Science.gov

Sample records for active-passive smap mission

  1. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  2. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  3. NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Earth Science Decadal Survey [1]. SMAP s measurement objectives are high-resolution global measurements of near-surface soil moisture and its freeze-thaw state. These measurements would allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP s planned observations can help mitigate these natural hazards, resulting in potentially great economic and societal benefits. SMAP measurements would also yield high resolution spatial and temporal mapping of the frozen or thawed condition of the surface soil and vegetation. Observations of soil moisture and freeze/thaw timing over the boreal latitudes will contribute to reducing a major uncertainty in quantifying the global carbon balance and help resolve an apparent missing carbon sink over land. The SMAP mission would utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna (see Figure 1) [2]. The radar and radiometer instruments would be carried onboard a 3-axis stabilized spacecraft in a 680 km polar orbit with an 8-day repeating ground track. The instruments are planned to provide high-resolution and high-accuracy global maps of soil moisture at 10 km resolution and freeze/thaw at 3 km resolution, every two to three days (see Table 1 for a list of science data products). The mission is adopting a number of approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). These approaches are being incorporated into the radiometer and radar flight hardware and

  4. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  5. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  6. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  7. NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of four first-tier missions recommended by the National Research Council's Committee on Earth Science and Applications from Space. Set to launch in 2014, SMAP soil moisture and freeze/thaw measurements will have an accuracy, resolution, and glob...

  8. FOSTERING APPLICATIONS OPPORTUNITIES FOR THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s (NRC’s) Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. SMAP will ma...

  9. The NASA Soil Moisture Active Passive (SMAP) Mission - Science and Data Product Development Status

    NASA Technical Reports Server (NTRS)

    Nloku, E.; Entekhabi, D.; O'Neill, P.

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has the objective of frequent, global mapping of near-surface soil moisture and its freeze-thaw state. The SMAP measurement system utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate on a spacecraft in a 685 km polar orbit with 6am/6pm nodal crossings, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments will yield global maps of soil moisture and freeze/thaw state at 10 km and 3 km resolutions, respectively, every two to three days. The 10-km soil moisture product will be generated using a combined radar and radiometer retrieval algorithm. SMAP will also provide a radiometer-only soil moisture product at 40-km spatial resolution and a radar-only soil moisture product at 3-km resolution. The relative accuracies of these products will vary regionally and will depend on surface characteristics such as vegetation water content, vegetation type, surface roughness, and landscape heterogeneity. The SMAP soil moisture and freeze/thaw measurements will enable significantly improved estimates of the fluxes of water, energy and carbon between the land and atmosphere. Soil moisture and freeze/thaw controls of these fluxes are key factors in the performance of models used for weather and climate predictions and for quantifYing the global carbon balance. Soil moisture measurements are also of importance in modeling and predicting extreme events such as floods and droughts. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. In the Testbed algorithms are developed and evaluated using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including data from the SMOS and Aquarius missions. We report here on the development status

  10. The NASA Soil Moisture Active Passive (SMAP) Mission Status and Early Results

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Yueh, S. H.; O'Neill, P. E.; Entin, J. K.; Njoku, E. G.; Kellogg, K.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31, 2015. SMAP provides high-resolution, frequent revisit global mapping of soil moisture and freeze/thaw state based on coincident L-band radiometer and L-band radar measurements. The primary science goal of SMAP is to provide new perspectives on how the three fundamental cycles of the Earth system, the water, energy and carbon cycles, are linked together over land. Soil moisture is the key variable that links the three cycles and makes their co-variations synchronous in time. Soil moisture products with varying resolution and coverage are produced from the radiometer alone, radar alone, radiometer-radar combination and data assimilation. In this session the status of the SMAP observatory and early results based on the science data products will be included. The science data acquisition began in May 2015 following several weeks of observatory and instrument commissioning. An intense calibration and validation period followed. Preliminary science products on instrument measurements, soil moisture, landscape frozen or thawed status, and net ecosystem exchange are available at publicly-accessible data archives. The presentation will include early and summary results on the validation of these products. The instrument measurements can also be used to map sea-ice coverage, ocean surface winds and sea surface salinity. Examples of these global retrievals are also presented.

  11. Monte Carlo Analysis of the Commissioning Phase Maneuvers of the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.

  12. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  13. Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.

  14. The Soil Moisture Active Passive (SMAP) applications activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  15. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  16. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Joshua S.; Sanders, Antonio L.

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014.[double dagger] The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass ground operations can still reduce mission cost through smaller staffing of operators and limited work hours. The challenge, then, for the SMAP GDS engineering team is to formulate an automated operations strategy--and corresponding system architecture--to minimize operator intervention during operations, while balancing the development cost associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS--NASA's AMMOS Mission Data Processing and Control System (AMPCS)--provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  17. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Josh; Sanders, Antonio

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014. The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such a comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass, ground operations can still reduce mission costs through smaller staffing of operators and limiting their working hours. The challenge, then, for the SMAP GDS engineering team, is to formulate an automated operations strategy--and corresponding system architecture -- to minimize operator intervention during routine operations, while balancing the development costs associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS -- NASA's AMMOS Mission Data Processing and Control System (AMPCS) -- provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  18. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  19. Pre-Launch Phase 1 Calibration and Validation Rehearsal of Geophysical Data Products of Soil Moisture Active Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Dunbar, R.; Das, N. N.; Kim, S.; Reichle, R. H.; De Lannoy, G. J.; Liu, Q.; Kimball, J. S.; Yi, Y.; Cosh, M. H.; Bindlish, R.; Crow, W. T.; Dang, L.; Yueh, S. H.; Njoku, E. G.

    2013-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate onboard the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of active and passive L-band observations of the mission will enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. SMAP measurements will enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The SMAP science data product suite of geophysical parameters will include estimates of surface (top 5 cm) and root-zone (down to 1-m depth) soil moisture, net ecosystem exchange, and classification of the frozen/non-frozen state of the landscape. The primary validation reference of the data products will be ground-based measurements. Other remote sensing and model-based products will be used as additional resources. The post-launch timeline of the mission requires that the geophysical data products are validated (with respect to the mission requirements) within 12 months after a 3-month in-orbit check-out phase. SMAP is taking several preparatory steps in order to meet this schedule. One of the main steps consists of running a rehearsal to exercise calibration and validation procedures planned for the Cal/Val Phase. The rehearsal is divided into two stages. Phase 1, which was conducted in June-August 2013, focused on validation methodologies for the geophysical data products. Phase 2, which will be conducted in May-June 2014, includes operational aspects including a fully functioning SMAP Science Data System. (Note that the rehearsals do not include an airborne field

  20. The soil moisture active/passive (SMAP) mission: How we got here and what it will provide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  1. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  2. NASA's Soil Moisture Active Passive (SMAP) Observatory

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Thurman, Sam; Edelstein, Wendy; Spencer, Michael; Chen, Gun-Shing; Underwood, Mark; Njoku, Eni; Goodman, Shawn; Jai, Benhan

    2013-01-01

    The SMAP mission will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band.

  3. The Soil Moisture Active Passive (SMAP) Applications Activity

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  4. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  5. The NASA Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon Product calibration and validation using eddy covariance observations across North America, Australia and Finland

    NASA Astrophysics Data System (ADS)

    Stavros, E. N.; Kimball, J. S.; Jones, L. A.; Colliander, A.; Glassy, J. M.; Reichle, R. H.; Schimel, D.; Baldocchi, D. D.; Beringer, J.; Cleverly, J. R.; Desai, A. R.; Euskirchen, E. S.; Hutley, L. B.; Isaac, P. R.; Law, B. E.; Macfarlane, C.; Oechel, W. C.; Prober, S. M.; Jouni, P.; Scott, R. L.; Wheater, H. S.; Zona, D.

    2015-12-01

    The NASA SMAP (Soil Moisture Active Passive) mission was successfully launched January 31st 2015, inaugurating global operational low frequency (L-band) microwave observations of land surface soil moisture and freeze-thaw dynamics with 3-day mean temporal fidelity. The novelty of SMAP is in the high quality of the geophysical observations, global monitoring of dynamic landscape freeze-thaw (FT) and soil moisture (SM) conditions, and the model-enhanced estimation of root zone soil moisture (0-100 cm) and terrestrial carbon fluxes (constrained by environmental controls). The SMAP Level 4 Carbon Product (L4_C) uses lower-level geophysical data to constrain estimates of terrestrial net CO2 exchange and addresses a key science objective of the SMAP mission, which is to understand processes that link the terrestrial water, energy and carbon cycles, particularly in boreal landscapes. Here we present the L4_C calibration and validation infrastructure, which uses eddy covariance tower flux observations. A metric of L4_C product success is to estimate NEE in northern (≥45°N) boreal and arctic biomes to within 30 gCm-2yr-1 or ~1.6 gCm-2 d-1 RMSE, similar to the level of uncertainty for tower observations. We present initial L4_C product comparisons against independent observations from a global network of 33 in situ tower sites, 8 of which are considered primary sites in the high latitudes (≥45°N). Although only primary sites are used to determine product success, all sites are integrated into diagnostic plots to evaluate land cover heterogeneity between local tower footprints and overlying L4_C grid cells, algorithm handling and data quality, thus providing a framework for evaluating environmental constraints on ecosystem productivity and respiration. In addition to mission success, we examine the added value of including FT and SM to constrain terrestrial carbon flux estimates.

  6. Pre-Launch phase 2 rehearsal of the calibration and validation of soil moisture active passive (SMAP) geophysical data products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in early November 2014. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer measurements sharing a rotating 6-meter mesh reflector antenna...

  7. Scanning L-Band Active Passive (SLAP) - Recent Results from an Airborne Simulator for SMAP

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2015-01-01

    Scanning L-band Active Passive (SLAP) is a recently-developed NASA airborne instrument specially tailored to simulate the new Soil Moisture Active Passive (SMAP) satellite instrument suite. SLAP conducted its first test flights in December, 2013 and participated in its first science campaign-the IPHEX ground validation campaign of the GPM mission-in May, 2014. This paper will present results from additional test flights and science observations scheduled for 2015.

  8. Development of SMAP Mission Cal/Val Activities

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T.; Kimball, J.; Cosh, M.; Spencer, M.; Entekhabi, D.; Njoku, E.; ONeill, P.

    2010-01-01

    The Soil Moisture Active Passive (SMAP) mission is a NASA directed mission to map global land surface soil moisture and freeze-thaw state. Instrument and mission details are shown. The key SMAP soil moisture product is provided at 10 km resolution with 0.04cubic cm/cubic cm accuracy. The freeze/thaw product is provided at 3 km resolution and 80% frozen-thawed classification accuracy. The full list of SMAP data products is shown.

  9. The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.

    2010-01-01

    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement

  10. Soil Moisture Active Passive (SMAP) Data and Services at the NASA NSIDC DAAC

    NASA Astrophysics Data System (ADS)

    Leon, Amanda; Jodha Singh Khalsa, Siri; Leslie, Shannon

    2016-04-01

    The NASA Soil Moisture Active Passive (SMAP) mission, launched on 31 January 2015, provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The SMAP instrument includes both a radiometer and a synthetic aperture radar (SAR) operating at the L-band (1.20-1.41 GHz) and provides global coverage at the equator every 3 days. The SMAP mission will play a critical role in understanding the Earth's water and energy cycles, improving weather and climate forecasting, and developing disaster prediction and monitoring services. The NASA Distributed Active Archive Centers (DAACs) at the National Snow and Ice Data Center (NSIDC) and the Alaska Satellite Facility (ASF) are jointly distributing and supporting SMAP data products. The DAACs draw upon their unique expertise - NSIDC with cryospheric and remotely-sensed soil moisture data and ASF with SAR data - as well as their shared technologies to provide synergistic data access and support for SMAP products. NSIDC DAAC provides distribution and support of the SMAP Level-1 radiometer products, the Level-2 through Level-4 soil moisture products, the Level-3 freeze/thaw product, and the Level-4 carbon net ecosystem exchange product. By leveraging NASA Earth Science Data and Information System (ESDIS) data systems, NSIDC DAAC provide data discovery, access, and visualization services for SMAP that are common across all NASA Earth science data archived at the DAACs. NSIDC DAAC also provides custom services aimed at meeting the unique needs of their SMAP user communities. This presentation strives to educate and expand the SMAP user community as well as engage with current and potential users for areas of opportunity in the support and services that NSIDC DAAC provides.

  11. Soil Moisture Active Passive (SMAP) Data and Services at the NASA NSIDC DAAC

    NASA Astrophysics Data System (ADS)

    Leon, A.; Booker, L.; Leslie, S. R.; Khalsa, S. J. S.; LeFevre, K.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission, launched on 31 January 2015, provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The SMAP instrument includes both a radiometer and a synthetic aperture radar (SAR) operating at the L-band (1.20-1.41 GHz) and provides global coverage at the equator every 3 days. The SMAP mission will play a critical role in understanding the Earth's water and energy cycles, improving weather and climate forecasting, and developing disaster prediction and monitoring services. The NASA Distributed Active Archive Centers (DAACs) at the National Snow and Ice Data Center (NSIDC) and the Alaska Satellite Facility (ASF) are jointly distributing and supporting SMAP data products. The DAACs draw upon their unique expertise - NSIDC with cryospheric and remotely-sensed soil moisture data and ASF with SAR data - as well as their shared technologies to provide synergistic data access and support for SMAP products. NSIDC DAAC provides distribution and support of the SMAP Level-1 radiometer products, the Level-2 through Level-4 soil moisture products, the Level-3 freeze/thaw product, and the Level-4 carbon net ecosystem exchange product. By leveraging NASA Earth Science Data and Information System (ESDIS) data systems, NSIDC DAAC provide data discovery, access, and visualization services for SMAP that are common across all NASA Earth science data archived at the DAACs. NSIDC DAAC also provides custom services aimed at meeting the unique needs of their SMAP user communities. This presentation strives to educate and expand the SMAP user community as well as engage with current and potential users for areas of opportunity in the support and services that NSIDC DAAC provides.

  12. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  13. Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward

    2012-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.

  14. Landscape freeze/thaw retrievals from soil moisture active passive (SMAP) L-band radar measurements

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Derksen, C.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission produces a daily landscape freeze/thaw product (L3_FT_A) which provides categorical (frozen, thawed, or [inverse] transitional) classification of the surface state (for land areas north of 45°N) derived from ascending and descending orbits of SMAP high-resolution L-band radar measurements. The FT retrievals are output to 3 km resolution polar and global grids with temporal revisit of 2 days or better north of ~55°N and 3 days or better north of 45°N. The algorithm classifies the land surface freeze/thaw state based on the time series of L-band radar backscatter compared to frozen and thawed reference states. This presentation will describe pre-launch L3_FT_A algorithm implementation and evaluation using NASA/SAC-D Aquarius L-band radar data, and provide an update on the current status of the SMAP L3_FT_A product. In advance of SMAP measurements, the L3_FT_A algorithm was configured and evaluated using Aquarius measurements. While the temporal (weekly) and spatial (~100 km) resolution is much coarser than SMAP, Aquarius provides L-band radar measurements at an incidence angle (normalized to 40 degrees) which is close to SMAP. Evaluation of FT retrievals derived using both Aquarius freeze/thaw references and backscatter time series as inputs identified good agreement during the fall freeze-up period with FT flag agreement (Aquarius versus in situ) exceeding the 80% SMAP mission requirement when summarized on a monthly basis. Disagreement was greater during the spring thaw transition due in part to uncertainty in characterizing the surface state from in situ measurements and backscatter sensitivity to the onset of snow melt, independent of the soil temperature beneath the snowpack. Initial challenges for SMAP derived FT retrievals include the scale difference between the Aquarius references (~100 km) and the SMAP measurements (3 km) which is particularly problematic in areas of complex topography and/or mixed

  15. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  16. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  17. Soil moisture active passive (SMAP) satellite status and cal/val activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in November 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development ...

  18. SMAP Mission Applications; Post Launch Research and the Early Adopter Program Socioeconomic Impact Analyses

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission, launched January 31, 2015, has grown an Early Adopter (EA) community since 2010. Over the next two years, the mission Applications Team will conduct socioeconomic impact analyses on thematic EA research in an effort to demonstrate the value of SMAP products in societally relevant, decision support applications. The SMAP mission provides global observations of the Earth's surface soil moisture, providing high accuracy, resolution and continuous global coverage. The SMAP Applications Team will document and evaluate the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security. SMAP EA research in applied science cases such as sea ice and sea surface winds will also be evaluated. SMAP EAs provide a thematically scaled perspective on the use and impact of SMAP data. This analysis will demonstrate how the investments in pre-launch applications and early adopter efforts contributed to the mission value, product impact and fueled new research that contributes to the use of mission products, thereby enhancing mission success. This paper presents a set of Early Adopter case studies that show how EAs plan to use SMAP science products to enhance decision support systems, and about how the SMAP data stream affects these users. Detailed tracking of this comprehensive set of case studies will enable quantification and monetization of the benefits of an application by the end of the first two years after launch.

  19. Scanning L-Band Active Passive (SLAP)—FLIGHT Results from a New Airborne Simulator for Smap

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Faulkner, T.; Wu, A.; Patel, H.

    2014-12-01

    1. Introduction and BackgroundThis paper introduces a new NASA airborne instrument, the Scanning L-band Active Passive (SLAP), which is specially tailored to simulate SMAP. 2. Description of SLAPSLAP has both passive (radiometer) and active (radar) microwave L-band imaging capabilities. The radiometer observes at 1.4 GHz using duplicate front end hardware from the SMAP satellite radiometer. It also includes a duplicate of the digital backend development unit for SMAP, thus the novel Radio Frequency Interference (RFI) detection and mitigation features and algorithms for SMAP are duplicated with very high fidelity in SLAP. The digital backend provides 4-Stokes polarization capability. The real-aperture radar operates in the 1215-1300 MHz band with quad-pol capability. Radar and radiometer share one antenna via diplexers that are spare units from the Aquarius satellite instrument. 3. Flight ResultsSLAP's initial flights were conducted in Dec 2013 over the eastern shore of Maryland and successfully demonstrated radiometer imaging over 2 full SMAP 36x36 km grid cells at 1km resolution within 3 hrs, easily meeting the SMAP post-launch cal/val airborne mapping requirements. A second flight on the same day also demonstrated SLAP's quick-turn abilities and high-resolution/wide-swath capabilities with 200m resolution across a 1500m swath from 2000 ft AGL. Additional flights were conducted as part of the GPM iPHEX campaign in May, 2014. 4. ConclusionThis paper presents flight data and imagery, as well as details of the radiometer and radar performance and calibration. The paper will also describe the mission performance achievable on the King Air and other platforms.

