramping activity is modulated by dopamine. The dual involvement of these prefrontal neurons in working memory and cognitive timing supports a view of the prefrontal cortex as a multipurpose processor recruited by a wide variety of tasks.
Spatial-sequential and spatial-simultaneous working memory in individuals with Williams syndrome.
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C; Carretti, Barbara; Vianello, Renzo
2015-05-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control (i.e., passive or active tasks). Our results showed that individuals with WS performed less well than TD children in passive spatial-simultaneous tasks, but not in passive spatial-sequential tasks. The former's performance was also worse in both active tasks. These findings suggest an impairment in the spatial-simultaneous working memory of individuals with WS, together with a more generalized difficulty in tasks requiring information storage and concurrent processing, as seen in other etiologies of intellectual disability.
Training of Visual-Spatial Working Memory in Preschool Children
Gade, Miriam; Zoelch, Christof; Seitz-Stein, Katja
2017-01-01
Working memory, the ability to store and manipulate information is of great importance for scholastic achievement in children. In this study, we report four studies in which preschoolers were trained on a visual-spatial working memory span task, namely the Corsi Block Task. Across all four studies, we found significant training effects for the intervention groups compared to active control groups. Confirming recent research, no transfer effects to other working memory tasks were found. Most importantly, our training effects were mainly brought about by children performing below the median in the pretest and those showing median performance, thereby closing the gap to children performing above the median (compensation effect). We consider this finding of great interest to ensure comparable starting conditions when entering school with a relatively short intervention. PMID:28713452
Slot-like capacity and resource-like coding in a neural model of multiple-item working memory.
Standage, Dominic; Pare, Martin
2018-06-27
For the past decade, research on the storage limitations of working memory has been dominated by two fundamentally different hypotheses. On the one hand, the contents of working memory may be stored in a limited number of `slots', each with a fixed resolution. On the other hand, any number of items may be stored, but with decreasing resolution. These two hypotheses have been invaluable in characterizing the computational structure of working memory, but neither provides a complete account of the available experimental data, nor speaks to the neural basis of the limitations it characterizes. To address these shortcomings, we simulated a multiple-item working memory task with a cortical network model, the cellular resolution of which allowed us to quantify the coding fidelity of memoranda as a function of memory load, as measured by the discriminability, regularity and reliability of simulated neural spiking. Our simulations account for a wealth of neural and behavioural data from human and non-human primate studies, and they demonstrate that feedback inhibition lowers both capacity and coding fidelity. Because the strength of inhibition scales with the number of items stored by the network, increasing this number progressively lowers fidelity until capacity is reached. Crucially, the model makes specific, testable predictions for neural activity on multiple-item working memory tasks.
Dockery, Colleen A; Wesierska, Malgorzata J
2010-08-30
We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Goonawardena, Anushka V.; Robinson, Lianne; Hampson, Robert E.; Riedel, Gernot
2010-01-01
It is now well established that cannabinoid agonists such as [delta][superscript 9]-tetrahydrocannabinol (THC), anandamide, and WIN 55,212-2 (WIN-2) produce potent and specific deficits in working memory (WM)/short-term memory (STM) tasks in rodents. Although mediated through activation of CB1 receptors located in memory-related brain regions such…
ERIC Educational Resources Information Center
Henry, Lucy A.; Messer, David J.; Nash, Gilly
2014-01-01
A relatively quick, face-to-face, adaptive working memory training intervention was assessed in 5-to 8-year-old typically developing children, randomly allocated to a 6-week intervention condition, or an active control condition. All children received 18 sessions of 10?minutes, three times/week for 6?weeks. Assessments of six working memory…
Gathercole, Susan E
2014-03-01
Chacko et al.'s investigation of the clinical utility of WM training to alleviate key symptoms of ADHD is timely and substantial, and marks a significant point in cognitive training research. Cogmed Working Memory Training (CWMT) involves intensive practice on multiple memory span tasks that increase in difficulty as performance improves with practice. Relative to a placebo version in which the span level of the memory tasks are kept at a low fixed level, Chacko et al. () found that CWMT boosted the performance of children with ADHD on short-term memory (STM) tasks similar to trained activities. Complex WM span measures sharing little overlap with the structure of training activities were not enhanced. Neither did active CWMT ameliorate classic symptoms of ADHD such as parent or teacher ratings of attentional problems, or direct measures of motor impulsivity and sustained attention. Reading, spelling, comprehension or mathematics scores similarly showed no response to training. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
ERIC Educational Resources Information Center
Nagel, Irene E.; Preuschhof, Claudia; Li, Shu-Chen; Nyberg, Lars; Backman, Lars; Lindenberger, Ulman; Heekeren, Hauke R.
2011-01-01
Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity…
Phonological Working Memory for Words and Nonwords in Cerebral Cortex
ERIC Educational Resources Information Center
Perrachione, Tyler K.; Ghosh, Satrajit S.; Ostrovskaya, Irina; Gabrieli, John D. E.; Kovelman, Ioulia
2017-01-01
Purpose: The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were…
Working Memory Influences on Cross-Language Activation during Bilingual Lexical Disambiguation
ERIC Educational Resources Information Center
Areas da Luz Fontes, Ana B.; Schwartz, Ana I.
2011-01-01
This study investigated the role of verbal working memory on bilingual lexical disambiguation. Spanish-English bilinguals read sentences that ended in either a cognate or noncognate homonym or a control word. Participants decided whether follow-up target words were related in meaning to the sentences. On critical trials, sentences biased the…
Gender differences in the cognitive control of emotion: An fMRI study.
Koch, Kathrin; Pauly, Katharina; Kellermann, Thilo; Seiferth, Nina Y; Reske, Martina; Backes, Volker; Stöcker, Tony; Shah, N Jon; Amunts, Katrin; Kircher, Tilo; Schneider, Frank; Habel, Ute
2007-09-20
The interaction of emotion and cognition has become a topic of major interest. However, the influence of gender on the interplay between the two processes, along with its neural correlates have not been fully analysed so far. In this functional magnetic resonance imaging (fMRI) study we induced negative emotion using negative olfactory stimulation while male (n=21) and female (n=19) participants performed an n-back verbal working memory task. Based on findings indicating increased emotional reactivity in women, we expected the female participants to exhibit stronger activation in characteristically emotion-associated areas during the interaction of emotional and cognitive processing in comparison to the male participants. Both groups were found to be significantly impaired in their working memory performance by negative emotion induction. However, fMRI analysis revealed distinct differences in neuronal activation between groups. In men, cognitive performance under negative emotion induction was associated with extended activation patterns in mainly prefrontal and superior parietal regions. In women, the interaction between emotion and working memory yielded a significantly stronger response in the amygdala and the orbitofrontal cortex (OFC) compared to their male counterparts. Our data suggest that in women the interaction of verbal working memory and negative emotion is associated with relative hyperactivation in more emotion-associated areas whereas in men regions commonly regarded as important for cognition and cognitive control are activated. These results provide new insights in gender-specific cerebral mechanisms.
Ihle, Andreas; Gouveia, Élvio R; Gouveia, Bruna R; Freitas, Duarte L; Jurema, Jefferson; Tinôco, Maria A; Kliegel, Matthias
2017-01-01
The present study set out to investigate the relation of the high-density lipoprotein cholesterol (HDL-C) level to cognitive performance and its interplay with key markers of cognitive reserve in a large sample of older adults. We assessed tests of working memory, immediate and delayed cued recall in 701 older adults from Amazonas, Brazil. The HDL-C level was derived from fasting blood samples. In addition, we interviewed individuals on their education, past occupation, and cognitive leisure activity. A critically low HDL-C level (<40 mg/dL) was significantly related to lower performance in working memory, immediate and delayed cued recall. Moderation analyses suggested that the relations of the HDL-C level to working memory and delayed cued recall were negligible in individuals with longer education, a higher cognitive level of the job, and greater engagement in cognitive leisure activity. Cognitive reserve accumulated during the life course may reduce the detrimental influences of a critically low HDL-C level on cognitive functioning in old age. © 2017 S. Karger AG, Basel.
