Science.gov

Sample records for active yeast cells

  1. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  2. Detection of Active Yeast Cells (Saccharomyces cerevisiae) in Frozen Dough Sections.

    PubMed

    Autio, K; Mattila-Sandholm, T

    1992-07-01

    A new method based on fluorescence microscopy was developed to detect active yeast cells in cryosections of wheat dough. The sections were stained with 4',6-diamidino-2-phenylindole (DAPI) and counterstained with Evans blue. The active yeast cells in the sections appeared brilliant yellow and were readily distinguished from the red dough matrix. The dead cells allowed penetration of the Evans blue through the cell membrane, which interfered with the DAPI staining and caused the dead cells to blend into the red environment. The number of active yeast cells in fermenting dough sections containing different proportions of living and dead yeast cells correlated well with the gas-forming capability of the yeast in the dough but not with the results of the conventional plate count method. The new method allows the study of yeast activity not only during the different stages of frozen dough processing but also during the fermentation of doughs. PMID:16348731

  3. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    PubMed

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting. PMID:26060080

  4. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    PubMed

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting.

  5. A yeast surface display system for the discovery of ligands that trigger cell activation.

    PubMed

    Cho, B K; Kieke, M C; Boder, E T; Wittrup, K D; Kranz, D M

    1998-11-01

    Opposing cells often communicate signalling events using multivalent interactions between receptors present on their cell surface. For example, T cells are typically activated when the T cell receptor (TCR) and its associated costimulatory molecules are multivalently engaged by the appropriate ligands present on an antigen presenting cell. In this report, yeast expressing high cell-surface levels of a TCR ligand (a recombinant antibody to the TCR Vbeta domain) were shown to act as 'pseudo' antigen presenting cells and induce T cell activation as monitored by increased levels of CD25 and CD69 and by downregulation of cell surface TCR. Similar levels of T cell activation could occur even when a 30-fold excess of irrelevant yeast was present, suggesting that such a yeast display system, by virtue of its ability to present ligands multivalently, may be used in highly sensitive procedures to identify novel polypeptides that interact multivalently with cell surface receptors and thereby trigger specific cellular responses.

  6. [Detection of viable metabolically active yeast cells using a colorimetric assay].

    PubMed

    Růzicka, F; Holá, V

    2008-02-01

    The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.

  7. Inhibition of intracellular growth of Histoplasma capsulatum yeast cells by cytokine-activated human monocytes and macrophages.

    PubMed Central

    Newman, S L; Gootee, L; Bucher, C; Bullock, W E

    1991-01-01

    Human monocytes/macrophages (M psi) were infected with Histoplasma capsulatum yeast cells, and intracellular growth was quantified after 24 h of incubation in medium alone or in medium containing cytokines. Yeast cells multiplied within freshly isolated monocytes, cultured M psi, and alveolar M psi with intracellular generation times of 14.2 +/- 1.4, 18.5 +/- 2.1, and 19.9 +/- 1.9 h (mean +/- standard error of the mean), respectively. Monocytes and M psi inhibited the intracellular growth of yeast cells in response to cytokine supernatant; maximum inhibition was obtained when cytokines were added to cell monolayers immediately after infection. Opsonization of yeast cells in normal serum or in H. capsulatum-immune serum did not affect the intracellular generation time of yeast cells in either control M psi or cytokine-activated M psi. PMID:1898916

  8. Isolation of diploid baker's yeast capable of strongly activating immune cells and analyses of the cell wall structure.

    PubMed

    Takada, Yuki; Mizobuchi, Ayano; Kato, Takayuki; Kasahara, Emiko; Ito, Chinatsu; Watanabe, Hajime; Kanzaki, Ken; Kitagawa, Seiichi; Tachibana, Taro; Azuma, Masayuki

    2014-01-01

    Diploid baker's yeast capable of strongly activating a mouse macrophage was constructed based on haploid mutant AQ-37 obtained previously. The obtained strain BQ-55 activated also human immune cells. To clarify a factor for the activation, the cell wall structure, especially the β-glucan structure, was analyzed, suggesting that the length of branching, β-1,6-glucan, may be one of the factors.

  9. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  10. Single yeast cell imaging.

    PubMed

    Wolinski, Heimo; Kohlwein, Sepp D

    2014-01-01

    Microscopic imaging techniques play a pivotal role in the life sciences. Here we describe labeling and imaging methods for live yeast cell imaging. Yeast is an excellent reference organism for biomedical research to investigate fundamental cellular processes, and has gained great popularity also for large-scale imaging-based screens. Methods are described to label live yeast cells with organelle-specific fluorescent dyes or GFP-tagged proteins, and how cells are maintained viable over extended periods of time during microscopy. We point out common pitfalls and potential microscopy artifacts arising from inhomogeneous labeling and depending on cellular physiology. Application and limitation of bleaching techniques to address dynamic processes in the yeast cell are described.

  11. How can yeast cells decide between three activated MAP kinase pathways? A model approach.

    PubMed

    Rensing, Ludger; Ruoff, Peter

    2009-04-21

    In yeast (Saccharomyces cerevisiae), the regulation of three MAP kinase pathways responding to pheromones (Fus3 pathway), carbon/nitrogen starvation (Kss1 pathway), and high osmolarity/osmotic stress (Hog1 pathway) is the subject of intensive research. We were interested in the question how yeast cells would respond when more than one of the MAP kinase pathways are activated simultaneously. Here, we give a brief overview over the regulatory mechanisms of the yeast MAP kinase pathways and investigate a kinetic model based on presently known molecular interactions and feedbacks within and between the three mitogen-activated protein kinases (MAPK) pathways. When two pathways are activated simultaneously with the osmotic stress response as one of them, the model predicts that the osmotic stress response (Hog1 pathway) is turned on first. The same is true when all three pathways are activated at the same time. When testing simultaneous stimulations by low nitrogen and pheromones through the Kss1 and Fus3 pathways, respectively, the low nitrogen response dominates over the pheromone response. Due to its autocatalytic activation mechanism, the pheromone response (Fus3 pathway) shows typical sigmoid response kinetics and excitability. In the presence of a small but sufficient amount of activated Fus3, a stimulation by pheromones will lead to a rapid self-amplification of the pheromone response. This 'excitability' appears to be a feature of the pheromone pathway that has specific biological significance. PMID:19322936

  12. Cadmium induces the activation of cell wall integrity pathway in budding yeast.

    PubMed

    Xiong, Bing; Zhang, Lilin; Xu, Huihui; Yang, Yi; Jiang, Linghuo

    2015-10-01

    MAP kinases are important signaling molecules regulating cell survival, proliferation and differentiation, and can be activated by cadmium stress. In this study, we demonstrate that cadmium induces phosphorylation of the yeast cell wall integrity (CWI) pathway_MAP kinase Slt2, and this cadmium-induced CWI activation is mediated by the cell surface sensor Mid2 through the GEF Rom1, the central regulator Rho1 and Bck1. Nevertheless, cadmium stress does not affect the subcellular localization of Slt2 proteins. In addition, this cadmium-induced CWI activation is independent on the calcium/calcineurin signaling and the high osmolarity glycerol (HOG) signaling pathways in yeast cells. Furthermore, we tested the cadmium sensitivity of 42 paired double-gene deletion mutants between six CWI components and seven components of the HOG pathway. Our results indicate that the CWI pathway is epistatic to the HOG pathway in cadmium sensitivity. However, gene deletion mutations for the Swi4/Swi6 transcription factor complex show synergistic effects with mutations of HOG components in cadmium sensitivity.

  13. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    SciTech Connect

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  14. Protein aggregation activates erratic stress response in dietary restricted yeast cells

    PubMed Central

    Bhadra, Ankan Kumar; Das, Eshita; Roy, Ipsita

    2016-01-01

    Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington’s disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account. PMID:27633120

  15. Protein aggregation activates erratic stress response in dietary restricted yeast cells.

    PubMed

    Bhadra, Ankan Kumar; Das, Eshita; Roy, Ipsita

    2016-01-01

    Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account. PMID:27633120

  16. Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

    PubMed Central

    Trawczyńska, Ilona; Wójcik, Marek

    2015-01-01

    Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g. PMID:26019618

  17. A high-throughput assay for modulators of NNT activity in permeabilized yeast cells.

    PubMed

    Meadows, Nicholas A; Saxty, Barbara; Albury, Mary S; Kettleborough, Catherine A; Ashcroft, Frances M; Moore, Anthony L; Cox, Roger D

    2011-08-01

    Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT's role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.

  18. Expanding the yeast prion world: Active prion conversion of non-glutamine/asparagine-rich Mod5 for cell survival.

    PubMed

    Suzuki, Genjiro; Tanaka, Motomasa

    2013-01-01

    Mammalian and fungal prion proteins form self-perpetuating β-sheet-rich fibrillar aggregates called amyloid. Prion inheritance is based on propagation of the regularly oriented amyloid structures of the prion proteins. All yeast prion proteins identified thus far contain aggregation-prone glutamine/asparagine (Gln/Asn)-rich domains, although the mammalian prion protein and fungal prion protein HET-s do not contain such sequences. In order to fill this gap, we searched for novel yeast prion proteins lacking Gln/Asn-rich domains via a genome-wide screen based on cross-seeding between two heterologous proteins and identified Mod5, a yeast tRNA isopentenyltransferase, as a novel non-Gln/Asn-rich yeast prion protein. Mod5 formed self-propagating amyloid fibers in vitro and the introduction of Mod5 amyloids into non-prion yeast induced dominantly and cytoplasmically heritable prion state [MOD (+) ], which harbors aggregates of endogenous Mod5. [MOD (+) ] yeast showed an increased level of membrane lipid ergosterol and acquired resistance to antifungal agents. Importantly, enhanced de novo formation of [MOD (+) ] was observed when non-prion yeast was grown under selective pressures from antifungal drugs. Our findings expand the family of yeast prions to non-Gln/Asn-rich proteins and reveal the acquisition of a fitness advantage for cell survival through active prion conversion.

  19. Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: Novel insights into diverse MAPK outcomes

    PubMed Central

    2011-01-01

    Background The yeast cell wall integrity mitogen-activated protein kinase (CWI-MAPK) pathway is the main regulator of adaptation responses to cell wall stress in yeast. Here, we adopt a genomic approach to shed light on two aspects that are only partially understood, namely, the characterization of the gene functional catalog associated with CWI pathway activation and the extent to which MAPK activation correlates with transcriptional outcomes. Results A systematic yeast mutant deletion library was screened for constitutive transcriptional activation of the CWI-related reporter gene MLP1. Monitoring phospho-Slt2/Mpk1 levels in the identified mutants revealed sixty-four deletants with high levels of phosphorylation of this MAPK, including mainly genes related to cell wall construction and morphogenesis, signaling, and those with unknown function. Phenotypic analysis of the last group of mutants suggests their involvement in cell wall homeostasis. A good correlation between levels of Slt2 phosphorylation and the magnitude of the transcriptional response was found in most cases. However, the expression of CWI pathway-related genes was enhanced in some mutants in the absence of significant Slt2 phosphorylation, despite the fact that functional MAPK signaling through the pathway was required. CWI pathway activation was associated to increased deposition of chitin in the cell wall - a known survival compensatory mechanism - in about 30% of the mutants identified. Conclusion We provide new insights into yeast genes related to the CWI pathway and into how the state of activation of the Slt2 MAPK leads to different outcomes, discovering the versatility of this kind of signaling pathways. These findings potentially have broad implications for understanding the functioning of other eukaryotic MAPKs. PMID:21810245

  20. A trans-Activation Domain in Yeast Heat Shock Transcription Factor Is Essential for Cell Cycle Progression during Stress

    PubMed Central

    Morano, Kevin A.; Santoro, Nicholas; Koch, Keith A.; Thiele, Dennis J.

    1999-01-01

    Gene expression in response to heat shock is mediated by the heat shock transcription factor (HSF), which in yeast harbors both amino- and carboxyl-terminal transcriptional activation domains. Yeast cells bearing a truncated form of HSF in which the carboxyl-terminal transcriptional activation domain has been deleted [HSF(1-583)] are temperature sensitive for growth at 37°C, demonstrating a requirement for this domain for sustained viability during thermal stress. Here we demonstrate that HSF(1-583) cells undergo reversible cell cycle arrest at 37°C in the G2/M phase of the cell cycle and exhibit marked reduction in levels of the molecular chaperone Hsp90. As in higher eukaryotes, yeast possesses two nearly identical isoforms of Hsp90: one constitutively expressed and one highly heat inducible. When expressed at physiological levels in HSF(1-583) cells, the inducible Hsp90 isoform encoded by HSP82 more efficiently suppressed the temperature sensitivity of this strain than the constitutively expressed gene HSC82, suggesting that different functional roles may exist for these chaperones. Consistent with a defect in Hsp90 production, HSF(1-583) cells also exhibited hypersensitivity to the Hsp90-binding ansamycin antibiotic geldanamycin. Depletion of Hsp90 from yeast cells wild type for HSF results in cell cycle arrest in both G1/S and G2/M phases, suggesting a complex requirement for chaperone function in mitotic division during stress. PMID:9858564

  1. In Vivo Yeast Cell Morphogenesis Is Regulated by a p21-Activated Kinase in the Human Pathogen Penicillium marneffei

    PubMed Central

    Boyce, Kylie J.; Schreider, Lena; Andrianopoulos, Alex

    2009-01-01

    Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems. PMID:19956672

  2. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast

    PubMed Central

    Ortega, Francisco G; Fernández-Baldo, Martín A; Fernández, Jorge G; Serrano, María J; Sanz, María I; Diaz-Mochón, Juan J; Lorente, José A; Raba, Julio

    2015-01-01

    In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors. PMID:25844035

  3. Sporothrix schenckii yeasts induce ERK pathway activation and secretion of IL-6 and TNF-α in rat mast cells, but no degranulation.

    PubMed

    Romo-Lozano, Yolanda; Hernández-Hernández, Francisca; Salinas, Eva

    2014-11-01

    Sporothrix schenckii is a dimorphic fungus that causes sporotrichosis, a subcutaneous mycosis found throughout the world in humans and other mammals. After contact with conidia, transition to the yeast stage is required for establishment of infection. Mast cells are one of the first components of the immune system to make contact with invading pathogens. They release potent mediators that are decisive in initiating and directing the course of immune and inflammatory responses in the host. It remains unknown whether or not yeast cells of S. schenckii activate mast cells. Our aim in this study was to evaluate the in vitro response of mast cells to S. schenckii yeasts cells. Mast cells became activated after interaction with the yeasts, although exocytosis of preformed mediators was not stimulated. Sporothrix schenckii yeasts induced the release of early response cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 and activation of the extracellular signal-regulated kinase (ERK) signaling pathway in mast cells. As TNF-α and IL-6 are considered crucial mediators in the defense of the host against fungal disease, the release of both mediators from mast cells may contribute to the overall response of the host immune system during S. schenckii infection. PMID:25262023

  4. Sporothrix schenckii yeasts induce ERK pathway activation and secretion of IL-6 and TNF-α in rat mast cells, but no degranulation.

    PubMed

    Romo-Lozano, Yolanda; Hernández-Hernández, Francisca; Salinas, Eva

    2014-11-01

    Sporothrix schenckii is a dimorphic fungus that causes sporotrichosis, a subcutaneous mycosis found throughout the world in humans and other mammals. After contact with conidia, transition to the yeast stage is required for establishment of infection. Mast cells are one of the first components of the immune system to make contact with invading pathogens. They release potent mediators that are decisive in initiating and directing the course of immune and inflammatory responses in the host. It remains unknown whether or not yeast cells of S. schenckii activate mast cells. Our aim in this study was to evaluate the in vitro response of mast cells to S. schenckii yeasts cells. Mast cells became activated after interaction with the yeasts, although exocytosis of preformed mediators was not stimulated. Sporothrix schenckii yeasts induced the release of early response cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 and activation of the extracellular signal-regulated kinase (ERK) signaling pathway in mast cells. As TNF-α and IL-6 are considered crucial mediators in the defense of the host against fungal disease, the release of both mediators from mast cells may contribute to the overall response of the host immune system during S. schenckii infection.

  5. Bck2 Acts through the MADS Box Protein Mcm1 to Activate Cell-Cycle-Regulated Genes in Budding Yeast

    PubMed Central

    Bastajian, Nazareth; Friesen, Helena; Andrews, Brenda J.

    2013-01-01

    The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a truncated version of Bck2 and discovered six novel Bck2-binding partners including Mcm1, an essential protein that binds to and activates M/G1 promoters through Early Cell cycle Box (ECB) elements as well as to G2/M promoters. At M/G1 promoters Mcm1 is inhibited by association with two repressors, Yox1 or Yhp1, and gene activation ensues once repression is relieved by an unknown activating signal. Here, we show that Bck2 interacts physically with Mcm1 to activate genes during G1 phase. We used chromatin immunoprecipitation (ChIP) experiments to show that Bck2 localizes to the promoters of M/G1-specific genes, in a manner dependent on functional ECB elements, as well as to the promoters of G1/S and G2/M genes. The Bck2-Mcm1 interaction requires valine 69 on Mcm1, a residue known to be required for interaction with Yox1. Overexpression of BCK2 decreases Yox1 localization to the early G1-specific CLN3 promoter and rescues the lethality caused by overexpression of YOX1. Our data suggest that Yox1 and Bck2 may compete for access to the Mcm1-ECB scaffold to ensure appropriate activation of the initial suite of genes required for cell cycle commitment. PMID:23675312

  6. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    PubMed

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  7. Analysis of mitogen-activated protein kinase activity in yeast.

    PubMed

    Elion, Elaine A; Sahoo, Rupam

    2010-01-01

    Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well. PMID:20811996

  8. Cell size control in yeast

    PubMed Central

    Turner, Jonathan J.; Ewald, Jennifer C.; Skotheim, Jan M.

    2012-01-01

    Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell cycle regulatory network, the molecular mechanismscoupling growth to division, and thereby controlling cell size, have remained elusive. Recent workin yeast has reinvigorated the size control field and suggested provocative mechanisms forthe distinct functions of setting and sensing cell size. Further examination of size sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control. PMID:22575477

  9. Regulation of Cdc28 Cyclin-Dependent Protein Kinase Activity during the Cell Cycle of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Mendenhall, Michael D.; Hodge, Amy E.

    1998-01-01

    The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity—cyclin-CKI binding and phosphorylation-dephosphorylation events—are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized. PMID:9841670

  10. Yeast peptide pheromones, a-factor and alpha-factor, activate a common response mechanism in their target cells.

    PubMed

    Bender, A; Sprague, G F

    1986-12-26

    We show that in yeast the cell type specificity of pheromone response is determined solely by the species of receptor that a cell synthesizes. The two receptor-pheromone interactions are functionally interchangeable and involve the creation of a common intracellular signal. In particular, we find that provision of a-factor receptor or alpha-factor receptor in mat alpha 1 mutants, which normally do not express either receptor or any other a- or alpha-specific products, allows response to the appropriate pheromone. Moreover, provision of a-factor receptor in a cells lacking alpha-factor receptor restores mating competence to those cells. Finally, an aspect of pheromone response that is normally unique to a-factor action on alpha cells--increased transcription from the alpha-specific STE3 gene--can also be observed following alpha-factor treatment of pseudo-a cells (mat alpha 2 ste3 ste13), special mutants that respond to alpha-factor and also have an active STE3 promoter.

  11. [Determination of riboflavin kinase activity in yeast].

    PubMed

    Shavlovsky, G M; Kashchenko, V E

    1975-01-01

    It is established that the main reason of the riboflavin kinase (RFK, EC 2.7.1.26) low specific activity in the cell-free extracts of the yeast Pichia guillermondii Wickerham ATCC 9058 is the presence of alkaline phosphatase (EC 3.1.3.1), effectively destructing flaven mononucleotide. By chromatography of the cell-free extracts of P. guillermondii on DEAE-Sephadex A-50, CM-Sphadex C-50, CM-cellulose, Sephadexes G-75 and G-100 RFK and alkaline phosphatase may be separated completely. Any of these procedures results in a several times increase of the RFK activity as compared with the initial preparation. One failed to obtain a similar effect by fractionation of the extracts with amminium sulphate and by hydroxylapatite chromatography. A simple method is developed for determining the activity of RFK in the cell-free extracts of yeast on the basis of negative adsorption of this enzyme on DEAE-Sephadex A-50. A selective inhibition of alkaline phosphatase by ions Be2+ and F- yields a less satisfactory result. The data are presented on the PFK activity of certain species of flavinogenic (Pichia guillermondii, Torulopsis camdida) and non-flavinogenic (Pichia ohmeri, Candida utilis, Saccharomyces cervisiae) yeast. PMID:174262

  12. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling.

    PubMed

    Kistowska, Magdalena; Fenini, Gabriele; Jankovic, Dragana; Feldmeyer, Laurence; Kerl, Katrin; Bosshard, Philipp; Contassot, Emmanuel; French, Lars E

    2014-12-01

    Although being a normal part of the skin flora, yeasts of the genus Malassezia are associated with several common dermatologic conditions including pityriasis versicolour, seborrhoeic dermatitis (SD), folliculitis, atopic eczema/dermatitis (AE/AD) and dandruff. While Malassezia spp. are aetiological agents of pityriasis versicolour, a causal role of Malassezia spp. in AE/AD and SD remains to be established. Previous reports have shown that fungi such as Candida albicans and Aspergillus fumigatus are able to efficiently activate the NLRP3 inflammasome leading to robust secretion of the pro-inflammatory cytokine IL-1β. To date, innate immune responses to Malassezia spp. are not well characterized. Here, we show that different Malassezia species could induce NLRP3 inflammasome activation and subsequent IL-1β secretion in human antigen-presenting cells. In contrast, keratinocytes were not able to secrete IL-1β when exposed to Malassezia spp. Moreover, we demonstrate that IL-1β secretion in antigen-presenting cells was dependent on Syk-kinase signalling. Our results identify Malassezia spp. as potential strong inducers of pro-inflammatory responses when taken up by antigen-presenting cells and identify C-type lectin receptors and the NLRP3 inflammasome as crucial actors in this process. PMID:25267545

  13. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. PMID:27084693

  14. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned.

  15. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  16. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.

    PubMed

    Guaragnella, Nicoletta; Zdralević, Maša; Lattanzio, Paolo; Marzulli, Domenico; Pracheil, Tammy; Liu, Zhengchang; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2013-12-01

    In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD. PMID:23906793

  17. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.

    PubMed

    Guaragnella, Nicoletta; Zdralević, Maša; Lattanzio, Paolo; Marzulli, Domenico; Pracheil, Tammy; Liu, Zhengchang; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2013-12-01

    In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD.

  18. Yeast cell factories for fine chemical and API production

    PubMed Central

    Pscheidt, Beate; Glieder, Anton

    2008-01-01

    This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii. PMID:18684335

  19. Resveratrol Modulates Mitochondria Dynamics in Replicative Senescent Yeast Cells

    PubMed Central

    Wang, Yu-Han; Chang, Ko-Wei; Chen, Ying-Chieh; Chang, Chuang-Rung

    2014-01-01

    Mitochondria form a reticulum network dynamically fuse and divide in the cell. The balance between mitochondria fusion and fission is correlated to the shape, activity and integrity of these pivotal organelles. Resveratrol is a polyphenol antioxidant that can extend life span in yeast and worm. This study examined mitochondria dynamics in replicative senescent yeast cells as well as the effects of resveratrol on mitochondria fusion and fission. Collecting cells by biotin-streptavidin sorting method revealed that majority of the replicative senescent cells bear fragmented mitochondrial network, indicating mitochondria dynamics favors fission. Resveratrol treatment resulted in a reduction in the ratio of senescent yeast cells with fragmented mitochondria. The readjustment of mitochondria dynamics induced by resveratrol likely derives from altered expression profiles of fusion and fission genes. Our results demonstrate that resveratrol serves not only as an antioxidant, but also a compound that can mitigate mitochondria fragmentation in replicative senescent yeast cells. PMID:25098588

  20. Glutaraldehyde enhanced dielectrophoretic yeast cell separation

    PubMed Central

    Gagnon, Zachary; Mazur, Jill; Chang, Hsueh-Chia

    2009-01-01

    We introduce a method for improved dielectrophoretic (DEP) discrimination and separation of viable and nonviable yeast cells. Due to the higher cell wall permeability of nonviable yeast cells compared with their viable counterpart, the cross-linking agent glutaraldehyde (GLT) is shown to selectively cross-link nonviable cells to a much greater extent than viable yeast. The DEP crossover frequency (cof) of both viable and nonviable yeast cells was measured over a large range of buffer conductivities (22 μS∕cm–400 μS∕cm) in order to study this effect. The results indicate that due to selective nonviable cell cross-linking, GLT modifies the DEP cof of nonviable cells, while viable cell cof remains relatively unaffected. To investigate this in more detail, a dual-shelled oblate spheroid model was evoked and fitted to the cof data to study cell electrical properties. GLT treatment is shown to minimize ion leakage out of the nonviable yeast cells by minimizing changes in cytoplasm conductivity over a large range of ionic concentrations. This effect is only observable in nonviable cells where GLT treatment serves to stabilize the cell cytoplasm conductivity over a large range of buffer conductivity and allow for much greater differences between viable and nonviable cell cofs. As such, by taking advantage of differences in cell wall permeability GLT magnifies the effect DEP has on the field induced separation of viable and nonviable yeasts. PMID:20216970

  1. An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeast Saccharomyces cerevisiae.

    PubMed

    Almeida, Bruno; Sampaio-Marques, Belém; Carvalho, Joana; Silva, Manuel T; Leão, Cecília; Rodrigues, Fernando; Ludovico, Paula

    2007-05-01

    Ciclopirox olamine (CPO), a fungicidal agent widely used in clinical practice, induced in Saccharomyces cerevisiae an active cell death (ACD) process characterized by changes in nuclear morphology and chromatin condensation associated with the appearance of a population in the sub-G(0)/G(1) cell cycle phase and an arrest delay in the G(2)/M phases. This ACD was associated neither with intracellular reactive oxygen species (ROS) signaling, as revealed by the use of different classes of ROS scavengers, nor with a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive phenotype. Furthermore, CPO-induced cell death seems to be dependent on unknown protease activity but independent of the apoptotic regulators Aif1p and Yca1p and of autophagic pathways involving Apg5p, Apg8p and Uth1p. Our results show that CPO triggers in S. cerevisiae an atypical nonapoptotic, nonautophagic ACD with as yet unknown regulators. PMID:17233764

  2. Biodiversity of brewery yeast strains and their fermentative activities.

    PubMed

    Berlowska, Joanna; Kregiel, Dorota; Rajkowska, Katarzyna

    2015-01-01

    We investigated the genetic, biochemical, fermentative and physiological characteristics of brewery yeast strains and performed a hierarchical cluster analysis to evaluate their similarity. We used five different ale and lager yeast strains, originating from different European breweries and deposited at the National Collection of Yeast Cultures (UK). Ale and lager strains exhibited different genomic properties, but their assimilation profiles and pyruvate decarboxylase activities corresponded to their species classifications. The activity of another enzyme, succinate dehydrogenase, varied between different brewing strains. Our results confirmed that ATP and glycogen content, and the activity of the key metabolic enzymes succinate dehydrogenase and pyruvate decarboxylase, may be good general indicators of cell viability. However, the genetic properties, physiology and fermentation capacity of different brewery yeasts are unique to individual strains. PMID:25267007

  3. The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway

    PubMed Central

    Safia; Kamil, Mohd; Jadiya, Pooja; Sheikh, Saba; Haque, Ejazul; Nazir, Aamir; Lakshmi, Vijai; Mir, Snober S.

    2015-01-01

    The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic

  4. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  5. Enzyme Evolution by Yeast Cell Surface Engineering.

    PubMed

    Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Artificial evolution of proteins with the aim of acquiring novel or improved functionality is important for practical applications of the proteins. We have developed yeast cell surface engineering methods (or arming technology) for evolving enzymes. Here, we have described yeast cell surface engineering coupled with in vivo homologous recombination and library screening as a method for the artificial evolution of enzymes such as firefly luciferases. Using this method, novel luciferases with improved substrate specificity and substrate reactivity were engineered. PMID:26060078

  6. Correlation between the physicochemical properties of organic solvents and their biocompatibility toward epoxide hydrolase activity in whole-cells of a yeast, Rhodotorula sp.

    PubMed

    Lotter, Jeanette; Botes, Adriana L; Van Dyk, Martha S; Breytenbach, Jaco C

    2004-08-01

    Epoxides are often highly hydrophobic substrates and the presence of an organic co-solvent within an aqueous bioreactor is in such cases indicated. The effect of 40 water-miscible and -immiscible organic solvents on epoxide hydrolase activity in whole-cells of the yeast Rhodotorula sp. UOFS Y-0448 was investigated. No formal correlation between solvent biocompatibility and physicochemical properties was deductible, although the introduction of hydroxyl groups increased biocompatibility. 1-Pentanol, 2-methylcyclohexanol and 1-octanol were the most biocompatible resulting in relatively low activity losses when used at up to 20% (v/v).

  7. The linear structure of β-glucan from baker's yeast and its activation of macrophage-like RAW264.7 cells.

    PubMed

    Zheng, Xing; Zou, Siwei; Xu, Hui; Liu, Qingye; Song, Jianhui; Xu, Min; Xu, Xiaojuan; Zhang, Lina

    2016-09-01

    Yeast β-glucan has many formulations with different chemical structures, water solubility and purity. In particular, the purity of β-glucan in these formulations is variable and relatively low, contributing to different data on its biological activity. In this study, the major polysaccharide component in the crude Baker's yeast polysaccharides coded as BBG with high purity of 99% was obtained, and its chemical structure was determined to be a linear β-(1,3)-glucan. It was found that BBG interacted with complement receptor 3 (CR3) and toll-like receptor 2 (TLR2) on the surface of macrophage-like RAW264.7 cells, and initiated activation of RAW264.7 cells characterized by significant production of tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Additionally, activation of the nuclear factor kappaB p65 (NF-κB p65), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) induced by BBG, were also observed, further confirming the stimulation of RAW264.7 cells by BBG. All these findings provided important scientific evidences for better understanding the molecular mechanism of action for the linear β-(1,3)-glucan in cells. PMID:27185116

  8. Ethanol tolerance of immobilized brewers' yeast cells.

    PubMed

    Norton, S; Watson, K; D'Amore, T

    1995-04-01

    A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 +/- 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.

  9. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  10. [Structure of mitochondria and activity of their respiratory chain in subsequent generations of yeast cells exposed to He-Ne laser light].

    PubMed

    Manteĭfel', V M; Karu, T I

    2005-01-01

    The data on the effect of He-Ne laser light (lambda = 632.8 nm) on mitochondria of yeasts in late log phase were reviewed. The qualitative analysis of the ultrathin sections of cells demonstrated a nonuniform thickness of the giant branched mitochondria typical for budding yeasts. Exposure to a dose of 460 J/m@2 accelerated cell proliferation, activated respiratory chain enzymes (cytochrome c oxidase and NADH dehydrogenase), and also changed the microstructure of the giant mitochondria--much of the narrow regions of the mitochondrial tube with sections < or = 0.06 microm2 were dilated (while no signs of organelle damage were observed). Relative surface area of the cristae increased in such mitochondria, which can be due to the activation of their respiration and ATP synthesis. The number of associations between mitochondria and endoplasmic reticulum increased in cells in early log phase, which reflects high capacity of mitochondria to absorb Ca2+. Altered giant mitochondria configuration can increase the efficiency of both energy transfer and Ca2+ distribution in the cytoplasm. PMID:16535977

  11. [Activities of some yeast flavogenic enzymes in situ].

    PubMed

    Logvinenko, E M; Trach, V M; Kashchenko, V E; Zakal'skiĭ, A E; Koltun, L V; Shavlovskiĭ, G M

    1977-09-01

    Effects of digitonin, dimethylsulfoxide and protamine sulfate on yeast Pichia guilliermondii were studied in order to produce cells with increased permeability and possessing the GTP-cyclohydrolase, riboflavinsynthetase and riboflavinkinase activities. The digitonin-treated cells exhibited a higher cyclohydrolase activity than the cell-free extracts; the activities of riboflavinsynthetase and riboflavinkinase in the cells and cell-free extracts were found to be similar. Treatment of cells with dimethylsulfoxide proved to be most effective to determine the activity of GTP-cyclohydrolase and also helpful to determine that of riboflavinsynthetase. Protamine sulfate had no effect on the cells of P. guilliermondii. The methods developed were used to determine the activities of GTP-cyclohydrolase, riboflavinsynthetase and riboflavinkinase in the cells of flavinogenic (P. guiller-mondii, Torulopsis candida) and non-flavinogenic (Candida utilis, Candida pulcherrima) yeasts grown in iron-rich and iron-deficient media. Derepression of riboflavinsynthetase and GTP-cyclohydrolase syntheses under conditions of Fe deficiency in the flavinogenic yeast cells confirmed previously made assumptions. PMID:199288

  12. Cell surface recycling in yeast: mechanisms and machineries.

    PubMed

    MacDonald, Chris; Piper, Robert C

    2016-04-15

    Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeastSaccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway.

  13. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  14. Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Stueland, C S; Lew, D J; Cismowski, M J; Reed, S I

    1993-01-01

    In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation. Images PMID:8388545

  15. Yeast cells proliferation on various strong static magnetic fields and temperatures

    NASA Astrophysics Data System (ADS)

    Otabe, E. S.; Kuroki, S.; Nikawa, J.; Matsumoto, Y.; Ooba, T.; Kiso, K.; Hayashi, H.

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 106/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  16. Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification.

    PubMed

    de Koning, W; Groeneveld, K; Oehlen, L J; Berden, J A; van Dam, K

    1991-04-01

    Activities of glycolytic enzymes were determined in elutriation fractionated cultures of Saccharomyces cerevisiae grown on different carbon sources. Almost pure fractions of single cells at the G1 state of cell division were obtained for some of the growth conditions tested, whereas other stages were enriched in particular fractions. Specific activities of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase were found to be constant during the cell cycle, as reported by van Doorn et al. (1988a), Journal of Bacteriology 170, 4808-4815, and (1988b), Journal of General Microbiology 134, 785-790. In contrast to the earlier reports, the activities of hexokinase, phosphofructokinase, pyruvate kinase and trehalase were also constant in different states of the cell cycle. For hexokinase and phosphofructokinase it was shown that the apparent specific activity in a cell-free extract strongly diminished when extracts contained less that 0.5-1 mg protein ml-1. In the experiments of van Doorn et al. (1988a) the protein content of the outer fractions was up to 20 times lower than that of the central fractions, suggesting an alternative explanation for the observed changes in enzyme activities during the cell cycle. Therefore, we want to rectify the observations presented by van Doorn et al. (1988a), and conclude that the activities of the glycolytic enzymes do not vary greatly during the cell cycle of S. cervisiae. PMID:1856683

  17. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    PubMed

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  18. Fractal analysis of yeast cell optical speckle

    NASA Astrophysics Data System (ADS)

    Flamholz, A.; Schneider, P. S.; Subramaniam, R.; Wong, P. K.; Lieberman, D. H.; Cheung, T. D.; Burgos, J.; Leon, K.; Romero, J.

    2006-02-01

    Steady state laser light propagation in diffuse media such as biological cells generally provide bulk parameter information, such as the mean free path and absorption, via the transmission profile. The accompanying optical speckle can be analyzed as a random spatial data series and its fractal dimension can be used to further classify biological media that show similar mean free path and absorption properties, such as those obtained from a single population. A population of yeast cells can be separated into different portions by centrifuge, and microscope analysis can be used to provide the population statistics. Fractal analysis of the speckle suggests that lower fractal dimension is associated with higher cell packing density. The spatial intensity correlation revealed that the higher cell packing gives rise to higher refractive index. A calibration sample system that behaves similar as the yeast samples in fractal dimension, spatial intensity correlation and diffusion was selected. Porous silicate slabs with different refractive index values controlled by water content were used for system calibration. The porous glass as well as the yeast random spatial data series fractal dimension was found to depend on the imaging resolution. The fractal method was also applied to fission yeast single cell fluorescent data as well as aging yeast optical data; and consistency was demonstrated. It is concluded that fractal analysis can be a high sensitivity tool for relative comparison of cell structure but that additional diffusion measurements are necessary for determining the optimal image resolution. Practical application to dental plaque bio-film and cam-pill endoscope images was also demonstrated.

  19. Mechanics and morphogenesis of fission yeast cells.

    PubMed

    Davì, Valeria; Minc, Nicolas

    2015-12-01

    The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.

  20. Cell Polarization and Cytokinesis in Budding Yeast

    PubMed Central

    Bi, Erfei; Park, Hay-Oak

    2012-01-01

    Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field. PMID:22701052

  1. Elutriation for Cell Cycle Synchronization in Fission Yeast.

    PubMed

    Kume, Kazunori

    2016-01-01

    Cell synchronization is a powerful technique for studying the eukaryotic cell cycle events precisely. The fission yeast is a rod-shaped cell whose growth is coordinated with the cell cycle. Monitoring the cellular growth of fission yeast is a relatively simple way to measure the cell cycle stage of a cell. Here, we describe a detailed method of unperturbed cell synchronization, named centrifugal elutriation, for fission yeast. PMID:26254921

  2. Single-cell phenomics in budding yeast

    PubMed Central

    Ohya, Yoshikazu; Kimori, Yoshitaka; Okada, Hiroki; Ohnuki, Shinsuke

    2015-01-01

    The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast. PMID:26543200

  3. A GTP-binding protein regulates the activity of (1-->3)-beta-glucan synthase, an enzyme directly involved in yeast cell wall morphogenesis.

