Science.gov

Sample records for active x-ray mirror

  1. Active optics and x-ray telescope mirrors

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gérard R.

    2008-07-01

    For more than 40 years in Marseille Provence observatories active optics concepts have found many fruitful developments in uv, visible and ir telescope optics. For these wavelength ranges, active optics methods are now widely extended by current use of variable curvature mirrors, in situ aspherization processes, stress figuring apsherization processes, replications of stressed diffraction gratings, and in situ control of large telescope optics. X-ray telescope mirrors will also benefit soon from the enhanced performances of active optics. For instance, the 0.5-1 arcsec spatial resolution of Chandra will be followed up by increased resolution space telescopes which will require the effective construction of more strictly aplanatic grazing-incidence two-mirror systems. In view to achieve a high-resolution imaging with two-mirror grazing-incidence telescope, say, 0.1 arcsec, this article briefly reviews the alternative optical concepts. Next, active optics analysis is investigated with the elasticity theory of shells for the active aspherization and in situ control of monolithic and segmented telescope mirrors for x-ray astronomy. An elasticity theory of weakly conical shells is developed for a first approach which uses a monotonic extension (or retraction) of the shell.

  2. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  3. Realization and drive tests of active thin glass x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Barbera, M.; Collura, A.; Basso, S.; Candia, R.; Civitani, M.; Di Cicca, G.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Salmaso, B.; Sciortino, L.; Varisco, S.

    2016-09-01

    A technique to obtain lightweight and high-resolution focusing mirror segments for large aperture X-ray telescopes is the hot slumping of thin glass foils. In this approach, already successfully experimented to manufacture the optics of the NuSTAR X-ray telescope, thin glasses are formed at high temperature onto a precisely figured mould. The formed glass foils are subsequently stacked onto a stiff backplane with a common axis and focus to form an XOU (X-ray Optical Unit), to be later integrated in the telescope optic structure. In this process, the low thickness of the glass foils guarantees a low specific mass and a very low obstruction of the effective area. However, thin glasses are subject to deformations that may arise at any stage of the production process, thereby degrading the angular resolution. To solve this problem, several groups are working on the possibility to correct the mirror profile post-manufacturing, using piezoelectric elements exerting a tangential strain on the non-optical side of the glass mirrors. In this paper we show the results of the approach we have adopted, based on the application of piezoceramic patches on the backside of thin glass foils, previously formed by hot slumping. The voltage signals are supplied to the piezoelectric elements by a system of electrodes deposited on the same side of the mirror via a photolithographic process. Finally, the matrix of voltages to be used to correct the mirror shape can be determined in X-rays illumination by detection of the intra-focal image and consequent reconstruction of the longitudinal profile. We describe the production of some active mirrors with different arrangements of piezoelectric elements and the X-ray tests performed at the XACT X-ray facility to determine the optimal actuator geometry.

  4. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  5. Foil X-ray Mirrors

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.; Soong, Yang

    1996-09-01

    Nested thin foil reflectors have made possible light weight, inexpensive and fast grazing incidence X-ray mirrors for astronomical spectroscopy over a broad band. These mirrors were developed at Goddard for the US Shuttle program and were flown on NASA's shuttleborne Astro-l mission in December 1990. Presently, the Japan/US collaborative spectroscopic mission ASCA, nearing its third year of successful operation in earth orbit, carries, four such mirrors, weighing less than 40 kg and giving total effective areas of ˜ 1200 and 420 cm2 at l and 8 keV respectively. The ˜ 420 kg observatory is the best possible example of how conical foil mirrors opened areas of research that could not have been otherwise addressed with available resources. In this paper, we will briefly review the development and performance of our first generation foil mirrors. We will also describe progress toward improving their imaging capability to prime them for use in future instruments. Such a goal is highly desirable, if not necessary for this mirror technology to remain competitive for future applications.

  6. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  7. Polishing X-ray Mirror Mandrel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  8. Space Optic Manufacturing - X-ray Mirror

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  9. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  10. Size Optimization for Mirror Segments for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  11. Design and development of grazing incidence x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Mei, Zhiwu; Ma, Tao; Deng, Loulou; Shi, Yongqiang; Li, Liansheng

    2016-01-01

    X-ray pulsar navigation has attracted extensive attentions from academy and engineering domains. The navigation accuracy is can be enhanced through design of X-ray mirrors to focus X-rays to a small detector. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. The simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the grazing incidence X-ray mirror was designed further based on our previous work, with focus on the reflectivity, effective area, angular resolution and baffles. To evaluate the performance of the manufactured mirror, the surface roughness and reflectivity were tested. The test results show that the grazing incidence mirror meets the design specifications. On the basis of this, the reflectivity of the mirror in the working bandwidth was extrapolated to evaluate the focusing ability of the mirror when it works together with the detector. The purpose of our current work to design and develop a prototype mirror was realized. It can lay a foundation and provide guidance for the development of multilayer nested X-ray mirror with larger effective area.

  12. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  13. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  14. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  15. Control x-ray deformable mirrors with few measurements

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Xue, Junpeng; Idir, Mourad

    2016-09-01

    After years of development from a concept to early experimental stage, X-ray Deformable Mirrors (XDMs) are used in many synchrotron/free-electron laser facilities as a standard x-ray optics tool. XDM is becoming an integral part of the present and future large x-ray and EUV projects and will be essential in exploiting the full potential of the new sources currently under construction. The main objective of using XDMs is to correct wavefront errors or to enable variable focus beam sizes at the sample. Due to the coupling among the N actuators of a DM, it is usually necessary to perform a calibration or training process to drive the DM into the target shape. Commonly, in order to optimize the actuators settings to minimize slope/height errors, an initial measurement need to be collected, with all actuators set to 0, and then either N or 2N measurements are necessary learn each actuator behavior sequentially. In total, it means that N+1 or 2N+1 scans are required to perform this learning process. When the actuators number N is important and the actuator response or the necessary metrology is slow then this learning process can be time consuming. In this work, we present a fast and accurate method to drive an x-ray active bimorph mirror to a target shape with only 3 or 4 measurements. Instead of sequentially measuring and calculating the influence functions of all actuators and then predicting the voltages needed for any desired shape, the metrology data are directly used to "guide" the mirror from its current status towards the particular target slope/height via iterative compensations. The feedback for the iteration process is the discrepancy in curvature calculated by using B-spline fitting of the measured height/slope data. In this paper, the feasibility of this simple and effective approach is demonstrated with experiments.

  16. Orthogonal Mirror Telescopes for X-ray Astronomy.

    PubMed

    Vanspeybroeck, L P; Chase, R C; Zehnpfennig, T F

    1971-04-01

    Crossed mirror telescopes are presented as an alternative to the present telescope systems used in x-ray astronomy. These instruments generally have a higher x-ray collecting efficiency but a poorer angular resolution than the more conventional paraboloid-hyperboloid telescopes. They also can be made more easily and quickly as was demonstrated by a recent rocket flight that used a simplified mirror design with only one-dimensional focusing.

  17. Plasma debris sputter resistant x-ray mirror.

    PubMed

    Amano, Sho; Inoue, Tomoaki; Harada, Tetsuo

    2013-06-01

    A diamond-like carbon (DLC) mirror, used as a grazing incident mirror in a plasma x-ray source, exhibits a high resistance to plasma debris sputtering. Good mirror reflectivity at a wavelength of 13.5 nm was confirmed using synchrotron radiation at the NewSUBARU facility. The erosion rate due to plasma debris sputtered at the incident debris angle of 20° was measured using a laser-produced Xe plasma source developed by the authors. The results indicate that the DLC film has a 5- and 15-fold higher sputtering resistance compared to films made of the traditional mirror materials Ru and Au, respectively. Because the DLC mirror retains a high sputtering resistance to Sn ions, it may be effective in Sn plasma source applications. We conclude that a grazing incident x-ray mirror coated with DLC can be of use as a plasma debris sputtering resistant mirror.

  18. Null Lens Assembly for X-Ray Mirror Segments

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2011-01-01

    A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.

  19. Applications of bent cylindrical mirrors to x-ray beamlines

    SciTech Connect

    Heald, S.M.

    1981-07-01

    Bent cylindrical mirrors are considered as substitutes for paraboloidal and ellipsoidal mirrors in x-ray beamlines. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. Particular emphasis is placed on obtaining the practical limitations in the application of bent cylinders to typical beamline configurations.

  20. Normal incidence X-ray mirror for chemical microanalysis

    DOEpatents

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  1. Electroformed grazing incidence X-ray mirrors for a mirror array telescope

    NASA Technical Reports Server (NTRS)

    Ulmer, Melville P.; Matsui, Yutaka; Bedford, D. K.; Simnett, G. M.; Takacs, Peter Z.

    1987-01-01

    Grazing incidence Wolter type I mirrors for higher-energy X-rays have been replicated from two superpolished mandrels by electroforming. Single mirrors and a nested pair were tested with 1.5- and 6.4-keV X-rays, and their subminute of arc resolution and reflectivity close to the theoretical values are confirmed. The design of the mandrels, the mirror mounting scheme, and results of the X-ray test are presented. The microroughnesses of the mirrors measured using an optical profilometer were compared with the X-ray test results.

  2. Background-reducing X-ray multilayer mirror

    DOEpatents

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  3. Development of full shell foil x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Balsamo, Erin; Gendreau, Keith C.; Arzoumanian, Zaven; Jalota, Lalit; Kenyon, Steven J.; Fickau, David; Spartana, Nicholas; Hahne, Devin; Koenecke, Richard; Soong, Yang; Serlemitsos, Peter; Okajima, Takashi; Campion, Robert; Detweiler, Louis

    2012-09-01

    NICER will use full shell aluminum foil X-ray mirrors, similar to those that are currently being developed for the optics to be used for the XACT sounding rocket mission. Similar X-ray optics have been produced at Goddard Space Flight Center since the late 1970's. The mirror geometry used in the past and on some present missions consists of concentric quadrant shell mirrors with a conical approximation to the Wolter 1 geometry. For XACT, we are developing the next generation of these optics. Two innovations introduced in the mirrors are complete shells with a curve is in the reflectors' profile to produce a sharper focus than a conical approximation. X-ray imagers, such as those of Suzaku, ASCA, GEMS, and Astro-H require two reflections. Since XACT and NICER are using the optics as X-ray concentrators rather than full imaging optics, only one set of reflections is necessary. The largest shell in the NICER concentrator is 10cm diameter. Small diameter optics benefit from the rigidity of the full shell design. Also, the simplified support hardware reduced mass, which increases the effective area per unit mass. With 56 optics on NICER, each consisting of 24 full shell mirrors, an effective production process is needed for efficient manufacture of these mirrors. This production process is based on heritage techniques but modified for these new mirrors. This paper presents the production process of the innovative full shell optics and also results of optical and X-ray tests of the integrated optics.

  4. Stitching interferometry for ellipsoidal x-ray mirrors.

    PubMed

    Yumoto, Hirokatsu; Koyama, Takahisa; Matsuyama, Satoshi; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick-Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperture shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.

  5. Fabricating High Resolution Mirrors for Hand X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Speegle, Chet O.; Ramsey, Brian D.; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2001-01-01

    We describe the fabrication process for producing high-resolution conical mirrors for hard x-ray astronomy. When flown aboard stratospheric balloons, these high-resolution reflective mirrors focus hard x-rays (10-70 keV) emitted from cosmic sources such as supernovae, neutron stars, and quasars onto imaging focal plane detectors. Focused hard x-ray images allow scientists to determine the elemental compositions, temperatures, magnetic fields, velocities, and gravitational fields of these celestial bodies. The fabrication process involves generating super-polished mandrels, mandrel metrology, mirror shell nickel electroforming, and mirror testing. Each mandrel is a cylinder consisting of two conical segments; each segment is approximately 305-mm long. Through precision grinding these mandrels before super polishing, we have achieved 30 arc seconds, half power diameter replicated mirrors. During a May 2001 high atmosphere balloon flight, these mirrors focused high energy x-rays from three different celestial sources. However, we seek to improve the angular resolutions of future mirror shells by a factor of two. To achieve this goal, we have begun single point diamond turning the mandrels before super polishing. This has allowed greater precision tolerances on mandrel surface roughness and axial figure errors before super polishing. Surface roughnesses before polishing have been reduced from approximately 60 nm to approximately 15 nm. The peak to valley axial figure profile errors have been reduced from approximately 1.0 micrometers to approximately 0.4 micrometers. We are currently in Phase 2 of the HERO (high energy replicated optics) program which entails the production of sixteen 6-m-focal-length mirror modules, each containing a nested array of 15 mirror shells of diameters ranging from 50-mm to 94-mm. This flight is slated for the fall of 2003.

  6. Forming Mandrels for X-Ray Mirror Substrates

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Saha. To,p; Zhang, Will; O'Dell, Stephen; Kester, Thomas; Jones, William

    2011-01-01

    Precision forming mandrels are one element in X-ray mirror development at NASA. Current mandrel fabrication process is capable of meeting the allocated precision requirements for a 5 arcsec telescope. A manufacturing plan is outlined for a large IXO-scale program.

  7. Progress in precision Wolter mirrors for soft x-ray observations of the sun (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sakao, Taro; Matsuyama, Satoshi; Goto, Takumi; Yamauchi, Kazuto; Kohmura, Yoshiki; Suematsu, Yoshinori; Narukage, Noriyuki

    2016-09-01

    High resolution imagery of solar X-ray corona provides a crucial key to understand dynamics and heating processes of plasmas there. However, imagery of the Sun with sub-arcsecond resolution in X-ray wavelengths has never been conducted due to severe technical difficulty in fabricating precision Wolter mirrors with a wide field of view exceeding several 100". For future X-ray observations of the Sun, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting state-of-the-art surface polish and measurement methods to segmented mirrors which consist of a portion of an entire circle. Following evaluation of X-ray focusing performance of the first engineering Wolter mirror using BL29XUL coherent X-ray beam line at SPring-8 synchrotron facility, the second engineering mirror was fabricated with improvements in precision polish from the first mirror incorporated. X-ray evaluation of the second mirror at SPring-8 was conducted in February 2015, yielding FWHM size of 0.2" for the PSF core at 8 keV while its HPD (half power diameter) size still remained at 3" due to a large amount of small-angle scattering right outside the PSF core. Further improvements in the precision polish for the second mirror, in particular in the spatial scale from 0.3 mm to 5 mm, is currently under way with another X-ray evaluation at SPring-8 planned in spring 2016. Progress in our development activities for precision Wolter mirrors will be reported including at-wavelength evaluation results.

  8. Hard X-ray mirrors for Nuclear Security

    SciTech Connect

    Descalle, M. A.; Brejnholt, N.; Hill, R.; Decker, T.; Alameda, J.; Soufli, R.; Pivovaroff, M.; Pardini, T.

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  9. Thermal Model Development for an X-Ray Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Bonafede, Joseph A.

    2015-01-01

    Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.

  10. Experiments with diamond-turned metal X-ray mirrors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1979-01-01

    It is noted that the primary advantages of diamond turning technology for the fabrication of X-ray telescope mirrors is in the smoothness of the finished surface and the control of the position of the cutter afforded by the precision slides and computer-assisted positioners which form the surface. The paper summarizes the Caltech work in attempting to make Wolter Type I telescope mirrors using the diamond turning facilities at the Oak Ridge Y-12 laboratory. Attention is given to such factors as the use of aluminum with copper plating and electroless nickel coating. It is found that although the diamond turning capability of the Y-12 lab is capable of making good X-ray mirror contours, there are problems in the process which have limited the accuracy achieved by this technique.

  11. Electroform replication used for multiple X-ray mirror production

    NASA Technical Reports Server (NTRS)

    Kowalski, M. P.; Ulmer, M. P.; Purcell, W. R., Jr.; Loughlin, J. E. A.

    1984-01-01

    The electroforming technique for producing X-ray mirrors is described, and results of X-ray tests performed on copies made from a simple conical mandrel are reported. The design of the mandrel is depicted and the total reflectivity as well as the full-wave half modulation resolution are shown as a function of energy. The reported work has improved on previous studies by providing smaller grazing angles, making measurements at higher energies, producing about four times as many replicas from one mandrel, and obtaining better angular resolution.

  12. Test results for an AOA-Xinetics grazing incidence x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Lillie, Charles; Egan, Richard; Landers, Franklin; Cavaco, Jeffrey; Ezzo, Kevin; Khounsary, Ali

    2014-09-01

    X-ray telescopes use grazing incidence mirrors to focus X-ray photons from celestial objects. To achieve the large collecting areas required to image faint sources, thousands of thin, doubly curved mirrors are arranged in nested cylindrical shells to approximate a filled aperture. These mirrors require extremely smooth surfaces with precise figures to provide well-focused beams and small image spot sizes. The Generation-X telescope proposed by SAO would have a 12-meter aperture, a 50 m2 collecting area and 0.1 arc-second spatial resolution. This resolution would be obtained by actively controlling the mirror figure with piezoelectric actuators deposited on the back of each 0.4 mm thick mirror segment. To support SAO's Generation-X study, Northrop Grumman used internal funds to look at the feasibility of using Xinetics deformable mirror technologies to meet the Generation-X requirements. We designed and fabricated two 10 x 30 cm Platinum-coated silicon mirrors with 108 surface-parallel electrostrictive Lead Magnesium Niobate (PMN) actuators bonded to the mirror substrates. These mirrors were tested at optical wavelengths by Xinetics to assess the actuator's performance, but no funds were available for X-ray tests. In 2013, after receiving an invitation to evaluate the mirror's performance at Argonne National Laboratory, the mirrors were taken out of storage, refurbished, retested at Xinetics and transported to ANL for metrology measurements with a Long Trace Profilometer, a Fizeau laser interferometer, and X-ray tests. This paper describes the development and testing of the adaptive x-ray mirrors at AOAXinetics. Marathe, et al, will present the results of the tests at Argonne.

  13. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors

    PubMed Central

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  14. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  15. Activities in the X-Ray Corona as seen by Hinode X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Sakao, Taro

    We present observations on the solar corona with the X-Ray Telescope (XRT) aboard Hinode. XRT is a grazing-incidence imager with a Walter Type-I-like mirror of 34 cm diameter, with a back-illuminated CCD device located at its focus position. In addition to its imaging capability for the X-ray corona with the highest angular resolution (consistent with 1 arcsec CCD pixel size) as a solar X-ray telescope, enhanced sensitivity of the CCD towards longer X-ray wavelengths (particularly longer than 50 angstroms) enables XRT to image, and perform temperature diagnostics on, coronal plasmas in a wide temperature range (1-10 MK). This adds a notable advantage to XRT that it can observe most, if not all, active phenomena in the corona throughout their entire thermal evolution. XRT has so far revealed various new aspects of coronal activities. These include (1) plasma flows in the corona, (2) frequent X-ray jets in the polar regions, (3) eruptive events even with small or moderate X-ray activities, (4) fine structure and evolution of flaring loops, (5) detailed observations on transient brightenings (microflares) in quiet as well as active regions. Some highlights of Hinode XRT observations, centered on those on plasma flows, will be presented and discussed.

  16. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    SciTech Connect

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experiment at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.

  17. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE PAGES

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; ...

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  18. X-ray metrology and performance of a 45-cm long x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; Brejnholt, Nicolai F; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-01

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experiment at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.

  19. Fluence thresholds for grazing incidence hard x-ray mirrors

    SciTech Connect

    Aquila, A.; Ozkan, C.; Sinn, H.; Tschentscher, T.; Mancuso, A. P.; Gaudin, J.; Sobierajski, R.; Klepka, M. T.; Dłużewski, P.; Morawiec, K.; Störmer, M.; Bajt, S.; Ohashi, H.; Koyama, T.; Tono, K.; Inubushi, Y. [RIKEN and others

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.

  20. Advanced X-Ray Telescope Mirrors Provide Sharpest Focus Ever

    NASA Astrophysics Data System (ADS)

    1997-03-01

    Performing beyond expectations, the high- resolution mirrors for NASA's most powerful orbiting X-ray telescope have successfully completed initial testing at Marshall Space Flight Center's X-ray Calibration Facility, Huntsville, AL. "We have the first ground test images ever generated by the telescope's mirror assembly, and they are as good as -- or better than -- expected," said Dr. Martin Weisskopf, Marshall's chief scientist for NASA's Advanced X-ray Astrophysics Facility (AXAF). The mirror assembly, four pairs of precisely shaped and aligned cylindrical mirrors, will form the heart of NASA's third great observatory. The X-ray telescope produces an image by directing incoming X-rays to detectors at a focal point some 30 feet beyond the telescope's mirrors. The greater the percentage of X-rays brought to focus and the smaller the size of the focal spot, the sharper the image. Tests show that on orbit, the mirror assembly of the Advanced X-ray Astrophysics Facility will be able to focus approximately 70 percent of X-rays from a source to a spot less than one-half arc second in radius. The telescope's resolution is equivalent to being able to read the text of a newspaper from half a mile away. "The telescope's focus is very clear, very sharp," said Weisskopf. "It will be able to show us details of very distant sources that we know are out there, but haven't been able to see clearly." In comparison, previous X-ray telescopes -- Einstein and Rosat -- were only capable of focusing X- rays to five arc seconds. The Advanced X-ray Telescope's resolving power is ten times greater. "Images from the new telescope will allow us to make major advances toward understanding how exploding stars create and disperse many of the elements necessary for new solar systems and for life itself," said Dr. Harvey Tananbaum, director of the Advanced X- ray Astrophysics Facility Science Center at the Smithsonian Astrophysical Observatory, in Cambridge, MA -- responsible for the telescope

  1. Specifying the surface finish of x-ray mirrors

    SciTech Connect

    Church, E.L.; Takacs, P.Z.

    1993-12-31

    Our measurements of x-ray mirrors at Brookhaven indicate that the power spectral densities of their finish errors have inverse power-law or fractal forms, rather than being flat at low frequencies as is usually assumed. This paper reviews these data and discusses how this apparent divergent behavior leads to finite but unconventional effects in imaging. Results are then used to develop more rational and realistic surface-finish specifications.

  2. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  3. High Precision Assembly of Thin Mirror X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    Lightweight high resolution x-ray telescope optics are one of the key technologies under development for next-generation x-ray telescopes. The ultimate goal of this effort is to realize optics with spatial resolution rivaling Chandra (<1 arc-sec) but with collecting areas that are larger by orders of magnitude. In the USA several institutions, including GSFC, MSFC, Harvard-SAO, MIT and Northwest University are working on a variety of approaches to this problem. An excellent example is the NuSTAR x-ray telescope, which teamed Cal Tech, GSFC, Columbia University and LLNL to produce a superb set of hard x-ray optics. The telescope was composed of thousands of 0.2 mm-thick glass mirrors which were epoxied into place around a spindle structure. While very light weight, this process resulted in ~1 arc min resolution. We want to achieve ~100 times better with similar mass. A group at NASA GSFC has recently demonstrated an alternative thin-glass assembly procedure that has achieved ~7 arc sec resolution with x-ray tests. Further progress towards 1 arc-sec will require mirrors with improved figure, lower stress coatings, improved alignment, better metrology, and low stress bonding. Many of the difficulties with current mirror assembly practice stem from the use of epoxy as a bonding agent. Epoxy has many disadvantages, including high shrinkage, large CTE and creep, resin aging effects, water absorption, outgassing, low tensile strength, exothermicity, and requiring large amounts of time and/or heat to cure. These effects can cause errors that become â€oefrozen in― to the bond with no possibility of correction. We propose to investigate replacing epoxy with low temperature, low shrinkage solder alloys. We use these solders in conjunction with high power, millisec-long pulses from a fiber IR laser to deliver controlled amounts of heat into the bond area. We have demonstrated that laser pulses can be used to actuate carefully designed bonds by permanently compressing

  4. A Simple X-Ray Focusing Mirror Using Float Glass

    SciTech Connect

    Yin, Z; Berman, L.; Siddons, D.P.; Dierker, S; Dufresne, E.

    1996-10-01

    In our recent x-ray photon correlation spectroscopy (speckle) experiments at NSLS, one of the challenges is to increase the coherent photon flux through a pinhole, whose size is chosen to match the beam`s horizontal transverse coherence length {ital l{sub h}}. We adopted an approach to vertically focus the x-ray beam so as to match its vertical transverse coherence length {ital l{sub v}}, (at NSLS X13, {ital l{sub v}}{approximately} 50{ital l{sub h}}, {ital l{sub h}}{approximately} 12 {mu}m at 3 KeV) with {ital l{sub h}}. By demagnifying the vertical size by a factor of {ital l{sub v}/l{sub h}}, we expect to increase the intensity of the x-rays through the pin hole by the same factor while keeping the beam coherent. A piece of commercial 3/8 inch thick float glass, by virtue of its low surface roughness ({approximately}3{Angstrom} rms), good reflectivity in the low photon energy range of interest and low cost, was chosen as the mirror material. A computer controlled motorized bender with a four point bending mechanism was designed and built to bend the float glass to a continuously variable radius of curvature from {approximately}700 m (intrinsic curvature of the glass surface) to < 300 m, measured with the Long Trace Profiler at the BNL Metrology Lab. This mirror bender assembly allows us to continuously change the focal length of the x-ray mirror down to 0.5 m under our experimental conditions. At the NSLS X13 Prototype Small Gap Undulator (PSGU) beamline, we were able to focus the x-ray beam from a vertical size of 0.5 mm to {approximately} 25{mu}m at the focal point 54 cm from the mirror center, thus increasing the photon flux density by a factor of 20. Results also show that, as expected, at an incident angle of 9 mrad, the mirror cuts off the harmonics of the undulator spectrum, leaving a clean 3 KeV fundamental for our experiments.

  5. High Resolution Adjustable Mirror Control for X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  6. X-ray mirror metrology using SCOTS/deflectometry

    NASA Astrophysics Data System (ADS)

    Huang, Run; Su, Peng; Burge, James H.; Idir, Mourad

    2013-09-01

    SCOTS is a high precision slope measurement technology based on deflectometry. Light pattern on a LCD display illuminates the test surface and its reflected image is used to calculate the surface slope. SCOTS provides a high dynamic range full field measurement of the optics without null optics required. We report SCOTS tests on X-ray mirrors to nm and even sub nm level with precise calibration of the test system. A LCD screen with dots/check board pattern was aligned into the system at the test mirror position to calibrate camera imaging distortion in-situ. System errors were further eliminated by testing and subtracting a reference flat which was also aligned at the same position as the test mirror. A virtual reference based on the ideal shape of the test surface was calculated and subtracted from the test raw data. This makes the test a `virtual null' test. Two X-ray mirrors were tested with SCOTS. 0.1μrad (rms) slope precision and sub nm (rms) surface accuracy were achieved.

  7. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  8. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  9. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan Sheng; Yashchuk, Valeriy V.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony; Goldberg, Kenneth A.

    2010-06-23

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  10. X-ray mirror assessment with optical light

    NASA Technical Reports Server (NTRS)

    Kunieda, Hideyo; Serlemitsos, Peter J.

    1988-01-01

    The imaging capability of a thin foil X-ray mirror has been examined with optical light, using a laser beam and a wide optical parallel beam. These measurements reveal that: (1) image broadening due to millimeter scale waviness (orange peel) of the aluminum substrate, partly intrinsic to the foil and partly caused during the foil treatment, is 1.2-min of arc half-power diameter (HPD) in two reflections; (2) slope errors due to foil shaping and misalignment cause broadening of 1.6-2.0-min of arc HPD; and (3) total broadening is about 3-min of arc HPD, which is consistent with the broadening of 2.6-min of arc HPD measured with X rays.

  11. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  12. Coating Thin Mirror Segments for Lightweight X-ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  13. Mirror Technology Development for The International X-Ray Observatory Mission

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.

  14. Replicate Wolter-I x-ray mirrors

    NASA Technical Reports Server (NTRS)

    Engelhaupt, D. E.; Rood, R.; Fawcett, S.; Griffith, C.; Khanijow, R.

    1994-01-01

    Cylindrical (hyperbolic - parabolic Wolter I) mirrors have been electroformed from nickel over an electroless nickel-phosphorous (NiP) plated aluminum mandrel in support of the NASA AXAF-S x-ray spectrometer program. The electroless nickel was diamond turned and polished to achieve a surface finish of 10 angstroms rms or better. Gold was then plated on the nickel alloy after an electrochemical passivation step. Next a heavy layer of pure nickel was plated one millimeter thick with controlled stress at zero using a commercial PID program to form the actual mirror. This shell was removed from the NiP alloy coated mandrel by cryogenic cooling and contraction of the aluminum to release the mirror. It is required that the gold not adhere well to the NiP but all other plated coatings must exhibit good adherence. Four mirrors were fabricated from two mandrels prepared by this method. The area of each part is 0.7 square meters (7.5 square feet).

  15. Controlling X-ray deformable mirrors during inspection.

    PubMed

    Huang, Lei; Xue, Junpeng; Idir, Mourad

    2016-11-01

    The X-ray deformable mirror (XDM) is becoming widely used in the present synchrotron/free-electron laser facilities because of its flexibility in correcting wavefront errors or modification of the beam size at the sample location. Owing to coupling among the N actuators of an XDM, (N + 1) or (2N + 1) scans are required to learn the response of each actuator one by one. When the mirror has an important number of actuators (N) and the actuator response time including stabilization or the necessary metrology time is long, the learning process can be time consuming. In this work, a fast and accurate method is presented to drive an XDM to a target shape usually with only three or four measurements during inspection. The metrology data are used as feedback to calculate the curvature discrepancy between the current and the target shapes. Three different derivative estimation methods are introduced to calculate the curvature from measured data. The mirror shape is becoming close to the target through iterative compensations. The feasibility of this simple and effective approach is demonstrated by a series of experiments.

  16. Controlling X-ray deformable mirrors during inspection

    DOE PAGES

    Huang, Lei; Xue, Junpeng; Idir, Mourad

    2016-10-14

    The X-ray deformable mirror (XDM) is becoming widely used in the present synchrotron/free-electron laser facilities because of its flexibility in correcting wavefront errors or modification of the beam size at the sample location. Owing to coupling among the N actuators of an XDM, (N + 1) or (2N + 1) scans are required to learn the response of each actuator one by one. When the mirror has an important number of actuators (N) and the actuator response time including stabilization or the necessary metrology time is long, the learning process can be time consuming. In this paper, a fast andmore » accurate method is presented to drive an XDM to a target shape usually with only three or four measurements during inspection. The metrology data are used as feedback to calculate the curvature discrepancy between the current and the target shapes. Three different derivative estimation methods are introduced to calculate the curvature from measured data. The mirror shape is becoming close to the target through iterative compensations. Finally, the feasibility of this simple and effective approach is demonstrated by a series of experiments.« less

  17. Controlling X-ray deformable mirrors during inspection

    SciTech Connect

    Huang, Lei; Xue, Junpeng; Idir, Mourad

    2016-10-14

    The X-ray deformable mirror (XDM) is becoming widely used in the present synchrotron/free-electron laser facilities because of its flexibility in correcting wavefront errors or modification of the beam size at the sample location. Owing to coupling among the N actuators of an XDM, (N + 1) or (2N + 1) scans are required to learn the response of each actuator one by one. When the mirror has an important number of actuators (N) and the actuator response time including stabilization or the necessary metrology time is long, the learning process can be time consuming. In this paper, a fast and accurate method is presented to drive an XDM to a target shape usually with only three or four measurements during inspection. The metrology data are used as feedback to calculate the curvature discrepancy between the current and the target shapes. Three different derivative estimation methods are introduced to calculate the curvature from measured data. The mirror shape is becoming close to the target through iterative compensations. Finally, the feasibility of this simple and effective approach is demonstrated by a series of experiments.

  18. A mirror for lab-based quasi-monochromatic parallel x-rays.

    PubMed

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  19. A mirror for lab-based quasi-monochromatic parallel x-rays

    SciTech Connect

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb

    2014-09-15

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  20. Light-weight glass mirror systems for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Winter, Anita; Breunig, Elias; Burwitz, Vadim; Friedrich, Peter; Hartner, Gisela; Menz, Benedikt; Proserpio, Laura

    2013-09-01

    Future X-ray telescopes need to combine large collecting area with good angular resolution. In order to achieve these aims within the mass limit, light-weight materials are needed for mirror production. We are developing a technology based on indirect hot slumping of thin glass segments; this method enables the production of the parabolic and hyperbolic part of the Wolter type I mirrors in one piece. Currently we use a combination of a porous ceramic for the slumping mould and the glass type D263 for the mirror material. In this study we use glasses that have been polished on one side to remove thickness variations in the glass, in order to investigate their influence on the results. We describe the experimental set-up, the slumping process and the metrology methods. Finally we present the results of an X-ray test of several integrated glass sheets, and give an outlook on future activities.

  1. Forming mandrels for making lightweight x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Blake, Peter N.; Saha, Timo; Zhang, William W.; O'Dell, Stephen; Kester, Thomas; Jones, William

    2011-09-01

    Future x-ray astronomical missions, similar to the proposed International X-ray Observatory (IXO), will utilize replicated mirrors to reduce both mass and production costs. Accurately figured and measured molds (called mandrels) - on which the mirror substrates are thermally formed, replicating the surface of the mandrels - are essential to enable these missions. The Optics Branches of the Goddard Space Flight Center (GSFC) and Marshall Space Flight Center (MSFC) have developed fabrication processes along with metrologies that yield high-precision mandrels; and through the SBIR program, they encourage small businesses to attack parts of the remaining problems. The Goddard full-aperture mandrel polisher (the MPM-500) has been developed to a level where mandrel surfaces match the 1.5 arcsec HPD level allocation in a 5 arcsec telescope program. This paper reviews this current technology and describes a pilot program to design a suite of machine tools and process parameters capable of producing many hundreds of these precision objects. A major challenge is to keep mid-spatial frequency errors below 2 nm rms - a severe specification; but we must also note the factors which work to our advantage: e.g., how the figure departs from a pure cone by only one micron, and how the demanding figure specifications which apply in the axial direction are relaxed by an order of magnitude in the azimuthal. Careful study of other large optical fabrication programs in the light of these challenges and advantages has yielded a realistic plan for the economical production of mandrels that meet program requirements in both surface and quantity.

  2. A proposal for a collecting mirror assembly for large divergence x-ray sources.

    PubMed

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Oku, Satoshi

    2014-11-01

    We propose a new type of collecting mirror assembly (CMA) for x rays, which will enable us to build a powerful optical system for collecting x rays from large divergence sources. The CMA consists of several mirror sections connected in series. The angle of each section is designed so that the x rays reflected from it are parallel to the x rays directly incident on the following sections. A simplified CMA structure is designed and applied to the Al-Kα emission line. It is estimated that by using the CMA the number of x rays detected could be increased by a factor of about 2.5.

  3. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  4. Fabrication of Wolter-type x-ray focusing mirror using epoxy resin

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masaki; Taira, Hideki; Harada, Tatsuo; Aoki, Sadao; Ninomiya, Ken

    1994-08-01

    The Wolter-type mirror was fabricated with epoxy resin by optimizing conditions for facilitating the removal of the replica from the master mandrel. The method of fabrication was elucidated as well as the evaluation of the mirror by using x-ray microscopy of copper meshes with a laboratory x-ray source and by focusing experiments employing synchrotron radiation.

  5. Alignment and integration of slumped glass x-ray mirrors at MPE

    NASA Astrophysics Data System (ADS)

    Breunig, E.; Friedrich, P.; Proserpio, L.; Winter, A.

    2014-07-01

    This paper provides an update on the current activities for alignment and integration of slumped glass x-ray mirrors at MPE. Progress is being made w.r.t. the integration facility which is currently transitioned from a manual bench top setup to a full scale robotic system based on a high precision hexapod and collimated beam metrology. We present the most important design considerations and features of this new system as well as progress on other details of the integration concept.

  6. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    PubMed Central

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts. PMID:25537582

  7. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    PubMed

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  8. Development of surface profile measurement method for ellipsoidal x-ray mirrors using phase retrieval

    NASA Astrophysics Data System (ADS)

    Saitou, Takahiro; Takei, Yoshinori; Mimura, Hidekazu

    2012-09-01

    An ellipsoidal mirror is a promising type of X-ray mirror, because it can focus X-rays to nanometer size with a very large aperture and no chromatic aberration. However, ideal ellipsoidal mirrors have not yet been realized by any manufacturing method. This is partly because there is no evaluation method for its surface figure profile. In this paper, we propose and develop a method for measuring surface figure profile of ellipsoidal mirrors using phase retrieval. An optical design for soft X-ray focusing, the employed phase retrieval method and an experimental optical system specialized for wavefront measurement using a He-Ne laser are reported.

  9. X-ray phase imaging with a laboratory source using selective reflection from a mirror.

    PubMed

    Pelliccia, Daniele; Paganin, David M

    2013-04-22

    A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

  10. Preface: The 5th International Workshop on X-ray Mirror Design, Fabrication, and Metrology.

    PubMed

    Assoufid, Lahsen; Goldberg, Kenneth; Yashchuk, Valeriy V

    2016-05-01

    Recent developments in synchrotron storage rings and free-electron laser-based x-ray sources with ever-increasing brightness and coherent flux have pushed x-ray optics requirements to new frontiers. This Special Topic gathers a set of articles derived from a subset of the key presentations of the International Workshop on X-ray Mirrors Fabrication (IWXM-2015) and Metrology held at Lawrence Berkley National Laboratory, Berkeley, California, USA, July 14-16, 2015. The workshop objective was to report on recent progress in x-ray synchrotron radiation mirrors fabrication as well as on new developments in related metrology tools and methods.

  11. Development of ellipsoidal focusing mirror for soft x-ray and extreme ultraviolet light

    NASA Astrophysics Data System (ADS)

    Mimura, Hidekazu; Takei, Yoshinori; Saito, Takahiro; Kume, Takehiro; Motoyama, Hiroto; Egawa, Satoru; Takeo, Yoko; Higashi, Takahiro

    2015-08-01

    Mirrors are key devices for creating various systems in optics. Focusing X-ray and extreme ultraviolet (EUV) light requires mirror surfaces with an extremely high accuracy. The figure of an ellipsoidal mirror is obtained by rotating an elliptical profile, and using such a mirror, soft X-ray and EUV light can be focused to dimensions on the order of nanometers without chromatic aberration. Although the theoretical performance of ellipsoidal mirrors is extremely high, the fabrication of an ideal ellipsoidal mirror remains problematic. Based on this background, we have been working to develop a fabrication system for ellipsoidal mirrors. In this proceeding, we briefly introduce the fabrication process and the soft X-ray focusing performance of the ellipsoidal mirror fabricated using the proposed process.