Grimes, Matthew T; Harley, Carolyn W; Darby-King, Andrea; McLean, John H
2012-02-21
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.
Gait performance is not influenced by working memory when walking at a self-selected pace.
Grubaugh, Jordan; Rhea, Christopher K
2014-02-01
Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.
Low working memory capacity is only spuriously related to poor reading comprehension
Van Dyke, Julie A.; Johns, Clinton L.; Kukona, Anuenue
2014-01-01
Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order—but not simple verbal memory or working memory—were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. PMID:24657820
Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling
Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard
2011-01-01
Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148
Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M
2017-04-01
Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation. Copyright © 2017 the American Physiological Society.
Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing
Hwang, Jaewon
2015-01-01
During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing. PMID:25609614
Piccardi, Laura; Matano, Alessandro; D'Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola
2016-01-01
The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men's superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement.
Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load
Burke, C. J.; Seifritz, E.; Tobler, P. N.
2017-01-01
Abstract Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain’s capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations. PMID:28462394
Cholinergic modulation of cognitive processing: insights drawn from computational models
Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.
2012-01-01
Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936
The effect of rehearsal rate and memory load on verbal working memory.
Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark
2015-01-15
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory
Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark
2014-01-01
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-second delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. PMID:25467303
Kane, Michael J; Brown, Leslie H; McVay, Jennifer C; Silvia, Paul J; Myin-Germeys, Inez; Kwapil, Thomas R
2007-07-01
An experience-sampling study of 124 undergraduates, pretested on complex memory-span tasks, examined the relation between working memory capacity (WMC) and the experience of mind wandering in daily life. Over 7 days, personal digital assistants signaled subjects eight times daily to report immediately whether their thoughts had wandered from their current activity, and to describe their psychological and physical context. WMC moderated the relation between mind wandering and activities' cognitive demand. During challenging activities requiring concentration and effort, higher-WMC subjects maintained on-task thoughts better, and mind-wandered less, than did lower-WMC subjects. The results were therefore consistent with theories of WMC emphasizing the role of executive attention and control processes in determining individual differences and their cognitive consequences.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
Fiebig, Florian; Lansner, Anders
2017-01-04
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. Copyright © 2017 Fiebig and Lansner.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation
Fiebig, Florian
2017-01-01
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. PMID:28053032
Boissoneault, Jeff; Frazier, Ian; Lewis, Ben; Nixon, Sara Jo
2016-09-01
Previous studies suggest older adults may be differentially susceptible to the acute neurobehavioral effects of moderate alcohol intake. To our knowledge, no studies have addressed acute moderate alcohol effects on the electrophysiological correlates of working memory in younger and older social drinkers. This study characterized alcohol-related effects on frontal theta (FTP) and posterior alpha power (PAP) associated with maintenance of visual information during a working memory task. Older (55 to 70 years of age; n = 51, 29 women) and younger (25 to 35 years of age; n = 70, 39 women) community-dwelling moderate drinkers were recruited for this study. Participants were given either placebo or an active dose targeting breath alcohol concentrations (BrACs) of 0.04 or 0.065 g/dl. Following absorption, participants completed a visual working memory task assessing cue recognition following a 9-s delay. FTP and PAP were determined via Fourier transformation and subjected to 2 (age group) × 3 (dose) × 2 (repeated: working memory task condition) mixed models analysis. In addition to expected age-related reductions in PAP, a significant age group × dose interaction was detected for PAP such that 0.04 g/dl dose level was associated with greater PAP in younger adults but lower PAP in their older counterparts. PAP was lower in older versus younger adults at both active doses. Further mixed models revealed a significant negative association between PAP and working memory efficiency for older adults. No effects of age, dose, or their interaction were noted for FTP. Results bolster the small but growing body of evidence that older adults exhibit differential sensitivity to the neurobehavioral effects of moderate alcohol use. Given the theoretical role of PAP in attentional and working memory function, these findings shed light on the attentional mechanisms underlying effects of acute moderate alcohol on working memory efficiency in older adults. Copyright © 2016 by the Research Society on Alcoholism.
Smith, Yolanda R.; Love, Tiffany; Persad, Carol C.; Tkaczyk, Anne; Nichols, Thomas E.; Zubieta, Jon-Kar
2007-01-01
Context Hormones regulate neuronal function in brain regions critical to cognition; however the cognitive effects of postmenopausal hormone therapy are controversial. Objective The goal was to evaluate the effect of postmenopausal hormone therapy on neural circuitry involved in spatial working memory. Design A randomized, double-blind placebo-controlled cross-over study was performed. Setting The study was performed in a tertiary care university medical center. Participants Ten healthy postmenopausal women of average age 56.9 years were recruited. Interventions Volunteers were randomized to the order they received hormone therapy, 5 ug ethinyl estradiol and 1 mg norethindrone acetate. Subjects received hormone therapy or placebo for 4 weeks, followed by a one month washout period with no medications, and then received the other treatment for 4 weeks. At the end of each 4 week treatment period a functional magnetic resonance imaging (fMRI) study was performed utilizing a nonverbal (spatial) working memory task, the Visual Delayed Matching to Sample task. Main Outcome Measure The effects of hormone therapy on brain activation patterns were compared to placebo. Results Compared to the placebo condition, hormone therapy was associated with a more pronounced activation in the prefrontal cortex (BA 44 and 45), bilaterally (p<0.001). Conclusions Hormone therapy was associated with more effective activation of a brain region critical in primary visual working memory tasks. The data suggest a functional plasticity of memory systems in older women that can be altered by hormones. PMID:16912129
Cognitive training with casual video games: points to consider.
Baniqued, Pauline L; Kranz, Michael B; Voss, Michelle W; Lee, Hyunkyu; Cosman, Joshua D; Severson, Joan; Kramer, Arthur F
2014-01-07
Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory-reasoning group, an adaptive working memory-reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory-reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.
Jefferson, Angela L.; Gibbons, Laura E.; Rentz, Dorene M.; Carvalho, Janessa O.; Manly, Jennifer; Bennett, David A.; Jones, Richard N.
2011-01-01
OBJECTIVES To cross-sectionally quantify the contribution of proxy measures of cognitive reserve reflective of the lifespan, such as education, socioeconomic status (SES), reading ability, and cognitive activities, in explaining late-life cognition. DESIGN Prospective observational cohort study of aging. SETTING Retirement communities across the Chicago metropolitan area. PARTICIPANTS Nine hundred fifty-one older adults free of clinical dementia in the Rush Memory and Aging Project (aged 79 ± 8, 74% female). MEASUREMENTS Baseline data on multiple life course factors included early-, mid-, and late-life participation in cognitive activities; early-life and adult SES; education; and reading ability (National Adult Reading Test; NART). Path analysis quantified direct and indirect standardized effects of life course factors on global cognition and five cognitive domains (episodic memory, semantic memory, working memory, visuospatial ability, perceptual speed). RESULTS Adjusting for age, sex, and race, education had the strongest association with global cognition, episodic memory, semantic memory, and visuospatial ability, whereas NART (followed by education) had the strongest association with working memory. Late-life cognitive activities had the strongest association with perceptual speed, followed by education. CONCLUSIONS These cross-sectional findings suggest that education and reading ability are the most-robust proxy measures of cognitive reserve in relation to late-life cognition. Additional research leveraging path analysis is warranted to better understand how these life course factors, reflecting the latent construct of cognitive reserve, affect abnormal cognitive aging. PMID:21797830
Jefferson, Angela L; Gibbons, Laura E; Rentz, Dorene M; Carvalho, Janessa O; Manly, Jennifer; Bennett, David A; Jones, Richard N
2011-08-01
To cross-sectionally quantify the contribution of proxy measures of cognitive reserve reflective of the lifespan, such as education, socioeconomic status (SES), reading ability, and cognitive activities, in explaining late-life cognition. Prospective observational cohort study of aging. Retirement communities across the Chicago metropolitan area. Nine hundred fifty-one older adults free of clinical dementia in the Rush Memory and Aging Project (aged 79 ± 8, 74% female). Baseline data on multiple life course factors included early-, mid-, and late-life participation in cognitive activities; early-life and adult SES; education; and reading ability (National Adult Reading Test; NART). Path analysis quantified direct and indirect standardized effects of life course factors on global cognition and five cognitive domains (episodic memory, semantic memory, working memory, visuospatial ability, perceptual speed). Adjusting for age, sex, and race, education had the strongest association with global cognition, episodic memory, semantic memory, and visuospatial ability, whereas NART (followed by education) had the strongest association with working memory. Late-life cognitive activities had the strongest association with perceptual speed, followed by education. These cross-sectional findings suggest that education and reading ability are the most-robust proxy measures of cognitive reserve in relation to late-life cognition. Additional research leveraging path analysis is warranted to better understand how these life course factors, reflecting the latent construct of cognitive reserve, affect abnormal cognitive aging. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.