    PubMed

    Mol, P C; Park, H M; Mullins, J T; Cabib, E

    1994-12-01

    Synthesis of (1-->3)-beta-D-glucan, the major structural component of the yeast cell wall, is synchronized with the budding cycle. Membrane-bound, GTP-stimulated (1-->3)-beta-glucan synthase was dissociated by stepwise treatment with salt and detergents into two soluble fractions, A and B, both required for activity. Fraction A was purified about 800-fold by chromatography on Mono Q and Sephacryl S-300 columns. During purification, GTP binding to protein correlated with synthase complementing activity. A 20-kDa GTP-binding protein was identified by photolabeling in the purified preparation. This preparation no longer required GTP for activity, but incubation with another fraction from the Mono Q column (A1) led to hydrolysis of bound GTP to GDP with a concomitant return of the GTP requirement. Thus, fraction A1 appears to contain a GTPase-activating protein. These results show that the GTP-binding protein not only regulates glucan synthase activity but can be regulated in turn, constituting a potential link between cell cycle controls and wall morphogenesis. PMID:7983071

  4. Lipids and cell death in yeast

    PubMed Central

    Eisenberg, Tobias; Büttner, Sabrina

    2014-01-01

    Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction. PMID:24119111

  5. Neutron Activation Analysis for the Demonstration of Amphibolite Rock-Weathering Activity of a Yeast

    PubMed Central

    Rades-Rohkohl, E.; Hirsch, P.; Fränzle, O.

    1979-01-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 μm) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components. PMID:16345472

  6. Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar

    2014-01-01

    The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419

  7. Mechanics of cell division in fission yeast

    NASA Astrophysics Data System (ADS)

    Chang, Fred

    2012-02-01

    Cytokinesis is the stage of cell division in which a cell divides into two. A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to squeeze the cell into two. In the fission yeast Schizosaccharomyces pombe, cytokinesis also requires a actomyosin ring, which has been generally assumed to provide the force for cleavage. However, in contrast to animal cells, yeast cells assemble a cell wall septum concomitant with ring contraction and possess large (MPa) internal turgor pressure. Here, we show that the inward force generated by the division apparatus opposes turgor pressure; a decrease in effective turgor pressure leads to an increase in cleavage rate. We show that the ring cannot be the primary force generator. Scaling arguments indicate that the contractile ring can only provide a tiny fraction of the mechanical stress required to overcome turgor. Further, we show that cleavage can occur even in the absence of the contractile ring. Instead of the contractile ring, scaling arguments and modeling suggest that the large forces for cytokinesis are produced by the assembly of cell wall polymers in the growing septum.

  8. [Riboflavin transport in cells of riboflavin-dependent yeast mutants].

    PubMed

    Sibirnyĭ, A A; Shavlovskiĭ, G M; Ksheminskaia, G P; Orlovskaia, A G

    1977-01-01

    Riboflavin was transported at a high rate into yeast cells of Pichia guilliermondii and Schwanniomyces occidentalis mutants capable of growth in a medium containing low concentrations of riboflavin, and having multiple susceptibility to some antibiotics and antimetabolites. Sucrose and sodium azide inhibited transport of riboflavin. Other riboflavin dependent mutants of Pichia guilliermondii, Pichia ohmeri, Torulopsis candida, and Saccharomyces cerevisiae, also growing in media containing low concentrations of riboflavin, were not capable of its active transport. PMID:329070

  9. Production of recombinant proteins by yeast cells.

    PubMed

    Celik, Eda; Calık, Pınar

    2012-01-01

    Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe, Yarrowia lipolytica and Arxula adeninivorans, with various characteristics such as being thermo-tolerant or halo-tolerant, rapidly reaching high cell densities or utilizing unusual carbon sources. Several strains were also engineered to have further advantages, such as humanized glycosylation pathways or lack of proteases. Additionally, with a large variety of vectors, promoters and selection markers to choose from, combined with the accumulated knowledge on industrial-scale fermentation techniques and the current advances in the post-genomic technology, it is possible to design more cost-effective expression systems in order to meet the increasing demand for recombinant proteins and glycoproteins. In this review, the present status of the main and most promising yeast expression systems is discussed. PMID:21964262

  10. Production and Ecological Significance of Yeast Cell Wall-Degrading Enzymes from Oerskovia †

    PubMed Central

    Mann, J. W.; Jeffries, T. W.; Macmillan, J. D.

    1978-01-01

    Motile actinomycetes capable of degrading walls of viable yeast cells were isolated from soil and identified as Oerskovia xanthineolytica. A lytic assay based on susceptibility of enzyme-treated cells to osmotic shock was developed, and 10 of 15 strains of O. xanthineolytica, Oerskovia turbata, and nonmotile Oerskovia- like organisms from other collections were found to possess yeast lytic activities. All lytic strains produced laminaranase and α-mannanase, but the amounts, determined by reducing group assays, were not proportional to the observed lytic activities. The Oerskovia isolates demonstrated chemotactic, predatory activity against various yeast strains and killed yeasts in mixed cultures. Of 15 carbon sources tested for production of lytic enzyme, purified yeast cell walls elicited the highest activity. Glucose repressed enzyme production and caused cells to remain in the microfilamentous and motile rod stages of the Oerskovia cell cycle. Crude lytic activity was optimal at pH 5.6 to 7.0 and inactivated by heating for 6 min at 50°C. Partial purification by isoelectric focusing showed that all lytic activity was associated with four β-(1→3)-glucanases. The absence of protein disulfide reductase, N-acetyl-β-d-hexosaminidase, and phosphomannanase in crude preparations indicated that the principal enzyme responsible for yeast wall lysis was a β-(1→3)-glucanase that produced relatively little reducing sugar from yeast glucan. Images PMID:16345321

  11. Actin - a biosensor that determines cell fate in yeasts.

    PubMed

    Smethurst, Daniel G J; Dawes, Ian W; Gourlay, Campbell W

    2014-02-01

    The decision to proliferate, to activate stress response mechanisms or to initiate cell death lies at the heart of the maintenance of a healthy cell population. Within multicellular and colony-forming single-celled organisms, such as yeasts, the functionality of cellular compartments that connect signalling to cell fate must be maintained to maximise adaptability and survival. The actin cytoskeleton is involved in processes such as the regulation of membrane microcompartments, receptor internalisation and the control of master regulatory GTPases, which govern cell decision-making. This affords the actin cytoskeleton a central position within cell response networks. In this sense, a functional actin cytoskeleton is essential to efficiently connect information input to response at the level of the cell. Recent research from fungal, plant and mammalian cells systems has highlighted that actin can trigger apoptotic death in cells that become incompetent to respond to environmental cues. It may also be the case that this property has been appropriated by microorganisms competing for niche environments within a human host. Here, we discuss the research that has been carried out in yeast that links actin to signalling processes and cell fate that supports its role as a biosensor.

  12. The Cell Biology of Fission Yeast Septation.

    PubMed

    García Cortés, Juan C; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-09-01

    In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.

  13. Cdc28 Activates Exit from Mitosis in Budding Yeast

    PubMed Central

    Rudner, Adam D.; Hardwick, Kevin G.; Murray, Andrew W.

    2000-01-01

    The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast. PMID:10871278

  14. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  15. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  16. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  17. Construction and characterization of a thermostable whole-cell chitinolytic enzyme using yeast surface display.

    PubMed

    Li, Xiaobo; Jin, Xiaobao; Lu, Xuemei; Chu, Fujiang; Shen, Juan; Ma, Yan; Liu, Manyu; Zhu, Jiayong

    2014-10-01

    To develop a novel yeast whole-cell biocatalyst by yeast surface display technology that can hydrolyze chitin, the chitinaseC gene from Serratia marcescens AS1.1652 strain was cloned and subcloned into the yeast surface display plasmid pYD1, and the recombinant plasmid pYD1/SmchiC was electroporated into Saccharomyces cerevisiae EBY100 cell. Aga2p-SmChiC fusion protein was expressed and anchored on the yeast cell surface by induction with galactose, which was verified by indirect immunofluorescence and Western blotting. The chitinolytic activity of the yeast whole-cell biocatalyst or partially purified enzyme was detected by agar plate clear zone test, SDS-PAGE zymography and dinitrosalicylic acid method. The results showed that the chitinaseC gene from S. marcescens AS1.1652 strain was successfully cloned and expressed on the yeast cell surface, Aga2p-SmChiC fusion protein with molecular weight (67 kDa) was determined. Tests on the effect of temperature and pH on enzyme activity and stability revealed that the yeast whole-cell biocatalyst and partially purified enzyme possessed both thermal stability and activity, and even maintained some activity under acidic and weakly alkaline conditions. The optimum reaction temperature and pH value were set at 52 °C and 5.0, respectively. Yeast surface display technology succeeded in preparing a yeast whole-cell biocatalyst with chitinolytic activity, and the utilization of chitin could benefit from this process of enzyme preparation.

  18. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis.

    PubMed

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  19. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis

    PubMed Central

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  20. Alcohol production from Jerusalem artichoke using yeasts with inulinase activity

    SciTech Connect

    Guiraud, J.P.; Daurelles, J.; Galzy, P.

    1981-07-01

    The purpose of this article is to show that yeasts with inulinase activity can be used to produce ethanol from the Jerusalem artichoke (Helianthus tuberosus L.). The results show that a fermentable extract can be easily obtained from the Jerusalem artichoke even under cold conditions. Yeasts with inulinase activity can be used to produce ethanol with good profitability. 19 refs.

  1. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    PubMed Central

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  2. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts.

    PubMed

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  3. Effect of selenium on growth and antioxidant enzyme activities of wine related yeasts.

    PubMed

    Assunção, M; Martins, L L; Mourato, M P; Baleiras-Couto, M M

    2015-12-01

    The use of supplements in the diet is a common practice to address nutritional deficiencies. Selenium is an essential micronutrient with an antioxidant and anti-carcinogenic role in human and animal health. There is increasing interest in developing nutritional supplements such as yeast cells enriched with selenium. The possibility of producing beverages, namely wine, with selenium-enriched yeasts, led us to investigate the selenium tolerance of six wine related yeasts. The production of such cells may hamper selenium toxicity problems. Above certain concentrations selenium can be toxic inducing oxidative stress and yeast species can show different tolerance. This work aimed at studying selenium tolerance of a diversity of wine related yeasts, thus antioxidant response mechanisms with different concentrations of sodium selenite were evaluated. Viability assays demonstrated that the yeast Torulaspora delbrueckii showed the highest tolerance for the tested levels of 100 µg mL(-1) of sodium selenite. The evaluation of antioxidative enzyme activities showed the best performance for concentrations of 250 and 100 µg mL(-1), respectively for the yeast species Saccharomyces cerevisiae and Hanseniaspora guilliermondii. These results encourage future studies on the possibility to use pre-enriched yeast cells as selenium supplement in wine production.

  4. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  5. Lipid raft involvement in yeast cell growth and death.

    PubMed

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  6. Lipid raft involvement in yeast cell growth and death

    PubMed Central

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases. PMID:23087902

  7. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    SciTech Connect

    Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  8. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains.

  9. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. PMID:24644263

  10. Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast

    PubMed Central

    Davidich, Maria I.; Bornholdt, Stefan

    2008-01-01

    A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping. PMID:18301750

  11. Astaxanthinogenesis in the yeast Phaffia rhodozyma - optimization of low-cost culture media and yeast cell-wall lysis

    SciTech Connect

    Fontana, J.D.; Baron, M.; Guimaraes, M.F.

    1997-12-31

    Astaxanthin is a diketo-dihydroxy-carotenoid produced by Phaffia rhodozyma, a basidiomicetous yeast. A low-cost fermentation medium consisting of raw sugarcane juice and urea was developed to exploit the active sucrolytic/urelolytic enzyme apparatus inherent to the yeast. As compared to the beneficial effect of 0.1 g% urea, a ready nitrogen source, mild phosphoric pre inversion of juice sucrose to glucose and fructose, promptly fermentable carbon sources, resulted in smaller benefits. Corn steep liquor (CSL) was found to be a valuable supplement for both yeast biomass yield (9.2 g dry cells/L) and astaxanthin production (1.3 mg/g cells). Distillery effluent (vinace), despite only a slightly positive effect on yeast growth, allowed for the highest pigment productivity (1.9 mg/g cells). Trace amounts of Ni{sup 2} (1 mg/L, as a cofactor for urease) resulted in controversial effects, namely, biomass decrease and astaxanthin increase, with no effect on the release (and uptake) of ammonium ion from urea. 13 refs., 6 figs.

  12. Examination and Disruption of the Yeast Cell Wall.

    PubMed

    Okada, Hiroki; Kono, Keiko; Neiman, Aaron M; Ohya, Yoshikazu

    2016-01-01

    The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption. PMID:27480724

  13. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    PubMed

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells. PMID:26392813

  14. Morphogenesis of the Fission Yeast Cell through Cell Wall Expansion.

    PubMed

    Atilgan, Erdinc; Magidson, Valentin; Khodjakov, Alexey; Chang, Fred

    2015-08-17

    The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape.

  15. External and internal triggers of cell death in yeast.

    PubMed

    Falcone, Claudio; Mazzoni, Cristina

    2016-06-01

    In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.

  16. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Suzuki, Michiko; Yamamoto, Shuhei; Sogabe, Atsushi; Yanagidani, Shusaku; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2009-01-01

    Mannosylerythritol lipids (MELs) are produced in large amounts from renewable vegetable oils by Pseudozyma antarctica, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics and pharmaceuticals, the skin care property of MEL-A, the major component of MELs, was investigated using a three-dimensional cultured human skin model. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS) solution of 1 wt%, and the effects of different lipids on the SDS-damaged cells were then evaluated on the basis of the cell viability. The viability of the damaged cells was markedly recovered by the addition of MEL-A in a dose-dependent manner. Compared to the control, MEL-A solutions of 5 wt% and 10 wt% gave the recovery rate of 73% and 91%, respectively, while ceramide solution of 1 wt% gave the rate of over 100%. This revealed that MEL-A shows a ceramide-like moisturizing activity toward the skin cells. Considering the drawbacks of natural ceramides, namely limited amount and high production cost, the yeast biosurfactants should have a great potential as a novel moisturizer for treating the damaged skin. PMID:19915321

  17. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    We constructed a self-cloning diploid baker's yeast strain that overexpressed the transcription activator Msn2. It showed higher tolerance to freeze-thaw stress and higher intracellular trehalose level than observed in the wild-type strain. Overexpression of Msn2 also enhanced the fermentation ability of baker's yeast cells in frozen dough. Hence, Msn2-overexpressing baker's yeast should be useful in frozen-dough baking. PMID:22451415

  18. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast.

    PubMed

    Carraro, Michela; Bernardi, Paolo

    2016-08-01

    Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca(2+)] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca(2+) and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca(2+) uniporter, which in mammals allows rapid equilibration of cytosolic Ca(2+) with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca(2+) and oxidative stress. PMID:26995056

  19. Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls.

    PubMed

    Razmkhab, Sahar; Lopez-Toledano, Azahara; Ortega, José M; Mayen, Manuel; Merida, Julieta; Medina, Manuel

    2002-12-01

    Dehydrated yeast cells at variable concentrations were used as fining agents to decrease the color of white wines with two different degrees of browning (0.153 and 0.177 au, measured at 420 nm). Both wines showed a linear decrease of browning with increasing yeast concentration. However, in terms of efficiency, the yeasts exhibited a higher color lightening at greater concentrations acting on the darker wine. This suggests a preferential retention of some types of yellow-brown compounds that could increase their concentrations at the higher degree of browning. To confirm the role of yeast cell walls in the retention of browning compounds and to evaluate their potential use as fining agents, they were applied at variable concentrations to a browned wine (0.175 au). The cell walls were found to be the active support for the adsorption of browning compounds, but their efficiency was much lower than that of an equivalent amount of the yeast cells from which they were obtained. Finally, HPLC determinations of low-molecular-weight phenolic compounds showed flavan-3-ol derivatives to be significantly retained by both yeasts and their cell walls. PMID:12452671

  20. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    PubMed

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    PubMed

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27510749

  2. Cell migration and division in amoeboid-like fission yeast

    PubMed Central

    Flor-Parra, Ignacio; Bernal, Manuel; Zhurinsky, Jacob; Daga, Rafael R.

    2014-01-01

    Summary Yeast cells are non-motile and are encased in a cell wall that supports high internal turgor pressure. The cell wall is also essential for cellular morphogenesis and cell division. Here, we report unexpected morphogenetic changes in a Schizosaccharomyces pombe mutant defective in cell wall biogenesis. These cells form dynamic cytoplasmic protrusions caused by internal turgor pressure and also exhibit amoeboid-like cell migration resulting from repeated protrusive cycles. The cytokinetic ring responsible for cell division in wild-type yeast often fails in these cells; however, they were still able to divide using a ring-independent alternative mechanism relying on extrusion of the cell body through a hole in the cell wall. This mechanism of cell division may resemble an ancestral mode of division in the absence of cytokinetic machinery. Our findings highlight how a single gene change can lead to the emergence of different modes of cell growth, migration and division. PMID:24357230

  3. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells.

    PubMed

    Kaur, Gurpreet; Panesar, Parmjit S; Bera, Manav B; Kumar, Harish

    2009-01-01

    Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by beta-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to beta-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 degrees C.

  4. [Variability in the flavinogenic activity of Pichia guilliermondi yeasts].

    PubMed

    Shavlovskiĭ, G M; Ksheminskaia, G P; Gumetskiĭ, R Ia

    1975-01-01

    The natural and induced variability of the flavinogenic activity was studied in the strain of Pichia guilliermondii ATCC 9058. The flavinogenic activity of the collection strain showed normal distribution; the amount of riboflavin(RF) accumulated in the medium differed several times in the extreme variants. In the clones with the maximum and minimum accumulation of RF, the distribution of the variants was asymmetric, due to the appearance of the cells with an average flavinogenic activity. The clones have acquired almost the same flavinogenic activity after being transferred eight times on a fresh medium. The asymmetric distribution of the variants according to their flavinogenic activity was found also in the case of the clones obtained from the UV-irradiated cells. The mutants have been isolated, which synthesized 3-30 times more RF than the parent strain in the presence of iron doses optimal for the growth. Five mutants that were most active in producing RF differed in the sensitivity of their flavinogenesis to high concentrations of iron, yeast autolysate, and carbon sources. PMID:1160648

  5. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    PubMed Central

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast. PMID:23346549

  6. Redox control and oxidative stress in yeast cells.

    PubMed

    Herrero, Enrique; Ros, Joaquim; Bellí, Gemma; Cabiscol, Elisa

    2008-11-01

    Protein structure and function can be altered by reactive oxygen species produced either by cell metabolism or by external oxidants. Although catalases, superoxide dismutases and peroxidases contribute to maintaining non-toxic levels of reactive oxygen species, modification of amino acid side chains occurs. In particular, oxidative modification of sulphydryl groups in proteins can be a two-faceted process: it could lead to impairment of protein function or, depending on the redox state of cysteine residues, may activate specific pathways involved in regulating key cell functions. In yeast cells, the thioredoxin and glutaredoxin systems participate in such redox regulation in different cell compartments, and interplay exists between both systems. In this context, glutaredoxins with monothiol activity initially characterised in Saccharomyces cerevisiae may display specific regulatory functions at the mitochondria and nuclei. Furthermore, their structural conservation in other organisms point to a conserved important role in metal homeostasis also in higher eukaryotes. Control of gene expression in response to oxidative stress is mediated by several transcription factors, among which Yap1 has a predominant role in S. cerevisiae (Pap1 in Schizosaccharomyces pombe and Cap1 in Candida albicans). In combination with Gpx3 peroxidase and Ybp1 protein, the activity of Yap1 is itself controlled depending on the redox state of some of its cysteine residues, which determines the nucleocytoplasmic location of the Yap1 molecules. PMID:18178164

  7. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  8. Analysis of the Secretomes of Paracoccidioides Mycelia and Yeast Cells

    PubMed Central

    Weber, Simone Schneider; Parente, Ana Flávia Alves; Borges, Clayton Luiz; Parente, Juliana Alves; Bailão, Alexandre Melo; de Almeida Soares, Célia Maria

    2012-01-01

    Paracoccidioides, a complex of several phylogenetic species, is the causative agent of paracoccidioidomycosis. The ability of pathogenic fungi to develop a multifaceted response to the wide variety of stressors found in the host environment is important for virulence and pathogenesis. Extracellular proteins represent key mediators of the host-parasite interaction. To analyze the expression profile of the proteins secreted by Paracoccidioides, Pb01 mycelia and yeast cells, we used a proteomics approach combining two-dimensional electrophoresis with matrix-assisted laser desorption ionization quadrupole time-of-flight mass spectrometry (MALDI-Q-TOF MS/MS). From three biological replicates, 356 and 388 spots were detected, in mycelium and yeast cell secretomes, respectively. In this study, 160 non-redundant proteins/isoforms were indentified, including 30 and 24 proteins preferentially secreted in mycelia and yeast cells, respectively. In silico analyses revealed that 65% of the identified proteins/isoforms were secreted primarily via non-conventional pathways. We also investigated the influence of protein export inhibition in the phagocytosis of Paracoccidioides by macrophages. The addition of Brefeldin A to the culture medium significantly decreased the production of secreted proteins by both Paracoccidioides and internalized yeast cells by macrophages. In contrast, the addition of concentrated culture supernatant to the co-cultivation significantly increased the number of internalized yeast cells by macrophages. Importantly, the proteins detected in the fungal secretome were also identified within macrophages. These results indicate that Paracoccidioides extracellular proteins are important for the fungal interaction with the host. PMID:23272246

  9. The role of the C-terminus of the human hydroxycarboxylic acid receptors 2 and 3 in G protein activation using Gα-engineered yeast cells.

    PubMed

    Liu, Rongfang; van Veldhoven, Jacobus P D; IJzerman, Adriaan P

    2016-01-01

    In the present study we focused our attention on the family of hydroxycarboxylic acid (HCA) receptors, a GPCR family of three members, of which the HCA2 and HCA3 receptors share 95% high sequence identity but differ considerably in C-terminus length with HCA3 having the longest tail. The two receptors were expressed and analysed for their activation profile in Saccharomyces cerevisiae MMY yeast strains that have different G protein Gα subunits. The hHCA2 receptor was promiscuous in its G protein coupling preference. In the presence of nicotinic acid the hHCA2 receptor activated almost all G protein pathways except Gαq (MMY14). However, the Gα protein coupling profile of the hHCA3 receptor was less promiscuous, as the receptor only activated Gαi1 (MMY23) and Gαi3 (MMY24) pathways. We then constructed two mutant receptors by 'swapping' the short (HCA2) and long (HCA3) C-terminus. The differences in HCA2 and HCA3 receptor activation and G protein selectivity were not controlled, however, by their C-terminal tails, as we observed only minor differences between mutant and corresponding wild-type receptor. This study provides new insights into the G protein coupling profiles of the HCA receptors and the function of the receptor's C terminus, which may be extended to other GPCRs.

  10. The Use of Yeast Surface Display in Biofuel Cells.

    PubMed

    Szczupak, Alon; Alfonta, Lital

    2015-01-01

    Biofuel cells are electrochemical devices which convert chemical energy to electricity using biochemical pathways and redox enzymes. In enzymatic fuel cells purified redox enzymes catalyze the reactions in the anode and cathode compartments whereas in microbial fuel cells (MFCs) the entire metabolism of the microorganisms is exploited. Here, a hybrid biofuel cell concept is presented, which is based on yeast surface display (YSD) of redox enzymes to catalyze the different cell reactions. PMID:26060081

  11. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  12. Measurement and manipulation of cell size parameters in fission yeast.

    PubMed

    Zegman, Yonatan; Bonazzi, Daria; Minc, Nicolas

    2015-01-01

    Cells usually grow to a certain size before they divide. The fission yeast Schizosaccharomyces pombe is an established model to dissect the molecular control of cell size homeostasis and cell cycle. In this chapter, we describe two simple methods to: (1) precisely compute geometrical parameters (cell length, diameter, surface, and volume) of single growing and dividing fission yeast cells with image analysis scripts and (2) manipulate cell diameter with microfabricated chambers and assess for cell size at division. We demonstrate the strength of these approaches in the context of growing spores, which constantly change size and shape and in deriving allometric relationships between cell geometrical parameters associated with G2/M transition. We emphasize these methods to be useful to investigate problems of growth, size, and division in fungal or bacterial cells. PMID:25640442

  13. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew; Suominen, Pirkko; Aristidou, Aristos; Hause, Benjamin Matthew; Van Hoek, Pim; Dundon, Catherine Asleson

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  14. In vitro activity of voriconazole against Mexican oral yeast isolates.

    PubMed

    Sánchez Vargas, Luis Octavio; Eraso, Elena; Carrillo-Muñoz, Alfonso Javier; Aguirre, José Manuel; Gaitán-Cepeda, Luis Alberto; Quindós, Guillermo

    2010-05-01

    Oral candidiasis is the most prevalent complication in HIV-infected and AIDS patients. Topical antifungal treatment is useful for the initial episodes of oral candidiasis, but most patients suffer more than one episode and fluconazole or itraconazole can help in the management, and voriconazole may represent a useful alternative agent for the treatment of recalcitrant oral and oesophageal candidiasis. The aim of this research was to study the in vitro activity of voriconazole and fluconazole against Mexican oral isolates of clinically relevant yeast. The in vitro susceptibility of 187 oral yeast isolates from HIV-infected and healthy Mexicans was determined for fluconazole and voriconazole by the M44-A disc diffusion method. At 24 h, fluconazole was active against 179 of 187 isolates (95.7 %). Moreover, a 100% susceptibility to voriconazole was observed. Voriconazole and fluconazole are highly active in vitro against oral yeast isolates. This study provides baseline data on susceptibilities to both antifungal agents in Mexico.

  15. The price of independence: cell separation in fission yeast.

    PubMed

    Martín-García, Rebeca; Santos, Beatriz

    2016-04-01

    The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise. PMID:26931605

  16. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-01

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  17. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-01

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components. PMID:26223789

  18. Activation of the Hog1p kinase in Isc1p-deficient yeast cells is associated with mitochondrial dysfunction, oxidative stress sensitivity and premature aging.

    PubMed

    Barbosa, António Daniel; Graça, João; Mendes, Vanda; Chaves, Susana Rodrigues; Amorim, Maria Amélia; Mendes, Marta Vaz; Moradas-Ferreira, Pedro; Côrte-Real, Manuela; Costa, Vítor

    2012-05-01

    The Saccharomyces cerevisiae Isc1p, an orthologue of mammalian neutral sphingomyelinase 2, plays a key role in mitochondrial function, oxidative stress resistance and chronological lifespan. Isc1p functions upstream of the ceramide-activated protein phosphatase Sit4p through the modulation of ceramide levels. Here, we show that both ceramide and loss of Isc1p lead to the activation of Hog1p, the MAPK of the high osmolarity glycerol (HOG) pathway that is functionally related to mammalian p38 and JNK. The hydrogen peroxide sensitivity and premature aging of isc1Δ cells was partially suppressed by HOG1 deletion. Notably, Hog1p activation mediated the mitochondrial dysfunction and catalase A deficiency associated with oxidative stress sensitivity and premature aging of isc1Δ cells. Downstream of Hog1p, Isc1p deficiency activated the cell wall integrity (CWI) pathway. Deletion of the SLT2 gene, which encodes for the MAPK of the CWI pathway, was lethal in isc1Δ cells and this mutant strain was hypersensitive to cell wall stress. However, the phenotypes of isc1Δ cells were not associated with cell wall defects. Our findings support a role for Hog1p in the regulation of mitochondrial function and suggest that constitutive activation of Hog1p is deleterious for isc1Δ cells under oxidative stress conditions and during chronological aging. PMID:22445853

  19. A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission Yeasts

    PubMed Central

    Sacristán-Reviriego, Almudena; Madrid, Marisa; Cansado, José; Martín, Humberto; Molina, María

    2014-01-01

    Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi. PMID:24465549

  20. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  1. Modeling the fission yeast cell cycle: Quantized cycle times in wee1 cdc25 mutant cells

    NASA Astrophysics Data System (ADS)

    Sveiczer, Akos; Csikasz-Nagy, Attila; Gyorffy, Bela; Tyson, John J.; Novak, Bela

    2000-07-01

    A detailed mathematical model for the fission yeast mitotic cycle is developed based on positive and negative feedback loops by which Cdc13/Cdc2 kinase activates and inactivates itself. Positive feedbacks are created by Cdc13/Cdc2-dependent phosphorylation of specific substrates: inactivating its negative regulators (Rum1, Ste9 and Wee1/Mik1) and activating its positive regulator (Cdc25). A slow negative feedback loop is turned on during mitosis by activation of Slp1/anaphase-promoting complex (APC), which indirectly re-activates the negative regulators, leading to a drop in Cdc13/Cdc2 activity and exit from mitosis. The model explains how fission yeast cells can exit mitosis in the absence of Ste9 (Cdc13 degradation) and Rum1 (an inhibitor of Cdc13/Cdc2). We also show that, if the positive feedback loops accelerating the G2/M transition (through Wee1 and Cdc25) are weak, then cells can reset back to G2 from early stages of mitosis by premature activation of the negative feedback loop. This resetting can happen more than once, resulting in a quantized distribution of cycle times, as observed experimentally in wee1- cdc25Delta mutant cells. Our quantitative description of these quantized cycles demonstrates the utility of mathematical modeling, because these cycles cannot be understood by intuitive arguments alone.

  2. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Kron, S J; Styles, C A; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape. Images PMID:7841518

  3. Fission Yeast Hotspot Sequence Motifs Are Also Active in Budding Yeast

    PubMed Central

    Steiner, Walter W.; Steiner, Estelle M.

    2012-01-01

    In most organisms, including humans, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. There has been substantial progress recently in elucidating the factors determining the location of meiotic recombination hotspots, and it is becoming clear that simple sequence motifs play a significant role. In S. pombe, there are at least five unique sequence motifs that have been shown to produce hotspots of recombination, and it is likely that there are more. In S. cerevisiae, simple sequence motifs have also been shown to produce hotspots or show significant correlations with hotspots. Some of the hotspot motifs in both yeasts are known or suspected to bind transcription factors (TFs), which are required for the activity of those hotspots. Here we show that four of the five hotspot motifs identified in S. pombe also create hotspots in the distantly related budding yeast S. cerevisiae. For one of these hotspots, M26 (also called CRE), we identify TFs, Cst6 and Sko1, that activate and inhibit the hotspot, respectively. In addition, two of the hotspot motifs show significant correlations with naturally occurring hotspots. The conservation of these hotspots between the distantly related fission and budding yeasts suggests that these sequence motifs, and others yet to be discovered, may function widely as hotspots in many diverse organisms. PMID:23300865

  4. Non-interferometric quantitative phase imaging of yeast cells

    NASA Astrophysics Data System (ADS)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  5. A yeast-based assay identifies drugs active against human mitochondrial disorders.

    PubMed

    Couplan, Elodie; Aiyar, Raeka S; Kucharczyk, Roza; Kabala, Anna; Ezkurdia, Nahia; Gagneur, Julien; St Onge, Robert P; Salin, Bénédicte; Soubigou, Flavie; Le Cann, Marie; Steinmetz, Lars M; di Rago, Jean-Paul; Blondel, Marc

    2011-07-19

    Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.

  6. A yeast-based assay identifies drugs active against human mitochondrial disorders

    PubMed Central

    Couplan, Elodie; Aiyar, Raeka S.; Kucharczyk, Roza; Kabala, Anna; Ezkurdia, Nahia; Gagneur, Julien; St. Onge, Robert P.; Salin, Bénédicte; Soubigou, Flavie; Le Cann, Marie; Steinmetz, Lars M.; di Rago, Jean-Paul; Blondel, Marc

    2011-01-01

    Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases. PMID:21715656

  7. Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    The influence of mitochondrial electron transport chain inhibitors on the electricity outputs of Candida melibiosica yeast-based biofuel cell was investigated. The addition of 30 μM rotenone or antimycin A to the yeast suspension results in a decrease in the current generation, corresponding to 25.7±1.3%, respectively 38.8±1.9% reduction in the electric charge passed through the bioelectrochemical system. The latter percentage coincides with the share of aerobic respiration in the yeast catabolic processes, determined by the decrease of the ethanol production during cultivation in the presence of oxygen compared with that obtained under strict anaerobic conditions. It was established that the presence of both inhibitors leads to almost complete mitochondrial dysfunction, expressed by inactivation of cytochrome c oxidase and NADH:ubiquinone oxidoreductase as well as reduced electrochemical activity of isolated yeast mitochondria. It was also found that methylene blue partially neutralized the rotenone poisoning, probably serving as alternative intracellular electron shuttle for by-passing the complex I blockage. Based on the obtained results, we suppose that electrons generated through the aerobic respiration processes in the mitochondria participate in the extracellular electron transfer from the yeast cells to the biofuel cell anode, which contributes to higher current outputs at aerobic conditions. PMID:24997719

  8. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size.

    PubMed

    Schmoller, Kurt M; Turner, J J; Kõivomägi, M; Skotheim, Jan M

    2015-10-01

    Cell size fundamentally affects all biosynthetic processes by determining the scale of organelles and influencing surface transport. Although extensive studies have identified many mutations affecting cell size, the molecular mechanisms underlying size control have remained elusive. In the budding yeast Saccharomyces cerevisiae, size control occurs in G1 phase before Start, the point of irreversible commitment to cell division. It was previously thought that activity of the G1 cyclin Cln3 increased with cell size to trigger Start by initiating the inhibition of the transcriptional inhibitor Whi5 (refs 6-8). Here we show that although Cln3 concentration does modulate the rate at which cells pass Start, its synthesis increases in proportion to cell size so that its total concentration is nearly constant during pre-Start G1. Rather than increasing Cln3 activity, we identify decreasing Whi5 activity--due to the dilution of Whi5 by cell growth--as a molecular mechanism through which cell size controls proliferation. Whi5 is synthesized in S/G2/M phases of the cell cycle in a largely size-independent manner. This results in smaller daughter cells being born with higher Whi5 concentrations that extend their pre-Start G1 phase. Thus, at its most fundamental level, size control in budding yeast results from the differential scaling of Cln3 and Whi5 synthesis rates with cell size. More generally, our work shows that differential size-dependency of protein synthesis can provide an elegant mechanism to coordinate cellular functions with growth. PMID:26390151

  9. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.

    PubMed

    Liu, Ping; Young, Thomas Z; Acar, Murat

    2015-10-20

    The yeast Saccharomyces cerevisiae is a model organism for replicative aging studies; however, conventional lifespan measurement platforms have several limitations. Here, we present a microfluidics platform that facilitates simultaneous lifespan and gene expression measurements of aging yeast cells. Our multiplexed high-throughput platform offers the capability to perform independent lifespan experiments using different yeast strains or growth media. Using this platform in minimal media environments containing glucose, we measured the full lifespan of individual yeast cells in wild-type and canonical gene deletion backgrounds. Compared to glucose, in galactose we observed a 16.8% decrease in replicative lifespan accompanied by an ∼2-fold increase in single-cell oxidative stress levels reported by PSOD1-mCherry. Using PGAL1-YFP to measure the activity of the bistable galactose network, we saw that OFF and ON cells are similar in their lifespan. Our work shows that aging cells are committed to a single phenotypic state throughout their lifespan.

  10. Yeast CUP1 protects HeLa cells against copper-induced stress.

    PubMed

    Xie, X X; Ma, Y F; Wang, Q S; Chen, Z L; Liao, R R; Pan, Y C

    2015-07-01

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. Yeast CUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study, CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  11. Inhibition of Yap2 activity by MAPKAP kinase Rck1 affects yeast tolerance to cadmium.

    PubMed

    Mazzola, Daiane; Pimentel, Catarina; Caetano, Soraia; Amaral, Catarina; Menezes, Regina; Santos, Claudia N; Eleutherio, Elis; Rodrigues-Pousada, Claudina

    2015-09-14

    Yap2 is a cadmium responsive transcription factor that interacts with MAPK-activated protein (MAPKAP) kinase Rck1. We show that Rck1 deletion confers protection against cadmium toxicity and that the mechanism underlying this observation relies on Yap2. Rck1 removal from the yeast genome potentiates Yap2 activity by increasing protein half-life and delaying its nuclear export. As a consequence, several Yap2 antioxidant targets are over-activated by a mechanism that also requires Yap1. Several genes of the cell wall integrity (CWI) pathway are upregulated under cadmium stress in a Yap2 dependent way. We showed that deletion of CWI genes renders yeast cells more sensitive to cadmium. These findings led us to suggest that in response to cadmium stress Yap2 may serve a dual purpose: oxidative stress attenuation and cell wall maintenance.