  12. The challenge of developing thin mirror shells for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Stollenwerk, Manfred; Gong, Qingqing; Proserpio, Laura; Winter, Anita; Friedrich, Peter

    2015-09-01

    Previously used mirror technologies are not able to fulfil the requirements of future X-ray telescopes due to challenging requests from the scientific community. Consequently new technical approaches for X-ray mirror production are under development. In Europe the technical baseline for the planned X-ray observatory ATHENA is the radical new approach of silicon pore optics. NASÁs recently launched NuSTAR mission uses segmented mirrors shells made from thin bended glasses, successfully demonstrating the feasibility of the glass forming technology for X-ray mirrors. For risk mitigation also in Europe the hot slumping of thin glasses is being developed as an alternative technology for lightweight X-ray telescopes. The high precision mirror manufacturing requires challenging technical developments; several design trades and trend-setting decisions need to be made and are discussed within this paper. Some new technical and economic aspects of the intended glass mirror serial production are also studied within the recently started interdisciplinary project INTRAAST, an acronym for "industry transfer of astronomical mirror technologies". The goal of the project, embedded in a cooperation of the Max-Planck-Institute for extraterrestrial Physics and the University of Applied Sciences Aschaffenburg, is to master the challenge of producing thin mirror shells for future X-ray telescopes. As a first project task the development of low stress coatings for thin glass mirror substrates have been started, the corresponding technical approach and first results are presented.

  13. Study of X-ray optics. [testing polished Kanigen coated beryllium mirror in X ray telescope on Skylark

    NASA Technical Reports Server (NTRS)

    Froechtenigt, J. F.

    1973-01-01

    The testing is reported of a polished Kanigen coated beryllium mirror in a soft X-ray telescope to be flown on a Skylark sounding rocket. This test involved inserting the telescope in a 220 foot long vacuum line and taking photographs of an X-ray resolution source. These photographs were then used to evaluate the performance of the telescope mirror as a function of distance from the focal plane and the angular distance off the telescope axis. A second test was made in which a point source was used to study the imaging characteristics by means of a pinhole and proportional counter placed in the telescope focal plane. A third test was conducted using a position sensitive detector. The efficiency and resolution was increased by polishing.

  14. The use of laterally graded multilayer mirrors for soft X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Marshall, Herman L.; Schulz, Norbert S.; Windt, David L.; Gullikson, Eric M.; Blake, Eric; Getty, Dan; McInturff, Zane

    2014-07-01

    ABSTRACT We present continued development of laterally graded multilayer mirrors (LGMLs) for a telescope design capable of measuring linear X-ray polarization over a broad spectral band. The multilayer-coated mirrors are used as Bragg re ectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer re ectivities and achieve modulation factors over 50% over the entire 0.2-0.8 keV band. In Phase II of the polarimetry beam-line development, we demonstrated that the system provides 100% polarized X-rays at 0.525 keV (Marshall et al. 2013). Here, we present results from phase III of our development, where a LGML is used at the source and laterally manipulated in order to select and polarize X-rays from emission lines for a variety of source anodes. The beam-line will then provide the capability to test polarimeter components across the 0.15-0.70 keV band. We also present plans for a suborbital rocket experiment designed to detect a polarization level of better than 10% for an active galactic nucleus.

  15. Electro-Formed Mirrors for Both X-Ray and Visible Astronomy

    NASA Technical Reports Server (NTRS)

    Ritter, J.; Smith, W. Scott; Rose, M. Frank (Technical Monitor)

    2000-01-01

    The Space Optics Manufacturing Technology Center of NASA's Marshall Space Flight Center is involved in the development of nickel and nickel alloy electroformed mirrors for rapid production of space-based optical systems. The current state of the process is discussed- for both cylindrical x-ray mirrors and normal incidence mirrors for visible and infrared applications.

  16. Single-shot calibration of soft x-ray mirrors using a sinusoidal transmission grating.

    PubMed

    Shpilman, Z; Ehrlich, Y; Maman, S; Levy, I; Shussman, T; Oren, G; Zakosky Nueberger, I; Hurvitz, G

    2014-11-01

    Calibration of soft x-ray diagnostics is a challenge due to the lack of laboratory-size calibrated sources. An in situ calibration method for newly developed x-ray mirrors, is presented. The x-ray source is produced by laser-matter interaction, and twin transmission gratings which create two identical dispersion lines. The gratings have a sinusoidal transmission function, which produces a highly precise high-orders free spectrum. An x-ray mirror interacts with one of the dispersion lines, and the mirror efficiency curve as a function of wavelength is extracted. Mirror efficiency shows good agreement with the literature, and evidence of water layer may justify the need of in situ calibration.

  17. Fabrication of single crystal silicon mirror substrates for X-ray astronomical missions

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Bly, Vincent T.; Kolos, Linette D.; McKeon, Kevin P.; Mazzarella, James R.; Miller, Timothy M.; Zhang, William W.

    2014-07-01

    The advancement of X-ray astronomy largely depends on technological advances in the manufacturing of X-ray optics. Future X-ray astronomy missions will require thousands of nearly perfect mirror segments to produce an X-ray optical assembly with < 5 arcsecond resolving capability. Present-day optical manufacturing technologies are not capable of producing thousands of such mirrors within typical mission time and budget allotments. Therefore, efforts towards the establishment of a process capable of producing sufficiently precise X-ray mirrors in a time-efficient and cost-effective manner are needed. Single-crystal silicon is preferred as a mirror substrate material over glass since it is stronger and free of internal stress, allowing it to retain its precision when cut into very thin mirror substrates. This paper details our early pursuits of suitable fabrication technologies for the mass production of sub-arcsecond angular resolution single-crystal silicon mirror substrates for X-ray telescopes.

  18. Design and implementation of precise x-ray metrology to control a 45-cm long x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Ruz Armendariz, Jaime; Feng, Jun; Chao, Weilun; Jackson, Jessie; Nasiatka, James; Decker, Todd

    2016-09-01

    Our experiments at beamline 5.3.1 of the Advanced Light Source feature a 45-cm long x-ray deformable mirror (XDM). We describe the experiment and present recent results in two areas. First, we directly image the 3 keV x-ray beam and demonstrate customized shaping of its intensity in the near field. Detailed physics simulations of the experiment agree very well with actual measurements. Second, we use a grating interferometer to measure known figure errors applied to the surface of the XDM. A relative height change on the XDM of 2.5 nm RMS is measured at an SNR of eight in single measurement. A provisional error budget analysis indicates that uncalibrated errors in the system are by far the largest component.

  19. Sub-nanometer flattening of 45 cm long, 45 actuator x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; McCarville, Thomas; Pardini, Tommaso; Palmer, David; Brooks, Audrey; Pivovaroff, Michael J; Macintosh, Bruce

    2014-06-01

    We have built a 45 cm long x-ray deformable mirror (XDM) of super-polished single-crystal silicon that has 45 actuators along the tangential axis. After assembly, the surface height error was 19 nm rms. With use of high-precision visible-light metrology and precise control algorithms, we have actuated the XDM and flattened its entire surface to 0.7 nm rms controllable figure error. This is, to our knowledge, the first sub-nanometer active flattening of a substrate longer than 15 cm.

  20. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  1. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  2. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  3. Figuring Large Mandrels for Forming X-Ray Mirrors Substrates

    NASA Technical Reports Server (NTRS)

    Wright, Geraldine; Fleetwood, Charles; Content, David; Saha, Timo; Kolos, Linette; Colella, David

    2004-01-01

    Constellation X mirrors are discussed in this presentation. Topics include:assemblies, mirror segments, optical assemble pathfinder mandrels, the figuring process, and a best quadrant,clear aperture, and full aperture.

  4. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.

    PubMed

    Sutter, John P; Alcock, Simon G; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-11-01

    Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors <5 nm r.m.s. introduce damagingly large striations into the reflected beam. To counteract such problems, surface modifications with alternating concave and convex curvature on equal segments were polished onto the surface of non-active mirrors of fixed curvature. Such optics are useful for providing a fixed size of X-ray beam, but do not provide the adaptability required by many experiments. In contrast, deformable piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

  5. Three mirror glancing incidence system for X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1974-01-01

    A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.

  6. Size-changeable x-ray beam collimation using an adaptive x-ray optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, T.; Matsuyama, S.; Nakamori, H.; Hayashi, H.; Sano, Y.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2016-09-01

    A two-stage adaptive optical system using four piezoelectric deformable mirrors was constructed at SPring-8 to form collimated X-ray beams. The deformable mirrors were finely deformed to target shapes (elliptical for the upstream mirrors and parabolic for the downstream mirrors) based on shape data measured with the X-ray pencil beam scanning method. Ultraprecise control of the mirror shapes enables us to obtain various collimated beams with different beam sizes of 314 μm (358 μm) and 127 μm (65 μm) in the horizontal (vertical) directions, respectively, with parallelism accuracy of 1 μrad rms.

  7. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  8. Aligning, Bonding, and Testing Mirrors for Lightweight X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Saha, Timo T.; McClelland, Ryan S.; Biskach, Michael P.; Niemeyer, Jason; Schofield, Mark J.; Mazzarella, James R.; Kolos, Linette D.; Hong, Melinda M.; Numata, Ai; Sharpe, Marton V.; Solly, Peter M.; Riveros, Raul E.; Allgood, Kim D.; McKeon, Kevin P.

    2015-01-01

    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer.

  9. Aligning, bonding, and testing mirrors for lightweight x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Chan, Kai-Wing; Zhang, William W.; Saha, Timo T.; McClelland, Ryan S.; Biskach, Michael P.; Niemeyer, Jason; Schofield, Mark J.; Mazzarella, James R.; Kolos, Linette D.; Hong, Melinda M.; Numata, Ai; Sharpe, Marton V.; Solly, Peter M.; Riveros, Raul E.; Allgood, Kim D.; McKeon, Kevin P.

    2015-09-01

    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer.

  10. The use of laterally graded multilayer mirrors for soft x-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Marshall, Herman L.; Schulz, Norbert S.; Windt, David L.; Gullikson, Eric M.; Craft, Marshall; Blake, Eric; Ross, Connor

    2015-09-01

    We present continued development of laterally graded multilayer mirrors (LGMLs) for a telescope design capable of measuring linear X-ray polarization over a broad spectral band. The multilayer-coated mirrors are used as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve modulation factors near 100%. In Phase II of the polarimetry beam- line development, we demonstrated that the system provides 100% polarized X-rays at 0.525 keV (Marshall et al. 2013). In Phase III of the polarimetry beam-line development, we installed an LGML in the source to polarize a wide range of energies between 0.15 and 0.70 keV (Marshall et al. 2014). Here, we present results from continued development of the LGMLs to improve reflectivity in the band of interest, a blazed reflection grating that is suitable for a small flight instrument, and a new detector with a directly deposited optical blocking filter. We also present updated plans for a suborbital rocket experiment designed to detect a polarization level of better than 10% for an active galactic nucleus.

  11. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors

    PubMed Central

    Sutter, John P.; Alcock, Simon G.; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors <5 nm r.m.s. introduce damagingly large striations into the reflected beam. To counteract such problems, surface modifications with alternating concave and convex curvature on equal segments were polished onto the surface of non-active mirrors of fixed curvature. Such optics are useful for providing a fixed size of X-ray beam, but do not provide the adaptability required by many experiments. In contrast, deformable piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory’s freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos’ influence on the mirror’s figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature. PMID:27787239

  12. Multispectral X-Ray Imaging With A Pinhole Array And A Flat Bragg Mirror

    SciTech Connect

    Koch, J A; Barbee, Jr., T W; Izumi, N; Tommasini, R; Welser, L A; Mancini, R C; Marshall, F J

    2005-03-17

    We describe a multiple monochromatic x-ray imager designed for implosion experiments. This instrument uses an array of pinholes in front of a flat multilayered Bragg mirror to provide many individual quasi-monochromatic x-ray pinhole images spread over a wide spectral range. We discuss design constraints and optimizations, and we discuss the specific details of the instrument we have used to obtain temperature and density maps of implosion plasmas.

  13. Analytical computation of the off-axis effective area of grazing incidence X-ray mirrors

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Cotroneo, V.; Basso, S.; Conconi, P.

    2009-10-01

    Aims: Focusing mirrors for X-ray telescopes in grazing incidence, introduced in the 70s, are characterized in terms of their performance by their imaging quality and effective area, which in turn determines their sensitivity. Even though the on-axis effective area is assumed in general to characterize the collecting power of an X-ray optic, the telescope capability of imaging extended X-ray sources is also determined by the variation in its effective area with the off-axis angle. The effective area, in general, decreases as the X-ray source moves off-axis, causing a loss of sensitivity in the peripheral regions of the telescope's field of view. Methods: The complex task of designing optics for future X-ray telescopes entails detailed computations of both imaging quality and effective area on- and off-axis. Because of their apparent complexity, both aspects have been, so far, treated by using ray-tracing routines aimed at simulating the interaction of X-ray photons with the reflecting surfaces of a given focusing system. Although this approach has been widely exploited and proven to be effective, it would also be attractive to regard the same problem from an analytical viewpoint, to assess an optical design of an X-ray optical module with a simpler calculation than a ray-tracing routine. This would also improve the efficiency of optimization tasks when designing the X-ray optical modules. In this paper, we thereby focused on developing analytical solutions to compute the off-axis effective area of double-reflection X-ray mirrors. Results: We have developed useful analytical formulae for the off-axis effective area of a double-reflection mirror in the double cone approximation, requiring only an integration and the standard routines to calculate the X-ray coating reflectivity for a given incidence angle. The computation is easily applicable also to Wolter-I mirrors (such as those of NeXT, NuSTAR, HEXIT-SAT, IXO) and the approximation improves as the f-number of the

  14. Foil X-Ray Mirrors for Astronomical Observations: Still an Evolving Technology

    NASA Technical Reports Server (NTRS)

    Serlemitsos, Peter J.; Soong, Yang; Okajima, Takashi; Hahne, Devin J.

    2011-01-01

    Foil X-ray mirrors, introduced by the Goddard X-ray Group in the late 1970s, were envisioned as an interim and complementary approach toward increased sensitivity for small inexpensive astronomical instruments. The extreme light weight nature of these mirrors dovetailed beautifully with Japan's small payload missions, leading to several collaborative, earth orbiting observatories, designed primarily for spectroscopy, of which SUZAKU is still in earth orbit. ASTRO-H is the latest joint instrument with Japan, presently in the implementation phase. At Goddard, some 30 years after we introduced them, we are involved with four separate flight instruments utilizing foil X-ray mirrors, a good indication that this technology is here to stay. Nevertheless, an improved spatial resolution will be the most welcomed development by all. The task of preparing upwards of 1000 reflectors, then assembling them into a single mirror with arcmin resolution remains a formidable one. Many, performance limiting approximations become necessary when converting commercial aluminum sheets into 8 quadrant segments, each with approximately 200 nested conical, approximately 4Angstrom surface reflectors, which are then assembled into a single mirror. In this paper we will describe the mirror we are presently involved with, slated for the Goddard high resolution imaging X-ray spectrometer (SXS) onboard ASTRO-H. Improved spatial resolution will be an important enhancement to the science objectives from this instrument. We are accordingly pursuing and will briefly describe in this paper several design and reflector assembly modifications, aimed toward that goal.

  15. Metrology for x-ray telescope mirrors in a vertical configuration

    SciTech Connect

    Li, Haizhang; Li, Xiaodan; Grindel, M.W.

    1995-09-01

    Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

  16. Testing multilayer-coated polarizing mirrors for the LAMP soft X-ray telescope

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Salmaso, B.; She, R.; Tayabaly, K.; Wen, M.; Banham, R.; Costa, E.; Feng, H.; Giglia, A.; Huang, Q.; Muleri, F.; Pareschi, G.; Soffitta, P.; Tagliaferri, G.; Valsecchi, G.; Wang, Z.

    2015-09-01

    The LAMP (Lightweight Asymmetry and Magnetism Probe) X-ray telescope is a mission concept to measure the polarization of X-ray astronomical sources at 250 eV via imaging mirrors that reflect at incidence angles near the polarization angle, i.e., 45 deg. Hence, it will require the adoption of multilayer coatings with a few nanometers dspacing in order to enhance the reflectivity. The nickel electroforming technology has already been successfully used to fabricate the high angular resolution imaging mirrors of the X-ray telescopes SAX, XMM-Newton, and Swift/XRT. We are investigating this consolidated technology as a possible technique to manufacture focusing mirrors for LAMP. Although the very good reflectivity performances of this kind of mirrors were already demonstrated in grazing incidence, the reflectivity and the scattering properties have not been tested directly at the unusually large angle of 45 deg. Other possible substrates are represented by thin glass foils or silicon wafers. In this paper we present the results of the X-ray reflectivity campaign performed at the BEAR beamline of Elettra - Sincrotrone Trieste on multilayer coatings of various composition (Cr/C, Co/C), deposited with different sputtering parameters on nickel, silicon, and glass substrates, using polarized X-rays in the spectral range 240 - 290 eV.

  17. Fabrication of Glass Mirror Segments for the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    As the next major X-ray astronomical mission of NASA, ESA, and JAXA, the International X-ray Observatory (IXO) requires a mirror assembly that has an unprecedented effective area and an angular resolution better than all past missions except Chandra. This mirror assembly consists of approximately 15,000 mirror segments, which need to be fabricated, measured, aligned and integrated. In this talk we will present the latest results from our effort of developing an efficient and fast process of making these mirror segments by slumping commercially available glass sheets. We will report on our progress both in terms of perfecting the slumping process as well as the metrology process. In particular, we will discuss what additional work needs to be done to fully facilitate the manufacture of these mirror segments, meeting both budgetary and schedule requirements.

  18. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  19. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  20. Metrology and Alignment of Light Weight Grazing Incidence X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Zhang, William; Content, David; Petre, Robert; Saha, Timo

    2000-01-01

    Metrology and alignment of light weight X-ray optics have been a challenge for two reasons: (1) that the intrinsic mirror quality and distortions caused by handling can not be easily separated, and (2) the diffraction limits of the visible light become a severe problem at the order of one arc-minute. Traditional methods of using a normal incident pencil or small parallel beam which monitors a tiny fraction of the mirror in question at a given time can not adequately monitor those distortions. We are developing a normal incidence setup that monitors a large fraction, if not the whole, of the mirror at any given time. It will allow us to align thin X-ray mirrors to-an accuracy of a few arc seconds or to a limit dominated by the mirror intrinsic quality.

  1. Progress on the fabrication of high resolution and lightweight monocrystalline silicon x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Biskach, Michael P.; Allgood, Kim D.; Mazzarella, James R.; Sharpe, Marton V.; Zhang, William W.

    2016-07-01

    Monocrystalline silicon is an excellent X-ray mirror substrate material due to its high stiffness, low density, high thermal conductivity, zero internal stress, and commercial availability. Our work at NASA Goddard Space Flight Center focuses on identifying and developing a manufacturing process to produce high resolution and lightweight X-ray mirror segments in a cost and time effective manner. Previous efforts focused on demonstrating the feasibility of cylindrical silicon mirror polishing and lightweighting. Present efforts are aimed towards producing true paraboloidal and hyperboloidal mirror surfaces on the lightweight silicon segments. This paper presents results from these recent investigations, including a mirror which features a surface quality sufficient for a 3 arcsecond telescope.

  2. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  3. All dielectric hard x-ray mirror by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Szeghalmi, Adriana; Senz, Stephan; Bretschneider, Mario; Gösele, Ulrich; Knez, Mato

    2009-03-01

    Mirrors consisting of Al2O3 and Ta2O5 (˜2 nm film thickness) nanolaminates for hard x-ray wavelengths were produced by atomic layer deposition and characterized. Atomic force microscopy and transmission electron microscopy (TEM) proved extremely smooth surfaces of the mirrors, which are critical for highest reflectance. TEM images showed sharp interfaces between the oxides. The experimental x-ray reflectivity data were theoretically modeled and indicated minimal random thickness variations in the individual layers. Additionally, a depth graded sample with a total thickness of ˜4 μm for focusing applications in transmission (Laue) geometry and capillaries was coated.

  4. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    SciTech Connect

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-11

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  5. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    SciTech Connect

    Prisbrey, S; Vernon, S

    2004-04-05

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath.

  6. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  7. Development of low-stress Iridium coatings for astronomical x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura

    2016-07-01

    Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.

  8. Some Considerations for Precision Metrology of Thin X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Lehan, J. P.; Saha, T.; Zhang, W. W.; Rohrbach, S.; Chan, K.-W.; Hadjimichael, T.; Hong, M.; Davis, W.

    2008-01-01

    Determination of the shape of very thin x-ray mirrors employed in spaced-based telescopes continues to be challenging. The mirrors shapes are not readily deduced to the required accuracy because the mount induced distortions are often larger than the uncertainty tolerable for the mission metrology. In addition to static deformations, dynamic and thermal considerations are exacerbated for this class of mirrors. We report on the performance of one temporary mounting scheme for the thin glass mirrors for the Constellation-X mission and prospects for deducing their undistorted shapes.

  9. Design of a medium size x-ray mirror module based on thin glass foils

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni

    2016-07-01

    The hot slumping glass technology for X-ray mirror is under development and in the last years the results have been improved. Nustar is the first X-ray telescope based on slumped glass foils and it benefit is the low cost compared to the direct polishing of glass. With the slumping technique it is possible to maintain the glass mass to low values with respect to the direct polishing, but in general the angular resolution is worst. A further technique based on glass is the cold shaping of foils. The improved capabilities of manufacturing thin glass foils, pushed by the industrial application for screens, open new possibilities for X-ray mirror. The increase in strength of thin tempered glasses, the reduction of thickness errors and the good roughness of flat foils are potentially great advantages. In this paper a design of a mediumsize X-ray mirror module is analysed. It is based on integration of glass foils, stacked directly on a supporting structure that is part of the X-ray telescope using stiffening ribs as spacer between foils. The alignment of each stack is performed directly into the integration machine avoiding the necessity of the alignment of different stacked modules. A typical module (glass optic and metallic structure) provides an effective area of 10 cm2/kg at 1 keV (with a mass of about 50- 100 kg and a focal length of 10 m).

  10. Evaluation of surface figure error profile of ellipsoidal mirror for soft x-ray focusing

    NASA Astrophysics Data System (ADS)

    Takeo, Yoko; Saito, Takahiro; Mimura, Hidekazu

    2015-08-01

    It is possible to achieve soft X-ray nanofocusing with a high efficiency and no chromatic aberration by using an ultraprecise ellipsoidal mirror. Surface figure metrology is key in the improvement of surface figure accuracy. In this study, we propose a ptychographic phase retrieval method using a visible light laser to measure the surface figure error profile of an ellipsoidal mirror. We introduce a simple experimental system for ptychographic phase retrieval and demonstrate the basic performance of the proposed system. Obtainable wavefront information provides both the figure error and the alignment of the ellipsoidal mirror that yield the best focusing. This developed method is required for offline adjustments when an ellipsoidal mirror is installed in the beamline of synchrotron radiation or X-ray free-electron laser light sources.

  11. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed.

  12. Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.

    2011-01-01

    The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.

  13. Error analysis of ellipsoidal mirrors for soft X-ray focusing by wave-optical simulation

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Saito, Takahiro; Mimura, Hidekazu

    2014-02-01

    The ellipsoidal mirror is an ideal soft X-ray focusing optic that enables achromatic and highly efficient focusing to a nanometer spot size; however, a high-quality surface is necessary for ideal focusing. Knowledge of the required figure accuracy is important for fabrication. In this paper, we analyze the effects of figure errors on the focusing performance through wave-optical calculations based on the Fresnel-Kirchhoff diffraction theory, assuming coherent soft X-rays. Figure errors are classified into three types from the viewpoint of manufacturing. The effect of the alignment error is also investigated. The analytical results quantitatively indicate criteria regarding figure accuracy, which are expected to be essential for the development of high-performance ellipsoidal soft X-ray focusing mirrors.

  14. Image analysis of the AXAF VETA-I x ray mirror

    NASA Technical Reports Server (NTRS)

    Freeman, Mark D.; Hughes, John P; Vanspeybroeck, L.; Weisskopf, M.; Bilbro, J.

    1992-01-01

    Initial core scan data of the VETA-I x-ray mirror proved disappointing, showing considerable unpredicted image structure and poor measured FWHM. 2-D core scans were performed, providing important insight into the nature of the distortion. Image deconvolutions using a ray traced model PSF was performed successfully to reinforce our conclusion regarding the origin of the astigmatism. A mechanical correction was made to the optical structure, and the mirror was tested successfully (FWHM 0.22 arcsec) as a result.

  15. Preadjustment of small elliptical bender mirrors for an x-ray beamline

    NASA Astrophysics Data System (ADS)

    Irick, Steven C.

    1995-06-01

    The long trace profiler (LTP) has been used to assure the quality of x-ray beamline mirrors with fixed radii of curvature after they have arrived from the manufacturer and before they are permanently set in the beamline. In the case of some adjustable radius mirrors, the adjustment mechanism may require setting outside of the beamline. The bending mechanism often bends the mirror into a tangential cylinder, which is difficult to measure by interferometric methods. Measuring medium- to long-radius cylinders is a routine task for the LTP. Thus, a bendable (adjustable radius) mirror may be adjusted in the metrology laboratory before the mirror is placed in the beamline. This paper describes the method of adjustment and surface quality assessment for bendable, adjustable radius mirrors in general, and shows results for a small mirror that is bent into an elliptical cylinder.

  16. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    NASA Astrophysics Data System (ADS)

    Khaykovich, B.; Gubarev, M. V.; Bagdasarova, Y.; Ramsey, B. D.; Moncton, D. E.

    2011-03-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  17. Simbol-X Mirror Module Thermal Shields: I-Design and X-Ray Transmission

    NASA Astrophysics Data System (ADS)

    Collura, A.; Barbera, M.; Varisco, S.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-05-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  18. Simbol-X Mirror Module Thermal Shields: I - Design and X-Ray Transmission

    SciTech Connect

    Collura, A.; Varisco, S.; Barbera, M.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-05-11

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  19. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  20. Experiences and expectations of a novel X-ray microsource with focusing mirror. I.

    PubMed

    Bloomer, A C; Arndt, U W

    1999-10-01

    Data are presented from a novel microfocus X-ray generator installed with a choice of ellipsoidal specularly reflecting mirrors. Diffraction data from proteins show the useful flux from this low-power device to be approaching equivalence with that from many far more powerful generators. Intensity measurements show that for small crystals the brilliance is now restricted by the performance of the mirror, which appears to be limited by imperfections in the figure of its surface rather than by a low reflectivity. Suitable choices of ellipsoidal mirror enable the size and divergence of the X-ray beam to be altered readily to match the different requirements of successive samples and appropriate designs are proposed. Alternative types of mirror are expected to be advantageous, especially for the smallest crystals. For crystals of sizes 300 microm or less, which need a small well collimated beam with low divergence, the output from this X-ray tube running at 24 W provides a usable flux similar to that available from rotating-anode generators. The relative performance of this tube and mirror combination becomes increasingly advantageous with the study of ever-smaller crystals.

  1. Compensation of X-ray mirror shape-errors using refractive optics

    NASA Astrophysics Data System (ADS)

    Sawhney, Kawal; Laundy, David; Dhamgaye, Vishal; Pape, Ian

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the size of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.

  2. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    PubMed

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  3. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal

    2015-01-01

    In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes. PMID:26134795

  4. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal

    2015-07-01

    In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  5. Production and performance of multilayer-coated conical x-ray mirrors.

    PubMed

    Ulmer, Melville P; Altkorn, Robert; Graham, Michael E; Madan, Anita; Chu, Yong S

    2003-12-01

    A method of fabricating replica figured x-ray optics with integral multilayer coatings is presented. With the intact electroforming multilayer process (IEMP) technique, we sputter multilayers onto a reusable superpolished mandrel, electroform nickel over the multilayers, and remove the multilayer-coated nickel shell intact from the mandrel. This approach offers advantages over more traditional, original, and segmented-replica fabrication techniques, including low cost; compatibility with a wide range of mirror designs, diameters, and focal lengths; simple integration with multilayer sputtering processes; and the ability to produce complete shells of revolution. The fabrication of W/Si multilayer-coated 10-cm-diameter conical x-ray mirrors is described, as are reflectivity measurements at 10 and 30 keV. The measured reflectivity of the IEMP multilayers at the 10-keV primary Bragg peak was 17%. Measurements of multiple points on the cone showed multilayer uniformity to within a few percent around the mirror.

  6. Design and mathematical analysis of a three-mirror X-ray telescope based on ATM S-056 X-ray telescope hardware

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1973-01-01

    The mathematical design of the aspheric third mirror for the three-mirror X-ray telescope (TMXRT) is presented, along with the imaging characteristics of the telescope obtained by a ray trace analysis. The present design effort has been directed entirely toward obtaining an aspheric third mirror which will be compatible with existing S-056 paraboloidal-hyperboloidal mirrors. This compatability will facilitate the construction of a prototype model of the TMXRT, since it will only be necessary to fabricate one new mirror in order to obtain a working model.

  7. The X-ray Mirrors for the Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Soong, Yang; Serlemitsos, Peter J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The X-Ray telescopes (XRT) for the US/Japan collaborative mission Astro-E2 will be of the same basic design as those built for the original Astro-E mission which failed to reach orbit in Feb. 2000. The NASA/GSFC X-ray Astrophysics Branch will again provide the five lightweight, broad-band mirrors for the mission. X-ray calibrations of the mirrors delivered for the original Astro-E instrument showed spatial resolutions characterized by Half-Power Diameters (HPD) in the range of 1.8 - 2.2 minutes of arc, essentially independent of photon energy in the soft X-ray band. For the mission Astro-E2, both funding constraints and management decisions drastically limit any design modifications, so reflector fabrication and assembly procedures have remained largely unchanged. Nevertheless, in view of the importance in scientific return of attaining even a modest improvement in the spatial resolution of these mirrors, we have carefully considered the various sources of spatial error and, whenever possible, incorporated promising modifications. In this paper, we discuss our current understanding of the various error components as well as the small changes we have been able to implement.

  8. Design, Construction, and Testing of Lightweight X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.

    2013-01-01

    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

  9. Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy

    SciTech Connect

    Toyoda, M.; Jinno, T.; Yanagihara, M.

    2011-09-09

    An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.

  10. In situ fine tuning of bendable soft x-ray mirrors using a lateral shearing interferometer

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; MacDougall, James; Morrison, Gregory Y.; Rekawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Padmore, Howard

    2013-05-01

    Broadly applicable, in situ at-wavelength metrology methods for x-ray optics are currently under development at the Advanced Light Source. We demonstrate the use of quantitative wavefront feedback from a lateral shearing interferometer for the suppression of aberrations. With the high sensitivity provided by the interferometer we were able to optimally tune the bending couples of a single elliptical mirror (NA=2.7 mrad) in order to focus a beam of soft x-rays (1.24 keV) to a nearly diffraction-limited beam waist size of 156(±10) nm.

  11. LCLS X-ray mirror measurements using a large aperture visible light interferometer

    SciTech Connect

    McCarville, T; Soufli, R; Pivovaroff, M

    2011-03-02

    Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments

  12. Process of constructing a lightweight x-ray flight mirror assembly

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Saha, Timo T.; Zhang, William W.

    2014-07-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in highenergy astrophysics. NASA's Next Generation X-ray Optics (NGXO) project has made significant progress towards building such optics, both in terms of maturing the technology for spaceflight readiness and improving the angular resolution. Technology Development Modules (TDMs) holding three pairs of mirrors have been regularly and repeatedly integrated and tested both for optical performance and mechanical strength. X-ray test results have been improved over the past year from 10.3 arc-seconds Half Power Diameter (HPD) to 8.3 arc-seconds HPD. A vibration test has been completed to NASA standard verification levels showing the optics can survive launch and pointing towards improvements in strengthening the modules through redundant bonds. A Finite Element Analysis (FEA) study was completed which shows the mirror distortion caused by bonding is insensitive to the number of bonds. Next generation TDMs, which will demonstrate a lightweight structure and mount additional pairs of mirrors, have been designed and fabricated. The light weight of the module structure is achieved through the use of E-60 Beryllium Oxide metal matrix composite material. As the angular resolution of the development modules has improved, gravity distortion during horizontal x-ray testing has become a limiting factor. To address this issue, a facility capable of testing in the vertical orientation has been designed and planned. Test boring at the construction site suggest standard caisson construction methods can be utilized to install a subterranean vertical vacuum pipe. This facility will also allow for the testing of kinematically mounted mirror segments, which greatly reduces the effect of bonding displacements. A development platform demonstrating the feasibility of kinematically mounting mirror segments has been designed, fabricated, and successfully tested.

  13. Characterization of a mechanical bender for x-ray mirrors at European XFEL

    NASA Astrophysics Data System (ADS)

    Freijo Martín, Idoia; Vannoni, Maurizio; Music, Valerija; Sinn, Harald

    2016-09-01

    The European XFEL will generate extremely short and intense X-ray laser pulses of high coherence and nearly diffraction-limited divergence. Guiding these X-rays beams over a distance of more than 1 km to the experiments requires an extreme precision in pointing stability of beamline components like mirrors and gratings and also a control of the divergence of the beam. The specifications of the X-ray mirrors that will be able to transport, distribute and focus the beam are quite challenging. The European XFEL mirrors for the beam transport are 950 mm long and the optical surface specifications are 2 nm Peak-To-Valley. Some of the mirrors will have bending capabilities in order to focus the beam in the right position and with nanometer accuracy. This is implemented using a mechanical bender that will ensure stability of the optics in the nanometer range and will also offer the possibility to correct for mechanical or temperature drifts. We present here the characterization of a mechanical bender that was done using two instruments, a Large Aperture Fizeau interferometer and a system of three capacitive sensors. The bender is designed in a way that the mirror is hold with clamps on both ends and a symmetric torque is applied on the clamps, inducing a cylindrical shape on the mirror surface. Several long-term stability measurements were done, as well as the characterization of bending capabilities. The parameters retrieved from the measurements are the sagitta and therefore the radius of curvature for different bending positions. The behavior of the variation of the shape of the mirror was also studied. The information gathered from our measurements will be used to optimize the final design of the bender.

  14. Figure and Dimension Metrology of Extremely Lightweight X-Ray Mirrors for Space Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    The International X-ray Observatory (IXO) is the next major space X-ray observatory, performing both imaging and spectroscopic studies of all kinds of objects in the Universe. It is a collaborative mission of the National Aeronautics and Space Administration of the United States, the European Space Agency, and Japan Aerospace Exploration Agency. It is to be launched into a Sun-Earth L2 orbit in 2021. One of the most challenging aspects of the mission is the construction of a flight mirror assembly capable focusing X-rays in the band of 0.1 to 40 keY with an angular resolution of better than 5 arc-seconds and with an effective collection area of more than 3 sq m. The mirror assembly will consist of approximately 15,000 parabolic and hyperbolic mirror segments, each of which is approximately 200mm by 300mm with a thickness of 0.4mm. The manufacture and qualification of these mirror segments and their integration into the giant mirror assembly have been the objectives of a vigorous technology development program at NASA's Goddard Space Flight Center. Each of these mirror segments needs to be measured and qualified for both optical figure and mechanical dimensions. In this talk, I will describe the technology program with a particular emphasis on a measurement system we are developing to meet those requirements, including the use of coordinate measuring machines, Fizeau interferometers, and custom-designed, and -built null lens. This system is capable of measuring highly off-axis aspherical or cylindrical mirrors with repeatability, accuracy, and speed.

  15. Fabrication of an 8:1 ellipsoidal mirror for a synchrotron x-ray microprobe

    SciTech Connect

    Jones, K.W.; Takacs, P.Z.; Hastings, J.B.; Casstevens, J.M.; Pionke, C.D.

    1987-01-11

    The fabrication of an 8:1 demagnifying ellipsoidal mirror to be used for an x-ray microprobe at the National Synchrotron Light Source X-26 beam port is described. The design aim was to produce a mirror that could be used over the photon energy range from about 3 to 17 keV. The 300-mm long mirror was required to operate at a grazing angle of 5 mr. The semimajor axis was 4500 mm and the semiminor axis 14.142 mm. Surface roughness of 1 nm or less and slope errors of 1 arc second parallel to the long axis and 200 arc seconds parallel to the short direction were specified. Production of the first electroless nickel-coated aluminum mirror using a diamond-turning technique has been completed. The mirror meets the 1 arc sec surface figure specification except for areas near the ends of the mirror. The reasons for these deviations arise from subtle details of the diamond-turning process which have not been fully incorporated in to the computer program that controls the diamond-turning machines. Further work in computer correction of repeatable errors of the diamond-turning machine can eliminate the waviness at the ends of the mirror. The diamond-turned mirror surface was not fully polished under this effort and therefore does not meet the roughness specification; however, surface smoothness of a fully polished cylindrical mirror manufactured using the same techniques does not meet the specification. It can be concluded that it is now technically feasible to meet the required specifications for the mirror and that the x-ray microprobe based on its use can be achieved.

  16. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2016-01-01

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  17. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  18. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  19. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  20. Light-weight glass optics for segmented x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Winter, Anita; Breunig, Elias; Capelli, Renzo; Friedrich, Peter; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt; Schmachtel, Tilman; Derst, Gerhard; Neher, Manfred

    2012-09-01

    One of the most challenging tasks for future X-ray observatories is the enhancement of collecting area combined with very good angular resolution. Light-weight mirror materials, such as thin glass sheets, are needed to achieve this aims within the mass limits. We are developing a technology based on indirect hot slumping of thin glass segments. This technique enables us to produce the parabolic and hyperbolic part of the Wolter type I mirrors in one piece. Currently we focus on a combination of a ceramic slumping mould and glass type D263. The experimental set-up in our laboratories as well as the slumping process are described in detail; furthermore we report on the metrology methods used for measuring the glass sheets and moulds. Finally the results of the X-ray tests of several integrated glass sheets are presented.

  1. Calibration of the ART-XC/SRG X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Kolodziejczak, J.; Elsner, R.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2014-01-01

    Seven x-ray mirror modules are being fabricated at the Marshall Space Flight Center (MSFC) for the Astronomical Roentgen Telescope (ART) instrument to be launched on board of the Spektrum Roentgen Gamma (SRG) Mission. As they are completed, the modules are tested and calibrated at the MSFC's 104-m Stray Flight Facility. The results of these calibration measurements and comparisons with theoretical models will be presented.