Impaired theta-gamma coupling during working memory performance in schizophrenia.
Barr, Mera S; Rajji, Tarek K; Zomorrodi, Reza; Radhu, Natasha; George, Tony P; Blumberger, Daniel M; Daskalakis, Zafiris J
2017-11-01
Working memory deficits represent a core feature of schizophrenia. These deficits have been associated with dysfunctional dorsolateral prefrontal cortex (DLPFC) cortical oscillations. Theta-gamma coupling describes the modulation of gamma oscillations by theta phasic activity that has been directly associated with the ordering of information during working memory performance. Evaluating theta-gamma coupling may provide greater insight into the neural mechanisms mediating working memory deficits in this disorder. Thirty-eight patients diagnosed with schizophrenia or schizoaffective disorder and 38 healthy controls performed the verbal N-Back task administered at 4 levels, while EEG was recorded. Theta (4-7Hz)-gamma (30-50Hz) coupling was calculated for target and non-target correct trials for each working memory load. The relationship between theta-gamma coupling and accuracy was determined. Theta-gamma coupling was significantly and selectively impaired during correct responses to target letters among schizophrenia patients compared to healthy controls. A significant and positive relationship was found between theta-gamma coupling and 3-Back accuracy in controls, while this relationship was not observed in patients. These findings suggest that impaired theta-gamma coupling contribute to working memory dysfunction in schizophrenia. Future work is needed to evaluate the predictive utility of theta-gamma coupling as a neurophysiological marker for functional outcomes in this disorder. Copyright © 2017. Published by Elsevier B.V.
Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory
D'Esposito, Mark
2009-01-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe. PMID:18987393
Novel fMRI working memory paradigm accurately detects cognitive impairment in Multiple Sclerosis
Nelson, Flavia; Akhtar, Mohammad A.; Zúñiga, Edward; Perez, Carlos A.; Hasan, Khader M.; Wilken, Jeffrey; Wolinsky, Jerry S.; Narayana, Ponnada A.; Steinberg, Joel L.
2016-01-01
Background Cognitive impairment (CI) cannot be diagnosed by MRI. Functional MRI (fMRI) paradigms such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory. Preliminary findings using I/DMT, showed differences in Blood Oxygenation Level Dependent (BOLD) activation between impaired (MSCI, n=12) and non-impaired (MSNI, n=9) MS patients. Objectives To confirm CI detection based on I/DMT’ BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and EDSS in magnitude of BOLD signal were also sought. Methods Fifty patients [EDSS mean (m) = 3.2, DD m =12 yr., age m =40yr.] underwent the Minimal Assessment of Cognitive Function in MS (MACFIMS) and the I/DMT. Working-memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. Results 10 MSNI, 30 MSCI and 4 borderline patients were included in analyses. ANOVA showed MSNI had significantly greater WMa than MSCI, in the left (L) prefrontal cortex and L supplementary motor area (p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas (p = 0.005, 0.004 respectively). Conclusion I/DMT-based BOLD activation detects CI in MS, larger studies are needed to confirm these findings. PMID:27613119
Taste aversion memory reconsolidation is independent of its retrieval.
Rodriguez-Ortiz, Carlos J; Balderas, Israela; Garcia-DeLaTorre, Paola; Bermudez-Rattoni, Federico
2012-10-01
Reconsolidation refers to the destabilization/re-stabilization memory process upon its activation. However, the conditions needed to undergo reconsolidation, as well as its functional significance is quite unclear and a matter of intense investigation. Even so, memory retrieval is held as requisite to initiate reconsolidation. Therefore, in the present work we examined whether transient pharmacological disruption of memory retrieval impedes reconsolidation of stored memory in the widely used associative conditioning task, taste aversion. We found that AMPA receptors inhibition in the amygdala impaired retrieval of taste aversion memory. Furthermore, AMPA receptors blockade impeded retrieval regardless of memory strength. However, inhibition of retrieval did not affect anisomycin-mediated disruption of reconsolidation. These results indicate that retrieval is a dispensable condition to undergo reconsolidation and provide evidence of molecular dissociation between retrieval and activation of memory in the non-declarative memory model taste aversion. Copyright © 2012 Elsevier Inc. All rights reserved.
Krause-Utz, Annegret; Winter, Dorina; Schriner, Friederike; Chiu, Chui-De; Lis, Stefanie; Spinhoven, Philip; Bohus, Martin; Schmahl, Christian; Elzinga, Bernet M
2018-06-01
Affective hyper-reactivity and impaired cognitive control of emotional material are core features of borderline personality disorder (BPD). A high percentage of individuals with BPD experience stress-related dissociation, including emotional numbing and memory disruptions. So far little is known about how dissociation influences the neural processing of emotional material in the context of a working memory task in BPD. We aimed to investigate whole-brain activity and amygdala functional connectivity (FC) during an Emotional Working Memory Task (EWMT) after dissociation induction in un-medicated BPD patients compared to healthy controls (HC). Using script-driven imagery, dissociation was induced in 17 patients ('BPD_D'), while 12 patients ('BPD_N') and 18 HC were exposed to neutral scripts during fMRI. Afterwards, participants performed the EWMT with neutral vs. negative IAPS pictures vs. no distractors. Main outcome measures were behavioral performance (reaction times, errors) and whole-brain activity during the EWMT. Psychophysiological interaction analysis was used to examine amygdala connectivity during emotional distraction. BPD patients after dissociation induction showed overall WM impairments, a deactivation in bilateral amygdala, and lower activity in left cuneus, lingual gyrus, and posterior cingulate than BPD_N, along with stronger left inferior frontal gyrus activity than HC. Furthermore, reduced amygdala FC with fusiform gyrus and stronger amygdala FC with right middle/superior temporal gyrus and left inferior parietal lobule was observed in BPD_D. Findings suggest that dissociation affects reactivity to emotionally salient material and WM. Altered activity in areas associated with emotion processing, memory, and self-referential processes may contribute to dissociative states in BPD.
Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex
Watanabe, Kei; Funahashi, Shintaro; Stokes, Mark G.
2017-01-01
Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding. PMID:28559375
ERIC Educational Resources Information Center
Brahmbhatt, Shefali B.; McAuley, Tara; Barch, Deanna M.