  12. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients

    PubMed Central

    Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-01-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other. PMID:27077831

  13. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    PubMed

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other. PMID:27077831

  14. Cellulosic ethanol production by combination of cellulase-displaying yeast cells.

    PubMed

    Baek, Seung-Ho; Kim, Sujin; Lee, Kyusung; Lee, Jung-Kul; Hahn, Ji-Sook

    2012-12-10

    As an effort to find suitable endoglucanases to generate cellulolytic yeast strains, two fungal endoglucanases, Thermoascus aurantiacus EGI and Trichoderma reesei EGII, and two bacterial endoglucanases, Clostridium thermocellum CelA and CelD, were expressed on the yeast surface, and their surface expression levels, pH- and temperature-dependent enzyme activities, and substrate specificities were analyzed. T. aurantiacus EGI showed similar patterns of pH- and temperature-dependent activities to those of T. reesei EGII which has been widely used due to its high enzyme activity. Although EGII showed higher carboxymethyl cellulose (CMC) degradation activity than EGI, EGI showed better activity toward phosphoric acid swollen cellulose (PASC). For ethanol production from PASC, we combined three types of yeast cells, each displaying T. aurantiacus EGI, T. reesei CBHII (exoglucanase) and Aspergillus aculeatus BGLI (β-glucosidase), instead of co-expressing these enzymes in a single cell. In this system, ethanol production can be easily optimized by adjusting the combination ratio of each cell type. A mixture of cells with the optimized EGI:CBHII:BGLI ratio of 6:2:1 produced 1.3 fold more ethanol (2.1g/l) than cells composed of an equal amount of each cell type, suggesting the usefulness of this system for cellulosic ethanol production.

  15. Yeast cells immobilized in spherical gellan particles cross-linked with magnesium acetate.

    PubMed

    Iurciuc Tincu, Camelia Elena; Alupei, Liana; Savin, Alexandru; Ibănescu, Constanța; Martin, Patrick; Popa, Marcel

    2016-10-20

    In this paper we report on the production of microbioreactors using ionically cross-linked gellan containing immobilized yeast cells with potential application in glucose fermentation. Cross-linking was achieved through a novel extrusion process in capillary by ionotropic gelation under the action of magnesium acetate. Compared to commonly used methods, this provides a host of practical advantages. The particles were physico-chemically and morphologically characterized as their mechanical stability, behavior in aqueous media, and bio-catalytic activity are influenced by the amount of cross-linker used. This demonstrated their ability to be reused in a large number of fermentation cycles without losing their bio-catalytic activity. Our results are wholly comparable with the behavior of free yeast. We show that fermentation cycles can succeed either immediately or at variable intervals, ensuring high yields of glucose transformation, comparable-if not superior-to results currently obtained using free yeast. PMID:27497758

  16. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  17. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging.

    PubMed

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-10-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  18. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging.

    PubMed

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-10-26

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain.

  19. Antifungal activity of lectins against yeast of vaginal secretion

    PubMed Central

    Gomes, Bruno Severo; Siqueira, Ana Beatriz Sotero; de Cássia Carvalho Maia, Rita; Giampaoli, Viviana; Teixeira, Edson Holanda; Arruda, Francisco Vassiliepe Sousa; do Nascimento, Kyria Santiago; de Lima, Adriana Nunes; Souza-Motta, Cristina Maria; Cavada, Benildo Sousa; Porto, Ana Lúcia Figueiredo

    2012-01-01

    Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256μg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health. PMID:24031889

  20. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    PubMed

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal.

  1. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    PubMed Central

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  2. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

    PubMed

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu Hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  3. Immunogenicity of Ribosomal Preparations from Yeast Cells of Histoplasma capsulatum

    PubMed Central

    Feit, Carl; Tewari, Ram P.

    1974-01-01

    Protective immunity was elicited by immunization of mice with ribosomal preparations from yeast cells of Histoplasma capsulatum. Ribosomes from disrupted cells were isolated by differential centrifugation using sodium dodecyl sulfate. These preparations contained 55% protein and 45% ribonucleic acid and sedimented as a single peak with a sedimentation coefficient of 77S on sucrose density gradient analysis. Mice immunized subcutaneously with ribosomes, with or without adjuvant, were challenged intravenously with 8 × 106 yeast cells of H. capsulatum. Significant protection was induced by ribosomes and was greatly enhanced by adjuvants. Protection measured by 30-day survival compared favorably with the immunoprotection assessed by absence of lung lesions and negative spleen cultures. Treatment of ribosomes with ribonuclease before immunization reduced protection by 85%, whereas trypsin and Pronase reduced the protection by 50 to 55%. These findings indicate that both intact ribosomal ribonucleic acid and protein are necessary for maximal immunogenicity of Histoplasma ribosomes. PMID:16558095

  4. Heterogeneous activity of immature and mature cells of the murine monocyte-macrophage lineage derived from different anatomical districts against yeast-phase Candida albicans.

    PubMed Central

    Decker, T; Lohmann-Matthes, M L; Baccarini, M

    1986-01-01

    Mature mononuclear phagocytes have been receiving much attention as effectors of spontaneous candidacidal activity, although with controversial results due to differences in the effector populations and the methods used in different laboratories. We here systematically compare the fungistatic activity of immature and mature cells of the murine macrophage series. The results show that nonadherent, nonphagocytic precursor cells (isolated either [90% purity] from bone marrow liquid cultures or from the organs of mice in which inflammatory conditions had been elicited in vivo) exerted a strong extracellular candidastatic activity. In contrast, mature macrophages, either obtained from different anatomical areas (spleen, liver, lung, peritoneal cavity) or matured in vitro from the precursor populations, displayed striking heterogeneity in their ability to inhibit the growth of Candida albicans, depending on the anatomical site they were derived from. Lymphokine activation did not alter the fungistatic pattern of the untreated cells. The different macrophage populations behaved very differently also in the production of reactive oxygen intermediates (ROI) in response to phagocytosis of C. albicans. The amounts of ROI generated, however, showed no correlation with candidastatic ability. Low levels of candidastatic activity exerted by resident peritoneal macrophages (good ROI producers) were inhibited by catalase, whereas high levels of growth inhibition by Kupffer cells (poor ROI producers) after 8 h of assay were hardly influenced by the enzyme. Our data suggest the existence of two different effector mechanisms in macrophage-mediated C. albicans growth inhibition, a rather inefficient ROI-dependent one, and a second, very efficient oxygen-independent mechanism. The implications of these findings are discussed. PMID:3533781

  5. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  6. Screening of bacterial isolates for mannose-specific lectin activity by agglutination of yeasts.

    PubMed Central

    Mirelman, D; Altmann, G; Eshdat, Y

    1980-01-01

    A total of 393 clinical bacterial isolates were tested for their ability to agglutinate yeast cells of either Saccharomyces cerevisiae or Candida albicans. A positive agglutination of yeasts that could be prevented by methyl alpha-D-mannoside was taken as an indication for the possible presence of a mannose-specific lectin (carbohydrate-binding protein) on the surface of the tested bacteria. Agglutination tests on glass slides showed that 38% of all the isolates tested were positive in their capacity to agglutinate yeasts. Among the various strains tested, all isolates of Serratia marcescens, Proteus morganii, and Citrobacter diversus, as well as 94% of Klebsiella pneumoniae, were positive. On the other hand, only 46% of the Escherichia coli, 48% of the salmonellae, 44% of the Citrobacter freundii, and 71% of the Aeromonas hydrophila isolates were positive. A quantitative determination of the lectin activity done by observing the agglutination of yeasts in microtiter plates showed that S. marcescens isolates were the most avid binders to the yeast, whereas Klebsiella and Citrobacter isolates were the weakest. PMID:6989854

  7. Construction of a large synthetic human Fab antibody library on yeast cell surface by optimized yeast mating.

    PubMed

    Baek, Du-San; Kim, Yong-Sung

    2014-03-28

    Yeast surface-displayed antibody libraries provide an efficient and quantitative screening resource for given antigens, but suffer from typically modest library sizes owing to low yeast transformation efficiency. Yeast mating is an attractive method for overcoming the limit of yeast transformation to construct a large, combinatorial antibody library, but the optimal conditions have not been reported. Here, we report a large synthetic human Fab (antigen binding fragment) yeast surface-displayed library generated by stepwise optimization of yeast mating conditions. We first constructed HC (heavy chain) and LC (light chain) libraries, where all of the six CDRs (complementarity-determining regions) of the variable domains were diversified mimicking the human germline antibody repertoires by degenerate codons, onto single frameworks of VH3-23 and Vkappa1-16 germline sequences, in two haploid cells of opposite mating types. Yeast mating conditions were optimized in the order of cell density, media pH, and cell growth phase, yielding a mating efficiency of ~58% between the two haploid cells carrying HC and LC libraries. We constructed two combinatorial Fab libraries with CDR-H3 of 9 or 11 residues in length with colony diversities of more than 10(9) by one round of yeast mating between the two haploid HC and LC libraries, with modest diversity sizes of ~10(7). The synthetic human Fab yeast-displayed libraries exhibited relative amino acid compositions in each position of the six CDRs that were very similar to those of the designed repertoires, suggesting that they are a promising source for human Fab antibody screening.

  8. Cardiolipin synthesis during the cell cycle of the yeast Saccharomyces cervisiae.

    PubMed

    Greksák, M; Nejedlý, K; Zborowski, J

    1977-01-01

    Cardiolipin synthesis was studied during the aerobic synchronous growth of aerobically grown yeast Saccharomyces cerevisiae. The time course of the synthesis was stepwise and the rise in cardiolipin level in cells coincided in time with the increase in cytochrome oxidase activity. This finding supports the notion of discontinuous completion of the inner mitochondrial membrane and hints at a close relation between cardiolipin and cytochrome oxidase activity. PMID:190090

  9. Evaluating the Activity of the Filamentous Growth MAPK Pathway in Yeast

    PubMed Central

    Cullen, Paul J.

    2015-01-01

    Mitogen-activated protein kinase (MAPK) pathways are evolutionarily conserved signaling pathways that regulate diverse processes in eukaryotes. One such pathway regulates filamentous growth, a nutrient limitation response in budding yeast and other fungal species. This protocol describes three assays used to measure the activity of the filamentous growth pathway. First, western blotting for phosphorylated (activated) MAPKs (P~MAPKs; Slt2p, Kss1p, Fus3p, and Hog1p) provides a measure of MAPK activity in yeast and other fungal species. Second, the PGU1 gene is a transcriptional target of the filamentous growth pathway. Cells that undergo filamentous growth secrete Pgu1, an endopolygalacturonase that degrades the plant-specific polysaccharide pectin. We describe an assay that measures secreted pectinase activity, which reflects an active filamentous growth pathway. Finally, in yeast, two mucin-like glycoproteins, Msb2 and Flo11, regulate filamentous growth. Secretion of the processed and shed glycodomain of Msb2 is an indicator of MAPK activity. Flo11, the major adhesion molecule that controls filamentous growth and biofilm/mat formation, is also shed from cells. Detecting shed mucins with epitope-tagged versions of the proteins (secretion profiling) provides information about the regulation of filamentous growth across fungal species. PMID:25734070

  10. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities.

    PubMed

    Prokopiv, Tetyana M; Fedorovych, Dariya V; Boretsky, Yuriy R; Sibirny, Andriy A

    2013-01-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae. PMID:23053489

  11. Mathematical model of the cell division cycle of fission yeast

    NASA Astrophysics Data System (ADS)

    Novak, Bela; Pataki, Zsuzsa; Ciliberto, Andrea; Tyson, John J.

    2001-03-01

    Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1→S→G2→M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1- cdc25Δ, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled.

  12. Budding yeast colony growth study based on circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  13. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6](3-)/[Fe(CN)6](4-).

    PubMed

    Ramanavicius, Arunas; Andriukonis, Eivydas; Stirke, Arunas; Mikoliunaite, Lina; Balevicius, Zigmas; Ramanaviciene, Almira

    2016-02-01

    Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated.

  14. The use of scFv-displaying yeast in mammalian cell surface selections.

    PubMed

    Wang, Xin Xiang; Shusta, Eric V

    2005-09-01

    Yeast surface display has proven to be a powerful tool for the directed evolution of immunological proteins when soluble ligands are available (Cho, B.K., Kieke, M.C., Boder, E.T., Wittrup, K.D., Kranz, D.M., 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220, 179; Boder, E.T., Midelfort, K.S., Wittrup, K.D., 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. U. S. A. 97, 10701; Shusta, E.V., Holler, P.D., Kieke, M.C., Kranz, D.M., Wittrup, K.D., 2000. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754; Esteban, O., Zhao, H., 2004. Directed evolution of soluble single-chain human class II MHC molecules. J. Mol. Biol. 340, 81). This investigation extends the utility of this display platform by demonstrating its capacity for use in cell panning selections. This was accomplished by employing a model single-chain antibody (scFv)-hapten system that allowed for detailed investigation of the factors governing panning success. Yeast displaying anti-fluorescein scFv (4-4-20) exhibited specific interactions with the fluoresceinated endothelial cells and could be recovered from large backgrounds of irrelevant yeast in just three rounds. Successful selections required as few as 1700 fluorescein ligands per cell, and a three-round enrichment ratio of 10(6) was possible. These results indicate that yeast surface display is a viable option for use in cell or tissue-based selections.

  15. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast.

    PubMed

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  16. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast

    PubMed Central

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  17. Calcium modulation of doxorubicin cytotoxicity in yeast and human cells.

    PubMed

    Nguyen, Thi Thuy Trang; Lim, Ying Jun; Fan, Melanie Hui Min; Jackson, Rebecca A; Lim, Kim Kiat; Ang, Wee Han; Ban, Kenneth Hon Kim; Chen, Ee Sin

    2016-03-01

    Doxorubicin is a widely used chemotherapeutic agent, but its utility is limited by cellular resistance and off-target effects. To understand the molecular mechanisms regulating chemotherapeutic responses to doxorubicin, we previously carried out a genomewide search of doxorubicin-resistance genes in Schizosaccharomyces pombe fission yeast and showed that these genes are organized into networks that counteract doxorubicin cytotoxicity. Here, we describe the identification of a subgroup of doxorubicin-resistance genes that, when disrupted, leads to reduced tolerance to exogenous calcium. Unexpectedly, we observed a suppressive effect of calcium on doxorubicin cytotoxicity, where concurrent calcium and doxorubicin treatment resulted in significantly higher cell survival compared with cells treated with doxorubicin alone. Conversely, inhibitors of voltage-gated calcium channels enhanced doxorubicin cytotoxicity in the mutants. Consistent with these observations in fission yeast, calcium also suppressed doxorubicin cytotoxicity in human breast cancer cells. Further epistasis analyses in yeast showed that this suppression of doxorubicin toxicity by calcium was synergistically dependent on Rav1 and Vph2, two regulators of vacuolar-ATPase assembly; this suggests potential modulation of the calcium-doxorubicin interaction by fluctuating proton concentrations within the cellular environment. Thus, the modulatory effects of drugs or diet on calcium concentrations should be considered in doxorubicin treatment regimes. PMID:26891792

  18. The metabolism beyond programmed cell death in yeast

    PubMed Central

    Ring, Julia; Sommer, Cornelia; Carmona-Gutierrez, Didac; Ruckenstuhl, Christoph; Eisenberg, Tobias; Madeo, Frank

    2012-01-01

    A cell's reaction to any change in the endogenous or exogenous conditions often involves a complex response that eventually either leads to cell adaptation and survival or to the initiation and execution of (programmed) cell death. The molecular decision whether to live or die, while depending on a cell's genome, is fundamentally influenced by its actual metabolic status. Thus, the collection of all metabolites present in a biological system at a certain time point (the so-called metabolome) defines its physiological, developmental and pathological state and determines its fate during changing and stressful conditions. The budding yeast Saccharomyces cerevisiae is a unicellular organism that allows to easily modify and monitor conditions affecting the cell's metabolome, for instance through a simple change of the nutrition source. Such changes can be used to mimic and study (patho)physiological scenarios, including caloric restriction and longevity, the Warburg effect in cancer cells or changes in mitochondrial mass affecting cell death. In addition, disruption of single genes or generation of respiratory deficiency (via abrogation of mitochondrial DNA) assists in revealing connections between metabolism and apoptosis. In this minireview, we discuss recent studies using the potential of the yeast model to provide new insights into the processes of stress defense, cell death and longevity. PMID:22480867

  19. Human ARF4 expression rescues sec7 mutant yeast cells.

    PubMed Central

    Deitz, S B; Wu, C; Silve, S; Howell, K E; Melançon, P; Kahn, R A; Franzusoff, A

    1996-01-01

    Vesicle-mediated traffic between compartments of the yeast secretory pathway involves recruitment of multiple cytosolic proteins for budding, targeting, and membrane fusion events. The SEC7 gene product (Sec7p) is a constituent of coat structures on transport vesicles en route to the Golgi complex in the yeast Saccharomyces cerevisiae. To identify mammalian homologs of Sec7p and its interacting proteins, we used a genetic selection strategy in which a human HepG2 cDNA library was transformed into conditional-lethal yeast sec7 mutants. We isolated several clones capable of rescuing sec7 mutant growth at the restrictive temperature. The cDNA encoding the most effective suppressor was identified as human ADP ribosylation factor 4 (hARF4), a member of the GTPase family proposed to regulate recruitment of vesicle coat proteins in mammalian cells. Having identified a Sec7p-interacting protein rather than the mammalian Sec7p homolog, we provide evidence that hARF4 suppressed the sec7 mutation by restoring secretory pathway function. Shifting sec7 strains to the restrictive temperature results in the disappearance of the mutant Sec7p cytosolic pool without apparent changes in the membrane-associated fraction. The introduction of hARF4 to the cells maintained the balance between cytosolic and membrane-associated Sec7p pools. These results suggest a requirement for Sec7p cycling on and off of the membranes for cell growth and vesicular traffic. In addition, overexpression of the yeast GTPase-encoding genes ARF1 and ARF2, but not that of YPT1, suppressed the sec7 mutant growth phenotype in an allele-specific manner. This allele specificity indicates that individual ARFs are recruited to perform two different Sec7p-related functions in vesicle coat dynamics. PMID:8668142

  20. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism.

    PubMed

    Cáp, Michal; Stěpánek, Luděk; Harant, Karel; Váchová, Libuše; Palková, Zdena

    2012-05-25

    Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U cells activate a unique metabolism controlled by the glutamine-induced TOR pathway, amino acid-sensing systems (SPS and Gcn4p) and signaling from mitochondria with lowered respiration. These systems jointly modulate U cell physiology, which adapts to nutrient limitations and utilize the nutrients released from L cells. Stress-resistant U cells share metabolic pathways and other similar characteristics with tumor cells, including the ability to proliferate. L cells behave similarly to stressed and starving cells, which activate degradative mechanisms to provide nutrients to U cells. Our data suggest a nutrient flow between both cell types, resembling the Cori cycle and glutamine-NH(4)(+) shuttle between tumor and healthy metazoan cells.

  1. Molecular cloning and synthesis of biologically active human tissue inhibitor of metalloproteinases in yeast

    SciTech Connect

    Kaczorek, M.; Honore, N.; Ribes, V.; Dehoux, P.; Cornet, P.; Cartwright, T.; Streeck, R.E.

    1987-06-01

    Tissue inhibitor of metalloproteinases (TIMP) is a widely distributed glycoprotein that stochiometrically inactivates metalloproteinases involved in connective tissue catabolism. Here they report the cDNA cloning of TIMP from human fibroblastic MRC5 cells using a single 42-base oligonucleotide probe. Expression in S. cerevisiae of complete TIMP cDNA yielded insoluble protein aggregates. Biologically active TIMP was reconstituted from the yeast product by a denaturation/renaturation procedure.

  2. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    NASA Astrophysics Data System (ADS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  3. The many ways to age for a single yeast cell

    PubMed Central

    Carmona-Gutierrez, Didac; Büttner, Sabrina

    2014-01-01

    The identification and characterization of the molecular determinants governing ageing represents the key to counteracting age-related diseases and eventually prolonging our health span. A large number of fundamental insights into the ageing process have been provided by research into the budding yeast Saccharomyces cerevisiae, which couples a wide array of technical advantages with a high degree of genetic, proteomic and mechanistic conservation. Indeed, this unicellular organism harbours regulatory pathways, such as those related to programmed cell death or nutrient signalling, that are crucial for ageing control and are reminiscent of other eukaryotes, including mammals. Here, we summarize and discuss three different paradigms of yeast ageing: replicative, chronological and colony ageing. We address their physiological relevance as well as the specific and common characteristics and regulators involved, providing an overview of the network underlying ageing in one of the most important eukaryotic model organisms. PMID:24842537

  4. Polyphosphates and Polyphosphatase Activity in the Yeast Saccharomyces cerevisiae during Overexpression of the DDP1 Gene.

    PubMed

    Trilisenko, L V; Andreeva, N A; Eldarov, M A; Dumina, M V; Kulakovskaya, T V

    2015-10-01

    The effects of overexpression of yeast diphosphoinositol polyphosphate phosphohydrolase (DDP1) having endopolyphosphatase activity on inorganic polyphosphate metabolism in Saccharomyces cerevisiae were studied. The endopolyphosphatase activity in the transformed strain significantly increased compared to the parent strain. This activity was observed with polyphosphates of different chain length, being suppressed by 2 mM tripolyphosphate or ATP. The content of acid-soluble and acid-insoluble polyphosphates under DDP1 overexpression decreased by 9 and 28%, respectively. The average chain length of salt-soluble and alkali-soluble fractions did not change in the overexpressing strain, and that of acid-soluble polyphosphate increased under phosphate excess. At the initial stage of polyphosphate recovery after phosphorus starvation, the chain length of the acid-soluble fraction in transformed cells was lower compared to the recipient strain. This observation suggests the complex nature of DDP1 involvement in the regulation of polyphosphate content and chain length in yeasts.

  5. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  6. Nedd4, a human ubiquitin ligase, affects actin cytoskeleton in yeast cells.

    PubMed

    Stawiecka-Mirota, Marta; Kamińska, Joanna; Urban-Grimal, Daniele; Haines, Dale S; Zoładek, Teresa

    2008-11-01

    Human Nedd4 ubiquitin ligase is involved in protein trafficking, signal transduction and oncogenesis. Nedd4 with an inactive WW4 domain is toxic to yeast cells. We report here that actin cytoskeleton is abnormal in yeast cells expressing the NEDD4 or NEDD4w4 gene and these cells are more sensitive to Latrunculin A, an actin-depolymerizing drug. These phenotypes are less pronounced when a mutation inactivating the catalytic domain of the ligase has been introduced. In contrast, overexpression of the LAS17 gene, encoding an activator of the Arp2/3 actin nucleating complex, is detrimental to NEDD4w4-expressing cells. The level of Las17p is increased in cells overproducing Nedd4w4 and this depends partially on its catalytic domain. Expression of genes encoding Nedd4 variants, like overexpression of LAS17, suppresses the growth defect of the arp2-1 strain. Our results suggest that human Nedd4 ligase inhibits yeast cell growth by disturbing the actin cytoskeleton, in part by increasing Las17p level, and that Nedd4 ubiquitination targets may include actin cytoskeleton-associated proteins conserved in evolution. PMID:18804462

  7. Curing of yeast [PSI+] prion by guanidine inactivation of Hsp104 does not require cell division.

    PubMed

    Wu, Yue-Xuan; Greene, Lois E; Masison, Daniel C; Eisenberg, Evan

    2005-09-01

    Propagation of the yeast prion [PSI+], a self-replicating aggregated form of Sup35p, requires Hsp104. One model to explain this phenomenon proposes that, in the absence of Hsp104, Sup35p aggregates enlarge but fail to replicate thus becoming diluted out as the yeast divide. To test this model, we used live imaging of Sup35p-GFP to follow the changes that occur in [PSI+] cells after the addition of guanidine to inactivate Hsp104. After guanidine addition there was initially an increase in aggregation of Sup35p-GFP; but then, before the yeast divided, the aggregates began to dissolve, and after approximately 6 h the Sup35-GFP looked identical to the Sup35-GFP in [psi+] cells. Although plating studies showed that the yeast were still [PSI+], this reduction in aggregation suggested that curing of [PSI+] by inactivation of Hsp104 might be independent of cell division. This was tested by measuring the rate of curing of [PSI+] cells in both dividing and nondividing cells. Cell division was inhibited by adding either alpha factor or farnesol. Remarkably, with both of these methods, we found that the rate of curing was not significantly affected by cell division. Thus, cell division is not a determining factor for curing [PSI+] by inactivating Hsp104 with guanidine. Rather, curing apparently occurs because Sup35-GFP polymers slowly depolymerize in the absence of Hsp104 activity. Hsp104 then counteracts this curing possibly by catalyzing formation of new polymers. PMID:16123122

  8. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    PubMed

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  9. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    PubMed Central

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  10. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  11. Modeling Yeast Cell Polarization Induced by Pheromone Gradients

    NASA Astrophysics Data System (ADS)

    Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing

    2007-07-01

    Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

  12. Diploid yeast cells yield homozygous spontaneous mutations

    NASA Technical Reports Server (NTRS)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  13. Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality.

    PubMed

    Svenkrtova, Andrea; Belicova, Lenka; Volejnikova, Andrea; Sigler, Karel; Jazwinski, S Michal; Pichova, Alena

    2016-04-01

    Cells of the budding yeast Saccharomyces cerevisiae undergo a process akin to differentiation during prolonged culture without medium replenishment. Various methods have been used to separate and determine the potential role and fate of the different cell species. We have stratified chronologically-aged yeast cultures into cells of different sizes, using centrifugal elutriation, and characterized these subpopulations physiologically. We distinguish two extreme cell types, very small (XS) and very large (L) cells. L cells display higher viability based on two separate criteria. They respire much more actively, but produce lower levels of reactive oxygen species (ROS). L cells are capable of dividing, albeit slowly, giving rise to XS cells which do not divide. L cells are more resistant to osmotic stress and they have higher trehalose content, a storage carbohydrate often connected to stress resistance. Depletion of trehalose by deletion of TPS2 does not affect the vital characteristics of L cells, but it improves some of these characteristics in XS cells. Therefore, we propose that the response of L and XS cells to the trehalose produced in the former differs in a way that lowers the vitality of the latter. We compare our XS- and L-fraction cell characteristics with those of cells isolated from stationary cultures by others based on density. This comparison suggests that the cells have some similarities but also differences that may prove useful in addressing whether it is the segregation or the response to trehalose that may play the predominant role in cell division from stationary culture.

  14. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    SciTech Connect

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana; Monti, Paola; Fronza, Gilberto; Pereira, Clara; Saraiva, Lucília

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  15. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  16. Transcriptome Analysis of Paracoccidioides brasiliensis Cells Undergoing Mycelium-to-Yeast Transition

    PubMed Central

    Nunes, Luiz R.; Costa de Oliveira, Regina; Leite, Daniela Batista; da Silva, Vivian Schmidt; dos Reis Marques, Everaldo; da Silva Ferreira, Márcia Eliana; Ribeiro, Diógenes Custódio Duarte; de Souza Bernardes, Luciano Ângelo; Goldman, Maria Helena S.; Puccia, Rosana; Travassos, Luiz R.; Batista, Wagner L.; Nóbrega, Marina Pasetto; Nobrega, Francisco G.; Yang, Ding-Yah; de Bragança Pereira, Carlos A.; Goldman, Gustavo H.

    2005-01-01

    Paracoccidioides brasiliensis is a thermodimorphic fungus associated with paracoccidioidomycosis (PCM), a systemic mycosis prevalent in South America. In humans, infection starts by inhalation of fungal propagules, which reach the pulmonary epithelium and transform into the yeast parasitic form. Thus, the mycelium-to-yeast transition is of particular interest because conversion to yeast is essential for infection. We have used a P. brasiliensis biochip carrying sequences of 4,692 genes from this fungus to monitor gene expression at several time points of the mycelium-to-yeast morphological shift (from 5 to 120 h). The results revealed a total of 2,583 genes that displayed statistically significant modulation in at least one experimental time point. Among the identified gene homologues, some encoded enzymes involved in amino acid catabolism, signal transduction, protein synthesis, cell wall metabolism, genome structure, oxidative stress response, growth control, and development. The expression pattern of 20 genes was independently verified by real-time reverse transcription-PCR, revealing a high degree of correlation between the data obtained with the two methodologies. One gene, encoding 4-hydroxyl-phenyl pyruvate dioxygenase (4-HPPD), was highly overexpressed during the mycelium-to-yeast differentiation, and the use of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione], a specific inhibitor of 4-HPPD activity, as well as that of NTBC derivatives, was able to inhibit growth and differentiation of the pathogenic yeast phase of the fungus in vitro. These data set the stage for further studies involving NTBC and its derivatives as new chemotherapeutic agents against PCM and confirm the potential of array-based approaches to identify new targets for the development of alternative treatments against pathogenic microorganisms. PMID:16339729

  17. Accelerating the Discovery of Biologically Active Small Molecules Using a High-Throughput Yeast Halo Assay#

    PubMed Central

    Gassner, Nadine C.; Tamble, Craig M.; Bock, Jonathan E.; Cotton, Naomi; White, Kimberly N.; Tenney, Karen; St. Onge, Robert P.; Proctor, Michael J.; Giaever, Guri; Davis, Ronald W.; Crews, Phillip; Holman, Theodore R.; Lokey, R. Scott

    2008-01-01

    The budding yeast Saccharomyces cerevisiae, a powerful model system for the study of basic eukaryotic cell biology, has been used increasingly as a screening tool for the identification of bioactive small molecules. We have developed a novel yeast toxicity screen that is easily automated and compatible with high-throughput screening robotics. The new screen is quantitative and allows inhibitory potencies to be determined, since the diffusion of the sample provides a concentration gradient and a corresponding toxicity halo. The efficacy of this new screen was illustrated by testing materials including 3,104 compounds from the NCI libraries, 167 marine sponge crude extracts, and 149 crude marine-derived fungal extracts. There were 46 active compounds among the NCI set. One very active extract was selected for bioactivity-guided fractionation resulting in the identification of crambescidin 800 as a potent antifungal agent. PMID:17291044

  18. [Study of the Sporothrix schenkii (yeast forms) extract. Electrophoretic and immunoelectrophoretic analyses: characterization of enzymatic activities].

    PubMed

    Walbaum, S; Duriez, T; Dujardin, L; Biguet, J

    1978-07-28

    An extract from living yeast forms of S. schenckii was prepared. The yeasts originated from a shake culture in B.H.I. broth (Difco) incubated for 3 days at 35 degrees C in darkness; they were harvested, washed and disrupted with glass beads in a model MSK Braun mechanical cell homogenizer; a freezing-thawing was added to improve the extract. After electrophoretic separation in agarose gel, the extract's components were characterized by their enzymic activity; with this technique, 30 bands were revealed. These enzymic activities were also investigated on the antigenic fractions of the extract revealed by a rabbit hyperimmunserum: 16 among 22 immunoprecipitates are identified by their catalytic properties. Study of the earliest precipitating antibodies (appearing-order and enzymic caracterization) in rabbits just immunized completes this work. How to ameliorate the quality of the extract by culture and extraction conditions is also specified. PMID:692628

  19. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Eberbeck, Dietmar; Bergemann, Christian; Hartwig, Stefan; Steinhoff, Uwe; Trahms, Lutz

    2005-03-01

    The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP.

  20. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure.

  1. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  2. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. PMID:24815694

  3. Yeast Systems Biology: Our Best Shot at Modeling a Cell

    PubMed Central

    Boone, Charles

    2014-01-01

    THE Genetics Society of America’s Edward Novitski Prize recognizes an extraordinary level of creativity and intellectual ingenuity in the solution of significant problems in genetics research. The 2014 recipient, Charles Boone, has risen to the top of the emergent discipline of postgenome systems biology by focusing on the global mapping of genetic interaction networks. Boone invented the synthetic genetic array (SGA) technology, which provides an automated method to cross thousands of strains carrying precise mutations and map large-scale yeast genetic interactions. These network maps offer researchers a functional wiring diagram of the cell, which clusters genes into specific pathways and reveals functional connections. PMID:25316779

  4. Yeast as a tool to study mitochondrial retrograde pathway en route to cell stress response.

    PubMed

    Ždralević, Maša; Guaragnella, Nicoletta; Giannattasio, Sergio

    2015-01-01

    Mitochondrial retrograde signaling is a mitochondria-to-nucleus communication pathway, conserved from yeast to humans, by which dysfunctional mitochondria relay signals that lead to cell stress adaptation in physiopathological conditions by changes in nuclear gene expression. The best comprehension of components and regulation of retrograde signaling have been obtained in Saccharomyces cerevisiae, where retrograde target gene expression is regulated by RTG genes. In this chapter, we describe the methods to measure mitochondrial retrograde pathway activation in yeast cells by monitoring the mRNA levels of RTG target genes, such as those encoding for peroxisomal citrate synthase, aconitase, and NAD(+)-specific isocitrate dehydrogenase subunit 1, as well as the phosphorylation status of Rtg1/3p transcriptional factor which controls RTG target gene transcription. PMID:25634284

  5. An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin.

    PubMed Central

    Withee, J L; Mulholland, J; Jeng, R; Cyert, M S

    1997-01-01

    Previous studies showed that, in wild-type (MATa) cells, alpha-factor causes an essential rise in cytosolic Ca2+. We show that calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is one target of this Ca2+ signal. Calcineurin mutants lose viability when incubated with mating pheromone, and overproduction of constitutively active (Ca(2+)-independent) calcineurin improves the viability of wild-type cells exposed to pheromone in Ca(2+)-deficient medium. Thus, one essential consequence of the pheromone-induced rise in cytosolic Ca2+ is activation of calcineurin. Although calcineurin inhibits intracellular Ca2+ sequestration in yeast cells, neither increased extracellular Ca2+ nor defects in vacuolar Ca2+ transport bypasses the requirement for calcineurin during the pheromone response. These observations suggest that the essential function of calcineurin in the pheromone response may be distinct from its modulation of intracellular Ca2+ levels. Mutants that do not undergo pheromone-induced cell cycle arrest (fus3, far1) show decreased dependence on calcineurin during treatment with pheromone. Thus, calcineurin is essential in yeast cells during prolonged exposure to pheromone and especially under conditions of pheromone-induced growth arrest. Ultrastructural examination of pheromone-treated cells indicates that vacuolar morphology is abnormal in calcineurin-deficient cells, suggesting that calcineurin may be required for maintenance of proper vacuolar structure or function during the pheromone response. Images PMID:9190206

  6. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    SciTech Connect

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  7. Enzyme-based glucose delivery as a high content screening tool in yeast-based whole-cell biocatalysis.

    PubMed

    Grimm, T; Grimm, M; Klat, R; Neubauer, A; Palela, M; Neubauer, P

    2012-05-01

    The influence of glucose release on growth and biotransformation of yeasts was examined by using the medium EnBase® Flo in shake flasks. The medium contains a polysaccharide acting as substrate, which is degraded to glucose by the addition of an enzyme. In the present paper, this medium was adapted for the cultivation of yeasts by increasing the complex components (booster) and the enzyme concentrations to guarantee a higher glucose release rate. Important changes were an increase of the complex component booster to 10-15% and an increased glucose release by increasing the enzyme content to 15 U L(-1). The 20 yeasts investigated in the present work showed an improvement of growth and biomass production when cultivated with the EnBase medium in comparison to yeast extract dextrose (YED) medium. Values of optical densities (OD(600)) of approximately 40 AU (corresponding to over 60 g L(-1) wet cell weight) were achieved for all 20 yeast strains tested. During the following screening of the yeasts in whole-cell biotransformation, an improvement of the conversion for 19 out of the 20 yeasts cultivated with the EnBase Flo medium could be observed. The biomass from the EnBase Flo cultivation showed a higher conversion activity in the reduction of 2-butanone to (R/S)-2-butanol. The enantioselectivity (ee) of 15 yeast strains showed an improvement by using the EnBase medium. The number of yeasts with an ee >97% increased from zero with YED to six with EnBase medium. Thus, the use of a glucose release cultivation strategy in the screening process for transformation approaches provides significant benefits compared to standard batch approaches. PMID:22258642

  8. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    PubMed Central

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  9. A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor

    SciTech Connect

    Yashiroda, Yoko; Hatsugai, Kaori; Takemoto, Yasushi; Saito, Tamio; Sugimoto, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru

    2010-04-09

    The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics.

  10. Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell.

    PubMed

    Hubenova, Yolina; Bakalska, Rumyana; Hubenova, Eleonora; Mitov, Mario

    2016-12-01

    In the present study, the influence of the recently synthesized styrylquinolinium dye 4-{(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl}-1-methylquinolinium iodide (DANSQI) on the intracellular processes as well as the electrical outputs of Candida melibiosica 2491 yeast-based biofuel cell was investigated. The addition of nanomolar quantities of DANSQI to the yeast suspension results in an increase of the current outputs right after the startup of the biofuel cells, associated with an electrooxidation of the dye on the anode. After that, the formed cation radical of the dye penetrates the yeast cells, provoking a set of intracellular changes. Studies of the subcellular anolyte fractions show that 1μM dye increased the peroxisomal catalase activity 30-times (1.15±0.06Unit/mg protein) and over twice the mitochondrial cytochrome c oxidase activity (92±5Unit/mg protein). The results obtained by electrochemical and spectrophotometric analyses let to the supposition that the dye acts as subcellular shuttle, on account of its specific intramolecular charge transfer properties. The transition between its benzoid, quinolyl radical and ion forms and their putative role for the extracellular and intracellular charge transfer mechanisms are discussed.