  2. Optimizing x-ray mirror thermal performance using variable length cooling for second generation FELs

    NASA Astrophysics Data System (ADS)

    Hardin, Corey L.; Srinivasan, Venkat N.; Amores, Lope; Kelez, Nicholas M.; Morton, Daniel S.; Stefan, Peter M.; Nicolas, Josep; Zhang, Lin; Cocco, Daniele

    2016-09-01

    The success of the LCLS led to an interest across a number of disciplines in the scientific community including physics, chemistry, biology, and material science. Fueled by this success, SLAC National Accelerator Laboratory is developing a new high repetition rate free electron laser, LCLS-II, a superconducting linear accelerator capable of a repetition rate up to 1 MHz. Undulators will be optimized for 200 to 1300 eV soft X-rays, and for 1000 to 5000 eV hard X-rays. To absorb spontaneous radiation, higher harmonic energies and deflect the x-ray beam to various end stations, the transport and diagnostics system includes grazing incidence plane mirrors on both the soft and Hard X-ray beamline. To deliver the FEL beam with minimal power loss and wavefront distortion, we need mirrors of height errors below 1nm rms in operational conditions. We need to mitigate the thermal load effects due to the high repetition rate. The absorbed thermal profile is highly dependent on the beam divergence, and this is a function of the photon energy. To address this complexity, we developed a mirror cradle with variable length cooling and first order curve correction. Mirror figure error is minimized using variable length water-cooling through a gallium-indium eutectic bath. Curve correction is achieved with an off-axis bender that will be described in details. We present the design features, mechanical analysis and results from optical and mechanical tests of a prototype assembly, with particular regards to the figure sensitivity to bender corrections.

  3. At-wavelength figure metrology of total reflection mirrors in hard x-ray region

    NASA Astrophysics Data System (ADS)

    Yumoto, Hirokatsu; Mimura, Hidekazu; Matsuyama, Satoshi; Handa, Soichiro; Shibatani, Akihiko; Katagishi, Keiko; Sano, Yasuhisa; Yabashi, Makina; Nishino, Yoshinori; Tamasaku, Kenji; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2006-08-01

    We realized nearly diffraction-limited performance with a FWHM focal spot size of 25 nm at an x-ray energy of 15 keV at SPring-8. We explain performances of fabricated x-ray mirror, its fabrication technologies and future plan for realizing sub-10-nm focusing. We developed a novel method of at-wavelength metrology for evaluating the focusing hard x-ray beam in a grazing-incidence optical system. The metrology is based on the numerical retrieval method using the intensity distribution profile around the focal point. We demonstrated the at-wavelength metrology and estimated the surface figure error on a test mirror. An experiment for measuring the focusing intensity profile was performed at the 1-km-long beamline (BL29XUL) of SPring-8. The obtained results were compared with the profile measured by the optical interferometer and confirmed to be in good agreement with it. This technique has potential for characterizing wave-front aberration on elliptical mirrors for the sub-10-nm focusing.

  4. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach

    SciTech Connect

    Su P.; Kaznatcheev K.; Wang, Y.; Burge, J.H.; Idir, M.

    2012-05-16

    In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and {approx}200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring a spherical mirror.

  5. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach.

    PubMed

    Su, Peng; Wang, Yuhao; Burge, James H; Kaznatcheev, Konstantine; Idir, Mourad

    2012-05-21

    In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and ~200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring a spherical mirror.

  6. Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors.

    PubMed

    Matsuyama, Satoshi; Emi, Yoji; Kino, Hidetoshi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2015-04-20

    We developed an achromatic and high-resolution full-field X-ray microscope based on advanced Kirkpatrick-Baez mirror optics that comprises two pairs of elliptical mirrors and hyperbolic mirrors utilizing the total reflection of X-rays. Performance tests to investigate the spatial resolution and chromatic aberration were performed at SPring-8. The microscope clearly resolved the pattern with ~100-nm feature size. Imaging the pattern by changing the X-ray energy revealed achromatism in the wide energy range of 8-11 keV.

  7. Comparison of two methods for simulation of hard X-ray nanofocusing by elliptical mirrors.

    SciTech Connect

    Kewish, C. M.; Macrander, A. T.; Assoufid, L.; Qian, J.; X-Ray Science Division

    2007-11-11

    Wave-optical calculations are essential for predicting the X-ray focusing performance of precisely figured elliptical mirrors. The complex wavefield in the vicinity of the focal plane of a mirror with RMS height error in the nanometer range compared to the best-fit ellipse has been calculated using two methods. A pupil function method that treats the surface topography of a mirror as an aberration to a perfect ellipse was used to obtain the reflected amplitude and phase around the focal point downstream. The results were compared with direct propagation of waves from a point source, and it was found that both methods were in good agreement. Each approach provides advantages that are useful in designing mirrors to achieve diffraction limited focusing.

  8. Comparison of two methods for simulation of hard X-ray nanofocusing by elliptical mirrors

    NASA Astrophysics Data System (ADS)

    Kewish, Cameron M.; Macrander, Albert T.; Assoufid, Lahsen; Qian, Jun

    2007-11-01

    Wave-optical calculations are essential for predicting the X-ray focusing performance of precisely figured elliptical mirrors. The complex wavefield in the vicinity of the focal plane of a mirror with RMS height error in the nanometer range compared to the best-fit ellipse has been calculated using two methods. A pupil function method that treats the surface topography of a mirror as an aberration to a perfect ellipse was used to obtain the reflected amplitude and phase around the focal point downstream. The results were compared with direct propagation of waves from a point source, and it was found that both methods were in good agreement. Each approach provides advantages that are useful in designing mirrors to achieve diffraction limited focusing.

  9. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect

    Minami, R. Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  10. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  11. Design and analysis of an x-ray mirror assembly using the meta-shell approach

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.; Bonafede, Joseph A.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-07-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in highenergy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  12. Optimizing X-ray mirror thermal performance using matched profile cooling

    SciTech Connect

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S.; Srinivasan, Venkat; Stefan, Peter M.

    2015-08-07

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  13. Optimizing X-ray mirror thermal performance using matched profile cooling.

    PubMed

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S; Srinivasan, Venkat; Stefan, Peter M

    2015-09-01

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick-Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ∼11 below the requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  14. Design and Analysis of an X-Ray Mirror Assembly Using the Meta-Shell Approach

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bonafede, Joseph; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  15. Thin Mirror Shaping Technology for High-Throughput X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    This proposal is submitted to the NASA Research Opportunities in Space and Earth Sciences program (ROSES-2012) in response to NASA Research Announcement NNH12ZDA001N- APRA. It is targeted to the Astronomy and Astrophysics Research and Analysis (APRA) program element under the Supporting Technology category. Powerful x-ray telescope mirrors are critical components of a raft of small-to-large mission concepts under consideration by NASA. The science questions addressed by these missions have certainly never been more compelling and the need to fulfill NASA s core missions of exploring the universe and strengthening our nation s technology base has never been greater. Unfortunately, budgetary constraints are driving NASA to consider the cost/benefit and risk factors of new missions more carefully than ever. New technology for producing x-ray telescopes with increased resolution and collecting area, while holding down cost, are key to meeting these goals and sustaining a thriving high-energy astrophysics enterprise in the US. We propose to develop advanced technology which will lead to thin-shell x-ray telescope mirrors rivaling the Chandra x-ray telescope in spatial resolution but with 10-100X larger area all at significantly reduced weight, risk and cost. The proposed effort builds on previous research at MIT and complements NASA-supported research at other institutions. We are currently pursuing two thin-mirror technology development tracks which we propose to extend and accelerate with NASA support. The first research track utilizes rapidly-maturing thermal glass slumping technology which uses porous ceramic air-bearing mandrels to shape glass mirrors without touching, thus avoiding surface-induced mid-range spatial frequency ripples. A second research track seeks to remove any remaining mid- to long-range errors in mirrors by using scanning ion-beam implant to impart small, highly deterministic and very stable amounts of stress into thin glass, utilizing local

  16. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 μm ( V)×1.5 μm ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (μ-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  17. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  18. Metrological characterization of a large aperture Fizeau for x-ray mirrors measurement

    NASA Astrophysics Data System (ADS)

    Vannoni, Maurizio; Freijo Martín, Idoia

    2015-06-01

    The European XFEL is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale) and high average brilliance (1.61025 photons / s / mm2 / mrad2/ 0.1% bandwidth). Due to the very short wavelength and very high pulse energy, all the mirrors need to have high quality surface, to be very long, and at the same time to implement an effective cooling system. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. In order to measure the mirrors and to characterize their interaction with the mechanical mounts, we equipped a Metrology Laboratory with a Large Aperture Fizeau. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter. Despite the commercial nature of the system, special care has been done in the polishing of the reference flats and in the expander quality. In this report, we show the preparation of the instrument, the calibration and the performance characterization, together with some preliminary results. We also describe the approach that we want to follow for the x-rays mirrors measurements. The final goal will be to characterize very long mirrors, almost 1 meter long, with nanometer accuracy.

  19. Design and Analysis of the International X-Ray Observatory Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Carnahan, Timothy M.; Robinson, David W.; Saha, Timo T.

    2009-01-01

    The Soft X-Ray Telescope (SXT) modules are the fundamental focusing assemblies on NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO). The preliminary design and analysis of these assemblies has been completed, addressing the major engineering challenges and leading to an understanding of the factors effecting module performance. Each of the 60 modules in the Flight Mirror Assembly (FMA) supports 200-300 densely packed 0.4 mm thick glass mirror segments in order to meet the unprecedented effective area required to achieve the scientific objectives of the mission. Detailed Finite Element Analysis (FEA), materials testing, and environmental testing have been completed to ensure the modules can be successfully launched. Resulting stress margins are positive based on detailed FEA, a large factor of safety, and a design strength determined by robust characterization of the glass properties. FEA correlates well with the results of the successful modal, vibration, and acoustic environmental tests. Deformation of the module due to on-orbit thermal conditions is also a major design driver. A preliminary thermal control system has been designed and the sensitivity of module optical performance to various thermal loads has been determined using optomechanical analysis methods developed for this unique assembly. This design and analysis furthers the goal of building a module that demonstrates the ability to meet IXO requirements, which is the current focus of the IXO FMA technology development team.

  20. Characterising x-ray mirror deformations with a phase measuring deflectometry system

    NASA Astrophysics Data System (ADS)

    Breunig, E.; Friedrich, P.; Proserpio, L.; Winter, A.

    2014-07-01

    MPE is developing modular x-ray mirrors for the next generation of high-energy astronomy missions. The mirror segments are based on thermally formed (a.k.a. slumped) glass sheets, with a typical thickness of 400µm. One of the major challenges is the alignment and integration of the mirror segments and the associated metrology. The optical performance of the mirror can be significantly compromised by adhesive shrinkage, gravity sag or residual stresses influenced by the properties of the mirror mounting and the integration procedure. In parallel with classic coordinate measurement techniques we utilize a deflectometry based metrology system to characterization shape errors of the mirror surfaces. A typical deflectometry setup uses a TFT display to project a sinusoidal pattern onto a specular test surface (SUT) and a camera that observes the reflected image. This reflected image contains slope information of the SUT in the form of distortions of the original displayed pattern. A phase shifting technique can be used to recover this slope information with only very few exposures and reasonable computational effort. The deflectometry system enables us to characterize bonding interfaces of slumped glass mirrors, as well as influence of temporary mounting points, handling and thermal distortions. It is also well suited to measure transient effects.

  1. Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler, C.; Chan, Kai-Wing; Saha, Timo T.

    2010-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard to meet the strict angular resolution requirement of 5 arc-seconds for the telescope. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. Recent advances in the mirror fixture process known as the suspension mount has allowed for a mirror to be mounted to a fixture with minimal distortion. Once on the fixture, mirror segments have been aligned to around 5 arc-seconds which is halfway to the goal of 2.5 arc-seconds per mirror segment. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  2. Nanometer figure correction of x-ray mirrors using multiple spring actuators

    NASA Astrophysics Data System (ADS)

    Nicolas, Josep; Colldelram, Carles; Ruget, Claude; Ribó, Llibert; Pedreira, Pablo; de la Rubia, Pedro; Martín-Nuño, Carlos; Úbeda, David; Tomàs, Albert

    2016-09-01

    We present an X-ray mirror bender that includes multiple spring actuators that introduce a controlled deformation of the mirror substrate capable of correcting residual figure errors on the mirror, below one nanometer. For usual mirror dimensions, this requires applying correcting forces with resolution and stability in the order of 0.01 N, and a range up to 20 N, depending on the initial figure error of the mirror. To obtain the required stability, the actuators need to compensate intrinsic mechanical instabilities, such as thermal drifts or the limited repeatability of parts that move during the adjustment of the figure. The concept we propose uses weak springs that allow reducing all these effects below noticeable values. Additional considerations on friction and parasitic components of the force are accounted. The system also includes two independent bending actuators with a larger force range to generate the mean elliptic figure of the mirror. Metrology tests of the performances of the system show that the correctors are repeatable within 0.01 N, and reach much higher resolution. A prototype of the bender has been used to correct the figure error of a 500 mm long mirror below one nanometer (root mean square). The agreement to the predicted figure is better than 0.08 nm rms.

  3. Ion implantation for figure correction of thin X-ray telescope mirror substrates

    NASA Astrophysics Data System (ADS)

    Chalifoux, Brandon; Wright, Graham; Heilmann, Ralf K.; Schattenburg, Mark L.

    2015-09-01

    Figure correction of X-ray telescope mirrors will be critical for future missions that require high angular resolution and large collecting areas. In this paper, we show that ion implantation offers a method of correcting figure errors by imparting sub-surface in-plane stress in a controllable magnitude and location in Schott D-263 glass, Corning Eagle XG glass, and crystalline silicon substrates. In addition, we can in theory achieve nearly exact corrections in Schott D-263 glass, by controlling the direction of the stress. We show that sufficient stress may be applied to Schott D-263 glass to achieve figure correction in mirrors with simulated initial figure errors. We also report on progress of a system that will be capable of correcting conical shell mirror substrates.

  4. Optical design for ATHENA X-ray telescope based on slumped mirror segments

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Winter, Anita

    2014-07-01

    The Hot and Energetic Universe will be the focus of future ESA missions: in late 2013 the theme was selected for the second large-class mission in the Cosmic Vision science program. Fundamental questions on how and why ordinary matter assemble into galaxies and clusters, and how black holes grow and influence their surroundings can be addressed with an advanced X-ray observatory. The currently proposed ATHENA mission presents all the potentiality to answer the outstanding questions. It is based on the heritage of XMM-Newton and on the previous studies for IXO mission. The scientific payload will require state of the art instrumentations. In particular, the baseline for the X-ray optical system, delivering a combination of large area, high angular resolution, and large field of view, is the Silicon Pore Optics technology (SPO) developed by ESA in conjunction with the Cosine Measurement Systems. The slumping technology is also under development for the manufacturing of future X-ray telescopes: for several years the Max Planck Institute for Extraterrestrial physics (MPE) has been involved in the analysis of the indirect slumping approach, which foresees the manufacturing of segmented X-ray shells by shaping thin glass foils at high temperatures over concave moulds so to avoid any contact of the optical surface with other materials during the process, preserving in this way the original X-ray quality of the glass surface. The paper presents an alternative optical design for ATHENA based on the use of thin glass mirror segments obtained through slumping.

  5. Development of Hard X-ray Imaging Optics with Two Pairs of Elliptical and Hyperbolic Mirrors

    SciTech Connect

    Matsuyama, S.; Fujii, M.; Wakioka, T.; Mimura, H.; Handa, S.; Kimura, T.; Nishino, Y.; Tamasaku, K.; Makina, Y.; Ishikawa, T.

    2010-06-23

    To form a magnified hard X-ray image with a 50 nm resolution, we have studied total reflection mirror optics with two pairs of elliptical and hyperbolic mirrors, which is called 'Advanced Kirkpatrick-Baez system'. A designed optical system has 200x and 300x magnifications in vertical and horizontal directions. Also diffraction limit size in the optical system is 40 nmx45 nm. We fabricated a pair of elliptical and hyperbolic mirrors for horizontal imaging with a figure accuracy of 2 nm using elastic emission machining (EEM), microstitching interferometry (MSI) and relative-angle-determinable stitching interferometry (RADSI). One-dimensional tests for forming a demagnified image of a slit were carried out at an X-ray energy of 11.5 keV at BL29XUL (EH2) of SPring-8. As a result, a shape beam with a FWHM of 78 nm was observed. This demonstrates that we realized one-dimensional Wolter optics that has a spatial resolution of 78 nm.

  6. Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Salmaso, Bianca; Civitani, Marta; Brizzolari, Claudia; Basso, Stefano; Ghigo, Mauro; Pareschi, Giovanni; Spiga, Daniele; Proserpio, Laura; Suppiger, Yves

    2015-10-01

    Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla® glass (produced by Corning®), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla® glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.

  7. Structure in defocused beams of x-ray mirrors: causes and possible solutions

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Alcock, Simon G.; Rust, Fiona; Wang, Hongchang; Sawhney, Kawal

    2014-09-01

    Grazing incidence mirrors are now a standard optic for focusing X-ray beams. Both bimorph and mechanically bendable mirrors are widely used at Diamond Light Source because they permit a wide choice of focal lengths. They can also be deliberately set out of focus to enlarge the X-ray beam, and indeed many beamline teams now wish to generate uniform beam spots of variable size. However, progress has been slowed by the appearance of fine structure in these defocused beams. Measurements showing the relationship between the medium-frequency polishing error and this structure over a variety of beam sizes will be presented. A theoretical model for the simulations of defocused beams from general mirrors will then be developed. Not only the figure error and its first derivative the slope error, but also the second derivative, the curvature error, must be considered. In conclusion, possible ways to reduce the defocused beam structure by varying the actuators' configuration and settings will be discussed.

  8. Surface Roughness of Stainless Steel Bender Mirrors for FocusingSoft X-rays

    SciTech Connect

    Yashchuk, Valeriy V.; Gullikson, Eric M.; Howells, Malcolm R.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi,Farhad; Warwick, Tony; Metz, James P.; Tonnessen, Thomas W.

    2005-10-11

    We have used polished stainless steel as a mirror substrate to provide focusing of soft x-rays in grazing incidence reflection. The substrate is bent to an elliptical shape with large curvature and high stresses in the substrate require a strong elastic material. Conventional material choices of silicon or of glass will not withstand the stress required. The use of steel allows the substrates to be polished and installed flat, using screws in tapped holes. The ultra-high-vacuum bender mechanism is motorized and computer controlled. These mirrors are used to deliver focused beams of soft x-rays onto the surface of a sample for experiments at the Advanced Light Source (ALS). They provide an illumination field that can be as small as the mirror demagnification allows, for localized study, and can be enlarged, under computer control,for survey measurements over areas of the surface up to several millimeters. The critical issue of the quality of the steel surface, polished and coated with gold, which limits the minimum achievable focused spot size is discussed in detail. Comparison is made to a polished, gold coated, electroless nickel surface, which provides a smoother finish. Surface measurements are presented as power spectral densities, as a function of spatial frequency. The surface height distributions measured with an interferometric microscope, and complemented by atomic force microscope measurements, are used to compute power spectral densities and then to evaluate the surface roughness. The effects of roughness in reducing the specular reflectivity are verified by soft x-ray measurements.

  9. Testing of the Mirrors for the Constellation-X Spectroscopy X-ray Telescope with a Refractive Null

    NASA Technical Reports Server (NTRS)

    Lehan, John; Hadimichael, T.; Skocik, C.

    2007-01-01

    We present an introduction to the use of a refractive null lens for testing grazing incidence x-ray mirrors for the Constellation-X mission. The singular role of mirror mounting in glass shell mirror metrology is also touched upon. We compare results achieved to date with mission requirements along with some of the unique properties of the null lens. Additionally, uses beyond mirror metrology are briefly discussed.

  10. Development of achromatic full-field x-ray microscopy with compact imaging mirror system

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Emi, Y.; Kino, H.; Sano, Y.; Kohmura, Y.; Tamasaku, K.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2013-09-01

    Compact advanced Kirkpatrick-Baez optics are used to construct a microscope that is easy to align and robust against vibrations and thermal drifts. The entire length of the imaging mirror system is 286 mm, which is 34% shorter than the previous model. A spatial resolution test is performed in which magnified bright-field images of a pattern are taken with an X-ray camera at an energy of 10 keV at the BL29XUL beamline of SPring-8. A line-and-space pattern having a 50- nm width could be resolved, although the image contrast is low.

  11. X-ray telescope onboard Astro-E: optical design and fabrication of thin foil mirrors.

    PubMed

    Kunieda, H; Ishida, M; Endo, T; Hidaka, Y; Honda, H; Imamura, K; Ishida, J; Maeda, M; Misaki, K; Shibata, R; Furuzawa, A; Haga, K; Ogasaka, Y; Okajima, T; Tawara, Y; Terashima, Y; Watanabe, M; Yamashita, K; Yoshioka, T; Serlemitsos, P J; Soong, Y; Chan, K W

    2001-02-01

    X-ray telescopes (XRT's) of nested thin foil mirrors are developed for Astro-E, the fifth Japanese x-ray astronomy satellite. Although the launch was not successful, the design concept, fabrication, and alignment procedure are summarized. The main purpose of the Astro-E XRT is to collect hard x rays up to 10 keV with high efficiency and to provide medium spatial resolution in limited weight and volume. Compared with the previous mission, Advanced Satellite for Cosmology and Astrophysics (ASCA), a slightly longer focal length of 4.5-4.75 m and a larger diameter of 40 cm yields an effective area of 1750 cm2 at 8 keV with five telescopes. The image quality is also improved to 2-arc min half-power diameter by introduction of a replication process. Platinum is used instead of gold for the reflectors of one of the five telescopes to enhance the high-energy response. The fabrication and alignment procedure is also summarized. Several methods for improvement are suggested for the reflight Astro-E II mission and for other future missions. Preflight calibration results will be described in a forthcoming second paper, and a detailed study of images will be presented in a third paper.

  12. DABAM: an open-source database of X-ray mirrors metrology

    SciTech Connect

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-04-20

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  13. DABAM: an open-source database of X-ray mirrors metrology.

    PubMed

    Sanchez Del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-05-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  14. DABAM: An open-source database of X-ray mirrors metrology

    SciTech Connect

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  15. DABAM: An open-source database of X-ray mirrors metrology

    DOE PAGES

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; ...

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  16. DABAM: an open-source database of X-ray mirrors metrology

    PubMed Central

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database. PMID:27140145

  17. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  18. At-wavelength figure metrology of hard x-ray focusing mirrors

    NASA Astrophysics Data System (ADS)

    Yumoto, Hirokatsu; Mimura, Hidekazu; Matsuyama, Satoshi; Handa, Soichiro; Sano, Yasuhisa; Yabashi, Makina; Nishino, Yoshinori; Tamasaku, Kenji; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2006-06-01

    We have developed an at-wavelength wave-front metrology of a grazing-incidence focusing optical systems in the hard x-ray region. The metrology is based on numerical retrieval from the intensity profile around the focal point. We demonstrated the at-wavelength metrology and estimated the surface figure error on a test mirror. An experiment for measuring the focusing intensity profile was performed at the 1-km-long beamline (BL29XUL) of SPring-8. The obtained results were compared with the profile measured using an optical interferometer and were confirmed to be in good agreement with it. This technique is a potential method of characterizing wave-front aberrations on elliptical mirrors for sub-10-nm focusing.

  19. A scanning soft x-ray microscope with an ellipsoidal focusing mirror.

    PubMed

    Voss, J; Dadras, H; Kunz, C; Moewes, A; Roy, G; Sievers, H; Storjohann, I; Wongel, H

    1992-01-01

    We have developed and brought into operation a new type of scanning soft x-ray microscope which can operate at any photon energy from 20 to 1300 eV. This microscope demagnifies a diaphragm by means of an annular section of an ellipsoidal mirror to a smallest spot size of, at present, about 0.4 μm (FWHM), certainly containing only a small fraction of the total intensity. The sample is scanned across this spot. Between mirror and focus a free space of 30 mm is available for detectors, and particles emitted from a surface at more than 30° to the normal can be extracted into a mass or energy analyzer. Transmission, photoemission, luminescence, photostimulated desorption, reflectivity, and other signals may serve for imaging. In addition, a static analysis of very small samples or spots on a sample will become feasible.

  20. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  1. A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2008-01-01

    We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  2. Design and analysis of a fast, two-mirror soft-x-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.

    1992-01-01

    During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.

  3. High throughput measurements of soft x-ray impurity emission using a multilayer mirror telescope

    SciTech Connect

    Stutman, D.; Tritz, K.; Delgado-Aparicio, L.; Finkenthal, M.; Suliman, G.; Roquemore, L.; Kaita, R.; Kugel, H.; Johnson, D.; Tamura, N.; Sato, K.; Sudo, S.; Tarrio, C.

    2006-10-15

    A 4 in. multilayer mirror telescope has been tested on National Spherical Torus Experiment (NSTX) for high throughput measurements of the beam excited soft x-ray impurity emission. The design is aimed at imaging low-k turbulent fluctuations in the plasma core. The test device used curved and planar Mo/Si mirrors to focus with {approx_equal}15% optical transmission and few angstrom bandwidths, the 135 A ring Ly{sub {alpha}} line from injected Li III atoms, or the n=2-4 line from intrinsic C VI ions. As test detectors we used 1 cm{sup 2} absolute extreme ultraviolet diodes, equipped with 400 kHz bandwidth, low noise preamplifiers. With the available view on NSTX the telescope successfully detected small impurity density fluctuations associated with 1/1 modes rotating at midradius, indicating that a high signal to noise ratio and cost effective core turbulence diagnostic is feasible based on this concept.

  4. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  5. Surface roughness evaluation on mandrels and mirror shells for future X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Spiga, D.

    2008-07-01

    More X-ray missions that will be operating in near future, like particular SIMBOL-X, e-Rosita, Con-X/HXT, SVOM/XIAO and Polar-X, will be based on focusing optics manufactured by means of the Ni electroforming replication technique. This production method has already been successfully exploited for SAX, XMM and Swift-XRT. Optical surfaces for X-ray reflection have to be as smooth as possible also at high spatial frequencies. Hence it will be crucial to take under control microroughness in order to reduce the scattering effects. A high rms microroughness would cause the degradation of the angular resolution and loss of effective area. Stringent requirements have therefore to be fixed for mirror shells surface roughness depending on the specific energy range investigated, and roughness evolution has to be carefully monitored during the subsequent steps of the mirror-shells realization. This means to study the roughness evolution in the chain mandrel, mirror shells, multilayer deposition and also the degradation of mandrel roughness following iterated replicas. Such a study allows inferring which phases of production are the major responsible of the roughness growth and could help to find solutions optimizing the involved processes. The exposed study is carried out in the context of the technological consolidation related to SIMBOL-X, along with a systematic metrological study of mandrels and mirror shells. To monitor the roughness increase following each replica, a multiinstrumental approach was adopted: microprofiles were analysed by means of their Power Spectral Density (PSD) in the spatial frequency range 1000-0.01 μm. This enables the direct comparison of roughness data taken with instruments characterized by different operative ranges of frequencies, and in particular optical interferometers and Atomic Force Microscopes. The performed analysis allowed us to set realistic specifications on the mandrel roughness to be achieved, and to suggest a limit for the

  6. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors

    SciTech Connect

    Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

    2009-04-23

    The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

  7. Liquid metal actuators: correctable mounting and assembly of thin-shell x-ray telescope mirrors

    NASA Astrophysics Data System (ADS)

    Bruccoleri, Alexander R.; Klingensmith, Martin; Chalifoux, Brandon; Heilmann, Ralf K.; Schattenburg, Mark L.

    2015-09-01

    An ideal bonding agent for thin-shell x-ray mirrors could be quickly applied to joints and set with deterministic and stable properties. Unfortunately, mirror assembly methods have typically utilized various epoxy formulations which are messy, slow to apply and cure, and far from deterministic or stable. Problems include shrinkage, creep and high thermal and humidity sensitivity. Once the bond is set errors are frozen in and cannot be corrected. We are developing a new method for bonding thin-foil mirrors that has the potential to solve these problems. Our process to bond mirrors to housing reference points is achieved via small beads of a low-melting-point bonding agent (such as solder or thermoset). The mirror is bonded to small contact surface points under real-time metrology. If the position of the mirror needs to be adjusted after bonding, a small force is applied normal or parallel to the contact surface and a pulsed fiber laser is used to melt an ultrathin layer of the solder for a very short time. The joint is then compressed, stretched or sheared while molten before refreezing in a new position, enabling repeatable and stable mirror position adjustments along the direction of the force in nm-level steps with minimal heat input. We present results from our prototype apparatus demonstrating proof of principle. The initial experiment includes developing a technique to bond D263 glass to Kovar, designing and building a one-dimensional stage to precisely apply force, and using an infrared laser pulse to heat the joint while measuring position and force.

  8. Wave-optical simulation of hard X-ray nanofocusing by precisely figured elliptical mirrors

    NASA Astrophysics Data System (ADS)

    Macrander, Albert; Kewish, Cameron; Assoufid, Lahsen; Qian, Jun

    2007-03-01

    Computer simulations of nanofocusing by elliptical mirrors are presented wherein the diffraction and propagation of coherent hard X-rays are predicted using wave-optical calculations. Surface height data acquired via microstitching interferometry were used to calculate the complex pupil function of a mirror, taking into account the Fresnel reflectivity and treating the surface topography as an aberration to a perfect elliptical mirror. The reflected wavefield amplitude and phase downstream of the mirror were obtained by numerically evaluating the Fresnel-Kirchhoff diffraction integral. Simulated intensity profiles, and contours (isophotes) around the focal plane are presented for coherent illumination by a 15 keV point source, which indicate nearly diffraction-limited focusing at the 40 nm level. The effect of high spatial frequency microroughness on nanofocusing was investigated by low-pass filtering the Fourier spectrum of the residual height profile. Simulations using the filtered metrology data revealed that roughness length scales shorter than 0.1 mm have a minor effect on the focal spot size and intensity.

  9. Wave-optical simulation of hard-x-ray nanofocusing by precisely figured elliptical mirrors

    NASA Astrophysics Data System (ADS)

    Kewish, Cameron M.; Assoufid, Lahsen; Macrander, Albert T.; Qian, Jun

    2007-04-01

    Computer simulations of nanofocusing by elliptical mirrors are presented wherein the diffraction and propagation of coherent hard x rays are predicted using wave-optical calculations. Surface height data acquired via microstitching interferometry were used to calculate the complex pupil function of a mirror, taking into account the Fresnel reflectivity and treating the surface topography as an aberration to a perfect elliptical mirror. The reflected wave-field amplitude and phase downstream of the mirror were obtained by numerically evaluating the Fresnel-Kirchhoff diffraction integral. Simulated intensity profiles and contours (isophotes) around the focal plane are presented for coherent illumination by a 15 keV point source, which indicate nearly diffraction-limited focusing at the 40 nm level. The effect of high spatial frequency microroughness on nanofocusing was investigated by low-pass filtering the Fourier spectrum of the residual height profile. Simulations using the filtered metrology data confirmed that roughness length scales shorter than 0.1 mm have a minor effect on the focal spot size and intensity.

  10. Wave-optical simulation of hard-x-ray nanofocusing by precisely figured elliptical mirrors.

    PubMed

    Kewish, Cameron M; Assoufid, Lahsen; Macrander, Albert T; Qian, Jun

    2007-04-10

    Computer simulations of nanofocusing by elliptical mirrors are presented wherein the diffraction and propagation of coherent hard x rays are predicted using wave-optical calculations. Surface height data acquired via microstitching interferometry were used to calculate the complex pupil function of a mirror, taking into account the Fresnel reflectivity and treating the surface topography as an aberration to a perfect elliptical mirror. The reflected wave-field amplitude and phase downstream of the mirror were obtained by numerically evaluating the Fresnel-Kirchhoff diffraction integral. Simulated intensity profiles and contours (isophotes) around the focal plane are presented for coherent illumination by a 15 keV point source, which indicate nearly diffraction-limited focusing at the 40 nm level. The effect of high spatial frequency microroughness on nanofocusing was investigated by low-pass filtering the Fourier spectrum of the residual height profile. Simulations using the filtered metrology data confirmed that roughness length scales shorter than 0.1 mm have a minor effect on the focal spot size and intensity.

  11. Wave-optical simulation of hard-x-ray nanofocusing by precisely figured elliptical mirrors

    SciTech Connect

    Kewish, Cameron M.; Assoufid, Lahsen; Macrander, Albert T.; Qian Jun

    2007-04-10

    Computer simulations of nanofocusing by elliptical mirrors are presented wherein the diffraction and propagation of coherent hard x rays are predicted using wave-optical calculations. Surface height data acquired via microstitching interferometry were used to calculate the complex pupil function of a mirror, taking into account the Fresnel reflectivity and treating the surface topography as an aberration to a perfect elliptical mirror. The reflected wave-field amplitude and phase downstream of the mirror were obtained by numerically evaluating the Fresnel-Kirchhoff diffraction integral. Simulated intensity profiles and contours (isophotes) around the focal plane are presented for coherent illumination by a15 keV point source, which indicate nearly diffraction-limited focusing at the40 nm level. The effect of high spatial frequency microroughness on nanofocusing was investigated by low-pass filtering the Fourier spectrum of the residual height profile. Simulations using the filtered metrology data confirmed that roughness length scales shorter than0.1 mm have a minor effect on the focal spot size and intensity.

  12. Development of surface profiler for master mandrel of x-ray ellipsoidal mirror

    NASA Astrophysics Data System (ADS)

    Takei, Yoshinori; Mimura, Hidekazu

    2016-09-01

    The performance of ellipsoidal mirrors, which can be used to focus soft X-rays to nanometer spots, has not yet been optimized. Development of the surface profiler used in the fabrication process is a key step toward improving the performance of such mirrors. Because ellipsoidal mirrors have a complex geometry, our group has developed the following two-step process for their fabrication. First, a master mandrel with the inverse shape is prepared, after which the ellipsoidal mirror is fabricated by replicating the surface using an electroforming method. In this study, we develop a surface profiler for the master mandrel using multiple displacement sensors and motorized stages. One displacement sensor is used to measure the surface profile and the others are used to measure the motion errors of the stages. The longitudinal surface profiles of the mandrel could be measured with a repeatability of 1.58 nm (RMS). Based on the measured shape error profile, shape correction processing was conducted using elastic emission machining (EEM), which is an ultra-precision technique. After performing EEM three times, the shape error of the mandrel improved from 20.5 nm (RMS) to 4.2 nm (RMS).

  13. Optical constants of materials in the EUV/soft x-ray region for multilayer mirror applications

    SciTech Connect

    Soufli, Regina

    1997-12-01

    The response of a given material to an incident electromagnetic wave is described by the energy dependent complex index of refraction n = 1 - δ + iβ. In the extreme ultraviolet (EUV)/soft x-ray spectral region, the need for accurate determination of n is driven by activity in areas such as synchrotron based research, EUV/x-ray lithography, x-ray astronomy and plasma applications. Knowledge of the refractive index is essential for the design of the optical components of instruments used in experiments and applications. Moreover, measured values of n may be used to evaluate solid state models for the optical behavior of materials. The refractive index n of Si, Mo and Be is investigated in the EUV/soft x-ray region. In the case of Si, angle dependent reflectance measurements are performed in the energy range 50-180 eV. The optical constants δ, β are both determined by fitting to the Fresnel equations. The results of this method are compared to the values in the 1993 atomic tables. Photoabsorption measurements for the optical constants of Mo are performed on C/Mo/C foils, in the energy range 60-930 eV. Photoabsorption measurements on Be thin films supported on silicon nitride membranes are performed, and the results are applied in the determination of the absorption coefficient of Be in the energy region 111.5-250 eV. The new results for Si and Mo are applied to the calculation of normal incidence reflectivities of Mo/Si and Mo/Be multilayer mirrors. These calculations show the importance of accurate knowledge of δ and β in the prediction and modeling of the performance of multilayer optics.

  14. Method of and means for testing a glancing-incidence mirror system of an X-ray telescope

    NASA Technical Reports Server (NTRS)

    Dailey, C. C. (Inventor)

    1977-01-01

    An apparatus was designed for measuring the resolution and efficiency of a glancing-incidence mirror system having an even number of coaxial and confocal reflecting surfaces for use in an X-ray telescope. A collimated beam of X-rays is generated by an X-ray laser and directed along the axis of the system so that the beam is incident on the reflecting surfaces and illuminates a predetermined area. An X-ray detector, such as a photographic film, is located at the common focus of the surfaces so that the image produced by the X-rays may be compared with a test pattern interposed between the laser and the system.

  15. Mathematical Formalism for Designing Wide-Field X-Ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings.

  16. The x-ray/EUV telescope for the Solar-C mission: science and development activities

    NASA Astrophysics Data System (ADS)

    Sakao, Taro; Narukage, Noriyuki; Imada, Shinsuke; Suematsu, Yoshinori; Shimojo, Masumi; Tsuneta, Saku; DeLuca, Edward E.; Watanabe, Kyoko; Ishikawa, Shin-nosuke

    2012-09-01

    We report science and development activities of the X-ray/EUV telescope for the Japanese Solar-C mission whose projected launch around 2019. The telescope consists of a package of (a) a normal-incidence (NI) EUV telescope and (b) a grazing-incidence (GI) soft X-ray telescope. The NI telescope chiefly provides images of low corona (whose temperature 1 MK or even lower) with ultra-high angular resolution (0.2-0.3"/pixel) in 3 wavelength bands (304, 171, and 94 angstroms). On the other hand, the GI telescope provides images of the corona with a wide temperature coverage (1 MK to beyond 10 MK) with the highest-ever angular resolution (~0.5"/pixel) as a soft X-ray coronal imager. The set of NI and GI telescopes should provide crucial information for establishing magnetic and gas-dynamic connection between the corona and the lower atmosphere of the Sun which is essential for understanding heating of, and plasma activities in, the corona. Moreover, we attempt to implement photon-counting capability for the GI telescope with which imaging-spectroscopy of the X-ray corona will be performed for the first time, in the energy range from ~0.5 keV up to 10 keV. The imaging-spectroscopic observations will provide totally-new information on mechanism(s) for the generation of hot coronal plasmas (heated beyond a few MK), those for magnetic reconnection, and even generation of supra-thermal electrons associated with flares. An overview of instrument outline and science for the X-ray photoncounting telescope are presented, together with ongoing development activities in Japan towards soft X-ray photoncounting observations, focusing on high-speed X-ray CMOS detector and sub-arcsecond-resolution GI mirror.