  20. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds wh...

  1. The soil moisture active passive validation experiment 2012 (SMAPVEX12): pre-launch calibration and validation of the SMAP satellite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in November 2014. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a nee...

  2. NASA's Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; Brown, Molly; Savinell, Chris; Entin, Jared; Ianson, Eric

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  3. The Soil Moisture Active Passive (SMAP): Radar Measurements at High Latitudes and of Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.

  4. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  5. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    NASA Astrophysics Data System (ADS)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  6. Application oft triple collocation in ground-based validation of soil moisture active/passive (SMAP) level 2 data products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The validation of the soil moisture retrievals from the recently-launched NASA Soil Moisture Active/Passive (SMAP) satellite is important prior to their full public release. Uncertainty in attempts to characterize footprint-scale surface-layer soil moisture using point-scale ground observations has ...

  7. Generating large-scale estimates from sparse, in-situ networks: multi-scale soil moisture modeling at ARS watersheds for NASA’s soil moisture active passive (SMAP) calibration/validation mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...

  8. Radio-Frequency Interference (RFI) Mitigation for the Soil, Moisture Active/Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Brambora, Cliff; Wong, Mark Englin; Miles, Lynn; Durachka, David; Farmer, Brian; Mohammed, Priscilla; Piepmier, Jeff; Medeiros, Jim; Martin Neil; Garcia, Rafael

    2010-01-01

    The presence of anthropogenic RFI is expected to adversely impact soil moisture measurement by NASA s Soil Moisture Active Passive mission. The digital signal processing approach and preliminary design for detecting and mitigating this RFI is presented in this paper. This approach is largely based upon the work of Johnson and Ruf.

  9. Improving government decision making in response to floods using soil moisture observations from Soil Moisture Active Passive (SMAP) data

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Schumann, G.; Torak, L. J.

    2014-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission, due to launch January 2015, will provide global observations of the Earth's surface soil moisture, providing high accuracy, resolution and continuous global coverage. This paper seeks to show how SMAP data can be used in flood applications to improve flood warning/planning operations for the Upper Mississippi River basin. The Mississippi River ranks as the fourth longest and tenth largest river in the world and is noted as one of the most altered rivers in the United States. The Mississippi River has a very long track record of flood events, with the 2011 event being a unique event due to large volumes of snow melt and heavy spring rain in the Upper Mississippi basin. Understanding and modeling these processes and combining them with relevant satellite observations such as soil moisture conditions could help alleviate some of the risk to flooding by identifying when infiltration to soils is cut off causing excessive runoff. The objective of the analysis is to improve our understanding of how satellite-derived soil moisture will impact basin scaled/multi state decision processes linked to emergency planning and preparedness, such as FEMA FloodSMART. Using the snow hydrology model SNOW-17 (NWS) coupled to a large-scale two-dimensional floodplain inundation model LISFLOOD-FP, the study evaluates how different soil moisture states can be captured by satellites to enable a multi-state decision process focused on flood risk and planning. The study develops a scenario that applies historical soil moisture data from past events to monitor basin soil moisture conditions and yields a percent value of the saturation status. Scenario analysis is particularly important for decision makers such as emergency responders and insurers as their operations depend on their ability to gauge and appropriately assess risk. This analysis will enables insurers to develop mitigation strategies and contingency plans for such events.

  10. Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara

    2016-01-01

    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.

  11. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  12. Assessment of Soil Moisture Data Requirements by the Potential SMAP Data User Community: Review of SMAP Mission User Community

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.

    2013-01-01

    NASA's Soil Moisture Active and Passive (SMAP) mission is planned for launch in October 2014 and will provide global measurements of soil moisture and freeze thaw state. The project is driven by both basic research and applied science goals. Understanding how application driven end-users will apply SMAP data, prior to the satellite's launch, is an important goal of NASA's applied science program and SMAP mission success. Because SMAP data are unique, there are no direct proxy data sets that can be used in research and operational studies to determine how the data will interact with existing processes. The objective of this study is to solicit data requirements, accuracy needs, and current understanding of the SMAP mission from the potential user community. This study showed that the data to be provided by the SMAP mission did substantially meet the user community needs. Although there was a broad distribution of requirements stated, the SMAP mission fit within these requirements.

  13. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  14. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  15. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  16. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Bindlish, R.; Colliander, A.; Kim, S.; Das, N. N.; Yueh, S. H.; Bosch, D. D.; Goodrich, D. C.; Prueger, J. H.; Starks, P. J.; Livingston, S.; Seyfried, M. S.; Coopersmith, E. J.

    2015-12-01

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds which contribute to the validation of SMAP soil moisture products. These watersheds consist of a network of in situ sensors that measure soil moisture at a variety of depths including the 5 cm depth, which is critical for satellite validation. Comparisons of the in situ network estimates to the satellite products are ongoing, but initial results have shown strong correlation between satellite estimates and in situ soil moisture measurements once scaling functions were applied. The scaling methodologies for the in situ networks are being reviewed and evaluated. Results from the Little Washita, Fort Cobb, St. Joseph's and Little River Experimental Watersheds show good agreement between the satellite products and in situ measurements. Walnut Gulch results show high accuracy, although with the caveat that these domains are semi-arid with a substantially lower dynamic range. The South Fork Watershed is examined more closely for its detailed scaling function development as well as an apparent bias between satellite and in situ values.

  17. Soil Moisture Active Passive Mission: Fault Management Design Analyses

    NASA Technical Reports Server (NTRS)

    Meakin, Peter; Weitl, Raquel

    2013-01-01

    As a general trend, the complexities of modern spacecraft are increasing to include more ambitious mission goals with tighter timing requirements and on-board autonomy. As a byproduct, the protective features that monitor the performance of these systems have also increased in scope and complexity. Given cost and schedule pressures, there is an increasing emphasis on understanding the behavior of the system at design time. Formal test-driven verification and validation (V&V) is rarely able to test the significant combinatorics of states, and often finds problems late in the development cycle forcing design changes that can be costly. This paper describes the approach the SMAP Fault Protection team has taken to address some of the above-mentioned issues.

  18. A Science Data System Approach for the SMAP Mission

    NASA Technical Reports Server (NTRS)

    Woollard, David; Kwoun, Oh-ig; Bicknell, Tom; West, Richard; Leung, Kon

    2009-01-01

    Though Science Data System (SDS) development has not traditionally been part of the mission concept phase, lessons learned and study of past Earth science missions indicate that SDS functionality can greatly benefit algorithm developers in all mission phases. We have proposed a SDS approach for the SMAP Mission that incorporates early support for an algorithm testbed, allowing scientists to develop codes and seamlessly integrate them into the operational SDS. This approach will greatly reduce both the costs and risks involved in algorithm transitioning and SDS development.

  19. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  20. SMAP Science Data System

    NASA Astrophysics Data System (ADS)

    Cuddy, D.; Gluck, S.; Hua, H.; Weiss, B.; Wong, C.; Kwoun, O.; Cruz, J.

    2012-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission will retrieve global surface soil moisture and freeze/thaw state based on measurements acquired by remote sensing instruments that fly on an Earth orbiting satellite. The SMAP observatory will launch no earlier than October 2014 into a near-polar, sun-synchronous orbit. The SMAP instrument suite includes a radiometer and a synthetic aperture radar. This paper will describe the Science Data System (SDS) that will process the SMAP raw data into higher-level products. SMAP data products will provide calibrated radar backscatter and radiometer brightness temperatures, derived geophysical parameters in the form of soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that will process the incoming raw data from the instruments, incorporate spacecraft and instrument engineering data, and use both dynamic and static ancillary products from the scientific community. The SDS will use the Object Oriented Data Technology (OODT) from Apache Software Foundation to control the 13 standard data product processors and additional 15 preprocessors. The standard data products will appear in Hierarchical Data Format-5 (HDF5) format. The products will contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) will host and distribute SMAP Radar data, while the National Snow and Ice Data Center (NSIDC) will host and distribute all other SMAP products.

  1. Assessment of the SMAP level 2 passive soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...

  2. Comparison of airborne passive and active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP validation experiment 2012 (SMAPVEX12)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of SMAP (Soil Moisture Active Passive) Validation Experiment 2012 (SMAPVEX12) campaign was to collect data for the pre-launch development and validation of SMAP soil moisture algorithms. SMAP is a National Aeronautics and Space Administration’s (NASA) satellite mission designed for the m...

  3. SMAP Science Data System Architecture

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2014-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission will retrieve global surface soil moisture and freeze/thaw state based on measurements acquired by remote sensing instruments that fly on an Earth orbiting satellite. The SMAP observatory will launch no earlier than January 8, 2015 into a near-polar, sun-synchronous orbit for a three-year mission. The SMAP instrument suite includes a L-band radiometer and a L-band synthetic aperture radar. This paper will describe the architecture of the Science Data System (SDS) that processes the SMAP raw data into higher-level products. All of the SMAP products appear in the Hierarchical Data Format-5 (HDF5) format. Metadata that conform to the ISO 19115 standard accompany each product. SMAP products range from raw data (Level 0) through parsed and organized telemetry (Level 1A), calibrated signals (Level 1B/1C), retrieved geophysical values (Level 2), daily composite maps (Level 3), to analysis and modeling data (Level 4). This paper will describe an architecture that automates the challenge of delivering multiple products with large data volumes within a few hours to a few days of instrument acquisition. Additional challenges include handling data for a diverse user community as well as rapid data visualization. SMAP faces the additional complexity that the archive and access to the SMAP data processes through two NASA Data Active Archive Centers (DAAC): The Alaska Satellite Facility (ASF) hosts and distributes SMAP Radar data, while the National Snow and Ice Data Center (NSIDC) hosts and distributes all other SMAP products.

  4. SMAPVEX08: Soil Moisture Active Passive Validation Experiment 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of retrieval algorithms as well as refining the mission design and instruments. Some of these issues require resolution as soon as possible. Several forums had identified specific ...

  5. The Soil Moisture Active and Passive (SMAP) Mission: Improving Science Application Tools and Research

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Brown, M. E.; Moran, S. M.

    2011-12-01

    NASA depends on the science community to identify and prioritize leading-edge scientific questions and the observations required to answer them. The Soil Moisture Active and Passive (SMAP) Mission has been identified as a priority for NASA's Science Mission Directorate through the most recent decadal survey. Following launch in 2014, SMAP will deliver global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial hydrologic and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer that share a deployable mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at spatial scales. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and freeze/thaw state with a 2-3 day revisit frequency and 1-2 day revisit in boreal latitudes. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit frequency. SMAP data are valuable for both scientific research and practical applications. SMAP has the potential to drive a diverse range of novel research in drought and flood guidance, agricultural productivity estimation, weather forecasting, climate prediction, human health risk analysis and defense systems. The accuracy, resolution, and global coverage of SMAP soil moisture and freeze/thaw measurements will provide new information for many science and applications disciplines. A SMAP Applications Team will explore ways to measure interaction and integration of SMAP data with the Emergency Management User community of Maryland in order to produce quantitative metrics related to long-term projects, milestone completion, and movement of SMAP products into routine operations for emergency response.

  6. The SMAP level 4 surface and root zone soil moisture data assimilation product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  7. Active–passive soil moisture retrievals during the SMAP validation experiment 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study is to assess the performance of the active–passive algorithm for the NASA Soil Moisture Active Passive mission (SMAP) using airborne and ground observations from a field campaign. The SMAP active–passive algorithm disaggregates the coarse-resolution radiometer brightness tempe...

  8. SMAP Science Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2014-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission will retrieve global surface soil moisture and freeze/thaw state based on measurements acquired by remote sensing instruments that fly on an Earth orbiting satellite. The SMAP observatory will launch no earlier than January 8, 2015 into a near-polar, sun-synchronous orbit. The SMAP instrument suite includes a radiometer and synthetic aperture radar. This paper will describe the Science Data System (SDS) that will process the SMAP raw data into higher-level products. SMAP data products will provide calibrated radar backscatter and radiometer brightness temperatures, derived geophysical parameters in the form of soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that will process the incoming raw data from the instruments, incorporate spacecraft and instrument engineering data, and use both dynamic and static ancillary products from the scientific community. The SDS will produce 14 standard data product processors. This paper will discuss the standard data products, their format, metadata, quality assessment products, as well as the planned release dates for the products both Beta and Validated quality. The standard data products will appear in Hierarchical Data Format-5 (HDF5) format. The products will contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) will host and distribute SMAP Radar data, while the National Snow and Ice Data Center (NSIDC) will host and distribute all other SMAP products.

  9. Validating SMAP L2/3 products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission entered its one year calibration and validation (cal/val) phase in May, 2015. This began with a focus on instrument measurements, brightness temperature and backscatter, and has now evolved to the geophysical products that include three different spati...

  10. Early results of the Soil Moisture Active Passive Validation Experiment (SMAPVEX15)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In August of 2015, the Soil Moisture Active Passive Validation Experiment (SMAPVEX15) was conducted to provide a high resolution soil moisture dataset for the calibration/validation of the Soil Moisture Active Passive Mission (SMAP). The Upper San Pedro River Basin and the USDA-ARS Walnut Gulch LTAR...

  11. Soil Moisture Active Passive Satellite Status and Recent Validation Results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and began its calibration and validation (cal/val) phase in May, 2015. Cal/Val will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical products that include...

  12. Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as p...

  13. Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2016-01-01

    The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and

  14. The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and initial results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil moisture monitoring networks are critical to the development of soil moisture remote sensing missions as well as agricultural and environmental management, weather forecasting and many other endeavors. These in situ networks are composed of a variety of sensors and installation practic...

  15. The SMAP Dictionary Management System

    NASA Technical Reports Server (NTRS)

    Smith, Kevin A.; Swan, Christoper A.

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Dictionary Management System is a web-based tool to develop and store a mission dictionary. A mission dictionary defines the interface between a ground system and a spacecraft. In recent years, mission dictionaries have grown in size and scope, making it difficult for engineers across multiple disciplines to coordinate the dictionary development effort. The Dictionary Management Systemaddresses these issues by placing all dictionary information in one place, taking advantage of the efficiencies inherent in co-locating what were once disparate dictionary development efforts.

  16. NASAs Soil Moisture Active Passive (SMAP) Mission and Opportunities For Applications Users

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa; Moran, Susan; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni G.; Doorn, Brad; Entin, Jared K.

    2013-01-01

    Water in the soil, both its amount (soil moisture) and its state (freeze/thaw), plays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human lives in a number of ways from the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of soil moisture and freeze/thaw state with global coverage are critically important.

  17. SMAP Radar Processing and Calibration

    NASA Technical Reports Server (NTRS)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  18. SMAP Validation and Accuracy Assessment of Soil Moisture Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and will begin its calibration and validation (Cal/Val) phase in May, 2015. This will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical produ...

  19. SMAP Verification and Validation Project - Final Report

    NASA Technical Reports Server (NTRS)

    Murry, Michael

    2012-01-01

    In 2007, the National Research Council (NRC) released the Decadal Survey of Earth science. In the future decade, the survey identified 15 new space missions of significant scientific and application value for the National Aeronautics and Space Administration (NASA) to undertake. One of these missions was the Soil Moisture Active Passive (SMAP) mission that NASA assigned to the Jet Propulsion Laboratory (JPL) in 2008. The goal of SMAP1 is to provide global, high resolution mapping of soil moisture and its freeze/thaw states. The SMAP project recently passed its Critical Design Review and is proceeding with its fabrication and testing phase.Verification and Validation (V&V) is widely recognized as a critical component in system engineering and is vital to the success of any space mission. V&V is a process that is used to check that a system meets its design requirements and specifications in order to fulfill its intended purpose. Verification often refers to the question "Have we built the system right?" whereas Validation asks "Have we built the right system?" Currently the SMAP V&V team is verifying design requirements through inspection, demonstration, analysis, or testing. An example of the SMAP V&V process is the verification of the antenna pointing accuracy with mathematical models since it is not possible to provide the appropriate micro-gravity environment for testing the antenna on Earth before launch.

  20. SMAP Data Assimilation at the GMAO

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band (1.4 GHz) passive microwave brightness temperature (Tb) observations since April 2015. These observations are sensitive to surface(0-5 cm) soil moisture. Several of the key applications targeted by SMAP, however, require knowledge of deeper-layer, root zone (0-100 cm) soil moisture, which is not directly measured by SMAP. The NASA Global Modeling and Assimilation Office (GMAO) contributes to SMAP by providing Level 4 data, including the Level 4 Surface and Root Zone Soil Moisture(L4_SM) product, which is based on the assimilation of SMAP Tb observations in the ensemble-based NASA GEOS-5 land surface data assimilation system. The L4_SM product offers global data every three hours at 9 km resolution, thereby interpolating and extrapolating the coarser- scale (40 km) SMAP observations in time and in space (both horizontally and vertically). Since October 31, 2015, beta-version L4_SM data have been available to the public from the National Snow and Ice Data Center for the period March 31, 2015, to near present, with a mean latency of approx. 2.5 days.

  1. Satellite Remote Sensing of Net Ecosystem CO2 Exchange Using Optical-IR and Microwave Sensors: Algorithm Development for the SMAP Decadal Survey Mission

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.; Reichle, R. H.; Zhang, K.; McDonald, K. C.

    2009-12-01

    The global balance between photosynthesis, respiration, and disturbance determines whether ecosystems will continue to offset human CO2 emissions. Changes in temperature and moisture constraints can differentially affect photosynthesis and respiration, whereas disturbance and stand succession can push ecosystems far from steady state, shifting carbon source-sink dynamics. Remote sensing and ecosystem process model simulations allow us to characterize the climatic sensitivity of this balance, but effective model parameters are uncertain at continental scales. We developed a carbon model to derive daily net ecosystem exchange of CO2 (NEE) using MODIS GPP and surface soil moisture and temperature retrievals from AMSR-E as driving data. We apply Bayesian synthesis to parameterize the model with a range of FLUXNET tower CO2 measurements across representative global biomes, while accounting for error in flux observations, driving data, and model structure. Model fit diagnostics are compared to determine the relative value of remotely sensed information for accurate prediction of carbon fluxes. Model parameters vary with ecosystem type and indicate that most ecosystems have not reached soil organic carbon pools expected for steady state. Model fit is relatively more impacted by MODIS GPP than by AMSR-E temperature and moisture. AMSR-E moisture explains arid region fluxes, whereas temperature is a stronger predictor for high-latitude locations. The results of this study offer a benchmark for calibrating and assessing the incremental value of Soil Moisture Active Passive (SMAP) mission observations over information available from existing sensors. The Soil Moisture Active Passive (SMAP) mission with scheduled 2013 launch date will provide moderate resolution soil moisture (10 km) and freeze-thaw state (1-3 km) information potentially providing new estimates of land surface processes, including daily NEE. This work was performed at The University of Montana and Jet

  2. The SMAP Level 4 surface and root-zone soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2015, the NASA Soil Moisture Active/Passive mission represents a generational advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiome...