  11. Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell.

    PubMed

    Hubenova, Yolina; Bakalska, Rumyana; Hubenova, Eleonora; Mitov, Mario

    2016-12-01

    In the present study, the influence of the recently synthesized styrylquinolinium dye 4-{(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl}-1-methylquinolinium iodide (DANSQI) on the intracellular processes as well as the electrical outputs of Candida melibiosica 2491 yeast-based biofuel cell was investigated. The addition of nanomolar quantities of DANSQI to the yeast suspension results in an increase of the current outputs right after the startup of the biofuel cells, associated with an electrooxidation of the dye on the anode. After that, the formed cation radical of the dye penetrates the yeast cells, provoking a set of intracellular changes. Studies of the subcellular anolyte fractions show that 1μM dye increased the peroxisomal catalase activity 30-times (1.15±0.06Unit/mg protein) and over twice the mitochondrial cytochrome c oxidase activity (92±5Unit/mg protein). The results obtained by electrochemical and spectrophotometric analyses let to the supposition that the dye acts as subcellular shuttle, on account of its specific intramolecular charge transfer properties. The transition between its benzoid, quinolyl radical and ion forms and their putative role for the extracellular and intracellular charge transfer mechanisms are discussed. PMID:26924617

  12. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae.

    PubMed

    Morimoto, Yuji; Tani, Motohiro

    2015-02-01

    Complex sphingolipids play important roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened yeast mutant strains showing a synthetic lethal interaction with loss of mannosylinositol phosphorylceramide (MIPC) synthesis and found that a specific group of glycosyltransferases involved in the synthesis of mannan-type N-glycans is essential for the growth of cells lacking MIPC synthases (Sur1 and Csh1). The genetic interaction was also confirmed by repression of MNN2, which encodes alpha-1,2-mannosyltransferase that synthesizes mannan-type N-glycans, by a tetracycline-regulatable system. MNN2-repressed sur1Δ csh1Δ cells exhibited high sensitivity to zymolyase treatment, and caffeine and sodium dodecyl sulfate (SDS) strongly inhibited the growth of sur1Δ csh1Δ cells, suggesting impairment of cell integrity due to the loss of MIPC synthesis. The phosphorylated form of Slt2, a mitogen-activated protein (MAP) kinase activated by impaired cell integrity, increased in sur1Δ csh1Δ cells, and this increase was dramatically enhanced by the repression of Mnn2. Moreover, the growth defect of MNN2-repressed sur1Δ csh1Δ cells was enhanced by the deletion of SLT2 or RLM1 encoding a downstream target of Slt2. These results indicated that loss of MIPC synthesis causes impairment of cell integrity, and this effect is enhanced by impaired synthesis of mannan-type N-glycans.

  13. In vitro activity of aminosterols against yeasts involved in blood stream infections.

    PubMed

    Alhanout, Kamel; Djouhri, Lamia; Vidal, Nicolas; Brunel, Jean Michel; Piarroux, Renaud; Ranque, Stéphane

    2011-02-01

    Squalamine and other aminosterols have demonstrated interesting antimicrobial activities against clinical bacterial isolates and a limited number of reference yeast strains. We aimed to test whether squalamine and a synthetic aminosterol derivative (ASD) display any in vitro activity comparable to currently available systemic antifungals, an acceptable safety index, as well as to provide insights into their mechanism of action. The minimum inhibitory concentrations (MICs) of squalamine, ASD and available antifungals were determined against 21 yeast isolates that were recovered from cases of fungemia. Remarkably, homogeneous MICs ranging from 8-16 mg/L and from 1-2 mg/L were noted for squalamine and ASD, respectively, as opposes the heterogeneous in vitro activity of available systemic antifungals. Aminosterols induced haemolysis, a surrogate for toxic effects to mammalian cells, at concentrations high above their MICs. In time-kill studies, killing was as fast with ASD as with amphotericin B. Both aminosterols induced a time-dependent disruption of yeast membrane, as evidenced by gradual increase of ATP efflux. In conclusion, our preliminary data indicate that aminosterols have the potential to be further developed as antifungals. Additional work is warranted to assess their toxicity and activity in experimental models. PMID:20662632

  14. Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation.

    PubMed

    Goshen-Lago, Tal; Goldberg-Carp, Anat; Melamed, Dganit; Darlyuk-Saadon, Ilona; Bai, Chen; Ahn, Natalie G; Admon, Arie; Engelberg, David

    2016-09-01

    MAP kinases of the ERK family are conserved from yeast to humans. Their catalytic activity is dependent on dual phosphorylation of their activation loop's TEY motif, catalyzed by MAPK kinases (MEKs). Here we studied variants of Mpk1, a yeast orthologue of Erk, which is essential for cell wall integrity. Cells lacking MPK1, or the genes encoding the relevant MEKs, MKK1 and MKK2, do not proliferate under cell wall stress, imposed, for example, by caffeine. Mutants of Mpk1, Mpk1(Y268C) and Mpk1(Y268A), function independently of Mkk1 and Mkk2. We show that these variants are phosphorylated at their activation loop in mkk1∆mkk2∆ and mkk1∆mkk2∆pbs2∆ste7∆ cells, suggesting that they autophosphorylate. However, strikingly, when Y268C/A mutations were combined with the kinase-dead mutation, K54R, or mutations at the TEY motif, T190A+Y192F, the resulting proteins still allowed mkk1∆mkk2∆ cells to proliferate under caffeine stress. Mutating the equivalent residue, Tyr-280/Tyr-261, in Erk1/Erk2 significantly impaired Erk1/2's catalytic activity. This study describes the first case in which a MAPK, Erk/Mpk1, imposes a phenotype via a mechanism that is independent of TEY phosphorylation and an unusual case in which an equivalent mutation in a highly conserved domain of yeast and mammalian Erks causes an opposite effect. PMID:27413009

  15. Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways.

    PubMed

    Guaragnella, Nicoletta; Antonacci, Lucia; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2011-10-01

    The use of non-mammalian model organisms, including yeast Saccharomyces cerevisiae, can provide new insights into eukaryotic PCD (programmed cell death) pathways. In the present paper, we report recent achievements in the elucidation of the events leading to PCD that occur as a response to yeast treatment with AA (acetic acid). In particular, ROS (reactive oxygen species) generation, cyt c (cytochrome c) release and mitochondrial function and proteolytic activity will be dealt with as they vary along the AA-PCD time course by using both wild-type and mutant yeast cells. Two AA-PCD pathways are described sharing common features, but distinct from one another with respect to the role of ROS and mitochondria, the former in which YCA1 acts upstream of cyt c release and caspase-like activation in a ROS-dependent manner and the latter in which cyt c release does not occur, but caspase-like activity increases, in a ROS-independent manner. PMID:21936848

  16. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability.

    PubMed

    Green, L J; Marder, P; Mann, L L; Chio, L C; Current, W L

    1999-04-01

    LY303366 is a semisynthetic analog of the antifungal lipopeptide echinocandin B that inhibits (1,3)-beta-D-glucan synthase and exhibits efficacy in animal models of human fungal infections. In this study, we utilized flow cytometric analysis of propidium iodide uptake, single-cell sorting, and standard microbiological plating methods to study the antifungal effect of LY303366 on Saccharomyces cerevisiae and Candida albicans. Our data indicate that an initial 5-min pulse treatment with LY303366 caused yeasts to take up propidium iodide and lose their ability to grow. Amphotericin B and cilofungin required longer exposure periods (30 and 180 min, respectively) and higher concentrations to elicit these fungicidal effects. These two measurements of fungicidal activity by LY303366 were highly correlated (r > 0.99) in concentration response and time course experiments. As further validation, LY303366-treated yeasts that stained with propidium iodide were unable to grow in single-cell-sorted cultures. Our data indicate that LY303366 is potent and rapidly fungicidal for actively growing yeasts. The potency and rapid action of this new fungicidal compound suggest that LY303366 may be useful for antifungal therapy. PMID:10103187

  17. Cell-Cycle Analyses Using Thymidine Analogues in Fission Yeast

    PubMed Central

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry. PMID:24551125

  18. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  19. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  20. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    PubMed Central

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  1. Effect of conjugated linoleic acid on fungal delta6-desaturase activity in a transformed yeast system.

    PubMed

    Chuang, L T; Thurmond, J M; Liu, J W; Kirchner, S J; Mukerji, P; Bray, T M; Huang, Y S

    2001-02-01

    Conjugated linoleic acid (CLA; 18:2), a group of positional and geometric isomers of linoleic acid (LA; 18:2n-6), has been shown to modulate immune function through its effect on eicosanoid synthesis. This effect has been attributed to a reduced production of n-6 polyunsaturated fatty acid (PUFA), the precursor of eicosanoids. Since delta6-desaturase is the rate-limiting enzyme of the n-6 PUFA production, it is our hypothesis that CLA, which has similar chemical structure to LA, interacts directly with delta6-desaturase. A unique and simple model, i.e., baker's yeast (Saccharomyces cerevisiae) transformed with fungal delta6-desaturase gene, previously established, was used to investigate the direct effect of CLA on delta6-desaturase. This model allows LA to be converted to y-linolenic acid (GLA; 18:3n-6) but not GLA to its metabolite(s). No metabolites of CLA were found in the lipids of the yeast transformed with delta6-desaturase. The inability to convert CLA to conjugated GLA was not due to the failure of yeast cells to take up the CLA isomers. CLA mixture and individual isomers significantly inhibited the activity of delta6-desaturase of the transformed yeast in vivo. Even though its uptake by the yeast was low, CLA c9,t11 isomer was found to be the most potent inhibitor of the four isomers tested, owing to its high inhibitory effect on delta6-desaturase. Since CLA did not cause significant changes in the level of delta6-desaturase mRNA, the inhibition of GLA production could not be attributed to suppression of delta6-desaturase gene expression at the transcriptional level.

  2. Process engineering for bioflavour production with metabolically active yeasts - a mini-review.

    PubMed

    Carlquist, Magnus; Gibson, Brian; Karagul Yuceer, Yonca; Paraskevopoulou, Adamantini; Sandell, Mari; Angelov, Angel I; Gotcheva, Velitchka; Angelov, Angel D; Etschmann, Marlene; de Billerbeck, Gustavo M; Lidén, Gunnar

    2015-01-01

    Flavours are biologically active molecules of large commercial interest in the food, cosmetics, detergent and pharmaceutical industries. The production of flavours can take place by either extraction from plant materials, chemical synthesis, biological conversion of precursor molecules or de novo biosynthesis. The latter alternatives are gaining importance through the rapidly growing fields of systems biology and metabolic engineering, giving efficient production hosts for the so-called 'bioflavours', which are natural flavour and/or fragrance compounds obtained with cell factories or enzymatic systems. Yeasts are potential production hosts for bioflavours. In this mini-review, we give an overview of bioflavour production in yeasts from the process-engineering perspective. Two specific examples, production of 2-phenylethanol and vanillin, are used to illustrate the process challenges and strategies used.

  3. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell.

    PubMed

    Prasad, D; Arun, S; Murugesan, M; Padmanaban, S; Satyanarayanan, R S; Berchmans, Sheela; Yegnaraman, V

    2007-05-15

    The direct electron transfer exhibited by the yeast cells, Hansenula anomala has been demonstrated using the electrochemical technique cyclic voltammetry by immobilizing the microorganisms by two different methods viz., physical adsorption and covalent linkage. The analysis of redox enzymes present in the outer membrane of the microorganisms has been carried out in this work. This paper demonstrates that yeast cells with redox enzymes present in their outer membrane are capable of communicating directly with the electrode surface and contribute to current generation in a mediatorless biofuel cells. The efficiency of current generation has been evaluated using three anode materials.

  4. Optical trapping and surgery of living yeast cells using a single laser

    NASA Astrophysics Data System (ADS)

    Ando, Jun; Bautista, Godofredo; Smith, Nicholas; Fujita, Katsumasa; Daria, Vincent Ricardo

    2008-10-01

    We present optical trapping and surgery of living yeast cells using two operational modes of a single laser. We used a focused laser beam operating in continuous-wave mode for noninvasive optical trapping and manipulation of single yeast cell. We verified that such operational mode of the laser does not cause any destructive effect on yeast cell wall. By changing the operation of the laser to femtosecond-pulsed mode, we show that a tightly focused beam dissects the yeast cell walls via nonlinear absorption. Lastly, using the combined technique of optical microsurgery and trapping, we demonstrate intracellular organelle extraction and manipulation from a yeast cell. The technique established here will be useful as an efficient method for both surgery and manipulation of living cells using a single laser beam.

  5. Microbiology and Epidemiology of Oral Yeast Colonization in Hemopoietic Progenitor Cell Transplant Recipients

    PubMed Central

    Westbrook, Steven D.; Kirkpatrick, William R.; Wiederhold, Nathan P.; Freytes, Cesar O.; Toro, Juan J.; Patterson, Thomas F.; Redding, Spencer W.

    2012-01-01

    Objective We monitored the epidemiology and microbiology of oral yeast colonization in patients undergoing hemopoietic progenitor cell transplantation (HPCT) to examine associations between yeast colonization and oral mucositis. Study Design One hundred twenty-one consecutive HPCT patients were sampled for oral yeasts prior to fluconazole (FLC) prophylaxis, at transplant, and weekly until discharge. Clinical oral mucositis screenings were performed tri-weekly. Results Yeast colonization was evident at 216 of 510 total visits. Candida albicans and C. glabrata were the predominate organisms. Eight patients showed elevated MICs to FLC. One patient developed fungal septicemia. Patients with OMAS mucositis scores <20 had higher colonization rates than those with higher scores. Conclusions FLC is very effective in controlling a variety of oral yeasts in HPCT recipients. FLC resistant yeasts do emerge and can be the source of fungal sepsis. A positive association was not shown between yeast colonization and presence or severity of oral mucositis. PMID:23312542

  6. Development and activation of cyanide-resistant respiration in the yeast Yarrowia lipolytica.

    PubMed

    Medentsev, A G; Akimenko, V K

    1999-08-01

    Changes in respiratory activity and in the contents of adenine nucleotides (ATP, ADP, AMP) were studied in cells of the yeast Yarrowia lipolytica during the development of cyanide-resistant respiration. The transition of the yeast from the logarithmic to the stationary growth phase due to exhaustion of glucose was associated with decreased endogenous respiration and with the activation of a cyanide-resistant oxidase. Cyanide activated cell respiration during the stationary growth phase. The cyanide-resistant respiration was inhibited by benzohydroxamic acid (BHA), an inhibitor of the alternative oxidase. In the absence of cyanide, BHA had no effect on the cells which had the cyanide-resistant oxidase. This indicates that the cells do not use the alternative pathway in vivo. The decreased endogenous respiration of the cells was accompanied by decreased contents of adenine nucleotides. Addition of cyanide resulted in a sharp decrease in the content of ATP, in a twofold increase in the content of ADP, and in a fivefold increase in the content of AMP. In the absence of cyanide, BHA had virtually no effect on the contents of adenine nucleotides. The decreased rate of oxygen consumption during the transition of the cells to the stationary growth phase was caused by the decreased activity of the main cytochrome-containing respiratory chain (2,4-dinitrophenol (DNP) stimulated respiration). The alternative oxidase was synthesized in the cell but was inactive. Cyanide stimulated respiration due to activation of the alternative oxidase via the AMP produced. The decrease in the cell content of ATP is suggested to be a factor inducing the synthesis of the alternative oxidase.

  7. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  8. Reduction of Ribosome Level Triggers Flocculation of Fission Yeast Cells

    PubMed Central

    Li, Rongpeng; Li, Xuesong; Sun, Lei; Chen, Feifei; Liu, Zhenxing; Gu, Yuyu; Gong, Xiaoyan; Liu, Zhonghua; Wei, Hua; Huang, Ying

    2013-01-01

    Deletion of ribosomal protein L32 genes resulted in a nonsexual flocculation of fission yeast. Nonsexual flocculation also occurred when two other ribosomal protein genes, rpl21-2 and rpl9-2, were deleted. However, deletion of two nonribosomal protein genes, mpg and fbp, did not cause flocculation. Overall transcript levels of rpl32 in rpl32-1Δ and rpl32-2Δ cells were reduced by 35.9% and 46.9%, respectively, and overall ribosome levels in rpl32-1Δ and rpl32-2Δ cells dropped 31.1% and 27.8%, respectively, compared to wild-type cells. Interestingly, ribosome protein expression levels and ribosome levels were also reduced greatly in sexually flocculating diploid YHL6381/WT (h+/h−) cells compared to a mixture of YHL6381 (h+) and WT (h−) nonflocculating haploid cells. Transcriptome analysis indicated that the reduction of ribosomal levels in sexual flocculating cells was caused by more-extensive suppression of ribosomal biosynthesis gene expression, while the reduction of ribosomal levels caused by deleting ribosomal protein genes in nonsexual flocculating cells was due to an imbalance between ribosomal proteins. We propose that once the reduction of ribosomal levels is below a certain threshold value, flocculation is triggered. PMID:23355005

  9. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  10. Negative functional interaction between cell integrity MAPK pathway and Rho1 GTPase in fission yeast.

    PubMed

    Viana, Raul A; Pinar, Mario; Soto, Teresa; Coll, Pedro M; Cansado, Jose; Pérez, Pilar

    2013-10-01

    Rho1 GTPase is the main activator of cell wall glucan biosynthesis and regulates actin cytoskeleton in fungi, including Schizosaccharomyces pombe. We have obtained a fission yeast thermosensitive mutant strain carrying the rho1-596 allele, which displays reduced Rho1 GTPase activity. This strain has severe cell wall defects and a thermosensitive growth, which is partially suppressed by osmotic stabilization. In a global screening for rho1-596 multicopy suppresors the pmp1+ gene was identified. Pmp1 is a dual specificity phosphatase that negatively regulates the Pmk1 mitogen-activated protein kinase (MAPK) cell integrity pathway. Accordingly, elimination of Pmk1 MAPK partially rescued rho1-596 thermosensitivity, corroborating the unexpected antagonistic functional relationship of these genes. We found that rho1-596 cells displayed increased basal activation of the cell integrity MAPK pathway and therefore were hypersensitive to MgCl2 and FK506. Moreover, the absence of calcineurin was lethal for rho1-596. We found a higher level of calcineurin activity in rho1-596 than in wild-type cells, and overexpression of constitutively active calcineurin partially rescued rho1-596 thermosensitivity. All together our results suggest that loss of Rho1 function causes an increase in the cell integrity MAPK activity, which is detrimental to the cells and turns calcineurin activity essential.

  11. Local Pheromone Release from Dynamic Polarity Sites Underlies Cell-Cell Pairing during Yeast Mating.

    PubMed

    Merlini, Laura; Khalili, Bita; Bendezú, Felipe O; Hurwitz, Daniel; Vincenzetti, Vincent; Vavylonis, Dimitrios; Martin, Sophie G

    2016-04-25

    Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion, and sexual reproduction. How does a cell orient toward a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P and M cells, which respectively express P and M factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here we show that Cdc42-GTP polarization sites contain the M factor transporter Mam1, the general secretion machinery, which underlies P factor secretion, and Gpa1, suggesting that these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in the absence of the P factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in the absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on fluctuating local signal emission and perception, which become locked into place through stimulation. PMID:27020743

  12. Sug1 modulates yeast transcription activation by Cdc68.

    PubMed Central

    Xu, Q; Singer, R A; Johnston, G C

    1995-01-01

    The Cdc68 protein is required for the transcription of a variety of genes in the yeast Saccharomyces cerevisiae. In a search for proteins involved in the activity of the Cdc68 protein, we identified four suppressor genes in which mutations reverse the temperature sensitivity caused by the cdc68-1 allele. We report here the molecular characterization of mutations in one suppressor gene, the previously identified SUG1 gene. The Sug1 protein has been implicated in both transcriptional regulation and proteolysis. sug1 suppressor alleles reversed most aspects of the cdc68-1 mutant phenotype but did not suppress the lethality of a cdc68 null allele, indicating that sug1 suppression is by restoration of Cdc68 activity. Our evidence suggests that suppression by sug1 is unlikely to be due to increased stability of mutant Cdc68 protein, despite the observation that Sug1 affected proteolysis of mutant Cdc68. We report here that attenuated Sug1 activity strengthens mutant Cdc68 activity, whereas increased Sug1 activity further inhibits enfeebled Cdc68 activity, suggesting that Sug1 antagonizes the activator function of Cdc68 for transcription. Consistent with this hypothesis, we find that Sug1 represses transcription in vivo. PMID:7565755

  13. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.

    PubMed

    Takagi, Toshiyuki; Yokoi, Takahiro; Shibata, Toshiyuki; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae. PMID:26490549

  14. Yeast cells with impaired drug resistance accumulate glycerol and glucose.

    PubMed

    Dikicioglu, Duygu; Oc, Sebnem; Rash, Bharat M; Dunn, Warwick B; Pir, Pınar; Kell, Douglas B; Kirdar, Betul; Oliver, Stephen G

    2014-01-01

    Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. PMID:24157722

  15. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    SciTech Connect

    Sifontes, Ángela B.; González, Gema; Tovar, Leidy M.; Méndez, Franklin J.; Gomes, Maria E.; Cañizales, Edgar; Niño-Vega, Gustavo; Villalobos, Hector; Brito, Joaquin L.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.

  16. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    PubMed

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  17. T Cell Receptor Engineering and Analysis Using the Yeast Display Platform.

    PubMed

    Smith, Sheena N; Harris, Daniel T; Kranz, David M

    2015-01-01

    The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g., a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g., T cell activation by as few as 1-3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with K D values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072

  18. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.

    PubMed

    Hodgman, C Eric; Jewett, Michael C

    2013-10-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1)  µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.

  19. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    PubMed

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.

  20. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    PubMed

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications. PMID:27041690

  1. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.

    PubMed

    Spearman, Maureen; Chan, Sarah; Jung, Vince; Kowbel, Vanessa; Mendoza, Meg; Miranda, Vivian; Butler, Michael

    2016-09-10

    Yeast and plant hydrolysates are used as media supplements to support the growth and productivity of CHO cultures for biopharmaceutical production. Through fractionation of a yeast lysate and metabolic analysis of a fraction that had bioactivity equivalent to commercial yeast extract (YE), bioactive components were identified that promoted growth and productivity of two recombinant CHO cell lines (CHO-Luc and CHO-hFcEG2) equivalent to or greater than YE-supplemented media. Autolysis of the yeast lysate was not necessary for full activity, suggesting that the active components are present in untreated yeast cells. A bioactive fraction (3KF) of the yeast lysate was isolated from the permeate using a 3kDa molecular weight cut-off (MWCO) filter. Supplementation of this 3KF fraction into the base media supported growth of CHO-Luc cells over eight passages equivalent to YE-supplemented media. The 3KF fraction was fractionated further by a cation exchange spin column using a stepwise pH elution. Metabolomic analysis of a bioactive fraction isolated at high pH identified several arginine and lysine-containing peptides as well as two polyamines, spermine and spermidine, with 3.5× and 4.5× higher levels compared to a fraction showing no bioactivity. The addition of a mixture of polyamines and their precursors (putrescine, spermine, spermidine, ornithine and citrulline) as well as increasing the concentration of some of the components of the original base medium resulted in a chemically-defined (CD) formulation that produced an equivalent viable cell density (VCD) and productivity of the CHO-Luc cells as the YE-supplemented medium. The VCD of the CHO-hFcEG2 culture in the CD medium was 1.9× greater and with equivalent productivity to the YE-supplemented media.

  2. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.

    PubMed

    Spearman, Maureen; Chan, Sarah; Jung, Vince; Kowbel, Vanessa; Mendoza, Meg; Miranda, Vivian; Butler, Michael

    2016-09-10

    Yeast and plant hydrolysates are used as media supplements to support the growth and productivity of CHO cultures for biopharmaceutical production. Through fractionation of a yeast lysate and metabolic analysis of a fraction that had bioactivity equivalent to commercial yeast extract (YE), bioactive components were identified that promoted growth and productivity of two recombinant CHO cell lines (CHO-Luc and CHO-hFcEG2) equivalent to or greater than YE-supplemented media. Autolysis of the yeast lysate was not necessary for full activity, suggesting that the active components are present in untreated yeast cells. A bioactive fraction (3KF) of the yeast lysate was isolated from the permeate using a 3kDa molecular weight cut-off (MWCO) filter. Supplementation of this 3KF fraction into the base media supported growth of CHO-Luc cells over eight passages equivalent to YE-supplemented media. The 3KF fraction was fractionated further by a cation exchange spin column using a stepwise pH elution. Metabolomic analysis of a bioactive fraction isolated at high pH identified several arginine and lysine-containing peptides as well as two polyamines, spermine and spermidine, with 3.5× and 4.5× higher levels compared to a fraction showing no bioactivity. The addition of a mixture of polyamines and their precursors (putrescine, spermine, spermidine, ornithine and citrulline) as well as increasing the concentration of some of the components of the original base medium resulted in a chemically-defined (CD) formulation that produced an equivalent viable cell density (VCD) and productivity of the CHO-Luc cells as the YE-supplemented medium. The VCD of the CHO-hFcEG2 culture in the CD medium was 1.9× greater and with equivalent productivity to the YE-supplemented media. PMID:27165505

  3. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors.

    PubMed

    Christiaens, Joaquin F; Franco, Luis M; Cools, Tanne L; De Meester, Luc; Michiels, Jan; Wenseleers, Tom; Hassan, Bassem A; Yaksi, Emre; Verstrepen, Kevin J

    2014-10-23

    Yeast cells produce various volatile metabolites that are key contributors to the pleasing fruity and flowery aroma of fermented beverages. Several of these fruity metabolites, including isoamyl acetate and ethyl acetate, are produced by a dedicated enzyme, the alcohol acetyl transferase Atf1. However, despite much research, the physiological role of acetate ester formation in yeast remains unknown. Using a combination of molecular biology, neurobiology, and behavioral tests, we demonstrate that deletion of ATF1 alters the olfactory response in the antennal lobe of fruit flies that feed on yeast cells. The flies are much less attracted to the mutant yeast cells, and this in turn results in reduced dispersal of the mutant yeast cells by the flies. Together, our results uncover the molecular details of an intriguing aroma-based communication and mutualism between microbes and their insect vectors. Similar mechanisms may exist in other microbes, including microbes on flowering plants and pathogens. PMID:25310977

  4. Apple Can Act as Anti-Aging on Yeast Cells

    PubMed Central

    Palermo, Vanessa; Mattivi, Fulvio; Silvestri, Romano; La Regina, Giuseppe; Falcone, Claudio; Mazzoni, Cristina

    2012-01-01

    In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C) and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components. PMID:22970337

  5. Apple can act as anti-aging on yeast cells.

    PubMed

    Palermo, Vanessa; Mattivi, Fulvio; Silvestri, Romano; La Regina, Giuseppe; Falcone, Claudio; Mazzoni, Cristina

    2012-01-01

    In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C) and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.

  6. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    PubMed

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast.

  7. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    PubMed

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.

  8. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    PubMed Central

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays. PMID:25717323

  9. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  10. Interactions of purified transcription factors: binding of yeast MAT alpha 1 and PRTF to cell type-specific, upstream activating sequences.

    PubMed Central

    Tan, S; Ammerer, G; Richmond, T J

    1988-01-01

    Pheromone receptor transcription factor (PRTF) and MAT alpha 1 are protein transcription factors that are involved in the regulation of the alpha-specific genes in Saccharomyces cerevisiae. We have expressed MAT alpha 1 as a fusion protein in Escherichia coli and purified it from inclusion bodies in milligram quantities. The MAT alpha 1 protein was obtained after specific cleavage of the fusion protein. Quantitative band shift electrophoresis was used to determine the equilibrium dissociation constants that describe the multicomponent binding equilibrium between the PRTF and MAT alpha 1 proteins, and alpha-specific STE3 upstream activating sequence (UAS) DNA. The dissociation constant for the complex of PRTF and the a-specific UAS of STE2 was also measured and found to be 5.9 X 10(-11) M, only three times less than that for the PRTF-STE3 UAS complex. Analyses of these complexes by DNase I footprinting demonstrate that the PRTF binding site is confined to the palindromic P-box sequence in the case of the STE3 UAS, but extends symmetrically from this central region to cover 28 bp for the STE2 UAS. When MAT alpha 1 is bound to the PRTF-STE3 complex, the region of DNA protected is enlarged to that seen for the PRTF-STE2 complex. Our results using these two purified factors in vitro suggest that PRTF has nearly the same affinity for a- and alpha-specific UAS elements and that transcriptional activation requires a particular conformational state for the PRTF-DNA complex which occurs in the PRTF-STE2 and MAT alpha 1-PRTF-STE3 complexes, but not in the PRTF-STE3 complex. Images PMID:2854061

  11. The occurrence of killer activity in yeasts isolated from natural habitats.

    PubMed

    Wójcik, Monika; Kordowska-Wiater, Monika

    2015-01-01

    Yeast's ability to restrict the growth and kill other yeasts, fungi and bacteria has been known for over 50 years. Killer activity was detected in yeasts deposited in the world collections or isolated from natural habitats. In this study, isolates from the forest environment, leaves of fruit trees, flower petals, cereals and frozen fruit have been screened in terms of their killer activities. Killer activity was tested on strains belonging to six yeast species: Candida, Rhodotorula, Pichia, Pachysolen, Yarrowia, Trichosporon. The reference strains were Kluyveromyces lactis Y-6682 and Kluyveromyces marxinanus Y-8281, well-known to be sensitive to yeast killer toxins. Among one hundred and two tested strains, 24 (23.5% of isolates) showed positive killer action, and 10 (9.8% of the isolates) a weak killer action against at least one sensitive reference strain. The highest killer activity was observed among isolates from forest soil and flowers. PMID:26636138

  12. Triclabendazole protects yeast and mammalian cells from oxidative stress: identification of a potential neuroprotective compound.

    PubMed

    Lee, Yong Joo; Burlet, Elodie; Wang, Shaoxiao; Xu, Baoshan; Huang, Shile; Galiano, Floyd J; Witt, Stephan N

    2011-10-14

    The Prestwick and NIH chemical libraries were screened for drugs that protect baker's yeast from sugar-induced cell death (SICD). SICD is triggered when stationary-phase yeast cells are transferred from spent rich medium into water with 2% glucose and no other nutrients. The rapid, apoptotic cell death occurs because reactive oxygen species (ROS) accumulate. We found that triclabendazole, which is used to treat liver flukes in cattle and man, partially protects against SICD. Characterization of triclabendazole revealed that it also protects yeast cells from death induced by the Parkinson's disease-related protein alpha-synuclein (α-syn), which is known to induce the accumulation of ROS. PMID:21946065

  13. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    PubMed

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells.

  14. Regulation of Yeast G Protein Signaling by the Kinases That Activate the AMPK Homolog Snf1

    PubMed Central

    Clement, Sarah T.; Dixit, Gauri; Dohlman, Henrik G.

    2014-01-01

    Extracellular signals, such as nutrients and hormones, cue intracellular pathways to produce adaptive responses. Often, cells must coordinate their responses to multiple signals to produce an appropriate outcome. We showed that components of a glucose-sensing pathway acted on components of a heterotrimeric guanine nucleotide–binding protein (G protein)–mediated pheromone signaling pathway in the yeast Saccharomyces cerevisiae. We demonstrated that the G protein α subunit Gpa1 was phosphorylated in response to conditions of reduced glucose availability and that this phosphorylation event contributed to reduced pheromone-dependent stimulation of mitogen-activated protein kinases, gene transcription, cell morphogenesis, and mating efficiency. We found that Elm1, Sak1, and Tos3, the kinases that phosphorylate Snf1, the yeast homolog of adenosine monophosphate–activated protein kinase (AMPK), in response to limited glucose availability, also phosphorylated Gpa1 and contributed to the diminished mating response. Reg1, the regulatory subunit of the phosphatase PP1 that acts on Snf1, was likewise required to reverse the phosphorylation of Gpa1 and to maintain the mating response. Thus, the same kinases and phosphatase that regulate Snf1 also regulate Gpa1. More broadly, these results indicate that the pheromone signaling and glucose-sensing pathways communicate directly to coordinate cell behavior. PMID:24003255

  15. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    PubMed

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-07-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  16. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions

    PubMed Central

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-01-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  17. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities.

  18. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. PMID:26617014

  19. Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality.

    PubMed

    Svenkrtova, Andrea; Belicova, Lenka; Volejnikova, Andrea; Sigler, Karel; Jazwinski, S Michal; Pichova, Alena

    2016-04-01

    Cells of the budding yeast Saccharomyces cerevisiae undergo a process akin to differentiation during prolonged culture without medium replenishment. Various methods have been used to separate and determine the potential role and fate of the different cell species. We have stratified chronologically-aged yeast cultures into cells of different sizes, using centrifugal elutriation, and characterized these subpopulations physiologically. We distinguish two extreme cell types, very small (XS) and very large (L) cells. L cells display higher viability based on two separate criteria. They respire much more actively, but produce lower levels of reactive oxygen species (ROS). L cells are capable of dividing, albeit slowly, giving rise to XS cells which do not divide. L cells are more resistant to osmotic stress and they have higher trehalose content, a storage carbohydrate often connected to stress resistance. Depletion of trehalose by deletion of TPS2 does not affect the vital characteristics of L cells, but it improves some of these characteristics in XS cells. Therefore, we propose that the response of L and XS cells to the trehalose produced in the former differs in a way that lowers the vitality of the latter. We compare our XS- and L-fraction cell characteristics with those of cells isolated from stationary cultures by others based on density. This comparison suggests that the cells have some similarities but also differences that may prove useful in addressing whether it is the segregation or the response to trehalose that may play the predominant role in cell division from stationary culture. PMID:26614086

  20. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance.

    PubMed

    Zimmermannova, Olga; Salazar, Ana; Sychrova, Hana; Ramos, Jose

    2015-06-01

    Zygosaccharomyces rouxii is an osmotolerant yeast growing in the presence of high concentrations of salts and/or sugars. The maintenance of intracellular potassium homeostasis is essential for osmostress adaptation. Zygosaccharomyces rouxii is endowed with only one typical potassium transporter (ZrTrk1). We characterized ZrTrk1 activity and its contribution to various physiological parameters in detail. Our results show that ZrTrk1 is a high-affinity K(+) transporting system efficiently discriminating between K(+) and Li(+) and indicate the presence of another, currently unknown K(+) importing system with a low affinity in Z. rouxii cells. Upon ZrTrk1 heterologous expression in Saccharomyces cerevisiae, it confers cells with a remarkably high lithium tolerance (even to wild-type strains) due to preventing Li(+) influx into cells, and is able to complement a plasma-membrane hyperpolarization and cell sensitivity to cationic compounds caused by the lack of endogenous K(+) transporters. Intracellular pH measurements with pHluorin, whose coding sequence was integrated into the genome, showed that the expression of ZrTrk1 also complements a decrease in intracellular pH in S. cerevisiae trk1Δ trk2Δ cells. Our data corroborate a tight connection between potassium and proton transporters in yeasts and provide new insights into Z. rouxii cation homeostasis and the basis of its high osmotolerance. PMID:26019147

  1. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-07-27

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.

  2. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells

    PubMed Central

    Hur, Jae H.; Bahadorani, Sepehr; Graniel, Jacqueline; Koehler, Christopher L.; Ulgherait, Matthew; Rera, Michael; Jones, D. Leanne; Walker, David W.

    2013-01-01

    A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging. PMID:24038661

  3. Effect of laser fluence on yeast cell viability in laser-assisted cell transfer

    NASA Astrophysics Data System (ADS)

    Lin, Yafu; Huang, Yong; Wang, Gaoyan; Tzeng, Tzeng-Rong J.; Chrisey, Douglas B.

    2009-08-01

    Matrix-assisted pulsed-laser evaporation direct-write (MAPLE DW) has been emerging as a promising biological construct fabrication technique. The post-transfer cell viability in MAPLE DW depends on various operation conditions such as the applied laser fluence; unfortunately, the effect of laser fluence on the post-transfer cell viability has not been well elucidated. This work aims to study the effect of laser fluence on the post-transfer cell viability and the cell recovery ability in MAPLE DW of yeast cells (Saccharomyces cerevisiae). It has been observed that (1) yeast cell viability decreases as the laser fluence increases from 85 to around 1500mJ/cm2 and (2) some of the MAPLE DW process-induced cell damage is reversible. The post-transfer yeast cell recovery is a function of laser fluence; however, this dependence relationship is not monotonic. Future work is needed to better understand the physical and chemical mechanisms of the above observations.

  4. Yeast cell wall and live yeast products and their combination in broiler diets formulated with weekly ingredient variations.

    PubMed

    Fowler, J; Hashim, M; Haq, A; Bailey, C A

    2015-10-01

    A 6-week broiler study was conducted to evaluate whether subjecting the intestinal microflora of broilers to the effect of weekly variations in feed ingredients could be ameliorated by the inclusion of yeast-derived feed additives: a yeast cell wall extract (YCW), live yeast culture (LY) or their combination (YCW + LY). Recent changes in ingredient prices have motivated producers to formulate diets not necessarily based primarily on corn and soya bean meal. Intestinal microflora in birds can vary significantly based on the ingredient composition of their diet, and the make-up of the flora can influence overall bird performance. Within the three nutrient phases of this study, birds were fed either a traditional corn-soya ingredient profile or a variable-ingredient regimen, which had weekly changes in the ingredient composition. There were consistent ameliorative effects of the yeast treatments in both the corn-soya and the variable-ingredient groups throughout all 6 weeks, with the YCW + LY combination showing a reduced effect when compared to either product fed alone. The effectiveness of YCW and LY on ameliorating the effects of weekly ingredient variations appeared most effective during the starter and grower phases, but was less significant during the sixth week.