  17. Stellar X-ray activity in the Hyades

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Zolcinski, M.-C.

    1983-01-01

    Preliminary results from monitoring the X-ray emission of about 20 Hyades stars both on short and long time scales are reported. All observations were made with the Imaging Proportional Counter of the Einstein Observatory. The preliminary conclusions are that flaring behavior is probably common in the Hyades, but that the influence of binarity on the level of flaring activity needs to be investigated further. The long-term observations suggest that intrinsic differences in the level of stellar X-ray luminosity may be required to account for the spread in the X-ray luminosity function for solar-type stars observed in the original survey by Stern et al. (1981).

  18. Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors.

    PubMed

    Trail, J A; Byer, R L

    1989-06-01

    We have constructed a scanning soft-x-ray microscope that uses a laser-produced plasma as the soft-x-ray source and normal-incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 microm, and has a soft-x-ray photon flux through the focus of 10(4)-10(5) sec(-1) when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table.

  19. Optical design of soft x-ray focusing system with ellipsoidal mirror for laboratory-based sources

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Saito, Takahiro; Mimura, Hidekazu

    2013-09-01

    The ellipsoidal mirror is one of the most effective achromatic focusing optic with large aperture and nanofocusing ability. Because of the large aperture of mm-order size, this optic is suitable for a laboratory-based light source that has a large divergence angle. Recently, soft X-rays produced by high-order harmonics have become available. Such a beam has high spatial coherency but relatively large divergence angle. This light in combination with an ellipsoidal mirror will generate a highly intense focusing nanobeam that will contribute to various experiments and analyses such as those of photoelectron spectroscopy and nonlinear optical phenomena. In this paper, we present the optical design for a lab-based soft X-ray beamline and the results of optical simulation considering the parameters of the source. Finally, we introduce a two-stage focusing system with an axisymmetric mirror as a promising soft X-ray focusing system.

  20. X-rays From Quasars and Active Galaxies

    NASA Technical Reports Server (NTRS)

    Lightman, Alan P.

    1981-01-01

    Features of quasars and active galactic nuclei are discussed and include: the nature of the power source, the radiation processes, and the mechanism for the formation and collimation of long-lived jets of matter observed to emanate from the center of these of these objects. The phenomena that produce X-rays are highlighted.

  1. Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.

    2010-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard not to impart distortion at the subare- second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  2. Arc Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing

    2009-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc seconds. These mirror segments are 0.4mm thick, and 200 to 400mm in size, which makes it hard not to impart distortion at the subarc second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  3. New technology and techniques for x-ray mirror calibration at PANTER

    NASA Astrophysics Data System (ADS)

    Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin

    2008-07-01

    The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.

  4. X-ray beam expansion by the application of re-entrant surface profiles to deformable bimorph mirrors

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Alcock, Simon G.; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    Deformable, piezo bimorph mirrors are often used to expand X-ray beams to a continuous range of sizes. However, optical polishing errors present on all X-ray mirrors introduce striations into the reflected beam. To counteract them, reentrant surface modifications with alternating concave and convex curvature have been proposed and applied to mirrors of fixed shape or bimorph mirrors. For the latter, a new method of constructing re-entrant surface modifications on segments of unequal length is described. This allows the re-entrant modification required for a desired beam size at the focal point to be matched to the bimorph mirror's polishing errors, thus reducing the voltage variations. Optical profilometry using the Diamond-NOM showed that a 5-segment and a 7-segment modification could be suitably applied to a deformable bimorph mirror. X-ray tests showed that striations caused by the 5-segment modification in the beam at the focus are concentrated at the beam edges, while the beam center is left clear. This is in contrast to simple defocusing, in which a strong side shoulder appears. The 7-segment modification produces a pattern of evenly spaced striations. The intensity spikes seen with the re-entrant modifications are caused chiefly by the finite curvature of the mirror at the turning points. The question of whether deformable bimorph mirrors with different piezo response functions could sharpen the curvature changes will be investigated. Optimal modifications of continuous curvature, which could more realistically be applied, will be sought.

  5. Characteristics of a cylindrical collector mirror for laser-produced xenon plasma soft X-rays and improvement of mirror lifetime by buffer gas

    SciTech Connect

    Inoue, Tomoaki; Mochizuki, Takayasu; Miyamoto, Shuji; Masuda, Kazuya; Amano, Sho; Kanda, Kazuhiro

    2012-12-15

    The focusing characteristics of a ruthenium-coated cylindrical mirror were investigated on the basis of its ability to collect and focus broadband 5-17-nm soft X-rays emitted from a laser-produced plasma. Based on the plasmas spectral intensity distribution and the reflectivity function of the mirror, we defined the optimum position of the integrated cylindrical mirror at which the X-ray energy flux transported and focused through the mirror was maximum. A minimum spot diameter of 22 mm at a distance of approximately 200 mm from a soft X-ray source was confirmed. The maximum intensity of the collected soft X-rays was 1.3 mJ/cm{sup 2} at the center of the irradiation zone. Thus, the irradiation intensity was improved by approximately 27 times when compared to that of 47 {mu}J/cm{sup 2} without the mirror. The debris sputtering rate on the reflection surface of the mirror can be reduced to 1/110 by argon gas at 11 Pa, while the attenuation rate of the soft X-rays due to absorption by the buffer gas can be suppressed to less than 10% at the focal point. The focusing property of the mirror is expected to be maintained for 3000 h or longer without significant degradation for a 100 W/320 pps laser shot if the ruthenium layer is thicker than 10 {mu}m. These results suggest that a stand-alone broadband soft X-ray processing system can be realized by using laser-produced plasma soft X-rays.

  6. Characteristics of a cylindrical collector mirror for laser-produced xenon plasma soft X-rays and improvement of mirror lifetime by buffer gas.

    PubMed

    Inoue, Tomoaki; Mochizuki, Takayasu; Miyamoto, Shuji; Masuda, Kazuya; Amano, Sho; Kanda, Kazuhiro

    2012-12-01

    The focusing characteristics of a ruthenium-coated cylindrical mirror were investigated on the basis of its ability to collect and focus broadband 5-17-nm soft X-rays emitted from a laser-produced plasma. Based on the plasmas spectral intensity distribution and the reflectivity function of the mirror, we defined the optimum position of the integrated cylindrical mirror at which the X-ray energy flux transported and focused through the mirror was maximum. A minimum spot diameter of 22 mm at a distance of approximately 200 mm from a soft X-ray source was confirmed. The maximum intensity of the collected soft X-rays was 1.3 mJ/cm(2) at the center of the irradiation zone. Thus, the irradiation intensity was improved by approximately 27 times when compared to that of 47 μJ/cm(2) without the mirror. The debris sputtering rate on the reflection surface of the mirror can be reduced to 1/110 by argon gas at 11 Pa, while the attenuation rate of the soft X-rays due to absorption by the buffer gas can be suppressed to less than 10% at the focal point. The focusing property of the mirror is expected to be maintained for 3000 h or longer without significant degradation for a 100 W/320 pps laser shot if the ruthenium layer is thicker than 10 μm. These results suggest that a stand-alone broadband soft X-ray processing system can be realized by using laser-produced plasma soft X-rays.

  7. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    SciTech Connect

    Idir, Mourad Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  8. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    SciTech Connect

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results. (C) 2015 AIP Publishing LLC.

  9. An application of active optics to x-ray imaging: X-mas (x-ray milli arc-second) Project

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Masahiro; Kitamoto, Shunji; Ohkubo, Yohsuke; Sato, Jun'ichi; Watanabe, Takeshi; Sudoh, Keisuke; Sekiguchi, Akiko; Suga, Kazuharu; Sekiguchi, Hiroyuki

    2006-06-01

    We report the current status of the "X-mas" (X-ray milli-arcsecond) project. X-mas is an application of the AO technology to the X-ray optics, aiming to obtain high-resolution defraction-limited X-ray images. Our X-ray telescope employs the Newton optics with a paraboloid primary and a 31-element deformable secondary mirrors. The aperture of the primary mirror is 80 millimeters with the focal length of 2 meters. Multi-layer coating of the mirrors by silicon and molybdenum realizes a large reflectivity of ~60% for the primary and 30-50% for the secondary mirror at 13.5 nm, which enables us to construct a normal incidence optics at this wavelength. We use a laser guide source and a wave front sensor to optimize the form of the secondary deformable mirror for the purpose of offsetting the large-scale figure errors in the X-ray optics. A back-side illumination X-ray CCD detector manufactured by Hamamatsu Photonics is used for X-ray detections. We have assembled all these elements and started to accumulate data. Closed-loop AO is in operation for the laser guide source. Likely X-ray images are obtained through the telescope. The results in 2005-2006 are presented.

  10. Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    NASA Astrophysics Data System (ADS)

    Tagliaferri, G.; Basso, S.; Borghi, G.; Burkert, W.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Freyberg, M.; Garoli, D.; Gorenstein, P.; Hartner, G.; Mattarello, V.; Orlandi, A.; Pareschi, G.; Romaine, S.; Spiga, D.; Valsecchi, G.; Vernani, D.

    2009-05-01

    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission, ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV, iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.

  11. Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    SciTech Connect

    Tagliaferri, G.; Basso, S.; Civitani, M.; Conconi, P.; Cotroneo, V.; Pareschi, G.; Spiga, D.; Borghi, G.; Garoli, D.; Mattarello, V.; Orlandi, A.; Valsecchi, G.; Vernani, D.; Burkert, W.; Freyberg, M.; Hartner, G.; Citterio, O.; Gorenstein, P.; Romaine, S.

    2009-05-11

    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission, ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV, iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW < or approx. 30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.

  12. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  13. Optics for X-ray telescopes: analytical treatment of the off-axis effective area of mirrors in optical modules

    NASA Astrophysics Data System (ADS)

    Spiga, D.

    2011-05-01

    Context. Optical modules for X-ray telescopes comprise several double-reflection mirrors operating in grazing incidence. The concentration power of an optical module, which determines primarily the telescope's sensitivity, is in general expressed by its on-axis effective area as a function of the X-ray energy. Nevertheless, the effective area of X-ray mirrors in general decreases as the source moves off-axis, with a consequent loss of sensitivity. To make matters worse, the dense nesting of mirror shells in an optical module results in a mutual obstruction of their aperture when an astronomical source is off-axis, with a further effective area reduction. Aims: To ensure the performance of X-ray optics for new X-ray telescopes (like NuSTAR, NHXM, ASTRO-H, IXO), their design entails a detailed computation of the effective area over all the telescope's field of view. While the effective area of an X-ray mirror is easy to predict on-axis, the same task becomes more difficult for a source off-axis. It is therefore important to develop an appropriate formalism to reliably compute the off-axis effective area of a Wolter-I mirror, including the effect of obstructions. Methods: Most of collecting area simulation for X-ray optical modules has been so far performed along with numerical codes, involving ray-tracing routines, very effective but in general complex, difficult to handle, time consuming and affected by statistical errors. In contrast, in a previous paper we approached this problem from an analytical viewpoint, to the end of simplifying and speeding up the prediction of the off-axis effective area of unobstructed X-ray mirrors with any reflective coating, including multilayers. Results: In this work we extend the analytical results obtained: we show that the analytical formula for the off-axis effective area can be inverted, and we expose in detail a novel analytical treatment of mutual shell obstruction in densely nested mirror assemblies, which reduces the off

  14. Correcting x ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.

    1992-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.

  15. Measurement of the point spread function and effective area of the Solar-A Soft X-ray Telescope mirror

    NASA Technical Reports Server (NTRS)

    Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.

    1989-01-01

    A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.

  16. Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Spiga, D.

    2015-01-01

    Context. The imaging sharpness of an X-ray telescope is chiefly determined by the optical quality of its focusing optics, which in turn mostly depends on the shape accuracy and the surface finishing of the grazing-incidence X-ray mirrors that compose the optical modules. To ensure the imaging performance during the mirror manufacturing, a fundamental step is predicting the mirror point spread function (PSF) from the metrology of its surface. Traditionally, the PSF computation in X-rays is assumed to be different depending on whether the surface defects are classified as figure errors or roughness. This classical approach, however, requires setting a boundary between these two asymptotic regimes, which is not known a priori. Aims: The aim of this work is to overcome this limit by providing analytical formulae that are valid at any light wavelength, for computing the PSF of an X-ray mirror shell from the measured longitudinal profiles and the roughness power spectral density, without distinguishing spectral ranges with different treatments. Methods: The method we adopted is based on the Huygens-Fresnel principle for computing the diffracted intensity from measured or modeled profiles. In particular, we have simplified the computation of the surface integral to only one dimension, owing to the grazing incidence that reduces the influence of the azimuthal errors by orders of magnitude. The method can be extended to optical systems with an arbitrary number of reflections - in particular the Wolter-I, which is frequently used in X-ray astronomy - and can be used in both near- and far-field approximation. Finally, it accounts simultaneously for profile, roughness, and aperture diffraction. Results: We describe the formalism with which one can self-consistently compute the PSF of grazing-incidence mirrors, and we show some PSF simulations including the UV band, where the aperture diffraction dominates the PSF, and hard X-rays where the X-ray scattering has a major impact

  17. Toward a Complete Metrological Solution for the Mirrors for the Constellation-X Spectroscopy X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Lehan, John; Owens, S.; Hadjimichael, T.; Hong, M.; Chan, K.-W.; Saha, T. T.; Reid, P.; Zhang, W. W.

    2007-01-01

    We present an overview update of the metrological approach to be employed for the segmented mirror fabrication for Constellation-X spectroscopy x-ray telescope. We compare results achieved to date with mission requirements. This is discussed in terms of inherent capability versus in-practice capability.

  18. Focusing X-rays to a 1-{mu}m spot using elastically bent, graded multilayer coated mirrors

    SciTech Connect

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B.

    1997-04-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 {mu}m. This has been improved to 1 {mu}m through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples.

  19. Specification of x-ray mirrors in terms of system performance: a new twist to an old plot

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Samoylova, Liubov; Kozhevnikov, Igor V.

    2014-09-01

    In the early 1990's [App. Opt. 32(19), 3344-531 (1993)], Church and Takacs pointed out that the specification of surface figure and finish of x-ray mirrors must be based on their performance in the beamline optical system. In the present work, we demonstrate the limitations of specification, characterization, and performance evaluation based on the totally statistical approach, including root-mean-square (rms) roughness and residual slope variation, evaluated over the spatial frequency bandwidths that are system specific, and a more refined statistical description of the surface morphology based on the power spectral density (PSD) distribution. We show that the limitations are fatal, especially, in the case of highly collimated coherent x-ray beams, like beams from X-ray Free Electron Lasers (XFELs). The limitations arise due to the deterministic character of the surface profile data for a definite mirror, while the specific correlation properties of the surface are essential for the performance of the entire x-ray optical system. As a possible way to overcome the problem, we treat a method, suggested in [Opt. Eng. 51(4), 046501, 2012] and based on an autoregressive moving average (ARMA) modeling of the slope measurements with a limited number of parameters. The effectiveness of the approach is demonstrated with an example peculiar to the x-ray optical systems under design at the European XFEL.

  20. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  1. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  2. Ultra-high-precision surface processing techniques for nanofocusing ellipsoidal mirrors in hard x-ray region

    NASA Astrophysics Data System (ADS)

    Yumoto, Hirokatsu; Koyama, Takahisa; Matsuyama, Satoshi; Yamauchi, Kazuto; Ohashi, Haruhiko

    2014-09-01

    X-ray microscopic analysis as a fundamental tool in various scientific fields is supported by advancements in highprecision x-ray optics. Off-axis ellipsoidal focusing mirror optics, which can produce two-dimensional focus with a mirror and has characteristics of high reflectivity and achromaticity, is quite attractive for use in microscopic analysis. However, technical problems in fabrication prevent a realization of off-axis ellipsoidal mirrors with nanometer accuracy for nano-focusing of hard x-rays. The purpose of this study was to resolve a problem of surface processing technique for fabrication of nanofocusing ellipsoidal mirrors in the hard x-ray region. We developed two types of ultra-high-precision surface processing machines by advancing the Elastic Emission Machining method. One is a machine for improvement of surface roughness with a rotary type working head, and the other is a machine for a computer-controlled figure correction with a small-aperture nozzle type working head. Using the rotary type machine, we confirmed that surface roughness of 4.32 nm root-mean-square (RMS) on an off-axis ellipsoidal mirror surface was improved to 0.14 nm (RMS) within a spatial wavelength range of shorter than several hundred microns. Using the nozzle type machine, we demonstrated a figure correction in a spatial wavelength of longer than 100 μm with nanometer height accuracy. Ultrahigh- precision surface processing technologies with the capability of fabricating nano-focusing off-axis ellipsoidal mirrors were established.

  3. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror.

    PubMed

    Pelliccia, Daniele; Paganin, David M

    2014-04-01

    Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.

  4. Analytical computation of stray light in nested mirror modules for x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Spiga, Daniele

    2015-09-01

    Stray light in X-ray telescopes are a well-known issue. Unlike rays focused via a double reflection by usual grazing-incidence geometries such as the Wolter-I, stray rays coming from off-axis sources are reflected only once by either the parabolic or the hyperbolic segment. Although not focused, stray light may represent a major source of background and ghost images especially when observing a field of faint sources in the vicinities of another, more intense, just outside the field of view of the telescope. The stray light problem is faced by mounting a pre-collimator in front of the mirror module, in order to shade a part of the reflective surfaces that may give rise to singly-reflected rays. Studying the expected stray light impact, and consequently designing a pre-collimator, is a typical ray-tracing problem, usually time and computation consuming, especially if we consider that rays propagate throughout a densely nested structure. This in turn requires one to pay attention to all the possible obstructions, increasing the complexity of the simulation. In contrast, approaching the problems of stray light calculation from an analytical viewpoint largely simplifies the problem, and may also ease the task of designing an effective pre-collimator. In this work we expose an analytical formalism that can be used to compute the stray light in a nested optical module in a fast and effective way, accounting for obstruction effects.

  5. Chemical Bond Activation Observed with an X-ray Laser.

    PubMed

    Beye, Martin; Öberg, Henrik; Xin, Hongliang; Dakovski, Georgi L; Dell'Angela, Martina; Föhlisch, Alexander; Gladh, Jörgen; Hantschmann, Markus; Hieke, Florian; Kaya, Sarp; Kühn, Danilo; LaRue, Jerry; Mercurio, Giuseppe; Minitti, Michael P; Mitra, Ankush; Moeller, Stefan P; Ng, May Ling; Nilsson, Anders; Nordlund, Dennis; Nørskov, Jens; Öström, Henrik; Ogasawara, Hirohito; Persson, Mats; Schlotter, William F; Sellberg, Jonas A; Wolf, Martin; Abild-Pedersen, Frank; Pettersson, Lars G M; Wurth, Wilfried

    2016-09-15

    The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding-antibonding splitting following bond-activation using an ultrashort optical laser pulse.

  6. X-Ray Psoralen Activated Cancer Therapy (X-PACT).

    PubMed

    Oldham, Mark; Yoon, Paul; Fathi, Zak; Beyer, Wayne F; Adamson, Justus; Liu, Leihua; Alcorta, David; Xia, Wenle; Osada, Takuya; Liu, Congxiao; Yang, Xiao Y; Dodd, Rebecca D; Herndon, James E; Meng, Boyu; Kirsch, David G; Lyerly, H Kim; Dewhirst, Mark W; Fecci, Peter; Walder, Harold; Spector, Neil L

    2016-01-01

    This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001). We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which

  7. X-Ray Psoralen Activated Cancer Therapy (X-PACT)

    PubMed Central

    Oldham, Mark; Yoon, Paul; Fathi, Zak; Beyer, Wayne F.; Adamson, Justus; Liu, Leihua; Alcorta, David; Xia, Wenle; Osada, Takuya; Liu, Congxiao; Yang, Xiao Y.; Dodd, Rebecca D.; Herndon, James E.; Meng, Boyu; Kirsch, David G.; Lyerly, H. Kim; Dewhirst, Mark W.; Fecci, Peter; Walder, Harold; Spector, Neil L.

    2016-01-01

    This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001). We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which

  8. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  9. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.

    PubMed

    Kim, Jungho; Shi, Xianbo; Casa, Diego; Qian, Jun; Huang, XianRong; Gog, Thomas

    2016-07-01

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.

  10. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  11. X-ray photographs of a solar active region with a multilayer telescope at normal incidence

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Bruner, M. E.; Haisch, B. M.; Brown, W. A.; Acton, L. W.

    1987-01-01

    An astronomical photograph was obtained with a multilayer X-ray telescope. A 4-cm tungsten-carbon multilayer mirror was flown as part of an experimental solar rocket payload, and successful images were taken of the sun at normal incidence at a wavelength of 44 A. Coronal Si XII emission from an active region was recorded on film; as expected, the structure is very similar to that observed at O VIII wavelengths by the Solar Maximum Mission flat-crystal spectrometer at the same time. The small, simple optical system used in this experiment appears to have achieved a resolution of 5 to 10 arcsec.

  12. Grazing incidence X-ray reflectivity of gold and iridium coated flat mirrors

    NASA Astrophysics Data System (ADS)

    Aschenbach, Bernd; Braeuninger, Heinrich; Burkert, Wolfgang

    In the context of developing high reflectivity coatings for X-ray telescopes highly polished Zerodur and BK-7 glass flats have been coated with either gold or iridium. Grazing incidence reflectivity measurements at various X-ray energies are reported and compared with standard theory prediction.

  13. Rapid X-Ray Variability of Active Galaxies. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Tennant, A. F., Jr.

    1983-01-01

    Active galactic nuclei are luminous sources of X-rays. The thesis that the X-rays are generated within 10 gravitational radii from the central object is tested. A very sensitive search for rapid ( 1 day) X-ray variability from active galaxies was made.

  14. A Shack-Hartmann measuring head for the two-dimensional characterization of X-ray mirrors.

    PubMed

    Floriot, Johan; Levecq, Xavier; Bucourt, Samuel; Thomasset, Muriel; Polack, François; Idir, Mourad; Mercère, Pascal; Moreno, Thierry; Brochet, Sylvain

    2008-03-01

    The recent development of short-wavelength optics (X/EUV, synchrotrons) requires improved metrology techniques in terms of accuracy and curvature dynamic range. In this article a stitching Shack-Hartmann head dedicated to be mounted on translation stages for the characterization of X-ray mirrors is presented. The principle of the instrument is described and experimental results for an X-ray toroidal mirror are presented. Submicroradian performances can be achieved and systematic comparison with a classical long-trace profiler is presented. The accuracy and wide dynamic range of the Shack-Hartmann long-trace-profiler head allow two-dimensional characterizations of surface figure and curvature with a submillimeter spatial resolution.

  15. Computer-Controlled Cylindrical Polishing Process for Large X-Ray Mirror Mandrels

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    We are developing high-energy grazing incidence shell optics for hard-x-ray telescopes. The resolution of a mirror shells depends on the quality of cylindrical mandrel from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation software is developed to model the residual surface figure errors of a mandrel due to the polishing process parameters and the tools used, as well as to compute the optical performance of the optics. The study carried out using the developed software was focused on establishing a relationship between the polishing process parameters and the mid-spatial-frequency error generation. The process parameters modeled are the speeds of the lap and the mandrel, the tool s influence function, the contour path (dwell) of the tools, their shape and the distribution of the tools on the polishing lap. Using the inputs from the mathematical model, a mandrel having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. The preliminary results of a series of polishing experiments demonstrate a qualitative agreement with the developed model. We report our first experimental results and discuss plans for further improvements in the polishing process. The ability to simulate the polishing process is critical to optimize the polishing process, improve the mandrel quality and significantly reduce the cost of mandrel production

  16. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxes and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.

  17. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors.

    PubMed

    Matsuyama, Satoshi; Yasuda, Shuhei; Yamada, Jumpei; Okada, Hiromi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2017-04-13

    X-ray spectromicroscopy with a full-field imaging technique is a powerful method for chemical analysis of heterogeneous complex materials with a nano-scale spatial resolution. For imaging optics, an X-ray reflective optical system has excellent capabilities with highly efficient, achromatic, and long-working-distance properties. An advanced Kirkpatrick-Baez geometry that combines four independent mirrors with elliptic and hyperbolic shapes in both horizontal and vertical directions was developed for this purpose, although the complexity of the system has a limited applicable range. Here, we present an optical system consisting of two monolithic imaging mirrors. Elliptic and hyperbolic shapes were formed on a single substrate to achieve both high resolution and sufficient stability. The mirrors were finished with a ~1-nm shape accuracy using elastic emission machining. The performance was tested at SPring-8 with a photon energy of approximately 10 keV. We could clearly resolve 50-nm features in a Siemens star without chromatic aberration and with high stability over 20 h. We applied this system to X-ray absorption fine structure spectromicroscopy and identified elements and chemical states in specimens of zinc and tungsten micron-size particles.

  18. X-ray optics simulation and beamline design using a hybrid method: diffraction-limited focusing mirrors

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Reininger, Ruben; Sánchez del Río, Manuel; Qian, Jun; Assoufid, Lahsen

    2014-09-01

    A hybrid method combining ray-tracing and wavefront propagation was recently developed for X-ray optics simulation and beamline design optimization. One major application of the hybrid method is its ability to assess the effects of figure errors on the performance of focusing mirrors. In the present work, focusing profiles of mirrors with different figure errors are simulated using three available wave optics methods: the hybrid code based on the Fourier optics approach, the stationary phase approximation and a technique based on the direct Fresnel-Kirchhoff diffraction integral. The advantages and limitations of each wave optics method are discussed. We also present simulations performed using the figure errors of an elliptical cylinder mirror measured at APS using microstitching interferometry. These results show that the hybrid method provides accurate and quick evaluation of the expected mirror performance making it a useful tool for designing diffraction-limited focusing beamlines.

  19. With mirrors and finesse, labs domesticate the x-ray laser

    SciTech Connect

    Hellemans, A.

    1996-07-05

    Space beam weapons and unlimited energy from fusion may have been pipe dreams of the 1980s. But today these dreams are giving birth to practical laboratory tools: tabletop x-ray lasers that may open up whole new areas of chemistry and biology. The first x-ray lasers were energized by nuclear explosions or jolts of light from giant glass lasers built for fusion experiments-hardly bench-top equipment. Now, says Joseph Nilsen, a physicist at Lawrence Livermore National Laboratory (LLNL), {open_quotes}several small university-size places are actually making a lot of progress toward tabletop lasers people can use every day.{close_quotes} This article highlight progress towards cheap ubiquitous X-ray lasers as described at the 5th International Conference on X-ray Lasers.

  20. X-ray position detector and implementation in a mirror pointing servo system

    SciTech Connect

    Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.

    2016-04-05

    An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.

  1. X-rays and Gamma-rays from active galaxies

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.

    1983-01-01

    Photon-photon pair production in active galaxies is considered, and the concept of the annihilation efficiency, the efficiency of the conversion of continuum luminosity of greater than 511 keV into positron annihilation luminosity, is introduced. Equations that give the source's annihilation luminosity and 511-keV flux as a function of its size, continuum luminosity and distance are developed. These are applied to the available X-ray and gamma-ray data on active galaxies in order to make specific predictions. Efficiencies as high as over 6 percent and fluxes up to 0.0008 ph/sq cm s result. While the latter are below present limits, they are within the reach of advanced instruments now in development.

  2. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror.

    PubMed

    Do, A; Troussel, Ph; Baton, S D; Dervieux, V; Gontier, D; Lecherbourg, L; Loupias, B; Obst, L; Pérez, F; Renaudin, P; Reverdin, Ch; Rubbelynck, C; Stemmler, Ph; Soullié, G

    2017-01-01

    High-resolution, high-sensitivity X-ray imaging is a real challenge in laser plasma diagnostic to attain reliable data in high-energy density plasma experiments. In this context, ultra-high-intensity lasers generate hot and dense plasma but only in a small volume. An experiment has been performed at the LULI2000 laser facility to diagnose such plasma conditions from thermal spectroscopic data. To image the emission zone plasma's Al Heβ, a Fresnel-lens-based X-ray imager has been developed. It features a 846 μm-diameter Fresnel Phase Zone Plate (FPZP) and a Pd/B4C multilayer mirror (thickness d = 5.1 nm). This association can be used between 1500 eV and 2100 eV. The FPZP's efficiency was measured on a synchrotron facility (SOLEIL) and its spatial resolution in a laser facility (EQUINOX). The mirror reflectivity was measured on the synchrotron facility BESSY II. With experimental conditions, the system resolution reaches 3.8 ± 0.6 μm with an adequate efficiency in the 1800 eV-1900 eV energy range with a solid angle of 9 × 10(-6) sr. Consequently, a FPZP is an excellent optics setup for high-resolution quasi-monochromatic X-ray imaging and provides a good collection angle. Bragg-Fresnel lenses, based on the principle of FPZP and mirrors, are currently designed for an X-ray imager at the Laser MégaJoule facility.

  3. Thermal Analysis of Next-Generation Space Telescope (NGST) Mirrors During Optical Testing in the X-Ray Calibration Facility (XRCF)

    NASA Technical Reports Server (NTRS)

    Page, Tim; Sutherlin, Steven

    2002-01-01

    This paper presents Thermal Analysis of the Next Generation Space Telescope (NGST) Mirrors During Optical Testing in the X-Ray Calibration Facility (XRCF). The contents include: 1) NGST Spacecraft Concept; 2) NGST Mirror Development Testing; 3) NGST Development Mirror; 4) Knudsen Number; 5) Free-Molecular Conduction; 6) Accomodation Coefficient; and 7) Results and Recommendations. This paper is presented in viewgraph form.

  4. Characterization of r.f. sputtered thin Mo, W and Si films as precursors to multilayer X-ray mirrors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Joseph, D.; Poswal, A. K.

    2006-08-01

    Single layers of Mo, W and Si thin films have been deposited by r.f. sputtering on float glass and c-Si substrates kept at room temperature. The films have been characterised by grazing incidence X-ray reflectometry (GIXR), X-ray transmission (XRT), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM) and phase modulated spectroscopic ellipsometry (SE) studies. The thickness values obtained from the GIXR measurements have been used to calibrate the in situ thickness monitors. The surface roughness of the thin layers have also been determined from the GIXR measurements. The atomic mass density in the films have been obtained from the RBS measurements while X-ray absorption has been estimated from the XRT measurements. The surface morphology of the films has been investigated by the AFM micrographs. The Si thin films have also been characterized by the SE technique. The characterization of the samples by these complementary techniques have been very useful in optimizing the process parameters to obtain good quality layers as precursors to the fabrication of the multilayer X-ray mirrors based on Mo/Si and W/Si structures.

  5. Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data.

    PubMed

    Kewish, Cameron M; Guizar-Sicairos, Manuel; Liu, Chian; Qian, Jun; Shi, Bing; Benson, Christa; Khounsary, Ali M; Vila-Comamala, Joan; Bunk, Oliver; Fienup, James R; Macrander, Albert T; Assoufid, Lahsen

    2010-10-25

    We have used coherent X-ray diffraction experiments to characterize both the 1-D and 2-D foci produced by nanofocusing Kirkpatrick-Baez (K-B) mirrors, and we find agreement. Algorithms related to ptychography were used to obtain a 3-D reconstruction of a focused hard X-ray beam waist, using data measured when the mirrors were not optimally aligned. Considerable astigmatism was evident in the reconstructed complex wavefield. Comparing the reconstructed wavefield for a single mirror with a geometrical projection of the wavefront errors expected from optical metrology data allowed us to diagnose a 40 μrad misalignment in the incident angle of the first mirror, which had occurred during the experiment. Good agreement between the reconstructed wavefront obtained from the X-ray data and off-line metrology data obtained with visible light demonstrates the usefulness of the technique as a metrology and alignment tool for nanofocusing X-ray optics.

  6. Surface finish quality of the outer AXAF mirror pair based on x ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel A.; Szentgyorgyi, Andrew; Vanspeybroeck, Leon; Zhao, Ping

    1992-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are one dimensional scans of the core of the point response function (PRF) (full width half maximum (FWHM) scans), the encircled energy as a function of radius, and one dimensional scans of the wings of the PRF. We discuss briefly our ray trace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1 mm(exp -1). Constraints on the average amplitude of circumferential slope errors are derived as well.

  7. Characterisation of Shape Accuracy During Alignment and Integration of Thin Shell Mirrors for Large Modular X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Breunig, Elias; Friedrich, Peter; Proserpio, Laura; Winter, Anita; Baier, Horst

    2014-06-01

    MPE is developing modular x-ray mirrors for the next generation of high-energy astronomy missions. The mirror segments are based on thermally formed (a.k.a. slumped) glass sheets, with a typical thickness of 400μm.One of the major challenges is the alignment and integration of the mirror segments and the associated metrology. The optical performance of the mirror can be significantly compromised by adhesive shrinkage, gravity sag or residual stresses influenced by the properties of the mirror mounting and the integration procedure.In parallel with classic coordinate measurement techniques we utilize a deflectometry based metrology system to characterization shape errors of the mirror surfaces.A typical deflectometry setup uses a TFT display to project a sinusoidal pattern onto a specular test surface (SUT) and a camera that observes the reflected image. This reflected image contains slope information of the SUT in the form of distortions of the original displayed pattern. A phase shifting technique can be used to recover this slope information with only very few exposures and reasonable computational effort. The deflectometry system enables us to characterize bonding interfaces of slumped glass mirrors, as well as influence of temporary mounting points, handling and thermal distortions. It is also well suited to measure transient effects.

  8. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  9. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    DOE PAGES

    Burcklen, C.; Soufli, R.; Gullikson, E.; ...

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (opticalmore » constants) values for Cr.« less

  10. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  11. Multimodal hard x-ray nanoprobe facility by nested Montel mirrors aimed for 40nm resolution at Taiwan Photon Source

    SciTech Connect

    Yin, Gung-Chian Chang, Shi-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chian-Yao; Tang, Mau-Tsu; Wu, Shao-Yun

    2016-01-28

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm and 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.

  12. Fast fluctuations of soft X-rays from active regions

    NASA Technical Reports Server (NTRS)

    Simnett, G. F.; Dennis, B. R.

    1986-01-01

    A selection of short lived small soft X-ray bursts is studied using data from the Hard X-ray Imaging Spectrometer (HXIS), and the results are compared with the data from the Hard X-Ray Burst Spectrometer (HXRBS) with a view to understanding conditions at the onset of flares. Short-lived events provide an opportunity to study the radiation from the primary energy transfer process without confusion from the slowly-varying thermal X-ray emission which characterizes the decay of a large flare. The fast decay of the soft X-rays, only a few tens of seconds, suggests that they occur in the dense chromosphere. The results indicate that the short events may be signatures of several different phenomena, depending on their characteristics. Some events occur in association with reverse-drift type III bursts and simultaneous flaring elsewhere on the Sun, thus suggesting dumping of particles accelerated at a remote site. Some events have hard X-ray bursts and normal type III bursts associated with them, while others have neither. The latter events place strong constraints on the nonthermal electron population present.

  13. X-ray spectral diagnostics of activity in massive stars

    NASA Astrophysics Data System (ADS)

    Cohen, David H.; Wollman, Emma E.; Leutenegger, Maurice A.

    2011-07-01

    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).

  14. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    SciTech Connect

    Huang, Run; Su, Peng; Burge, James H.; Huang, Lei; Idir, Mourad

    2015-08-05

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  15. Quantitative X-ray wavefront measurements of Fresnel zone plate and K-B mirrors using phase retrieval.

    PubMed

    Huang, Xiaojing; Wojcik, Michael; Burdet, Nicolas; Peterson, Isaac; Morrison, Graeme R; Vine, David J; Legnini, Daniel; Harder, Ross; Chu, Yong S; Robinson, Ian K

    2012-10-08

    A scanning coherent diffraction imaging method was used to reconstruct the X-ray wavefronts produced by a Fresnel zone plate (FZP) and by Kirkpatrick-Baez (KB) focusing mirrors. The ptychographical measurement was conducted repeatedly by placing a lithographed test sample at different defocused planes. The wavefronts, recovered by phase-retrieval at well-separated planes, show good consistency with numerical propagation results, which provides a self-verification. The validity of the obtained FZP wavefront was further confirmed with theoretical predictions.

  16. Activation of oncogenes by radon progeny and x-rays

    SciTech Connect

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  17. Development of a numerically controlled elastic emission machining system for fabricating mandrels of ellipsoidal focusing mirrors used in soft x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Takei, Yoshinori; Kume, Takehiro; Motoyama, Hiroto; Hiraguri, Kentaro; Hashizume, Hirokazu; Mimura, Hidekazu

    2013-09-01

    Ellipsoidal mirrors are one of the most promising types of X-ray mirror, because the mirror can focus X-rays to nanometer size with a large aperture and no chromatic aberration. However, so far ideal ellipsoidal mirrors cannot be realized by any manufacturing methods. One of the reasons is there is no fabrication method to process their inside surface with a diameter of several millimeters with nanometer-level accuracy. We propose and develop a manufacturing process of the ellipsoidal mirror. First, a master which has the reversed shape is prepared using grinding, polishing and Elastic Emission Machining (EEM). EEM can finish the surface shape to within 2nm (RMS). Then, the ellipsoidal mirror is produced by replicating the surface using an electroforming deposition method. By conducting the process without any stress at room temperature, replicating the surface roughness and shape with nanometer order accuracy is possible. In this paper, we report the current status of manufacturing of the ellipsoidal mirror.

  18. Coronal X-ray activity preceding solar flares

    NASA Technical Reports Server (NTRS)

    Webb, D. F.

    1985-01-01

    The characteristics of coronal emplacements preceding solar flares were investigated based on a comprehensive survey of Skylab soft X-ray images. A search interval of 30 min before flare was used in the X-ray observations. X-ray images with preflare enhancements were compared with high resolution H-alpha images and photospheric magnetograms and preflare enhancements were found in a statistically significant number of the observed preflare intervals. The enhancement events consisted of loops, kernels, and sinuous features with one to three separate preflare structures appearing in each interval. Typical gas pressures in the preflare X-ray features were estimated on the order of a few dyne per sq cm and densities were 4-10 x 10 to the -9th per cu cm for assumed average temperatures. H-alpha brightenings in the form of knots and patches were found in conjunction with the X-ray preflare features in nearly all of the intervals. It is concluded that H-alpha emission is characteristic of preflare emission processes. The observational data are interpreted within the framework of existing loop preheating models, and the results are discussed in detail.