2008-01-01
Relatively little is known about the functional development of verbal and nonverbal working memory during adolescence. Behavioral studies have demonstrated that WM capacity increases with age, yet relatively few studies have assessed the relationship between brain-activity and age-related changes in WM capacity, especially as it differs across…
ERIC Educational Resources Information Center
Wallentin, Mikkel; Kristensen, Line Burholt; Olsen, Jacob Hedeager; Nielsen, Andreas Hojlund
2011-01-01
The brain's frontal eye fields (FEF), responsible for eye movement control, are known to be involved in spatial working memory (WM). In a previous fMRI experiment (Wallentin, Roepstorff & Burgess, Neuropsychologia, 2008) it was found that FEF activation was primarily related to the formation of an object-centered, rather than egocentric, spatial…
ERIC Educational Resources Information Center
Pociask, Fredrick D.; Morrison, Gary
2004-01-01
Human working memory can be defined as a component system responsible for the temporary storage and manipulation of information related to higher level cognitive behaviors, such as understanding and reasoning (Baddeley, 1992; Becker & Morris, 1999). Working memory, while able to manage a complex array of cognitive activities, presents with an…
Phonological Working Memory of Children in Two German Special Schools
ERIC Educational Resources Information Center
Hasselhorn, Marcus; Mahler, Claudia
2007-01-01
In two studies, 10-year-olds from 2 German special schools as well as typically developing children of the same chronological age (CA controls) or the same mental age (MA controls) were compared on several aspects of working memory functions (i.e., size and input quality of the phonological store, speed and automatic activation of the subvocal…
ERIC Educational Resources Information Center
Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.
2008-01-01
Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…
The Effect of Non-Visual Working Memory Load on Top-Down Modulation of Visual Processing
ERIC Educational Resources Information Center
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2009-01-01
While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of…
ERIC Educational Resources Information Center
Meier, Matt E.; Smeekens, Bridget A.; Silvia, Paul J.; Kwapil, Thomas R.; Kane, Michael J.
2018-01-01
The association between working memory capacity (WMC) and the antisaccade task, which requires subjects to move their eyes and attention away from a strong visual cue, supports the claim that WMC is partially an attentional construct (Kane, Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, & Engle, 2004). Specifically, the…
Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo; Barnes, Graham R.
2013-01-01
Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology. PMID:23515488
Working Memory in Students with Mathematical Difficulties
NASA Astrophysics Data System (ADS)
Nur, I. R. D.; Herman, T.; Ningsih, S.
2018-04-01
Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.
Processing distinct linguistic information types in working memory in aphasia.
Wright, Heather Harris; Downey, Ryan A; Gravier, Michelle; Love, Tracy; Shapiro, Lewis P
2007-06-01
BACKGROUND: Recent investigations have suggested that adults with aphasia present with a working memory deficit that may contribute to their language-processing difficulties. Working memory capacity has been conceptualised as a single "resource" pool for attentional, linguistic, and other executive processing-alternatively, it has been suggested that there may be separate working memory abilities for different types of linguistic information. A challenge in this line of research is developing an appropriate measure of working memory ability in adults with aphasia. One candidate measure of working memory ability that may be appropriate for this population is the n-back task. By manipulating stimulus type, the n-back task may be appropriate for tapping linguistic-specific working memory abilities. AIMS: The purposes of this study were (a) to measure working memory ability in adults with aphasia for processing specific types of linguistic information, and (b) to examine whether a relationship exists between participants' performance on working memory and auditory comprehension measures. METHOD #ENTITYSTARTX00026; PROCEDURES: Nine adults with aphasia participated in the study. Participants completed three n-back tasks, each tapping different types of linguistic information. They included the PhonoBack (phonological level), SemBack (semantic level), and SynBack (syntactic level). For all tasks, two n-back levels were administered: a 1-back and 2-back. Each level contained 20 target items; accuracy was recorded by stimulus presentation software. The Subject-relative, Object-relative, Active, Passive Test of Syntactic Complexity (SOAP) was the syntactic sentence comprehension task administered to all participants. OUTCOMES #ENTITYSTARTX00026; RESULTS: Participants' performance declined as n-back task difficulty increased. Overall, participants performed better on the SemBack than PhonoBack and SynBack tasks, but the differences were not statistically significant. Finally, participants who performed poorly on the SynBack also had more difficulty comprehending syntactically complex sentence structures (i.e., passive & object-relative sentences). CONCLUSIONS: Results indicate that working memory ability for different types of linguistic information can be measured in adults with aphasia. Further, our results add to the growing literature that favours separate working memory abilities for different types of linguistic information view.
A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex
Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing
2015-01-01
A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212
Sex Differences in Working Memory after Mild Traumatic Brain Injury: A Functional MR Imaging Study.
Hsu, Hui-Ling; Chen, David Yen-Ting; Tseng, Ying-Chi; Kuo, Ying-Sheng; Huang, Yen-Lin; Chiu, Wen-Ta; Yan, Feng-Xian; Wang, Wei-Shuan; Chen, Chi-Jen
2015-09-01
To evaluate sex differences in mild traumatic brain injury (MTBI) with working memory functional magnetic resonance (MR) imaging. Research ethics committee approval and patient written informed consent were obtained. Working memory brain activation patterns were assessed with functional MR imaging in 30 patients (15 consecutive men and 15 consecutive women) with MTBI and 30 control subjects (15 consecutive men and 15 consecutive women). Two imaging studies were performed in patients: the initial study, which was performed within 1 month after the injury, and a follow-up study, which was performed 6 weeks after the first study. For each participant, digit span and continuous performance testing were performed before functional MR imaging. Clinical data were analyzed by using Kruskal-Wallis, Mann-Whitney U, Wilcoxon signed rank, and Fisher exact tests. Within- and between-group differences of functional MR imaging data were analyzed with one- and two-sample t tests, respectively. Among female participants, the total digit span score was lower in the MTBI group than in the control group (P = .044). In initial working memory functional MR imaging studies, hyperactivation was found in the male MTBI group and hypoactivation was found in the female MTBI group compared with control male and female groups, respectively. At the 6-week follow-up study, the female MTBI group showed persistent hypoactivation, whereas the male MTBI group showed a regression of hyperactivation at visual comparison of activation maps. The male MTBI group was also found to have a higher initial ß value than the male control group (P = .040), and there was no significant difference between the male MTBI group and the male control group (P = .221) at follow-up evaluation, which was comparable to findings on activation maps. In the female MTBI group, average ß values at both initial and follow-up studies were lower compared with those in the female control group but were not statistically significant (P = .663 and P = .191, respectively). Female patients with MTBI had lower digit span scores than did female control subjects, and functional MR imaging depicted sex differences in working memory functional activation; hypoactivation with nonrecovery of activation change at follow-up studies may suggest a worse working memory outcome in female patients with MTBI.
An Activation-Based Model of Sentence Processing as Skilled Memory Retrieval
ERIC Educational Resources Information Center
Lewis, Richard L.; Vasishth, Shravan
2005-01-01
We present a detailed process theory of the moment-by-moment working-memory retrievals and associated control structure that subserve sentence comprehension. The theory is derived from the application of independently motivated principles of memory and cognitive skill to the specialized task of sentence parsing. The resulting theory construes…
Disruption of Attention by Irrelevant Stimuli in Serial Recall
ERIC Educational Resources Information Center
Lange, Elke B.
2005-01-01
In four experiments the behavioral consequences of an involuntary attentional distraction concerning memory performance was investigated. The working memory model of Cowan (1995) predicts a performance deficit for memory representations that are held in an active state when the focus of attention is distracted by a change in physical properties.…
The impact of storage on processing: how is information maintained in working memory?
Vergauwe, Evie; Camos, Valérie; Barrouillet, Pierre
2014-07-01
Working memory is typically defined as a system devoted to the simultaneous maintenance and processing of information. However, the interplay between these 2 functions is still a matter of debate in the literature, with views ranging from complete independence to complete dependence. The time-based resource-sharing model assumes that a central bottleneck constrains the 2 functions to alternate in such a way that maintenance activities postpone concurrent processing, with each additional piece of information to be maintained resulting in an additional postponement. Using different kinds of memoranda, we examined in a series of 7 experiments the effect of increasing memory load on different processing tasks. The results reveal that, insofar as attention is needed for maintenance, processing times linearly increase at a rate of about 50 ms per verbal or visuospatial memory item, suggesting a very fast refresh rate in working memory. Our results also show an asymmetry between verbal and spatial information, in that spatial information can solely rely on attention for its maintenance while verbal information can also rely on a domain-specific maintenance mechanism independent from attention. The implications for the functioning of working memory are discussed, with a specific focus on how information is maintained in working memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Rapid forgetting results from competition over time between items in visual working memory.