  5. Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis.

    PubMed

    Schoborg, Jennifer A; Hodgman, C Eric; Anderson, Mark J; Jewett, Michael C

    2014-05-01

    Cell-free protein synthesis (CFPS) platforms are now considered a powerful tool for synthesizing a variety of proteins at scales from pL to 100 L with accelerated process development pipelines. We previously reported the advancement of a novel yeast-based CFPS platform. Here, we studied factors that cause termination of yeast CFPS batch reactions. Specifically, we characterized the substrate and byproduct concentrations in batch, fed-batch, and semi-continuous reaction formats through high-performance liquid chromatography (HPLC) and chemical assays. We discovered that creatine phosphate, the secondary energy substrate, and nucleoside triphosphates were rapidly degraded during batch CFPS, causing a significant drop in the reaction's energy charge (E.C.) and eventual termination of protein synthesis. As a consequence of consuming creatine phosphate, inorganic phosphate accumulated as a toxic byproduct. Additionally, we measured amino acid concentrations and found that aspartic acid was rapidly consumed. By adopting a semi-continuous reaction format, where passive diffusion enables substrate replenishment and byproduct removal, we achieved over a 70% increase in active superfolder green fluorescent protein (sfGFP) as compared with the batch system. This study identifies targets for the future improvement of the batch yeast CFPS reaction. Moreover, it outlines a detailed, generalized method to characterize and improve other CFPS platforms.

  6. Aminopyrrolic synthetic receptors for monosaccharides: a class of carbohydrate-binding agents endowed with antibiotic activity versus pathogenic yeasts.

    PubMed

    Nativi, Cristina; Francesconi, Oscar; Gabrielli, Gabriele; De Simone, Irene; Turchetti, Benedetta; Mello, Tommaso; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Buzzini, Pietro; Roelens, Stefano

    2012-04-16

    The biological activity of a set of structurally related aminopyrrolic synthetic receptors for monosaccharides has been tested versus yeast and yeast-like microorganisms and compared to their binding affinity toward mannosides. Antibiotic activity comparable to that of well-known polyene (amphotericin B) or azole (ketoconazole) drugs has been found for some members of the family, along with a general correlation with binding abilities. A systematic structure-activity-affinity investigation shed light on the structural and functional requirements necessary for antibiotic activity and identified the tripodal compound 1 as the most potent compound of the set. Together with toxicity tests and inhibitor localization experiments performed through fluorescence microscopy, these studies led to the characterization of a new class of carbohydrate binding agents possessing antibiotic activity, in which pyrrolic groups precisely structured on a tripodal architecture appear to be responsible for permeability through the cell wall of pathogens, as well as for antibiotic activity inside the cytoplasm.

  7. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species.

    PubMed

    Kodedová, Marie; Sychrová, Hana

    2016-09-10

    New antifungal compounds that circumvent the resistance of the pathogen by directly damaging yeast cell surface structures are promising agents for the treatment of fungal infections, due to their different mechanism of action from current clinically used antifungal drugs. We present here a rapid and cost-effective fluorescence method suitable for identifying new potent drugs that directly target yeast cell surface structures, causing cell permeabilization and thus bypassing the multidrug resistance mechanisms of pathogens. The fluorescence assay enabled us to detect with high sensitivity damage to the Candida plasma membrane (its hyperpolarization and permeabilization) as a result of short-term exposure to the antifungal compounds. Results can be obtained in 1-2h with minimal effort and consumption of the tested compounds, also 96 samples can be analysed simultaneously. We used this method to study antimicrobial peptides isolated from the venom of bees and their synthetic analogs, compare the potency of the peptides and determine their minimal effective concentrations. The antimicrobial peptides were able to kill yeast cells at low concentrations within a 15-min treatment, the LL-III peptide exhibited a broad spectrum of antifungal activity on various Saccharomyces, pathogenic Candida and osmotolerant yeast species. PMID:27369550

  8. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  9. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  10. Modular coherence of protein dynamics in yeast cell polarity system

    PubMed Central

    Gao, Juntao Tony; Guimerà, Roger; Li, Hua; Pinto, Inês Mendes; Sales-Pardo, Marta; Wai, Stephanie C.; Rubinstein, Boris; Li, Rong

    2011-01-01

    In this study, we investigated on a systems level how complex protein interactions underlying cell polarity in yeast determine the dynamic association of proteins with the polar cortical domain (PCD) where they localize and perform morphogenetic functions. We constructed a network of physical interactions among >100 proteins localized to the PCD. This network was further divided into five robust modules correlating with distinct subprocesses associated with cell polarity. Based on this reconstructed network, we proposed a simple model that approximates a PCD protein's molecular residence time as the sum of the characteristic time constants of the functional modules with which it interacts, weighted by the number of edges forming these interactions. Regression analyses showed excellent fitting of the model with experimentally measured residence times for a large subset of the PCD proteins. The model is able to predict residence times using small training sets. Our analysis also revealed a scaffold protein that imposes a local constraint of dynamics for certain interacting proteins. PMID:21502521

  11. Influence of N-Glycosylation on the Morphogenesis and Growth of Paracoccidioides brasiliensis and on the Biological Activities of Yeast Proteins

    PubMed Central

    Dos Reis Almeida, Fausto Bruno; Carvalho, Fernanda Caroline; Mariano, Vânia Sammartino; Alegre, Ana Claudia Paiva; Silva, Roberto do Nascimento; Hanna, Ebert Seixas; Roque-Barreira, Maria Cristina

    2011-01-01

    The fungus Paracoccidioides brasiliensis is a human pathogen that causes paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The cell wall of P. brasiliensis is a network of glycoproteins and polysaccharides, such as chitin, that perform several functions. N-linked glycans are involved in glycoprotein folding, intracellular transport, secretion, and protection from proteolytic degradation. Here, we report the effects of tunicamycin (TM)-mediated inhibition of N-linked glycosylation on P. brasiliensis yeast cells. The underglycosylated yeasts were smaller than their fully glycosylated counterparts and exhibited a drastic reduction of cell budding, reflecting impairment of growth and morphogenesis by TM treatment. The intracellular distribution in TM-treated yeasts of the P. brasiliensis glycoprotein paracoccin was investigated using highly specific antibodies. Paracoccin was observed to accumulate at intracellular locations, far from the yeast wall. Paracoccin derived from TM-treated yeasts retained the ability to bind to laminin despite their underglycosylation. As paracoccin has N-acetyl-β-d-glucosaminidase (NAGase) activity and induces the production of TNF-α and nitric oxide (NO) by macrophages, we compared these properties between glycosylated and underglycosylated yeast proteins. Paracoccin demonstrated lower NAGase activity when underglycosylated, although no difference was detected between the pH and temperature optimums of the two forms. Murine macrophages stimulated with underglycosylated yeast proteins produced significantly lower levels of TNF-α and NO. Taken together, the impaired growth and morphogenesis of tunicamycin-treated yeasts and the decreased biological activities of underglycosylated fungal components suggest that N-glycans play important roles in P. brasiliensis yeast biology. PMID:22216217

  12. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase.

    PubMed

    Tang, Shi-Yang; Yi, Pyshar; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2015-05-01

    Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes. PMID:25701421

  13. Tomato Phospholipid Hydroperoxide Glutathione Peroxidase Inhibits Cell Death Induced by Bax and Oxidative Stresses in Yeast and Plants1

    PubMed Central

    Chen, Shaorong; Vaghchhipawala, Zarir; Li, Wei; Asard, Han; Dickman, Martin B.

    2004-01-01

    Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cytoprotector in yeast (Saccharomyces cerevisiae), preventing Bax, hydrogen peroxide, and heat stress induced cell death, while also delaying yeast senescence. When tobacco (Nicotiana tabacum) leaves were exposed to lethal levels of salt and heat stress, features associated with mammalian apoptosis were observed. Importantly, transient expression of LePHGPx protected tobacco leaves from salt and heat stress and suppressed the apoptotic-like features. As has been reported, conditional expression of Bax was lethal in tobacco, resulting in tissue collapse and membrane permeability to Evans blue. When LePHGPx was coexpressed with Bax, little cell death and no vital staining were observed. Moreover, stable expression of LePHGPx in tobacco conferred protection against the fungal phytopathogen Botrytis cinerea. Taken together, our data indicated that LePHGPx can protect plant tissue from a variety of stresses. Moreover, functional screens in yeast are a viable tool for the identification of plant genes that regulate cell death. PMID:15235116

  14. Aging and Cell Death in the Other Yeasts, Schizosaccharomyces pombe and Candida albicans

    PubMed Central

    Lin, Su-Ju; Austriaco, Nicanor

    2013-01-01

    How do cells age and die? For the past twenty years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programmed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes. PMID:24205865

  15. Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities.

    PubMed

    Kulakovskaya, Tatyana; Shashkov, Alexander; Kulakovskaya, Ekaterina; Golubev, Wladyslav; Zinin, Alexander; Tsvetkov, Yury; Grachev, Alexey; Nifantiev, Nikolay

    2009-01-01

    Basidiomycetous yeasts Cryptococcus humicola and Pseudozyma fusiformata secrete cellobiose lipids into the culture broth. In the case of Cr. humicola, 16-(tetra-O-acetyl-beta-cellobiosyloxy)-2-hydroxyhexadecanoic acid was defined as major product and 16-(tetra-O-acetyl-beta-cellobiosyloxy)-2,15-dihydrohexadecanoic acid was defined as minor product, while Ps. fusiformata secreted mainly 16-[6-O-acetyl-2'-O-(3-hydroxyhexanoyl)-beta-cellobiosyloxy)-2,15-dihydroxyhexadecanoic acid. These compounds exhibit similar fungicidal activities against different yeasts including pathogenic Cryptococcus and Candida species. The cells of Filobasidiella neoformans causing systemic cryptococcosis completely died after 30-min incubation with 0.02 mg mL(-1) of cellobiose lipids. The same effect on ascomycetous yeast, including pathogenic Candida species, is achieved at 0.1-0.3 mg mL(-1) of cellobiose lipids depending on the test culture used. Cellobiose lipid of Ps. fusiformata inhibits the growth of phytopathogenic fungi Sclerotinia sclerotiorum and Phomopsis helianthi more efficiently than cellobiose lipids from Cr. humicola. Fully O-deacylated analogue, namely 16-(beta-cellobiosyloxy)-2-hydroxyhexadecanoic acid, and totally synthetic compound, 16-(beta-cellobiosyloxy)-hexadecanoic acid, do not inhibit the growth of F. neoformans and Saccharomyces cerevisiae, while 16-(beta-cellobiosyloxy)-2,15-dihydroxyhexadecanoic acid inhibits the growth of both test cultures but at higher concentrations than cellobiose lipids of Cr. humicola and Ps. fusiformata. The amide of 16-(beta-cellobiosyloxy)-2,15-dihydroxyhexadecanoic acid possessed no fungicide activity. Thus, the structures of both the carbohydrate part and fatty acid aglycon moiety are important for the fungicidal activity of cellobiose lipids. PMID:19202311

  16. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering

    PubMed Central

    2012-01-01

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass. PMID:23092441

  17. Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2007-11-30

    Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006) 9086-9092]. Phosphorylation of Spc1 by treatment with methylglyoxal in S. pombe cells defective in glyoxalase I, an enzyme crucial for the metabolism of methylglyoxal, continues for a longer period than in wild-type cells. Here we show that methylglyoxal inhibits the activity of the protein phosphatase responsible for the dephosphorylation of Spc1 in vitro. In addition, we found that methylglyoxal inhibits human protein tyrosine phosphatase 1B (PTP1B) also. We propose a model for the regulation of the activity of the Spc1-SAPK signaling pathway by methylglyoxal in S. pombe.

  18. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles

    NASA Astrophysics Data System (ADS)

    Amemiya, Takashi; Obase, Kouhei; Hiramatsu, Naoki; Itoh, Kiminori; Shibata, Kenichi; Takinoue, Masahiro; Yamamoto, Tetsuya; Yamaguchi, Tomohiko

    2015-06-01

    Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells.

  19. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles.

    PubMed

    Amemiya, Takashi; Obase, Kouhei; Hiramatsu, Naoki; Itoh, Kiminori; Shibata, Kenichi; Takinoue, Masahiro; Yamamoto, Tetsuya; Yamaguchi, Tomohiko

    2015-06-01

    Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells. PMID:26117131

  20. Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation.

    PubMed

    Sabbagh, W; Flatauer, L J; Bardwell, A J; Bardwell, L

    2001-09-01

    Signals transmitted by common components often elicit distinct (yet appropriate) outcomes. In yeast, two developmental options-mating and invasive growth-are both regulated by the same MAP kinase cascade. Specificity has been thought to result from specialized roles for the two MAP kinases, Kss1 and Fus3, and because Fus3 prevents Kss1 from gaining access to the mating pathway. Kss1 has been thought to participate in mating only when Fus3 is absent. Instead, we show that Kss1 is rapidly phosphorylated and potently activated by mating pheromone in wild-type cells, and that this is required for normal pheromone-induced gene expression. Signal identity is apparently maintained because active Fus3 limits the extent of Kss1 activation, thereby preventing inappropriate signal crossover. PMID:11583629

  1. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    PubMed

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. PMID:20801644

  2. Fast automated yeast cell counting algorithm using bright-field and fluorescence microscopic images

    PubMed Central

    2013-01-01

    Background The faithful determination of the concentration and viability of yeast cells is important for biological research as well as industry. To this end, it is important to develop an automated cell counting algorithm that can provide not only fast but also accurate and precise measurement of yeast cells. Results With the proposed method, we measured the precision of yeast cell measurements by using 0%, 25%, 50%, 75% and 100% viability samples. As a result, the actual viability measured with the proposed yeast cell counting algorithm is significantly correlated to the theoretical viability (R2 = 0.9991). Furthermore, we evaluated the performance of our algorithm in various computing platforms. The results showed that the proposed algorithm could be feasible to use with low-end computing platforms without loss of its performance. Conclusions Our yeast cell counting algorithm can rapidly provide the total number and the viability of yeast cells with exceptional accuracy and precision. Therefore, we believe that our method can become beneficial for a wide variety of academic field and industries such as biotechnology, pharmaceutical and alcohol production. PMID:24215650

  3. How do yeast cells become tolerant to high ethanol concentrations?

    PubMed

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  4. Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells

    NASA Astrophysics Data System (ADS)

    Nerudová, Michaela; Červinková, Kateřina; Hašek, Jiří; Cifra, Michal

    2015-01-01

    Optical spectral analysis of the ultra-weak photon emission (UPE) could be utilized for non-invasive diagnostic of state of biological systems and for elucidation of underlying mechanisms of UPE generation. Optical spectra of UPE from differentiated HL-60 cells and yeast cells (Saccharomyces cerevisiae) were investigated. Induced photon emission of neutrophil-like cells and spontaneous photon emission of yeast cells were measured using highly sensitive photomultiplier module Hamamatsu H7360-01 in a thermally regulated light-tight chamber. The respiratory burst of neutrophil-like HL-60 cells was induced with the PMA (phorbol 12-myristate, 13-acetate). PMA activates an assembly of NADPH oxidase, which induces a rapid formation of reactive oxygen species (ROS). Long-pass edge filters (wavelength 350, from 400 to 600 with 25 nm resolution and 650 nm) were used for optical spectral analysis. Propagation of error of indirect measurements and standard deviation were used to assess reliability of the measured spectra. Results indicate that the photon emission from both cell cultures is detectable in the six from eight examined wavelength ranges with different percentage distribution of cell suspensions, particularly 450-475, 475-500, 500-525, 525-550, 550-575 and 575-600 nm. The wavelength range of spectra from 450 to 550 nm coincides with the range of photon emission from triplet excited carbonyls (350-550 nm). The both cells cultures emitted photons in wavelength range from 550 to 600 nm but this range does not correspond with any known emitter. To summarize, we have demonstrated a clear difference in the UPE spectra between two organisms using rigorous methodology and error analysis.

  5. Enzymatic hydrolysis of inulin to fructose by glutaraldehyde fixed yeast cells.

    PubMed

    Workman, W E; Day, D F

    1984-08-01

    Inulin, a polyfruction, is found as the reserve carbohydrate in the roots and tubers of various plants (i.e. Jerusalem artichoke, chicory, and dahlia tubers). The beta-fructofuranosidase (inulase) from the yeast Kluyveromyces fragilis is of interest because of its industrial potential in fructose syrup and alcohol production from inulin containing plants. We have found that the inulase of K. fragilis can be immobilized in the yeast cells by glutaraldehyde treatment. These cells are resistant to physical and enzymatic destruction. Although the exact nature of the immobilization is not fully understood, the kinetic parameters of the immobilized enzyme are similar to those of the soluble enzyme. No reduction of enzyme activity was observed after glutaraldehyde treatment and glutaraldehyde concentration did not affect enzyme activity. A 96% hydrolysis of dahlia inulin was achieved in 10.5 h with a 9.5% (w/v) fixed enzyme suspension. A Jerusalem artichoke extract containing 16.8%polyfructan was completely hydrolyzed in 3.5 h with a 0.24% (w/v)fixed enzyme suspension. This is a time frame feasible for industrial consideration. PMID:18553476

  6. Synthetic polyamines: new compounds specific to actin dynamics for mammalian cell and fission yeast.

    PubMed

    Riveline, Daniel; Thiagarajan, Raghavan; Lehn, Jean-Marie; Carlier, Marie-France

    2014-01-01

    Actin is a major actor in the determination of cell shape. On the one hand, site-directed assembly/disassembly cycles of actin filaments drive protrusive force leading to lamellipodia and filopodia dynamics. Force produced by actin similarly contributes in membrane scission in endocytosis or Golgi remodeling. On the other hand, cellular processes like adhesion, immune synapse, cortex dynamics or cytokinesis are achieved by combining acto-myosin contractility and actin assembly in a complex and not fully understood manner. New chemical compounds are therefore needed to disentangle acto-myosin and actin dynamics. We have found that synthetic, cell permeant, short polyamines are promising new actin regulators in this context. They generate growth and stabilization of lamellipodia within minutes by slowing down the actin assembly/disassembly cycle and facilitating nucleation. We now report that these polyamines also slow down cytokinetic ring closure in fission yeast. This shows that these synthetic compounds are active also in yeasts, and these experiments specifically highlight that actin depolymerization is involved in the ring closure. Thus, synthetic polyamines appear to be potentially powerful agents in a quantitative approach to the role of actin in complex processes in cell biology, developmental biology and potentially cancer research.

  7. Nutritional Control of Epigenetic Processes in Yeast and Human Cells

    PubMed Central

    Sadhu, Meru J.; Guan, Qiaoning; Li, Fei; Sales-Lee, Jade; Iavarone, Anthony T.; Hammond, Ming C.; Cande, W. Zacheus; Rine, Jasper

    2013-01-01

    The vitamin folate is required for methionine homeostasis in all organisms. In addition to its role in protein synthesis, methionine is the precursor to S-adenosyl-methionine (SAM), which is used in myriad cellular methylation reactions, including all histone methylation reactions. Here, we demonstrate that folate and methionine deficiency led to reduced methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. The effect of nutritional deficiency on H3K79 methylation was less pronounced, but was exacerbated in S. cerevisiae carrying a hypomorphic allele of Dot1, the enzyme responsible for H3K79 methylation. This result suggested a hierarchy of epigenetic modifications in terms of their susceptibility to nutritional limitations. Folate deficiency caused changes in gene transcription that mirrored the effect of complete loss of H3K4 methylation. Histone methylation was also found to respond to nutritional deficiency in the fission yeast Schizosaccharomyces pombe and in human cells in culture. PMID:23979574

  8. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    SciTech Connect

    Brindle, K.; Braddock, P.; Fulton, S. )

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.

  9. Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast.

    PubMed

    Radman-Livaja, Marta; Liu, Chih Long; Friedman, Nir; Schreiber, Stuart L; Rando, Oliver J

    2010-02-01

    Histone modifications affect DNA-templated processes ranging from transcription to genomic replication. In this study, we examine the cell cycle dynamics of the trimethylated form of histone H3 lysine 4 (H3K4me3), a mark of active chromatin that is viewed as "long-lived" and that is involved in memory during cell state inheritance in metazoans. We synchronized yeast using two different protocols, then followed H3K4me3 patterns as yeast passed through subsequent cell cycles. While most H3K4me3 patterns were conserved from one generation to the next, we found that methylation patterns induced by alpha factor or high temperature were erased within one cell cycle, during S phase. Early-replicating regions were erased before late-replicating regions, implicating replication in H3K4me3 loss. However, nearly complete H3K4me3 erasure occurred at the majority of loci even when replication was prevented, suggesting that most erasure results from an active process. Indeed, deletion of the demethylase Jhd2 slowed erasure at most loci. Together, these results indicate overlapping roles for passive dilution and active enzymatic demethylation in erasing ancestral histone methylation states in yeast. PMID:20140185

  10. Preparation and performance of immobilized yeast cells in columns containing no inert carrier. [Schizosaccharomyces pombe

    SciTech Connect

    Hsiao, H.Y.; Chiang, L.C.; Yang, C.M.; Chen, L.F.; Tsao, G.T.

    1983-02-01

    Schizosaccharomyes pombe was cultivated in a medium of glucose (10 g/l), malt extract (3 g/l), yeast extract (3 g/l), and bactopeptone (5 g/l) to form flocs. More than 95% of the cell population were flocculated. Variation in glucose concentration (from 10 to 11 g/l) did not affect flocculation. Yeast extract helped induce flocculation. Application of the immobilized yeast for the continuous production of ethanol was tested in a column reactor. Soft yeast flocs (50-200 mesh) underwent morphological changes to heavy particles (0.1-9.3 cm diameter) after continuously being fed with fresh substrates in the column. Productivity as high as 87 g EtOH/l/hour was obtained when a 150 g/l glucose medium was fed. The performance of this yeast reactor was stable over a two-month period. The ethanol yield was 97% of the theoretical maximum based upon glucose consumed. (Refs. 16).

  11. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity.

    PubMed

    Goryachev, Andrew B; Pokhilko, Alexandra V

    2008-04-30

    Complex biochemical networks can be understood by identifying their principal regulatory motifs and mode of action. We model the early phase of budding yeast cellular polarization and show that the biochemical processes in the presumptive bud site comprise a Turing-type mechanism. The roles of the prototypical activator and substrate are played by GTPase Cdc42 in its active and inactive states, respectively. We demonstrate that the nucleotide cycling of Cdc42 converts cellular energy into a stable cluster of activated Cdc42. This energy drives a continuous membrane-cytoplasmic exchange of the cluster components to counteract diffusive spread of the cluster. This exchange explains why only one bud forms per cell cycle, because the winner-takes-all competition of candidate sites inevitably selects a single site. PMID:18381072

  13. Enzymatic process for the fractionation of baker's yeast cell wall (Saccharomyces cerevisiae).

    PubMed

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Blecker, Christophe; Thonart, Philippe

    2014-11-15

    β-Glucans, homopolymers of glucose, are widespread in many microorganisms, mushrooms and plants. They have attracted attention because of their bioactive and medicinal functions. One important source of β-glucans is the cell wall of yeasts, especially that of baker's yeast Saccharomyces cerevisiae. Several processes for the isolation of β-glucans, using alkali, acid or a combination of both, result in degradation of the polymeric chains. In this paper, we have an enzymatic process for the isolation of glucans from yeast cell walls. As a result, β-glucans were obtained in a yield of 18.0% of the original ratio in the yeast cell walls. Therefore, this isolation process gave a better yield and higher β-glucan content than did traditional isolation methods. Furthermore, results showed that each extraction step of β-glucan had a significant effects on its chemical properties.

  14. Quantitative description of ion transport via plasma membrane of yeast and small cells

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853

  15. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  16. Effect of antagonistic yeast XL-1 on resistance-associated enzyme activities in postharvest cantaloupe.

    PubMed

    Shan, C-H; Chen, W; Zhang, H; Tang, F-X; Tong, J-M

    2014-08-15

    The effect of the antagonistic yeast XL-1 on resistance-associated enzyme activities in postharvest cantaloupe was studied by inoculating the antagonistic yeast XL-1. Cantaloupes were sterilized, dried in air, and soaked in antagonistic yeast treatment liquid for 30 s. After drying in air, the cantaloupe was stored at room temperature (2°-5°C). The activities of resistance-associated enzymes in cantaloupe like polyphenol oxidase, β-1,3-glucanase, peroxidase, and superoxide dismutase were measured every 7 days. Our results indicated that the antagonistic yeast XL-1 significantly improved the activity of β-1,3-glucanase and chitinase to promote the disease resistance of postharvest cantaloupe.

  17. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.

    2015-03-01

    Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.

  18. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  19. Insights into the relationship between the proteasome and autophagy in human and yeast cells.

    PubMed

    Athané, Axel; Buisson, Anthony; Challier, Marion; Beaumatin, Florian; Manon, Stéphen; Bhatia-Kiššová, Ingrid; Camougrand, Nadine

    2015-07-01

    In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions. PMID:25882491

  20. A microfluidic device to acquire high-magnification microphotographs of yeast cells

    PubMed Central

    Ohnuki, Shinsuke; Nogami, Satoru; Ohya, Yoshikazu

    2009-01-01

    Background Yeast cell morphology was investigated to reveal the molecular mechanisms of cell morphogenesis and to identify key factors of other processes such as cell cycle progression. We recently developed a semi-automatic image processing program called CalMorph, which allows us to quantitatively analyze yeast cell morphology with the 501 parameters as biological traits and uncover statistical relationships between cell morphological phenotypes and genotypes. However, the current semi-automatic method is not suitable for morphological analysis of large-scale yeast mutants for the reliable prediction of gene functions because of its low-throughput especially at the manual image-acquiring process. Results In this study, we developed a microfluidic chip designed to acquire successive microscopic images of yeast cells suitable for CalMorph image analysis. With the microfluidic chip, the morphology of living cells and morphological changes that occur during the cell cycle were successfully characterized. Conclusion The microfluidic chip enabled us to acquire the images faster than the conventional method. We speculate that the use of microfluidic chip is effective in acquiring images of large-scale for automated analysis of yeast strains. PMID:19317904

  1. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs.

    PubMed

    Behm-Ansmant, Isabelle; Massenet, Séverine; Immel, Françoise; Patton, Jeffrey R; Motorin, Yuri; Branlant, Christiane

    2006-08-01

    Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.

  2. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  3. Membrane Rafts Are Involved in Intracellular Miconazole Accumulation in Yeast Cells*

    PubMed Central

    François, Isabelle E. J. A.; Bink, Anna; Vandercappellen, Jo; Ayscough, Kathryn R.; Toulmay, Alexandre; Schneiter, Roger; van Gyseghem, Elke; Van den Mooter, Guy; Borgers, Marcel; Vandenbosch, Davy; Coenye, Tom; Cammue, Bruno P. A.; Thevissen, Karin

    2009-01-01

    Azoles inhibit ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic 14α-methylated sterols in membranes of susceptible yeast. We demonstrated previously that miconazole induces actin cytoskeleton stabilization in Saccharomyces cerevisiae prior to induction of reactive oxygen species, pointing to an ancillary mode of action. Using a genome-wide agar-based screening, we demonstrate in this study that S. cerevisiae mutants affected in sphingolipid and ergosterol biosynthesis, namely ipt1, sur1, skn1, and erg3 deletion mutants, are miconazole-resistant, suggesting an involvement of membrane rafts in its mode of action. This is supported by the antagonizing effect of membrane raft-disturbing compounds on miconazole antifungal activity as well as on miconazole-induced actin cytoskeleton stabilization and reactive oxygen species accumulation. These antagonizing effects point to a primary role for membrane rafts in miconazole antifungal activity. We further show that this primary role of membrane rafts in miconazole action consists of mediating intracellular accumulation of miconazole in yeast cells. PMID:19783660

  4. Membrane rafts are involved in intracellular miconazole accumulation in yeast cells.

    PubMed

    François, Isabelle E J A; Bink, Anna; Vandercappellen, Jo; Ayscough, Kathryn R; Toulmay, Alexandre; Schneiter, Roger; van Gyseghem, Elke; Van den Mooter, Guy; Borgers, Marcel; Vandenbosch, Davy; Coenye, Tom; Cammue, Bruno P A; Thevissen, Karin

    2009-11-20

    Azoles inhibit ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic 14alpha-methylated sterols in membranes of susceptible yeast. We demonstrated previously that miconazole induces actin cytoskeleton stabilization in Saccharomyces cerevisiae prior to induction of reactive oxygen species, pointing to an ancillary mode of action. Using a genome-wide agar-based screening, we demonstrate in this study that S. cerevisiae mutants affected in sphingolipid and ergosterol biosynthesis, namely ipt1, sur1, skn1, and erg3 deletion mutants, are miconazole-resistant, suggesting an involvement of membrane rafts in its mode of action. This is supported by the antagonizing effect of membrane raft-disturbing compounds on miconazole antifungal activity as well as on miconazole-induced actin cytoskeleton stabilization and reactive oxygen species accumulation. These antagonizing effects point to a primary role for membrane rafts in miconazole antifungal activity. We further show that this primary role of membrane rafts in miconazole action consists of mediating intracellular accumulation of miconazole in yeast cells.

  5. Distribution of the trehalase activation response and the regulatory trehalase gene among yeast species.

    PubMed

    Soto, T; Fernández, J; Cansado, J; Vicente, J; Gacto, M

    1997-12-01

    In Saccharomyces cerevisiae and other yeasts the activity of regulatory trehalases increases in response to the addition of glucose and to thermal changes in the extracellular medium. We have performed an screening on the extent of this response among different representative yeast species and the results show that this ability is displayed only by a few members of the Saccharomycetaceae family. However, all yeasts examined contain a gene related to that coding for regulatory trehalase in S. cerevisiae. This finding reveals that the operational distinction between regulatory and nonregulatory trehalase in yeasts is not a property of the enzyme by itself but relays on the expression of accompanying mechanisms able to modulate trehalase activity.

  6. Angular and spectrally resolved investigations of yeast cells by light scattering microscopy and goniometric measurements

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Müller, Dennis; Nothelfer, Steffen; Kienle, Alwin

    2015-07-01

    Spectrally and angular resolved light scattering from yeast cells was studied with a scattering microscope and a goniometer. Different cell models were investigated with help of analytical solutions of Maxwell's equations. It was found that extraction of precise morphological and optical cellular properties from the measured scattering patterns and phase functions requires more sophisticated cell models than standard Mie theory.

  7. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    PubMed Central

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  8. [Increase of rising activity of commercial yeasts by application of stress conditions during their propagation].

    PubMed

    Galvagno, M A; Cerrutti, P

    2004-01-01

    Rising activity determined as CO2 production of two commercial strains of Saccharomyces cerevisiae could be increased mainly in sweet bread doughs by introducing a "starvation/pulse feeding" schedule of sugar cane molasses during a fed-batch propagation. Such increase was strain dependent. Except for the trehalose intracellular level, other traits related to the yeast industrial performance were unaffected. Applicability of method for baker's yeast industrial production is discussed.

  9. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L.; Huissoon, Jan P.

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  10. Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes.

    PubMed

    Suzuki, C; Ando, Y; Machida, S

    2001-12-01

    SMKT (salt-mediated killer toxin), a killer toxin produced by the halotolerant yeast, Pichia farinosa, kills yeasts of several genera, including Saccharomyces cerevisiae. To elucidate the killing mechanism of SMKT, we examined the interaction of SMKT with membranes using liposomes. Leakage of calcein from calcein-entrapped liposomes was observed in the presence of SMKT. Destruction of liposomes was observed by dark-field microscopy. Comparison of intact S. cerevisiae cells with SMKT-treated cells by dark-field microscopy indicated that the spherical cell membrane is disrupted by SMKT. Using sodium carbonate extraction, we obtained direct evidence for the first time that SMKT is associated with the membrane of sensitive cells. Our results indicate that SMKT kills sensitive S. cerevisiae by interacting with the yeast cell membrane.

  11. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  12. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  13. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.

  14. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies

    PubMed Central

    Rešetárová, Stanislava; Kučerová, Helena; Hlaváček, Otakar; Váchová, Libuše; Palková, Zdena

    2016-01-01

    Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation. PMID:26992228

  15. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry.

  16. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry. PMID:22336744

  17. Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Jansson, Anna; Nafari, Alexandra; Hedfalk, Kristina; Olsson, Eva; Svensson, Krister; Sanz-Velasco, Anke

    2014-02-01

    We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load-displacement curves. A Young's modulus of 13-15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins.

  18. Improving genetic immobilization of a cellulase on yeast cell surface for bioethanol production using cellulose.

    PubMed

    Yang, Jinying; Dang, Hongyue; Lu, Jian Ren

    2013-04-01

    In this study, Saccharomyces cerevisiae was genetically engineered to harbor the capability of utilizing celluloses for bioethanol production by displaying active cellulolytic enzymes on the cell surface. An endo-1,4-β-glucanase gene egX was cloned from Bacillus pumilus C-9 and its expression products, the EGX cellulases, were displayed on the cell surface of S. cerevisiae by fusing egX with aga2 that encodes the binding subunit of the S. cerevisiae cell wall protein α-agglutinin. To achieve high gene copies and stability, multicopy integration was obtained by integrating the fusion aga2-egX gene into the rDNA region of the S. cerevisiae chromosome. To achieve high expression and surface display efficiency, the aga2-egX gene was expressed under the control of a strong promoter. The presence of the enzymatically active cellulase fusion proteins on the S. cerevisiae cell surface was verified by carboxymethyl cellulase activity assay and immunofluorescence microscopy. This work presented a promising strategy to genetically engineer yeasts to perform efficient fermentation of cellulosic materials for bioethanol production. PMID:22915066

  19. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %). PMID:27469174

  20. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape.

    PubMed

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  1. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape

    PubMed Central

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  2. Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells.

    PubMed

    Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K

    2014-12-01

    The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival.

  3. Protein Kinases Are Associated with Multiple, Distinct Cytoplasmic Granules in Quiescent Yeast Cells

    PubMed Central

    Shah, Khyati H.; Nostramo, Regina; Zhang, Bo; Varia, Sapna N.; Klett, Bethany M.; Herman, Paul K.

    2014-01-01

    The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. PMID:25342717

  4. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.

    PubMed

    Fierro-Risco, Jesús; Rincón, Ana María; Benítez, Tahía; Codón, Antonio C

    2013-08-01

    Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation. PMID:23553032

  5. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    PubMed

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  6. Coordination of DNA damage tolerance mechanisms with cell cycle progression in fission yeast

    PubMed Central

    Callegari, A. John; Kelly, Thomas J.

    2016-01-01

    ABSTRACT DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible. PMID:26652183

  7. Coordination of DNA damage tolerance mechanisms with cell cycle progression in fission yeast.

    PubMed

    Callegari, A John; Kelly, Thomas J

    2016-01-01

    DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible. PMID:26652183

  8. Nitrogen availability of grape juice limits killer yeast growth and fermentation activity during mixed-culture fermentation with sensitive commercial yeast strains.

    PubMed Central

    Medina, K; Carrau, F M; Gioia, O; Bracesco, N

    1997-01-01

    The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed. PMID:9212430

  9. Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells.

    PubMed

    Klinger, Harald; Rinnerthaler, Mark; Lam, Yuen T; Laun, Peter; Heeren, Gino; Klocker, Andrea; Simon-Nobbe, Birgit; Dickinson, J Richard; Dawes, Ian W; Breitenbach, Michael

    2010-08-01

    Asymmetric segregation of oxidatively damaged proteins is discussed in the literature as a mechanism in cell division cycles which at the same time causes rejuvenation of the daughter cell and aging of the mother cell. This process must be viewed as cooperating with the cellular degradation processes like autophagy, proteasomal degradation and others. Together, these two mechanisms guarantee survival of the species and prevent clonal senescence of unicellular organisms, like yeast. It is widely believed that oxidative damage to proteins is primarily caused by oxygen radicals and their follow-up products produced in the mitochondria. As we have shown previously, old yeast mother cells in contrast to young cells contain reactive oxygen species and undergo programmed cell death. Here we show that aconitase of the mitochondrial matrix is readily inactivated by oxidative stress, but even in its inactive form is relatively long-lived and retains fluorescence in the Aco1p-eGFP form. The fluorescent protein is distributed between old mothers and their daughters approximately corresponding to the different sizes of mother and daughter cells. However, the remaining active enzyme is primarily inherited by the daughter cells. This indicates that asymmetric distribution of the still active enzyme takes place and a mechanism for discrimination between active and inactive enzyme must exist. As the aconitase remains mitochondrial during aging and cell division, our findings could indicate discrimination between active and no longer active mitochondria during the process.

  10. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  11. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, Andrew; Miller, John; Wood, Lowell

    2004-12-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  12. Practical reactor systems for yeast cell immobilization using biomass support particles

    SciTech Connect

    Black, G.M.; Webb, C.; Mattews, T.M.; Atkinson, B.