  19. Measurement of soft x-ray multilayer mirror reflectance at normal incidence using laser-produced plasmas

    SciTech Connect

    Trail, J.A.; Byer, R.L.; Barbee T.W. Jr.

    1988-01-25

    We have used laser-produced plasmas as a broadband source of soft x rays to measure the normal incidence reflectance of multilayer mirrors in the 10--25 nm spectral region. The measurements have a spectral resolution of 0.03 nm and a reflectance resolution of 10%. Measurements made on a Mo/Si multilayer show excellent agreement with results obtained using a synchrotron and indicate a normal incidence peak reflectance of over 50% at 15 nm. By repeating the reflectance measurement at different positions across a single 7.5 cm mirror we determined multilayer uniformity as a function of position and we relate this dependence to the geometry of the deposition process.

  20. The effects of epoxy shrinkage on the Advanced X-ray Astrophysics Facility Technology Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Cohen, L. M.

    1984-01-01

    A method is shown analytically which reduces the effects of epoxy shrinkage for an ultra-high precision X-ray telescope to within the system error budget. The three-dimensional shrinkage effects are discussed with reference to this telescope. The results of the analysis point to the use of an interrupted rather than continuous bond line as the best solution. Discussion of the finite element modelling techniques is included.

  1. Very low luminosity active galaxies and the X-ray background

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Soltan, A.; Keel, W. C.

    1984-01-01

    The properties of very low luminosity active galactic nuclei are not well studied, and, in particular, their possible contribution to the diffuse X-ray background is not known. In the present investigation, an X-ray luminosity function for the range from 10 to the 39th to 10 to the 42.5th ergs/s is constructed. The obtained X-ray luminosity function is integrated to estimate the contribution of these very low luminosity active galaxies to the diffuse X-ray background. The construction of the X-ray luminosity function is based on data obtained by Keel (1983) and some simple assumptions about optical and X-ray properties.

  2. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  3. The development of X-ray flare onsets near active region filaments

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1981-01-01

    Skylab X-ray images of the early phases of six active region transient brightenings were compared with simultaneous H-alpha images to study the spatial relationships between filaments and the X-ray brightenings. When the X-ray loops were roughly perpendicular to the axes of the H-alpha filaments, the filaments did not disappear. X-ray loops which appeared nearly parallel to the filaments were generally associated with the disappearances of those filaments. It is suggested that the perpendicular loops correspond to the class I X-ray flares of Pallavicinic et al. (1977) while the parallel loops are the early phases of their class II flares characterized in the decay phases by arcades of large loops with low energy densities. Both kinds of X-ray flares can be associated with impulsive phases.

  4. X-Ray Activity in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Giamapapa, Mark S.; Prosser, Charles F.; Fleming, Thomas A.

    1997-01-01

    We present the results of a joint ROSAT High Resolution Imager (HRI) and optical investigation of the open cluster IC 4665. The ROSAT data contains detections for 28 stellar sources in the field, including 22 cluster members and candidate members spanning the color range -0.18 less than or equal to (B - V(sub o)) less than or equal to +1.63 (approx. B3 - M3). Upper limits are given for the remaining members (or candidate members) in the HRI field. Keck HIRES spectra have been obtained that yield radial and rotational velocity measures, respectively, for faint, low mass candidate members located within the field of the ROSAT HRI observation. In addition, photometry of possible optical counterparts to previously uncatalogued X-ray sources in the HRI field is presented. The trends in X-ray properties with (B - V) color in IC 4665 are found to be quite similar to that for other, more nearby young clusters such as the Pleiades and alpha Persei. In particular, a maximum in normalized X-ray luminosity of log (L(sub x)/L(sub bol)) approx. equal 3 is observed, beginning in the color range of (B - V)(sub o) = 0.7 - 0.8. This is similar to the corresponding color range among Pleiades members, in agreement with the earlier estimate, that the age of IC 4665 is similar to the age of the Pleiades. The correlation of rotation and X-ray emission levels is consistent with that in other young clusters. Among the high mass stars in IC 4665, five B stars are detected as X-ray sources. Of these, one is a spectroscopic binary while the remaining objects are apparently single staxs. The level of intrinsic X-ray emission observed in the rapidly rotating (v sini greater than 200 km/ s), single B stars is consistent with an origin due to shock heating of the ambient medium by radiatively driven, rotationally enhanced winds. On the basis of these observations and the results for other clusters, we argue that observed levels of X-ray emission in high mass stars of log (L(sub x)/L(sub bol

  5. Outflowing X-ray corona in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Junxian; Liu, Teng; Yang, Huan; Zhu, Feifan; Zhou, Youyuan

    2015-08-01

    Hard X-ray emission in radio-quiet AGNs is believed to be produced via inverse Compton scattering by hot and compact corona near the super massive black hole. However the origin and physical properties of the coronae, including geometry, kinematics and dynamics, yet remain poorly known. Taking [OIV] 25.89um emission line as an isotropic indicator of AGN's intrinsic luminosity, we compare the intrinsic corona X-ray emission between Seyfert 1 and Compton-thin Seyfert 2 galaxies, which are viewed at different inclinations according to the unification scheme. We find that Seyfert 1 galaxies are brighter in "absorption-corrected" 2-10 keV emission by a factor of ~2.8, comparing with Compton-thin Seyfert 2 galaxies. The Seyfert 1 and Compton-thin Seyfert 2 galaxies follow a statistically identical correlation between the absorption-corrected 2-10 keV luminosity and the SWIFT BAT 14-195 keV luminosity, indicating that our absorption correction to the 2-10 keV flux is sufficient. The difference between the two populations thus can not be attributed to X-ray absorption, and instead implies an intrinsic anisotropy in the corona X-ray emission. This striking anisotropy of X-ray emission can be explained by a bipolar outflowing corona with a bulk velocity of ~0.3-0.5c. This would provide a natural link between the so-called coronae and weak jets in these systems. We also show that how this study would affect our understanding to the nature of mid-infrared emission in AGNs and the properties of dusty torus. Furthermore, such anisotropy implies that, contrary to previous understanding based on the assumption of isotropic corona emission, hard X-ray AGN surveys are biased against type 2 AGNs even after absorption-correction, and careful correction for this effect is required to measure the obscured fraction from X-ray surveys. Other interesting consequences of this discovery will also be discussed.

  6. Micro-X-ray absorption near edge structure spectroscopy investigations of baroque tin-amalgam mirrors at BESSY using a capillary focusing system

    NASA Astrophysics Data System (ADS)

    Bartoll, J.; Röhrs, S.; Erko, A.; Firsov, A.; Bjeoumikhov, A.; Langhoff, N.

    2004-10-01

    An elliptically shaped glass monocapillary with a spatial resolution of 5 μm has been used for the fine focusing of the pre-focused X-ray beam produced by the graded-crystal monochromator beamline, KMC-2. The flux density gain of 50 was experimentally measured. The microprobe has been used in the energy range of 3.5-15 keV. Micro-X-ray fluorescence analysis (μXFA) and micro-X-ray absorption near edge structure spectroscopy (μXANES) measurements on test samples and investigations of baroque tin-amalgam mirrors were done.

  7. The MEL-X project at the Lawrence Livermore National Laboratory: a mirror-based delay line for x-rays

    NASA Astrophysics Data System (ADS)

    Pardini, Tom; Hill, Randy; Decker, Todd; Alameda, Jennifer; Soufli, Regina; Aquila, Andy; Guillet, Serge; Boutet, Sébastien; Hau-Riege, Stefan P.

    2015-09-01

    At the Lawrence Livermore National Laboratory (LLNL) in collaboration with the Linac Coherent Light Source (LCLS) we are developing a mirror-based delay line for x-rays (MEL-X) to enable x-ray pump/x-ray probe experiments at Free Electron Lasers (XFELs). The goal of this project is the development and deployment of a proof-of-principle delay line featuring coated x-ray optics. The four-mirror design of the MEL-X is motivated by the need for ease of alignment and use. In order to simplify the overlap of the pump and the probe beam after each delay time change, a scheme involving super-polished rails and mirror-to-motor decoupling has been adopted. The MEL-X, used in combination with a bright pulsed source like LCLS, features a capability for a high intensity pump beam. Its Iridium coating allows it to work at hard x-ray energies all the way up to 9 keV, with a probe beam transmission of 35% up to 8keV, and 14% at 9keV. The delay time can be tailored to each particular experiment, with a nominal range of 70 - 350 fs for this prototype. The MEL-X, combined with established techniques such as x-ray diffraction, absorption or emission, could provide new insights on ultra-fast transitions in highly excited states of matter.

  8. X-ray structures associated with disappearing H-alpha filaments in active regions

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1980-01-01

    The paper examines the relationship between active region disappearing H-alpha filaments and the associated coronal X-ray structures observed both before the disappearance event and afterwards. The events chosen for the study were selected from a list of active region X-ray transients observed in the images from the X-ray telescope on Skylab and from a list compiled by Webb (1976) of sudden disappearances of filaments during the Skylab period. Results indicate no distinction between the disappearing and the remaining active region filaments in terms of their pre-event associated X-ray emission features. However, X-ray brightenings were associated in a nearly one-to-one correspondence with disappearing portions of the filaments.

  9. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  10. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  11. Measurement of x-ray laser beam divergence with CADIX, a time-resolved diagnostic tool using an insertable multilayer mirror

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Bourgade, J. L.; Bruneau, J.; Charret, M.; Desenne, D.; Dulieu, A.; Dumont, H.; Louis-Jacquet, M.; Sauneuf, R.; Schirmann, D.; Troussel, P.

    1992-10-01

    To study the x-ray laser beam deflection and divergence due to the refraction within the plasma, a specific diagnostic called CADIX has been developed at the Centre d'Etudes de Limeil-Valenton (CEL-V). When the beam refraction analysis is required a multilayer mirror is inserted on the x-ray laser output beam. It selects the lasing wavelengths and reflects them to an off-axis streak camera which records x rays as a function of time and angle. A detailed description of the instrument is presented including multilayer mirror calibration at the LURE (Laboratoire pour L'Utilisation du Rayonnement Synchrotron, Orsay, France). An experimental measurement on neon-like silver amplification is presented and analyzed with the response of the mirror. An important refraction effect is observed.

  12. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  13. Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will

    2016-01-01

    Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.

  14. A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Eckart, Megan E.; Harrison, Fiona A.; McGreer, Ian D.; Helfand, David J.; Stern, Daniel

    2010-01-01

    We compare the relative merits of active galactic nuclei (AGNs) selection at X-ray and mid-infrared wavelengths using data from moderately deep fields observed by both Chandra and Spitzer. The X-ray-selected AGN sample and associated photometric and spectroscopic optical follow-up are drawn from a subset of fields studied as part of the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program. Mid-infrared data in these fields are derived from targeted and archival Spitzer imaging, and mid-infrared AGN selection is accomplished primarily through application of the Infrared Array Camera (IRAC) color-color AGN 'wedge' selection technique. Nearly all X-ray sources in these fields which exhibit clear spectroscopic signatures of AGN activity have mid-infrared colors consistent with IRAC AGN selection. These are predominantly the most luminous X-ray sources. X-ray sources that lack high-ionization and/or broad lines in their optical spectra are far less likely to be selected as AGNs by mid-infrared color selection techniques. The fraction of X-ray sources identified as AGNs in the mid-infrared increases monotonically as the X-ray luminosity increases. Conversely, only 22% of mid-infrared-selected AGNs are detected at X-ray energies in the moderately deep ((t{sub exp}) approx 100 ks) SEXSI Chandra data. We hypothesize that IRAC sources with AGN colors that lack X-ray detections are predominantly high-luminosity AGNs that are obscured and/or lie at high redshift. A stacking analysis of X-ray-undetected sources shows that objects in the mid-infrared AGN selection wedge have average X-ray fluxes in the 2-8 keV band 3 times higher than sources that fall outside the wedge. Their X-ray spectra are also harder. The hardness ratio of the wedge-selected stack is consistent with moderate intrinsic obscuration, but is not suggestive of a highly obscured, Compton-thick source population. It is evident from this comparative study that in order to create a complete

  15. Analysis of the relative movement between mirrors and detectors for the next generation x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Civitani, Marta

    2009-08-01

    Focusing X-ray telescopes with imaging capabilities, like SIMBOL-X, HEXISAT and IXO, are characterized by very long focal lengths, greater than 10m. The constraints posed by the launchers on the maximum dimensions of a payload, make necessary using alternatives to monolithic telescopes. One possibility is that the mirror and the detectors are carried by two separate spacecrafts that fly in formation. Another is placing the detector module on a bench that will be extended once in final orbit. In both the case the system will be subjected to deformation due the relative movement of the mirrors with respect to detectors. In one case the deformation will be due to the correction on the position and attitude of the detector spacecraft to maintain the formation with the mirror spacecraft, while in the other to oscillations of the detectors on the top of the bench. The aim of this work is to compare the behavior of the system in the two different configurations and to evaluate the performances of the on board metrology systems needed not to degrade the telescope angular resolution.

  16. Analysis on the use of vacuum oven for the indirect slumping of glass x-ray mirror segments

    NASA Astrophysics Data System (ADS)

    Madarasz, Emanuel; Proserpio, Laura; Breunig, Elias; Friedrich, Peter

    2016-07-01

    The Max-Planck-Institute for Extraterrestrial Physics (MPE) is involved in the investigation and optimization of the indirect slumping technique for the manufacturing of thin glass mirror segments to be assembled in lightweight X-ray telescopes. During the last year, we started to analyze the influence of vacuum environment on the results of this thermal forming process. The realization of slumping in vacuum offers theoretically several advantages, like the absence of air between the glass and the mold and a cleaner process chamber. Furthermore, the heat exchange is different with respect to a standard air-oven and this might have positive effects during the important heating and cooling phases of the process. All these aspects will be considered in the paper and the current status in the development of the MPE vacuum-slumping approach will be outlined.

  17. Analysis of 46.9-nm Pulsed Laser Radiation Aftereffects in Sc/Si Multilayer X-Ray Mirrors

    NASA Astrophysics Data System (ADS)

    Pershyn, Yu. P.; Voronov, D. L.; Zubarev, E. N.; Sevryukova, V. A.; V. Kondratenko, V.; Vaschenko, G.; Grisham, M.; Menoni, C. S.; Rocca, J. J.; Vinogradov, A. V.; Artyukov, I. A.; Uspenskii, Yu. A.

    Specific structural changes in Sc/Si multilayers (MLs) irradiated by nanosecond 46.9-nm single laser pulses with fluences of 0.04-5.00 J/cm2 were studied by methods of SEM and cross-sectional TEM. The threshold damage was found to be 0.08 J/cm2. The ML melts down under the fluence F >0.08 J/cm2, and the exothermic reaction of silicide formation starts. Main degradation mechanisms of MLs are discussed. The results of this study can be used for development of advanced multilayer mirrors capable handling the intense radiation conditions of new generation coherent X-ray sources.

  18. The Active Nucleus and 200-KPC X-Ray Jet in NGC 6251

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2002-09-01

    The jet of the FRI radio galaxy NGC 6251 is known to be an X-ray source on scales out to 200 kpc from the nucleus, making it the largest-scale FRI X-ray jet known. However, existing observations do not provide adequate information on the structure or spectrum of any of the X-ray jet components or on the spectrum of the active nucleus. We propose to make a sensitive observation of this unique object. We will measure the X-ray spectrum at multiple points along the jet to determine the emission mechanism and search for differences in particle acceleration as a function of distance. We will also determine whether the hot gas around the jet has pressure sufficient to confine it, and we will make a good spectrum of the X-ray nucleus for comparison with radio and optical observations.

  19. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  20. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  1. X-ray refelection from photoionized media in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Krolik, Julian H.; Zdziarski, Andrzej A.; Kallman, Timothy R.

    1994-01-01

    We calculate the spectrum of X-ray radiation and reprocessed by a partly ionized optically thick medium in an active galactic nucleus. We self-consistently calculate the ionization balance and thermal balance in the medium along with the distribution of X-ray intensity with optical depth. In addition to absorption or scattering of the incident X-rays, we also compute the spectrum of X-rays emitted by the material, including lines, edges, and bremsstrahlung. The albedo of the medium depends primarily on the X-ray ionization parameter (ratio of incident flux to gas density, zeta(sub Chi), and secondarily on the UV flux generated by dissipation inside the disk; we locate the critical range of zeta(sub Chi) over which the albedo increases from small to nearly unity. While the continuum reflection is very weak below 10 keV when zeta(sub Chi) is small, significnat fluxes are emitted in atomic lines and edges in this energy range. In the limit of large zeta(sub Chi), the albedo below 10 keV increases, but reflection in this band is never gray: some photoelectric absorption remains up to rather large values of zeta(sub Chi), while at still higher values, inverse Compton scattering amplifies the soft X-ray flux. These features are sufficiently sharp that current and near-future X-ray experiments should permit diagnostic measures of zeta(sub Chi).

  2. Preparation and characterization of x-ray mirrors with three single layers of a-C, B4C, and Ni onto two 820-mm long Si substrate

    NASA Astrophysics Data System (ADS)

    Störmer, Michael; Siewert, Frank; Buchheim, Jana; Pilz, Alexander; Kuhlmann, Marion; Ploenjes, Elke; Tiedtke, Kai

    2014-09-01

    Advanced research light sources, such as free-electron lasers, require ultra-precise and long x-ray mirrors that provide high reflectivity, high flux and a wide wavelength range. An X-ray mirror is a combination of a substrate and a coating. The demand for large mirrors has increased during the last few years, since surface finishing technology is able to process longer substrate lengths on the rms-level of a few nanometers. A state-of-the-art X-ray mirror could be coated with more than one single layer to allow a selection of thin-film materials suitable for the large wavelength range of a free-electron laser. Presented here is an X-ray mirror fabrication method to achieve low variation in thickness of less than 1 nm (peak-to-valley) over the whole mirror length of about 1 m. Low figure errors and low roughness are essential for a wave front preserving transport of photons and a high reflectance of a mirror surface. At FLASH II, the new extension of the Free-electron LASer in Hamburg (FLASH) at DESY, Germany, the wavelength range will be 4-80 nm. It is further expected that the photon beam will possess average single pulse energy of 1-500 μJ, pulse duration of 10-300 fs (FWHM), and peak power of 1-5 GW. At the Helmholtz-Zentrum Geesthacht, an in-house designed magnetronsputtering facility enabled us to deposit single layers and multilayers on up to 1.5 m long substrates. Earlier results confirmed the excellent uniformity of X-ray optical coating properties in the tangential and sagittal direction of the mirrors. Moreover, the deposition facility provided the simultaneous fabrication of two mirrors to achieve identical properties. Thin films of amorphous carbon (a-C), boron carbide (B4C) and nickel (Ni) are deposited by means of magnetron sputtering. The thin-film properties were investigated and analyzed by means of X-ray reflectometry (XRR), atomic force (AFM), and interference microscopy. The experimental results were analysed using simulations for the

  3. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    NASA Astrophysics Data System (ADS)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-12-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  4. A multi-frequency study of an X ray selected sample of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Grossan, Bruce Alan

    1992-01-01

    The LASS (Large Area Sky Survey) experiment, which flew aboard the HEAO-1 spacecraft, carried out a 2-20 keV survey of the sky during 1977-1978. The X-ray sources from this survey make up the LASS catalog (Wood et al. 1979). Optical counterparts have been identified for greater than 86 percent of the LASS sources above a flux of approx. 0.95 microns (mu)Jy Q 5 keV (Remillard 1992b). The LASS error boxes, along with the more precise positions from the Modulation Collimator (MC) X-ray experiment (also aboard HEAO-1), subsequent X-ray imaging, and optical search techniques were all used to identify the LASS sources. From these identifications, a high-latitude (absolute value of b greater than 20 deg.), flux limited (greater than or equal to 0.95 (mu)Jy) sample of 96 emission line Active Galactic Nuclei (AGN) have been selected for study. The sample is referred to as the LMA (for the LASS/MC identified sample of AGN). The objective of this work is to produce multi-frequency spectra of this sample of objects, in order to determine and interpret the statistical properties of the sample over nearly the full range of observable wavelengths. Data were obtained for as much of the radio through hard X-ray (less than 20 keV) spectrum as possible for each object in the LMA. Radio, near infrared, and other measurements were taken from the literature, far IR fluxes were extracted from co-added observations from IRAS, UV spectra were obtained from the IUE archives, and original observations were performed (with the help of collaborators) in the radio, near IR, optical, UV, and X-ray to fulfill this goal. Correlation studies of the continuum bands found poor correlations of X-ray and radio flux, good correlations for 12 and 26 micron flux with X-ray flux, excellent correlations for optical and near IR fluxes with X-rays, and poor correlations of UV and X-ray fluxes. Correlation studies of the line and X-ray continuum flux yield a good correlation between the flux of (OIII), the

  5. The SPARX Project: R & D Activity Towards X-Rays FEL Sources

    SciTech Connect

    Alesini, D.; Bellaveglia, M.; Bertolucci, S.; Biagini, M.E.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M.; Filippetto, D.; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Ligi, C.; Marcellini, F.; Migliorati, M.; /Frascati /ENEA, Frascati /INFN, Milan /INFN, Rome /INFN, Rome2 /Milan Polytechnic /UCLA /SLAC

    2005-08-05

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata aiming at the construction of a FELSASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on R&D activity on critical components and techniques for future X-ray facilities as described in this paper.

  6. Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Watanabe, Norio; Asami, Hiroshi; Shimada, Akihiro

    2016-04-01

    An axisymmetric multi-mirror system for neutron and X-ray microscopes is proposed to increase their numerical aperture and collection efficiency. A Wolter type-I mirror is used as the basis of the multi-mirror system at grazing incidence. The addition of an even number of hyperboloid mirrors to the Wolter type-I mirror can satisfy both an equal optical path length and Abbe's sine condition. The numerical aperture increases in proportion to the number of mirrors. The optical parameters of the system with four tandem mirrors are calculated for neutrons and X-rays with a wavelength of 0.4 nm by assuming that the average grazing angle of incidence is 5.4 mrad and the magnification is 10. The inner diameters of the mirrors are limited to <10 mm considering the total length of the optical system. Tolerance of off-axis distance was calculated using a ray-tracing computer simulation. Ray tracing shows that a blur size <14 nm will be possible at an off-axis displacement of 10 μm.

  7. Determining the nature of active region heating using high spatially and spectrally resolved x-ray observations

    NASA Astrophysics Data System (ADS)

    Sterrett, M. W.; Cirtain, J. W.

    2013-12-01

    Rarely have active regions on the Sun been studied at wavelengths less than 10 nm while simultaneously maintaining both high spatial and high spectral measurements. Marshall's Grazing Incidence X-ray Spectrometer (MaGIXS) will measure the soft X-ray solar spectrum within a wavelength range of 0.6 - 2.4 nm (0.5 - 2.0 keV) while maintaining a 5 arcsec spatial resolution. The wavelength range of 0.6 - 2.4 nm can provide insight into the heating roles of two of the likely coronal heating mechanisms: nanoflare and Alfven wave heating. The key difference in nanoflares and Alfven wave heating is the high temperature components of plasmas inside single magnetic strands. If the observed frequency of the heating event is low, it is determined to be a nanoflare. If the frequency of the heating event is high, it is Alfvenic in nature. To discriminate between these two distinct events requires that the components of the local high-temperature plasma be measured. MaGIXS is a proposed sounding rocket experiment. Currently in its prototype phase, MaGIXS is being aligned and characterized in hopes of a 2015 launch. To measure the attributes of high-temperature plasma, MaGIXS will employ the use of a matched pair of parabolic mirrors in conjunction with a planar varied-line-space silicon wafer grating. The two mirrors act as a collimator and re-focusing system, molding the beam to desired specifications and removing off-axis optical aberrations in the process. The grating has a HeNe alignment feature which allows the grating to be aligned at atmospheric pressure while focusing the HeNe laser beam near the center of MaGIXS wavelength range. This presentation will cover the alignment procedure of the mirrors, and the results of preliminary testing using both white light and X-ray sources.

  8. The prospects of X-ray polarimetry for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, René W.

    2016-08-01

    Polarimetry at optical and other wavelength continues to play an important role in our struggle to develop (super-)unification schemes for active galactic nuclei (AGN). Therefore, radio-loud and radio-quiet AGN are important targets for the future small and medium-size X-ray polarimetry missions that are currently under phase A study at NASA and ESA. After briefly pointing out the detection principle of polarization imaging in the soft X-ray band, I am going to review the prospects of X-ray polarimetry for our understanding of AGN ejection (winds and blazar jets) and accretion flows (accretion disk and corona). The X-ray polarimetry signal between 2 and 8 keV is going to give us important new constraints on the geometry of the central engine as well as on the acceleration effects in AGN jets, in particular when combined with spectral and/or polarization information at other wavelengths.

  9. Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope.

    PubMed

    Yamada, Jumpei; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto

    2017-02-01

    We propose the use of two pairs of concave-convex mirrors as imaging optics for the compact full-field x-ray microscope with high resolution and magnification factors. The optics consists of two pairs of hyperbolic convex and elliptical concave mirrors with the principal surface near the object, consequently enabling the focal length to be 10 times shorter than conventional advanced Kirkpatrick-Baez mirror optics. This paper describes characteristics of the optics calculated by ray-tracing and wave-optical simulators. The expected spatial resolution is approximately 40 nm with a wide field of view of more than 10 μm and a total length of about 2 m, which may lead to the possibility of laboratory-sized, achromatic, and high-resolution full-field x-ray microscopes.

  10. An active contour method for bone cement reconstruction from C-arm x-ray images.

    PubMed

    Lucas, Blake C; Otake, Yoshito; Armand, Mehran; Taylor, Russell H

    2012-04-01

    A novel algorithm is presented to segment and reconstruct injected bone cement from a sparse set of X-ray images acquired at arbitrary poses. The sparse X-ray multi-view active contour (SxMAC-pronounced "smack") can 1) reconstruct objects for which the background partially occludes the object in X-ray images, 2) use X-ray images acquired on a noncircular trajectory, and 3) incorporate prior computed tomography (CT) information. The algorithm's inputs are preprocessed X-ray images, their associated pose information, and prior CT, if available. The algorithm initiates automated reconstruction using visual hull computation from a sparse number of X-ray images. It then improves the accuracy of the reconstruction by optimizing a geodesic active contour. Experiments with mathematical phantoms demonstrate improvements over a conventional silhouette based approach, and a cadaver experiment demonstrates SxMAC's ability to reconstruct high contrast bone cement that has been injected into a femur and achieve sub-millimeter accuracy with four images.

  11. Centroiding and point response function measurements of the mirror/detector combination for the x-ray telescope on the SWIFT gamma-ray burst explorer

    NASA Astrophysics Data System (ADS)

    Ambrosi, Richard M.; Abbey, Anthony F.; Hutchinson, Ian; Willingale, Richard; Campana, Sergio; Cusumano, G.; Burkert, Wolfgang; Wells, Alan A.; Short, Alexander T.; Citterio, Oberto; Ghigo, Mauro; Tagliaferri, G.; Braeuninger, Heinrich W.

    2002-01-01

    The essential optical components of the Swift X-ray Telescope (XRT) are already developed items. They are: the flight spare x-ray mirror from the JET-X/Spectrum-X program and a MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on the XMM- Newton. The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996. Half energy widths (HEW) of 16 arc seconds at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the four years that the mirror had been in storage at the OAB, Milan, Italy. This results reported in this paper, confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift X-ray telescope. On-axis and off-axis point spread functions (PSFs) were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1 arc second and provided a calibration of the centroiding process as a function of source flux and off axis angle. The presence of background events in the image frame introduced errors in the centroiding process, making the choice of centroiding algorithm important. Algorithm performance and the trade-off between processing speed and centroiding accuracy were investigated.

  12. Production of thin glass mirrors by hot slumping for x-ray telescopes: present process and ongoing development

    NASA Astrophysics Data System (ADS)

    Salmaso, B.; Basso, S.; Brizzolari, C.; Civitani, M.; Ghigo, M.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Vecchi, G.

    2014-07-01

    Thin glass foils are considered good candidates to build a segmented X-ray telescope with effective area as large as 2 m2 and angular resolution better than 5 arcsec. In order to produce thin glass mirror segments, we developed a direct hot slumping technique assisted by pressure, in which the shape of a mould is replicated onto the optical surface of the glass. In this paper we present the result obtained with AF32 (by Schott) and EAGLE XG (by Corning) glass types. The selected mould material is Zerodur K20, as it does not require any anti-sticking layer and has a good matching, in terms of Coefficient of Thermal Expansion, with both glass types. Our group already produced a few prototypes, reaching angular resolution near 20 arcsec. In this work, relevant steps forward aimed at attaining a 5 arcsec angular resolution are described, along with the tuning of few key parameters in the slumping process. The results obtained on a newly procured cylindrical Zerodur K20 mould are presented.

  13. X-ray detection system development for tandem mirror experiment upgrade (TMX-U): hardware and software

    SciTech Connect

    Jones, R.M.; Failor, B.H.; Coutts, G.W.

    1984-12-01

    This x-ray detection system measures the electron Bremsstrahlung spectrum from the Tandem Mirror Experiment-Upgrade (TMX-U). From this spectrum, we can calculate the electron temperature. The low energy portion of the spectrum (0.5 to 40 keV) is measured by a liquid-nitrogen-cooled, lithium-drifted silicon detector. The higher energy spectrometer uses an intrinsic germanium detector to accommodate the 100 to 200 keV spectra. The system proceeds as follows. The preamplified detector signals are digitized by a high-speed A-to-D converter located in a Computer Automated Measurement and Control (CAMAC) crate. The data is then stored in a histogramming memory via a data router. The CAMAC crate interfaces with a local desktop computer or the main data acquisition computer that stores the data. The software sets up the modules, acquires the energy spectra (with sample times as short as 2 ms) and plots it. Up to 40 time-resolved spectra are available during one plasma cycle. The actual module configuration, CAMAC interfacing and software that runs the system are the subjects of this paper.

  14. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  15. Long-term X-Ray Variability of Typical Active Galactic Nuclei in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Yang, G.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Bauer, F. E.; Sun, M. Y.; Kim, S.; Schulze, S.; Zheng, X. C.; Paolillo, M.; Shemmer, O.; Liu, T.; Schneider, D. P.; Vignali, C.; Vito, F.; Wang, J.-X.

    2016-11-01

    We perform long-term (≈15 years, observed-frame) X-ray variability analyses of the 68 brightest radio-quiet active galactic nuclei (AGNs) in the 6 Ms Chandra Deep Field-South survey; the majority are in the redshift range of 0.6-3.1, providing access to penetrating rest-frame X-rays up to ≈10-30 keV. Of the 68 sources, 24 are optical spectral type I AGNs, and the rest (44) are type II AGNs. The timescales probed in this work are among the longest for X-ray variability studies of distant AGNs. Photometric analyses reveal widespread photon flux variability: 90% of AGNs are variable above a 95% confidence level, including many X-ray obscured AGNs and several optically classified type II quasars. We characterize the intrinsic X-ray luminosity ({L}{{X}}) and absorption ({N}{{H}}) variability via spectral fitting. Most (74%) sources show {L}{{X}} variability; the variability amplitudes are generally smaller for quasars. A Compton-thick candidate AGN shows variability of its high-energy X-ray flux, indicating the size of reflecting material to be ≲0.3 pc. {L}{{X}} variability is also detected in a broad absorption line quasar. The {N}{{H}} variability amplitude for our sample appears to rise as time separation increases. About 16% of sources show {N}{{H}} variability. One source transitions from an X-ray unobscured to obscured state, while its optical classification remains type I; this behavior indicates the X-ray eclipsing material is not large enough to obscure the whole broad-line region.

  16. The BeppoSAX View of the X-Ray Active Nucleus of NGC 4258

    NASA Astrophysics Data System (ADS)

    Fiore, F.; Pellegrini, S.; Matt, G.; Antonelli, L. A.; Comastri, A.; della Ceca, R.; Giallongo, E.; Mathur, S.; Molendi, S.; Siemiginowska, A.; Trinchieri, G.; Wilkes, B.

    2001-07-01

    BeppoSAX observed the Seyfert 1.9 galaxy NGC 4258 in 1998 December, when its 2-10 keV luminosity was about 1041 ergs s-1. Large amplitude (100%) variability is observed in the 3-10 keV band on timescales of a few tens of thousands of seconds, while variability of ~20% is observed on timescales as short as 1 hr. The nuclear component is visible above 2 keV only, being obscured by a column density of (9.5+/-1.2)×1022 cm-2 this component is detected at up to 70 keV with a signal-to-noise ratio of >~3 and with a steep power-law energy spectral index of αE=1.11+/-0.14. Bremsstrahlung emission for the 2-70 keV X-ray luminosity, as expected in advection-dominated accretion flow models with strong winds, is ruled out by the data. The ratio between the nuclear radio (22 GHz) luminosity and the X-ray (5 keV) luminosity is consistent with that of radio-quiet quasars and Seyfert galaxies. X-ray variability, spectral shape, and radio/X-ray and near-IR/X-ray luminosity ratios suggest that the nucleus of NGC 4258 could be a scaled down version of a Seyfert nucleus and that the X-ray nuclear luminosity can be explained in terms of Comptonization in a hot corona. The soft (E<~2 keV) X-ray emission is complex. There are at least two thermal-like components with temperatures of 0.6+/-0.1 keV and >~1.3 keV. The cooler (L0.1-2.4keV~1040 ergs s-1) component is probably associated with the jet, resolved in X-rays by the ROSAT HRI (Cecil et al. 1994). The luminosity of the second component, which can be modeled equally well by an unobscured power-law model with αE=0.2+0.8-0.2, is L0.1-2.4keV~7×1039 ergs s-1, consistent with that expected from discrete X-ray sources (binaries and supernova remnants) in the host galaxy. Observations of NGC 4258 and other maser active galactic nuclei (AGNs) show strong nuclear X-ray absorption. We propose that this large column of gas might be responsible for shielding the regions of water maser emission from X-ray illumination. So a large column density

  17. Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources.

    PubMed

    Störmer, M; Gabrisch, H; Horstmann, C; Heidorn, U; Hertlein, F; Wiesmann, J; Siewert, F; Rack, A

    2016-05-01

    X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.

  18. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  19. Development and calibration of mirrors and gratings for the soft x-ray materials science beamline at the Linac Coherent Light Source free-electron laser.

    PubMed

    Soufli, Regina; Fernández-Perea, Mónica; Baker, Sherry L; Robinson, Jeff C; Gullikson, Eric M; Heimann, Philip; Yashchuk, Valeriy V; McKinney, Wayne R; Schlotter, William F; Rowen, Michael

    2012-04-20

    This work discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 to 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.

  20. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    SciTech Connect

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.

  1. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on allmore » SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  2. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  3. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2.

    PubMed

    Yashchuk, Valeriy V; Morrison, Gregory Y; Marcus, Matthew A; Domning, Edward E; Merthe, Daniel J; Salmassi, Farhad; Smith, Brian V

    2015-05-01

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4-17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described.

  4. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Abbey, A. F.; Hutchinson, I. B.; Willingale, R.; Wells, A.; Short, A. D. T.; Campana, S.; Citterio, O.; Tagliaferri, G.; Burkert, W.; Brauninger, H.

    2002-08-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16arcsec at 1.5keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift XRT. Tolerances in the mirror focal length, the on-axis and off-axis point spread functions were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1arcsec and provided a calibration of the centroiding process as a function of source flux and off-axis angle. The presence of background events in the image frame introduced errors in the centroiding process and this was accounted for by reducing the sampling area used for the centroiding algorithm.

  5. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE PAGES

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; ...

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  6. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  7. Skylab ATM/S-056 X-ray event analyzer observations versus solar flare activity: An event compilation. [tables (data)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An event compilation is presented which correlates ATM/S-056 X-ray event analyzer solar observations with solar flare activity. Approximately 1,070 h of pulse height analyzed X-ray proportional counter data were obtained with the X-ray event analyzer during Skylab. During its operation, 449 flares (including 343 flare peaks) were observed. Seventy events of peak X-ray emission or = Cl were simultaneously observed by ground based telescopes, SOLRAD 9 and/or Vela, and the X-ray event analyzer. These events were observed from preflare through flare rise to peak and through flare decline.

  8. [The antioxidant enzyme activity in mouse liver mitochondria after nanosecond pulsed periodic X-ray exposure].

    PubMed

    Kniazeva, I R; Ivanov, V V; Bol'shakov, M A; Zharkova, L P; Kereia, A V; Kutenkov, O P; Rostov, V V

    2013-01-01

    The effect of repetitive pulsed X-ray (4 ns pulse duration, 300 kV accelerating voltage; 2.5 kA electron beam current) on the antioxidant enzyme activity in mouse liver mitochondria has been investigated. The mitochondrial suspension was exposed to single 4000 pulse X-ray radiation with repetition rates ranging between 10 and 22 pps (pulsed dose was 0.3-1.8 x 10(-6) Gy/pulse, the total absorbed dose following a single exposure was 7.2 x 10(-3) Gy). It was shown that a short-time exposure to X-ray radiation changes the antioxidant enzyme activity in mouse liver mitochondria. The greatest effect was observed in the changes of the activity of the metal-containing enzymes: superoxide dismutase and glutathione peroxidase. The effect depends on the pulse repetition frequency and radiation dose.

  9. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  10. DIRECT MEASUREMENT OF THE X-RAY TIME-DELAY TRANSFER FUNCTION IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Legg, E.; Miller, L.; Turner, T. J.; Giustini, M.; Reeves, J. N.; Kraemer, S. B.