Pertzov, Yoni; Manohar, Sanjay; Husain, Masud
2017-04-01
Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other's representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects
Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard
2013-01-01
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316
The effect of binaural beats on verbal working memory and cortical connectivity.
Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander
2017-04-01
Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.
Strategic trade-offs between quantity and quality in working memory.
Fougnie, Daryl; Cormiea, Sarah M; Kanabar, Anish; Alvarez, George A
2016-08-01
Is working memory capacity determined by an immutable limit-for example, 4 memory storage slots? The fact that performance is typically unaffected by task instructions has been taken as support for such structural models of memory. Here, we modified a standard working memory task to incentivize participants to remember more items. Participants were asked to remember a set of colors over a short retention interval. In 1 condition, participants reported a random item's color using a color wheel. In the modified task, participants responded to all items and their response was only considered correct if all responses were on the correct half of the color wheel. We looked for a trade-off between quantity and quality-participants storing more items, but less precisely, when required to report them all. This trade-off was observed when tasks were blocked and when task-type was cued after encoding, but not when task-type was cued during the response, suggesting that task differences changed how items were actively encoded and maintained. This strategic control over the contents of working memory challenges models that assume inflexible limits on memory storage. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Working Memory Replay Prioritizes Weakly Attended Events
Penny, Will; Knight, Robert T.; Duzel, Emrah
2017-01-01
Abstract One view of working memory posits that maintaining a series of events requires their sequential and equal mnemonic replay. Another view is that the content of working memory maintenance is prioritized by attention. We decoded the dynamics for retaining a sequence of items using magnetoencephalography, wherein participants encoded sequences of three stimuli depicting a face, a manufactured object, or a natural item and maintained them in working memory for 5000 ms. Memory for sequence position and stimulus details were probed at the end of the maintenance period. Decoding of brain activity revealed that one of the three stimuli dominated maintenance independent of its sequence position or category; and memory was enhanced for the selectively replayed stimulus. Analysis of event-related responses during the encoding of the sequence showed that the selectively replayed stimuli were determined by the degree of attention at encoding. The selectively replayed stimuli had the weakest initial encoding indexed by weaker visual attention signals at encoding. These findings do not rule out sequential mnemonic replay but reveal that attention influences the content of working memory maintenance by prioritizing replay of weakly encoded events. We propose that the prioritization of weakly encoded stimuli protects them from interference during the maintenance period, whereas the more strongly encoded stimuli can be retrieved from long-term memory at the end of the delay period. PMID:28824955
Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J
2017-06-01
Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Control of Working Memory in Rhesus Monkeys (Macaca mulatta)
Tu, Hsiao-Wei; Hampton, Robert R.
2014-01-01
Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219
Working memory and decision processes in visual area v4.
Hayden, Benjamin Y; Gallant, Jack L
2013-01-01
Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.
Obradović, Jelena; Portilla, Ximena A; Tirado-Strayer, Nicole; Siyal, Saima; Rasheed, Muneera A; Yousafzai, Aisha K
2017-03-01
The current study focuses on maternal cognitive capacities as determinants of parenting in a highly disadvantaged global context, where children's experiences at home are often the 1st and only opportunity for learning and intellectual growth. In a large sample of 1,291 biological mothers of preschool-aged children in rural Pakistan, we examined the unique association of maternal working memory skills (independent of related cognitive capacities) with cognitively stimulating parenting behaviors. Path analysis revealed that directly assessed working memory, short-term memory, and verbal intelligence independently predicted greater levels of observed maternal scaffolding behaviors. Mothers from poorer families demonstrated lower levels of working memory, short-term memory, and verbal intelligence. However, mothers' participation in an early childhood parenting intervention that ended 2 years prior to this study contributed to greater levels of working memory skills and verbal intelligence. Further, all 3 domains of maternal cognitive capacity mediated the effect of family economic resources on maternal scaffolding, and verbal intelligence also mediated the effect of early parenting intervention exposure on maternal scaffolding. The study demonstrates the unique relevance of maternal working memory for scaffolding behaviors that required continuously monitoring the child's engagement, providing assistance, and minimizing external distractions. These results highlight the importance of directly targeting maternal cognitive capacities in poor women with little or no formal education, using a 2-generation intervention approach that includes activities known to promote parental executive functioning and literacy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Evidence for social working memory from a parametric functional MRI study.
Meyer, Meghan L; Spunt, Robert P; Berkman, Elliot T; Taylor, Shelley E; Lieberman, Matthew D
2012-02-07
Keeping track of various amounts of social cognitive information, including people's mental states, traits, and relationships, is fundamental to navigating social interactions. However, to date, no research has examined which brain regions support variable amounts of social information processing ("social load"). We developed a social working memory paradigm to examine the brain networks sensitive to social load. Two networks showed linear increases in activation as a function of increasing social load: the medial frontoparietal regions implicated in social cognition and the lateral frontoparietal system implicated in nonsocial forms of working memory. Of these networks, only load-dependent medial frontoparietal activity was associated with individual differences in social cognitive ability (trait perspective-taking). Although past studies of nonsocial load have uniformly found medial frontoparietal activity decreases with increasing task demands, the current study demonstrates these regions do support increasing mental effort when such effort engages social cognition. Implications for the etiology of clinical disorders that implicate social functioning and potential interventions are discussed.
Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory
Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.
2014-01-01
Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552
A steady state visually evoked potential investigation of memory and ageing.
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-04-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.
van Ede, Freek; Niklaus, Marcel; Nobre, Anna C
2017-01-11
Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.
Greater Working Memory Load Results in Greater Medial Temporal Activity at Retrieval
Quiroz, Yakeel T.; Hasselmo, Michael E.; Stern, Chantal E.
2009-01-01
Most functional magnetic resonance imaging (fMRI) studies examining working memory (WM) load have focused on the prefrontal cortex (PFC) and have demonstrated increased prefrontal activity with increased load. Here we examined WM load effects in the medial temporal lobe (MTL) using an fMRI Sternberg task with novel complex visual scenes. Trials consisted of 3 sequential events: 1) sample presentation (encoding), 2) delay period (maintenance), and 3) probe period (retrieval). During sample encoding, subjects saw either 2 or 4 pictures consecutively. During retrieval, subjects indicated whether the probe picture matched one of the sample pictures. Results revealed that activity in the left anterior hippocampal formation, bilateral retrosplenial area, and left amygdala was greater at retrieval for trials with larger memory load, whereas activity in the PFC was greater at encoding for trials with larger memory load. There was no load effect during the delay. When encoding, maintenance, and retrieval periods were compared with fixation, activity was present in the hippocampal body/tail and fusiform gyrus bilaterally during encoding and retrieval, but not maintenance. Bilateral dorsolateral prefrontal activity was present during maintenance, but not during encoding or retrieval. The results support models of WM predicting that activity in the MTL should be modulated by WM load. PMID:19224975
Meeuwissen, Esther B; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole
2011-12-01
It is becoming increasingly clear that demanding cognitive tasks rely on an extended network engaging task-relevant areas and, importantly, disengaging task-irrelevant areas. Given that alpha activity (8-12 Hz) has been shown to reflect the disengagement of task-irrelevant regions in attention and working memory tasks, we here ask if alpha activity plays a related role for long-term memory formation. Subjects were instructed to encode and maintain the order of word sequences while the ongoing brain activity was recorded using magnetoencephalography (MEG). In each trial, three words were presented followed by a 3.4 s rehearsal interval. Considering the good temporal resolution of MEG this allowed us to investigate the word presentation and rehearsal interval separately. The sequences were grouped in trials where word order either could be tested immediately (working memory trials; WM) or later (LTM trials) according to instructions. Subjects were tested on their ability to retrieve the order of the three words. The data revealed that alpha power in parieto-occipital regions was lower during word presentation compared to rehearsal. Our key finding was that parieto-occipital alpha power during the rehearsal period was markedly stronger for successfully than unsuccessfully encoded LTM sequences. This subsequent memory effect demonstrates that high posterior alpha activity creates an optimal brain state for successful LTM formation possibly by actively reducing parieto-occipital activity that might interfere with sequence encoding. Copyright © 2010 Wiley Periodicals, Inc.
Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N
2015-11-01
Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.
Recent Progress on Modeling Slip Deformation in Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Sehitoglu, H.; Alkan, S.
2018-03-01
This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.
The special role of item-context associations in the direct-access region of working memory.
Campoy, Guillermo
2017-09-01
The three-embedded-component model of working memory (WM) distinguishes three representational states corresponding to three WM regions: activated long-term memory, direct-access region (DAR), and focus of attention. Recent neuroimaging research has revealed that access to the DAR is associated with enhanced hippocampal activity. Because the hippocampus mediates the encoding and retrieval of item-context associations, it has been suggested that this hippocampal activation is a consequence of the fact that item-context associations are particularly strong and accessible in the DAR. This study provides behavioral evidence for this view using an item-recognition task to assess the effect of non-intentional encoding and maintenance of item-location associations across WM regions. Five pictures of human faces were sequentially presented in different screen locations followed by a recognition probe. Visual cues immediately preceding the probe indicated the location thereof. When probe stimuli appeared in the same location that they had been presented within the memory set, the presentation of the cue was expected to elicit the activation of the corresponding WM representation through the just-established item-location association, resulting in faster recognition. Results showed this same-location effect, but only for items that, according to their serial position within the memory set, were held in the DAR.
Supramodal parametric working memory processing in humans.
Spitzer, Bernhard; Blankenburg, Felix
2012-03-07
Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.
Similarity to the self influences cortical recruitment during impression formation
Leshikar, Eric D.; Cassidy, Brittany S.; Gutchess, Angela H.
2015-01-01
Prior work has shown that whether or not someone is similar to the self influences person memory—a type of self-reference effect for others. In this study, we were interested in understanding the neural regions supporting the generation of impressions and subsequent memory for targets who vary in similarity to the self. Participants underwent fMRI scanning while forming positive or negative impressions of face-behavior pairs. We tested participants’ memory for their generated impressions, and then back-sorted the impression trials (encoding) into different levels of self-similarity (high, medium, low) using a self-similarity post-test that came after recognition. Extending prior behavioral work, our data confirmed our hypothesis that memory would be highest for self-similar others and lowest for self-dissimilar others. Dorsal anterior cingulate cortex (dACC) activity increased with self-similarity (high > medium > low) to targets, regardless of later memory for them. An analysis of regions supporting impression memory revealed a double dissociation within medial temporal lobe regions: for similar others, amygdala recruitment supported memory, whereas for dissimilar others, hippocampal activation supported memory. These results suggest that self-similarity influences evaluation and memory for targets, but also affects the underlying neural resources engaged when thinking about others who vary in self-similarity. PMID:26558615
The influence of shift work on cognitive functions and oxidative stress.
Özdemir, Pınar Güzel; Selvi, Yavuz; Özkol, Halil; Aydın, Adem; Tülüce, Yasin; Boysan, Murat; Beşiroğlu, Lütfullah
2013-12-30
Shift work influences health, performance, activity, and social relationships, and it causes impairment in cognitive functions. In this study, we investigated the effects of shift work on participants' cognitive functions in terms of memory, attention, and learning, and we measured the effects on oxidative stress. Additionally, we investigated whether there were significant relationships between cognitive functions and whole blood oxidant/antioxidant status of participants. A total of 90 health care workers participated in the study, of whom 45 subjects were night-shift workers. Neuropsychological tests were administered to the participants to assess cognitive function, and blood samples were taken to detect total antioxidant capacity and total oxidant status at 08:00. Differences in anxiety, depression, and chronotype characteristics between shift work groups were not significant. Shift workers achieved significantly lower scores on verbal memory, attention-concentration, and the digit span forward sub-scales of the Wechsler Memory Scale-Revised (WMS-R), as well as on the immediate memory and total learning sub-scales of the Auditory Verbal Learning Test (AVLT). Oxidative stress parameters were significantly associated with some types of cognitive function, including attention-concentration, recognition, and long-term memory. These findings suggest that night shift work may result in significantly poorer cognitive performance, particularly working memory. © 2013 Elsevier Ireland Ltd. All rights reserved.
Kelly, Michelle E; Duff, Hollie; Kelly, Sara; McHugh Power, Joanna E; Brennan, Sabina; Lawlor, Brian A; Loughrey, David G
2017-12-19
Social relationships, which are contingent on access to social networks, promote engagement in social activities and provide access to social support. These social factors have been shown to positively impact health outcomes. In the current systematic review, we offer a comprehensive overview of the impact of social activities, social networks and social support on the cognitive functioning of healthy older adults (50+) and examine the differential effects of aspects of social relationships on various cognitive domains. We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, and collated data from randomised controlled trials (RCTs), genetic and observational studies. Independent variables of interest included subjective measures of social activities, social networks, and social support, and composite measures of social relationships (CMSR). The primary outcome of interest was cognitive function divided into domains of episodic memory, semantic memory, overall memory ability, working memory, verbal fluency, reasoning, attention, processing speed, visuospatial abilities, overall executive functioning and global cognition. Thirty-nine studies were included in the review; three RCTs, 34 observational studies, and two genetic studies. Evidence suggests a relationship between (1) social activity and global cognition and overall executive functioning, working memory, visuospatial abilities and processing speed but not episodic memory, verbal fluency, reasoning or attention; (2) social networks and global cognition but not episodic memory, attention or processing speed; (3) social support and global cognition and episodic memory but not attention or processing speed; and (4) CMSR and episodic memory and verbal fluency but not global cognition. The results support prior conclusions that there is an association between social relationships and cognitive function but the exact nature of this association remains unclear. Implications of the findings are discussed and suggestions for future research provided. PROSPERO 2012: CRD42012003248 .
Conceptual short term memory in perception and thought.
Potter, Mary C
2012-01-01
Conceptual short term memory (CSTM) is a theoretical construct that provides one answer to the question of how perceptual and conceptual processes are related. CSTM is a mental buffer and processor in which current perceptual stimuli and their associated concepts from long term memory (LTM) are represented briefly, allowing meaningful patterns or structures to be identified (Potter, 1993, 1999, 2009). CSTM is different from and complementary to other proposed forms of working memory: it is engaged extremely rapidly, has a large but ill-defined capacity, is largely unconscious, and is the basis for the unreflective understanding that is characteristic of everyday experience. The key idea behind CSTM is that most cognitive processing occurs without review or rehearsal of material in standard working memory and with little or no conscious reasoning. When one perceives a meaningful stimulus such as a word, picture, or object, it is rapidly identified at a conceptual level and in turn activates associated information from LTM. New links among concurrently active concepts are formed in CSTM, shaped by parsing mechanisms of language or grouping principles in scene perception and by higher-level knowledge and current goals. The resulting structure represents the gist of a picture or the meaning of a sentence, and it is this structure that we are conscious of and that can be maintained in standard working memory and consolidated into LTM. Momentarily activated information that is not incorporated into such structures either never becomes conscious or is rapidly forgotten. This whole cycle - identification of perceptual stimuli, memory recruitment, structuring, consolidation in LTM, and forgetting of non-structured material - may occur in less than 1 s when viewing a pictured scene or reading a sentence. The evidence for such a process is reviewed and its implications for the relation of perception and cognition are discussed.
Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G
2007-07-01
Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.
Piccardi, Laura; Matano, Alessandro; D’Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola
2016-01-01
The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men’s superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement. PMID:27445734
Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C
2011-10-01
Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.