  3. SMAP Radar Data and Services at the ASF DAAC

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Dixon, I. R.; Wolf, V. G.

    2015-12-01

    In January 2015 NASA launched the Soil Moisture Active Passive (SMAP) spacecraft. SMAP's mission was to create high-resolution soil moisture and freeze-thaw products using the combination of an L-band polarimetric synthetic aperture radar (SAR) and an L-band radiometer. Two NASA Distributed Active Archive Centers (DAACs) were tasked with distribution of the SMAP data products. The Alaska Satellite Facility (ASF) DAAC was tasked to archive and distribute the SMAP radar products. In order to best support distribution of SMAP swath radar products and SMAP users, the ASF DAAC enhanced the DAAC data system in a number of ways that will be detailed in this presentation. SMAP radar data are unique for SAR in that they are provided as half-orbit swaths over 1000km wide. This presentation will focus on two primary areas of DAAC support for SMAP. First, the ASF data discovery client, Vertex, has been updated to better support SMAP SAR data. This included enhancements to the user interface to better support swath visualizations as well as increased search capability. Utilizing NASA's Common Metadata Repository (CMR), Vertex will allow users to download both the Level 1 SAR product as well as the higher-level products that it contributed to. In this way, the distributed nature of the data archives is better abstracted from the user experience and users have quick access to a greater variety of data. Beyond enabling data search, ASF DAAC is also supporting data utilization through the development of polar mosaics using the SAR data. SMAP is able to achieve nearly complete coverage of the Arctic north of 55 degrees every 24 hours. Based on the polarimetric SMAP data, Arctic mosaics are generated each day in geotiff format at a fixed grid spacing to allow for easy incorporation to existing workflows. Prototype ice motion products will also be shown that directly demonstrate the utility of these daily mosaics.

  4. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  5. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  6. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  7. Automating the SMAP Ground Data System to Support Lights-Out Operations

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  8. SMAP L2/L3 Soil moisture product validation with core validation sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission was launched by NASA in January, 2015 and entered its one year calibration and validation (cal/val) phase in May, 2015. This began with a focus on instrument measurements, brightness temperature and backscatter, and has now evolved to the geophysical p...

  9. Evaluation of the SMAP radiometer lever 2 pre-launch soil moisture algorithms using SMOS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the upcoming SMAP (Soil Moisture Active Passive) satellite mission include global measurements of soil moisture at 40 km, 10 km and 3 km resolutions with a 3-day revisit time at an accuracy of 0.04 m3/m3. The 40 km resolution soil moisture product is based primarily on the passiv...

  10. Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.

  11. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2009-01-01

    The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.

  12. Enhancing The USDA Global Crop Assessment Decision Support System Using Satellite-Based Soil Moisture Estimates Obtained From The Soil Moisture Active Passive Mission

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Bolten, J. D.; Crow, W. T.; Reynolds, C. A.

    2015-12-01

    The primary goal of the U.S. Department of Agriculture Foreign Agricultural Service (FAS) is to provide timely information on current and expected crop supply and demand estimates. Inter-annual variability in crop condition and crop productivity is largely controlled by the amount of available water to the plants. Thus, knowledge of the root-zone soil moisture is critical for the USDA's crop analysts. This information is currently provided by the modified Palmer model (PM). The PM is a two-layer, water balance-based hydrologic model that is driven by daily precipitation and daily minimum and maximum temperature observations based on ground meteorological station measurements from the World Meteorological Organization (WMO) and gridded weather data from the U.S. Air Force 557th Weather Wing (former U.S. Air Force Agency, AFWA). A data assimilation (DA) unit was added to the model to allow the integration of satellite-based soil moisture observations. The DA system was initially developed using retrievals from the Advanced Microwave Scanning Radiometer (AMSR-E), where the AMSR-E soil moisture estimates were ingested into the PM using a 1-D Ensemble Kalman Filter Approach. After the failure of AMSR-E the system was updated and it is currently set to ingest Soil Moisture Ocean Salinity (SMOS)-based retrievals. Operational delivery of the SMOS-based soil moisture product for USDA FAS began in spring, 2014. This talk will demonstrate the added value of assimilating satellite-based data and focus on work that is being done in preparation for updating the system by ingesting soil moisture observations from the Soil Moisture Active Passive (SMAP) mission. Soil moisture estimates derived using data obtained from SMOS and the Advanced Scatterometer (ASCAT) instrument on MetOp have been used as a proxy for the SMAP radiometer and radar products, respectively. The performance of this dual assimilation system would be assessed by examining the lagged rank cross correlation

  13. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  14. Validating SMAP L2/3 Products

    NASA Astrophysics Data System (ADS)

    Jackson, T. J.; Colliander, A.; Bindlish, R.; Chan, S.; Das, N. N.; Entekhabi, D.; Kim, S.; Chen, F.; Crow, W. T.; Burgin, M. S.; Asanuma, J.; Berg, A. A.; Cosh, M. H.; Caldwell, T. G.; Martínez-Fernández, J.; Pacheco, A. M.; Su, Z.; Thibeault, M.; Walker, J. P.; Njoku, E. G.; Yueh, S. H.; O'Neill, P. E.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission entered its one year calibration and validation (cal/val) phase in May, 2015. This began with a focus on instrument measurements, brightness temperature and backscatter, and has now evolved to the geophysical products that include three different spatial resolutions of Level 2/3 surface soil moisture (36, 9, and 3 km) and freeze-thaw state. The goal is to provide validated products by May, 2016. SMAP utilizes five methodologies in soil moisture cal/val: core validation sites, sparse networks of in situ sensors, inter-comparisons with products from other satellite programs, inter-comparisons with model-based products, and field campaigns. Each methodology has a role in the process. Examples of each methodology will be presented including recent field campaigns. The evaluation of the beta version will the explained and plans for the providing the validated products presented.

  15. Some Issues in Validating Satellite-based Soil Moisture Retrievals with In Situ Observations and Their Impact on SMAP Validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in the fall of 2014. As the first of NASA’s Decadal Survey missions, efforts are being made to implement both best practices and innovations, which include calibration and validation of the remote sensing products (Cal/Val). ...

  16. Utilization of Ancillary Data Sets for SMAP Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    ONeill, P.; Podest, E.; Njoku, E.

    2011-01-01

    Algorithms being developed for the Soil Moisture Active Passive (SMAP) mission require a variety of both static and ancillary data. The selection of the most appropriate source for each ancillary data parameter is driven by a number of considerations, including accuracy, latency, availability, and consistency across all SMAP products and with SMOS (Soil Moisture Ocean Salinity). It is anticipated that initial selection of all ancillary datasets, which are needed for ongoing algorithm development activities on the SMAP algorithm testbed at JPL, will be completed within the year. These datasets will be updated as new or improved sources become available, and all selections and changes will be documented for the benefit of the user community. Wise choices in ancillary data will help to enable SMAP to provide new global measurements of soil moisture and freeze/thaw state at the targeted accuracy necessary to tackle hydrologically-relevant societal issues.

  17. Soil Moisture Active Passive Mission L4_SM Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf Helmut; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Chen, Fan; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas; Kimball, John; Koster, Randal D.; Smith, E. Brent

    2016-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public Version 2 validated release scheduled for 29 April 2016. The assessment of the Version 2 L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to up-scaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the wide geographic range of the sparse network sites, and the global assessment of the assimilation diagnostics, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 2 validation and supports the validated release of the data. An analysis of the time average surface and root zone soil moisture shows that the global pattern of arid and humid regions are captured by the L4_SM estimates. Results from the

  18. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  19. SMAP validation of soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. SMAP will also incorporate a rigorous calibration and validation program that will support algorithm refinement and provide users with information on the accuracy ...

  20. Development of the Large Aperture Reflector/Boom Assembly for the SMAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobrem, Mehran; Keay, Edward; Marks, Geoff; Slimko, Eric

    2012-01-01

    The Jet Propulsion Laboratory's (JPL) Soil Moisture Active/Passive (SMAP) mission is to measure and monitor global soil moisture dynamics and freeze/thaw states. The rotating Reflector and Boom Assembly (RBA) on SMAP presents significant design and development challenges. The payload configuration utilizes a common Radiometer and Radar feedhorn and a 6-meter deployable mesh reflector all spinning at 14.6 rpm. The evolution of the RBA system solution, development of the mass properties management approach and RBA dynamics are discussed.

  1. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS

  2. Early results of the Soil Moisture Active Passive Validation Experiment (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Colliander, A.; Goodrich, D. C.; Holifield Collins, C.; McKee, L.; Kim, S.; Yueh, S. H.

    2015-12-01

    In August of 2015, the Soil Moisture Active Passive Validation Experiment (SMAPVEX15) was conducted to provide a high resolution soil moisture dataset for the calibration/validation of the Soil Moisture Active Passive Mission (SMAP). The Upper San Pedro River Basin and the USDA-ARS Walnut Gulch LTAR Watershed provides the infrastructure for the experiment with its extensive soil moisture and soil temperature network. A total of seven aircraft flights are planned for the Passive Active L-Band Scanning instrument (PALS) to provide a high resolution soil moisture map for a variety of soil moisture conditions across the domain. Extensive surface roughness, vegetation and soil rock fraction mapping was conducted to provide a ground truth estimate of the many ancillary datasets used in the SMAP soil moisture algorithms. A review of the methodologies employed in the experiment, as well as initial findings will be discussed.

  3. An Overview of Production and Validation of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; O'Neill, P.; Njoku, E.; Jackson, T.; Bindlish, R.

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission is an L-band mission scheduled for launch in Jan. 2015. The SMAP instruments consist of a radar and a radiometer to obtain complementary information from space for soil moisture and freeze/thaw state research and applications. By utilizing novel designs in antenna construction, retrieval algorithms, and acquisition hardware, SMAP provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. This improvement in hydrosphere state measurement is expected to advance our understanding of the processes that link the terrestrial water, energy and carbon cycles, improve our capability in flood prediction and drought monitoring, and enhance our skills in weather and climate forecast. For swath-based soil moisture measurement, SMAP generates three operational geophysical data products: (1) the radiometer-only soil moisture product (L2_SM_P) posted at 36-kilometer resolution, (2) the radar-only soil moisture product (L2_SM_A) posted at 3-kilometers resolution, and (3) the radar-radiometer combined soil moisture product (L2_SM_AP) posted at 9-kilometers resolution. Each product draws on the strengths of the underlying sensor(s) and plays a unique role in hydroclimatological and hydrometeorological applications. A full suite of SMAP data products is given in Table 1.

  4. Seasonal Parameterizations of the Tau-Omega Model Using the ComRAD Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Joseph, A.; Srivastava, P.; Cosh, M.; Lang, R.

    2014-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission is scheduled for launch in November 2014. In the prelaunch time frame, the SMAP team has focused on improving retrieval algorithms for the various SMAP baseline data products. The SMAP passive-only soil moisture product depends on accurate parameterization of the tau-omega model to achieve the required accuracy in soil moisture retrieval. During a field experiment (APEX12) conducted in the summer of 2012 under dry conditions in Maryland, the Combined Radar/Radiometer (ComRAD) truck-based SMAP simulator collected active/passive microwave time series data at the SMAP incident angle of 40 degrees over corn and soybeans throughout the crop growth cycle. A similar experiment was conducted only over corn in 2002 under normal moist conditions. Data from these two experiments will be analyzed and compared to evaluate how changes in vegetation conditions throughout the growing season in both a drought and normal year can affect parameterizations in the tau-omega model for more accurate soil moisture retrieval.

  5. An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Cai, Xitian; Chaney, Nathaniel W.; Entekhabi, Dara; Wood, Eric F.

    2016-09-01

    At the end of its first year of operation, we compare soil moisture retrievals from the Soil Moisture Active Passive (SMAP) mission to simulations from a land surface model with meteorological forcing downscaled from observations/reanalysis and in situ observations from sparse monitoring networks within continental United States (CONUS). The radar failure limits the duration of comparisons for the active and combined products (~3 months). Nevertheless, the passive product compares very well against in situ observations over CONUS. On average, SMAP compares to the in situ data even better than the land surface model and provides significant added value on top of the model and thus good potential for data assimilation. At large scale, SMAP is in good agreement with the model in most of CONUS with less-than-expected degradation over mountainous areas. Lower correlation between SMAP and the model is seen in the forested east CONUS and significantly lower over the Canadian boreal forests.

  6. Experimental High Resolution (3 km) SMAP Soil Moisture Data Fields With Uncertainty Estimates

    NASA Astrophysics Data System (ADS)

    Das, N. N.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The objective of the mission is global mapping of surface soil moisture and landscape freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP spacecraft is in a 685-km Sun-synchronous near-polar orbit, and viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of the high-resolution active (radar) and coarse-resolution but high-sensitivity passive (radiometer) L-band observations enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrievals. However, on July 7th, 2015, the SMAP radar encountered an anomaly and is currently inoperable. Efforts are being made to revive the SMAP radar. Due to the present status of the SMAP observatory, nearly ~2.5 months (from the end of In-Orbit-Check April 13th, 2015 to July 7th, 2015) of the SMAP Active Passive product will be available to public through the NASA DAAC at National Snow and Ice Data Center (NSIDC). The baseline L2_SM_AP product is retrieved soil moisture from the disaggregated/downscaled brightness temperature obtained by merging the coarse-resolution (~36 km) radiometer brightness temperature data and the high-resolution (~3 km) radar backscatter data. The baseline product is intermediate scale 9 km global soil moisture information. Experimentally, a much higher resolution global surface soil moisture data set is also produced at 3 km. This experimental product covering the 2.5 Spring/Summer months is the focus of this presentation. We specifically focus on the analysis of errors and reliability of this data set. The errors in disaggregated brightness temperatures and the retrived soil moisture estimates are discussed. In the presentation the accuracies of the SMAP L2-SM_AP soil moisture retrievals will be shown using summary comparisons with in

  7. Advances in downscaling soil moisture for use in drought and flood assessments: Implications for data from the Soil Moisture Active and Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Fang, B.; Narayan, U.

    2015-12-01

    Hydrological hazards, namely droughts and floods are dependent on the deficit and excess of soil moisture. With the launch of the Soil Moisture Active and Passive Mission (SMAP) in January 2015 we will have twice a day global observations of soil moisture. However the spatial resolution of soil moisture retrieved from the SMAP radiometer is 10s of km and the SMAP radar will provide backscatter observations 100m-1km. High spatial resolution of soil moisture helps to monitor floods and droughts in a spatially distributed fashion. The current focus is finding the best way to obtain high spatial resolution soil moisture using the radar and radiometer observations. In this presentation we will deal with downscaling by couple of methods - (a) Use of the thermal inertia relation between soil moisture and surface temperature modulated by vegetation (b) Relationship between soil moisture and evaporation (c) Change detection using high spatial resolution active radar data.

  8. A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.

    2009-12-01

    developed and it is the very first sensor web framework developed especially for the land surface studies. Synthetic experiments based on the LISW-SOA and the virtual sensor web provide a controlled environment in which to examine the end-to-end performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support. In this paper, the design, implementation of the LISW-SOA and the implication for the Soil Moisture Active and Passive (SMAP) mission is presented. Particular attention is focused on examining the relationship between the economic investment on a sensor web (space and air borne, ground based) and the accuracy of the model predicted soil moisture, which can be achieved by using such sensor observations. The Study of Virtual Land Information Sensor Web (LISW) is expected to provide some necessary a priori knowledge for designing and deploying the next generation Global Earth Observing System of systems (GEOSS).

  9. Technical Report Series on Global Modeling and Data Assimilation. Volume 42; Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L4_C Beta-Release Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2015-01-01

    During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.

  10. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  11. Near-Real-Time, Global Radar Data at the Alaska Satellite Facility DAAC from NASA's SMAP Satellite

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Allen, A. R.; Dixon, I. R.

    2014-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) is supporting NASA's SMAP (Soil Moisture Active Passive) satellite mission, which launches in January 2015. SMAP will measure global soil moisture and its freeze-thaw state every 3 days using an L-band synthetic aperture radar (SAR) and radiometer. ASF, along with the National Snow and Ice Data Center DAAC and NASA's Earth Science Data and Information System (ESDIS), is identifying and developing tools and technologies to facilitate use of global, near-real-time data by the SMAP user community. ASF will host the SMAP Level 1 radar data and make them available for download through ASF's data discovery interface, Vertex, and the ASF Application Programming Interface. Vertex allows a user to search, visualize and download SAR data, browse images and relevant metadata, and will offer the complete SMAP L1 radar archive to the public. The entire SMAP archive consisting of level 1-4 data can be accessed via Reverb, the NASA EOSDIS metadata and service discovery tool. In anticipation of the SMAP launch and data release, ASF has developed and released a new website (https://www.asf.alaska.edu/smap/) and a suite of web resources, including interactive media, technical information, a product guide, related publications, and tools for working with the HDF5 data format. The ASF SMAP team is exploring OPeNDAP and the Jet Propulsion Laboratory's Webification technologies for enhancing in-browser data visualization and analysis. These technologies, and tools developed with them, represent opportunities for exposing this valuable dataset to areas with limited bandwidth or understanding of radar data. This presentation will highlight the enabling technologies and techniques ASF is employing to bring these data to new scientific and applications users and respond to ever-changing user needs.

  12. Science Data System Contribution to Calibrating and Validating SMAP Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission retrieves global surface soil moisture and freeze/thaw state using measurements acquired by a radiometer and a synthetic aperture radar that fly on an Earth orbiting satellite. The SMAP observatory launched from Vandenberg Air Force Base on January 31, 2015 into a near-polar, sun-synchronous orbit. This paper describes the contribution of the SMAP Science Data System (SDS) to the calibration and on-going validation of the radar backscatter and radiometer brightness temperatures. The Science Data System designed, implemented and operated the software that generates data products that contain various geophysical parameters including soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that processes the incoming raw data from the instruments, incorporates spacecraft and instrument engineering data, and uses both dynamic and static ancillary products provided by the scientific community. The standard data products appear in Hierarchical Data Format-5 (HDF5) format. These products contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) hosts and distributes SMAP radar data products. The National Snow and Ice Data Center (NSIDC) hosts and distributes all of the other SMAP data products.

  13. Spatial and Temporal Patterns of SMAP Brightness Temperatures for Use in Level 1 TB Characterization

    NASA Astrophysics Data System (ADS)

    Kim, E. J.