    1984-01-01

    The technique of cell immobilization using porous support particles (biomass support particles) has been successfully applied to yeast cells. Two reactor configurations exploiting the use of these particles have been developed and assessed for use in aseptic yeast fermentations. A liquid-fluidized bed fermenter has been devised for use with particles denser than the fermentation liquor whilst a gas-stirred circulating bed fermenter proved suitable for particles of essentially neutral buoyancy. Both systems have been operated successfully for extended periods of continuous operation. The utilization of biomass support particle technology in such reactors provides a practical and robust system for immobilized cell reactors. This technology offers significant opportunities for further development.

  13. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials.

    PubMed

    Zhao, Chun-Hai; Cui, Wei; Liu, Xiao-Yan; Chi, Zhen-Ming; Madzak, Catherine

    2010-11-01

    Yarrowia lipolytica ACA-DC 50109 has been reported to be an oleaginous yeast and significant quantities of lipids were accumulated inside the yeast cells. In this study, the INU1 gene encoding exo-inulinase cloned from Kluyveromyces marxianus CBS 6556 was ligated into the expression plasmid pINA1317 and expressed in the cells of the oleaginous yeast. The activity of the inulinase with 6 × His tag secreted by the transformant Z31 obtained was found to be 41.7U mL(-1) after cell growth for 78 h. After optimization of the medium and cultivation conditions for single cell oil production, the transformant could accumulate 46.3% (w/w) oil from inulin in its cells and cell dry weight was 11.6 g L(-1) within 78 h at the flask level. During the 2-L fermentation, the transformant could accumulate 48.3% (w/w) oil from inulin in its cells and cell dry weight was 13.3 g L(-1) within 78 h while the transformant could accumulate 50.6% (w/w) oil from extract of Jerusalem artichoke tubers in its cells and cell dry weight was 14.6 g L(-1) within 78 h. At the end of fermentation, most of the added sugar was utilized by the transformant cells. Over 91.5% of the fatty acids from the transformant cultivated in the extract of Jerusalem artichoke tubercles was C(16:0), C(18:1) and C(18:2), especially C(18:1) (58.5%).

  14. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials.

    PubMed

    Zhao, Chun-Hai; Cui, Wei; Liu, Xiao-Yan; Chi, Zhen-Ming; Madzak, Catherine

    2010-11-01

    Yarrowia lipolytica ACA-DC 50109 has been reported to be an oleaginous yeast and significant quantities of lipids were accumulated inside the yeast cells. In this study, the INU1 gene encoding exo-inulinase cloned from Kluyveromyces marxianus CBS 6556 was ligated into the expression plasmid pINA1317 and expressed in the cells of the oleaginous yeast. The activity of the inulinase with 6 × His tag secreted by the transformant Z31 obtained was found to be 41.7U mL(-1) after cell growth for 78 h. After optimization of the medium and cultivation conditions for single cell oil production, the transformant could accumulate 46.3% (w/w) oil from inulin in its cells and cell dry weight was 11.6 g L(-1) within 78 h at the flask level. During the 2-L fermentation, the transformant could accumulate 48.3% (w/w) oil from inulin in its cells and cell dry weight was 13.3 g L(-1) within 78 h while the transformant could accumulate 50.6% (w/w) oil from extract of Jerusalem artichoke tubers in its cells and cell dry weight was 14.6 g L(-1) within 78 h. At the end of fermentation, most of the added sugar was utilized by the transformant cells. Over 91.5% of the fatty acids from the transformant cultivated in the extract of Jerusalem artichoke tubercles was C(16:0), C(18:1) and C(18:2), especially C(18:1) (58.5%). PMID:20883812

  15. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

    PubMed

    Hasunuma, Tomohisa; Kondo, Akihiko

    2012-01-01

    To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.

  16. Pulse-transmission Oscillators: Autonomous Boolean Models and the Yeast Cell Cycle

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2010-03-01

    Models of oscillatory gene expression typically involve a constitutively expressed or positively autoregulated gene which is repressed by a negative feedback loop. In Boolean representations of such systems, which include the repressilator and relaxation oscillators, dynamical stability stems from the impossibility of satisfying all of the Boolean rules at once. We consider a different class of networks, in which oscillations are due to the transmission of a pulse of gene activation around a ring. Using autonomous Boolean modeling methods, we show how the circulating pulse can be stabilized by decoration of the ring with certain feedback and feed-forward motifs. We then discuss the relation of these models to ODE models of transcriptional networks, emphasizing the role of explicit time delays. Finally, we show that a network recently proposed as a generator of cell cycle oscillations in yeast contains the motifs required to support stable transmission oscillations.

  17. Characterization of Active Dry Wine Yeast During Starter Culture (Pied de Cuve) Preparation for Sparkling Wine Production.

    PubMed

    Benucci, Ilaria; Liburdi, Katia; Cerreti, Martina; Esti, Marco

    2016-08-01

    The preparation of yeast starter culture (Pied de Cuve) for producing sparkling wine with the traditional method is a key factor for manufacturing a good Prise de mousse. In this paper, the evolution of total yeast population, its viability during Pied de Cuve preparation, and the pressure profile during the 2nd fermentation in 2 different base wines made from Bombino bianco and Chardonnay grapes were investigated using 4 different commercial active dried yeasts. The study proves that despite the initial differences observed throughout the acclimatization phase, all the tested strains showed similar results on either the total population (from 8.2 × 10(7) cells/mL to 1.3 × 10(8) cells/mL) or cellular viability (from 70% to 84%). Independently from the base wine tested, the kinetic of sugar consumption was faster during the gradual acclimatization to the alcoholic medium (phase II) and slower during the preparation of starter culture in active growth phase (phase III). During both of these phases Saccharomyces cerevisiae bayanus Vitilevure DV10(®) (Station œnotechnique de Champagne) proved to have a higher sugar consumption rate than the other strains. During the Prise de mousse, S. cerevisiae bayanus Lalvin EC-1118(®) (Lallemand) reached the maximum pressure increase within time in both base wines.

  18. Characterization of Active Dry Wine Yeast During Starter Culture (Pied de Cuve) Preparation for Sparkling Wine Production.

    PubMed

    Benucci, Ilaria; Liburdi, Katia; Cerreti, Martina; Esti, Marco

    2016-08-01

    The preparation of yeast starter culture (Pied de Cuve) for producing sparkling wine with the traditional method is a key factor for manufacturing a good Prise de mousse. In this paper, the evolution of total yeast population, its viability during Pied de Cuve preparation, and the pressure profile during the 2nd fermentation in 2 different base wines made from Bombino bianco and Chardonnay grapes were investigated using 4 different commercial active dried yeasts. The study proves that despite the initial differences observed throughout the acclimatization phase, all the tested strains showed similar results on either the total population (from 8.2 × 10(7) cells/mL to 1.3 × 10(8) cells/mL) or cellular viability (from 70% to 84%). Independently from the base wine tested, the kinetic of sugar consumption was faster during the gradual acclimatization to the alcoholic medium (phase II) and slower during the preparation of starter culture in active growth phase (phase III). During both of these phases Saccharomyces cerevisiae bayanus Vitilevure DV10(®) (Station œnotechnique de Champagne) proved to have a higher sugar consumption rate than the other strains. During the Prise de mousse, S. cerevisiae bayanus Lalvin EC-1118(®) (Lallemand) reached the maximum pressure increase within time in both base wines. PMID:27376497

  19. Proliferation enhancement of budding yeast and mammalian cells with periodic oxygen radical treatment

    NASA Astrophysics Data System (ADS)

    Mori, Yosuke; Kobayashi, Jun; Murata, Tomiyasu; Hahizume, Hiroshi; Hori, Masaru; Ito, Masafumi

    2015-09-01

    Recently, nonequilibrium atmospheric-pressure plasmas have been intensively studied for biological applications. However, the each effect of species in plasmas to biological tissue has not been clarified yet because various factors exist in the plasmas. Accordingly, we have studied effects of atomic oxygen dose on cell growth such as budding yeast and mouse NIH3T3 fibroblasts of mammalian cells. Both of cells were suspended with PBS, and treated using oxygen radical source. In order to prevent the radicals from reacting with the ambient air, the treatment region was surrounded by a plastic cover and purged with Ar. The proliferative effect of 15 % was observed at the O3Pj dose of around 1 . 0 ×1017 cm-3 in NIH3T3 cells as well as in yeast cells. Moreover, periodic oxygen treatment enhanced the effect in budding yeast cells. The best interval of periodic oxygen radical treatment was around 2 hours, which is almost the same period as that of their cell cycle. With the optimum interval time, we have investigated the effect of the number of the treatments. As the number of treatments increases, the growth rate of budding yeast cells was gradually enhanced and saturated at thrice treatments. This work was partly supported by JSPS KAKENHI Grant Numbers 26286072 and project for promoting Research Center in Meijo University.

  20. Stress-Induced Nuclear RNA Degradation Pathways Regulate Yeast Bromodomain Factor 2 to Promote Cell Survival

    PubMed Central

    Roy, Kevin; Chanfreau, Guillaume

    2014-01-01

    Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2) is limited by spliceosome-mediated decay (SMD). Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD). We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress. PMID:25232960

  1. Expression of the Salmonella spp. virulence factor SifA in yeast alters Rho1 activity on peroxisomes.

    PubMed

    Vinh, Dani B N; Ko, Dennis C; Rachubinski, Richard A; Aitchison, John D; Miller, Samuel I

    2010-10-15

    The Salmonella typhimurium effector protein SifA regulates the assembly and tubulation of the Salmonella phagosome. SifA localizes to the phagosome and interacts with the membrane via its prenylated tail. SifA is a structural homologue of another bacterial effector that acts as a GTP-exchange factor for Rho family GTPases and can bind GDP-RhoA. When coexpressed with a bacterial lipase that is activated by RhoA, SifA can induce tubulation of mammalian endosomes. In an effort to develop a genetic system to study SifA function, we expressed SifA and characterized its activity in yeast. GFP-SifA predominantly localized to yeast peroxisomal membranes. Under peroxisome-inducing conditions, GFP-SifA reduced the number of free peroxisomes and promoted the formation of large peroxisomes with membrane invaginations. GFP-SifA activity depended on the recruitment to peroxisomes of wild-type Rho1p and Pex25p, a receptor for Rho1p. GFP-SifA could also rescue the actin organization defects in pex25Δ and rho1 mutants, suggesting that SifA may recruit and potentiate Rho1p activity. We reexamined the distribution of GFP-SifA in mammalian cells and found the majority colocalizing with LAMP1-positive compartment and not with the peroxisomal marker PMP70. Together, these data suggest that SifA may use a similar mode of action via Rho proteins to alter yeast peroxisomal and mammalian endosomal membranes. Further definition of SifA activity on yeast peroxisomes could provide more insight into its role in regulating host membrane dynamics and small GTPases.

  2. Identification of Chinese cabbage sentrin as a suppressor of Bax-induced cell death in yeast.

    PubMed

    Sawitri, Widhi Dyah; Slameto, Slameto; Sugiharto, Bambang; Kim, Kyung-Min

    2012-05-01

    Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier- 1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-Leu--Ura- medium. The results suggest that BrSE (Brassica rapa Sentrin EST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.

  3. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  4. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.

    PubMed

    Okotrub, Konstantin A; Surovtsev, Nikolay V

    2015-12-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature.

  5. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.

    PubMed

    Okotrub, Konstantin A; Surovtsev, Nikolay V

    2015-12-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature. PMID:26636934

  6. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  7. Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent Manner.

    PubMed

    Staleva, Liliana; Hall, Andrea; Orlow, Seth J

    2004-12-01

    Mating in haploid Saccharomyces cerevisiae occurs after activation of the pheromone response pathway. Biochemical components of this pathway are involved in other yeast signal transduction networks. To understand more about the coordination between signaling pathways, we used a "chemical genetic" approach, searching for compounds that would activate the pheromone-responsive gene FUS1 and RLM1, a reporter for the cell integrity pathway. We found that catecholamines (l-3,4-hydroxyphenylalanine [l-dopa], dopamine, adrenaline, and noradrenaline) elevate FUS1 and RLM1 transcription. N-Acetyl-cysteine, a powerful antioxidant in yeast, completely reversed this effect, suggesting that FUS1 and RLM1 activation in response to catecholamines is a result of oxidative stress. The oxidant hydrogen peroxide also was found to activate transcription of an RLM1 reporter. Further genetic analysis combined with immunoblotting revealed that Kss1, one of the mating mitogen-activated protein kinases (MAPKs), and Mpk1, an MAPK of the cell integrity pathway, participated in l-dopa-induced stimulation of FUS1 and RLM1 transcription. We also report that Mpk1 and Hog1, the high osmolarity MAPK, were phosphorylated upon induction by hydrogen peroxide. Together, our results demonstrate that cells respond to oxidative stress via different signal transduction machinery dependent upon the nature of the oxidant. PMID:15385622

  8. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display

    PubMed Central

    Wen, Fei; Sethi, Dhruv K.; Wucherpfennig, Kai W.; Zhao, Huimin

    2011-01-01

    Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2–MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs. PMID:21752831

  9. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    NASA Astrophysics Data System (ADS)

    Xin, Lu Zhao; Carenza, Mario; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78°C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizing mixture.

  10. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  11. [Production of plant-derived natural products in yeast cells - A review].

    PubMed

    Wang, Dong; Dai, Zhubo; Zhang, Xueli

    2016-03-01

    Plant-derived natural products (PNPs) have been widely used in pharmaceutical and nutritional fields. So far, the main method to produce PNPs is extracting them from their original plants, however, there remains lots of problems. With the concept of synthetic biology, construction of yeast cell factories for production of PNPs provides an alternative way. In this review, we will focus on PNPs' market and application, research progress for production of artemisinin, research progress for production of terpenes, alkaloids and polyunsaturated fatty acid (PUFAs) and recent technology development to give a brief introduction of construction of yeast cells for production of PNPs.

  12. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images. PMID:26498778

  13. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. PMID:26971012

  14. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed.

  15. Phosphatidylethanolamine Is Required for Normal Cell Morphology and Cytokinesis in the Fission Yeast Schizosaccharomyces pombe▿

    PubMed Central

    Luo, Jun; Matsuo, Yasuhiro; Gulis, Galina; Hinz, Haylee; Patton-Vogt, Jana; Marcus, Stevan

    2009-01-01

    To investigate the contributions of phosphatidylethanolamine to the growth and morphogenesis of the fission yeast Schizosaccharomyces pombe, we have characterized three predicted genes in this organism, designated psd1, psd2, and psd3, encoding phosphatidylserine decarboxylases, which catalyze the conversion of phosphatidylserine to phosphatidylethanolamine in both eukaryotic and prokaryotic organisms. S. pombe mutants carrying deletions in any one or two psd genes are viable in complex rich medium and synthetic defined minimal medium. However, mutants carrying deletions in all three psd genes (psd1-3Δ mutants) grow slowly in rich medium and are inviable in minimal medium, indicating that the psd1 to psd3 gene products share overlapping essential cellular functions. Supplementation of growth media with ethanolamine, which can be converted to phosphatidylethanolamine by the Kennedy pathway, restores growth to psd1-3Δ cells in minimal medium, indicating that phosphatidylethanolamine is essential for S. pombe cell growth. psd1-3Δ cells produce lower levels of phosphatidylethanolamine than wild-type cells, even in medium supplemented with ethanolamine, indicating that the Kennedy pathway can only partially compensate for the loss of phosphatidylserine decarboxylase activity in S. pombe. psd1-3Δ cells appear morphologically indistinguishable from wild-type S. pombe cells in medium supplemented with ethanolamine, but when cultured in nonsupplemented medium, they produce high frequencies of abnormally shaped cells as well as cells exhibiting severe septation defects, including multiple, mispositioned, deformed, and misoriented septa. Our results demonstrate that phosphatidylethanolamine is essential for cell growth and for normal cytokinesis and cellular morphogenesis in S. pombe, and they illustrate the usefulness of this model eukaryote for investigating potentially conserved biological and molecular functions of phosphatidylethanolamine. PMID:19286980

  16. The Yeast Cell Fusion Protein Prm1p Requires Covalent Dimerization to Promote Membrane Fusion

    PubMed Central

    Engel, Alex; Aguilar, Pablo S.; Walter, Peter

    2010-01-01

    Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion. PMID:20485669

  17. Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community.

    PubMed

    Campbell, Kate; Vowinckel, Jakob; Ralser, Markus

    2016-09-01

    Cells that grow together respond heterogeneously to stress even when they are genetically similar. Metabolism, a key determinant of cellular stress tolerance, may be one source of this phenotypic heterogeneity, however, this relationship is largely unclear. We used self-establishing metabolically cooperating (SeMeCo) yeast communities, in which metabolic cooperation can be followed on the basis of genotype, as a model to dissect the role of metabolic cooperation in single-cell heterogeneity. Cells within SeMeCo communities showed to be highly heterogeneous in their stress tolerance, while the survival of each cell under heat or oxidative stress, was strongly determined by its metabolic specialization. This heterogeneity emerged for all metabolite exchange interactions studied (histidine, leucine, uracil, and methionine) as well as oxidant (H2 O2 , diamide) and heat stress treatments. In contrast, the SeMeCo community collectively showed to be similarly tolerant to stress as wild-type populations. Moreover, stress heterogeneity did not establish as sole consequence of metabolic genotype (auxotrophic background) of the single cell, but was observed only for cells that cooperated according to their metabolic capacity. We therefore conclude that phenotypic heterogeneity and cell to cell differences in stress tolerance are emergent properties when cells cooperate in metabolism.

  18. Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community.

    PubMed

    Campbell, Kate; Vowinckel, Jakob; Ralser, Markus

    2016-09-01

    Cells that grow together respond heterogeneously to stress even when they are genetically similar. Metabolism, a key determinant of cellular stress tolerance, may be one source of this phenotypic heterogeneity, however, this relationship is largely unclear. We used self-establishing metabolically cooperating (SeMeCo) yeast communities, in which metabolic cooperation can be followed on the basis of genotype, as a model to dissect the role of metabolic cooperation in single-cell heterogeneity. Cells within SeMeCo communities showed to be highly heterogeneous in their stress tolerance, while the survival of each cell under heat or oxidative stress, was strongly determined by its metabolic specialization. This heterogeneity emerged for all metabolite exchange interactions studied (histidine, leucine, uracil, and methionine) as well as oxidant (H2 O2 , diamide) and heat stress treatments. In contrast, the SeMeCo community collectively showed to be similarly tolerant to stress as wild-type populations. Moreover, stress heterogeneity did not establish as sole consequence of metabolic genotype (auxotrophic background) of the single cell, but was observed only for cells that cooperated according to their metabolic capacity. We therefore conclude that phenotypic heterogeneity and cell to cell differences in stress tolerance are emergent properties when cells cooperate in metabolism. PMID:27312776

  19. Duplication of the Yeast Spindle Pole Body Once per Cell Cycle.

    PubMed

    Rüthnick, Diana; Schiebel, Elmar

    2016-05-01

    The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. Centrosomes and SPBs duplicate exactly once per cell cycle by mechanisms that use the mother structure as a platform for the assembly of the daughter. The conserved Sfi1 and centrin proteins are essential components of the SPB duplication process. Sfi1 is an elongated molecule that has, in its center, 20 to 23 binding sites for the Ca(2+)-binding protein centrin. In the yeastSaccharomyces cerevisiae, all Sfi1 N termini are in contact with the mother SPB whereas the free C termini are distal to it. During S phase and early mitosis, cyclin-dependent kinase 1 (Cdk1) phosphorylation of mainly serine residues in the Sfi1 C termini blocks the initiation of SPB duplication ("off" state). Upon anaphase onset, the phosphatase Cdc14 dephosphorylates Sfi1 ("on" state) to promote antiparallel and shifted incorporation of cytoplasmic Sfi1 molecules into the half-bridge layer, which thereby elongates into the bridge. The Sfi1 C termini of the two Sfi1 layers localize in the bridge center, whereas the N termini of the newly assembled Sfi1 molecules are distal to the mother SPB. These free Sfi1 N termini then assemble the new SPB in G1phase. Recruitment of Sfi1 molecules into the anaphase SPB and bridge formation were also observed inSchizosaccharomyces pombe, suggesting that the Sfi1 bridge cycle is conserved between the two organisms. Thus, restricting SPB duplication to one event per cell cycle requires only an oscillation between Cdk1 kinase and Cdc14 phosphatase activities. This clockwork regulates the "on"/"off" state of the Sfi1-centrin receiver. PMID:26951196

  20. Toxic effects of fatty acids on yeast cells: possible mechanisms of action.

    PubMed

    Hunková, Z; Fencl, A

    1978-08-01

    As shown in a previous paper, threshold concentrations of lower and intermediate fatty acids inhibit the uptake of inorganic phosphate, growth, and cell division in yeast cells. This demonstrates that, apart from these effects, the acids cause an increase in the respiration quotient (RQ), inhibition of CO2 fixation, production of ethanol at the expense of anabolic processes, and inhibition of active amino acid transport in the yeast Candida utilis. On the other hand, the threshold concentrations have no effect on intracellular pH. The inhibition of the inorganic phosphate uptake cannot be the sole primary mode of action of fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought about by fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought by fatty acids at concentrations still premitting some phosphate uptake. Although 2,4-dinitrophenol and caproic acid at low concentrations cause an analogous decrease in biomass yield, their combination does not bring about any marked increase in the effect. Considering the physicochemical properties of fatty acids and their preferential action on energy-requiring processes, one of the key sites of action can be assumed to be the mitochondrial membrane. Fatty acids might inhibit the transport of anions, especially phosphate, across the membrane, and disturb the membrane potential by affecting the transport protons. The physiocochemical properties of fatty acids may also give rise to their binding to other intracellular membranes and to a subsequent interference with the function of the corresponding organelles.

  1. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1

    PubMed Central

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-01-01

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1–3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4–9 did not influence the cell cycle–regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4–9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. PMID:27226481

  2. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.

  3. Characterization of aggregate load and pattern in living yeast cells by flow cytometry.

    PubMed

    Hidalgo, Itahisa Hernández; Fleming, Thomas; Eckstein, Volker; Herzig, Stephan; Nawroth, Peter P; Tyedmers, Jens

    2016-01-01

    Protein aggregation is both a hallmark of and a driving force for a number of diseases. It is therefore important to identify the nature of these aggregates and the mechanism(s) by which the cell counteracts their detrimental properties. Currently, the study of aggregation in vivo is performed primarily using fluorescently tagged versions of proteins and analyzing the aggregates by fluorescence microscopy. While this strategy is considered the gold standard, it has several limitations, particularly with respect to its suitability for high-throughput screening (HTS). Here, using a GFP fusion of the well-characterized yeast prion amyloid protein [PSI+], we demonstrate that flow cytometry, which utilizes the same physical principles as fluorescence microscopy, can be used to determine the aggregate load and pattern in live and fixed yeast cells. Furthermore, our approach can easily be applied to high-throughput analyses such as screenings with a yeast deletion library. PMID:27625208

  4. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    PubMed

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products.

  5. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    PubMed

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products. PMID:26471666

  6. The sensitivity of yeast and yeast-like cells to new lysosomotropic agents.

    PubMed

    Krasowska, Anna; Chmielewska, Lucyna; Adamski, Ryszard; Luczyński, Jacek; Witek, Stanisław; Sigler, Karel

    2004-01-01

    The lysosomotropic action of the compounds DM-11 and DMAL-12s against Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans is species- and pH-dependent. At pH 6.0, DMAL-12s is less effective against S. cerevisiae and S. pombe but more effective against C. albicans than DM-11. At pH 8.0, DMAL-12s strongly inhibits the growth of S. cerevisiae but has only a marginal effect on the resistant C. albicans. S. pombe did not grow at pH 8.0. As shown by quinacrine accumulation, DM-11 causes a general intracellular acidification in all three species, while with DMAL-12s, the acidification is marginal. Morphological changes caused by DMAL-12s in S. cerevisiae affect the cell interior but not surface structures, while S. pombe cells exhibit a thickened and wrinkled cell wall, shrunken protoplast and "grainy" plasma membrane. A large number of blisters resembling lipid droplets were observed inside S. cerevisiae and S. pombe vacuoles. The high susceptibility of S. pombe cells to the action of DM-11 and DMAL-12s contrasts with the low sensitivity of S. pombe H+-ATPase to the agents. In our C. albicans isolate, DMAL 12s did not have an effect on cell morphology and appeared to be unable to penetrate the cells, especially at pH 8.0.

  7. Reliable cell cycle commitment in budding yeast is ensured by signal integration

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    2014-03-01

    Cells have to make reliable decisions in response to external and/or internal signals that can be noisy and varying. For budding yeast Saccharomyces cerevisiae, cells decide whether and when to commit to cell division at the Start checkpoint. The decision is irreversible and has the physiological significance for coordinating cell growth with cell division. The trigger of the Start, the G1 cyclin Cln3 is a dynamic sensor of the nutrient and cellular conditions with low copy number and rapid turnover time. Here we quantitatively investigate how cells process the information from Cln3 to make the Start decision. By using an inducible Cln3 and monitoring the time cell waits before Start transition (G1 length), we find that G1 length is inversely proportional to Cln3 concentration, which implies that Start is triggered when the integration of Cln3 concentration over time exceeds certain threshold. We identify the Start repressor, Whi5 as the integrator. The instantaneous kinase activity of Cln3-Cdk1 is recorded over time on the phosphorylated Whi5, and the decision is made only when the phosphorylation level of Whi5 reaches a threshold. Furthermore, we find that Whi5 plays an important role for coordinating growth and division - cells modulate Whi5 level in different nutrient conditions to adjust the Start threshold. The strategy of signal integration, which reduces noise and minimizes error and uncertainty, has been found in decision-making behaviors of animals. Our work shows that it is adopted at the cellular level, suggesting a general design principle that may be widely implemented in decision-making and signaling systems.

  8. Rapid toxicity testing based on yeast respiratory activity

    SciTech Connect

    Haubenstricker, M.E. ); Meier, P.G.; Mancy, K.H. ); Brabec, M.J. )

    1990-05-01

    Rapid and economical techniques are needed to determine the effects of environmental contaminants. At present, the main methods to assess the impact of pollutants are based on chemical analysis of the samples. Invertebrate and vertebrate exposures have been used over the last two decades in assessing acute and chronic toxicities. However, these tests are labor intensive and require several days to complete. An alternative to whole organism exposure is to determine toxic effects in monocellular systems. Another approach for assessing toxicity is to monitor sensitive, nonspecific, subcellular target sites such as mitochondria. Changes in mitochondrial function which could indicate a toxic effect can be demonstrated readily after addition of a foreign substance. In initial assessments of various chemicals, rat liver mitochondria (RLM) were evaluated as a biological sensor of toxicity. False toxicity assessments will result if these ions are present even though they are generally considered nontoxic. Because of these disadvantages, an alternative mitochondrial system, such as found in bakers yeast, was evaluated.

  9. Antifungal activity of chalcones: a mechanistic study using various yeast strains.

    PubMed

    Lahtchev, K L; Batovska, D I; Parushev, St P; Ubiyvovk, V M; Sibirny, A A

    2008-10-01

    We reported the synthesis, antifungal evaluation and study on substituent effects of 21 chalcones. A lot of genetically defined strains belonging to different yeast genera and species, namely Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis, were used as test organisms. Concerning the mode of the antifungal action of chalcones it was shown that DNA was probably not the main target for the chalcones. It was revealed that the yeast's intracellular glutathione and cysteine molecules play significant role as defence barrier against the chalcone action. It was also shown that chalcones may react with some proteins involved in cell separation. PMID:18280009

  10. Modeling of recombinant yeast cells: reduction of phase space.

    PubMed

    Birol, G; Birol, I; Kirdar, B; Onsan, Z I

    1997-01-01

    The mechanism of starch fermentation by recombinant Saccharomyces cerevisiae in batch reactor is studied. Experiments were carried in the presence and absence of oxygen, with different initial starch concentrations. A variety of data concerning biotic and abiotic phases are collected. Nonlinear data analysis techniques are used to determine the block diagram of the system under study. Data analysis and processing reported here, are believed to form a basis in further work in structured modeling of biological systems, recombinant yeast cultures in particular. PMID:9603032

  11. The Regulation of Coenzyme Q Biosynthesis in Eukaryotic Cells: All That Yeast Can Tell Us

    PubMed Central

    González-Mariscal, Isabel; García-Testón, Elena; Padilla, Sergio; Martín-Montalvo, Alejandro; Pomares Viciana, Teresa; Vazquez-Fonseca, Luis; Gandolfo Domínguez, Pablo; Santos-Ocaña, Carlos

    2014-01-01

    Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis

  12. [Analysis of the mechanism of intensification of fermentation process using yeast cells in a suspension of high-dispersed oxides].

    PubMed

    Bagatskaya, A N; Mazurenko, R V; Makhno, S N; Gorbik, P P

    2014-01-01

    The differential microcalorimetry was used to explore an influence of particles of silicon dioxide, and also other high-dispersed oxides (0.05% of masses.) in water suspension of yeast cells on intensification of the process of their fermentation in endogenous metabolic conditions. It was shown that intensification of the processes of the vital activity of yeast microorganisms was observed in the specified interval of the concentration of silicon dioxide hydrosol particles. Mechanisms of interaction between SiO2 particles and a surface of a cellular organism, as well as interaction between SiO2 particles and one of metabolism products--carbon dioxide were studied. It was found out, that Al2O3, TiO2 hydrosols also had a stimulating effect, but it is lower compared to that of SiO2.

  13. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn.

    PubMed

    Sánchez-Sampedro, M Angeles; Fernández-Tárrago, Jorge; Corchete, Purificación

    2005-09-22

    The biosynthesis of the flavonolignan silymarin, a constitutive compound of the fruits of Silybum marianum with strong antihepatotoxic and hepatoprotective activities, is severely reduced in cell cultures of this species. It is well known that elicitation is one of the strategies employed to increase accumulation of secondary metabolites. Our study here reports on the effect of several compounds on the production of silymarin in S. marianum cultures. Yeast extract (YE), chitin and chitosan were compared with respect to their effects on silymarin accumulation in S. marianum suspensions and only yeast extract stimulated production. Jasmonic acid (JA) potentiated the yeast extract effect. One of the jasmonic acid derivatives, methyl jasmonate (MeJA), strongly promoted the accumulation of silymarin. Methyl jasmonate acted in a number of steps of the metabolic pathway of flavonolignans and its stimulating effect was totally dependent of "de novo" protein synthesis. Chalcone synthase (CHS) activity was enhanced by methyl jasmonate; however there did not appear to be a temporal relationship between silymarin accumulation and increase in enzyme activity. Also, this increase was not blocked by the protein synthesis inhibitor cycloheximide (CH). This study indicates that elicitor treatment promotes secondary metabolite production in S. marianum cultures and that jasmonic acid and its functional analogue plays a critical role in elicitation.

  14. Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing.

    PubMed

    Rodríguez-Gómez, F; Arroyo-López, F N; López-López, A; Bautista-Gallego, J; Garrido-Fernández, A

    2010-08-01

    Ripe olives account for ca. 30% of the world's table olive production. Fruits intended for this type of product are preserved in an aqueous solution (acidic water or brine) for several months, where they may undergo a spontaneous fermentation. Enterobacteriaceae and lactic acid bacteria were not detected in the present survey during storage. Thus, the work focused on studying the yeast microflora associated with the ripe olive storage of Manzanilla and Hojiblanca cultivars in acidified brines. A total of 90 yeast isolates were identified by means of molecular methods using RFLP analysis of the 5.8S-ITS rDNA region and sequencing of the D1/D2 domains of the 26S rDNA gene. The two most important species identified in both cultivars were Saccharomyces cerevisiae and Pichia galeiformis, which were present throughout the storage period, while Candida boidinii was detected during the later stages of the process. The species Pichia membranifaciens was detected only in the early stages of the Hojiblanca cultivar. The lipase assays performed with both extracellular and whole cell fractions of the yeast isolates showed that neither of the S. cerevisiae and P. galeiformis species had lipase activity, while the P. membranifaciens isolates showed a weak activity. On the contrary, all C. boidinii isolates gave a strong lipase activity. Change in olive fat acidity was markedly higher in the presence of the yeast population than in sterile storage, indicating that lipases produced by these microorganisms modify the characteristics of the fat in the fruit. PMID:20510778

  15. Glycerol Production by Fermenting Yeast Cells Is Essential for Optimal Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M.; Verstrepen, Kevin J.

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  16. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  17. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  18. Lytic Action of β(1-3)-Glucanase on Yeast Cells

    PubMed Central

    Monreal, J.; De Uruburu, F.; Villanueva, J. R.

    1967-01-01

    Candida utilis, Saccharomyces cerevisiae, S. fragilis, Pichia polymorpha, and Hansenula anomala yeast cells, harvested in the early logarithmic phase, were attacked with purified β(1–3)-glucanase from Micromonospora chalcea, which resulted in the liberation of protoplasts. The treated cells were observed under the electron microscope before the protoplasts were liberated. Differences in the cell walls of the enzyme-treated and untreated cells were observed. The action of the glucanase was also tested against isolated walls of C. utilis. The enzyme attacked the S. cerevisiae cell wall in a uniform manner. The attack on S. fragilis was located in certain zones of the cell wall, where breakage occurred and through which the protoplast emerged. On the other three yeasts, an intermediate attack was observed, not as definitely located as in S. fragilis, yet less uniformly than in S. cerevisiae. Images PMID:6027993

  19. Palytoxin induces K+ efflux from yeast cells expressing the mammalian sodium pump.

    PubMed

    Scheiner-Bobis, G; Meyer zu Heringdorf, D; Christ, M; Habermann, E

    1994-06-01

    Palytoxin causes potassium efflux and sodium influx in all investigated animals cells. Much evidence points to the sodium pump (Na+/K(+)-ATPase) as the target of the toxin. A heterologous expression system for mammalian Na+/K(+)-ATPase in the brewers yeast Saccharomyces cerevisiae has been used to test this hypothesis. Yeast cells do not contain endogenous sodium pumps but can be transformed with vectors coding for the alpha and beta subunits of the mammalian sodium pump. We now show that transformed yeast cells expressing both alpha and beta subunits of Na+/K(+)-ATPase are highly sensitive to the toxin, as measured by the loss of intracellular potassium. Palytoxin-induced potassium efflux is completely inhibited by 500 microM ouabain. In contrast, nontransformed yeast cells or cells expressing either the alpha or beta subunits are insensitive to palytoxin. Thus, the alpha/beta heterodimer of the sodium pump is required for the release of potassium induced by palytoxin. The results suggest that palytoxin converts the sodium pump into an open channel, allowing the passage of alkali ions.

  20. Antifungal Activity of Diglycerin Ester of Fatty Acids against Yeasts and Its Comparison with Those of Sucrose Monopalmitate and Sodium Benzoate.

    PubMed

    Shimazaki, Aiko; Sakamoto, Jin J; Furuta, Masakazu; Tsuchido, Tetsuaki

    2016-01-01

    The antifungal activities of diglycerin monoester of fatty acids (DGCs), which have been employed as food emulsifiers, were examined against three yeasts, Saccharomyces cerevisiae, Candida albicans and Candida utilis and were compared with those of sucrose monoester of palmitic acid (SC16) as another type of emulsifier and sodium benzoate (SB) as a weak acid food preservative. When the minimum growth inhibitory concentrations (MICs) of diglycerin monolaurate (DGC12) against these yeasts were determined 2 d after incubation in YM broth at pH5.0, they were relatively low, being 0.01% (w/v), for both S. cerevisiae and C. utilis, whereas was high, being 4.0% (w/v), for C. albicans. On the contrary, the MICs of sucrose monopalmitate (SC16) were high, being 3.0 and 4.0% (w/v), for the former two yeasts, respectively, but 0.6% (w/v) for the last yeast. In contrast to these emulsifiers, the MICs of sodium benzoate (SB) were similar independently upon the yeast strain, being in order 0.4, 0.3 and 0.5% (w/v), for the above yeasts, respectively. The anti-yeast activities of DGC12 and SC16 were gradually increased with a decrease in pH, in a manner similar to that of SB, except for the action of SC16 on C. albicans, for which the activity was more effective at pHs 5.0 and 6.0 than at pHs 4.0 and 7.0. Among DGCs tested having different fatty acid moieties in the molecule, lauroyl ester (DGC12) was more effective than myristoyl and palmitoyl esters against S. cerevisiae and C. utilis. The inhibitory effect of DGC12 on the yeast growth depended upon both the cell density and the strength of aeration during the treatment. Further, DGC12 was found to kill S. cerevisiae and C. utilis cells at a rather low concentration of 0.005% (w/v) in 50mM acetate buffer at pH5.0, although, against C. albicans cells, only slight fungicidal activity was demonstrated at a high concentration of 0.5% (w/v). The results obtained support the effectiveness of practical application of DGC12 to acidic

  1. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    NASA Astrophysics Data System (ADS)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  2. MAPK specificity in the yeast pheromone response independent of transcriptional activation.