Chen, Eric Y H; Hui, Christy L M
2012-08-01
Evidence suggests that HT1001™, a proprietary North American ginseng extract containing known levels of active ginsenosides, may improve cognitive function. Importantly, individuals with schizophrenia show marked deficits in working memory, which are believed to be predictive of functional outcome in this population. The present study aimed to characterize the effect of HT1001 on working memory in a group of stable individuals with schizophrenia. In a double-blind, placebo-controlled study design, a total of 64 individuals satisfying DSM-IV criteria for schizophrenia were randomly assigned to receive either HT100 or placebo for 4 weeks. Verbal working memory and visual working memory were assessed at baseline and again at the end of the treatment phase using the Letter-Number Span Test and Visual Pattern Test, respectively. Symptoms and medication side effects were also measured at baseline and post-treatment. Visual working memory was significantly improved in the HT1001 group, but not in the placebo group. Furthermore, extrapyramidal symptoms were significantly reduced after 4 weeks treatment with HT1001, whereas no difference in extrapyramidal effects was observed in the placebo group. These results provide a solid foundation for the further investigation of HT1001 as an adjunct therapy in schizophrenia, as an improvement in working memory and a reduction in medication-related side effects has considerable potential to improve functional outcome in this population. Copyright © 2011 John Wiley & Sons, Ltd.
Wiłkość, Monika; Izdebski, Paweł; Zajac-Lamparska, Ludmiła
2013-01-01
In the last two decades of the last century there has been a shift in the studies on memory. In psychology of memory the criticism of the laboratory approach resulted in development of the ecological approach. One of the effects of this change was to initiate researches on memory that includes plans for the future, which has resulted in the distinction of the concept of prospective memory. Prospective memory is used in many aspects of everyday life. It deals with remembering intentions and plans, it is connected with remembering about specific task or activity in the future. There are three types of PM: event-based prospective memory, time-based prospective memory and activity-based prospective memory. Current research in this field have already established its own paradigm and tools measuring PM and there is still increasing scientific interest in this issue. Prospective memory assessment may be carried out in various ways. Among them, the most frequently used are: a) questionnaires, b) psychological tests, c) experimental procedures. Within the latter, the additional distinction can be introduced for: the experiments conducted under natural conditions and the laboratory procedures. In Polish literature, there are only a few articles on PM. The aim of this work is to review studies on assessment methods of PM. Its neuroanatomical bases and its functioning in different mental disorders are analyzed. The work is aimed to focus clinicians attention on prospective memory as an area which is important for complex diagnosis of cognitive processes.
Effects of emotionally valenced working memory taxation on negative memories.
Tsai, Cynthia; McNally, Richard J
2014-03-01
Memories enter a labile state during recollection. Thus, memory changes that occur during recollection can affect future instances of its activation. Having subjects perform a secondary task that taxes working memory while they recall a negative emotional memory often reduces its vividness and emotional intensity during subsequent recollections. However, researchers have not manipulated the emotional valence of the secondary task itself. Subjects viewed a video depicting the aftermath of three fatal road traffic accidents, establishing the same negative emotional memory for all subjects. We then tested their memory for the video after randomly assigning them to no secondary task or a delayed match-to-sample secondary task involving photographs of positive, negative, or neutral emotional valence. The positive secondary task reduced memory for details about the video, whereas negative and neutral tasks did not. We did not assess the vividness and emotionality of the subjects' memory of the video. Having subjects recall a stressful experience while performing a positively valent secondary task can decrement details of the memory and perhaps its emotionality. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chengjun; Gong, Hui; Gan, Zhuo; Luo, Qingming
2005-01-01
Human prefrontal cortex (PFC) helps mediate working memory (WM), a system that is used for temporary storage and manipulation of information and is involved with many higher-level cognitive functions. Here, we report a functional near-infrared spectroscopy (NIRS) study on the PFC activation caused by verbal WM task. For investigating the effect of memory load on brain activation, we adopted the "n-back" task in which subjects must decide for each present letter whether it matches the letter presented n items back in sequence. 27 subjects (ages 18-24, 13 females) participated in the work. Concentration changes in oxy-Hb (HbO2), deoxy-Hb (Hb), and total-Hb (HbT) in the subjects" prefrontal cortex were monitored by a 24-channel functional NIRS imager. The cortical activations and deactivations were found in left ventrolateral PFC and bilateral dorsolateral PFC. As memory load increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of the activations and deactivations in PFC.
Distinct Prefrontal Molecular Mechanisms for Information Storage Lasting Seconds versus Minutes
ERIC Educational Resources Information Center
Runyan, Jason D.; Dash, Pramod K.
2005-01-01
The prefrontal cortex (PFC) is known to actively hold information "online" for a period of seconds in working memory for guiding goal-directed behavior. It has been proposed that relevant information is stored in other brain regions, which is retrieved and held in working memory for subsequent assimilation by the PFC in order to guide behavior. It…
ERIC Educational Resources Information Center
Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove
2009-01-01
Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…
Development of Working Memory and Performance in Arithmetic: A Longitudinal Study with Children
ERIC Educational Resources Information Center
López, Magdalena
2014-01-01
Introduction: This study has aimed to investigate the relationship between the development of working memory and performance on arithmetic activities. Method: We conducted a 3-year longitudinal study of a sample of 90 children, that was followed during the first, second and third year of primary school. All children were tested on measures of WM…
ERIC Educational Resources Information Center
Castro-Fornieles, Josefina; Caldu, Xavier; Andres-Perpina, Susana; Lazaro, Luisa; Bargallo, Nuria; Falcon, Carles; Plana, Maria Teresa; Junque, Carme
2010-01-01
Structural and functional brain abnormalities have been described in anorexia nervosa (AN). The objective of this study was to examine whether there is abnormal regional brain activation during a working memory task not associated with any emotional stimuli in adolescent patients with anorexia and to detect possible changes after weight recovery.…
ERIC Educational Resources Information Center
Gullick, Margaret M.; Sprute, Lisa A.; Temple, Elise
2011-01-01
Individual differences in mathematics performance may stem from domain-general factors like working memory and intelligence. Parietal and frontal brain areas have been implicated in number processing, but the influence of such cognitive factors on brain activity during mathematics processing is not known. The relationship between brain mechanisms…
Neural basis for generalized quantifier comprehension.
McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray
2005-01-01
Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.
Top-down modulation: Bridging selective attention and working memory
Gazzaley, Adam; Nobre, Anna C.
2012-01-01
Selective attention, the ability to focus our cognitive resources on information relevant to our goals, influences working memory (WM) performance. Indeed, attention and working memory are increasingly viewed as overlapping constructs. Here, we review recent evidence from human neurophysiological studies demonstrating that top-down modulation serves as a common neural mechanism underlying these two cognitive operations. The core features include activity modulation in stimulus-selective sensory cortices with concurrent engagement of prefrontal and parietal control regions that function as sources of top-down signals. Notably, top-down modulation is engaged during both stimulus-present and stimulus-absent stages of WM tasks, i.e., expectation of an ensuing stimulus to be remembered, selection and encoding of stimuli, maintenance of relevant information in mind and memory retrieval. PMID:22209601
Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia
2014-01-01
There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.
Network analysis of brain activations in working memory: behavior and age relationships.