    2015-12-01

    1. IntroductionThe recent launch of NASA's Soil Moisture Active Passive (SMAP) mission [Entekhabi, et al] has opened the door to improved brightness temperature (TB) calibration of satellite L-band microwave radiometers, through the use of SMAP's lower noise performance and better immunity to man-made interference (vs. ESA's Soil Moisture Ocean Salinity (SMOS) mission [Kerr, et al]), better spatial resolution (vs. NASA's Aquarius sea surface salinity mission [Le Vine, et al]), and cleaner antenna pattern (vs. SMOS). All three radiometers use/used large homogeneous places on Earth's surface as calibration targets—parts of the ocean, Antarctica, and tropical forests. Despite the recent loss of Aquarius data, there is still hope for creating a longer-term L-band data set that spans the timeframe of all 3 missions. 2. Description of Analyses and Expected Results In this paper, we analyze SMAP brightness temperature data to quantify the spatial and temporal characteristics of external target areas in the oceans, Antarctica, forests, and other areas. Existing analyses have examined these targets in terms of averages, standard deviations, and other basic statistics (for Aquarius & SMOS as well). This paper will approach the problem from a signal processing perspective. Coupled with the use of SMAP's novel RFI-mitigated TBs, and the aforementioned lower noise and cleaner antenna pattern, it is expected that of the 3 L-band missions, SMAP should do the best job of characterizing such external targets. The resulting conclusions should be useful to extract the best possible TB calibration from all 3 missions, helping to inter-compare the TB from the 3 missions, and to eventually inter-calibrate the TBs into a single long-term dataset.

  14. SMAP Validation Experiment 2015 (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W. T.; Chae, C. S.; Moghaddam, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.

    2015-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. For soil moisture algorithm validation, the SMAP project and NASA coordinated SMAPVEX15 around the Walnut Gulch Experimental Watershed (WGEW) in Tombstone, Arizona on August 1-19, 2015. The main goals of SMAPVEX15 are to understand the effects and contribution of heterogeneity on the soil moisture retrievals, evaluate the impact of known RFI sources on retrieval, and analyze the brightness temperature product calibration and heterogeneity effects. Additionally, the campaign aims to contribute to the validation of GPM (Global Precipitation Mission) data products. The campaign will feature three airborne microwave instruments: PALS (Passive Active L-band System), UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). PALS has L-band radiometer and radar, and UAVSAR and AirMOSS have L- and P-band synthetic aperture radars, respectively. The PALS instrument will map the area on seven days coincident with SMAP overpasses; UAVSAR and AirMOSS on four days. WGEW was selected as the experiment site due to the rainfall patterns in August and existing dense networks of precipitation gages and soil moisture sensors. An additional temporary network of approximately 80 soil moisture stations was deployed in the region. Rainfall observations were supplemented with two X-band mobile scanning radars, approximately 25 tipping bucket rain gauges, three laser disdrometers, and three vertically-profiling K-band radars. Teams were on the field to take soil moisture samples for gravimetric soil moisture, bulk density and rock fraction determination as well as to measure surface roughness and vegetation water content. In this talk we will present preliminary results from the experiment including

  15. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  16. SMAP L2/L3 Soil Moisture Product Validation using In Situ Based Core Validation Sites

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Das, N. N.; Kim, S.; Dunbar, R. S.; Bindlish, R.; Dang, L. B.; Berg, A. A.; Rowlandson, T. L.; Caylor, K. K.; Cosh, M. H.; AlJassar, H. K.; Lopez-baeza, E.; Martínez-Fernández, J.; Gonzales-Zamora, A.; McNairn, H.; Pacheco, A. M.; Moghaddam, M.; Montzka, C.; Notarnicola, C.; Niedrist, G.; Pellarin, T.; Pulliainen, J.; Rautiainen, K.; Ramos, J.; Seyfried, M. S.; Su, Z.; Zeng, Y.; Van der Velde, R.; Temimi, M.; Thibeault, M.; Dorigo, W.; Vreugdenhil, M.; Walker, J.; Wu, X.; Caldwell, T. G.; Spencer, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.; Njoku, E. G.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer instruments sharing a rotating 6-meter mesh reflector antenna. Merging of active and passive L-band observations enables an unprecedented combination of accuracy, resolution, global coverage and revisit-time for soil moisture and freeze/thaw retrievals. The primary validation reference of the data products will be ground-based measurements. Well characterized sites with calibrated in situ measurements will be used to determine the quality of the data products; these sites are designated as core validation sites. The mission success criteria will be evaluated with respect to these core site comparisons. Other remote sensing and model-based products will be used as additional resources to expand the spatial and temporal scope of the evaluation. In an effort to ensure the geographic distribution and diversity of conditions of the core validation sites, SMAP has partnered with investigators across the globe. Because different SMAP Level 2 soil moisture products have different spatial scales, the suitability of the various sites for validation of the different products must be done for each site while considering several factors. The main factors are gravimetric calibration of the sensors within a site and determination of a spatial scaling function of the sensor measurements up to the SMAP resolution scales. The mission has been able to utilize the core site measurements since the launch of the satellite because the infrastructure for data transmission and processing was established well before the launch. The validated soil moisture products will be released by May 2016. In this presentation we will show the performance of the beta version of the soil moisture products (released by November 2015) and discuss the status of the validation process.

  17. Technical Report Series on Global Modeling and Data Assimilation. Volume 40; Soil Moisture Active Passive (SMAP) Project Assessment Report for the Beta-Release L4_SM Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Colliander, Andreas; Conaty, Austin; Jackson, Thomas; Kimball, John

    2015-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public beta release scheduled for 30 October 2015. The primary objective of the beta release is to allow users to familiarize themselves with the data product before the validated product becomes available. The beta release also allows users to conduct their own assessment of the data and to provide feedback to the L4_SM science data product team. The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta release of the data. The validation against

  18. Assimilation of soil moisture retrievals or brightness temperature observations from SMOS and SMAP into the GEOS-5 land surface model

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J. M.; Reichle, R. H.

    2015-12-01

    Two L-band microwave missions are currently collecting passive microwave observations and aiming at an improved estimation of soil moisture. The ESA Soil Moisture Ocean Salinity (SMOS) mission and the NASA Soil Moisture Active Passive (SMAP) mission both provide Level 1 brightness temperature products and derived Level 2 soil moisture retrieval products. The assimilation of these products into land surface models has potential to improve global estimates of soil moisture and other land surface variables. This presentation investigates the benefits and challenges of assimilating either retrievals or brightness temperature observations from either SMOS or SMAP into the Goddard Earth Observing System (GEOS-5) land surface model. It will be shown that the seasonal corrections introduced by retrieval assimilation are slightly different from those with brightness temperature assimilation as a result of the technical implementation of the assimilation scheme. Various resulting land surface variables will also be evaluated against the results from the operational SMAP Level 4 Soil Moisture (L4_SM) product, which assimilates SMAP brightness temperature data.

  19. Model-Based Verification and Validation of the SMAP Uplink Processes

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Dubos, Gregory F.; Tirona, Joseph; Standley, Shaun

    2013-01-01

    This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V&V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process.Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based V&V development efforts.

  20. Integrating new satellite observations from SMAP and OCO-2 for analyzing terrestrial water and carbon connections

    NASA Astrophysics Data System (ADS)

    Kimball, J. S.; Stavros, N.; Schimel, D.

    2014-12-01

    The successful inauguration of both NASA OCO-2 (Orbiting Carbon Observatory 2) and SMAP (Soil Moisture Active Passive) missions, and continuing operations from other flagship Earth Observing systems (e.g. MODIS) provide new opportunities to improve understanding of global carbon and water cycle connections over land. Carbon and water cycles interact such that soil moisture and frozen temperatures constrain net ecosystem productivity and terrestrial sources and sinks for atmospheric CO2. OCO-2 and SMAP will have overlapping global observations beginning in 2015. The combined measurements from these sensors provide complimentary information linking top-down atmospheric CO2 measurements with bottom-up carbon fluxes and underlying environmental controls. SMAP will consist of a satellite L-band radar and radiometer suite designed for global monitoring of soil moisture and freeze-thaw dynamics. SMAP science objectives include improving understanding of processes linking terrestrial water, energy and carbon cycles, and quantifying the net carbon flux in boreal landscapes. SMAP products include model enhanced estimates of net ecosystem CO2 flux (NEE) and component carbon fluxes for productivity and respiration; targeted accuracy for NEE is defined at the level of tower (FLUXNET) eddy covariance measurement based CO2 fluxes. OCO-2 has similar carbon science objectives and complimentary observations to SMAP, including canopy fluorescence (SIF) and atmosphere total column CO2 concentrations (XCO2) derived with unprecedented sampling and precision. An initial framework for integrating and analyzing these data is presented in the context of planned post-launch field campaigns and community carbon model synthesis activities. Example research applications are presented using available satellite data prior to SMAP and OCO-2 operations. Activities include using SIF (a proxy for canopy photosynthesis) with MODIS FPAR and SMAP data to improve understanding of canopy structural and

  1. SMAP Data Assimilation at NASA SPoRT

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2016-01-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center maintains a near-real- time run of the Noah Land Surface Model within the Land Information System (LIS) at 3-km resolution. Soil moisture products from this model are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. We have implemented assimilation of soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active/ Passive (SMAP) satellites, and are now evaluating the SMAP assimilation. The SMAP-enhanced LIS product is planned for public release by October 2016.

  2. Evaluation of the Validated Soil Moisture Product from the SMAP Radiometer

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; Cosh, M.; Caldwell, T.; Walker, J.; Wu, X.; Berg, A.; Rowlandson, T.; Pacheco, A.; McNairn, H.; Thibeault, M.; Martinez-Fernandez, J.; Gonzalez-Zamora, A.; Seyfried, M.; Bosch, D.; Starks, P.; Goodrich, D.; Prueger, J.; Palecki, M.; Small, E.; Zreda, M.; Calvet, J-C.; Crow, W.; Kerr, Y.

    2016-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am/6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAP's radiometer-derived soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36 km fixed Earth grid using brightness temperature observations from descending (6 am) passes and ancillary data. A beta quality version of L2_SM_P was released to the public in September, 2015, with the fully validated L2_SM_P soil moisture data expected to be released in May, 2016. Additional improvements (including optimization of retrieval algorithm parameters and upscaling approaches) and methodology expansions (including increasing the number of core sites, model-based intercomparisons, and results from several intensive field campaigns) are anticipated in moving from accuracy assessment of the beta quality data to an evaluation of the fully validated L2_SM_P data product.

  3. Soil moisture estimation by airborne active and passive microwave remote sensing: A test-bed for SMAP fusion algorithms

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Bogena, Heye; Jagdhuber, Thomas; Hajnsek, Irena; Horn, Ralf; Reigber, Andreas; Hasan, Sayeh; Rüdiger, Christoph; Jaeger, Marc; Vereecken, Harry

    2014-05-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and its freeze/thaw state. The SMAP launch is currently planned for 2014-2015. The SMAP measurement approach is to integrate L-band radar and L-band radiometer as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. The radar and radiometer measurements can be effectively combined to derive soil moisture maps that approach the accuracy of radiometer-only retrievals, but with a higher resolution (being able to approach the radar resolution under some conditions). Aircraft and tower-based instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment in Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system DLR F-SAR were flown on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites. These data are used as a test-bed for the analysis of existing and development of new active-passive fusion techniques. A synergistic use of the two signals can help to decouple soil moisture effects from the effects of vegetation (or roughness) in a better way than in the case of a single instrument. In this study, we present and evaluate three approaches for the fusion of active and passive microwave records for an enhanced representation of the soil moisture status: i) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data, ii) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, and iii) fusion of two single-source soil moisture products from radar and radiometer.

  4. Global High Resolution Mapping and Assimilation of Soil Moisture Observations for the SMAP Radar and Radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2015. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, SMAP high-resolution so...

  5. SMAP Algorithms & Cal/Val Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) mission is one of four Decadal Survey missions recommended by the U.S. National Research Council for launch in the early part of the next decade ("Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond," NRC, Committ...

  6. SMAP and SMOS soil moisture validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMOS and SMAP satellite missions each produce global soil moisture products using L-band radiometry. Both missions begin with the same fundamental equations in developing their soil moisture retrieval algorithm but implement it differently due to design differences of the instruments. SMOS with ...

  7. New Combined L-band Active/Passive Soil Moisture Retrieval Algorithm Optimized for Argentine Plains

    NASA Astrophysics Data System (ADS)

    Bruscantini, C. A.; Grings, F. M.; Salvia, M.; Ferrazzoli, P.; Karszenbaum, H.

    2015-12-01

    The ability of L-band passive microwave satellite observations to provide soil moisture (mv) measurements is well known. Despite its high sensitivity to near-surface mv, radiometric technology suffers from having a relatively low spatial resolution. Conversely active microwave observations, although their finer resolution, are difficult to be interpreted for mv content due to the confounding effects of vegetation and roughness. There have been and there are strong motivations for the realization of satellite missions that carry passive and active microwave instruments on board. This has also led to important contributions in algorithm development. In this line of work, NASA-CONAE SAC-D/Aquarius mission had on board an L band radiometer and scatterometer. This was followed by the launch of NASA SMAP mission (Soil Moisture Active Passive), as well as several airborne campaigns that provide active and passive measurements. Within this frame, a new combined active/passive mv retrieval algorithm is proposed by deriving an analytical expression of brightness temperature and radar backscattering relation using explicit semi-empirical models. Simple models (i.e. that can be easily inverted and have relatively low amount of ancillary parameters) were selected: ω-τ model (Jackson et al., 1982, Water Resources Research) and radar-only model (Narvekar et al., 2015, IEEE Transactions on Geoscience and Remote Sensing). A major challenge involves coupling the active and passive models to be consistent with observations. Coupling equations can be derived using theoretical active/passive high-order radiative transfer models, such as 3D Numerical Method of Maxwell equations (Zhou et al., 2004, IEEE Transactions on Geoscience and Remote Sensing) and Tor Vergata (Ferrazzoli et al., 1995,Remote Sensing of Environment) models. In this context, different coupling equations can be optimized for different land covers using theoretical forward models with specific parametrization for each

  8. Scanning L Band Active Passive Validation Experiment 2013

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Kim, E. J.; Faulkner, T.; Patel, H.; Cosh, M. H.

    2014-12-01

    SLAP (Scanning L-band Active Passive) comprises of a fully polarimetric L-band radiometer and fully polarimetric L-band radar with a shared antenna. SLAP is designed to be compatible with several aircrafts; specifically, C-23, Twin Otter, P-3, and C-130. SLAP is designed for simplicity, accuracy, & reliability. It leverages, as much as possible, existing instruments, hardware, and software in order to minimize cost, time, and risk.The SLAP airborne/ground campaign is designed to conduct flight testing and ground truth for the airborne instrument. The campaign took place the third week of December 2013 in Eastern Shore, MD. SLAP contributes to the NASA's core mission because of its ability to serve as an airborne simulator for the SMAP (Soil Moisture Active Passive) satellite mission, one of NASA's flagship missions scheduled to launch in January 2015. A 3-day aircraft validation campaign was conducted where the new SLAP instrument flew three separate days over the proposed sampling region. The study area is a mixed agriculture and forest site located about 1 hour east of Washington, DC on the Eastern Shore (of the Chesapeake Bay). This region is located on the Delmarva Peninsula. The advantages of the selected site are: (1) Site was used before in previous field campaign (SMAPVEX08) (2) ARS HRSL has some established sampling sites within region (3) Dynamic variation in land cover (4) Variety of plant structures and densities. The goal of this campaign was to fly the instrument over the proposed site before a rain event, then have 2 other flights after the rain event to capture a dry down. In conjunction with the aircraft, there was in-situ ground sampling. Ground observations were collected concurrent with aircraft flights. These included soil moisture, soil temperature, surface temperature, surface roughness and vegetation parameters. Forest sites were monitored with small temporary networks of in situ sensors installed prior to the first flight. Soil moisture was

  9. PALS (Passive Active L-band System) Radiometer-Based Soil Moisture Retrieval for the SMAP Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Bindlish, R.; O'Neill, P. E.; Chazanoff, S. L.; McNairn, H.; Bullock, P.; Powers, J.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2014-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission is scheduled for launch in early January 2015. For pre-launch soil moisture algorithm development and validation, the SMAP project and NASA coordinated a SMAP Validation Experiment 2012 (SMAPVEX12) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June 7-July 19, 2012. Coincident active and passive airborne L-band data were acquired using the Passive Active L-band System (PALS) on 17 days during the experiment. Simultaneously with the PALS measurements, soil moisture ground truth data were collected manually. The vegetation and surface roughness were sampled on non-flight days. The SMAP mission will produce surface (top 5 cm) soil moisture products a) using a combination of its L-band radiometer and SAR (Synthetic Aperture Radar) measurements, b) using the radiometer measurement only, and c) using the SAR measurements only. The SMAPVEX12 data are being utilized for the development and testing of the algorithms applied for generating these soil moisture products. This talk will focus on presenting results of retrieving surface soil moisture using the PALS radiometer. The issues that this retrieval faces are very similar to those faced by the global algorithm using the SMAP radiometer. However, the different spatial resolution of the two observations has to be accounted for in the analysis. The PALS 3 dB footprint in the experiment was on the order of 1 km, whereas the SMAP radiometer has a footprint of about 40 km. In this talk forward modeled brightness temperature over the manually sampled fields and the retrieved soil moisture over the entire experiment domain are presented and discussed. In order to provide a retrieval product similar to that of the SMAP passive algorithm, various ancillary information had to be obtained for the SMAPVEX12 domain. In many cases there are multiple options on how to choose and reprocess these data

  10. Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data

    NASA Astrophysics Data System (ADS)

    El Sharif, H. A.; Wang, J.; Georgakakos, A. P.; Bras, R. L.

    2013-12-01

    Agricultural models, such as Decision Support System for Agrotechnology Transfer - Cropping Systems Model (DSSAT-CSM) (Tsuji, et al., 1994), have been developed to predict the yield of various crops at field and regional scales. The model simulations of crop yields provide essential information for water resources management. One key input of the agricultural models is soil moisture. So far there are no observed soil moisture data covering the entire US with adequate time (daily) and space (1 km or less) resolutions preferred for model simulation of crop yields. Spatially and temporally downscaled data from the upcoming Soil Moisture Active Passive (SMAP) mission can fill this data gap through the generation of fine resolution soil moisture maps that can be incorporated into DSSAT-CSM model. This study will explore the impact downscaled remotely-sensed soil moisture data can have on agricultural model forecasts of agricultural yield and irrigation demand using synthetically generated data sets exhibiting statistical characteristics (uncertainty) similar to the upcoming SMAP products. It is expected that incorporating this data into agricultural model will prove especially useful for cases in which soil water conductivity characteristics and/or precipitation amount at a specific site of interest are not fully known; furthermore, a proposed Bayesian analysis is expected to generate a soil moisture sequence that reduces the uncertainty in modeled yield and irrigation demand compared to using downscaled remotely-sensed soil moisture or precipitation data alone. References Tsuji, G., Uehara, G., and Balas, S. (1994). DSSAT V3, University of Hawaii, Honolulu.