    PubMed

    Breitkreutz, A; Boucher, L; Tyers, M

    2001-08-21

    The mechanisms whereby different external cues stimulate the same mitogen-activated protein kinase (MAPK) cascade, yet trigger an appropriately distinct biological response, epitomize the conundrum of specificity in cell signaling. In yeast, shared upstream components of the mating pheromone and filamentous growth pathways activate two related MAPKs, Fus3 and Kss1, which in turn regulate programs of gene expression via the transcription factor Ste12. As fus3, but not kss1, strains are impaired for mating, Fus3 exhibits specificity for the pheromone response. To account for this specificity, it has been suggested that Fus3 physically occludes Kss1 from pheromone-activated signaling complexes, which are formed on the scaffold protein Ste5. However, we find that genome-wide expression profiles of pheromone-treated wild-type, fus3, and kss1 deletion strains are highly correlated for all induced genes and, further, that two catalytically inactive versions of Fus3 fail to abrogate the pheromone-induced transcriptional response. Consistently, Fus3 and Kss1 kinase activity is induced to an equivalent extent in pheromone-treated cells. In contrast, both in vivo and in an in vitro-reconstituted MAPK system, Fus3, but not Kss1, exhibits strong substrate selectivity toward Far1, a bifunctional protein required for polarization and G(1) arrest. This effect accounts for the failure to repress G(1)-S specific transcription in fus3 strains and, in part, explains the mating defect of such strains. MAPK specificity in the pheromone response evidently occurs primarily at the substrate level, as opposed to specific kinase activation by dedicated signaling complexes. PMID:11525741

  3. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation.

    PubMed

    Lin, Tien-Chen; Neuner, Annett; Schlosser, Yvonne T; Scharf, Annette N D; Weber, Lisa; Schiebel, Elmar

    2014-01-01

    Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains.DOI: http://dx.doi.org/10.7554/eLife.02208.001. PMID:24842996

  4. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-01-01

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  5. Chemical responses of single yeast cells studied by fluorescence microspectroscopy under solution-flow conditions.

    PubMed

    Kogi, Osamu; Kim, Haeng-Boo; Kitamura, Noboru

    2002-07-01

    A microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" living cells. A sample buffer solution containing living cells was introduced into a flow cell set on a thermostated microscope stage and a few cells were allowed to attach to the bottom wall of the flow cell. With these living cells being attached to the wall, other floating cells were pumped out by flowing a buffer solution. These procedures made it possible to keep a few cells in the flow cell and to analyze single cells by fluorescence microspectroscopy. The technique was applied to study the time course of staining processes of single living yeast (Saccharomyces cerevisiae) cells by using two types of a fluorescent probe. The present methodology was shown to be of primary importance for obtaining biochemical/physiological information on single living cells and also for studying cell-to-cell variations in several characteristics.

  6. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.

    PubMed

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.

  7. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  8. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), YCW-A (2.5 grams/heifer/d; n = 8) or YCW-C (2.5 ...

  9. The concentration of amino acids by yeast cells depleted of adenosine triphosphate

    PubMed Central

    Eddy, A. A.; Backen, K.; Watson, G.

    1970-01-01

    1. The ATP content of preparations of a strain of Saccharomyces carlsbergensis was lowered below 0.3nmol/mg of yeast by starving the yeast cells in the presence of both antimycin and 5mm-deoxyglucose. 2. When the depleted cells were put at pH4.5 with glycine up to about 20nmol of the amino acid/mg of yeast was absorbed without being chemically modified. The mechanism did not depend on an exchange with endogenous amino acids. 3. The concentration of the absorbed glycine could apparently reach 100–200 times that outside the cells. 4. Replacement of the cellular K+ by Na+ almost stopped amino acid absorption in the presence of antimycin and deoxyglucose, but not in their absence. 5. It is suggested that, when energy metabolism itself had stopped, a purely physical process, namely the movements of H+ and K+ into and out of the yeast respectively, served to concentrate the amino acids in the cells. Both ionic species appear to be co-substrates of the system transporting amino acids. PMID:5495157

  10. Yeast cell wall supplementation alters immune parameters in response to a salmonella challenge in weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this experiment was to evaluate the immune response of pigs supplemented with yeast cell wall (YCW) when challenged with Salmonella. Weaned pigs (n=39; 7.1+/-0.1 kilograms body weight) were individually housed in pens (1.2x0.6 meters) in an environmentally-controlled facility equip...

  11. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    NASA Astrophysics Data System (ADS)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  12. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh.

    PubMed

    Malone, Marvin A; Prakash, Suraj; Heer, Joseph M; Corwin, Lloyd D; Cilwa, Katherine E; Coe, James V

    2010-11-14

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10(-7) cm(2) at 3178 cm(-1)], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  13. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.

    PubMed

    Martins, Dorival; English, Ann M

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media.

  14. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.

    PubMed

    Martins, Dorival; English, Ann M

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  15. NMR studies of a bacterial cell culture medium (LB broth): cyclic nucleotides in yeast extracts.

    PubMed

    Rayner, M H; Sadler, P J; Scawen, M D

    1990-03-01

    The composition of LB broth (tryptone, yeast extract and NaCl) was investigated by 1H,31P-NMR spectroscopy, FPLC and gel electrophoresis. An unexpected finding was the high level of 2'3'-cyclic nucleotides, detected by characteristic 31P-NMR resonances in the region 20-21 ppm, originating from the yeast component. 31P-NMR resonances for cyclic nucleotides were observed during the autolysis of Saccharomyces cerevisiae cells, and in model reactions of RNase with RNA.

  16. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  17. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  18. “In vitro” antifungal activity of ozonized sunflower oil on yeasts from onychomycosis

    PubMed Central

    Guerrer, L.V.; Cunha, K. C.; Nogueira, M. C. L.; Cardoso, C. C.; Soares, M. M. C. N.; Almeida, M. T. G.

    2012-01-01

    The “in vitro” antifungal activity of ozonized sunflower oil (Bioperoxoil®) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii. PMID:24031958

  19. Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast

    PubMed Central

    Narayan, Monisha; Chou, Ching-Shan; Park, Hay-Oak

    2013-01-01

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model. PMID:23437206

  20. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  1. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  2. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells.

    PubMed

    Markkanen, Ari; Penttinen, Piia; Naarala, Jonne; Pelkonen, Jukka; Sihvonen, Ari-Pekka; Juutilainen, Jukka

    2004-02-01

    The aim of this study was to investigate whether radiofrequency (RF) electromagnetic field (EMF) exposure affects cell death processes of yeast cells. Saccharomyces cerevisiae yeast cells of the strains KFy417 (wild-type) and KFy437 (cdc48-mutant) were exposed to 900 or 872 MHz RF fields, with or without exposure to ultraviolet (UV) radiation, and incubated simultaneously with elevated temperature (+37 degrees C) to induce apoptosis in the cdc48-mutated strain. The RF exposure was carried out in a special waveguide exposure chamber where the temperature of the cell cultures can be precisely controlled. Apoptosis was analyzed using the annexin V-FITC method utilizing flow cytometry. Amplitude modulated (217 pulses per second) RF exposure significantly enhanced UV induced apoptosis in cdc48-mutated cells, but no effect was observed in cells exposed to unmodulated fields at identical time-average specfic absorption rates (SAR, 0.4 or 3.0 W/kg). The findings suggest that amplitude modulated RF fields, together with known damaging agents, can affect the cell death process in mutated yeast cells. Bioelectromagnetics 25:127-133, 2004.

  3. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter

    PubMed Central

    2014-01-01

    Background The recombinant yeast strains displaying the heterologous cellulolytic enzymes on the cell surface using the glycosylphosphatidylinositol (GPI) anchoring system are considered promising biocatalysts for direct conversion of lignocellulosic materials to ethanol. However, the cellulolytic activities of the conventional cellulase-displaying yeast strains are insufficient for the hydrolysis of cellulose. In this study, we constructed novel gene cassettes for the efficient cellulose utilization by cellulase-displaying yeast strains. Results The novel gene cassettes for the cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reeseii endoglucanase II (EGII) were constructed using the promoter and the GPI anchoring region derived from Saccharomyces cerevisiae SED1. The gene cassettes were integrated into the S. cerevisiae genome, then the β-glucosidase activity of these recombinant strains was evaluated. We revealed that simultaneous utilization of the SED1 promoter and Sed1 anchoring domain in a gene cassette enabled highly-efficient enzyme integration into the cell wall. The β-glucosidase activity of recombinant yeast cells transduced with the novel gene cassette was 8.4-fold higher than that of a conventional strain. The novel EGII-displaying strain also achieved 106-fold higher hydrolysis activity against the water-insoluble cellulose than a conventional strain. Furthermore, direct ethanol production from hydrothermally processed rice straw was improved by the display of T. reeseii EGII using the novel gene cassette. Conclusions We have developed novel gene cassettes for the efficient cell-surface display of exo- and endo-type cellulolytic enzymes. The results suggest that this gene cassette has the wide applicability for cell-surface display and that cellulase-displaying yeasts have significant potential for cost-effective bioethanol production from lignocellulosic biomass. PMID:24423072

  4. In vitro activity of a new polyene, SPA-S-843, against yeasts.

    PubMed

    Rimaroli, C; Bruzzese, T

    1998-11-01

    The in vitro activity of a new water-soluble polyene, SPA-S-843, was evaluated against 116 strains of Candida, Cryptococcus, and Saccharomyces spp. and compared with that of amphotericin B. SPA-S-843 demonstrated better inhibitory activity against all of the yeasts examined and better fungicidal activity against Candida albicans, Candida glabrata, Candida krusei, and Candida tropicalis than did amphotericin B.

  5. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    PubMed

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed.

  6. Cell wall involvement in the glycerol response to high osmolarity in the halotolerant yeast Debaryomyces hansenii.

    PubMed

    Thomé, Patricia E

    2007-04-01

    Osmotic stress was studied through the induction of the gene coding for glycerol 3-phosphate dehydrogenase (DhGPD1) in the halotolerant yeast Debaryomyces hansenii. This yeast responded to modifications in turgor pressure by stimulating the transcription of DhGPD1 when exposed to solutes that cause turgor stress (NaCl or sorbitol), but did not respond to water stress mediated by ethanol. In contrast to what has been documented to occur in Saccharomyces cerevisiae, D. hansenii protoplasts did not show induction in the transcription of DhGPD1 showing a limitation in their response to solute stress. The results presented indicate that the presence of the cell wall is of significance for the induction of DhGPD1 and hence for osmotic regulation in halotolerant D. hansenii. It appears that the main osmosensor that links high osmolarity with glycerol accumulation may be of a different nature in this yeast.

  7. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy.

    PubMed

    Huang, Yu-San; Karashima, Takeshi; Yamamoto, Masayuki; Hamaguchi, Hiro-o

    2005-08-01

    The structure, transformation, and bioactivity of single living Schizosaccharomyces pombe cells at the molecular level have been studied in vivo by time- and space-resolved Raman spectroscopy. A time resolution of 100 s and a space resolution of 250 nm have been achieved with the use of a confocal Raman microspectrometer. The space-resolved Raman spectra of living S. pombe cells at different cell cycle stages were recorded in an effort to elucidate the molecular compositions of organelles, including nuclei, cytoplasm, mitochondria, and septa. The time- and space-resolved measurement of the central part of a dividing yeast cell showed continuous spectral evolution from that of the nucleus to those of the cytoplasm and mitochondria and finally to that of the septum, in accordance with the transformation during the cell cycle. A strong Raman band was observed at 1602 cm(-)(1) only when cells were under good nutrient conditions. The effect of a respiration inhibitor, KCN, on a living yeast cell was studied by measuring the Raman spectra of its mitochondria. A sudden disappearance of the 1602 cm(-)(1) band followed by the change in the shape and intensity of the phospholipid bands was observed, indicating a strong relationship between the cell activity and the intensity of this band. We therefore call this band "the Raman spectroscopic signature of life". The Raman mapping of a living yeast cell was also carried out. Not only the distributions of molecular species but also those of active mitochondria in the cell were successfully visualized in vivo.

  8. Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways.

    PubMed

    Baranwal, Shivani; Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-09-01

    Chloroquine (CQ) has been under clinical use for several decades, and yet little is known about CQ sensing and signaling mechanisms or about their impact on various biological pathways. We employed the budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by CQ. Our screening with yeast mutants revealed that it targets histone proteins and histone deacetylases (HDACs). Here, we also describe the novel role of mitogen-activated protein kinases Hog1 and Slt2, which aid in survival in the presence of CQ. Cells deficient in Hog1 or Slt2 are found to be CQ hypersensitive, and both proteins were phosphorylated in response to CQ exposure. CQ-activated Hog1p is translocated to the nucleus and facilitates the expression of GPD1 (glycerol-3-phosphate dehydrogenase), which is required for the synthesis of glycerol (one of the major osmolytes). Moreover, cells treated with CQ exhibited an increase in intracellular reactive oxygen species (ROS) levels and the effects were rescued by addition of reduced glutathione to the medium. The deletion of SOD1, the superoxide dismutase in yeast, resulted in hypersensitivity to CQ. We have also observed P38 as well as P42/44 phosphorylation in HEK293T human cells upon exposure to CQ, indicating that the kinds of responses generated in yeast and human cells are similar. In summary, our findings define the multiple biological pathways targeted by CQ that might be useful for understanding the toxicity modulated by this pharmacologically important molecule.

  9. A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor.

    PubMed

    Sommers, C M; Martin, N P; Akal-Strader, A; Becker, J M; Naider, F; Dumont, M E

    2000-06-13

    Activation of G protein coupled receptors (GPCRs) by binding of ligand is the initial event in diverse cellular signaling pathways. To examine the frequency and diversity of mutations that cause constitutive activation of one particular GPCR, the yeast alpha-factor receptor, we screened libraries of random mutations for constitutive alleles. In initial screens for mutant receptor alleles that exhibit signaling in the absence of added ligand, 14 different point mutations were isolated. All of these 14 mutants could be further activated by alpha-factor. Ten of the mutants also acquired the ability to signal in response to binding of desTrp(1)¿Ala(3)ălpha-factor, a peptide that acts as an antagonist toward normal alpha-factor receptors. Of these 10 mutants, at least eight alleles residing in the third, fifth, sixth, and seventh transmembrane segments exhibit bona fide constitutive signaling. The remaining alleles are hypersensitive to alpha-factor rather than constitutive. They can be activated by low concentrations of endogenous alpha-factor present in MATa cells. The strongest constitutively active receptor alleles were recovered multiple times from the mutational libraries, and extensive mutagenesis of certain regions of the alpha-factor receptor did not lead to recovery of any additional constitutive alleles. Thus, only a limited number of mutations is capable of causing constitutive activation of this receptor. Constitutive and hypersensitive signaling by the mutant receptors is partially suppressed by coexpression of normal receptors, consistent with preferential association of the G protein with unactivated receptors. PMID:10841771

  10. HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae.

    PubMed

    King, David A; Hannum, Diane M; Qi, Jian-Shen; Hurst, James K

    2004-03-01

    The nature of oxidative damage to Saccharomyces cerevisiae caused by levels of HOCl that inhibit cell replication was explored with the intent of identifying the loci of lethal lesions. Functions of cytosolic enzymes and organelles that are highly sensitive to inactivation by HOCl, including aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the mitochondrion, were only marginally affected by exposure of the yeast to levels of HOCl that completely inhibited colony formation. Loss of function in membrane-localized proteins, including the hexose transporters and PMA1 H(+)-ATPase, which is the primary proton pump located within the S. cerevisiae plasma membrane, was also marginal and K(+) leak rates to the extracellular medium increased only slowly with exposure to increasing amounts of HOCl, indicating that the plasma membrane retained its intrinsic impermeability to ions and metabolites. Adenylate phosphorylation levels in fermenting yeast declined in parallel with viability; however, yeast grown on respiratory substrates maintained near-normal phosphorylation levels at HOCl doses several-fold greater than that required for killing. This overall pattern of cellular response to HOCl differs markedly from that previously reported for bacteria, which appear to be killed by inhibition of plasma membrane proteins involved in energy transduction. The absence of significant loss of function in critical oxidant-sensitive cellular components and retention of ATP-synthesizing capabilities in respiring yeast cells exposed to lethal levels of HOCl suggests that toxicity in this case may arise by programmed cell death.

  11. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Lai, Chi-Yung; Jaruga, Ewa; Borghouts, Corina; Jazwinski, S Michal

    2002-01-01

    The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain remains immortal. To understand the mechanisms underlying age asymmetry, we have isolated temperature-sensitive mutants that have limited growth capacity. One of these clonal-senescence mutants was in ATP2, the gene encoding the beta-subunit of mitochondrial F(1), F(0)-ATPase. A point mutation in this gene caused a valine-to-isoleucine substitution at the ninetieth amino acid of the mature polypeptide. This mutation did not affect the growth rate on a nonfermentable carbon source. Life-span determinations following temperature shift-down showed that the clonal-senescence phenotype results from a loss of age asymmetry at 36 degrees, such that daughters are born old. It was characterized by a loss of mitochondrial membrane potential followed by the lack of proper segregation of active mitochondria to daughter cells. This was associated with a change in mitochondrial morphology and distribution in the mother cell and ultimately resulted in the generation of cells totally lacking mitochondria. The results indicate that segregation of active mitochondria to daughter cells is important for maintenance of age asymmetry and raise the possibility that mitochondrial dysfunction may be a normal cause of aging. The finding that dysfunctional mitochondria accumulated in yeasts as they aged and the propensity for old mother cells to produce daughters depleted of active mitochondria lend support to this notion. We propose, more generally, that age asymmetry depends on partition of active and undamaged cellular components to the progeny and that this "filter" breaks down with age. PMID

  12. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. PMID:27039354

  13. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology.

  14. Induction of sustained glycolytic oscillations in single yeast cells using microfluidics and optical tweezers

    NASA Astrophysics Data System (ADS)

    Gustavsson, Anna-Karin; Adiels, Caroline B.; Goksör, Mattias

    2012-10-01

    Yeast glycolytic oscillations have been studied since the 1950s in cell free extracts and in intact cells. Until recently, sustained oscillations have only been observed in intact cells at the population level. The aim of this study was to investigate sustained glycolytic oscillations in single cells. Optical tweezers were used to position yeast cells in arrays with variable cell density in the junction of a microfluidic flow chamber. The microfluidic flow chambers were fabricated using soft lithography and the flow rates in the different inlet channels were individually controlled by syringe pumps. Due to the low Reynolds number, the solutions mixed by diffusion only. The environment in the junction of the chamber could thus be controlled by changing the flow rates in the inlet channels, with a complete change of environment within 2 s. The optimum position of the cell array was determined by simulations, to ensure complete coverage of the intended solution without any concentration gradients over the cell array. Using a DAPI filter set, the NADH auto fluorescence could be monitored in up to 100 cells simultaneously. Sustained oscillations were successfully induced in individual, isolated cells within specific flow rates and concentrations of glucose and cyanide. By changing the flow rates without changing the surrounding solution, it was found that the cell behavior was dependent on the concentration of chemicals in the medium rather than the flow rates in the range tested. Furthermore, by packing cells tightly, cell-to-cell interaction and synchronization could be studied.

  15. Structure and biological activities of beta-glucans from yeast and mycelial forms of Candida albicans.

    PubMed

    Miura, Noriko N; Adachi, Yoshiyuki; Yadomae, Toshiro; Tamura, Hiroshi; Tanaka, Shigenori; Ohno, Naohito

    2003-01-01

    We have achieved the extraction of cell wall beta-glucan from the mycelial form of Candida albicans (C. albicans) IFO 0579 (M-CSBG) by using acetic acid, sodium hypochlorite (NaClO), and dimethylsulfoxide (DMSO) treatments. The yield of M-CSBG was significantly lower (7.5% from dried mycelial cells) than that of the yeast form from C. albicans IFO 1385 (Y-CSBG, 25.9% from dried yeast cells). The properties of M-CSBG were similar to those of Y-CSBG in terms of nuclear magnetic resonance (NMR) spectra and limulus reactivity. Molecular weight (Mw) of M-CSBG was slightly higher than that of Y-CSBG. Both Y-CSBG and M-CSBG induced the production of comparable amounts of macrophage inflammatory protein-2 (MIP-2), a chemotactic factor, from mouse peritoneal exudate cells (PEC) in vitro. These findings suggest that the structure and properties of CSBG from yeast and mycelial cells are similar to each other. PMID:12725286

  16. Yeast Display-Based Antibody Affinity Maturation Using Detergent-Solubilized Cell Lysates.

    PubMed

    Tillotson, Benjamin J; Lajoie, Jason M; Shusta, Eric V

    2015-01-01

    It is often desired to identify or engineer antibodies that target membrane proteins (MPs). However, due to their inherent insolubility in aqueous solutions, MPs are often incompatible with in vitro antibody discovery and optimization platforms. Recently, we adapted yeast display technology to accommodate detergent-solubilized cell lysates as sources of MP antigens. The following protocol details the incorporation of cell lysates into a kinetic screen designed to obtain antibodies with improved affinity via slowed dissociation from an MP antigen. PMID:26060070

  17. Yeast display-based antibody affinity maturation using detergent-solubilized cell lysates

    PubMed Central

    Tillotson, Benjamin J.; Lajoie, Jason M.; Shusta, Eric V.

    2016-01-01

    Summary It is often desired to identify or engineer antibodies that target membrane proteins (MPs). However, due to their inherent insolubility in aqueous solutions, MPs are often incompatible with in vitro antibody discovery and optimization platforms. Recently, we adapted yeast display technology to accommodate detergent-solubilized cell lysates as sources of MP antigens. The following protocol details the incorporation of cell lysates into a kinetic screen designed to obtain antibodies with improved affinity via slowed dissociation from an MP antigen. PMID:26060070

  18. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells.

    PubMed

    Safarik, Ivo; Pospiskova, Kristyna; Maderova, Zdenka; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes. PMID:24753015

  19. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  20. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Lewinska, Anna; Miedziak, Beata; Kulak, Klaudia; Molon, Mateusz; Wnuk, Maciej

    2014-06-01

    The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449-2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332-338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.

  1. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract.

    PubMed

    Zhou, Liangyun; Yang, Jian; Yang, Guang; Kang, Chuanzhi; Xiao, Wenjuan; Lv, Chaogeng; Wang, Sheng; Tang, Jinfu; Guo, Lanping

    2016-01-01

    Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphenyl phytoalexins formation after yeast extract (YE) treatment. An ultra-performance liquid chromatography (UPLC) method coupled with quadrupole time of flight mass spectrometry (Q-TOF-MS) LC-MS/MS was applied to determine the time course of these biphenyl biomarkers accumulation in YE-treated S. pohuashanensis suspension cells. The results of quantitative analyses show the content of Noraucuparin, 2'-Hydroxyaucuparin, and their glycosides initially increased, then decreased over time. The Noraucuparin content reached its highest (225.76 μg·g(-1)) at 18 h after treatment, 6 hours earlier than that of Noraucuparin 5-O-β-d-glucopyranoside. The content of 2'-Hydroxyaucuparin reached its highest (422.75 μg·g(-1)) at 30 h after treatment, also earlier than that of its glycoside. The understanding of phytoalexin metabolism in this study may provide a basis for improving Maloideae resistance to pathogens. PMID:27649118

  2. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells.

    PubMed

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-09-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between -0.2 and -0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  3. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells.

    PubMed

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-09-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between -0.2 and -0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications.

  4. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    PubMed Central

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  5. In vitro antifungal activity of fluconazole and voriconazole against non-Candida yeasts and yeast-like fungi clinical isolates.

    PubMed

    Mandras, Narcisa; Roana, Janira; Scalas, Daniela; Fucale, Giacomo; Allizond, Valeria; Banche, Giuliana; Barbui, Anna; Li Vigni, Nicolò; Newell, Vance A; Cuffini, Anna Maria; Tullio, Vivian

    2015-10-01

    The risk of opportunistic infections caused by non-Candida yeasts and yeast-like fungi is increasingly common, mainly in immunocompromised patients. Appropriate first-line therapy has not been defined and standardized, mainly due to the low number of cases reported. To improve empirical treatment guidelines, we describe the susceptibility profile to fluconazole and voriconazole of 176 non-Candida yeasts and yeast-like fungi collected from hospitals in Piedmont, North West Italy from January 2009 to December 2013. The results showed that most isolates are susceptible to voriconazole (94%), but less susceptible to fluconazole (78%), suggesting that voriconazole could be used as first-line therapy in infections caused by these fungi.

  6. Classification of yeast cells from image features to evaluate pathogen conditions

    NASA Astrophysics Data System (ADS)

    van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.

    2007-01-01

    Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.

  7. Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    PubMed Central

    Brand, Ingo L.; Civciristov, Srgjan; Taylor, Nicole L.; Talbo, Gert H.; Pantaki-Eimany, Delara; Levina, Vita; Clem, Rollie J.; Perugini, Matthew A.; Kvansakul, Marc; Hawkins, Christine J.

    2012-01-01

    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity. PMID:22720082

  8. Heavy ion induced DNA-DSB in yeast and mammalian cells

    NASA Technical Reports Server (NTRS)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    Molecular changes at the DNA are assumed to be the main cause for radiation effects in a number of organisms. During the course of the last decades techniques have been developed for measuring DNA double-strand breaks (dsb), generally assumed to be the most critical DNA lesions. The outcome of all those different approaches portrays a collection of data useful for a theoretical description of radiation action mechanisms. However, in the case of heavy ion induced DNA dsb the picture is not quite clear yet and further projects and strategies have to be developed. The biological systems studied in our group are yeast and mammalian cells. While in the case of yeast cells technical and methodical reasons highlight these organisms mammalian cells reach greater importance when dsb repair studies are performed. In both types of organisms the technique of pulsed-field gel electrophoresis (PFGE) is applied, although with different modifications and evaluation procedures mainly due to the different genome sizes.

  9. Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly

    PubMed Central

    1990-01-01

    The Saccharomyces cerevisiae KRE1 gene encodes a Ser/Thr-rich protein, that is directed into the yeast secretory pathway, where it is highly modified, probably through addition of O-linked mannose residues. Gene disruption of the KRE1 locus leads to a 40% reduced level of cell wall (1----6)-beta-glucan. Structural analysis of the (1----6)-beta-glucan fraction, isolated from a strain with a krel disruption mutation, showed that it had an altered structure with a smaller average polymer size. Mutations in two other loci, KRE5 and KRE6 also lead to a defect in cell wall (1----6)-beta-glucan production and appear to be epistatic to KRE1. These findings outline a possible pathway of assembly of yeast cell wall (1----6)-beta-glucan. PMID:2186051

  10. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.

    PubMed Central

    Murakami, H; Nurse, P

    2000-01-01

    The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast. PMID:10861204

  11. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    PubMed Central

    Andrade, Rosângela V; Paes, Hugo C; Nicola, André M; de Carvalho, Maria José A; Fachin, Ana Lúcia; Cardoso, Renato S; Silva, Simoneide S; Fernandes, Larissa; Silva, Silvana P; Donadi, Eduardo A; Sakamoto-Hojo, Elza T; Passos, Geraldo AS; Soares, Célia MA; Brígido, Marcelo M; Felipe, Maria Sueli S

    2006-01-01

    Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data

  12. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity.

    PubMed

    Huff, G R; Dutta, V; Huff, W E; Rath, N C

    2011-08-01

    1. Effective nutritional approaches to counteract the negative effects of stress may provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed on a standard diet, or the same diet supplemented with yeast extract (YE), to determine if YE would improve disease resistance in a stress model. 2. At 16 weeks of age, half of the birds were exposed to a bacterial challenge using a coarse spray of the pen environment. A subset of control and challenged birds was also treated with dexamethasone (Dex) prior to challenge (Dex/challenge). At 18 weeks, another subset was subjected to a 12?h transport stress protocol (Challenge/transport). All birds were bled and necropsied the morning after transport. The numbers and proportions of blood cells and the heterophil oxidative burst activity (OBA) were determined. Serum corticosterone (Cort) levels of male birds were measured using a commercial ELISA kit. Body weight and gain were increased by YE during week 1. 3. YE decreased mortality and bacterial isolation following Dex/challenge only in females. Cort levels in male turkeys were decreased by YE and Dex treatment. OBA was higher in males and in birds given YE and was reduced by challenge and transport. 4. These results suggest there may be gender differences in the turkey stress response and that dietary YE has potential for modulating the impact of stress on innate immunity of turkeys. PMID:21919572

  13. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures.

    PubMed

    Davidson, George S; Joe, Ray M; Roy, Sushmita; Meirelles, Osorio; Allen, Chris P; Wilson, Melissa R; Tapia, Phillip H; Manzanilla, Elaine E; Dodson, Anne E; Chakraborty, Swagata; Carter, Mark; Young, Susan; Edwards, Bruce; Sklar, Larry; Werner-Washburne, Margaret

    2011-04-01

    As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.

  14. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures.

    PubMed

    Davidson, George S; Joe, Ray M; Roy, Sushmita; Meirelles, Osorio; Allen, Chris P; Wilson, Melissa R; Tapia, Phillip H; Manzanilla, Elaine E; Dodson, Anne E; Chakraborty, Swagata; Carter, Mark; Young, Susan; Edwards, Bruce; Sklar, Larry; Werner-Washburne, Margaret

    2011-04-01

    As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. PMID:21289090

  15. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast

    PubMed Central

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-01-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe. Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1. These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1+ increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of the O-mannosyltransferase encoding gene omh1+. Loss of omh1+ abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1+ resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2+ or cbf12+. This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  16. Cell Biology of Yeast Zygotes, from Genesis to Budding

    PubMed Central

    Tartakoff, Alan M.

    2015-01-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in S. cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through to zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  17. Cell biology of yeast zygotes, from genesis to budding.

    PubMed

    Tartakoff, Alan M

    2015-07-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  18. Effect of Yeast Probiotic on Growth, Antioxidant Enzyme Activities and Malondialdehyde Concentration of Broiler Chickens.

    PubMed

    Aluwong, Tagang; Kawu, Mohammed; Raji, Moshood; Dzenda, Tavershima; Govwang, Felix; Sinkalu, Victor; Ayo, Joseph

    2013-11-06

    The aim of the study was to determine the effect of yeast probiotic on body weight, and the activities of anti-oxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) concentration of broiler chickens. The experiment was carried out on hybrid Hubbard broiler chickens (n = 200). Two-hundred day-old chicks were randomly selected and distributed into four groups of 50 day-old chicks each: Control, C, and treatment groups comprising T₁, T₂ and T₃ administered with 0.25 mL, 0.5 mL and 1.0 mL yeast probiotic, respectively. Chicks were fed a commercial starter diet for the first 28 days of age, followed by pelleted finisher diet from 29 to 42 days. Chickens in T₁ had a significantly (p < 0.01) higher body weight at 4th week of age when compared with the control. SOD activity in all treatment groups was not significantly (p > 0.05) different when compared with the control. GPx activity was significantly (p < 0.01) higher in T₁, when compared with the control. GPx activity in T₂ was higher (p < 0.01) when compared with the control. There was no significant (p > 0.05) difference in MDA level in all the treatment groups. In conclusion, administering yeast probiotic supplement increased body weight and enhanced serum anti-oxidant enzyme activities of broiler chickens.

  19. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  20. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.

    PubMed Central

    Neumann, E; Kakorin, S; Tsoneva, I; Nikolova, B; Tomov, T

    1996-01-01

    Detailed kinetic data suggest that the direct transfer of plasmid DNA (YEp 351, 5.6 kbp, supercoiled, Mr approximately 3.5 x 10(6)) by membrane electroporation of yeast cells (Saccharomyces cerevisiae, strain AH 215) is mainly due to electrodiffusive processes. The rate-limiting step for the cell transformation, however, is a bimolecular DNA-binding interaction in the cell interior. Both the adsorption of DNA, directly measured with [32P]dCTP DNA, and the number of transformants are collinearly enhanced with increasing total concentrations [Dt] and [Cat] of DNA and of calcium, respectively. At [Cat] = 1 mM, the half-saturation or equilibrium constant is KD = 15 +/- 1 nM at 293 K (20 degrees C). The optimal transformation frequency is TFopt = 4.1 +/- 0.4 X 10(-5) if a single exponential pulse of initial field strength E0 = 4 kV cm-1 and decay time constant tauE = 45 ms is applied at [Dt] = 2.7 nM and 10(8) cells in 0.1 ml. The dependence of TF on [Cat] yields the equilibrium constants KCazero = 1.8 +/- 0.2 mM (in the absence of DNA) and K'Ca (at 2.7 nM DNA), comparable with and derived from electrophoresis data. In yeast cells, too, the appearance of a DNA molecule in its whole length in the cell interior is clearly an after-field event. At Eo = 4.0 kV cm-1 and T = 293 K, the flow coefficient of DNA through the porous membrane patches is Kto = 7.0 +/- 0.7 x 10(3)S-1 and the electrodiffusion of DNA is approximately 10 times more effective than simple diffusion: D/D0 approximately 10.3. The mean radius of these pores is rp = 0.39 +/- 0.05 nm, and the mean number of pores per cell (of size ø approximately 5.5 microns) is Np = 2.2 +/- 0.2 x 10(4). The maximal membrane area that is involved in the electrodiffusive penetration of adsorbed DNA into the outer surface of the electroporated cell membrane patches is only 0.023% of the total cell surface. The surface penetration is followed either by additional electrodiffusive or by passive (after-field) diffusive

  1. Effect of Increased Yeast Alcohol Acetyltransferase Activity on Flavor Profiles of Wine and Distillates

    PubMed Central

    Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.

    2000-01-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  2. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures

    PubMed Central

    Davidson, George S.; Joe, Ray M.; Roy, Sushmita; Meirelles, Osorio; Allen, Chris P.; Wilson, Melissa R.; Tapia, Phillip H.; Manzanilla, Elaine E.; Dodson, Anne E.; Chakraborty, Swagata; Carter, Mark; Young, Susan; Edwards, Bruce; Sklar, Larry; Werner-Washburne, Margaret

    2011-01-01

    As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. PMID:21289090

  3. Ca-alginate hydrogel mechanical transformations--the influence on yeast cell growth dynamics.

    PubMed

    Pajić-Lijaković, Ivana; Plavsić, Milenko; Bugarski, Branko; Nedović, Viktor

    2007-05-01

    A mathematical model was formulated to describe yeast cell growth within the Ca-alginate microbead during air-lift bioreactor cultivation. Model development was based on experimentally obtained data for the intra-bead cell concentration profile, after reached the equilibrium state, as well as, total yeast cell concentration per microbed and microbead volume as function of time. Relatively uniform cell concentration in the carrier matrix indicated that no internal nutrient diffusion limitations, but microenvironmental restriction, affected dominantly the dynamics of cell growth. Also interesting phenomenon of very different rates of cell number growth during cultivation is observed. After some critical time, the growth rate of cell colonies decreased drastically, but than suddenly increased again under all other experimental condition been the same. It is interpreted as disintegration of gel network and opening new free space for growth of cell clusters. These complex phenomena are modeled using the thermodynamical, free energy formalism. The particular form of free energy functional is proposed to describe various kinds of interactions, which affected the dynamics of cell growth and cause pseudo-phase transition of hydrogel. The good agreement of experimentally obtained data and model predictions are obtained. In that way the model provides both, the quantitative tools for further technological optimization of the process and deeper insight into dynamics of cell growth mechanism.

  4. Displaying Lipase B from Candida antarctica in Pichia pastoris Using the Yeast Surface Display Approach: Prospection of a New Anchor and Characterization of the Whole Cell Biocatalyst.

    PubMed

    Moura, Marcelo Victor Holanda; da Silva, Giulia Pontes; Machado, Antônio Carlos de Oliveira; Torres, Fernando Araripe Gonçalves; Freire, Denise Maria Guimarães; Almeida, Rodrigo Volcan

    2015-01-01

    Yeast Surface Display (YSD) is a strategy to anchor proteins on the yeast cell wall which has been employed to increase enzyme stability thus decreasing production costs. Lipase B from Candida antarctica (LipB) is one of the most studied enzymes in the context of industrial biotechnology. This study aimed to assess the biochemical features of this important biocatalyst when immobilized on the cell surface of the methylotrophic yeast Pichia pastoris using the YSD approach. For that purpose, two anchors were tested. The first (Flo9) was identified after a prospection of the P. pastoris genome being related to the family of flocculins similar to Flo1 but significantly smaller. The second is the Protein with Internal Repeats (Pir1) from P. pastoris. An immunolocalization assay showed that both anchor proteins were able to display the reporter protein EGFP in the yeast outer cell wall. LipB was expressed in P. pastoris fused either to Flo9 (FLOLIPB) or Pir1 (PIRLIPB). Both constructions showed hydrolytic activity towards tributyrin (>100 U/mgdcw and >80 U/mgdcw, respectively), optimal hydrolytic activity around 45°C and pH 7.0, higher thermostability at 45°C and stability in organic solvents when compared to a free lipase. PMID:26510006

  5. Displaying Lipase B from Candida antarctica in Pichia pastoris Using the Yeast Surface Display Approach: Prospection of a New Anchor and Characterization of the Whole Cell Biocatalyst

    PubMed Central

    Moura, Marcelo Victor Holanda; da Silva, Giulia Pontes; Machado, Antônio Carlos de Oliveira; Torres, Fernando Araripe Gonçalves; Freire, Denise Maria Guimarães; Almeida, Rodrigo Volcan

    2015-01-01

    Yeast Surface Display (YSD) is a strategy to anchor proteins on the yeast cell wall which has been employed to increase enzyme stability thus decreasing production costs. Lipase B from Candida antarctica (LipB) is one of the most studied enzymes in the context of industrial biotechnology. This study aimed to assess the biochemical features of this important biocatalyst when immobilized on the cell surface of the methylotrophic yeast Pichia pastoris using the YSD approach. For that purpose, two anchors were tested. The first (Flo9) was identified after a prospection of the P. pastoris genome being related to the family of flocculins similar to Flo1 but significantly smaller. The second is the Protein with Internal Repeats (Pir1) from P. pastoris. An immunolocalization assay showed that both anchor proteins were able to display the reporter protein EGFP in the yeast outer cell wall. LipB was expressed in P. pastoris fused either to Flo9 (FLOLIPB) or Pir1 (PIRLIPB). Both constructions showed hydrolytic activity towards tributyrin (>100 U/mgdcw and >80 U/mgdcw, respectively), optimal hydrolytic activity around 45°C and pH 7.0, higher thermostability at 45°C and stability in organic solvents when compared to a free lipase. PMID:26510006

  6. Water structure in vitro and within Saccharomyces cerevisiae yeast cells under conditions of heat shock

    PubMed Central

    Dashnau, Jennifer L.; Conlin, Laura K.; Nelson, Hillary C. M.; Vanderkooi, Jane M.