    2012-11-20

    The origin of the observed time lags, in nearby active galactic nuclei (AGNs), between hard and soft X-ray photons is investigated using new XMM-Newton data for the narrow-line Seyfert I galaxy Ark 564 and existing data for 1H 0707-495 and NGC 4051. These AGNs have highly variable X-ray light curves that contain frequent, high peaks of emission. The averaged light curve of the peaks is directly measured from the time series, and it is shown that (1) peaks occur at the same time, within the measurement uncertainties, at all X-ray energies, and (2) there exists a substantial tail of excess emission at hard X-ray energies, which is delayed with respect to the time of the main peak, and is particularly prominent in Ark 564. Observation (1) rules out that the observed lags are caused by Comptonization time delays and disfavors a simple model of propagating fluctuations on the accretion disk. Observation (2) is consistent with time lags caused by Compton-scattering reverberation from material a few thousand light-seconds from the primary X-ray source. The power spectral density and the frequency-dependent phase lags of the peak light curves are consistent with those of the full time series. There is evidence for non-stationarity in the Ark 564 time series in both the Fourier and peaks analyses. A sharp 'negative' lag (variations at hard photon energies lead soft photon energies) observed in Ark 564 appears to be generated by the shape of the hard-band transfer function and does not arise from soft-band reflection of X-rays. These results reinforce the evidence for the existence of X-ray reverberation in type I AGN, which requires that these AGNs are significantly affected by scattering from circumnuclear material a few tens or hundreds of gravitational radii in extent.

  11. Active Galaxy Winds from X-ray, Ultraviolet, and Optical Studies of Nearby Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.

    2012-01-01

    Mass outflows or winds from active galaxies may profoundly affect the evolution of their host galaxies by blowing away gas from star forming regions and recycling metals from near-nuclear supernovae into the galaxy disk. Such fundamental properties as the covering fraction, total energy, variability, and distance of these outflows are still unknown. We present new results in an effort to better understand the properties of active galaxy winds based on X-ray, optical, and UV observations of local Seyfert 1s. We show that the covering fraction, indicated through X-ray and optical spectroscopy, is higher than previous studies suggest. We also show new observations in the UV with the Hubble Space Telescope's Cosmic Origins Spectrograph (COS), showing that the UV variability is at a much lower level than X-ray variability. The COS observations also reveal weak Ly-alpha outflows, which were difficult/impossible to detect in previous generations of UV spectrographs.

  12. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation.

    PubMed

    Scaffidi, Jonathan P; Gregas, Molly K; Lauly, Benoit; Zhang, Yan; Vo-Dinh, Tuan

    2011-06-28

    We report development of a nanoparticle-based, X-ray-activated anticancer "nanodrug" composed of yttrium oxide (Y(2)O(3)) nanoscintillators, a fragment of the HIV-1 TAT peptide, and psoralen. In this formulation, X-ray radiation is absorbed by the Y(2)O(3) nanoscintillators, which then emit UVA light. Absorption of UVA photons by nanoparticle-tethered psoralen has the potential to cross-link adenine and thymine residues in DNA. UVA-induced cross-linking by free psoralen upon activation with UVA light has previously been shown to cause apoptosis in vitro and an immunogenic response in vivo. Studies using the PC-3 human prostate cancer cell line demonstrate that X-ray excitation of these psoralen-functionalized Y(2)O(3) nanoscintillators yields concentration-dependent reductions in cell number when compared to control cultures containing psoralen-free Y(2)O(3) nanoscintillators.

  13. Preflare characteristics of active regions observed in soft X-rays

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1979-01-01

    X-ray images from the AS&E telescope on Skylab are used to investigate coronal conditions in solar active regions during the 20-min periods preceding the X-ray onsets of small flares. The preflare or precursor phase is defined as a phase with a characteristic length or time scale significantly different from that of the rise phase. We show that there is no observational evidence of a requirement for a coronal preflare heating phase with a time scale longer than 2 min for small flares characterized by one or two loops. In 18 out of 25 cases the flaring X-ray structure was not the brightest feature in the preflare active region. The electron densities are estimated for preflare loops.

  14. Water maser emission from X-ray-heated circumnuclear gas in active galaxies

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Maloney, Philip R.; Conger, Sarah

    1994-01-01

    We have modeled the physical and chemical conditions present within dense circumnuclear gas that is irradiated by X-rays from an active galactic nucleus. Over a wide range of X-ray fluxes and gas pressures, the effects of X-ray heating give rise to a molecular layer at temperatures of 400-1000 K within which the water abundance is large. The physical conditions within this molecular layer naturally give rise to collisionally pumped maser emission in the 6(sub 16) - 5(sub 23) 22 GHz transition of ortho-water, with predicted maser luminosities of 10(exp 2 +/- 0.5) solar luminosity per sq. pc of illuminated area. Given plausible assumptions about the geometry of the source and about the degree to which the maser emission is anisotropic, such surface luminosities are sufficient to explain the large apparent luminosities observed in water maser sources that are associated with active galactic nuclei.

  15. The birthplaces of active regions and X-ray bright points. [on sun

    NASA Technical Reports Server (NTRS)

    Howard, R.; Fritzova-Svestkova, L.; Svestka, Z.

    1979-01-01

    A comparison of soft X-ray pictures of the Sun (S-054 experiment of Skylab) with K-line spectroheliograms (Mount Wilson) shows that the X-ray bright points tend to emerge randomly throughout the Ca network pattern. However, all those bright points that developed into active regions emerged at the boundaries of network cells. This suggests that the magnetic flux of active regions comes from greater depths in the convection zone that the shallow flux that gives rise to the random emergence of bright points.

  16. Continuous emission of keV x-rays from low-pressure, low-field, low-power-RF plasma columns and significance to mirror confinement

    NASA Astrophysics Data System (ADS)

    Jandovitz, P.; Swanson, C.; Glasser, A.; Cohen, S. A.

    2016-10-01

    We report on observations of a continuous stream of 0.8-6.0 keV x-rays emitted from cool (bulk Te 4 eV), tenuous (ne 1010 cm-3), 4-cm-diameter hydrogen or argon plasma columns generated in an axisymmetric, high-mirror-ratio, tandem mirror machine heated in one end cell by an external RF (27 MHz) antenna operating at low power, 20-600 W. The continuous emission of x-rays is evidence of the steady production of energetic electrons. The source appears to be ion-induced secondary electron emission from a floating carbon cup in the vacuum system about 2 cm from the RF antenna. The cup is charged to a high negative potential, perhaps by other secondary electrons emitted from the self-biased Pyrex vessel under the antenna. X-ray emission in the central cell increases as the mirror ratio increases, an effect we attribute to increased trapping of passing particles due to non-adiabatic scattering at the midplane of the central cell. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  17. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY

    SciTech Connect

    Franca, Fabio La; Bianchi, Stefano; Branchini, Enzo; Matt, Giorgio; Ponti, Gabriele

    2014-05-20

    We report the discovery of a luminosity distance estimator using active galactic nuclei (AGNs). We combine the correlation between the X-ray variability amplitude and the black hole (BH) mass with the single-epoch spectra BH mass estimates which depend on the AGN luminosity and the line width emitted by the broad-line region. We demonstrate that significant correlations do exist that allow one to predict the AGN (optical or X-ray) luminosity as a function of the AGN X-ray variability and either the Hβ or the Paβ line widths. In the best case, when the Paβ is used, the relationship has an intrinsic dispersion of ∼0.6 dex. Although intrinsically more disperse than supernovae Ia, this relation constitutes an alternative distance indicator potentially able to probe, in an independent way, the expansion history of the universe. With respect to this, we show that the new mission concept Athena should be able to measure the X-ray variability of hundreds of AGNs and then constrain the distance modulus with uncertainties of 0.1 mag up to z ∼ 0.6. We also discuss how our estimator has the prospect of becoming a cosmological probe even more sensitive than the current supernovae Ia samples by using a new dedicated wide-field X-ray telescope able to measure the variability of thousands of AGNs.

  18. Ultraviolet and X-ray variability of active galactic nuclei with Swift

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Fabian, A. C.

    2017-01-01

    We analyse a sample of 21 active galactic nuclei using data from the Swift satellite to study the variability properties of the population in the X-ray, UV and optical band. We find that the variable part of the UV-optical emission has a spectrum consistent with a power law, with an average index of -2.21 ± 0.13, as would be expected from central illumination of a thin disc (index of -7/3). We also calculate the slope of a power law from UV to X-ray variable emission, αOX, Var; the average for this sample is αOX, Var = -1.06 ± 0.04. The anticorrelation of αOX with the UV luminosity, LUV, previously found in the average emission is also present in the variable part: αOX, Var = ( - 0.177 ± 0.083)log (Lν, Var(2500 Å)) + (3.88 ± 2.33). Correlated variability between the emission in X-rays and UV is detected significantly for 9 of the 21 sources. All these cases are consistent with the UV lagging the X-rays, as would be seen if the correlated UV variations were produced by the reprocessing of X-ray emission. The observed UV lags are tentatively longer than expected for a standard thin disc.

  19. Swift Observations of the Recent X-ray Activity of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Kalil Liburd, Jamar; Corcoran, Michael F.; Morris, David C.; Theodore Gull, Kenji Hamaguchi, Thomas Madura, Mairan Teodoro, Nick Durofchalk, Caleb Gimar.

    2015-01-01

    The extremely massive Luminous Blue Variable binary star, Eta Carinae, lies 7,500 light years away, deep within the Homunculus nebula where vigorous Wind-Wind collisions between the primary star and the companion star generate high-energy gases that produce X-rays. Complex X-ray variations occur near periastron, the point of least stellar separation between the two stars. Understanding the variability in Eta Carinae's high-energy spectrum during this period gives us a better understanding of the system's physical and stellar properties. We present the processing techniques and background estimation methods used to process and analyze weekly observations done with Swift's X-ray Telescope during Eta Carinae's most recent periastron passage in 2014. We present analysis of Eta Carinae's current column density and compare it to that of previous cycles. The exact nature of Eta Carinae's X-ray minimum activity, which occurs every 5.54 years, is still unclear. A detailed understanding of the mechanisms of the X-ray deep minimum stage and the associated differences in column density in each cycle will contribute to a clearer understanding of the wind-driven mass-loss from this unique system.

  20. Focusing multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions by a platinum-coated ellipsoidal mirror

    SciTech Connect

    Mashiko, Hiroki; Suda, Akira; Midorikawa, Katsumi

    2006-01-20

    The focusability of multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions is described, together with the design and performance of the ellipsoidal mirror used for this purpose. The mirror focuses intense coherent light in the spectral-region from 25 to 40 nm into a 2.4 {mu}m spot size with a focused peak intensity of 6x1013W/cm2. The focal images indicate that a good beam profile is obtained with a near-Gaussian distribution and a beam quality factor (M2value) as low as 20008.

  1. Focusing multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions by a platinum-coated ellipsoidal mirror.

    PubMed

    Mashiko, Hiroki; Suda, Akira; Midorikawa, Katsumi

    2006-01-20

    The focusability of multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions is described, together with the design and performance of the ellipsoidal mirror used for this purpose. The mirror focuses intense coherent light in the spectral-region from 25 to 40 nm into a 2.4 microm spot size with a focused peak intensity of 6 x 10(13) W/cm2. The focal images indicate that a good beam profile is obtained with a near-Gaussian distribution and a beam quality factor (M2 value) as low as 2.4.

  2. X-ray crystal structure of divalent metal-activated ß-xyloisdase, RS223BX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  3. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  4. Novel applications of diagnostic x-rays in activating photo-agents through x-ray induced visible luminescence from rare-earth particles: an in vitro study

    NASA Astrophysics Data System (ADS)

    Abliz, Erkinay; Collins, Joshua E.; Friedberg, Joseph S.; Kumar, Ajith; Bell, Howard; Waynant, Ronald W.; Tata, Darrell B.

    2010-02-01

    Photodynamic agents such as Photofrin II (Photo II) utilized in photodynamic therapy (PDT) possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through visible light photon absorption, the agents exert their cellular cytotoxicity through type II and type I mechanistic pathways through extensive generation of reactive oxygen species (ROS): singlet oxygen 1O2, superoxide anion O2 -, and hydrogen peroxide H2O2, within the intratumoral environment. Unfortunately, due to shallow visible light penetration depth (~2mm to 5mm) in tissues, the PDT strategy currently has largely been restricted to the treatments of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. In this communication, we report on a novel strategy in utilizing "soft" energy diagnostic X-rays to indirectly activate Photo II through X-ray induced luminescence from Gadolinium oxysulfide (20 micron dimension) particles doped with Terbium: Gd2O2S:Tb. X-ray induced visible luminescence from Gd2O2S:Tb particles was spectroscopically characterized and the ROS production levels from clinically relevant concentration (10 μg/ml) of Photo II was quantified through changes in the Vitamin C absorbance. ROS kinetics through X-ray induced luminescence was found to be similar to the ROS kinetics from red He-Ne laser exposures used in the clinics. Taken together, in-vitro findings herein provide the basis for future studies in determining the safety and efficacy of this non-invasive X-ray induced luminescence strategy in activating photo-agent in deep seated tumors.

  5. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT

    SciTech Connect

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2007-08-08

    The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

  6. No radio pulsations detected from SGR 1627-41 following renewed X- ray activity

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Sarkissian, J.

    2008-06-01

    Starting on May 28, 2008, the SGR 1627-41 displayed X-ray bursting and enhanced flux after nearly 10 years of relative inactivity (ATEL #1548, #1549, #1555). Two magnetars are known to emit radio pulses (Camilo et al. 2007, ApJ, 666, L93), and in at least one case these are transient and have followed an X-ray outburst after many years in quiescence (Camilo et al. 2006, Nature, 442, 892). Therefore, although previous radio searches of SGR 1627-41 have been unsuccessful, we are searching for radio emission following its recent renewed burst of activity.

  7. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  8. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  9. Anticorrelation of Variability Amplitude with X-Ray Luminosity for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Abramowicz, Marek A.

    1996-07-01

    The bright-spot model for the short-term X-ray variability of active galactic nuclei predicts that, statistically, sources with larger luminosities should have smaller variability amplitudes. This quantitatively agrees with the analysis of the observational data from 12 high-quality EXOSAT long looks performed by Lawrence & Papadakis.

  10. The Discovery of X-ray Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2013-01-01

    Back in 1974 the UHURU catalog (3U) had been published with many UHGLS - unidentified high galactic latitude sources. Identifications were hampered by the square degree sized error boxes (positional uncertainties). Could these explain the cosmic X-ray background? Could UHGLS be "X-ray galaxies"? Only three active galaxies (AGNs) had been found as X-ray sources: 3C273, Cen A and NGC 4151, while others had upper limits. What was the difference between X-ray and non-X-ray AGNs? It turned out that the slightly better positioning capability and slightly deeper sensitivity of the Ariel V Sky Survey Instrument (SSI), launched in October 1974, were just enough to show that the UHGLS were Seyfert galaxies. And I was lucky enough that I'd joined the Leicester X-ray group and had taken on the UHGLS for my PhD thesis, with Ken Pounds as my supervisor. With the SSI we made a catalog of high latitude sources, the "2A" catalog, including about a dozen known Seyfert galaxies (lowish luminosity nearby AGNs) and, with Mike Penston and Martin Ward, we went on to identify many of them with both newly discovered normal broad emission line AGNs and a few new "narrow emission line galaxies", or NELGs, as we called them. We are now convinced that it is summation of many obscured NELGs that produce the flat spectrum of the X-ray background, and we are still searching for them in Chandra deep surveys and at higher energies with NuSTAR. There was an obvious connection between the X-ray obscuration and the optical reddening, which must lie outside the region emitting the broad optical spectral lines. Andy Lawrence and I, following a clue from Bill Keel, put this together into what we now call the Unified Scheme for AGN structure. This idea of a flattened torus obscuring the inner regions of the AGN was so dramatically confirmed a few years later -- by Ski Antonucci and Joe Miller's discovery of polarized broad emission lines in NGC1068 -- that the precursor papers became irrelevant. But Ariel

  11. NuSTAR X-ray observations of small flares and non-flaring active regions

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Grefenstette, B.; Smith, D. M.; Marsh, A.; Glesener, L.; Krucker, S.; Hudson, H. S.; White, S.; Madsen, K.; Caspi, A.; Vogel, J.; Shih, A.

    2015-12-01

    We present imaging spectroscopy of the Sun with the NuSTAR hard X-ray (HXR) telescope, an astrophysics mission that uses focusing optics to directly image X-rays between ~2-80 keV. Although not optimized for solar observations, NuSTAR's high sensitivity can probe previously inaccessible X-ray emission from the Sun - crucial for searching for high temperature and non-thermal emission from "non-flaring" active regions. We present analysis of the first NuSTAR solar observations, that began in late 2014 and continued through 2015. These include using its imaging spectroscopy capabilities to derive the thermal characteristics of several "non-flaring" active regions, providing limits to the high temperature emission. We also show NuSTAR observations of several small microflares that were also observed by Hinode/XRT (in multiple thicker filters sensitive to higher temperatures) and RHESSI. This combination of three separate X-ray telescopes provides a broad observational characterization of active region heating by these very small microflares.

  12. Variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.

  13. HYBRID simulations of diffraction-limited focusing with Kirkpatrick-Baez mirrors for a next-generation In Situ hard X-ray nanoprobe

    DOE PAGES

    Maser, Jorg; Shi, Xianbo; Reininger, Ruben; ...

    2016-02-22

    Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10–4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10–2 into a focal spot of 50 nm.more » Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”« less

  14. HYBRID simulations of diffraction-limited focusing with Kirkpatrick-Baez mirrors for a next-generation In Situ hard X-ray nanoprobe

    SciTech Connect

    Maser, Jorg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan

    2016-02-22

    Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10–4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10–2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”

  15. HYBRID Simulations of Diffraction-Limited Focusing with Kirkpatrick-Baez Mirrors for a Next-Generation In Situ Hard X-ray Nanoprobe

    NASA Astrophysics Data System (ADS)

    Maser, Jörg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan

    2016-12-01

    Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ∆ E/ E = 10-4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ∆ E/ E = 10-2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software " HYBRID."

  16. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    NASA Astrophysics Data System (ADS)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  17. Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Jang, I.; Gliozzi, M.; Hughes, C.; Titarchuk, L.

    2014-09-01

    In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BHs), can be reliably extended to estimate the mass of supermassive BHs accreting at a moderate to high level. Here we investigate the limits of applicability of this method to low-accreting active galactic nuclei (AGN), using a control sample with good-quality X-ray data and dynamically measured mass. For low-accreting AGN (LX/LEdd ≤ 10-4), because the basic assumption that the photon index positively correlates with the accretion rate no longer holds the X-ray scaling method cannot be used. Nevertheless, the inverse correlation in the Γ-LX/LEdd diagram, found in several low-accreting BHs and confirmed by this sample, can be used to constrain MBH within a factor of ˜10 from the dynamically determined values. We provide a simple recipe to determine MBH using solely X-ray spectral data, which can be used as a sanity check for MBH determination based on indirect optical methods.

  18. A SEARCH FOR FAST X-RAY VARIABILITY FROM ACTIVE GALACTIC NUCLEI USING SWIFT

    SciTech Connect

    Pryal, Matthew; Falcone, Abe; Stroh, Michael

    2015-03-20

    Blazars are a class of active galactic nuclei (AGNs) known for their very rapid variabilty in the high energy regions of the electromagnetic spectrum. Despite this known fast variability, X-ray observations have generally not revealed variability in blazars with rate doubling or halving timescales less than approximately 15 minutes. Since its launch, the Swift X-ray Telescope has obtained 0.2–10 keV X-ray data on 143 AGNs, including blazars, through intense target of opportunity observations that can be analyzed in a multiwavelength context and used to model jet parameters, particularly during flare states. We have analyzed this broad Swift data set in a search for short timescale variability in blazars that could limit the size of the emission region in the blazar jet. While we do find several low-significance possible flares with potential indications of rapid variability, we find no strong evidence for rapid (<15 minutes) doubling or halving times in flares in the soft X-ray energy band for the AGNs analyzed.

  19. Hyper X-ray Flares on Active Stars Detected with MAXI

    NASA Astrophysics Data System (ADS)

    Higa, Masaya; Tsuboi, Yohko; Negoro, Hitoshi; Nakahira, Satoshi; Tomida, Hiroshi; Matsuoka, Masaru; aff002

    2014-08-01

    MAXI started its operation in 2009 August. Owing to its unprecedentedly high sensitivity as an all-sky X-ray monitor and to its capability of real-time data transfer, we have detected 56 strong flares from twenty-one active stars (eleven RS CVn systems, one Algol system, seven dMe stars, one dKe star and one Young Stellar Object). These flares have large X-ray luminosity of 6 × 1030 -5 × 1033 ergs s-1 in the 2-20 keV band. The flares can be thought to be high ends among their own categories. During the flare from AT Mic on 2012 April 18th, one of the largest X-ray luminosities was recorded as a dMe star, 6 × 1032 ergs s-1 in the 2-20 keV band. It is larger than its bolometric luminosity by 4 times. The total energy emitted during the flare is 1036 ergs in the same band. Such total energy can be obtained on large flares from RS CVn system, but not on any other flares from dMe stars. In this proceeding, we report on the present situation in characteristics of hyper X-ray flares on each stellar categories.

  20. Future lunar mission Active X-ray Spectrometer development: Surface roughness and geometry studies

    NASA Astrophysics Data System (ADS)

    Naito, M.; Hasebe, N.; Kusano, H.; Nagaoka, H.; Kuwako, M.; Oyama, Y.; Shibamura, E.; Amano, Y.; Ohta, T.; Kim, K. J.; Lopes, J. A. M.

    2015-07-01

    The Active X-ray Spectrometer (AXS) is considered as one of the scientific payload candidates for a future Japanese mission, SELENE-2. The AXS consists of pyroelectric X-ray generators and a Silicon Drift Detector to conduct X-Ray Fluorescence spectroscopy (XRF) on the Moon to measure major elements: Mg, Al, Si, Ca, Ti, and Fe; minor elements: Na, K, P, S, Cr and Mn; and the trace element Ni depending on their concentration. Some factors such as roughness, grain size and porosity of sample, and the geometry of X-ray incidence, emission and energy will affect the XRF measurements precision. Basic studies on the XRF are required to develop the AXS. In this study, fused samples were used to make homogeneous samples free from the effect of grain size and porosity. Experimental and numerical studies on the XRF were conducted to evaluate the effects from incidence and emission angles and surface roughness. Angle geometry and surface roughness will be optimized for the design of the AXS on future missions from the results of the experiment and the numerical simulation.

  1. Development of W/C soft x-ray multilayer mirror by ion beam sputtering (IBS) system for below 50A wavelength

    SciTech Connect

    Biswas, A.; Bhattacharyya, D.

    2012-06-25

    A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterized by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.

  2. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    SciTech Connect

    Burcklen, C.; Soufli, R.; Gullikson, E.; Meltchakov, E.; Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M.; Jerome, A.; de Rossi, S.; Delmotte, F.

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  3. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    SciTech Connect

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.

  4. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  5. Active Galaxy Unification in the Era of X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2010-01-01

    Active galactic nuclei (AGNs), Seyfert galaxies, and quasars are powered by luminous accretion and often accompanied by winds that are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes that are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (warm absorbers). Here, we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow and the gas responsible for launching and collimating it. We present calculations that show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance-line scattering, and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three-dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV energy range is dominated by the effects of resonance lines. We predict a 5%-25% X-ray polarization signature of type-2 objects in this energy range. These results are generalized to flows that originate from a cold torus-like structure, located approximately 1 pc from the BH, which wraps the BH and is ultimately responsible for the apparent dichotomy between type 1 and type 2 AGNs. Such signals will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism Small Explorer SMEX, "GEMS" Swank et al. (2008).

  6. ACTIVE GALAXY UNIFICATION IN THE ERA OF X-RAY POLARIMETRY

    SciTech Connect

    Dorodnitsyn, A.; Kallman, T.

    2010-03-10

    Active galactic nuclei (AGNs), Seyfert galaxies, and quasars are powered by luminous accretion and often accompanied by winds that are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes that are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (warm absorbers). Here, we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow and the gas responsible for launching and collimating it. We present calculations that show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance-line scattering, and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three-dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV energy range is dominated by the effects of resonance lines. We predict a 5%-25% X-ray polarization signature of type-2 objects in this energy range. These results are generalized to flows that originate from a cold torus-like structure, located {approx}1 pc from the BH, which wraps the BH and is ultimately responsible for the apparent dichotomy between type 1 and type 2 AGNs. Such signals will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism Small Explorer.

  7. A CANDIDATE ACTIVE GALACTIC NUCLEUS WITH A PURE SOFT THERMAL X-RAY SPECTRUM

    SciTech Connect

    Terashima, Yuichi; Kamizasa, Naoya; Awaki, Hisamitsu; Kubota, Aya; Ueda, Yoshihiro

    2012-06-20

    We report the discovery of a candidate active galactic nucleus (AGN), 2XMM J123103.2+110648 at z = 0.13, with an X-ray spectrum represented purely by soft thermal emission reminiscent of Galactic black hole (BH) binaries in the disk-dominated state. This object was found in the second XMM-Newton serendipitous source catalog as a highly variable X-ray source. In three separate observations, its X-ray spectrum can be represented either by a multicolor disk blackbody model with an inner temperature of kT{sub in} Almost-Equal-To 0.16-0.21 keV or a Wien spectrum Comptonized by an optically thick plasma with kT Almost-Equal-To 0.14-0.18 keV. The soft X-ray luminosity in the 0.5-2 keV band is estimated to be (1.6-3.8) Multiplication-Sign 10{sup 42} erg s{sup -1}. Hard emission above {approx}2 keV is not detected. The ratio of the soft to hard emission is the strongest among AGNs observed thus far. Spectra selected in high/low-flux time intervals are examined in order to study spectral variability. In the second observation with the highest signal-to-noise ratio, the low-energy (below 0.7 keV) spectral regime flattens when the flux is high, while the shape of the high-energy part (1-1.7 keV) remains unchanged. This behavior is qualitatively consistent with being caused by strong Comptonization. Both the strong soft excess and spectral change consistent with Comptonization in the X-ray spectrum imply that the Eddington ratio is large, which requires a small BH mass (smaller than {approx}10{sup 5} M{sub Sun }).

  8. The Active Galactic Nuclei Population through the eyes of X-ray surveys

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.

    2015-08-01

    For more than 30 years, X-ray surveys have provided a unique and powerful tool to find and study accreting super- massive black holes (SMBHs) in the distant Universe. In the past decade alone, dozens of surveys in the 0.5-10 keV band with XMM-Newton and Chandra have covered a wide range in area and X-ray flux, corresponding to a similarly wide range in luminosity and redshift. The luminosity function of Active Galactic Nuclei (AGN) has thus been sampled over three decades or more in X-ray luminosity and up to redshifts z=5, defining the evolution of unobscured and obscured (up to column densities of 1023 cm-2) sources and reaching fainter luminosities than optical surveys. The advent of the NuSTAR telescope, with its 3-20 keV energy range, allows us to now complement the "soft" surveys, providing the ability to characterize the whole population, including highly obscured sources.Moreover, the availability of extremely deep multiwavelength data (from radio to UV) for most of the X-ray surveys allows a full understanding of the relationship between the nuclear engine and its host up to very high redshift, not only when the engine is obscured but also when it is bright and shining.In this talk, I will present the XMM-Newton, Chandra and NuSTAR surveys in the 2deg2 of the COSMOS field, focusing on new results from the 4.6 Ms Chandra COSMOS Legacy survey. This new sample includes more than 4000 X-ray detected sources with multiwavelength information, including photometric redshifts for 97% of the sample, and a spectroscopic completeness of 40%. I will present the properties of the detected Chandra sources, in particular those at high redshift, and I will highlight the connection to the NuSTAR detected ones, including the discovery of a new Compton Thick AGN.

  9. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    PubMed Central

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  10. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a PMI Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Assoufid, Lahsen; Macrander, Albert

    2007-09-01

    Long trace profilers (LTPs) (1) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of 1D slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11+/-0.15 μrad for the LTP, and 3.11+/-0.02μrad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 μrad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39+/-0.08Χrad from LTP measurements but it is 0.35 +/- 0.01 μrad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  11. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a Fizeau interferometer.

    SciTech Connect

    Qian, J.; Assoufid, L.; Macrander, A.; X-Ray Science Division

    2007-01-01

    Long trace profilers (LTPS) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of ID slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11 {+-} 0.15 {micro}rad for the LTP, and 3.11 {+-} 0.02 {micro}rad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 {micro}rad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39 {+-} 0.08 {micro}rad from LTP measurements but it is 0.35 {+-} 0.01 {micro}rad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  12. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  13. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Bui, Brian; Chen, Wei; Song, Kwang Hyun; Solberg, Timothy

    2014-07-01

    Copper and cobalt co-doped ZnS (ZnS:Cu,Co) afterglow nanoparticles were conjugated to photosensitizer tetrabromorhodamine-123 (TBrRh123) and efficient energy transfer from the nanoparticles to TBrRh123 was observed. In addition to their X-ray excited luminescence, the ZnS:Cu,Co nanoparticles also show long lasting afterglow, which continuously serve as a light source for photodynamic therapy (PDT) activation. Compared to TBrRh123 or ZnS:Cu,Co alone, the ZnS:Cu,Co-TBrRh123 conjugates show low dark toxicity but high X-ray induced toxicity to human prostate cancer cells. The results indicate that the ZnS:Cu,Co afterglow nanoparticles have a good potential for PDT activation.

  14. An X-Ray Photoelectron Spectroscopy (XPS) Study of Activated Carbons Impregnated with some Organocopper Complexes,

    DTIC Science & Technology

    1993-10-01

    AD-A282 721 l lllllll a Dfene Defence nationals AN X.RAY PHOTOELECTRON SPECTROSCOPY (XPS) STUDY OF ACTIVATED CARBONS IMPREGNATED WITH SOME... ammoniacal solution as a carrier into which all impregnants (except TEDA) were dissolved. Without a suitable carrier, and with the inherent low vapor...and will not be repeated here. All five complexes were synthesized at DREO using known methods. 2 2.2 IMPREGNATING PROCEDURES Two impregnating

  15. X-ray imaging characterization of active edge silicon pixel sensors

    NASA Astrophysics Data System (ADS)

    Ponchut, C.; Ruat, M.; Kalliopuska, J.

    2014-05-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described.

  16. Piecing together the X-ray background: bolometric corrections for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. V.; Fabian, A. C.

    2007-11-01

    The X-ray background can be used to constrain the accretion history of supermassive black holes (SMBHs) in active galactic nuclei (AGN), with the SMBH mass density related to the energy density due to accretion. A knowledge of the hard X-ray bolometric correction, κ2-10keV, is a vital input into these studies, as it allows us to constrain the parameters of the accretion responsible for SMBH growth. Earlier studies assumed a constant bolometric correction for all AGN, and more recent work has suggested accounting for a dependence on AGN luminosity. Until recently, the variations in the disc emission in the ultraviolet (UV) have not been taken into account in this calculation; we show that such variations are important by construction of optical-to-X-ray spectral energy distributions for 54 AGN. In particular, we use Far Ultraviolet Spectroscopic Explorer (FUSE) UV and X-ray data from the literature to constrain the disc emission as well as possible. We find evidence for very significant spread in the bolometric corrections, with no simple dependence on luminosity being evident. Populations of AGN such as narrow-line Seyfert 1 nuclei, radio-loud and X-ray-weak AGN may have bolometric corrections which differ systematically from the rest of the AGN population. We identify other sources of uncertainty including intrinsic extinction in the optical-UV, X-ray and UV variability and uncertainties in SMBH mass estimates. Our results suggest a more well-defined relationship between the bolometric correction and Eddington ratio in AGN, with a transitional region at an Eddington ratio of ~0.1, below which the bolometric correction is typically 15-25, and above which it is typically 40-70. We consider the potential-implied parallels with the low/hard and high/soft states in Galactic black hole (GBH) accretion, and present bolometric corrections for the GBH binary GX 339-4 for comparison. Our findings reinforce previous studies proposing a multistate description of AGN

  17. Ensemble X-ray variability of active galactic nuclei. II. Excess variance and updated structure function

    NASA Astrophysics Data System (ADS)

    Vagnetti, F.; Middei, R.; Antonucci, M.; Paolillo, M.; Serafinelli, R.

    2016-09-01

    Context. Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. Aims: We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between ~0.1 and ~5, and X-ray luminosities in the 0.5-4.5 keV band between ~1042 erg/s and ~1047 erg/s. Methods: We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. Results: We find an ensemble increase of the X-ray variability with the rest-frame time lag τ, given by SF ∝ τ0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as SF ∝ LX-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as SF ∝ ν-0.15, corresponding to a so-called softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate (≲15%) shift upwards (V-correction). Conclusions: Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent

  18. X-ray color analysis of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai; Turner, T. J.; George, Ian M.

    1994-01-01

    The identification and detection of X-ray absorption and emission features depends on the resolution and the signal-to-noise ratio (S/N) of the observation, the understanding of the instrument response, and the Galactic line-of-sight absorption. Since many of the active galactic nucleus (AGN) data sets are limited in their S/N and full modeling of the physical conditions is rather complicated, we suggest a new analysis method based on 'X-ray colors.' The two sets of X-ray colors, defined for low (ROSAT Position Sensitive Proportional Counter (PSPC)) and medium (Broad Band X-Ray Telescope (BBXRT)) and ASCA Solid-State Imaging Spectrometers (SIS) resolution experiments, are used to separate regions of different physical conditions in a two-dimensional color-color plane. They are similar but superior to previous methods using the X-ray 'hardness ratio' in being able to reveal more of the physical properties of the source. We illustrate the use of such diagrams by studying a number of AGNs suspected of showing absorption features. A sample of 14 AGNs observed by the ROSAT PSPC is presented which includes several objects with suspected 'warm absorbers' along the line-of-sight to the nucleus, several others exhibiting intrinsic continuum variations, and a number of control objects thought to be featureless. Our new observations show, for the first time, the color variation as a function of time for three of the Seyfert 1 sources: NGC 4051, Mrk 335, and Mrk 766. The variations suggest that in two sources we are witnessing real changes in continuum shape, while one (NGC 4051) is consistent with having a warm absorber. Four of the objects observed by BBXRT are reanalyzed using our X-ray colors. Out of these, we discuss in detail the case of NGC 4151 and show that the color-color analysis agrees very well with previous, detailed spectral fitting methods. In particular, we confirm that the observed BBXRT observation of this source is not consistent with the warm absorber

  19. Investigation of X-ray and optical solar flare activities during solar cycles 22 and 23

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Bushueva, T. P.

    2003-02-01

    Daily X-ray flare indices (XFI) for the interval from January 1986 till June 2002 were calculated. The XFI behaviour during solar cycles 22 and 23 was studied. We compare the daily XFI with the daily optical flare indices (OFI) and with the International Relative Sunspot Numbers. The energy emitted by X-ray flares during 77 months of solar cycle 22 is shown to be about five times larger than the analogous value for the present solar cycle. We revealed statistically significant maxima in power spectra of the XFI and OFI. They correspond to periods of 25.5, 36.5, 73, 116, and 150d which presumably are appropriate to characteristic frequencies of the solar flare activity. A hypothesis on an possible effect of Mercury's variable electric charge on the origin of solar flares is proposed and corresponding estimates were made.

  20. Investigation of Water-Soluble X-ray Luminescence Nanoparticles for Photodynamic Activation

    SciTech Connect

    Liu, Yuanfang; Chen, Wei; Wang, Shaopeng; Joly, Alan G.

    2008-01-28

    In this letter, we report the synthesis of LaF3:Tb3+-MTCP (meso-Tetra(4-carboxyphenyl) porphine) nanoparticle conjugates and investigate the energy transfer as well as singlet oxygen generation following X-ray irradiation. Our observations indicate that LaF3:Tb3+-MTCP nanoparticle conjugates are efficient photodynamic agents that can be initiated by X-rays at a reasonably low dose. The addition of folic acid to facilitate targeting to folate receptors on tumor cells has no effect on the quantum yield of singlet oxygen in the nanoparticle-MTCP conjugates. Our pilot studies indicate that water-soluble scintillation nanoparticles can be potentially used to activate photodynamic therapy as a promising deep cancer treatment.

  1. Current research activities and installation status of the X-ray imaging crystal spectrometer for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.; Bitter, M.; Hill, K.

    2008-11-01

    An X-ray imaging crystal spectrometer (XICS) for KSTAR utilizing a four-segmented position-sensitive two dimensional (2D) multi-wire proportional counter and time-to-digital converter (TDC) based delay-line readout data acquisition system has been fabricated. The XICS provides spatially and temporally resolved measurements of the ion and electron temperatures, toroidal rotation velocity, impurity charge-state distributions, and ionization equilibrium. The four-segmented 2D detector with supporting electronics successfully demonstrated to improve the photon count-rate capability of the XICS system and a position resolution of the detector showed about 0.35 mm. A spectral resolution of the fabricated spectrometer has been measured using an X-ray tube before installation in the KSTAR tokamak. The current research activities and installation status of the spectrometer will be presented.

  2. A combined optical and X-ray study of unobscured type 1 active galactic nuclei - II. Relation between X-ray emission and optical spectra

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ward, Martin; Done, Chris

    2012-06-01

    In this second paper in a series of three, we study the properties of the various emission features and underlying continuum in the optical spectra of type 1 active galactic nuclei (AGNs) by using the unobscured hard X-ray emission as a diagnostic. We introduce the use of the 'correlation spectrum technique' (CST) for the first time. We use this to show the strength of the correlation between the hard X-ray luminosity and each wavelength of the optical spectrum. This shows that for broad-line Seyfert 1 galaxies all the strong emission lines (the broad component of Hα and Hβ, [Ne III] λλ3869/3967, [O I] λλ6300/6364, [O II] λλ3726/3729 and [O III] λλ4959/5007) and the optical underlying continuum all strongly correlate with the hard X-ray emission. In contrast, the narrow-line Seyfert 1 galaxies show a stronger correlation in the optical continuum but a weaker correlation in the lines. A cross-correlation with luminosity between the various Balmer line components and the broad-band spectral energy distribution (SED) components shows that the best correlation exists between the hard X-ray component and the broad component (BC) of the Balmer lines. Such a correlation is weaker for the intermediate (IC) and narrow components, which supports the view that the broad-line region (BLR) has the closest link with the AGN's compact X-ray emission. The equivalent widths of the Balmer line IC and BC are found to correlate with ?, ?, Balmer line full width at half-maximum (FWHM) and black hole mass. There is a non-linear dependence of the Balmer line IC and BC luminosities with ? and L5100, which suggests that a second-order factor such as the intermediate-line region (ILR) and BLR covering factors affect the Balmer line component luminosities. The Balmer decrement is found to decrease from ˜5 in the line core to ˜2 in the extended wings, with mean decrements of 2.1 in the BLR and 4.8 in the ILR. This suggests different physical conditions in these regions, such as

  3. Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  4. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Dovčiak, M.