  11. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh

  12. Achieving Lights-Out Operation of SMAP Using Ground Data System Automation

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2013-01-01

    The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.

  13. Evaluation of the validated soil moisture product from the SMAP radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...

  14. Callibration and validation of SMAP soil moisture and coordination with other satelitte products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will launch in November 2014 and will provide a suite of soil moisture products at three spatial resolutions (3, 9 and 36 km). The coarsest resolution product is based only on the passive microwave observations and the algorithm being utilized has he...

  15. Pre-launch Research to Integrate NASA SMAP Soil Moisture and Freeze/Thaw State Products in Applications

    NASA Astrophysics Data System (ADS)

    Moran, S. M.; Bilair, S.; Isaksen, L.; de Rosnay, P.; Zhan, X.; Ghedira, H.; Yang, Z.; Mueller, R.; Ines, A. M.; Zebiak, S. E.; Champagne, C.; Brown, M.; Escobar, V.; Weiss, B.

    2011-12-01

    The SMAP Mission is currently planned for launch in late 2014 to provide global measurements of soil moisture and freeze/thaw state. For mission planning, a Testbed Facility is in place to test software that will be used to automatically generate the science data products once SMAP is in orbit. Early distribution of a subset of these testbed data products and calibration/validation data sets to SMAP "Early Adopters" has enabled pre-launch applications research. Early Adopters are those groups who have a direct need for SMAP-like soil moisture or freeze/thaw data, and who are planning to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. A set of 7 SMAP Early Adopters were selected in March 2011, with applications including weather forecasts, food security and mapping dust emissions [http://smap.jpl.nasa.gov/files/smap2/adopter1.pdf]. Research projects will be completed with quantitative metrics prior to the launch of SMAP. The feedback from these projects is providing a fundamental understanding of how SMAP data products can be scaled and integrated into hydrologic applications to improve decision-making. A second round of selections for SMAP Early Adopters is planned for February 2012.

  16. A synergisitic Neural Network Soil Moisture Retrieval Algorithm for SMAP

    NASA Astrophysics Data System (ADS)

    Kolassa, J.; Reichle, R. H.; Gentine, P.; Prigent, C.; Aires, F.; Fang, B.

    2015-12-01

    A Neural Network (NN)-based algorithm is developed to retrieve surface soil moisture from Soil Moisture Active/Passive (SMAP) microwave observations. This statistical approach serves as an alternative to the official Radiative Transfer (RT) based SMAP retrieval algorithm, since it avoids an explicit formulation of the RT processes as well as the use of often uncertain or unavailable a priori knowledge for additional surface parameters. The NN algorithm is calibrated on observations from the SMAP radiometer and radar as well as surface soil moisture fields from the MERRA-2 reanalysis. To highlight different physical aspects of the satellite signals and to maximize the soil moisture information, different preprocessing techniques of the SMAP data are investigated. These include an analysis of radiometer polarization and diurnal indices to isolate the surface temperature contribution, as well as the radar co- and cross-polarized channels to account for vegetation effects. A major difference with respect to the official retrieval is the increased importance given to the information provided by the SMAP radar or other active sensors, utilizing not only the relative spatial structures, but also the absolute soil moisture information provided. The NN methodology combines multiple sensor observations in a data fusion approach and is thus able to fully exploit the complementarity of the information provided by the different instruments. The algorithm is used to compute global estimates of surface soil moisture and evaluated against retrieved soil moisture from SMOS as well as in situ observations from the International Soil Moisture Network (ISMN). The calibration on MERRA-2 data means that the NN retrieval algorithm functions as the model operator in a data assimilation framework yielding soil moisture estimates that are very compatible with the model. This could facilitate the assimilation of SMAP observations into land surface and numerical weather prediction models.

  17. Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher

    2014-01-01

    SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes

  18. The SoilSCAPE Network Multiscale In-situ Soil Moisture Measurements: Innovations in Network Design and Approaches to Upscaling in Support of SMAP

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Clewley, D.; Silva, A.; Akbar, R.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture at 3, 9, and 36 km scales through the use of radar and radiometer data. To validate SMAP products, in-situ sensors are required. Typically, validation plans consist of several sensors installed nearly uniformly in the scene. To upscale the soil moisture estimates to the scales of SMAP products requires a large number of sensors, distributed throughout the instrument footprint. Even for the higher resolution SMAP products (3 km) there are often insufficient sensors available within a resolution cell. The Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) project provides a new adaptive validation strategy, including upscaled estimates of soil moisture. By utilizing smarter network technology and optimized sensor placement, more representative measurements of soil moisture are obtained, at a range of spatial scales with lower costs than traditional networks. A large network was established around the Tonzi Ranch site in central California. The network design comprises multiple sites, each with a 10-30 node cluster taking measurements from up to 4 sensors installed at different depths. The nodes wirelessly communicate to a Local Coordinator, which collects data and transmits to a server (http://soilscape.usc.edu). Each node can communicate with the Coordinator up to a distance of 400m. Each station supports up to 60 nodes. Currently 111 nodes have been installed over 6 sites. The SoilSCAPE nonuniform placement of sensors requires novel upscaling methods. Previous studies have used regression, which works well when the measurement is well correlated with other variables. However, soil moisture dependence on various variables could be complex and nonlinear. To account for such complexities, we use the Random Forests algorithm, which is capable of modeling complex non-linear system and can handle continuous and categorical data. The algorithm has not previously been applied to

  19. Using SMOS obervations for science development of the SMAP level 4 surface and root zone soil moisture algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active and Passive (SMAP) mission is targeted for launch in October 2014. The soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Oc...

  20. Aquarius Active-Passive RFI Environment at L-Band

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  1. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  2. Airborne Active and Passive L-Band Observations in Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Yueh, S. H.; Chazanoff, S.; Jackson, T. J.; McNairn, H.; Bullock, P.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2012-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of data record that features long-time series with varying soil moisture and vegetation conditions (for testing the application of time-series approach) over aerial domain of multiple parallel lines (for spatial disaggregation studies). The coincident active and passive L-band data were acquired using the Passive Active L-band System (PALS), which is an airborne radiometer and radar developed for testing L-band retrieval algorithms. For SMAPVEX12 PALS was installed on a Twin Otter aircraft. The flight plan included flights at two altitudes. The higher altitude was used to map the whole experiment domain and the lower altitude was used to obtain measurements over a specific set of field sites. The spatial resolution (and swath) of the radar and radiometer from low altitude was about 600 m and from high altitude about 1500 m. The PALS acquisitions were complemented with high resolution (~10 m) L-band SAR measurements carried out by UAVSAR instrument on-board G-III aircraft. The campaign ran from June 7 until July 19. The PALS instrument conducted 17 brightness temperature and backscatter measurement flights and the UAVSAR conducted 14 backscatter measurement flights. The airborne data acquisition was supported by

  3. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  4. SMAP Global Model Calibration Using SMOS Time-Series Observations

    NASA Astrophysics Data System (ADS)

    Chan, S.; Njoku, E. G.; Bindlish, R.; O'Neill, P. E.; Jackson, T. J.

    2014-12-01

    Within the suite of SMAP's standard data products is the Level 2 Passive Soil Moisture Product, which is derived primarily from SMAP's brightness temperature (TB) observations. The baseline retrieval algorithm uses an established microwave emission model that had been extensively tested in many past field experiments. One approach to applying the same model at a global scale with SMAP's TB observations is to use the same calibration coefficients derived from past field experiments and apply them globally. Although this approach is a simplification of reality, it resulted in accurate retrieval in several geographically limited studies. Nevertheless, significant retrieval bias may occur in areas where land cover types had not been considered in past field experiments. In this work, a time-series global model calibration approach is proposed and evaluated. One year of gridded L-band TB observations from the Soil Moisture and Ocean Salinity (SMOS) mission were used as the primary input. At each land pixel on the SMAP grid, the observed TBs were compared with the simulated TBs according to the model with unknown calibration coefficients to be determined. Because of the time-series nature of the input, the above comparison could be repeated for successive revisit dates as a system of equations until the number of known variables (TBs) exceeds the number of unknown variables (calibration coefficients and/or geophysical retrieval). Global nonlinear optimization techniques were then applied to the equations to solve for the optimal model calibration coefficients for that pixel. Following global application of this approach, soil moisture estimates were extracted and compared with in-situ ground measurement. The resulting soil moisture estimates were shown to have an accuracy comparable to what was observed in past field experiments, confirming the versatility of this global model calibration approach.

  5. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; Bircher, Simone; Laurence, Heather; Mialon, Arnaud; Bitar, Ahmad Al; Richaume, Philippe

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the

  6. Global Evaporation Estimates from SMAP Passive Microwave Soil Moisture Retrievals Using Conditional Sampling.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, M.; Entekhabi, D.; Konings, A. G.; Salvucci, G.; Hogan, P.

    2015-12-01

    Evaporation links the water, energy and carbon cycles over land yet even its climatology on global scale is not observed. Tower-based flux measurements are sparse and do not cover diverse biomes and climates. In the last decades, many strategies to derive evaporation based on remote sensing measurements have been developed. However, these methods are dependent on a variety of assumptions and auxiliary data, making them more prone to error propagation. A more data-driven method was developed by Salvucci (2001), who found that under statistical stationary conditions the expected change in soil moisture storage is zero when conditioned to a certain storage for a certain time interval. Consequently, using the water balance, precipitation conditionally averaged to the soil moisture storage is equal to the total loss: evaporation and drainage. Using only soil moisture and precipitation data as model inputs reduces the sources of uncertainty. In this presentation we provide the first estimates of global evaporation from NASA's Soil Moisture Active Passive mission by applying the conditional sampling method to passive microwave soil moisture time series and in situ precipitation data. The obtained evaporation estimates show a good correspondence to measured evaporation from eddy correlation towers over selected field sites. Subsequently, a simple approach is developed to directly estimate evaporation from SMAP soil moisture data. This approach enables the investigation of dynamics in evaporation during the dry-down after storms. The timing of the transition between the different stages of evaporation is assessed for different climates especially the transition from stage 1 to stage 2 evaporation; atmosphere limited evaporation to soil limited evaporation respectively. Investigations into the dynamics of unstressed evaporation and transpiration and the transition from stage 1 to stage 2 evaporation increases our understanding of water stress and soil desiccation. It also

  7. Multipurpose active/passive motion compensation system

    SciTech Connect

    Sullivan, R.A.; Clements, R.E.; Davenport, M.R.

    1984-05-01

    A microprocessor-controlled active/passive motion compensation system has been developed for deploying a variety of geotechnical in-situ testing devices with mobile drilling rigs from low-cost service vessels. The light-weight rotary heave compensator incorporates a hydraulic motor as the compensator actuator and a servo-controlled closed loop pump to reduce the air storage and power requirements. Unique features of the system are the use of inertial sensors to measure three components of boat motion, the ability to run the system in active/passive or passive modes, and the ability to automatically lower the drillstring at a constant velocity while maintaining motion compensation. Quantitative measurements made during sea trials offshore California yielded motion compensation accuracy approaching 98 percent which is much better than the compensation achieved with passive systems. Results are presented from offshore in-situ testing with a cone penetrometer, a vane shear device, and a suspension PS logger. The system can also be used for other offshore applications.

  8. Assimilation of Synchronous and Asynchronous Active/Passive Microwave Observations at Different Spatial Scales for Improved Soil Moisture and Crop Growth

    NASA Astrophysics Data System (ADS)

    Judge, J.; Liu, P. W.; Monsivais-Huertero, A.; Steele-Dunne, S. C.; Bongiovanni, T. E.; Bindlish, R.; Jackson, T. J.

    2014-12-01

    Assimilation of active and passive (AP) microwave observations at L-band in the crop simulation models is able to improve estimates of soil moisture (SM) and crop growth in the models. These observations provide complementary information for dynamic heterogeneous landscapes. Active observations are more sensitive to soil surface roughness and vegetation structure, while passive observations are more sensitive to SM. These observations may be available at different spatial and temporal resolutions from different satellite platforms. For example, the present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, while the NASA/CONAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. The planned NASA Soil Moisture Active Passive mission (SMAP) will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days, starting early 2015. The goal of this study is to develop an Ensemble Kalman Filter-based methodology that assimilates synchronously and asynchronously available backscattering coefficients (σ0) and brightness temperatures (TB) at different spatial scales from SMOS and Aquarius. The Decision Support System for Agrotechnology Transfer (DSSAT) that contains a suite of crop simulation models will be linked to microwave emission and scattering models (DSSAT-A-P) for the assimilation. The methodology will be implemented in the rain fed agricultural region of the Brazilian La Plata Basin in South America, where soybean is the primary crop. The augmented state vector will include both model states and parameters related to soil and vegetation during the growing season. The methodology will be evaluated using a synthetic experiment and also using observations from SMOS and Aquarius. In preliminary results with synthetic experiment, using asynchronous

  9. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  10. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  11. The active-passive continuous-wave terahertz imaging system

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yurchenko, Stanislav O.

    2016-08-01

    Active and passive terahertz (THz) imaging have recently become essential instruments of various THz applications. In this paper the active- and passive-mode THz imaging systems are studied and the hybrid active-passive THz imaging system is suggested. The concept of image contrast was used to compare the active and passive THz imaging results. In order to achieve better image quality the hybrid system is considered to be effective. The main advantage of the proposed system is the combination of the self-emitted radiation of the object with the back scattered source radiation. The experimental results demonstrate that the active-passive modality of THz imaging system allows retrieving maximum information about the object. An approach to synthesise the active-passive THz images was proposed using the false-color representation.

  12. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  13. Information System Life-Cycle And Documentation Standards (SMAP DIDS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not computer program, SMAP DIDS written to provide systematic, NASA-wide structure for documenting information system development projects. Each DID (data item description) outlines document required for top-quality software development. When combined with management, assurance, and life cycle standards, Standards protect all parties who participate in design and operation of new information system.

  14. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  15. Detecting soil moisture pulses and associated vegetation response in a southern Arizona watershed using SMAP and MODIS

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Moran, M. S.; Scott, R. L.

    2015-12-01

    In arid and semiarid ecosystems, rainfall pulses and associated vegetation responses play a crucial role in ecosystem and hydrologic functioning. While rainfall pulses are generally correlated with increased photosynthetic activity, the effect of these rainfall pulses in the context of persistent drought is unclear. Rainfall events during drought can lead to an overall reduction in primary productivity due to reduced soil infiltration and increased erosion. To assess the effective rainfall available for initiating biological processes, measurements of soil moisture are necessary. Rainfall pulses in drylands are generally localized in time and space making them difficult to detect remotely. Our objective was to determine whether space-based observations of soil moisture have the necessary spatial and temporal resolution to detect soil moisture pulses resulting from rain events in the Walnut Gulch Experimental Watershed (WGEW) in southern Arizona. Using pre-beta-release soil moisture observations from the newly launched NASA Soil Moisture Active Passive (SMAP) observatory, we examined the effects of rainfall pulses on soil moisture over the Walnut Gulch Experimental Watershed from April to July 2015. To assess whether soil moisture pulses were associated with increased vegetation production, we monitored increases in vegetation greenness using the NASA MODIS Enhanced Vegetation Index (EVI) following increases in soil moisture. Regional-scale results were supported with local-scale in situ measurements of soil moisture, vegetation greenness from phenocams, precipitation and Net Ecosystem Exchange (NEE) associated with two eddy covariance flux towers at WGEW. In conclusion, SMAP observations have the potential to detect large rainfall pulses at the 9 km resolution, and the associated soil moisture pulses can result in increased EVI at the watershed scale. These results contribute to our understanding of the ecosystem and hydrologic functioning of dryland ecosystems.

  16. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  17. TMS reveals a direct influence of spinal projections from human SMAp on precise force production.

    PubMed

    Entakli, Jonathan; Bonnard, Mireille; Chen, Sophie; Berton, Eric; De Graaf, Jozina B

    2014-01-01

    The corticospinal (CS) system plays an important role in fine motor control, especially in precision grip tasks. Although the primary motor cortex (M1) is the main source of the CS projections, other projections have been found, especially from the supplementary motor area proper (SMAp). To study the characteristics of these CS projections from SMAp, we compared muscle responses of an intrinsic hand muscle (FDI) evoked by stimulation of human M1 and SMAp during an isometric static low-force control task. Subjects were instructed to maintain a small cursor on a target force curve by applying a pressure with their right precision grip on a force sensor. Neuronavigated transcranial magnetic stimulation was used to stimulate either left M1 or left SMAp with equal induced electric field values at the defined cortical targets. The results show that the SMAp stimulation evokes reproducible muscle responses with similar latencies and amplitudes as M1 stimulation, and with a clear and significant shorter silent period. These results suggest that (i) CS projections from human SMAp are as rapid and efficient as those from M1, (ii) CS projections from SMAp are directly involved in control of the excitability of spinal motoneurons and (iii) SMAp has a different intracortical inhibitory circuitry. We conclude that human SMAp and M1 both have direct influence on force production during fine manual motor tasks. PMID:24164635

  18. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  19. The Development of Terrestrial Water Cycle Applications for SMAP Soil Moisture Data Products

    NASA Astrophysics Data System (ADS)

    Crow, W.; Ryu, D.

    2008-12-01

    Soil moisture storage sits at the locus of the terrestrial water cycle and governs the relative partitioning of precipitation into various land surface flux components. Consequently, improved observational constraint of soil moisture variations should improve our ability to globally monitor the terrestrial water cycle. However, to date, most evidence for such enhancement has been based on synthetic studies and not actual data. The maturity of existing soil moisture datasets (from e.g. the NASA/JAXA AMRS-E and TMI satellite sensors) provides an opportunity to better describe this potential prior to the anticipated launch of the NASA SMAP mission. Using existing remotely-sensed soil moisture datasets, the presentation will demonstrate the potential for improving satellite-based rainfall accumulation products over land and describe a novel data assimilation strategy for leveraging improved rainfall products to enhance global runoff modeling. Despite well-known shortcomings in existing satellite soil moisture data sets (e.g. limited accuracy over vegetation and shallow vertical measurement depths), these strategies lead to measurable improvements in rainfall and runoff estimates over a large fraction of global continental areas. Realized benefits are most profound in lightly-vegetated areas amenable to satellite estimation of surface soil moisture and data-poor land areas lacking adequate ground-based instrumentation. The ability to enhance precipitation also allows for dual data assimilation strategies in which remotely-sensed soil moisture is used to simultaneously correct both the representation of antecedent soil moisture in a hydrologic model and the precipitation forcing applied to the model. Prospects for applying such a dual assimilation approach to data poor areas of Africa will be examined as will potential enhancements associated with the improved accuracy and resolution of SMAP soil moisture products relative to existing datasets.