Mencl, W E; Pugh, K R; Shaywitz, S E; Shaywitz, B A; Fulbright, R K; Constable, R T; Skudlarski, P; Katz, L; Marchione, K E; Lacadie, C; Gore, J C
2000-10-01
Forty-six middle-aged female subjects were scanned using functional Magnetic Resonance Imaging (fMRI) during performance of three distinct stages of a working memory task-encoding, rehearsal, and recognition-for both printed pseudowords and visual forms. An expanse of areas, involving the inferior frontal, parietal, and extrastriate cortex, was active in response to stimuli during both the encoding and recognition periods. Additional increases during memory recognition were seen in right prefrontal regions, replicating a now-common finding [for reviews, see Fletcher et al. (1997) Trends Neurosci 20:213-218; MacLeod et al. (1998) NeuroImage 7:41-48], and broadly supporting the Hemispheric Encoding/Retrieval Asymmetry hypothesis [Tulving et al. (1994) Proc Natl Acad Sci USA 91:2016-2020]. Notably, this asymmetry was not qualified by the type of material being processed. A few sites demonstrated higher activity levels during the rehearsal period, in the absence of any new stimuli, including the medial extrastriate, precuneus, and the medial temporal lobe. Further analyses examined relationships among subjects' brain activations, age, and behavioral scores on working memory tests, acquired outside the scanner. Correlations between brain scores and behavior scores indicated that activations in a number of areas, mainly frontal, were associated with performance. A multivariate analysis, Partial Least Squares [McIntosh et al. (1996) NeuroImage 3:143-157, (1997) Hum Brain Map 5:323-327], was then used to extract component effects from this large set of univariate correlations. Results indicated that better memory performance outside the scanner was associated with higher activity at specific sites within the frontal and, additionally, the medial temporal lobes. Analysis of age effects revealed that younger subjects tended to activate more than older subjects in areas of extrastriate cortex, medial frontal cortex, and the right medial temporal lobe; older subjects tended to activate more than younger subjects in the insular cortex, right inferior temporal lobe, and right inferior frontal gyrus. These results extend recent reports indicating that these regions are specifically involved in the memory impairments seen with aging. Copyright 2000 Wiley-Liss, Inc.
Li, Yong; Kim, Jimok
2016-01-01
Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2014-06-01
We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.
Frick, K M; Gorman, L K; Markowska, A L
1996-10-01
Age-related spatial memory deficits are correlated with septohippocampal cholinergic system degeneration. The present study examined the effect of intraseptal infusions of the cholinergic agonist, oxotremorine, on spatial reference memory in middle-aged rats using place discrimination in the water maze, and on cholinergic activity using choline acetyltransferase (ChAT) activity. Oxotremorine mildly improved the rate of place discrimination acquisition of middle-aged rats during initial sessions only, but did not affect asymptotic levels of performance achieved. Of the brain regions assayed, ChAT activity increased with age in the temporal cortex and dorsal CA2/3 region of the hippocampus. Oxotremorine significantly decreased ChAT activity in the dorsal hippocampus. In contrast to our previous results in aged rats indicating a more robust effect of oxotremorine on spatial working memory, the present results suggest a modest effect of intraseptal oxotremorine on the acquisition of a spatial reference memory task.
Bauer, Lance O; Manning, Kevin J
2016-01-01
The present study is unique in employing unusually difficult attention and working memory tasks to reveal subtle cognitive decrements among overweight/obese adolescents. It evaluated novel measures of background electroencephalographic (EEG) activity during one of the tasks and tested correlations of these and other measures with psychological and psychiatric predictors of obesity maintenance or progression. Working memory and sustained attention tasks were presented to 158 female adolescents who were rated on dichotomous (body mass index percentile <85 vs. ≥85) and continuous (triceps skinfold thickness) measures of adiposity. The results revealed a significant association between excess adiposity and performance errors during the working memory task. During the sustained attention task, overweight/obese adolescents exhibited more EEG frontal beta power as well as greater intraindividual variability in reaction time and beta power across task periods than their normal-weight peers. Secondary analyses showed that frontal beta power during the sustained attention task was positively correlated with anxiety, panic, borderline personality features, drug abuse, and loss of control over food intake. The findings suggest that working memory and sustained attention decrements do exist among overweight/obese adolescent girls. The reliable detection of the decrements may depend on the difficulty of the tasks as well as the manner in which performance and brain activity are measured. Future studies should examine the relevance of these decrements to dietary education efforts and treatment response. © 2016 S. Karger AG, Basel.
Functional brain microstate predicts the outcome in a visuospatial working memory task.
Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna
2016-11-01
Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.
Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
Csicsvari, Jozsef; Dupret, David
2014-02-05
Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.
Benoit, Roland G; Hulbert, Justin C; Huddleston, Ean; Anderson, Michael C
2015-01-01
When reminded of unwanted memories, people often attempt to suppress these experiences from awareness. Prior work indicates that control processes mediated by the dorsolateral prefrontal cortex (DLPFC) modulate hippocampal activity during such retrieval suppression. It remains unknown whether this modulation plays a role in purging an intrusive memory from consciousness. Here, we combined fMRI and effective connectivity analyses with phenomenological reports to scrutinize a role for adaptive top-down suppression of hippocampal retrieval processes in terminating mnemonic awareness of intrusive memories. Participants either suppressed or recalled memories of pictures depicting faces or places. After each trial, they reported their success at regulating awareness of the memory. DLPFC activation was greatest when unwanted memories intruded into consciousness and needed to be purged, and this increased engagement predicted superior control of intrusive memories over time. However, hippocampal activity was decreased during the suppression of place memories only. Importantly, the inhibitory influence of the DLPFC on the hippocampus was linked to the ensuing reduction in intrusions of the suppressed memories. Individuals who exhibited negative top-down coupling during early suppression attempts experienced fewer involuntary memory intrusions later on. Over repeated suppressions, the DLPFC-hippocampus connectivity grew less negative with the degree that they no longer had to purge unwanted memories from awareness. These findings support a role of DLPFC in countermanding the unfolding recollection of an unwanted memory via the suppression of hippocampal processing, a mechanism that may contribute to adaptation in the aftermath of traumatic experiences.
Greenberg, Jonathan; Romero, Victoria L; Elkin-Frankston, Seth; Bezdek, Matthew A; Schumacher, Eric H; Lazar, Sara W
2018-03-17
Proactive interference occurs when previously relevant information interferes with retaining newer material. Overcoming proactive interference has been linked to the hippocampus and deemed critical for cognitive functioning. However, little is known about whether and how this ability can be improved or about the neural correlates of such improvement. Mindfulness training emphasizes focusing on the present moment and minimizing distraction from competing thoughts and memories. It improves working memory and increases hippocampal density. The current study examined whether mindfulness training reduces proactive interference in working memory and whether such improvements are associated with changes in hippocampal volume. 79 participants were randomized to a 4-week web-based mindfulness training program or a similarly structured creative writing active control program. The mindfulness group exhibited lower proactive interference error rates compared to the active control group following training. No group differences were found in hippocampal volume, yet proactive interference improvements following mindfulness training were significantly associated with volume increases in the left hippocampus. These results provide the first evidence to suggest that (1) mindfulness training can protect against proactive interference, and (2) that these benefits are related to hippocampal volumetric increases. Clinical implications regarding the application of mindfulness training in conditions characterized by impairments to working memory and reduced hippocampal volume such as aging, depression, PTSD, and childhood adversity are discussed.
Olfactory short-term memory encoding and maintenance - an event-related potential study.
Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan
2014-09-01
This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.
Hidalgo, Vanesa; Almela, Mercedes; Pulopulos, Matias M; Salvador, Alicia
2016-09-01
There are large individual differences in age-related cognitive decline. Hypothalamic-pituitary-adrenal axis (HPA-axis) functioning has been suggested as one of the mechanisms underlying these differences. This study aimed to investigate the relationships between the diurnal cortisol cycle, measured as the cortisol awakening response (CAR), and the diurnal cortisol slope (DCS) and the memory performance of healthy older people. To do so, we assessed the verbal, visual, and working memory performance of 64 participants (32 men) from 57 to 76 years old who also provided 14 saliva samples on two consecutive weekdays to determine their diurnal cortisol cycle. The CAR was linearly and negatively associated with verbal (significantly) and visual (marginally) memory domains, but not with working memory. Sex did not moderate these relationships. Furthermore, no associations were found between the DCS and any of the three memory domains assessed. Our results indicate that the two components of the diurnal cortisol cycle have different relationships with memory performance, with the CAR being more relevant than DCS in understanding the link from HPA-axis activity and regulation to different types of memory. These results suggest that the CAR is related to memory domains dependent on hippocampal functioning (i.e., declarative memory), but not to those that are more dependent on prefrontal cortex functioning (i.e., working memory). Copyright © 2016 Elsevier Ltd. All rights reserved.