    2015-01-01

    Context. A fraction of active galactic nuclei (AGN) show dramatic X-ray spectral changes on the day-to-week time scales associated with variation in the line of sight of the cold absorber. Aims: We intend to model the polarization fluctuations arising from an obscuration event, thereby offering a method of determining whether flux variations are due to occultation or extreme intrinsic emission variability. Methods: Undertaking 1-100 keV polarimetric simulations with the Monte Carlo code Stokes, we simulated the journey of a variety of cold gas clouds in front of an extended primary source. We varied the hydrogen column density nH and size of the absorber, as well as the initial polarization state of the emitting source, to cover a wide range of scenarios. Results: Simulations indicate that different results are expected according to the initial polarization of the extended continuum source. For unpolarized primary fluxes, large (~50°) variations of the polarization position angle ψ are expected before and after an occultation event, which is associated with very low residual polarization degrees (P ≪ 1%). In the case of an emitting disk with intrinsic, position-independent polarization, and for a given range of parameters, X-ray eclipses significantly alter the observed polarization spectra, with most of the variations seen in ψ. Finally, non-uniformly polarized emitting regions produce very distinctive polarization variations due to the successive covering and uncovering of different portions of the disk. Plotted against time, variations in P and ψ form detectable P Cygni type profiles that are distinctive signatures of non-axisymmetric emission. Conclusions: We find that X-ray polarimetry is particularly adapted to probing X-ray eclipses due to Compton-thin and Compton-thick gas clouds. Polarization measurements would distinguish between intrinsic intensity fluctuations and external eclipsing events, constrain the geometry of the covering medium, and test

  5. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  6. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  7. A Soft X-Ray (300-1000 eV) Active Grating Monochromator Beamline at NSRRC

    NASA Astrophysics Data System (ADS)

    Fung, H. S.; Yuh, J. Y.; Huang, L. J.; Tseng, T. C.; Perng, S. Y.; Wang, D. J.; Tsang, K. L.; Chung, S. C.

    2007-01-01

    To accommodate the growing number of users in the soft X-ray spectroscopy research at NSRRC, we have developed a modified Dragon-type beamline, namely the active grating monochromator (AGM) beamline. In this beamline, a selected photon beam of 9 mrad radiation fan in the horizontal direction from a bending magnet is focused horizontally by a tangential elliptical mirror to a position 1.7 m after exit slit, and vertically by a cylindrical vertical focusing mirror (VFM) onto the entrance slit. After the entrance slit, the photon beam is energy-dispersed and vertically focused by an active grating onto the fixed exit slit. During the energy scan, the radius and shape of the active grating are adjusted accordingly, and therefore the defocus and coma aberrations terms can be effectively eliminated, and hence the energy resolution is optimized. Following the exit slit, the dispersed photon beam is refocused by a toroidal mirror onto the sample. Shadow ray-tracing program is employed to simulate the beamline performance. Results show that the energy resolution can reach 10000, 6000, and 3500 in the energy ranges of 300-400 eV, 400-600 eV, and above 600 eV, respectively. The total photon flux at sample position should reach 1×1012 phs/sec/200mA/0.1%BW, and the focused beam size at sample position is estimated to be 1 mm × 0.2 mm (H × V, FWHM). This beamline is currently under construction and will be ready for commission in December, 2006.

  8. Active galactic nucleus X-ray variability in the XMM-COSMOS survey

    SciTech Connect

    Lanzuisi, G.; Ponti, G.; Salvato, M.; Brusa, M.; Nandra, P. K.; Merloni, A.; Rosario, D.; Hasinger, G.; Sanders, D.; Cappelluti, N.; Comastri, A.; Gilli, R.; Bongiorno, A.; Lusso, E.; Steinhardt, C.; Silverman, J.; Schramm, M.; Trump, J.; and others

    2014-02-01

    We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measure it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.

  9. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity

    NASA Astrophysics Data System (ADS)

    Giziroglu, Emrah; Sarikurkcu, Cengiz; Aygün, Muhittin; Basbulbul, Gamze; Soyleyici, H. Can; Firinci, Erkan; Kirkan, Bulent; Alkis, Ayse; Saylica, Tayfur; Biyik, Halil

    2016-03-01

    A series of barbituric acid aroylhydrazine derivatives have been prepared from their corresponding 1,3-dimethyl-5-acetyl barbituric acid and aroylhydrazines. All compounds have been fully characterized by using FT-IR, multinuclear NMR (1H, 13C) and Mass (MS) spectrometry. We also describe the X-ray crystal structure of 3a, which crystallizes in the monoclinic P21/n space group. The crystal structure is stabilized with infinite linear chains of dimeric units. Furthermore, all compounds were investigated for their tyrosinase inhibition, antioxidative and antimicrobial activies. The results from biological activity assays have shown that all of compounds have excellent antioxidant, significant tyrosinase inhibition and moderate antimicrobial activity.

  10. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  11. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  12. Spectral slicing X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Shealy, D.; Chao, S.-H.

    1986-01-01

    Layered synthetic microstructure (LSM) X-ray optics is investigated as a system for coupling a conventional glancing incidence X-ray mirror to a high sensitivity X-ray detector. It is shown that, by the use of figured LSM optics, it is possible to magnify the X-ray image produced by the primary mirrors so as to maintain their high inherent spatial resolution. The results of theoretical and design analyses of several spectral slicing X-ray telescope systems that utilize LSM mirrors of hyperboloidal, spherical, ellipsoidal, and constant optical path aspheric configurations are presented. It is shown that the spherical LSM optics are the preferred configuration, yielding subarcsecond performance over the entire field. The Stanford/Marshall Space Flight Center Rocket X-ray Telescope, which will utilize normal incidence LSM optics to couple a Wolter-Schwarzschild primary mirror to high resolution detectors for solar X-ray/EUV studies, is discussed. Design diagrams are included.

  13. CHANG'E-3 Active Particle-induced X-ray Spectrometer: The synthesis design and performance

    NASA Astrophysics Data System (ADS)

    Cui, XingZhu; Peng, Wenxi; Wang, Huanyu; Liang, XiaoHua

    the Active Particle X-ray Spectrometer (APXS) was designed to deduce the elemental abundances of samples on the moon. Similar to the Alpha Particle X-ray Spectrometers onboard MSL and MER , the APXS was also an instrument took the advantage of X-ray fluorescence mechanism to determine elemental abundances, it determines the chemical compositions of both soil and rocks along the traverse of the rover. To provide a sound instrument working on the lunar surface,Four components were integrated in the APXS, the performances of the components were described in this paper.

  14. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  15. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  16. Ensemble X-ray variability of active galactic nuclei at intermediate and long time lags

    NASA Astrophysics Data System (ADS)

    Vagnetti, Fausto; Middei, Riccardo

    2016-08-01

    We present a variability analysis for a sample of 2700 active galactic nuclei extracted from the latest release of the XMM-Newton serendipitous source catalogue. The structure function of this sample increases up to rest-frame time lags of about 5 years. Moreover, comparing observations performed by the XMM-Newton and ROSAT satellites, we are able to extend the X-ray structure function to 20 years rest-frame, showing a further increase of variability without any evidence of a plateau. Our results are compared with similar analyses in the optical band, and discussed in relation to the physical sizes of the emitting regions.

  17. Slip Activity in Single Grains Extracted from Polycrystalline Specimen by X-Ray Line Broadening (Preprint)

    DTIC Science & Technology

    2010-01-01

    4 6 8 0.005 0.010 -101-3 -110-2 1-10-2F W H M [ 1 /n m ] K [ 1/nm ] Gr #44 Gr #50 Gr #72 -101-1 1-101 (a...0 2 4 6 0.000 0.005 0.010 (b) K2Ccalc [ 1/nm ] FW H M [ 1 /n m ] Gr #44 Gr #50 Gr #72 17 Figure 5. The FWHM (in 1/nm scales) in...Preprint 01 January 2010 – 01 January 2010 4 . TITLE AND SUBTITLE SLIP ACTIVITY IN SINGLE GRAINS EXTRACTED FROM POLYCRYSTALLINE SPECIMEN BY X-RAY

  18. CHANG'E-3 Active Particle-induced X-ray Spectrometer: ground verification test

    NASA Astrophysics Data System (ADS)

    Guo, Dongya; Peng, Wenxi; Cui, XingZhu; Wang, Huanyu

    The Active Particle-induced X-ray Spectrometer (APXS) is one of the payloads of Chang’E-3 rover Yutu, with which the major elemental composition of lunar soils and rocks can be measured on site. In order to assess the instrument performance and the accuracy of determination, ground verification test was carried out with two blind samples(basaltic rock, powder). Details of the experiments and data analysis method are discussed. The results show that the accuracy of quantitative analysis for major elements(Mg,Al,Si,K,Ca,Ti,Fe) is better than 15%.

  19. Coordinated Observations of X-ray and High-resolution EUV Active Region Dynamics

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  20. Coordinated Observations of X-ray and High-Resolution EUV Active Region Dynamics

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Golub, Leon; Korreck, Kelly

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  1. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  2. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  3. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  4. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  5. Low dose X -ray effects on catalase activity in animal tissue

    NASA Astrophysics Data System (ADS)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  6. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  7. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  8. Feedback from Mass Outflows in Nearby Active Galactic Nuclei. I. Ultraviolet and X-Ray Absorbers

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.

    2012-07-01

    We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) active galactic nuclei (AGNs). From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in the total mass outflow rate (\\dot{M}_{out}) and kinetic luminosity (L KE) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine \\dot{M}_{out} and L KE. For the low-luminosity AGN NGC 4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (L bol = 1043 - 1045 erg s-1) have mass outflow rates that are 10-1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have L KE in the range 0.5%-5% L bol, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC 5548, NGC 4151, and NGC 7469) have L KE >~ 0.1%L bol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

  9. An X-ray spectral model for clumpy tori in active galactic nuclei

    SciTech Connect

    Liu, Yuan; Li, Xiaobo E-mail: lixb@ihep.ac.cn

    2014-05-20

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N {sub H} = 10{sup 23} cm{sup –2}), whereas it is much more evident in the high column density case (N {sub H} = 10{sup 25} cm{sup –2}). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  10. Synchrotron X-ray Tests of an L-Shaped Laterally Graded Multilayer Mirror for the Analyzer System of the Ultra-High Resolution IXS Spectrometer at NSLS-II

    SciTech Connect

    Honnicke, M.G.; Takacs, P.; Keister, J.W.; Conley, R.; Kaznatcheev, K.; Coburn, D.S.; Reffi, L.; Cai, Y.Q.

    2011-08-02

    Characterization and testing of an L-shaped laterally graded multilayer mirror are presented. This mirror is designed as a two-dimensional collimating optics for the analyzer system of the ultra-high-resolution inelastic X-ray scattering (IXS) spectrometer at National Synchrotron Light Source II (NSLS-II). The characterization includes point-to-point reflectivity measurements, lattice parameter determination and mirror metrology (figure, slope error and roughness). The synchrotron X-ray test of the mirror was carried out reversely as a focusing device. The results show that the L-shaped laterally graded multilayer mirror is suitable to be used, with high efficiency, for the analyzer system of the IXS spectrometer at NSLS-II.

  11. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  12. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    SciTech Connect

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  13. X-ray optics: Diamond brilliance

    NASA Astrophysics Data System (ADS)

    Durbin, Stephen M.; Colella, Roberto

    2010-03-01

    Most materials either absorb or transmit X-rays. This is useful for imaging but makes it notoriously difficult to build mirrors for reflective X-ray optics. A demonstration of the high X-ray reflectivity of diamond could provide a timely solution to make the most of the next generation of free-electron lasers.

  14. The corona of HD 189733 and its X-ray activity

    SciTech Connect

    Pillitteri, I.; Wolk, S. J.; Günther, H. M.; Cohen, O.; Kashyap, V.; Drake, J. J.; Lopez-Santiago, J.; Sciortino, S.

    2014-04-20

    Testing whether close-in massive exoplanets (hot Jupiters) can enhance the stellar activity in their host primary is crucial for the models of stellar and planetary evolution. Among systems with hot Jupiters, HD 189733 is one of the best studied because of its proximity, strong activity, and the presence of a transiting planet, which allows transmission spectroscopy and a measure of the planetary radius and its density. Here we report on the X-ray activity of the primary star, HD 189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals is described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. With the analysis of the summed Reflection Grating Spectrometer spectra, we obtain estimates of the electron density in the range n{sub e} = (1.6-13) × 10{sup 10} cm{sup –3}, and thus the corona of HD 189733 A appears denser than the solar one. For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of φ = 0.55-0.65. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to the locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of the order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only ∼8R {sub *}. The X-ray variability of HD 189733 A is larger than the variability

  15. Analysis of Chandra X-ray Spectra of the Young, Active Star AB Dor

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Gagne, M.

    2001-05-01

    The early-K dwarf AB Dor is a nearby (15 pc), young (20--30 Myr), rapidly rotating (Prot = 0.514 day) star with saturated X-ray emission (Lx/Lbol ~ 10-3) and cool prominence-like gas extending several stellar radii into its corona. We observed this extensively studied star on 1999 Oct 9 for 60 ks with the high energy transmission grating (HETG/ACIS-S) on Chandra. The rich X-ray spectra contain emission lines of N, O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, and Ni. As is seen in other active stars, the Ne abundance is high and the Fe abundance low compared to solar photospheric abundances, indicating the reverse of the enhanced first ionization potential (FIP) effect seen in the solar corona. The emission measure distribution shows peaks near log T = 6.8 and 7.3, and the helium-like triplets of O VII, Ne IX, and Mg XI indicate electron densities log ne ~ 11.0. We will use these data to infer the size and properties of coronal loops in the stellar corona. We find no noticeable line shifts indicative of a wind or downflows. This GTO Chandra program is supported by NASA through a grant to NIST and the University of Colorado.

  16. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  17. Using the EXIST Active Shields for Earth Occultation Observations of X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Fishman, Gerald; Hong, Jae-Sub; Gridlay, Jonathan; Krawczynski, Henric

    2005-01-01

    The EXIST active shields, now being planned for the main detectors of the coded aperture telescope, will have approximately 15 times the area of the BATSE detectors; and they will have a good geometry on the spacecraft for viewing both the leading and training Earth's limb for occultation observations. These occultation observations will complement the imaging observations of EXIST and can extend them to higher energies. Earth occultatio observations of the hard X-ray sky with BATSE on the Compton Gamma Ray Observatory developed and demonstrated the capabilities of large, flat, uncollimated detectors for this method. With BATSE, a catalog of 179 X-ray sources was monitored twice every spacecraft orbit for 9 years at energies above about 25 keV, resulting in 83 definite detections and 36 possible detections with 5-sigma detection sensitivities of 3.5-20 mcrab (20-430 keV) depending on the sky location. This catalog included four transients discovered with this technique and many variable objects (galactic and extragalactic). This poster will describe the Earth occultation technique, summarize the BATSE occultation observations, and compare the basic observational parameters of the occultation detector elements of BATSE and EXIST.

  18. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    SciTech Connect

    Kobelski, Adam R.; McKenzie, David E.; Donachie, Martin

    2014-05-10

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  19. LOW-MASS ACTIVE GALACTIC NUCLEI WITH RAPID X-RAY VARIABILITY

    SciTech Connect

    Ho, Luis C.; Kim, Minjin

    2016-04-10

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad Hα emission in all the sources, allowing us to estimate robust virial BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median M{sub BH} = 1.2 × 10{sup 6} M{sub ⊙} and median L{sub bol}/L{sub Edd} = 0.44. The sample follows the M{sub BH}–σ{sub *} relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O ii] λ3727, [O iii] λ5007, and X-rays.

  20. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  1. Crystallization and Preliminary X-Ray Crystallographic Analysis of Human Plasma Platelet Activating Factor Acetylhydrolase

    SciTech Connect

    Samanta, U.; Wilder, C; Bahnson, B

    2009-01-01

    The plasma form of the human enzyme platelet activating factor acetylhydrolase (PAF-AH) has been crystallized, and X-ray diffraction data were collected at a synchrotron source to a resolution of 1.47 {angstrom}. The crystals belong to space group C2, with unit cell parameters of a = 116.18, b = 83.06, c = 96.71 {angstrom}, and {beta} = 115.09 and two molecules in the asymmetric unit. PAF-AH functions as a general anti-inflammatory scavenger by reducing the levels of the signaling molecule PAF. Additionally, the LDL bound enzyme has been linked to atherosclerosis due to its hydrolytic activities of pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids.

  2. Using MountainsMap (Digital Surf) surface analysis software as an analysis tool for x-ray mirror optical metrology data

    NASA Astrophysics Data System (ADS)

    Duffy, Alan; Yates, Brian; Takacs, Peter

    2012-09-01

    The Optical Metrology Facility at the Canadian Light Source (CLS) has recently purchased MountainsMap surface analysis software from Digital Surf and we report here our experiences with this package and its usefulness as a tool for examining metrology data of synchrotron x-ray mirrors. The package has a number of operators that are useful for determining surface roughness and slope error including compliance with ISO standards (viz. ISO 4287 and ISO 25178). The software is extensible with MATLAB scripts either by loading an m-file or by a user written script. This makes it possible to apply a custom operator to measurement data sets. Using this feature we have applied the simple six-line MATLAB code for the direct least square fitting of ellipses developed by Fitzgibbon et. al. to investigate the residual slope error of elliptical mirrors upon the removal of the best-fit-ellipse. The software includes support for many instruments (e.g. Zygo, MicroMap, etc...) and can import ASCII data (e.g. LTP data). The stitching module allows the user to assemble overlapping images and we report on our experiences with this feature applied to MicroMap surface roughness data. The power spectral density function was determined for the stitched and unstitched data and compared.

  3. CONTROL OF LASER RADIATION PARAMETERS: Possibility of protecting a mirror of a laseron the 4d — 4p transitions of nickel-like tantalum ionsagainst spontaneous X-rays by means of a filter

    NASA Astrophysics Data System (ADS)

    Shmatov, Mikhail L.

    2009-11-01

    The possibility of protecting a mirror of a laser on the 4d — 4p transitions of nickel-like tantalum ions against spontaneous X-rays by means of a carbon or potassium filter is considered. It is shown that such filters can transmit 75% — 80% of laser radiation at 44.83 Å, attenuating at least by half the intensity of radiation incident on the mirror in other spectral regions, which considerably suppresses the double-pass amplification.

  4. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  5. X-RAY ACTIVITY PHASED WITH PLANET MOTION IN HD 189733?

    SciTech Connect

    Pillitteri, I.; Guenther, H. M.; Wolk, S. J.; Kashyap, V. L.; Cohen, O.

    2011-11-01

    We report on the follow-up XMM-Newton observation of the planet-hosting star HD 189733 we obtained in 2011 April. We observe a flare just after the secondary transit of the hot Jupiter. This event shares the same phase and many of the characteristics of the flare we observed in 2009. We suggest that a systematic interaction between planet and stellar magnetic fields when the planet passes close to active regions on the star can lead to periodic variability phased with planetary motion. By means of high-resolution X-ray spectroscopy with the Reflection Grating Spectrometer on board XMM-Newton, we determine that the corona of this star is unusually dense.

  6. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure.

    PubMed

    Oger, Phil M; Daniel, Isabelle; Picard, Aude

    2010-02-01

    Until recently, monitoring of cells and cellular activities at high hydrostatic pressure (HHP) was mainly limited to ex situ observations. Samples were analyzed prior to and following the depressurization step to evaluate the effect of the pressure treatment. Such ex situ measurements have several drawbacks: (i) it does not allow for kinetic measurements and (ii) the depressurization step often leads to artifactual measurements. Here, we describe recent advances in diamond anvil cell (DAC) technology to adapt it to the monitoring of microbial processes in situ. The modified DAC is asymmetrical, with a single anvil and a diamond window to improve imaging quality and signal collection. Using this novel DAC combined to Raman and X-ray spectroscopy, we monitored the metabolism of glucose by baker's yeast and the reduction of selenite by Agrobacterium tumefaciens in situ under HHP. In situ spectroscopy is also a promising tool to study piezophilic microorganisms.

  7. A Search for Hard X-ray Emission from Active Stars Using CGRO/BATSE

    NASA Astrophysics Data System (ADS)

    White, S. M.; Harmon, B. A.; Lim, J.; Kundu, M. R.

    We report the results of a search for > 20 keV photons from active stars using CGRO/BATSE Earth-occultation observations. Twelve of the "usual suspects" together with 12 "placebo" locations have been analyzed using the BATSE software for occultation analysis developed at NASA/MSFC. There are four detections at the nominal 5sigma level, and eight at the 3sigma level. However the strongest detection (that of AB Dor) shows clear evidence for contamination from the nearby strong source LMC X-4. 18 of the 24 fields yield positive fluxes, indicating a clear bias in the results, and possibly indicating the presence of weak background hard X-ray sources detectable by BATSE in long-term studies.

  8. Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Brown, Alexander

    2015-08-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  9. LoCuSS: A DYNAMICAL ANALYSIS OF X-RAY ACTIVE GALACTIC NUCLEI IN LOCAL CLUSTERS

    SciTech Connect

    Haines, C. P.; Pereira, M. J.; Egami, E.; Sanderson, A. J. R.; Smith, G. P.; Babul, A.; Edge, A. C.; Finoguenov, A.; Moran, S. M.; Okabe, N.

    2012-08-01

    We present a study of the distribution of X-ray active galactic nuclei (AGNs) in a representative sample of 26 massive clusters at 0.15 < z < 0.30, combining Chandra observations sensitive to X-ray point sources of luminosity L{sub X} {approx} 10{sup 42} erg s{sup -1} at the cluster redshift with extensive and highly complete spectroscopy of cluster members down to {approx}M*{sub K} + 2. In total we identify 48 X-ray AGNs among the cluster members, with luminosities 2 Multiplication-Sign 10{sup 41}-1 Multiplication-Sign 10{sup 44} erg s{sup -1}. Based on these identifications, we estimate that 0.73% {+-} 0.14% of cluster galaxies brighter than M{sub K} = -23.1 (M*{sub K} + 1.5) host an X-ray AGN with L{sub X} > 10{sup 42} erg s{sup -1}. In the stacked caustic diagram that shows (v{sub los} - (v))/{sigma}{sub v} versus r{sub proj}/r{sub 500}, the X-ray AGN appear to preferentially lie along the caustics, suggestive of an infalling population. They also appear to avoid the region with lowest cluster-centric radii and relative velocities (r{sub proj} < 0.4r{sub 500}; |v - (v)|/{sigma}{sub v} < 0.8), which is dominated by the virialized population of galaxies accreted earliest into the clusters. The line-of-sight velocity histogram of the X-ray AGN shows a relatively flat distribution, and is inconsistent with the Gaussian distribution expected for a virialized population at 98.9% confidence. Moreover, the velocity dispersion of the 48 X-ray AGNs is 1.51 times that of the overall cluster population, which is consistent with the {radical}2 ratio expected by simple energetic arguments when comparing infalling versus virialized populations. This kinematic segregation is significant at the 4.66{sigma} level. When splitting the X-ray AGN sample into two according to X-ray or infrared (IR) luminosity, both X-ray bright (L{sub X} > 10{sup 42}) and IR-bright (L{sub TIR} > 2 Multiplication-Sign 10{sup 10} L{sub Sun }) subsamples show higher velocity dispersions than their X-ray

  10. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    SciTech Connect

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-05-15

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity ({approx_equal}1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  11. X-ray lasing - The diagnostics

    SciTech Connect

    Not Available

    1985-11-01

    High-sensitivity time-resolving x-ray spectrometers were developed for the Novette x-ray laser experiments to distinguish and characterize those x-rays produced by laser activity amidst all the other background radiation. In the microchannel-plate grazing-incidence spectrometer (MCPIGS) x-rays are dispersed according to wavelength by a concave grating into a curved microchannel plate, and the amplified image is mapped flat for photographic recording. Target radiation is detected between 12.5 and 27 nm with 250 ps temporal resolution, high spectral resolution (lambda/Delta lambda = 1800), and a line-radiation detection threshold of 6 x 10 to the -7th J/sr. The transmission-grating streak spectrometer (TGSS) produces an image of the x-ray laser output (with an ellipsoidal mirror) that is separated horizontally into its constituent wavelengths (with a transmission grating) and resolved vertically in time (with a streak caemra). The TGSS has a time resolution of about 40 ps, a spectral resolution of about 0.1 nm, and a collection solid angle of about 1.2 x 10 to the -4th sr.

  12. Nanoimaging granule dynamics and subcellular structures in activated mast cells using soft X-ray tomography

    PubMed Central

    Chen, Huan-Yuan; Chiang, Dapi Meng-Lin; Lin, Zi-Jing; Hsieh, Chia-Chun; Yin, Gung-Chian; Weng, I.-Chun; Guttermann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Lai, Lee-Jene; Liu, Fu-Tong

    2016-01-01

    Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level. PMID:27748356

  13. X-ray structure and activities of an essential Mononegavirales L-protein domain

    PubMed Central

    Paesen, Guido C.; Collet, Axelle; Sallamand, Corinne; Debart, Françoise; Vasseur, Jean-Jacques; Canard, Bruno; Decroly, Etienne; Grimes, Jonathan M.

    2015-01-01

    The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site (SAMP) also contains a novel pocket (NSP) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the SAMP-adjoining site holding the nucleotides undergoing methylation (SUBP) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2′O and N7 positions, and also displays nucleotide triphosphatase activity. PMID:26549102

  14. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  15. The X-ray luminosity function of active galactic nuclei in the redshift interval z=3-5

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Aird, J.; Buchner, J.; Salvato, M.; Menzel, M.-L.; Brandt, W. N.; McGreer, I. D.; Dwelly, T.; Mountrichas, G.; Koki, C.; Georgantopoulos, I.; Hsu, L.-T.; Merloni, A.; Liu, Z.; Nandra, K.; Ross, N. P.

    2015-10-01

    We combine deep X-ray survey data from the Chandra observatory and the wide-area/shallow XMM-XXL field to estimate the active galactic nuclei (AGN) X-ray luminosity function in the redshift range z = 3-5. The sample consists of nearly 340 sources with either photometric (212) or spectroscopic (128) redshift in the above range. The combination of deep and shallow survey fields also provides a luminosity baseline of three orders of magnitude, LX(2-10 keV) ≈ 1043-1046 erg s- 1 at z > 3. We follow a Bayesian approach to determine the binned AGN space density and explore their evolution in a model-independent way. Our methodology properly accounts for Poisson errors in the determination of X-ray fluxes and uncertainties in photometric redshift estimates. We demonstrate that the latter is essential for unbiased measurement of space densities. We find that the AGN X-ray luminosity function evolves strongly between the redshift intervals z = 3-4 and z = 4-5. There is also suggestive evidence that the amplitude of this evolution is luminosity dependent. The space density of AGN with LX(2-10 keV) < 1045 erg s- 1 drops by a factor of 5 between the redshift intervals above, while the evolution of brighter AGN appears to be milder. Comparison of our X-ray luminosity function with that of ultraviolet (UV)/optical selected quasi-stellar objects at similar redshifts shows broad agreement at bright luminosities, LX(2-10 keV) > 1045 erg s- 1. At fainter luminosities X-ray surveys measure higher AGN space densities. The faint-end slope of UV/optical luminosity functions, however, is steeper than for X-ray selected AGN. This implies that the Type I AGN fraction increases with decreasing luminosity at z > 3, opposite to trends established at lower redshift. We also assess the significance of AGN in keeping the hydrogen ionized at high redshift. Our X-ray luminosity function yields ionizing photon rate densities that are insufficient to keep the Universe ionized at redshift z > 4. A

  16. Imaging Molecular Signatures of Breast Cancer With X-ray Activated Nano-Phosphors

    DTIC Science & Technology

    2011-09-01

    europium (red) were studied. The light emission was imaged in a clinical X-ray scanner with a cooled CCD camera and a spectrophotometer; dose...to the CCD camera in the chosen imaging geometry was measured at less than 0.02cGy/sec. Emitted light was found to be linear with dose (R2 = 1) and...x-ray scanner with a cooled CCD camera and a spectrophotometer; dose measurements were determined with a calibrated dosimeter. Using these properties

  17. Long-term Optical Activity of the Hard X-ray Flaring Star DG CVn

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2017-04-01

    DG CVn is a young late-type star which displayed an X-ray and optical superflare in 2014. This paper presents an analysis of the long-term activity of this object in the optical band. I used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). These measurements from the years 1895-1989 cover the blue spectral region. CCD V-band ASAS data were used for several UV Cet-type stars to place the activity of DG CVn in the context of flaring stars. I show that three large brightenings (flares) of DG CVn by more than 1 mag were detected on the DASCH plates. The character of the long-term activity (regarding the histogram of brightness) of DG CVn is compatible with those of flaring stars UV Cet and V371 Ori. The flares brighter than ˜ 0.4 mag represent less than 1 percent of the observed data in all three objects

  18. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders

    SciTech Connect

    Provis, John L.; Myers, Rupert J.; White, Claire E.; Rose, Volker; Deventer, Jannie S.J. van

    2012-06-15

    Durability of alkali-activated binders is of vital importance in their commercial application, and depends strongly on microstructure and pore network characteristics. X-ray microtomography ({mu}CT) offers, for the first time, direct insight into microstructural and pore structure characteristics in three dimensions. Here, {mu}CT is performed on a set of sodium metasilicate-activated fly ash/slag blends, using a synchrotron beamline instrument. Segmentation of the samples into pore and solid regions is then conducted, and pore tortuosity is calculated by a random walker method. Segmented porosity and diffusion tortuosity are correlated, and vary as a function of slag content (slag addition reduces porosity and increases tortuosity), and sample age (extended curing gives lower porosity and higher tortuosity). This is particularly notable for samples with {>=} 50% slag content, where a space-filling calcium (alumino)silicate hydrate gel provides porosity reductions which are not observed for the sodium aluminosilicate ('geopolymer') gels which do not chemically bind water of hydration.

  19. X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism.

    PubMed

    Chen, Lei; Dürr, Katharina L; Gouaux, Eric

    2014-08-29

    AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating.

  20. CAN WE REPRODUCE THE X-RAY BACKGROUND SPECTRAL SHAPE USING LOCAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Gandhi, Poshak

    2013-06-20

    The X-ray background (XRB) is due to the aggregate of active galactic nuclei (AGNs), which peak in activity at z {approx} 1 and is often modeled as the sum of different proportions of unabsorbed, moderately, and heavily absorbed AGN. We present the summed spectrum of a complete sample of local AGN (the Northern Galactic Cap of the 58 month Swift/BAT catalog, z < 0.2) using 0.4-200 keV data and directly determine the different proportions of unabsorbed, moderately and heavily absorbed AGN that make up the summed spectrum. This stacked low redshift AGN spectrum is remarkably similar in shape to the XRB spectrum (when shifted to z {approx} 1), but the observed proportions of different absorption populations differ from most XRB synthesis models. AGN with Compton-thick absorption account for only {approx}12% of the sample, but produce a significant contribution to the overall spectrum. We confirm that Compton reflection is more prominent in moderately absorbed AGN and that the photon index differs intrinsically between unabsorbed and absorbed AGN. The AGN in our sample account for only {approx}1% of the XRB intensity. The reproduction of the XRB spectral shape suggests that strong evolution in individual AGN properties is not required between z {approx} 0 and 1.

  1. Synthesis, spectroscopic structure identification, X-ray study and anticancer activities of new angularly fused quinobenzothiazines

    NASA Astrophysics Data System (ADS)

    Pluta, K.; Szmielew, M.; Suwińska, K.; Latocha, M.

    2016-10-01

    Synthesis of 16 new tetracyclic angularly fused azaphenothiazines, 8-, 9- and 10-substituted quinobenzo-1,4-thiazines (benzo[a]-3-azaphenothiazines) was based on the reactions of dichlorodiquinolinyl disulfide and diquinodithiin with substituted anilines. Whereas the reactions with p-fluoroaniline and p-methylthioaniline led to only one product, the reaction with m-triflouromethylaniline led to isomeric compounds. The obtained 8-10-substituted 12H-quinobenzothiazines were further transformed into 12-substituted derivatives through alkylation of the thiazine nitrogen atom. The structure analysis was based on 1D and 2D NMR (NOESY, COSY, HSQC and HMBC) spectra which enabled to distinguish the isomers and to exclude retro-Smiles rearrangement and the azine nitrogen atom alkylation pathways. This supposition was fully confirmed by X-ray analysis showing the quinobenzothiazine system to be folded and the substituent at the thiazine nitrogen atom in an equatorial position. Some compounds exhibited anticancer activity against MCF-7, MDA-MB-231 and SNB-19 cell lines similar to a reference drug cisplatin. The structure-activity relationship of the compounds were discussed.

  2. Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes.

    PubMed

    Mothilal, K K; Karunakaran, Chandran; Rajendran, Ayyapan; Murugesan, Ramachandran

    2004-02-01

    An interesting series of metal complexes of thiabendazole (tbz) is synthesized and characterized by elemental analyses and spectroscopic studies. The crystal structure of the hydrogen bonded one dimensional Co(II) complex, namely [Co(tbz)(2)(NO(3))(H(2)O)](NO(3)) is solved by single crystal X-ray diffraction. The complex crystallizes in monoclinic space group P2(1)/a with unit cell parameters, a=14.366(2), b=11.459(4), c=15.942(3) A, beta=113.78(3) degrees and z=4. The unit cell packing reveals an extensive hydrogen bonding involving a water molecule, nitrate ligands and the protonated nitrogen atoms of the tbz ligands, resulting in a one dimensional hydrogen bonding pattern. The antimicrobial activity of the complexes against selected bacteria (Escherichia coli and Bacillus subtilis) and yeast (Aspergillus flavues) is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined, and a good correlation between two factors is found. Photodynamic quantum yields of singlet oxygen production (RNO bleaching assay) and rate of superoxide generation (SOD inhibitable ferricytochrome c reduction assay and EPR spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap) by the metal complexes have been studied.

  3. Total external reflection of X-rays from solid surfaces

    NASA Astrophysics Data System (ADS)

    Stozharov, V. M.

    2017-01-01

    The reflection of X-rays from solid surfaces is comprehensively studied using the measurements of patterns of total external reflection and X-ray diffraction with the aid of a parabolic mirror. Principles for theoretical processing of X-ray patterns are developed. An inverse dependence of the refractive index of X-ray radiation on the interplanar distances in crystallites is obtained.

  4. Theoretical modelling of X-ray fluorescence signals for different lunar compositions and dependence on solar activity

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Vadawale, S.

    2010-09-01

    We present a forward modelling technique for calculating the surface X-ray spectra for a variety of lunar terrains. Our calculations considered variations in solar fluxes from solar quiescent condition to large flare activity (M1 flare), and expected elemental concentrations in the target, as well as yield, instrumental, and viewing geometry parameters for X-ray induced fluorescence from the lunar surface. Additionally, we present estimates of anticipated XRF signals from prominent K α lines observable by a collimated 14 cm 2 X-ray detector from a 100 km lunar orbit with ˜20 km spatial resolution. Our results show that Mg, Al and Si characteristic K α lines can be observed for all solar conditions. The Ca K α lines line can be differentiated from a fixed background during more energetic solar conditions such as C1 and M1 flares, whereas Ti and Fe lines are identifiable only during C1 and M1 solar flare conditions for Apollo 12 site composition. Both the K α X-ray intensity ratios of Mg/Si and Al/Si correlate well with concentration ratios of Mg/Si and Al/Si, respectively, for B1 and M1 solar conditions. The K α X-ray intensity ratios of Fe/Si and Ca/Si correlates with concentration ratios of Fe/Si and Ca/Si, respectively, for M1 solar condition. In principle, the modelling technique outlined here can be used to determine absolute elemental abundances (Mg, Al, Si, Ca, Ti and Fe) from X-ray spectra measured during recent and future lunar missions.

  5. Exploring the Geometry of Circumnuclear Material in Active Galactic Nuclei through X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth

    I have studied the X-ray spectral properties of active galactic nuclei (AGN) in order to gain a better understanding of the nature of the circumnuclear material surrounding the central black hole in these objects. From the RXTE archive I constructed two survey samples of broad band X-ray spectra. The first was a bright sample of 23 AGN that had high quality spectra up to at least 100 keV, which provided constraints on the high energy rollover expected by models of inverse Comptonization of low energy photons. The average lower limit to Eroll was ˜225 keV for the majority of objects, implying a coronal electron temperature of kB Te ≳ 75 keV for these models. The second sample was an expanded survey of ˜100 AGN for which spectral parameters could be well-determined. I compared Fe line equivalent widths with measured Compton reflection hump strengths and found that on average ˜40% of the Fe line emission comes from reflection off Compton-thick material, with the remainder likely arising in isotropic emission from Compton-thin gas. In the full sample, the distributions of photon indices for Seyfert 1's and 2's were consistent with the idea that Seyferts share a common central engine, however the distributions of Compton reflection hump strengths did not support the classical picture of absorption by a torus and reflection off a Compton-thick disk with type depending only on inclination angle. I have concluded that a more complex reflecting geometry such as a combined disk and torus or clumpy torus is likely a more accurate picture of the Compton-thick material. I have performed additional analyses of individual objects. An occultation event in Cen A, discovered through RXTE monitoring, revealed the clumpy nature of its torus and placed constraints on the amount of material in the vicinity of the black hole in this object. A Suzaku long-look observation of MCG-2-58-22 provided constraints on the location of Fe line emitting material to ≳ 1200RS, likely associated

  6. Identification of 5 prime -adenylylimidodiphosphate-hydrolyzing enzyme activity in rabbit taste bud cells using X-ray microanalysis

    SciTech Connect

    Asanuma, N. )

    1990-01-01

    X-ray microanalysis has been used to characterize the enzyme activity hydrolyzing the ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP) in taste bud cells. Rabbit foliate papillae fixed with paraformaldehyde and glutaraldehyde were incubated cytochemically with AMP-PNP as the substrate and lead ion as capture agent. The reaction product which appeared on the microvilli of taste bud cells was examined using an energy dispersive X-ray microanalyzer connected to an analytical electron microscope. The X-ray spectrum thus obtained was compared with that obtained from the product obtained from the demonstration of ATPase activity. Comparison of the phosphorus/lead ratios in the two products showed that twice as much phosphorus was released from an AMP-PNP molecule by the activity in question compared with that released from an ATP molecule by ATPase activity. This indicates that the enzyme hydrolyzes AMP-PNP into AMP and imidodiphosphate and that the enzyme is adenylate cyclase or ATP pyrophosphohydrolase, which possesses a similar hydrolytic property, but not ATPase or alkaline phosphatase, which hydrolyzes AMP-PNP into ADP-NH2 and orthophosphate. This paper provides an example of the use of X-ray microanalysis as a tool for enzyme distinction. The method is applicable to a variety of enzymes and tissues.