  20. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  1. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  2. Data Management System Reuse for Visualization of JPL's SMAP Project

    NASA Astrophysics Data System (ADS)

    Alarcon, C.; Huang, T.; Roberts, J. T.; Rodriguez, J. D.; Quach, N. T.; De Cesare, C.; Hall, J. R.

    2015-12-01

    The Imagery Exchange (TIE) is a scalable and efficient imagery data management system that powers the WMS web server OnEarth. Designed and developed at the Jet Propulsion Laboratory (JPL), TIE's primary purpose was to power the NASA's Global Imagery Browse Services (GIBS), a system that provides full resolution imagery from a broad set of Earth science disciplines to the public. The SMAP project at JPL had just about all of its requirements met with GIBS but required very project-specific behavior and automation for the Cal-Val phase of the project. Thanks to the extendable design of TIE (already an extension of JPL's Horizon framework) and Amazon's GovCloud services, we were able to meet the needs of the project without any rewrite of the system while significantly expanding the capabilities of an already robust system through well modularized feature additions. In this presentation, we will talk about the efforts made to re-use the already developed data system TIE for SMAP with minimal turn around. Leveraging cloud resources and standard interfaces, we were able to satisfy new project requirements in a very short amount of time.

  3. Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C. III; Mikhaylov, Rebecca; Ramesham, Rajeshuni; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg

    2013-01-01

    Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through

  4. Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C., III; Mikhaylov, Rebecca; Rajeshuni, Ramesham; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg

    2013-01-01

    Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through

  5. Scaling and calibration of a core validation site for the soil moisture active passive mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation of soil moisture remote sensing products is complicated due to the logistics of installing a long term soil moisture monitoring network in an active landscape. It is more efficient to locate these stations along agricultural field boundaries, but unfortunately this oft...

  6. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  7. On the identification of representative in situ soil moisture monitoring stations for the validation of SMAP soil moisture products in Australia

    NASA Astrophysics Data System (ADS)

    Yee, Mei Sun; Walker, Jeffrey P.; Monerris, Alessandra; Rüdiger, Christoph; Jackson, Thomas J.

    2016-06-01

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in situ monitoring stations. Therefore, a standard methodology for selecting the most representative stations for the purpose of validating satellites and land surface models is essential. Based on temporal stability and geostatistical studies using long-term soil moisture records, intensive ground measurements and airborne soil moisture products, this study investigates the representativeness of soil moisture monitoring stations within the Yanco study area for the validation of NASA's Soil Moisture Active Passive (SMAP) products at 3 km for radar, 9 km for radar-radiometer and 36 km for radiometer pixels. This resulted in the identification of a number of representative stations according to the different scales. Although the temporal stability method was found to be suitable for identifying representative stations, stations based on the mean relative difference (MRD) were not necessarily the most representative of the areal average. Moreover, those identified from standard deviation of the relative difference (SDRD) may be dry-biased. It was also found that in the presence of heterogeneous land use, stations should be weighted based on proportions of agricultural land. Airborne soil moisture products were also shown to provide useful a priori information for identifying representative locations. Finally, recommendations are made regarding the design of future networks for satellite validation, and specifically the most representative stations for the Yanco area.

  8. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  9. Active-passive correlation spectroscopy - A new technique for identifying ocean color algorithm spectral regions

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1986-01-01

    A new active-passive airborne data correlation technique has been developed which allows the validation of existing in-water oceoan color algorithms and the rapid search, identification, and evaluation of new sensor band locations and algorithm wavelength intervals. Thus far, applied only in conjunction with the spectral curvature algorithm (SCA), the active-passive correlation spectroscopy (APCS) technique shows that (1) the usual 490-nm (center-band) chlorophyll SCA could satisfactorily be placed anywhere within the nominal 460-510-nm interval, and (2) two other spectral regions, 645-660 and 680-695 nm, show considerable promise for chlorophyll pigment measurement. Additionally, the APCS method reveals potentially useful wavelength regions (at 600 and about 670 nm) of very low chlorophyll-in-water spectral curvature into which accessory pigment algorithms for phycoerythrin might be carefully positioned. In combination, the APCS and SCA methods strongly suggest that significant information content resides within the seemingly featureless ocean color spectrum.

  10. SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.

    2013-12-01

    Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are

  11. The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets

    PubMed Central

    Märtens, Birgit; Bezerra, Gustavo Arruda; Kreuter, Mathias Josef; Grishkovskaya, Irina; Manica, Andrea; Arkhipova, Valentina; Djinovic-Carugo, Kristina; Bläsi, Udo

    2015-01-01

    Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism. Sm-based regulation is diverse and can range in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in these processes being mediated by an RNA-associated molecular assembly built on Sm proteins. Despite the availability of several 3D-structures of Sm-like archaeal proteins (SmAPs), their function has remained elusive. The aim of this study was to shed light on the function of SmAP1 and SmAP2 of the crenarchaeon Sulfolobus solfataricus (Sso). Using co-purification followed by RNASeq different classes of non-coding RNAs and mRNAs were identified that co-purified either with both paralogues or solely with Sso-SmAP1 or Sso-SmAP2. The large number of associated intron-containing tRNAs and tRNA/rRNA modifying RNAs may suggest a role of the two Sso-SmAPs in tRNA/rRNA processing. Moreover, the 3D structure of Sso-SmAP2 was elucidated. Like Sso-SmAP1, Sso-SmAP2 forms homoheptamers. The binding of both proteins to distinct RNA substrates is discussed in terms of surface conservation, structural differences in the RNA binding sites and differences in the electrostatic surface potential of the two Sso-SmAP proteins. Taken together, this study may hint to common and different functions of both Sso-SmAPs in Sso RNA metabolism. PMID:25905548

  12. Vegetation stress from soil moisture and chlorophyll fluorescence: synergy between SMAP and FLEX approaches

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Moran, Susan

    2014-05-01

    Vegetation stress detection continues being a focal objective for remote sensing techniques. It has implications not only for practical applications such as irrigation optimization or precision agriculture, but also for global climate models, providing data to better link water and carbon exchanges between the surface and the atmospheric and improved parameterization of the role of terrestrial vegetation in the coupling of water and carbon cycles. Traditional approaches to map vegetation stress using remote sensing techniques have been based on measurements of soil moisture status, canopy (radiometric) temperature and, to a lesser extent, canopy water content, but new techniques such as the dynamics of vegetation fluorescence emission, are also now available. Within the context of the preparatory activities for the SMAP and FLEX missions, a number of initiatives have been put in place to combine modelling activities and field experiments in order to look for alternative and more efficient ways of detecting vegetation stress, with emphasis on synergistic remote sensing approaches. The potential of solar-induced vegetation fluorescence as an early indicator of stress has been widely demonstrated, for different type of stress conditions: light amount (excess illumination) and conditions (direct/diffuse), temperature extremes (low and high), soil water availability (soil moisture), soil nutrients (nitrogen), atmospheric water vapour and atmospheric CO2 concentration. The effects caused by different stress conditions are sometimes difficult to be decoupled, also because different causes are often combined, but in general they then to change the overall fluorescence emission (modulating amplitude) or changing the relative contributions of photosystems PSI and PSII or the relative fluorescence re-absorption effects caused by modifications in the structure of pigment bed responsible for light absorption, in particular for acclimation for persistent stress conditions. While

  13. SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison.

    PubMed

    Ren, Jingyuan; Xie, Lei; Li, Wilfred W; Bourne, Philip E

    2010-07-01

    The proteome-wide characterization and analysis of protein ligand-binding sites and their interactions with ligands can provide pivotal information in understanding the structure, function and evolution of proteins and for designing safe and efficient therapeutics. The SMAP web service (SMAP-WS) meets this need through parallel computations designed for 3D ligand-binding site comparison and similarity searching on a structural proteome scale. SMAP-WS implements a shape descriptor (the Geometric Potential) that characterizes both local and global topological properties of the protein structure and which can be used to predict the likely ligand-binding pocket [Xie,L. and Bourne,P.E. (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand-binding sites. BMC bioinformatics, 8 (Suppl. 4.), S9.]. Subsequently a sequence order independent profile-profile alignment (SOIPPA) algorithm is used to detect and align similar pockets thereby finding protein functional and evolutionary relationships across fold space [Xie, L. and Bourne, P.E. (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl Acad. Sci. USA, 105, 5441-5446]. An extreme value distribution model estimates the statistical significance of the match [Xie, L., Xie, L. and Bourne, P.E. (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics, 25, i305-i312.]. These algorithms have been extensively benchmarked and shown to outperform most existing algorithms. Moreover, several predictions resulting from SMAP-WS have been validated experimentally. Thus far SMAP-WS has been applied to predict drug side effects, and to repurpose existing drugs for new indications. SMAP-WS provides both a user-friendly web interface and

  14. SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison.

    PubMed

    Ren, Jingyuan; Xie, Lei; Li, Wilfred W; Bourne, Philip E

    2010-07-01

    The proteome-wide characterization and analysis of protein ligand-binding sites and their interactions with ligands can provide pivotal information in understanding the structure, function and evolution of proteins and for designing safe and efficient therapeutics. The SMAP web service (SMAP-WS) meets this need through parallel computations designed for 3D ligand-binding site comparison and similarity searching on a structural proteome scale. SMAP-WS implements a shape descriptor (the Geometric Potential) that characterizes both local and global topological properties of the protein structure and which can be used to predict the likely ligand-binding pocket [Xie,L. and Bourne,P.E. (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand-binding sites. BMC bioinformatics, 8 (Suppl. 4.), S9.]. Subsequently a sequence order independent profile-profile alignment (SOIPPA) algorithm is used to detect and align similar pockets thereby finding protein functional and evolutionary relationships across fold space [Xie, L. and Bourne, P.E. (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl Acad. Sci. USA, 105, 5441-5446]. An extreme value distribution model estimates the statistical significance of the match [Xie, L., Xie, L. and Bourne, P.E. (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics, 25, i305-i312.]. These algorithms have been extensively benchmarked and shown to outperform most existing algorithms. Moreover, several predictions resulting from SMAP-WS have been validated experimentally. Thus far SMAP-WS has been applied to predict drug side effects, and to repurpose existing drugs for new indications. SMAP-WS provides both a user-friendly web interface and

  15. Land Surface Modeling at Hyper-Resolution in the Context of SMAP Cal/Val

    NASA Astrophysics Data System (ADS)

    Garnaud, C.; Bélair, S.

    2015-12-01

    In the context of SMAP Cal-Val, this study evaluates the performance of Environment Canada's Surface Prediction System (SPS) with respect to soil moisture with an emphasis on spatial variability. To do so, SPS is run at hyper-resolution (100m) over a small domain in southern Manitoba, Canada, where an intensive measuring campaign took place in the summer of 2012 to facilitate comparison to observations. It is shown that SPS is able to simulate the near-surface soil conditions with high accuracy, but that, at such high resolution, the quality of the geophysical fields has a large impact on modeled results, particularly on the spatial variability.

  16. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Palumbo, Dan (Technical Monitor)

    2002-01-01

    It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.

  17. Soil Moisture Retrieval Through Changing Corn Using Active/Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Joseph, A.; DeLannoy, G.; Lang, R.; Utku, C.; Kim, E.; Houser, P.; Gish, T.

    2003-01-01

    An extensive field experiment was conducted from May-early October, 2002 at the heavily instrumented USDA-ARS (U.S. Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing Production Inputs for Economic and Environmental Enhancement) test site in Beltsville, MD to acquire data needed to address active/passive microwave algorithm, modeling, and ground validation issues for accurate soil moisture retrieval. During the experiment, a tower-mounted 1.4 GHz radiometer (Lrad) and a truck-mounted dual-frequency (1.6 and 4.75 GHz) radar system were deployed on the northern edge of the site. The soil in this portion of the field is a sandy loam (silt 23.5%, sand 60.3%, clay 16.1%) with a measured bulk density of 1.253 g/cu cm. Vegetation cover in the experiment consisted of a corn crop which was measured from just after planting on April 17, 2002 through senescence and harvesting on October 2. Although drought conditions prevailed during the summer, the corn yield was near average, with peak biomass reached in late July.

  18. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  19. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  20. The Development of an Intelligent Hybrid Active-passive Vibration Isolator

    NASA Astrophysics Data System (ADS)

    Shuai, Changgeng; Ma, Jianguo; Rustighi, Emiliano

    2016-09-01

    A hybrid active-passive vibration isolator made up of electromagnetic actuator and air spring in parallel can be used to effectively isolate the broadband and line spectrum vibration of mechanical equipment simultaneously. However, due to its reliability and safety problems caused by the impact, its application in ships is limited. In this paper, an impact- resistant structure and an air gap self-sensing method of the passive-active hybrid vibration isolator are proposed and developed on the base of modelling, simulation and analysis. A thin magnetic rubber is filled into the air gap of electromagnetic actuator, which can avoid rigid collision between the armature and the permanent magnet under the action of impact. A suspension armature structure including pre-compression spring is suggested, which can automatically compensate the deformation caused by impact and protect the coil and permanent magnet from impact damage. An air gap self-sensing method is developed through detecting the voltage between the input and output terminals of actuator, which is verified by experiments.

  1. Connecting NASA science and engineering with earth science applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  2. Precipitation estimation using L-Band and C-Band soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...

  3. Challenges in Interpreting and Validating Satellite Soil Moisture Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global soil moisture products are now being generated routinely using microwave-based satellite observing systems. These include the NASA Soil Moisture Active Passive (SMAP) mission. In order to fully exploit these observations they must be integrated with both in situ measurements and model-based e...

  4. Regional and temporal patterns of soil moisture during CLASIC using the TMI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as ...

  5. Intercomparison of active, passive and continuous instruments for radon and radon progeny

    SciTech Connect

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.

    1995-12-31

    The DOE/OHER radon, thoron and progeny exposure and test facility was set up in 1993 to provide a well controlled, airtight and uniform environment. The new calibration chamber is the primary test facility at the Environmental Measurements Laboratory (EML), in which a large number of an diverse types of monitoring instruments can be accomodated for calibration, evaluation and intercomparison purposes. The test chamber is environmentally controlled for temperature and humidity. Monodispersed or polydispersed aerosols are generated to study radon and thoron progeny attachment and behavior and to investigate instrument performance under different conditions of exposure. Also, particle size measurements are performed to develop techniques for the assessment of the health risk from the inhalation of radon and thoron progeny. The results from the May 1995 intercomparison for active, passive and continuous instruments for radon and radon progeny are presented. Instruments that measure radon were represented by 13 participants with open face and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were 4 participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy (PAEC). The results indicate that all the tested instruments that measure radon are in good standing. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for PAEC (WL), appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cc{sup -1}.

  6. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  7. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  8. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  9. Reflection Paper on a Ubiquitous English Vocabulary Learning System: Evidence of Active/Passive Attitude vs. Usefulness/Ease-of-Use

    ERIC Educational Resources Information Center

    Lim, Jeff

    2013-01-01

    "A ubiquitous English vocabulary learning system: evidence of active/passive attitudes vs. usefulness/ease-of-use" introduces and develops "Ubiquitous English Vocabulary Learning" (UEFL) system. It introduces to the memorization using the video clips. According to their paper the video clip gives a better chance for students to…

  10. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  11. Formulation of 36-noded piezoelectric spectral finite element scheme with active/passive layers coupled by Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Ashwin, U.; Raja, S.; Sathyanarayana, C. N.

    2014-08-01

    A novel spectral finite element formulation scheme is presented for modeling a plate structure with surface-mounted piezoelectric transducers. Surface-mounted piezoelectric transducers may asymmetrically distribute the mass in the thickness direction of the plate/panel structure, resulting in a coupled mass matrix in spectral element formulation. A new procedure is developed by equating the layer-wise kinematics of the element using undetermined Lagrange multipliers to achieve the diagonal mass matrix. To demonstrate the effectiveness of the element formulation scheme, a two-dimensional piezoelectric spectral element is constructed with 36 nodes and five active/passive layers (layers: transducer/bond/plate/bond/transducer). The performance of the developed element is illustrated by (a) simulation of Lamb wave propagation and estimation of its velocity, and (b) simulation of the effect of transducer size, its dynamics and shear lag on sensor’s response. The results presented highlight the importance of modeling the dynamics of transducers and understanding the effects on sensor response. The presented technique has relevance in the field of structural health monitoring, wherein it can be used to model and simulate aircraft panels with surface-mounted piezoelectric transducers.

  12. Active, passive and snapshot exploration in a virtual environment: influence on scene memory, reorientation and path memory.

    PubMed

    Gaunet, F; Vidal, M; Kemeny, A; Berthoz, A

    2001-06-01

    We investigated the importance of active, passive and snapshot exploration on spatial memory in a virtual city. The exploration consisted in traveling along a series of streets. 'Active exploration' was performed by giving directions to the subject who controlled his displacement with a joystick. During 'passive' exploration, the travel was imposed by the computer. Finally, during 'snapshot exploration', simple views of the scene were presented sequentially every 4 m. Travel velocity was the same in all cases. The three visual exploration modes were compared with three spatial memory measures: (1) scene recognition, (2) at the end of the path, reorientation toward the departure point and (3) drawings of the path shape. Scene recognition and estimation of the direction of the starting point of the path were not affected by the mode of exploration. In contrast, reproduction of the shape of the path was affected: the errors of reproduction were greater for the snapshot exploration than for the other two conditions; there was no difference between the other two conditions. These results suggest that (1) 2D image features from a visual scene are memorized. Moreover, (2) pointing towards the origin of the path relies on motion duration integration or a frame of reference integrated during displacement. Finally, (3) drawing the path shape involves a deliberate reconstruction process.

  13. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.

  14. Common Spacecraft Bus for Earth Science Decadal Survey Missions

    NASA Astrophysics Data System (ADS)

    Cook, T.; Klaus, K.; Elsperman, M. S.