    2008-01-01

    The OH stretch mode from water and organic hydroxyl groups have strong infrared absorption, the position of the band going to lower frequency with increased H-bonding. This band was used to study water in trehalose and glycerol solutions and in genetically modified yeast cells containing varying amounts of trehalose. Concentration-dependent changes in water structure induced by trehalose and glycerol in solution were detected, consistent with an increase of lower-energy H-bonds and interactions at the expense of higher-energy interactions. This result suggests that these molecules disrupt the water H-bond network in such a way as to strengthen molecule-water interactions while perturbing water-water interactions. The molecule-induced changes in the water H-bond network seen in solution do not translate to observable differences in yeast cells that are trehalose-deficient and trehalose-rich. Although comparison of yeast with low and high trehalose showed no observable effect on intracellular water structure, the structure of water in cells is different from that in bulk water. Cellular water exhibits a larger preference for lower-energy H-bonds or interactions over higher-energy interactions relative to that shown in bulk water. This effect is likely the result of the high concentration of biological molecules present in the cell. The ability of water to interact directly with polar groups on biological molecules may cause the preference seen for lower-energy interactions. PMID:17961925

  7. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.

  8. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  9. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    PubMed Central

    Zhou, Yongjin J.; Buijs, Nicolaas A.; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  10. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  11. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells.

  12. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc.

    PubMed

    Li, Jian; Liu, Yun; Kong, Dongdong; Ren, Shujuan; Li, Na

    2016-05-01

    In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose-response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10(-5), 3.2 × 10(-6), and 1.2 × 10(-6) mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10(-6) to 10(-4) mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.

  13. Modulating the potency of an activator in a yeast in vitro transcription system.

    PubMed Central

    Ohashi, Y; Brickman, J M; Furman, E; Middleton, B; Carey, M

    1994-01-01

    The intrinsic stimulatory potential or potency of a eukaryotic gene activator is controlled by the interaction between the activation domain and the transcriptional machinery. To further understand this interaction, we undertook a biochemical study to identify parameters that could be used to modulate activator potency. We considered how varying the number of activation domains, their flexibility, and the number of promoter sites affects potency in a yeast nuclear extract. The effects of GAL4 derivatives bearing either one, two, or four herpes simplex virus VP16 activation domains (amino acids 413 to 454) were measured on DNA templates containing one or two GAL4 sites in a Saccharomyces cerevisiae nuclear extract. We found that multimerized VP16 activation domains acted synergistically to increase the potency of the activators. The spacing between the activation domains was critical, such that the increased flexibility imparted by a protein linker contributed to increased activator potency. With highly potent activators, the levels of transcription stimulated on a single site were saturating, whereas the stimulatory effect of weaker activators increased with the number of sites. We discuss how these biochemical studies relate to the mechanism of gene activation and synergy in a yeast in vitro system. Images PMID:8139572

  14. Extraction of brewer's yeasts using different methods of cell disruption for practical biodiesel production.

    PubMed

    Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel

    2015-05-01

    The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

  15. The Yeast Three-Hybrid System as an Experimental Platform to Identify Proteins Interacting with Small Signaling Molecules in Plant Cells: Potential and Limitations

    PubMed Central

    Cottier, Stéphanie; Mönig, Timon; Wang, Zheming; Svoboda, Jiří; Boland, Wilhelm; Kaiser, Markus; Kombrink, Erich

    2011-01-01

    Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time-consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H) technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx). In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA-binding domain (encoded in the yeast strain), and the bioactive molecule part binding to its potential protein target fused to a DNA-activating domain (encoded on a cDNA expression vector). During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discuss the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules. PMID:22639623

  16. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  17. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  18. The natural yeast extract isolated by ethanol precipitation inhibits melanin synthesis by modulating tyrosinase activity and downregulating melanosome transfer.

    PubMed

    Lee, Woo Jin; Rhee, Do Young; Bang, Seung Hyun; Kim, Su Yeon; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2015-01-01

    This study was conducted to examine the effects of EP-2, a natural yeast extract isolated by ethanol precipitation from Saccharomyces cerevisiae, on melanogenesis and to determine its underlying mechanism of action. Our results show that although EP-2 is not a direct tyrosinase inhibitor, when EP-2 was added to the culture media of B16F10 melanoma cells, intracellular tyrosinase activity was decreased. However, EP-2 had no effect on the expression of microphthalmia-associated transcription factor or tyrosinase. EP-2 was found to inhibit melanogenesis and melanosome transfer when it was added to melanocytes and keratinocytes in coculture. In addition, protease-activated receptor 2, a key protein associated with melanosome transfer from melanocytes to keratinocytes, was downregulated in the presence of EP-2. In conclusion, EP-2 is a potent inhibitor of melanogenesis and its hypomelanogenic effect is related to the inhibition of tyrosinase activity and transfer of melanosomes.

  19. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome.

    PubMed

    Fabrizio, Patrizia; Dannenberg, Julia; Dube, Prakash; Kastner, Berthold; Stark, Holger; Urlaub, Henning; Lührmann, Reinhard

    2009-11-25

    Metazoan spliceosomes exhibit an elaborate protein composition required for canonical and alternative splicing. Thus, the minimal set of proteins essential for activation and catalysis remains elusive. We therefore purified in vitro assembled, precatalytic spliceosomal complex B, activated B(act), and step 1 complex C from the simple eukaryote Saccharomyces cerevisiae. Mass spectrometry revealed that yeast spliceosomes contain fewer proteins than metazoans and that each functional stage is very homogeneous. Dramatic compositional changes convert B to B(act), which is composed of approximately 40 evolutionarily conserved proteins that organize the catalytic core. Additional remodeling occurs concomitant with step 1, during which nine proteins are recruited to form complex C. The moderate number of proteins recruited to complex C will allow investigations of the chemical reactions in a fully defined system. Electron microscopy reveals high-quality images of yeast spliceosomes at defined functional stages, indicating that they are well-suited for three-dimensional structure analyses.

  20. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  1. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...

  2. Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling

    NASA Astrophysics Data System (ADS)

    Hamngren, Charlotte; Dinér, Peter; Grøtli, Morten; Goksör, Mattias; Adiels, Caroline B.

    2012-10-01

    In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.

  3. Quantitative phase imaging of cell division in yeast cells and E.coli using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.

  4. Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system

    PubMed Central

    Ratushny, Vladimir; Golemis, Erica A.

    2008-01-01

    In 1983, while investigators had identified a few human proteins as important regulators of specific biological outcomes, how these proteins acted in the cell was essentially unknown in almost all cases. 25 years on, our knowledge of the mechanistic basis of protein action has been transformed by our increasingly detailed understanding of protein-protein interactions, which have allowed us to define cellular machines. The advent of the yeast two-hybrid (Y2H) system in 1989 marked a milestone in the field of proteomics. Exploiting the modular nature of transcription factors, the Y2H system allows facile measurement of the activation of reporter genes based on interactions between two chimeric or “hybrid” proteins of interest. After a decade of service as a leading platforms for individual investigators to use in exploring the interaction properties of interesting target proteins, the Y2H system has increasing been applied in high throughput applications intended to map genome-scale protein-protein interactions for model organisms and humans. Although some significant technical limitations apply, the Y2H has made a great contribution to our general understanding of the topology of cellular signaling networks. PMID:18474041

  5. Depletion of arginine in yeast cells decreases the resistance to hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2015-07-01

    High hydrostatic pressure (HP) inhibits growth and inactivates microorganisms by destabilizing non-covalent molecular interactions. Arginine contributes to stress resistance because it has a guanidine side chain, which assists in the refolding of aggregated proteins. We attempted to analyze the contribution of arginine to high HP stress using a pressure-sensitive mutant strain of Saccharomyces cerevisiae and a metabolomics approach. Our results showed that the content of 136 out of 250 detected metabolites differed in the mutant and parent strains. Decreased metabolites were involved in the tricarboxylic acid cycle and arginine biosynthesis. The expression of genes contributing to arginine biosynthesis was significantly lower in the mutant strain than in the parent strain. When arginine was supplemented to the medium, the mutant strain showed more tolerance to pressure. These results suggest that yeast cells survived due to the contribution of arginine to high pressure resistance. This indicates that depletion of arginine caused by decreased activity of the biosynthesis pathway confers sensitivity to HP.

  6. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation.

    PubMed

    Sorolla, M Alba; Nierga, Clara; Rodríguez-Colman, M José; Reverter-Branchat, Gemma; Arenas, Alicia; Tamarit, Jordi; Ros, Joaquim; Cabiscol, Elisa

    2011-06-01

    Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG trinucleotide repeats, leading to an elongated polyglutamine sequence (polyQ) in the huntingtin protein. Misfolding of mutant polyQ proteins with expanded tracts results in aggregation, causing cytotoxicity. Oxidative stress in HD has been documented in humans as important to disease progression. Using yeast cells as a model of HD, we report that when grown at high glucose concentration, cells expressing mutant polyQ do not show apparent oxidative stress. At higher cell densities, when glucose becomes limiting and cells are metabolically shifting from fermentation to respiration, protein oxidation and catalase activity increases in relation to the length of the polyQ tract. Oxidative stress, either endogenous as a result of mutant polyQ expression or exogenously generated, increases Sir2 levels. Δ sir2 cells expressing expanded polyQ lengths show signs of oxidative stress even at the early exponential phase. In a wild-type background, isonicotinamide, a Sir2 activator, decreases mutant polyQ aggregation and the stress generated by expanded polyQ. Taken together, these results describe mutant polyQ proteins as being more toxic in respiring cells, causing oxidative stress and an increase in Sir2 levels. Activation of Sir2 would play a protective role against this toxicity. PMID:21513696

  7. Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope.

    PubMed

    Jacob, H E; Förster, W; Berg, H

    1981-01-01

    The inactivation of yeast cells in different growth phases by an electric field pulse was investigated. Cells of Saccharomyces cerevisiae in the logarithmic growth phase were found to be much more sensitive with respect to an electric discharge than those in the stationary phase. The influence of the electric field pulse characteristics on the inactivation as well as possible secondary effects were studied. The polyene antibiotic perhydrohexafungin (PHF) is used as a tool to sense defects in the yeast cell envelope brought about by electric field action. The repair kinetics of these defects was followed after the impulse. At least two repair stages can be distinguished, a fast one in the second range and a slower one which takes place after plating the cells on a nutrient medium. The obtained results are discussed in connection with current theories of reversible dielectric breakdown in biological membrane systems. PMID:7023081

  8. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation.

  9. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; et al

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  10. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism.

    PubMed

    Chen, Yun; Daviet, Laurent; Schalk, Michel; Siewers, Verena; Nielsen, Jens

    2013-01-01

    Production of fuels and chemicals by industrial biotechnology requires efficient, safe and flexible cell factory platforms that can be used for production of a wide range of compounds. Here we developed a platform yeast cell factory for efficient provision of acetyl-CoA that serves as precursor metabolite for a wide range of industrially interesting products. We demonstrate that the platform cell factory can be used to improve the production of α-santalene, a plant sesquiterpene that can be used as a perfume by four-fold. This strain would be a useful tool to produce a wide range of acetyl-CoA-derived products.

  11. Together we are strong--cell wall integrity sensors in yeasts.

    PubMed

    Rodicio, Rosaura; Heinisch, Jürgen J

    2010-08-01

    The integrity of the fungal cell wall is ensured by a signal transduction pathway, the so-called CWI pathway, which has best been studied in the model yeast Saccharomyces cerevisiae. In this context, environmental stress and other perturbations at the cell surface are detected by a small set of plasma membrane-spanning sensors, viz. Wsc1, Wsc2, Wsc3, Mid2 and Mtl1. This review covers the recent advances in sensor structure, sensor mechanics, their cellular distribution and their in vivo functions, obtained from genetic, biochemical, cell biological and biophysical investigations.

  12. Pdr12p-dependent and -independent fluorescein extrusion from baker's yeast cells.

    PubMed

    Lushchak, Volodymyr; Abrat, Oleksandra; Miedzobrodzki, Jacek; Semchyshyn, Halyna

    2008-01-01

    Fluorescein efflux from S. cerevisiae cells was measured to study the peculiarities of fluorescein transport system, which is important for yeast resistance to certain drugs and weak organic acid preservatives. Glucose-independent and glucose-stimulated fluorescein effluxes were characterized using iodoacetate, cyanide and orthovanadate, inhibitors of glycolysis, electron transport chain, and ATPases, respectively. It is supposed that in glucose-free medium fluorescein extrusion is ATP-dependent and the energy for this efflux is mainly provided by respiration. In glucose-containing medium, glycolysis plays a critical role for extrusion of fluorescein. The results indicate that acetic acid inhibits the fluorescein efflux from yeast cells. The inhibition constant of glucose-stimulated fluorescein efflux is significantly lower in parental strain than in two mutants defective in PDR12 (ABC-transporter Pdr12p) or WAR1 (transcription factor of Pdr12p). It can be suggested that the membrane protein Pdr12 is involved in fluorescein extrusion from the yeast cells, but component(s) other than Pdr12p is (are) also important.

  13. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    PubMed

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  14. Reconstruction of a yeast cell from x-ray diffraction data

    SciTech Connect

    Thibault, Pierre; Elser, Veit; Jacobsen, Chris; Shapiro, David; Sayre, David

    2006-06-21

    We provide details of the algorithm used for the reconstruction of yeast cell images in the recent demonstration of diffraction microscopy by Shapiro, Thibault, Beetz, Elser, Howells, Jacobsen, Kirz, Lima, Miao, Nieman & Sayre. Two refinements of the iterative constraint-based scheme are developed to address the current experimental realities of this imaging technique, which include missing central data and noise. A constrained power operator is defined whose eigenmodes allow the identification of a small number of degrees of freedom in the reconstruction that are negligibly constrained as a result of the missing data. To achieve reproducibility in the algorithm's output, a special intervention is required for these modes. Weak incompatibility of the constraints caused by noise in both direct and Fourier space leads to residual phase fluctuations. This problem is addressed by supplementing the algorithm with an averaging method. The effect of averaging may be interpreted in terms of an effective modulation transfer function, as used in optics, to quantify the resolution. The reconstruction details are prefaced with simulations of wave propagation through a model yeast cell. These show that the yeast cell is a strong-phase-contrast object for the conditions in the experiment.

  15. Reconstruction of a yeast cell from x-ray diffraction data

    DOE PAGES

    Thibault, Pierre; Elser, Veit; Jacobsen, Chris; Shapiro, David; Sayre, David

    2006-06-21

    We provide details of the algorithm used for the reconstruction of yeast cell images in the recent demonstration of diffraction microscopy by Shapiro, Thibault, Beetz, Elser, Howells, Jacobsen, Kirz, Lima, Miao, Nieman & Sayre. Two refinements of the iterative constraint-based scheme are developed to address the current experimental realities of this imaging technique, which include missing central data and noise. A constrained power operator is defined whose eigenmodes allow the identification of a small number of degrees of freedom in the reconstruction that are negligibly constrained as a result of the missing data. To achieve reproducibility in the algorithm's output,more » a special intervention is required for these modes. Weak incompatibility of the constraints caused by noise in both direct and Fourier space leads to residual phase fluctuations. This problem is addressed by supplementing the algorithm with an averaging method. The effect of averaging may be interpreted in terms of an effective modulation transfer function, as used in optics, to quantify the resolution. The reconstruction details are prefaced with simulations of wave propagation through a model yeast cell. These show that the yeast cell is a strong-phase-contrast object for the conditions in the experiment.« less

  16. Isolation of anti-T cell receptor scFv mutants by yeast surface display.

    PubMed

    Kieke, M C; Cho, B K; Boder, E T; Kranz, D M; Wittrup, K D

    1997-11-01

    Yeast surface display and sorting by flow cytometry have been used to isolate mutants of an scFv that is specific for the Vbeta8 region of the T cell receptor. Selection was based on equilibrium binding by two fluorescently labeled probes, a soluble Vbeta8 domain and an antibody to the c-myc epitope tag present at the carboxy-terminus of the scFv. The mutants that were selected in this screen included a scFv with threefold increased affinity for the Vbeta8 and scFv clones that were bound with reduced affinities by the anti-c-myc antibody. The latter finding indicates that the yeast display system may be used to map conformational epitopes, which cannot be revealed by standard peptide screens. Equilibrium antigen binding constants were estimated within the surface display format, allowing screening of isolated mutants without necessitating subcloning and soluble expression. Only a relatively small library of yeast cells (3 x 10[5]) displaying randomly mutagenized scFv was screened to identify these mutants, indicating that this system will provide a powerful tool for engineering the binding properties of eucaryotic secreted and cell surface proteins.

  17. Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast.

    PubMed

    Jourdain, Isabelle; Sontam, Dharani; Johnson, Chad; Dillies, Clément; Hyams, Jeremy S

    2008-03-01

    Peroxisomes were visualized for the first time in living fission yeast cells. In small, newly divided cells, the number of peroxisomes was low but increased in parallel with the increase in cell length/volume that accompanies cell cycle progression. In cells grown in oleic acid, both the size and the number of peroxisomes increased. The peroxisomal inventory of cells lacking the dynamin-related proteins Dnm1 or Vps1 was similar to that in wild type. By contrast, cells of the double mutant dnm1Delta vps1Delta contained either no peroxisomes at all or a small number of morphologically aberrant organelles. Peroxisomes exhibited either local Brownian movement or longer-range linear displacements, which continued in the absence of either microtubules or actin filaments. On the contrary, directed peroxisome motility appeared to occur in association with mitochondria and may be an indirect function of intrinsic mitochondrial dynamics. We conclude that peroxisomes are present in fission yeast and that Dnm1 and Vps1 act redundantly in peroxisome biogenesis, which is under cell cycle control. Peroxisome movement is independent of the cytoskeleton but is coupled to mitochondrial dynamics.

  18. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence. PMID:25700743

  19. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  20. Determination of yeast mitochondrial KHE activity, osmotic swelling and mitophagy.

    PubMed

    Nowikovsky, Karin; Devenish, Rodney J; Froschauer, Elisabeth; Schweyen, Rudolf J

    2009-01-01

    The mitochondrial K(+)/H(+) exchanger (KHE) is a key regulator of mitochondrial K(+), the most abundant cellular cation, and thus for volume control of the organelle. Downregulation of the mitochondrial KHE results in osmotic swelling and autophagic degradation of the organelle. This chapter describes methods to shut-off expression of Mdm38p, an essential factor of the mitochondrial KHE, and to observe the cellular consequences thereof, in particular changes in KHE activity and morphogenetic changes of mitochondria by applying new techniques developed in our laboratories. PMID:19426875

  1. Debaryomyces hansenii, a highly osmo-tolerant and halo-tolerant yeast, maintains activated Dhog1p in the cytoplasm during its growth under severe osmotic stress.

    PubMed

    Sharma, Pratima; Meena, Netrapal; Aggarwal, Monika; Mondal, Alok K

    2005-09-01

    The HOG pathway is an important mitogen-activated protein kinase (MAPK) signal transduction pathway in Saccharomyces cerevisiae that mediates adaptation of cells to hyper-osmotic stress. Activation of this pathway causes rapid but transient, phosphorylation of the MAPK Hog1p. Phosphorylated Hog1p is rapidly transported to the nucleus that results in the transcription of target genes. The HOG pathway appears to be ubiquitous in yeast. Components of HOG pathway have also been identified in Debaryomyces hansenii, a highly osmotolerant and halotolerant yeast. We have studied activation of HOG pathway in D. hansenii under different stress conditions. Our experiments demonstrated that the pathway is activated by high osmolarity, oxidative and UV stress but not by heat stress. We have provided evidence, for the first time, that D. hansenii maintains phosphorylated Dhog1p in the cytoplasm during its growth under severe osmotic stress. PMID:16091960

  2. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  3. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi.

    PubMed

    Knoblach, Barbara; Rachubinski, Richard A

    2016-08-01

    Eukaryotic cells are subcompartmentalized into discrete, membrane-enclosed organelles. These organelles must be preserved in cells over many generations to maintain the selective advantages afforded by compartmentalization. Cells use complex molecular mechanisms of organelle inheritance to achieve high accuracy in the sharing of organelles between daughter cells. Here we focus on how a multi-copy organelle, the peroxisome, is partitioned in yeast, mammalian cells, and filamentous fungi, which differ in their mode of cell division. Cells achieve equidistribution of their peroxisomes through organelle transport and retention processes that act coordinately, although the strategies employed vary considerably by organism. Nevertheless, we propose that mechanisms common across species apply to the partitioning of all membrane-enclosed organelles. PMID:27128775

  4. DNA resection proteins Sgs1 and Exo1 are required for G1 checkpoint activation in budding yeast

    PubMed Central

    Balogun, Fiyinfolu O.; Truman, Andrew W.; Kron, Stephen J.

    2013-01-01

    Double-strand breaks (DSBs) in budding yeast trigger activation of DNA damage checkpoints, allowing repair to occur. Although resection is necessary for initiating damage-induced cell cycle arrest in G2, no role has been assigned to it in the activation of G1 checkpoint. Here we demonstrate for the first time that the resection proteins Sgs1 and Exo1 are required for efficient G1 checkpoint activation. We find in G1 arrested cells that histone H2A phosphorylation in response to ionizing radiation is independent of Sgs1 and Exo1. In contrast, these proteins are required for damage-induced recruitment of Rfa1 to the DSB sites, phosphorylation of the Rad53 effector kinase, cell cycle arrest and RNR3 expression. Checkpoint activation in G1 requires the catalytic activity of Sgs1, suggesting that it is DNA resection mediated by Sgs1 that stimulates the damage response pathway rather than protein-protein interactions with other DDR proteins. Together, these results implicate DNA resection, which is thought to be minimal in G1, as necessary for activation of the G1 checkpoint. PMID:23835406

  5. Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay.

    PubMed Central

    Miller, D; Wheals, B B; Beresford, N; Sumpter, J P

    2001-01-01

    We used a recombinant yeast estrogen assay to assess the activity of 73 phenolic additives that are used as sunscreens, preservatives, disinfectants, antioxidants, flavorings, or for perfumery. Thirty-two of these compounds displayed activity: 22 with potencies relative to 17beta-estradiol, ranging from 1/3,000 to < 1/3,000,000, and 10 compounds with an impaired response that could not be directly compared with 17beta-estradiol. Forty-one compounds were inactive. The major criteria for activity appear to be the presence of an unhindered phenolic OH group in a para position and a molecular weight of 140-250 Da. PMID:11266322

  6. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  7. Effects of Low Molecular Weight Yeast β-Glucan on Antioxidant and Immunological Activities in Mice

    PubMed Central

    Lei, Na; Wang, Mi; Zhang, Lifang; Xiao, Sui; Fei, Chengzhong; Wang, Xiaoyang; Zhang, Keyu; Zheng, Wenli; Wang, Chunmei; Yang, Ruile; Xue, Feiqun

    2015-01-01

    To evaluate the antioxidant and immune effects of low molecular yeast β-glucan on mice, three sulfated glucans from Saccharomyces cerevisiae (sGSCs) with different molecular weight (MW) and degrees of sulfation (DS) were prepared. The structures of the sGSCs were analyzed through high performance liquid chromatography-gel permeation chromatography (HPLC-GPC) and Fourier transform infrared spectroscopy (FTIR). sGSC1, sGSC2, and sGSC3 had MW of 12.9, 16.5 and 19.2 kDa, respectively, and DS of 0.16, 0.24 and 0.27, respectively. In vitro and in vivo experiments were conducted to evaluate the antioxidant and immunological activities of the sGSCs. In vitro experiment, the reactive oxygen species (ROS) scavenging activities were determined. In vivo experiment, 50 male BALB/c mice were divided into five groups. The sGSC1, sGSC2 and sGSC3 treatment groups received the corresponding sGSCs at 50 mg/kg/day each. The GSC (glucans from Saccharomyces cerevisiae) treatment group received 50 mg/kg/day GSC. The normal control group received equal volume of physiological saline solution. All treatments were administered intragastrically for 14 day. Results showed that sGSC1, sGSC2 and sGSC3 can scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH), superoxide, and hydroxyl radicals in vitro. The strength of the radical scavenging effects of the sGSCs was in the order of sGSC1 > sGSC2 > sGSC3. Oral administration of sGSC1 significantly improved serum catalase (CAT) and glutathione peroxidase (GSH-Px) activities and decreased malondialdehyde (MDA) level in mice. sGSC1 significantly improved the spleen and thymus indexes and the lymphocyte proliferation, effectively enhanced the percentage of CD4+ T cells, decreased the percentage of CD8+ T cells, and elevated the CD4+/CD8+ ratio. sGSC1 significantly promoted the secretion of IL-2 and IFN-γ. These results indicate that sGSC1 with low MW and DS has better antioxidant and immunological activities than the other sGSCs, and sGSC1 could be used

  8. Effects of Low Molecular Weight Yeast β-Glucan on Antioxidant and Immunological Activities in Mice.

    PubMed

    Lei, Na; Wang, Mi; Zhang, Lifang; Xiao, Sui; Fei, Chengzhong; Wang, Xiaoyang; Zhang, Keyu; Zheng, Wenli; Wang, Chunmei; Yang, Ruile; Xue, Feiqun

    2015-01-01

    To evaluate the antioxidant and immune effects of low molecular yeast β-glucan on mice, three sulfated glucans from Saccharomyces cerevisiae (sGSCs) with different molecular weight (MW) and degrees of sulfation (DS) were prepared. The structures of the sGSCs were analyzed through high performance liquid chromatography-gel permeation chromatography (HPLC-GPC) and Fourier transform infrared spectroscopy (FTIR). sGSC1, sGSC2, and sGSC3 had MW of 12.9, 16.5 and 19.2 kDa, respectively, and DS of 0.16, 0.24 and 0.27, respectively. In vitro and in vivo experiments were conducted to evaluate the antioxidant and immunological activities of the sGSCs. In vitro experiment, the reactive oxygen species (ROS) scavenging activities were determined. In vivo experiment, 50 male BALB/c mice were divided into five groups. The sGSC1, sGSC2 and sGSC3 treatment groups received the corresponding sGSCs at 50 mg/kg/day each. The GSC (glucans from Saccharomyces cerevisiae) treatment group received 50 mg/kg/day GSC. The normal control group received equal volume of physiological saline solution. All treatments were administered intragastrically for 14 day. Results showed that sGSC1, sGSC2 and sGSC3 can scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH), superoxide, and hydroxyl radicals in vitro. The strength of the radical scavenging effects of the sGSCs was in the order of sGSC1 > sGSC2 > sGSC3. Oral administration of sGSC1 significantly improved serum catalase (CAT) and glutathione peroxidase (GSH-Px) activities and decreased malondialdehyde (MDA) level in mice. sGSC1 significantly improved the spleen and thymus indexes and the lymphocyte proliferation, effectively enhanced the percentage of CD4⁺ T cells, decreased the percentage of CD8⁺ T cells, and elevated the CD4⁺/CD8⁺ ratio. sGSC1 significantly promoted the secretion of IL-2 and IFN-γ. These results indicate that sGSC1 with low MW and DS has better antioxidant and immunological activities than the other sGSCs, and sGSC1 could

  9. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    PubMed

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall.

  10. Developmental Coordination of Gamete Differentiation with Programmed Cell Death in Sporulating Yeast

    PubMed Central

    Eastwood, Michael D.

    2015-01-01

    The gametogenesis program of the budding yeast Saccharomyces cerevisiae, also known as sporulation, employs unusual internal meiotic divisions, after which all four meiotic products differentiate within the parental cell. We showed previously that sporulation is typically accompanied by the destruction of discarded immature meiotic products through their exposure to proteases released from the mother cell vacuole, which undergoes an apparent programmed rupture. Here we demonstrate that vacuolar rupture contributes to de facto programmed cell death (PCD) of the meiotic mother cell itself. Meiotic mother cell PCD is accompanied by an accumulation of depolarized mitochondria, organelle swelling, altered plasma membrane characteristics, and cytoplasmic clearance. To ensure that the gametes survive the destructive consequences of developing within a cell that is executing PCD, we hypothesized that PCD is restrained from occurring until spores have attained a threshold degree of differentiation. Consistent with this hypothesis, gene deletions that perturb all but the most terminal postmeiotic spore developmental stages are associated with altered PCD. In these mutants, meiotic mother cells exhibit a delay in vacuolar rupture and then appear to undergo an alternative form of PCD associated with catastrophic consequences for the underdeveloped spores. Our findings reveal yeast sporulation as a context of bona fide PCD that is developmentally coordinated with gamete differentiation. PMID:26092920

  11. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene.

  12. DiOC6 staining reveals organelle structure and dynamics in living yeast cells.

    PubMed

    Koning, A J; Lum, P Y; Williams, J M; Wright, R

    1993-01-01

    When present at low concentrations, the fluorescent lipophilic dye, DiOC6, stains mitochondria in living yeast cells [Pringle et al.: Methods in Cell Biol. 31:357-435, 1989; Weisman et al.: Proc. Natl. Acad. Sci. U.S.A. 87:1076-1080, 1990]. However, we found that the nuclear envelope and endoplasmic reticulum were specifically stained if the dye concentration was increased or if certain respiratory-deficient yeast strains were examined. The quality of nuclear envelope staining with DiOC6 was sufficiently sensitive to reveal alterations in the nuclear envelope known as karmellae. These membranes were previously apparent only by electron microscopy. At the high dye concentrations required to stain the nuclear envelope, wild-type cells could no longer grow on non-fermentable carbon sources. In spite of this effect on mitochondrial function, the presence of high dye concentration did not adversely affect cell viability or general growth characteristics when strains were grown under standard conditions on glucose. Consequently, time-lapse confocal microscopy was used to examine organelle dynamics in living yeast cells stained with DiOC6. These in vivo observations correlated very well with previous electron microscopic studies, including analyses of mitochondria, karmellae, and mitosis. For example, cycles of mitochondrial fusion and division, as well as the changes in nuclear shape and position that occur during mitosis, were readily imaged in time-lapse studies of living DiOC6-stained cells. This technique also revealed new aspects of nuclear disposition and interactions with other organelles. For example, the nucleus and vacuole appeared to form a structurally coupled unit that could undergo coordinated movements. Furthermore, unlike the general view that nuclear movements occur only in association with division, the nucleus/vacuole underwent dramatic migrations around the cell periphery as cells exited from stationary phase. In addition to the large migrations or

  13. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system.

    PubMed

    Ganner, Anja; Schatzmayr, Gerd

    2012-07-01

    Yeast derivatives including yeast cell wall components are promising alternatives to antibiotics with respect to the promotion of health and performance in livestock, based on their capacity to bind enteropathogenic bacteria and to beneficially modulate the immune system. However, these mode(s) of action both in vitro and in vivo are still not well understood. Furthermore, standardization and reproducibility of in vitro techniques (microbiology, cell culture assays) are critical features for the application of yeast derivatives as well as for the proof of effectiveness. Yeast cell wall products are suggested as anti-adhesive agents and are thus proposed to prevent attachment of certain intestinal bacteria by providing alternative adhesion sites to enterobacteria, which contain mannose-specific type I fimbriae such as Escherichia coli or Salmonella spp. and which is well documented. Various in vitro assay techniques have become of paramount importance for biotechnological research since they allow for determination and quantification of potential mode(s) of action. However, in vitro assays may be criticized by product end users as not accurately reflecting in vivo responses. Pro and cons of different assays and their bias will be discussed specifically regarding yeast cell wall components and adhesion of enteropathogenic bacteria. Immunomodulation is a therapeutic approach intervening in auto-regulating processes of the defense system. Yeast derivatives such as beta-glucans are proposed to interact with cells of the innate immune system by receptor recognition. Controversial data in literature and mode(s) of action are reviewed and discussed here.

  14. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast.

    PubMed

    Shivaraju, Manjunatha; Unruh, Jay R; Slaughter, Brian D; Mattingly, Mark; Berman, Judith; Gerton, Jennifer L

    2012-07-20

    The centromere is a specialized chromosomal structure that regulates chromosome segregation. Centromeres are marked by a histone H3 variant. In budding yeast, the histone H3 variant Cse4 is present in a single centromeric nucleosome. Experimental evidence supports several different models for the structure of centromeric nucleosomes. To investigate Cse4 copy number in live yeast, we developed a method coupling fluorescence correlation spectroscopy and calibrated imaging. We find that centromeric nucleosomes have one copy of Cse4 during most of the cell cycle, whereas two copies are detected at anaphase. The proposal of an anaphase-coupled structural change is supported by Cse4-Cse4 interactions, incorporation of Cse4, and the absence of Scm3 in anaphase. Nucleosome reconstitution and ChIP suggests both Cse4 structures contain H2A/H2B. The increase in Cse4 intensity and deposition at anaphase are also observed in Candida albicans. Our experimental evidence supports a cell-cycle-coupled oscillation of centromeric nucleosome structure in yeast. PMID:22817893

  15. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses

    PubMed Central

    Breker, Michal; Gymrek, Melissa

    2013-01-01

    Uncovering the mechanisms underlying robust responses of cells to stress is crucial for our understanding of cellular physiology. Indeed, vast amounts of data have been collected on transcriptional responses in Saccharomyces cerevisiae. However, only a handful of pioneering studies describe the dynamics of proteins in response to external stimuli, despite the fact that regulation of protein levels and localization is an essential part of such responses. Here we characterized unprecedented proteome plasticity by systematically tracking the localization and abundance of 5,330 yeast proteins at single-cell resolution under three different stress conditions (DTT, H2O2, and nitrogen starvation) using the GFP-tagged yeast library. We uncovered a unique “fingerprint” of changes for each stress and elucidated a new response arsenal for adapting to radical environments. These include bet-hedging strategies, organelle rearrangement, and redistribution of protein localizations. All data are available for download through our online database, LOQATE (localization and quantitation atlas of yeast proteome). PMID:23509072

  16. Defect of vacuolar protein sorting stimulates proteolytic processing of human urokinase-type plasminogen activator in the yeast Hansenula polymorpha.

    PubMed

    Agaphonov, Michael; Romanova, Nina; Sokolov, Sviatoslav; Iline, Anna; Kalebina, Tatyana; Gellissen, Gerd; Ter-Avanesyan, Michael

    2005-11-01

    Human urokinase-type plasminogen activator (uPA) is poorly secreted by yeast cells. Here, we have selected Hansenula polymorpha mutants with increased productivity of active extracellular uPA. Several of the obtained mutants also demonstrated a defect of sorting of carboxypeptidase Y to the vacuole and the mutant loci have been identified in six of them. All these mutations damaged genes involved in protein traffic between the Golgi apparatus and the vacuole, namely PEP3, VPS8, VPS10, VPS17, and VPS35. We have shown that inactivation of the VPS10 gene encoding the vacuolar protein sorting receptor does not increase uPA secretion but stimulates its proteolytic processing. PMID:16181812

  17. A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers.

    PubMed

    Filyak, Yevhen; Finiuk, Nataliya; Mitina, Nataliya; Bilyk, Oksana; Titorenko, Vladimir; Hrydzhuk, Olesya; Zaichenko, Alexander; Stoika, Rostyslav

    2013-01-01

    The genetic transformation of target cells is a key tool in modern biological research, as well as in many gene therapy and biotechnology applications. Here we describe a new method for delivery of DNA into several industrially important species of yeast, including Saccharomyces cerevisiae. Our method is based on the use of a novel nanoscale oligoelectrolyte polymer possessing a comb-like structure as a carrier molecule. Direct comparisons to standard transformation methods clearly show that our approach: (i) yields two times more transformants of Hansenula polymorpha NCYC 495 compared to electroporation approaches and 15 times more transformants compared to lithium acetate protocols, as well as (ii) 5 times more Pichia pastoris GS115 transformants compared to electroporation and 79 times more transformants compared to lithium acetate. Taken together, these results clearly indicate genetic transformation of yeasts using oligoelectrolyte polymer carriers is a highly effective means of gene delivery.

  18. Cytoskeletal impairment during isoamyl alcohol-induced cell elongation in budding yeast

    PubMed Central

    Murata, Wakae; Kinpara, Satoko; Kitahara, Nozomi; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Fujita, Ken-ichi

    2016-01-01

    Isoamyl alcohol (IAA) induces pseudohyphae including