  7. Optical activity of the high-mass X-ray binary SAX J2103.5+4545.

    NASA Astrophysics Data System (ADS)

    Grishina, T. S.; Larionova, E. G.; Savchenko, S. S.; Larionov, V. M.

    2017-03-01

    We report on the renewed optical activity of the high-mass X-ray binary system SAX J2103.5+4545. The source is monitored with the 0.4-m LX-200 (St.Petersburg, Russia) and 0.7-m AZT-8 (CrAO, Russia) telescopes.

  8. X-ray flux variability of active galactic nuclei observed using NuSTAR

    NASA Astrophysics Data System (ADS)

    Rani, Priyanka; Stalin, C. S.; Rakshit, Suvendu

    2017-04-01

    We present results of a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of four BL Lac objects (BL Lacs), three flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and eight narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65 per cent of the sources in our sample show significant variations on hourly time-scales. Using the Mann-Whitney U-test and the Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87 per cent), followed by BL Lacs (82 per cent), Seyfert galaxies (56 per cent) and FSRQs (23 per cent). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.

  9. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  10. Toward Large-Area Sub-Arcsecond X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.; Graham, Michael E.; Gubarev, Mikhail V.; Heilmann, Ralf K.; Johnson-Wilke, Raegan L.; Kilaru, Kiranmayee; Kolodziejczak, Jeffrey J.; McMuldroch, Stuart; Ramsey, Brian D.; Reid, Paul B.; Riveros, Raul E.; Roche, Jacqueline M.; Saha, Timo T.; Schattenburg, Mark L.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Vaynman, Semyon; Vikhlinin, Alexey; Wang, Xiaoli; Weisskopf, Martin C.; Wilke, Rudeger H. T.; Zhang, William W.

    2014-01-01

    The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(<1).Combined with the special requirements of nested grazing incidence optics, the mass and envelope constraints of spaceborne telescopes render such advances technologically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (>100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation.

  11. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  12. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  13. Understanding how active volcanoes work: a contribution from synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D. R.; Mancini, L.

    2009-04-01

    Volcanoes are complex systems that require the integration of many different geoscience disciplines to understand their behaviour and to monitor and forecast their activity. In the last two decades an increasing amount of information on volcanic processes has been obtained by studying the textures and compositions of volcanic rocks. Five years ago we started a continuing collaboration with the SYRMEP beamline of Elettra Sincrotrone, a third generation synchrotron light source near Trieste, Italy, with the goal of performing high-resolution, phase-contrast X-ray tomographic scans and reconstructing 3-D digital volumes of volcanic specimens. These volumes have been then used for the visualization of the internal structure of rocks and for the quantification of rock textures (i.e., vesicle and crystal volume fraction, individual vesicle volumes and shapes, vesicle connectivity, vesicle volume distributions, permeability simulations etc.). We performed tomographic experiments on volcanic products erupted from different hazardous volcanic systems in Italy and around the world: Campi Flegrei, Stromboli, Etna (Southern Italy), Villarrica (Chile), Yasur and Ambrym (Vanuatu Islands). As an example, we used the results of these studies to constrain the dynamics of vesiculation and degassing in basaltic (Polacci et al., 2006; Burton et al., 2007; Colò et al., 2007; Andronico et al., 2008; Polacci et al., 2008a) and trachytic (Piochi et al., 2008) magmas. A better knowledge of how gas is transported and lost from magmas has led us in turn to draw new implications on the eruptive style of these active, hazardous volcanoes (Polacci et al., 2008b). Work in progress consists of optimizing our procedure by establishing a precise protocol that will enable us to quantitatively study the 3-D texture and composition of rocks in a statistically representative way. Future work will concentrate on the study of the spatial relations between phases (crystals, vesicles and glass) in rocks

  14. Analysis of X-ray and EUV spectra of solar active regions

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Acton, L. W.

    1979-01-01

    Data acquired by two flights of an array of six Bragg crystal spectrometers on an Aerobee rocket to obtain high spatial and spectral resolution observations of various coronal features at soft X-ray wavelengths (9-23A) were analyzed. The various aspects of the analysis of the X-ray data are described. These observations were coordinated with observations from the experiments on the Apollo Telescope Mount and the various data sets were related to one another. The Appendices contain the published results, abstracts of papers, computer code descriptions and preprints of papers, all produced as a result of this research project.

  15. A Census of the Class of X-ray Active γ Cas Stars

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; de Oliveira, R. L.; Motch, C.

    2016-11-01

    “γ Cas stars” are perhaps the primary contributors to the total hard X-ray flux from Galactic B stars. We review basic properties of 12 suspected or known members of this class. The sample extends out to 6-7 kpc and is finally sufficient to compare such basic properties as spectral type, rotation rate, binarity/Blue Straggler status, Hα lobe structure EWHα, Lx, temperature of the dominant X-ray emitting plasma component (kThot), and ranges in Lx and kThot.

  16. Development of X-Ray Optics for the International X-Ray Observatory (IXO)

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Bolognese, J.; Byron, G.; Caldwell, D.; Chan, K.; Content, D. A.; Gubarev, M.; Davis, W.; Freeman, M.; Hadjimichael, T. J.; He, C.; Hong, M.; Kolos, L.; Jones, W. D.; Lehan, . P.; Lozipone, L.; Mazzarella, J.; McClelland, R.; Nguyen, D. T.; Olsen, L.; Petre, R.; Podgorski, W.; Robinson, D.; Russell, R.; Romaine, S.

    2009-01-01

    The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.

  17. INSIGHT INTO ACTIVE GALACTIC NUCLEUS AND HOST GALAXY CO-EVOLUTION FROM HARD X-RAY EMISSION

    SciTech Connect

    Wang, J.; Zhou, X. L.; Wei, J. Y.

    2013-05-10

    We study the issue of active galactic nucleus (AGN) and host co-evolution by focusing on the correlation between the hard X-ray emission from central AGNs and the stellar populations of the host galaxies. Focusing on galaxies with strong H{alpha} line emission (EW(H{alpha}) > 5 A), both X-ray and optical spectral analyses are performed on 67 (partially) obscured AGNs that are selected from the XMM-Newton 2XMMi/SDSS-DR7 catalog originally cross-matched by Pineau et al. The sample allows us to study central AGN activity and host galaxy activity directly and simultaneously in individual objects. Combining the spectral analysis in both bands reveals that the older the stellar population of the host galaxy, the harder the X-ray emission will be, which was missed in our previous study where ROSAT hardness ratios were used. By excluding the contamination from host galaxies and from jet beaming emission, the correlation indicates that Compton cooling in the accretion disk corona decreases with the mean age of the stellar population. We argue that this correlation is related to the correlation of L/L{sub Edd} with the host stellar population. In addition, the [O I]/H{alpha} and [S II]/H{alpha} narrow-line ratios are identified to correlate with the spectral slope in hard X-rays, which can be inferred from the currently proposed evolution of the X-ray emission because of the confirmed tight correlations between the two line ratios and stellar population age.

  18. The X-ray Surveyor Mission: a concept study

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-08-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions—such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  19. The X-Ray Surveyor Mission: A Concept Study

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  20. Manufacturing and testing a thin glass mirror shell with piezoelectric active control

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Barbera, M.; Collura, A.; Basso, S.; Candia, R.; Civitani, M.; Di Bella, M.; Di Cicca, G.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.; Varisco, S.

    2015-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto the non-optical side of the mirrors, and several groups are already at work on this approach. The concept we are developing consists of actively integrating thin glass foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays. The actuators are commercial components, while the tension signals are carried by a printed circuit obtained by photolithography, and the driving electronic is a multi-channel low power consumption voltage supply developed inhouse. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array are determined in X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we describe the manufacturing steps to obtain a first active mirror prototype and the very first test performed in X-rays.

  1. Development of grating-based x-ray phase tomography under the ERATO project

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takano, Hidekazu; Hoshino, Masato; Yashiro, Wataru; Wu, Yanlin

    2016-10-01

    We have launched a project to promote grating-based X-ray phase imaging/tomography extensively. Here, two main activities are presented for enabling dynamic, or four-dimensional, X-ray phase tomography and nanoscopic X-ray phase tomography by grating interferometry. For the former, while some demonstrations in this direction were performed with white synchrotron radiation, improvement in image quality by spectrum tuning is described. A preliminary result by a total reflection mirror is presented, and as a next step, preparation of a 10% bandpass filter by a multilayer mirror is reported. For the latter, X-ray microscopes available both at synchrotron radiation facilities and laboratories equipped with a Fresnel zone plate are combined with grating interferometry. Here, a preliminary result with a combination of a Lau interferometer and a laboratory-based X-ray microscope is presented.

  2. X-ray Observations of the Black Hole Transient 4U 1630-47 During 2 Years of X-ray Activity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Corbel, Stephane; Goldwurm, Andrea; Kaaret, Philip

    2005-01-01

    The black hole candidate (BHC) X-ray transient 4U 1630-47 continuously produced strong X-ray emission for more than 2 years during its 2002-2004 outburst, which is one of the brightest and longest outbursts ever seen from this source. We use more than 300 observations made with the Rossi X-Ray Timing Explorer (RM E) to study the source throughout the outburst, along with hard X-ray images from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), which are critical for interpreting the RXTE data in this crowded field. The source exhibits extreme behaviors, which can be interpreted as an indication that the system luminosity approaches the Eddington limit. For 15 observations, fitting the spectral continuum with a disk-blackbody plus power-law model results in measured inner disk temperatures between 2.7 and 3.8 key and such temperatures are only rivaled by the brightest BHC systems, such as GRS 1915+105 and XTE 51550-564. If the high temperatures are caused by the dominance of electron scattering opacity in the inner regions of the accretion disk, it is theoretically required that the source luminosity be considerably higher than 20% of the Eddington limit. We detect a variety of high-amplitude variability, including hard 10-100 s flares, which peak at levels as much as 2-3 times higher than nonflare levels. This flaring occurs at the highest disk luminosities in a regime in which the source deviates from the L(sub disk) infinity T(sup 4)(sub in) relationship that is seen at lower luminosities, possibly suggesting that we are seeing transitions between a Shakura & Sunyaev disk and a "slim" disk, which is predicted to occur at very high mass accretion rates. The X-ray properties in 2002-2004 are significantly different from those seen during the 1998 outburst, which is the only outburst with detected radio jet emission. Our results support the "jet line" concept recently advanced by Fender and coworkers. Our study allows for a test of the quantitative Mc

  3. X-RAY OBSERVATIONS OF THE BLACK HOLE TRANSIENT 4U 1630-47 DURING 2 YEARS OF X-RAY ACTIVITY

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Corbel, Stephane; Goldwurm, Andrea; Kaaret, Philip

    2005-01-01

    The black hole candidate (BHC) X-ray transient 4U 1630-47 continuously produced strong X-ray emission for more than 2 years during its 2002-2004 outburst, which is one of the brightest and longest outbursts ever seen from this source. We use more than 300 observations made with the Rossi X-Ray Timing Explorer (RXTE) to study the source throughout the outburst, along with hard X-ray images from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), which are critical for interpreting the RXTE data in this crowded field. The source exhibits extreme behaviors, which can be interpreted as an indication that the system luminosity approaches the Eddington limit. For 15 observations, fitting the spectral continuum with a disk-blackbody plus power-law model results in measured inner disk temperatures between 2.7 and 3.8 keV, and such temperatures are only rivaled by the brightest BHC systems, such as GRS 1915+105 and XTE J1550-564. If the high temperatures are caused by the dominance of electron scattering opacity in the inner regions of the accretion disk, it is theoretically required that the source luminosity be considerably higher than 20% of the Eddington limit. We detect a variety of high-amplitude variability, including hard 10-100 s flares, which peak at levels as much as 2-3 times higher than nonflare levels. The X-ray properties in 2002-2004 are significantly different from those seen during the 1998 outburst, which is the only outburst with detected radio jet emission. Our results support the "jet line" concept recently advanced by Fender and coworkers. Our study allows for a test of the quantitative McClintock & Remillard spectral state definitions, and we find that these definitions alone do not provide a complete description of the outburst. Finally, for several of the observations, the high-energy emission is dominated by the nearby sources IGR J16320-4751 and IGR J16358-4726, and we provide information on when these sources were bright and on the

  4. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  5. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  6. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  7. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  8. Reflection Grating Array Associated with the Reflection Grating Spectrometer Developed by the Space Research Organization of the Netherlands for the X-ray Multi-Mirror Mission (XMM)

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    2001-01-01

    The University of California, Berkeley (UCB) served as the Principal Investigator institution for the United States participation in the development of the Reflection Grating Spectrometer (RGS) which included the design, development, fabrication, and testing of the Reflection Grating Assembly (RGA). UCB was assisted in this role by the Lawrence Livermore National Laboratory and Columbia University who provided the primary facilities, materials, services and personnel necessary to complete the development. UC Berkeley's Dr. Steven Kahn provided the technical and scientific oversight for the design. development and testing of the RGA units by monitoring the performance of the units at various stages in their development. Dr. Kahn was also the primary contact with the Space Research Organization of the Netherlands (SRON) and represented the RGA development at all SRON and European Space Agency (ESA) reviews of the RGA status. In accordance with the contract, the team designed and developed novel optical technology to meet the unique requirements of the RGS. The ESA XMM-Newton Mission carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution measurements in the soft X-ray range (6 to 38 angstroms or 2.1 to 0.3 keV) with a maximum effective area of about 140 sq cm at 15 angstroms. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon. as well as the L shell transitions of iron. The RGA itself consists of two units. A structure for each unit was designed to hold up to 220 gratings. In its final configuration, one unit holds 182 gratings and the second hold 181 gratings.

  9. Cross-relaxation quenching of x-ray excited luminescence in Eu-activated phosphors

    NASA Astrophysics Data System (ADS)

    Pacold, Joseph; Mortensen, Devon; Reichlin, William; Finfrock, Zou; Diaz, Anthony; Seidler, Gerald

    2015-03-01

    Compounds, molecules, and nanoparticles containing lanthanides as primary constituents or as dopants are widely used in applications including luminescent dyes and lighting phosphors. Recent work has shown that x-ray spectroscopy methods can be used to monitor the sequence of excited states that leads to luminescence in lanthanide materials. Here, we use x-ray excited optical luminescence (XEOL) to identify a nonradiative process that quenches the emissive excited state of Eu3+ in the phosphors YVO4:Eu3+ and YVO4:Bi3+,Eu3+. Taking advantage of the high flux (up to 2 ×1012 photons/second) and focusing capability (beam FWHM 5 μm) of a modern synchrotron beamline, we observe saturation of the XEOL yield at high x-ray flux densities. The saturation effect is interpreted with a kinetic model in which pairs of excited Eu ions undergo an Auger-like cross-relaxation. This effect is well documented in the literature on cathode-ray phosphors, and allows us to estimate the excited fraction of Eu3+ ions. We discuss applications of this method to the broader problem of studying energy transfer in luminescent materials, as well as technical implications for future x-ray spectroscopy studies that require high flux.

  10. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films...

  11. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... connection for pulmonary tuberculosis. When under consideration, all available service department films and subsequent films will be secured and read by specialists at designated stations who should have a current examination report and X-ray. Resulting interpretations of service films will be accorded the...

  12. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... connection for pulmonary tuberculosis. When under consideration, all available service department films and subsequent films will be secured and read by specialists at designated stations who should have a current examination report and X-ray. Resulting interpretations of service films will be accorded the...

  13. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... connection for pulmonary tuberculosis. When under consideration, all available service department films and subsequent films will be secured and read by specialists at designated stations who should have a current examination report and X-ray. Resulting interpretations of service films will be accorded the...

  14. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... connection for pulmonary tuberculosis. When under consideration, all available service department films and subsequent films will be secured and read by specialists at designated stations who should have a current examination report and X-ray. Resulting interpretations of service films will be accorded the...

  15. Hot Plasma from Solar Active-Region Cores: Constraints from the Hinode X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Christian, G. M.; Matheny, P. O.

    2016-12-01

    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK < T < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present, we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  16. Synthesis, X-ray crystal structures and catecholase activity investigation of new chalcone ligands

    NASA Astrophysics Data System (ADS)

    Thabti, Salima; Djedouani, Amel; Rahmouni, Samra; Touzani, Rachid; Bendaas, Abderrahmen; Mousser, Hénia; Mousser, Abdelhamid

    2015-12-01

    The reaction of dehydroacetic acid DHA carboxaldehyde and RCHO derivatives (R = quinoleine-8-; indole-3-; pyrrol-2- and 4-(dimethylamino)phenyl - afforded four new chalcone ligands (4-hydroxy-6-methyl-3-[(2E)-3-quinolin-8-ylprop-2-enoyl]-2H-pyran-2-one) L1, (4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one) L2, (4-hydroxy-6-methyl-3-[(2E)-3-(1H-pyrrol-2-yl)prop-2-enoyl]-2H-pyran-2-one) L3, and (3-{(2E)-3-[4-(dimethylamino)phenyl]prop-2-enoyl}-4-hydroxy-6-methyl-2H-pyran-2-one) L4. L3 and L4 were characterized by X-ray crystallography. Molecules crystallize with four and two molecules in the asymmetric unit, respectively and adopt an E conformation about the Cdbnd C bond. Both structures are stabilized by an extended network O-H … O. Furthermore, N-H … O and C-H … O hydrogen bonds are observed in L3 and L4 structures, respectively. The in situ generated copper (II) complexes of the four compounds L1, L2, L3 and L4 were examined for their catalytic activities and were found to catalyze the oxidation reaction of catechol to o-quinone under atmospheric dioxygen. The rates of this oxidation depend on three parameters: ligand, ion salts and solvent nature and the combination L2[Cu (CH3COO)2] leads to the faster catalytic process.

  17. MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Allevato, V.; Paolillo, M.; Papadakis, I.; Pinto, C.

    2013-07-01

    We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.

  18. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  19. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    SciTech Connect

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-05-08

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to

  20. X-ray microscopy using grazing-incidence reflections optics

    SciTech Connect

    Price, R.H.

    1983-06-30

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  1. X-ray microscopy using grazing-incidence reflection optics

    SciTech Connect

    Price, R.H.

    1981-08-06

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  2. Trends in ultracool dwarf magnetism. II. The inverse correlation between X-ray activity and rotation as evidence for a bimodal dynamo

    SciTech Connect

    Cook, B. A.; Williams, P. K. G.; Berger, E.

    2014-04-10

    Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a 'saturation' level and a moderate decrease in activity in the very fastest rotators ('supersaturation'). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type ≳M7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 UCDs. Our sample represents the largest catalog of X-ray active UCDs to date, including seven new and four previously unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a 'supersaturation'-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ∼3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.

  3. Scientific Drivers for X-Ray Polarimetry Observations of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Banafsheh; Krawczynski, Henric

    2017-01-01

    Although photons cannot escape the gravitational field of a black hole, we can observe the emission from matter spiraling into the black hole forming an accretion disk. X-ray observations are particularly suited to explore the inner structure of the accretion flows onto astrophysical stellar mass and supermassive black holes. In this talk, I will present results from general relativistic ray tracing simulations demonstrating the scientific promise of spectropolarimetric observations of AGNs. Combining timing, spectral, and polarimetric information will allow us to reveal the physical properties of accretion disks and their coronas. I will discuss the potential of X-ray observations for distinguishing between different corona models based on simulations of coronas with different physical properties and in the presence of different sources of seed photons including thermal, cyclotron, and synchrotron seed photons.

  4. The increasing X-Ray Activity of PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2016-10-01

    The southern TeV-detected HBL source PKS 2155-304 (z=0.116) is prominent with its very strong TeV/X-ray flaring behaviour (see, e.g., Aharonian et al. 2009, A & A, 502, 749; Abramowski et al. 2012, A & A, 539; Kapanadze et al. 2014, MNRAS, 444; 1076), and, therefore, it represents one of the frequent Swift targets (203 observations since 2005 November 17). In the framework of our Target of Opportunity (ToO) request Number 8344, the source was pointed nine time by X-Ray Telescope onboard the Swift satellite (Swift-XRT) since 2016 August 5 with one week intervals between the successive observations.

  5. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  6. Imaging Molecular Signatures of Breast Cancer with X-ray-Activated Nanophosphors

    DTIC Science & Technology

    2014-01-01

    and are working on RLI. 15. SUBJECT TERMS BREAST CANCER , IMAGING, MOLECULAR IMAGING, X-RAY, NANOPARTICLES 16. SECURITY CLASSIFICATION OF: 17...it is important to recognize that cancer nanotechnology is a major venture in the National Cancer Institute, and this technique will benefit from...Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles ,” Cancer

  7. An Expanding Plasma Model for the X-ray/radio knots in KPC-scale Jets of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sahayanathan, S.; Misra, R.; Kembhavi, A. K.; Kaul, C. L.

    2003-03-01

    We model the observed X-ray/radio knots in Active Galactic Nuclei (AGN) as isotropically expanding spherical plasma clouds fed continously by non-thermal electrons. The time-dependent electron distribution and the emitted photon spectrum are computed using the standard kinetic equation considering synchrotron, adiabatic and inverse Compton cooling processes. We use this model to study the knots of 1136 - 135 and 1150 + 497, recenly observed by Chandra. 29

  8. Ligand discrimination of myoglobin in solution: an iron L-edge X-ray absorption study of the active centre.

    PubMed

    Lange, Kathrin M; Golnak, Ronny; Bonhommeau, Sébastien; Aziz, Emad F

    2013-05-14

    Iron L-edge X-ray absorption spectra of the active centre of myoglobin in the met-form, in the reduced form and upon ligation to O2, CO, NO and CN are presented. The strength of ligation with the iron centre is finger-printed through the variation of the L3 : L2 intensity ratio. Charge Transfer Multiplet calculations are performed and give qualitative information about oxidation states as well as charge transfer.

  9. Active Galactic Nuclei, Quasars, BL Lac Objects and X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2005-01-01

    The XMM COSMOS survey is producing the large surface density of X-ray sources anticipated. The first batch of approx. 200 sources is being studied in relation to the large scale structure derived from deep optical/near-IR imaging from Subaru and CFHT. The photometric redshifts from the opt/IR imaging program allow a first look at structure vs. redshift, identifying high z clusters. A consortium of SAO, U. Arizona and the Carnegie Institute of Washington (Pasadena) has started a large program using the 6.5meter Magellan telescopes in Chile with the prime objective of identifying the XMM X-ray sources in the COSMOS field. The first series of observing runs using the new IMACS multi-slit spectrograph on Magellan will take place in January and February of 2005. Some 300 spectra per field will be taken, including 70%-80% of the XMM sources in each field. The four first fields cover the center of the COSMOS field. A VLT consortium is set to obtain bulk redshifts of the field galaxies. The added accuracy of the spectroscopic redshifts over the photo-z's will allow much lower density structures to be seen, voids and filaments. The association of X-ray selected AGNs, and quasars with these filaments, is a major motivation for our studies. Comparison to the deep VLA radio data now becoming available is about to begin.

  10. Coordinated X-ray, optical, and radio observations of flaring activity on YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Golub, L.; Harnden, F. R., Jr.; Liller, W.; Seward, F.; Vaiana, G.; Lovell, B.; Davis, R. J.; Spencer, R. E.; Whitehouse, D. R.

    1982-01-01

    The YZ Canis Minoris (Gliese 285), a late-type dwarf star with Balmer emission (dM4.5e), is a member of the UV Ceti class of flare stars. Obtaining good X-ray observations of a dMe star flare is important not only for understanding the physics of flares but also for testing current ideas regarding the similarity between stellar and solar flares. The Einstein X-ray Observatory has made it possible to conduct X-ray observations of dMe stars with unprecedented sensitivity. A description is presented of the results of a program of ground-based optical and radio observations of YZ CMi coordinated with those of the Einstein Observatory. The observations were carried out as part of a coordinated program on October 25, 26, and 27, 1979, when YZ CMi was on the dawn side of the earth. Comprehensive observational data were obtained of an event detected in all three wavelength regions on October 25, 1979.

  11. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    SciTech Connect

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C.; Patel, Tushita

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  12. A periodicity of approximately 1 hour in X-ray emission from the active galaxy RE J1034+396.

    PubMed

    Gierliński, Marek; Middleton, Matthew; Ward, Martin; Done, Chris

    2008-09-18

    Active galactic nuclei and quasars are thought to be scaled-up versions of Galactic black hole binaries, powered by accretion onto supermassive black holes with masses of 10(6)-10(9) M[symbol: see text], as opposed to the approximately 10 M [symbol: see text] in binaries (here M [symbol: see text] is the solar mass). One example of the similarities between these two types of systems is the characteristic rapid X-ray variability seen from the accretion flow. The power spectrum of this variability in black hole binaries consists of a broad noise with multiple quasi-periodic oscillations superimposed on it. Although the broad noise component has been observed in many active galactic nuclei, there have hitherto been no significant detections of quasi-periodic oscillations. Here we report the discovery of an approximately 1-hour X-ray periodicity in a bright active galaxy, RE J1034+396. The signal is highly statistically significant (at the 5.6 sigma level) and very coherent, with quality factor Q > 16. The X-ray modulation arises from the direct vicinity of the black hole.

  13. Thermally activated charge transfer in a Prussian blue derivative probed by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Jarrige, I.; Cai, Y. Q.; Ishii, H.; Hiraoka, N.; Bleuzen, A.

    2008-08-01

    Charge-transfer excitation is at the source of the photoinduced magnetism observed in several Prussian blue molecule-based magnets. Using resonant inelastic x-ray scattering and x-ray absorption spectroscopy, we probe directly the thermally activated charge transfer in a photomagnetic Fe-Co cyanide, Cs0.7Co4[Fe(CN)6]2.9[◻]1.1.16H2O, where [◻] represents [Fe(CN)6] vacancies. The temperature dependence of both Co and Fe valence ratios is estimated for the first time in one cooling run, thus yielding a more complete picture of the temperature-induced cooperative electronic modifications. This novel approach, benefiting from relatively short acquisition times, opens the possibility for realtime characterization of the photoinduced magnetism in molecule-based magnets.

  14. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Alexander, D. M.

    2015-01-01

    We review results from cosmic X-ray surveys of active galactic nuclei (AGNs) over the past years that have dramatically improved our understanding of growing supermassive black holes in the distant universe. First, we discuss the utility of such surveys for AGN investigations and the capabilities of the missions making these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly describe the main cosmic X-ray surveys, the essential roles of complementary multiwavelength data, and how AGNs are selected from these surveys. We then review key results from these surveys on the AGN population and its evolution ("demographics"), the physical processes operating in AGNs ("physics"), and the interactions between AGNs and their environments ("ecology"). We conclude by describing some significant unresolved questions and prospects for advancing the field.

  15. Supermassive Black Hole Growth Over Cosmic Time: X-ray Constraints on the Demographics and Physics of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Brandt, William

    2009-09-01

    Extragalactic X-ray surveys over the past decade have dramatically improved our understanding of how the majority populations of active galactic nuclei (AGNs) evolve over most of the history of the Universe. I will describe some of these exciting results, drawing from the findings of both deep and wide surveys. Topics covered will include (1) the utility and limitations of X-ray surveys for finding distant AGNs; (2) constraints upon the most heavily obscured AGNs in the distant universe; (3) the cosmic evolution of AGN spectral energy distributions and accretion processes; and (4) the AGN content of forming galaxies at high redshifts. I will also discuss some key outstanding problems and prospects for short-term and long-term advances.

  16. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  17. Planetary X-rays: Relationship with solar X-rays and solar wind

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.

    Recently X-ray flares are observed from the low-latitude disk of giant planets Jupiter and Saturn in the energy range of 0.2-2 keV. These flares are found to occur in tandem with the occurrence of solar X-ray flare, when light travel time delay is accounted. These studies suggest that disk of outer planets Jupiter and Saturn acts as "diffuse mirror" for solar X-rays and that X-rays from these planets can be used to study flaring on the hemisphere of the Sun that in invisible to near-Earth space weather satellites. Also by proper modeling of the observed planetary X-rays the solar soft X-ray flux can be derived. X-ray flares are also observed on the Mars. On the other hand, X-rays from comets are produced mainly in charge exchange interaction between highly ionized heavy solar wind ions and cometary neutrals. Thus cometary X-rays provide a diagnostics of the solar wind properties. X-rays from Martian exosphere is also dominantly produced via charge exchange interaction between Martian corona and solar wind, providing proxy for solar wind. This paper provides a brief overview on the X-rays from some of the planets and comets and their connection with solar X-rays and solar wind, and how planetary X-rays can be used to study the Sun.

  18. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  19. On the enzymatic activity of catalase: an iron L-edge X-ray absorption study of the active centre.

    PubMed

    Bergmann, Nora; Bonhommeau, Sébastien; Lange, Kathrin M; Greil, Stefanie M; Eisebitt, Stefan; de Groot, Frank; Chergui, Majed; Aziz, Emad F

    2010-05-14

    Catalase and methaemoglobin have very similar haem groups, which are both ferric, yet catalase decomposes hydrogen peroxide to water and oxygen very efficiently, while methaemoglobin does not. Structural studies have attributed this behaviour to their different distal environments. Here we present Fe L(2,3)-edge X-ray absorption spectra of these proteins in physiological solutions, which reveal clear differences in their electronic structures, in that pi back-donation of the Fe atom occurs in catalase, which confers on it a partial ferryl (Fe(4+)) character, while this is not the case in methaemoglobin. The origin of the Fe(4+) character stems from the proximal tyrosine residue. We also find that both systems are in a high spin state. Temperature effects influence the spectra of catalase only weakly, in agreement with previous studies of its chemical activity. We conclude that the high activity of catalase is not only determined by its distal environment but also by its partial ferryl character.

  20. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    SciTech Connect

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  1. Beta-glucosidase activity of ER-bodies in Arabidopsis thaliana seedlings under clinorotation and after X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Romanchuk, Svitlana

    Realization of long-term space flight requires the life support bioregenerative systems, an indispensable component of which are plants as a source of oxygen, water and food. Although it is well known now that plants adаpt to spaceflight factors, in particular to microgravity, by changing some their patterns at the cellular, physiological, biochemical and molecular levels, many questions on cause and effect of these changes are still open. In addition, it is necessary to find the plant species which will be the most suited to the conditions in a space craft cabin. Plants of the family Brassicaceae are known to be resistant to a variety of abiotic stresses, including irradiation. Among them there are many cultivated plants with which we encounter every day: cabbage, radish, mustard, rapeseed, etc., and Arabidopsis thaliana - a convenient model object. The family Brassicaceae to be characterized by the presence of ER-bodies in plant cells, which are derivative of granular endoplasmic reticulum. Earlier, an enzyme beta-glucosidase (beta-D-glucoside glucohydrolase; EC 3.2.1.21) with an ER retention signal has been shown to accumulate selectively in such bodies in response to different unfavorable factors. Recently, we reported that formation of ER-bodies in A. thaliana seedling roots is sensitive to the clinorotation and X-ray irradiation, as their quantity and size in creased under the influence of these factors in comparison with control.begin{itemize} Therefore, we determined the beta-glucosidase activity in A. thaliana (line Columbia) seedlings grown in the stationary conditions and under clinorotation (a); and after X-ray irradiation (b): a) 3- and 7-day-old seedlings grown on a slow horizontal clinostat (2rpm); b) 3-day-old seedlings were treated with X-ray radiation dose of 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10 and 12 Gray. For the first time, an increase in beta-glucosidase activity, which is the main component of the ER-bodies in A. thaliana seedlings, were found

  2. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  3. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    NASA Astrophysics Data System (ADS)

    Golubnitchaya-Labudová, O.; Portele, A.; Vaçata, V.; Lubec, G.; Rink, H.; Höfer, M.

    1997-10-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating domains in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the insert of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9.

  4. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  5. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  6. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    NASA Astrophysics Data System (ADS)

    Sergeyeva, Victoria; Domergue, Christophe; Destouches, Christophe; Girard, Jean Michel; Philibert, Hervé; Bonora, Jonathan; Thiollay, Nicolas; Lyoussi, Abdallah

    2016-02-01

    The CEA MADERE platform (Measurement Applied to DosimEtry in REactors) is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI). This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuous improvement process. Recently, two High Efficiency diodes have been integrated to the MADERE platform in order to manage the accurate low level activity measurements (few Bq per sample). This new equipment provides a good level of efficiency over the energy range from 60 keV to 2 MeV. The background continuum is reduced due to the use of a Ultra Low Background (ULB) lead shielding. Relative and absolute X-ray measurement techniques have been improved in order to facilitate absolute rhodium activity measurement (Rh103m) on solid samples. Additional efforts have been made to increase the accuracy of the relative niobium (Nb93m) activity measurement technique. The way of setting up an absolute measurement method for niobium is under investigation. After a presentation of the MADERE's measurement devices, this paper focuses on the technological options taken into account for the design of high efficiency measurement devices. Then, studies performed on X-ray measurement techniques are presented. Some details about the calculation of uncertainties and correction factors are also mentioned. Finally, future research and development axes are exposed.

  7. Activities of X-ray binaries accompanied by a neutron star with weak magnetic field: Cir X-1, Aql X-1 and 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masaru; Mihara, Tatehiro; Asai, Kazumi

    This paper is presented on X-ray activities of X-ray binaries accompanied by a neutron star with weak magnetic field. Neutron star low mass X-ray binaries (NS-LMXBs) have been well studied so far, but there are still unknown problems concerning activities of outbursts and X-ray spectral features. We can define the soft and hard states which show different spectra created from each disk structure. These states depend on the gas accretion rate causing viscosity change in the disk, whereas we have pointed out an importance of magnetic field in NS-LMXB for X-ray activities (Matsuoka & Asai 2013). Thus, we have obtained decay features occurred by a propeller effect for Aql X-1 and 4U1608-52, and thus, we have defined the propeller effect levels of these sources (Asai et al. 2013). A companion star of Cir X-1 is a star of B5~A0 type, but it has X-ray spectral feature similar to NS-LMXB as well as it produced type I X-ray bursts. A long history over 40 years of X-ray observations has provided that Cir X-1 X-ray intensities have many varieties from continuous variable fluxes with Z-type feature of NS-LMXB to recurrent outburst fluxes with Atoll-type feature on a time scale of years. Recent MAXI observations have revealed a strange sudden decay feature in some outbursts. It is difficult to explain this decay feature by the simple picture which causes by ordinary mechanisms known in NS-LMXB such as a state transition, a propeller effect and a brink due to disk irradiation (Powell et al. 2007). Therefore, we introduced new type of instability of the accretion disk in relation to stellar wind stripping effect (Asai et al. 2014) which may be common to a system consisting of a compact star and an ordinary massive star.

  8. INFLATING A CHAIN OF X-RAY-DEFICIENT BUBBLES BY A SINGLE JET ACTIVITY EPISODE

    SciTech Connect

    Refaelovich, Michael; Soker, Noam E-mail: soker@physics.technion.ac.il

    2012-08-10

    We show that a continuous jet with time-independent launching properties can inflate a chain of close and overlapping X-ray deficient bubbles. Using the numerical code PLUTO we run 2.5D (i.e., a spherical coordinate system with cylindrical symmetry) hydrodynamic simulations and study the interaction of the jets with the intracluster medium. A key process is vortex fragmentation due to several mechanisms, including vortex-shedding and Kelvin-Helmholtz instabilities. Our results can account for the structure of two opposite chains of close bubbles as observed in the galaxy cluster Hydra A. Our results imply that the presence of multiple pairs of bubbles does not necessarily imply several jet-launching episodes. This finding might have implications for feedback mechanisms operating by jets.

  9. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a

  10. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  11. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  12. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  13. X-ray

    MedlinePlus

    ... think you might be pregnant. Alternative Names Radiography Images X-ray X-ray References Geleijns J, Tack ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  14. Extremity x-ray

    MedlinePlus

    ... sensitive to the risks of an x-ray. Images X-ray References Kelly DM. Congenital anomalies of ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  15. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  16. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  17. X-ray Absorption and Emission Study of Dioxygen Activation by a Small-Molecule Manganese Complex

    PubMed Central

    Rees, Julian A.; Martin-Diaconescu, Vlad; Kovacs, Julie A.; DeBeer, Serena

    2015-01-01

    Manganese K-edge X-ray absorption (XAS) and Kβ emission (XES) spectroscopies were used to investigate the factors contributing to O–O bond activation in a small-molecule system. The recent structural characterization of a metastable peroxo-bridged dimeric Mn(III)2 complex derived from dioxygen has provided the first opportunity to obtain X-ray spectroscopic data on this type of species. Ground state and time-dependent density functional theory calculations have provided further insight into the nature of the transitions in XAS pre-edge and valence-to-core (VtC) XES spectral regions. An experimentally validated electronic structure description has also enabled the determination of structural and electronic factors that govern peroxo bond activation, and have allowed us to propose both a rationale for the metastability of this unique compound, as well as potential future ligand designs which may further promote or inhibit O–O bond scission. Finally, we have explored the potential of VtC XES as an element-selective probe of both the coordination mode and degree of activation of peroxomanganese adducts. The comparison of these results to a recent VtC XES study of iron-mediated dintrogen activation helps to illustrate the factors that may determine the success of this spectroscopic method for future studies of small-molecule activation at transition metal sites. PMID:26061165

  18. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  19. Application of instrumental neutron activation and X-ray fluorescence analysis to the examination of objects of art

    NASA Astrophysics Data System (ADS)

    Panczyk, E.; Ligeza, M.; Walis, L.

    1999-01-01

    In the Institute of Nuclear Chemistry and Technology in Warsaw in collaboration with the Department of Preservation and Restoration of Works of Art of the Academy of Fine Arts in Cracow and National Museum in Warsaw systematic studies using nuclear methods, particulary instrumental neutron activation analysis and X-ray fluorescence analysis, have been carried out on the panel paintings from the Krakowska- Nowosadecka School and Silesian School of the period from the XIV-XVII century, Chinese and Thai porcelains and mummies fillings of Egyptian sarcophagi. These studies will provide new data to the existing data base, will permit to compare materials used by various schools and individual artists.

  20. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.