    2010-12-01

    Our study assessed the overall technical and programmatic viability of a Common Spacecraft Bus (CSB) approach that could satify the requirements of multiple Earth Science Decadal Mission programs resulting in cost and schedule savings over individual programs. Our approach developed a Common Payload Interface (CPIF) concept based on assessment of TIER I mission requirements to enable flexibility to the payloads while maintaining maximum commonality in the bus design. Satellite missions in Tier 1 of the Decadal Survey are missions with a launch period beginning in 2014. Four missions are planned and will measure climate change by examining solar and earth radiation, soil moisture and freeze/thaw cycles, ice sheet height differences, surface and ice sheet deformation from natural hazards, and vegetation structure (SMAP, ICESat-2, CLARREO, and DESDynI). Our study goals and objectives were: Develop a Common Spacecraft Bus (CSB) that incorporates the defined CPIF that can be configured to meet the individual Tier I mission specific requirements with minimal impacts or changes; Develop a efficient Assembly, Integration and Test (AI&T) flow and program schedule that can accommodate multiple Observatory level spacecraft processing and provide the flexibility to respond to program changes and other schedule perturbations; Develop a ROM cost for the CSB program approach, based on the reference design and schedules; Evaluate the CSB capability to host payloads of opportunity on the Tier I spacecraft; Evaluate the CSB capability to host the Tier II missions and what changes are required from the Tier I CSB We concluded: CSB approach for Tier I missions is feasible with very good synergy; Program Execution and AI&T approaches can be defined to take maximum advantage of CSB program approach and meet required launch readiness dates; ROM cost analysis indicates that a CSB approach is viable and offers substantial savings over separate procurements The Common Spacecraft Bus

  15. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.

  16. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  17. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  18. Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides.

    PubMed

    López, Oscar García; Lasaosa, Daniel; López-Amo, Manuel; Galarza, Marko

    2013-09-23

    A new active-passive monolithic integration approach for photonic components based on vertical evanescent coupling is presented. Two vertically stacked waveguides are used in order to provide full resonant power transfer between them and avoiding the need of tapered structures. Light confinement in each waveguide is achieved combining strong lateral asymmetric structures and bent waveguides, both defined during lithography. Low propagation losses for the active waveguide and coupling efficiencies to the passive section as high as 97% have been obtained.

  19. Evaluation of the SMAP model-simulated snow internal physical properties at Sapporo, Japan from 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Matoba, Sumito; Kodama, Yuji; Tanikawa, Tomonori

    2016-04-01

    Temporal evolution of snow internal physical properties such as grain size, density, temperature, and water content are controlled by changes in meteorological conditions. On the other hand, in a snow covered area, surface atmospheric conditions are modulated in response to variations of snow albedo, which is affected by (optically equivalent) snow grain size as well as mass concentration of snow impurities such as black carbon and dust. Therefore, it is necessary for snowpack models incorporated in climate models to simulate realistic snow internal physical properties to perform accurate future climate prediction especially in the cryosphere. In this study, we evaluated snow internal physical properties at Sapporo (43° 05'N, 141° 21'E, 15 m a.s.l.), Japan from 2005 to 2015 simulated with a 1-D multilayered physical snowpack model SMAP (Snow Metamorphism and Albedo Process). The model was driven by quality controlled 30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow depth, downward and upward shortwave radiant flux, downward longwave radiant flux, and ground surface soil heat flux. Simulation results were compared against the data obtained from snow pit works performed twice a week at Sapporo. First of all, the model-simulated column integrated SWE (snow water equivalent) were compared against in-situ measurements (273 data were available during the 10 winters). The results show that the model tends to underestimate SWE (mean error; ME was -19 mm); however, root mean square error (RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth but precipitation (ME was less than -25 mm and RMSE was more than 40 mm). It suggests that the correction technique for precipitation measurements considering catch efficiency of a rain gauge is still insufficient. Next, the model-simulated profiles for snow density and snow temperature were compared against in-situ measurements. For this purpose

  20. Evaluation of the SMAP model-simulated snow internal physical properties at Sapporo, Japan from 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Matoba, Sumito; Kodama, Yuji; Tanikawa, Tomonori

    2016-04-01

    Temporal evolution of snow internal physical properties such as grain size, density, temperature, and water content are controlled by changes in meteorological conditions. On the other hand, in a snow covered area, surface atmospheric conditions are modulated in response to variations of snow albedo, which is affected by (optically equivalent) snow grain size as well as mass concentration of snow impurities such as black carbon and dust. Therefore, it is necessary for snowpack models incorporated in climate models to simulate realistic snow internal physical properties to perform accurate future climate prediction especially in the cryosphere. In this study, we evaluated snow internal physical properties at Sapporo (43° 05'N, 141° 21'E, 15 m a.s.l.), Japan from 2005 to 2015 simulated with a 1-D multilayered physical snowpack model SMAP (Snow Metamorphism and Albedo Process). The model was driven by quality controlled 30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow depth, downward and upward shortwave radiant flux, downward longwave radiant flux, and ground surface soil heat flux. Simulation results were compared against the data obtained from snow pit works performed twice a week at Sapporo. First of all, the model-simulated column integrated SWE (snow water equivalent) were compared against in-situ measurements (273 data were available during the 10 winters). The results show that the model tends to underestimate SWE (mean error; ME was -19 mm); however, root mean square error (RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth but precipitation (ME was less than -25 mm and RMSE was more than 40 mm). It suggests that the correction technique for precipitation measurements considering catch efficiency of a rain gauge is still insufficient. Next, the model-simulated profiles for snow density and snow temperature were compared against in-situ measurements. For this purpose

  1. COMBINED ACTIVE/PASSIVE DECAY HEAT REMOVAL APPROACH FOR THE 24 MWt GAS-COOLED FAST REACTOR

    SciTech Connect

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    Decay heat removal at depressurized shutdown conditions has been regarded as one of the key areas where significant improvement in passive response was targeted for the GEN IV GFR over the GCFR designs of thirty years ago. It has been recognized that the poor heat transfer characteristics of gas coolant at lower pressures needed to be accommodated in the GEN IV design. The design envelope has therefore been extended to include a station blackout sequence simultaneous with a small break/leak. After an exploratory phase of scoping analysis in this project, together with CEA of France, it was decided that natural convection would be selected as the passive decay heat removal approach of preference. Furthermore, a double vessel/containment option, similar to the double vessel/guard vessel approach of the SFR, was selected as the means of design implementation to reduce the PRA risks of the depressurization accident. However additional calculations in conjunction with CEA showed that there was an economic penalty in terms of decay heat removal system heat exchanger size, elevation heights for thermal centers, and most of all in guard containment back pressure for complete reliance on natural convection only. The back pressure ranges complicated the design requirements for the guard containment. Recognizing that the definition of a loss-of-coolant-accident in the GFR is a misnomer, since gas coolant will always be present, and the availability of some driven blower would reduce fuel temperature transients significantly; it was decided instead to aim for a hybrid active/passive combination approach to the selected BDBA. Complete natural convection only would still be relied on for decay heat removal but only after the first twenty four hours after the initiation of the accident. During the first twenty four hour period an actively powered blower would be relied on to provide the emergency decay power removal. However the power requirements of the active blower

  2. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  3. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  4. Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over Valencia Anchor Station by Using Downscaling Technique

    NASA Astrophysics Data System (ADS)

    Ansari Amoli, Abdolreza; Lopez-Baeza, Ernesto; Mahmoudi, Ali; Mahmoodi, Ali

    2016-07-01

    Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over the Valencia Anchor Station by Using a Downscaling Technique Ansari Amoli, A.(1),Mahmoodi, A.(2) and Lopez-Baeza, E.(3) (1) Department of Earth Physics and Thermodynamics, University of Valencia, Spain (2) Centre d'Etudes Spatiales de la BIOsphère (CESBIO), France (3) Department of Earth Physics and Thermodynamics, University of Valencia, Spain Soil moisture products from active sensors are not operationally available. Passive remote sensors return more accurate estimates, but their resolution is much coarser. One solution to overcome this problem is the synergy between radar and radiometric data by using disaggregation (downscaling) techniques. Few studies have been conducted to merge high resolution radar and coarse resolution radiometer measurements in order to obtain an intermediate resolution product. In this paper we present an algorithm using combined available SMAP (Soil Moisture Active and Passive) radar and SMOS (Soil Moisture and Ocean Salinity) radiometer measurements to estimate surface soil moisture over the Valencia Anchor Station (VAS), Valencia, Spain. The goal is to combine the respective attributes of the radar and radiometer observations to estimate soil moisture at a resolution of 3 km. The algorithm disaggregates the coarse resolution SMOS (15 km) radiometer brightness temperature product based on the spatial variation of the high resolution SMAP (3 km) radar backscatter. The disaggregation of the radiometer brightness temperature uses the radar backscatter spatial patterns within the radiometer footprint that are inferred from the radar measurements. For this reason the radar measurements within the radiometer footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and radiometer measurements.

  5. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential

  6. The SMOS mission. Project status and next steps

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Waldteufel, P.; Cabot, F.; Font, J.; Hahne, A.; Mecklenburg, S.

    2009-04-01

    It is now well understood that soil moisture and sea surface salinity are required to improve meteorological and climatic predictions. These two quantities are not yet available globally and with an adequate temporal sampling. So as to cover this data gap, it has been recognized that, provided it is possible to accommodate a suitable antenna on board a satellite, L Band radiometry was most probably the most promising way to fulfill this gap . It is within this framework that the European Space Agency (ESA)'s selected the second Earth Explorer Opportunity Mission, namely the Soil Moisture and Ocean Salinity (SMOS) mission. SMOS is currently ready to be launched and is scheduled for launch in 2009, slightly before Aquarius and SMAP. The SMOS mission is ESA's second Earth Explorer Opportunity mission it is a joint program lead by the European Space Agency (ESA) with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent. Consequently, the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil over land, and, after some surface roughness and temperature corrections, spatio temporal aggregation, to the sea surface salinity over oceans. SMOS will achieve an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) seeking to meet soil moisture science objectives. This is possible by using a non-rotating thinned 8 m diameter antenna. The imaging capability of such antenna is implemented by aperture synthesis, the same technique of radio-astronomy. Such innovative concept has required a significant effort in the development of calibration techniques. It provides multiangular

  7. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  8. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  9. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  10. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  11. Missions and Moral Judgement.

    ERIC Educational Resources Information Center

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  12. Shared mission operations concept

    NASA Technical Reports Server (NTRS)

    Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.

    1994-01-01

    Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.

  13. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  14. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  15. Mission design options for human Mars missions

    NASA Astrophysics Data System (ADS)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  16. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  17. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  18. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  19. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  20. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  1. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  2. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  3. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  4. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  5. Using SMOS observations in the development of the SMAP level 4 surface and root-zone soil moisture project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...

  6. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  7. Mars landing exploration mission

    NASA Astrophysics Data System (ADS)

    Suzaki, Megumi

    1991-07-01

    The overall concept for Mars observation missions and the systems to implement the missions are reviewed. Reviews are conducted on the following items: (1) profiles of the candidate missions; (2) aerodynamic capture deceleration estimates; (3) prospective Mars orbit decisions; (4) landing methods as the prerequisites for mission accomplishment; and (5) explorer systems to accomplish the missions. The major processes involved in the mission, from the launch to the beginning of observation of the surface, are outlined. Reviews of possible orbits taken by the explorer from Mars transfer orbit (Hohmann orbit) to Mars revolving orbit are presented. Additionally, the possible orbits for the landing vehicle from departing from the revolving orbit through landing are presented. Transportation and landing module design concepts concerning the structure, weight, and electric power balances of the explorer system are presented. Critical Mars mission technologies are cited as follows: (1) inter-planet navigation; (2) aerodynamic capture; (3) automatic and autonomous operation; and (4) landing technology.

  8. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  9. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  10. Manned Mars mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Terrapin Technologies proposes a Manned Mars Mission design study. The purpose of the Manned Mars Mission is to transport ten people and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an expedition of three months to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience but incorporates innovative design approaches to achieve mission priorities. These priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a waverider transfer module. Information is given on how the plan meets the mission requirements.

  11. The First Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Craft, H.

    1984-01-01

    The role of the mission manager in coordinating the payload with the space transportation system is studied. The establishment of the investigators working group to assist in achieving the mission objectives is examined. Analysis of the scientific requirements to assure compatibility with available resources, and analysis of the payload in order to define orbital flight requirements are described. The training of payload specialists, launch site integration, and defining the requirements for the operation of the integrated payload and the payload operations control center are functions of the mission manager. The experiences gained from the management of the Spacelab One Mission, which can be implemented in future missions, are discussed. Examples of material processing, earth observations, and life sciences advances from the First Spacelab Mission are presented.

  12. End of Mission Considerations

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2013-01-01

    While a great deal of effort goes into planning and executing successful mission operations, it is also important to consider the End of the Mission during the planning, design, and operations phases of any mission. Spacecraft and launch vehicles must be disposed of properly in order to limit the generation of orbital debris, and better preserve the orbital environment for all future missions. Figure 30-1 shows a 1990's projected growth of debris with and without the use of responsible disposal techniques. This requires early selection of a responsible disposal scenario, so that the necessary capabilities can be incorporated into the hardware designs. The mission operations must then be conducted in such a way as to preserve, and then actually perform, the planned, appropriate end of mission disposal.

  13. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  14. Cassini Solstice Mission

    NASA Astrophysics Data System (ADS)

    Spilker, Linda J.; Pappalardo, R.; Scientists, Cassini

    2009-09-01

    Our understanding of the Saturn system has been greatly enhanced by the Cassini-Huygens mission. Fundamental new discoveries have altered our views of Saturn, Titan, the rings, moons, and magnetosphere of the system. The proposed 7-year Cassini Solstice Mission will address new questions that have arisen during the Prime and Equinox Missions, and observe seasonal and temporal change in the Saturn system to prepare for future missions. The proposed Solstice Mission will provide new science in three ways: first, by observing seasonally and temporally dependent processes on Titan, Saturn, and other icy satellites, and within the rings and magnetosphere, in a hitherto unobserved seasonal phase from equinox to solstice; second, by addressing new questions that have arisen during the mission thus far, for example providing qualitatively new measurements of Enceladus which could not be accommodated in the earlier mission phases, and third, by conducting a close-in mission at Saturn that will provide a unique comparison to the Juno observations at Jupiter. These types of observations, absent Cassini, will not be fulfilled for decades to come. This poster summarizes a white paper that has been prepared for the Space Studies Board 2013-2022 Planetary Science Decadal Survey on the Cassini Solstice mission. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2009 California Institute of Technology. Government sponsorship acknowledged.

  15. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  16. Mission requirements: Second Skylab mission SL-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.

  17. The Pioneer Venus Missions.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  18. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  19. The Rosetta mission

    NASA Astrophysics Data System (ADS)

    Taylor, Matt; Altobelli, Nicolas; Martin, Patrick; Buratti, Bonnie J.; Choukroun, Mathieu

    2016-10-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Following its launch in March 2004, Rosetta underwent 3 Earth and 1 Mars flybys to achieve the correct trajectory to capture the comet, including flybys of asteroid on 2867 Steins and 21 Lutetia. For June 2011- January 2014 the spacecraft passed through a period of hibernation, due to lack of available power for full payload operation and following successful instrument commissioning, successfully rendezvoused with the comet in August 2014. Following an intense period of mapping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was successfully deployed. Rosetta then embarked on the main phase of the mission, observing the comet on its way into and away from perihelion in August 2015. At the time of writing the mission is planned to terminate with the Rosetta orbiter impacting the comet surface on 30 September 2016. This presentation will provide a brief overview of the mission and its science. The first author is honoured to give this talk on behalf of all Rosetta mission science, instrument and operations teams, for it is they who have worked tirelessly to make this mission the success it is.

  20. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  1. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  2. Fulfilling an Ambitious Mission

    ERIC Educational Resources Information Center

    Rourke, James; Mero, Dianne

    2008-01-01

    Given its success as a high achieving, award-winning magnet school for academically oriented students in grades 9-12, Columbus Alternative High School has more than successfully fulfilled its ambitious mission in the 30 years since it was named. According to the school's mission statement, Columbus Alternative aims "to create a truly alternative…

  3. STS-69 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  4. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Vitale, Stefano; LISA Pathfinder Team

    2013-04-01

    LISA Pathfinder is a mission of the European Space Mission aimed at demonstrating the space-time metrology required for space-borne gravitational wave observatories like eLISA. In particular the mission aims at experimentally test the detailed physical model of the eLISA instrument using the hardware to be flown on eLISA. This model predicts that no true forces on test-bodies will compete with gravitational signals in excess to fN/Hz^(-1/2). The mission is in phase C/D and is due to launch in two years. The talk will describe the mission, its development status, and the metrology under test.

  5. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  6. Kepler Mission Design

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Mayer, David; Voss, Janice; Basri, Gibor; Gould, Alan; Brown, Timothy; Cockran, William; Caldwell, Douglas

    2005-01-01

    The Kepler Mission is in the development phase with launch planned for 2007. The mission goal first off is to reliably detect a significant number of Earth-size planets in the habitable zone of solar-like stars. The mission design allows for exploring the diversity of planetary sizes, orbital periods, stellar spectral types, etc. In this paper we describe the technical approach taken for the mission design; describing the flight and ground system, the detection methodology, the photometer design and capabilities, and the way the data are taken and processed. (For Stellar Classification program. Finally the detection capability in terms of planet size and orbit are presented as a function of mission duration and stellar type.

  7. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  8. Modeling Off-Nominal Behavior in SysML

    NASA Technical Reports Server (NTRS)

    Day, John C.; Donahue, Kenneth; Ingham, Michel; Kadesch, Alex; Kennedy, Andrew K.; Post, Ethan

    2012-01-01

    Specification and development of fault management functionality in systems is performed in an ad hoc way - more of an art than a science. Improvements to system reliability, availability, safety and resilience will be limited without infusion of additional formality into the practice of fault management. Key to the formalization of fault management is a precise representation of off-nominal behavior. Using the upcoming Soil Moisture Active-Passive (SMAP) mission for source material, we have modeled the off-nominal behavior of the SMAP system during its initial spin-up activity, using the System Modeling Language (SysML). In the course of developing these models, we have developed generic patterns for capturing off-nominal behavior in SysML. We show how these patterns provide useful ways of reasoning about the system (e.g., checking for completeness and effectiveness) and allow the automatic generation of typical artifacts (e.g., success trees and FMECAs) used in system analyses.

  9. The SMOS mission. Project status and next steps

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Waldteufel, P.; Cabot, F.; Font, J.; Hahne, A.; Mecklenburg, S.

    2009-04-01

    It is now well understood that soil moisture and sea surface salinity are required to improve meteorological and climatic predictions. These two quantities are not yet available globally and with an adequate temporal sampling. So as to cover this data gap, it has been recognized that, provided it is possible to accommodate a suitable antenna on board a satellite, L Band radiometry was most probably the most promising way to fulfill this gap . It is within this framework that the European Space Agency (ESA)'s selected the second Earth Explorer Opportunity Mission, namely the Soil Moisture and Ocean Salinity (SMOS) mission. SMOS is currently ready to be launched and is scheduled for launch in 2009, slightly before Aquarius and SMAP. The SMOS mission is ESA's second Earth Explorer Opportunity mission it is a joint program lead by the European Space Agency (ESA) with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent. Consequently, the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil over land, and, after some surface roughness and temperature corrections, spatio temporal aggregation, to the sea surface salinity over oceans. SMOS will achieve an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) seeking to meet soil moisture science objectives. This is possible by using a non-rotating thinned 8 m diameter antenna. The imaging capability of such antenna is implemented by aperture synthesis, the same technique of radio-astronomy. Such innovative concept has required a significant effort in the development of calibration techniques. It provides multiangular

  10. Airborne Soil Moisture determination at regional level: A data fusion mission approach for Catalan territory

    NASA Astrophysics Data System (ADS)

    Martin, Francisco; Corbera, Jordi; Marchan, Juan Fernando; Camps, Adriano

    2010-05-01

    During the last years the importance of water management has grown considerably. Average temperatures exhibit an increasing pattern (0.77 °C during the last 20 years) that is expected to continue in the next years. These results in a decrease in the hydrical resources (15% during the last 20 years for the Catalan territori) being the expectative not very optimist. A tangible consequence was the drought episode that suffers Catalonia. It is within this scenario that the ‘Programa Català d'Observació de la Terra' (PCOT) as a unit of the official mapping agency of Catalonia, the ‘Institut Cartogràfic de Catalunya' (ICC) has detected the need to develop new tools to improve the management of water resources. The knowledge of soil moisture across a given region can help to efficiently manage the limited water resources. Present Earth Observations missions such as ESA's SMOS, or the future NASA's SMAP focus considerably their efforts in the estimation of soil moisture. The main drawbacks are the resolutions obtained (40 km for SMOS, 10 km for SMAP), which are not adequate for regional scale and territorial availability such as the case of Catalonia where a spatial resolution in a range between 20-30m. and 100-150m. is desired both for local actuations and to deteminate hidric soil patterns In this scenario, PCOT is carrying out an airborne soil moisture mission for the Catalan territory, taking advantage of the availability of ICC aircrafts and of more than 20 years of experience in making aircraft campaigns and operating hyperspectral airborne sensors such as CASI (0.75-1.4 µm) and TASI (8-11.5 µm) to respond to environmental and cartographic end users needs of geoinformation data, products and services. This mission will generate soil moisture maps over the Catalan region that will improve the water management, and will also be used for the study of the hydrological patterns of Catalonia. Soil moisture determination will be achieved by means of L

  11. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  12. Voyager Interstellar Mission (VIM)

    NASA Technical Reports Server (NTRS)

    Rudd, R.; Textor, G.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for the Voyager Interstellar Mission (VIM) are summarized. The general objectives of the VIM are to investigate the interplanetary and interstellar media and to continue the Voyager program of ultraviolet astronomy. The VIM will utilize both Voyager spacecraft for the period from January 1990 through December 2019. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, control and support systems; and tracking support responsibility.

  13. Moon manned mission scenarios

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Tripathi, R. K.; Wilson, J. W.; Clowdsley, M. S.; Nealy, J. E.; Badavi, F. F.

    An analysis is performed on the radiation environment found around and on the surface of the Moon, and applied to different possible lunar mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The scenarios are evaluated from the point of view of radiation safety with the radiation protection quantities recommended for LEO scenarios.

  14. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  15. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  16. Defining departmental mission.

    PubMed

    Hartman, M D; Barrow, J A; Sawyer, W R

    1990-02-01

    Mission statements have long been recognized by corporate America as a way to define an enterprise. The necessary business orientation of the health care industry requires that hospitals and hospital departments define their scope of services and reason for existence. The accelerating reprofessionalization affecting departments of pharmacy requires the same. "Improving the quality of patient care" can no longer represent a euphemism for simply reacting to external factors or acting on a whim without clear meaningful intent. Professional departments and hospitals must demonstrate a sense of direction and purpose and be able to justify costs to a budget-conscious management and skeptical public. Mission statements are not substitutes for a clearly defined sense of professional mission. However, well-constructed mission statements contribute to clarity of departmental and professional purpose and effective achievement of goals. PMID:10128549

  17. Theme: A Mission Statement.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J; And Others

    1990-01-01

    Discusses what the future holds for vocational agriculture. Includes seven articles on the mission of agricultural education, teacher education, the public image, planning, secondary vocational agriculture, needed changes, and a vision for the future. (JOW)

  18. The Mars Observer Mission

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1985-01-01

    The Mars Observer Mission is to be the first in a series of modest-cost inner-planet missions. Launch is planned for the August/September 1990 Mars opportunity with arrival at Mars one year later. The geoscience/climatology objectives are to be met during a mapping mission over the course of one Mars year (687 days). The mapping orbit will be near-polar (93 degree orbital inclination), sun-synchronous (2 PM sunward equator crossing), and near-circular (350 km orbit altitude, 116 minute period). The spacecraft, to be selected in late 1985, will be a modified version of an existing commercial design which, in the mapping orbit, will maintain a nadir orientation. Experiments and instruments will be selected through an Announcement of Opportunity (AO) process with release of the AO in April 1985, and selection in early 1986. A description of current planning for this mission, with emphasis on climatology, is presented here.

  19. Technology Demonstration Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  20. STS-111 Mission Insignia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  1. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  2. Mission Control Roses

    NASA Video Gallery

    The 110th bouquet of roses arrived in Mission Control on Saturday, July 9, 2011. They were sent as quietly as they have been for more than 23 years by a family near Dallas, Texas. For 110 shuttle m...

  3. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This viewgraph presentation reviews the Mars Exploration Rover Mission. The design of the Rover along with the Athena science payload is also described. Photographs of the Gusev Crater and Meridiani rocks are also shown.

  4. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  5. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  6. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  7. Students on Hayabusa Mission

    NASA Video Gallery

    Three Massachusetts high school students began their summer with a journey halfway around the world to participate in a NASA airborne mission to image the Japanese Hayabusa spacecraft's fiery retur...

  8. The IRIS Mission Timeline

    NASA Video Gallery

    This animation shows the timeline of activities for the IRIS mission. Following launch, during the initial orbits, the spacecraft “detumbles”, opens the solar arrays, acquires the sun and com...

  9. Mission X Introduction

    NASA Video Gallery

    Expedition 26 Flight Engineer Cady Coleman delivers a message to student teams participating in the Mission X: Train Like An Astronaut international education and fitness challenge. To learn more, ...

  10. Theme: The Expanded Mission.

    ERIC Educational Resources Information Center

    Finley, Eddy; And Others

    1991-01-01

    This theme issue covers the following topics: modernization of agricultural education, an expanded mission for the field, community development, a national presence for agricultural education, revising curriculum, and interesting students in new careers in agriculture. (SK)

  11. STS-83 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  12. STS-133 Mission Highlights

    NASA Video Gallery

    Space shuttle Discovery and the STS-133 crew launched Feb. 24, 2011, on a mission to deliver the Permanent Multipurpose Module, Robonaut 2 and the Express Logistics Carrier 4 to the International S...

  13. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  14. Apollo 17 mission report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  15. Galileo Mission Science Briefing

    NASA Astrophysics Data System (ADS)

    1989-07-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  16. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  17. Galileo Mission Science Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  18. STEREO Mission Design

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Guzman, Jose J.; Sharer, Peter J.; Friessen, Henry D.

    2007-01-01

    STEREO (Solar-TErestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA). STEREO is the first mission to utilize phasing loops and multiple lunar flybys to alter the trajectories of more than one satellite. This paper describes the launch computation methodology, the launch constraints, and the resulting nine launch windows that were prepared for STEREO. More details are provided for the window in late October 2006 that was actually used.

  19. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  20. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  1. The Voyager Interstellar Mission

    NASA Technical Reports Server (NTRS)

    Rudd, R. P.; Hall, J. C.; Spradlin, G. L.

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  2. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  3. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed. PMID:11540770

  4. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  5. Mission management - Lessons learned from early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1980-01-01

    The concept and the responsibilities of a mission manager approach are reviewed, and some of the associated problems in implementing Spacelab mission are discussed. Consideration is given to program control, science management, integrated payload mission planning, and integration requirements. Payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities are outlined.

  6. STS 41-D mission crew training in Shuttle Mission simulator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    View of members of the STS 41-D mission crew training in Shuttle Mission simulator. The crew members are in the simulated flight deck. Seated behind the pilot is mission specialist Steven Hawley. Beside him are mission specialist Judith Resnick and pilot Michael Coats. All three are wearing their communication kit assemblies.

  7. Asteroid Rescue Mission

    NASA Astrophysics Data System (ADS)

    Izon, S.; Kokan, T.; Lee, S.; Miller, J.; Morrell, R.; Richie, D.; Rohrschneider, R.; Rostan, S.; Staton, E.; Olds, J.

    2001-01-01

    This paper is in response to a request for papers from the Lunar and Planetary Institute in Houston, Texas as part of a National University Competition. A human rescue mission to the asteroid 16 Psyche was designed based around a failed Mars mission scenario. The scenario assumed the second human Mars mission, based on the Mars Design Reference Mission 3.0, failed to propulsively capture into Mars orbit, resulting in a higher energy trajectory headed towards the asteroid belt on an intercept trajectory with 16 Psyche. The task was to design a mission that could rescue the astronauts using existing Mars mission hardware prior to the failure of their life support system. Analysis tools were created in the following six disciplines for the design of the mission: trajectory, propulsion, habitat and life support, space rescue vehicle and earth reentry vehicle, space transfer vehicle, and operations. The disciplinary analysis tools were integrated into a computational framework in order to aid the design process. The problem was solved using a traditional fixed-point iteration method with user controlled design variables. Additionally, two other methods of optimization were implemented: design of experiments and collaborative optimization. These were looked at in order to evaluate their ease of implementation and use at solving a complex, multidisciplinary problem. The design of experiments methodology was used to create a central composite design array and a non-linear response surface equation. The response surface equation allows rapid system level optimization. Collaborative optimization is a true multidisciplinary optimization technique which benefits from disciplinary level optimization in conjunction with system level optimization. By reformatting the objective functions of the disciplinary optimizers, collaborative optimization guides the discipline optimizers toward the system optimum.

  8. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  9. The LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    LISA Pathfinder (formerly known as SMART-2) is an ESA mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for space-borne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system LISA Pathfinder is scheduled to be launched in the first half of 2010 to a Lissajous orbit around the first Sun-Earth Lagrange point, L1. In addition to a complete European technology package (the LISA Technology Package, or LTP), LISA Pathfinder will also carry thrusters and software, known as ST-7, a part of NASA's New Millennium Program. Here I will give an introduction to, and status of, the mission, followed by a discussion on the technologies to be tested. Finally I will discuss the ways in which the LISA Pathfinder mission will be used for preparation of LISA (e.g. ground segment development as well as technology development) and for other future missions (formation flying, Fundamental Physics Explorer, etc.).

  10. Rosetta Mission Status update

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew

    2015-04-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to ex-amine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, Rosetta successfully rendezvoused with the comet. Following an intense period of map-ping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was suc-cessfully deployed. This presentation will provide a brief overview of the mission up to date and where we stand in main science phase, which began with Philae's separation. It will also provide a look forward. IT is given on behalf of ALL Rosetta mission science, in-strument and operations teams.

  11. Rosetta Mission Status Update

    NASA Astrophysics Data System (ADS)

    Taylor, M. G.; Altobelli, N.; Alexander, C. J.; Schwehm, G. H.; Jansen, F.; Küppers, M.; O'Rourke, L.; Barthelemy, M.; Geiger, B.; Grieger, B.; Moissl, R.; Vallat, C.

    2014-12-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae will be the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, at the time of writing the spacecraft is about to rendez-vous with the comet. The rest of 2014 will involve careful mapping and characterisation of the nucleus and its environs, for science and to identify a landing site for the lander Philae in November. This presentation will provide a brief overview of the mission up to date and where we stand in early part of the escort phase of the mission which runs until end of 2015.

  12. Updated Integrated Mission Program

    NASA Technical Reports Server (NTRS)

    Dauro, Vincent A., Sr.

    2003-01-01

    Integrated Mission Program (IMP) is a computer program for simulating spacecraft missions around the Earth, Moon, Mars, and/or other large bodies. IMP solves the differential equations of motion by use of a Runge-Kutta numerical-integration algorithm. Users control missions through selection from a large menu of events and maneuvers. Mission profiles, time lines, propellant requirements, feasibility analyses, and perturbation analyses can be computed quickly and accurately. A prior version of IMP, written in FORTRAN 77, was reported in Program Simulates Spacecraft Missions (MFS-28606), NASA Tech Briefs, Vol. 17, No. 4 (April 1993), page 60. The present version, written in double-precision Lahey FORTRAN 90, incorporates a number of improvements over the prior version. Some of the improvements modernize the code to take advantage of today's greater central-processing-unit speeds. Other improvements render the code more modular; provide additional input, output, and debugging capabilities; and add to the variety of maneuvers, events, and means of propulsion that can be simulated. The IMP user manuals (of which there are now ten, each addressing a different aspect of the code and its use) have been updated accordingly.

  13. STS-90 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  14. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  15. The Euclid Mission

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe; Laureijs, Rene

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) designed to investigate the nature of dark energy, dark matter and gravity by observing their signatures on the geometry of the Universe and on the formation of large structures over cosmological timescales. Euclid is optimised for two primary cosmological probes: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for a launch date in the first half of 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. The ground segment is broken down into three elements: the Mission Operations, the Science Operations under the responsibility of ESA and the Science Data Centres belonging to the Euclid Consortium. We will describe the overall mission, the mission elements architecture and the current project status.

  16. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  17. Russian program of planetary missions.

    PubMed

    Galeev, A A

    1996-01-01

    In the area of Solar System Exploration most of recently proposed mission oriented to the studies of Mars. Except MARS-96 and possibly MARS SAMPLE RETURN missions other Mars missions use Molnija class launchers. All Russian missions heavily involve international partners.

  18. The PROBA-3 Mission

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  19. Multiple asteroid rendezvous missions

    NASA Technical Reports Server (NTRS)

    Bender, D. F.; Friedlander, A. L.

    1979-01-01

    Asteroid missions, centered on multiple asteroid rendezvous missions to main belt asteroids, are discussed and the required solar electric propulsion for these missions as well as the current performance estimates are examined. A brief statistical analysis involving asteroid availability transfer requirements and propulsion system capabilities is given, leading to a prediction that 5 to 8 asteroids can be encountered with a single launch. Measurement techniques include visual imaging, radio tracking, magnetometry, and in the case of landers, seismometry. The spacecraft will be propelled by a solar electric system with a power level of 25 kW to 40 kW and tour possibilities for 13 different asteroids have been developed. Preliminary estimates of asteroid triaxiality are made to calculate the effect of close orbits.

  20. STS-95 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  1. Athena Mission Status

    NASA Astrophysics Data System (ADS)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  2. STS-89 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the STS-89 crew insignia, the link between the United States and Russia is symbolically represented by the Space Shuttle Endeavour and Russia's Mir Space Station orbiting above the Bering Strait between Siberia and Alaska. The success of the joint United States-Russian missions is depicted by the Space Shuttle and Mir colored by the rising sun in the background. A shadowed representation of the International Space Station (ISS) rising with the sun represents the future program for which the Shuttle-Mir missions are prototypes. The inside rim of the insignia describes the outline of the number eight representing STS-89 as the eighth Shuttle/Mir docking mission. The nine stars represent the nine joint missions to be flown of the program and when combined with the number eight in the rim, reflect the mission number. The nine stars also symbolize the children of the crew members who will be the future beneficiaries of the joint development work of the space programs of the two countries. Along the rim are the crew members' names with David A. Wolf's name on the left and Andrew S. W. Thomas' name on the right, the returning and upgoing cosmonaut guest researcher crew members. In between and at the bottom is the name of Salizan S. Sharipov, payload specialist representing Russian Space Agency (RSA), in Cyrillic alphabet. The other crew members are Terrence W. Wilcutt, commander; Joe F. Edwards, Jr., pilot; and mission specialists Michael P. Anderson, Bonnie J. Dunbar, and James F. Reilly. The red, white and blue of the rim reflect the colors of the American and Russian flags which are also represented in the rim on either side of the joined spacecraft.

  3. Magellan: mission summary.

    PubMed

    Saunders, R S; Pettengill, G H

    1991-04-12

    The Magellan radar mapping mission is in the process of producing a global, high-resolution image and altimetry data set of Venus. Despite initial communications problems, few data gaps have occurred. Analysis of Magellan data is in the initial stages. The radar system data are of high quality, and the planned performance is being achieved in terms of spatial resolution and geometric and radiometric accuracy. Image performance exceeds expectations, and the image quality and mosaickability are extremely good. Future plans for the mission include obtaining gravity data, filling gaps in the initial map, and conducting special studies with the radar.

  4. [Disaster medicine: mission Haiti].

    PubMed

    Gamulin, A; Villiger, Y; Hagon, O

    2010-05-12

    On January 12th, 2010, an earthquake of a magnitude of 7 on the Richter scale striked the southwest of Haiti, including the capital Port-au-Prince, and provoked immense human and material damages. Estimated number of victims is 300000 wounded, 230000 dead and 1000000 homeless. This disaster generated at once an immense and urgent need for sanitary resources. In this context, an emergency medical humanitarian mission was engaged by the Swiss Confederation (humanitarian aid depending on the Development and Cooperation Direction); this article describes this emergency mission, its progress, the committed staff and means, and the type of treated patients.

  5. The ALEXIS mission recovery

    SciTech Connect

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B.; Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R.

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  6. STS-52 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-52 insignia, designed by the mission's crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  7. Aquarius Mission Technical Overview

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.

    2007-01-01

    Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  8. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The nation's efforts to expand human presence and activity beyond Earth orbit into the solar system was given renewed emphasis in January of 1988 when the Presidential Directive on National Space Policy was signed into effect. The expansion of human presence into the solar system has particular significance, in that it defines long-range goals for NASA's future missions. To embark and achieve such ambitious ventures is a significant undertaking, particularly compared to past space activities. Missions to Mars, the Moon, and Phobos, as well as an observatory based on the dark side of the Moon are discussed.

  9. Mission Critical Networking

    SciTech Connect

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

    2010-06-01

    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  10. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  11. The Euromir missions.

    PubMed

    Andresen, R D; Domesle, R

    1996-11-01

    The 179-day flight of ESA Astronaut Thomas Reiter onboard the Russian Space Station Mir drew to a successful conclusion on 29 February 1996 with the safe landing of the Soyuz TM-22 capsule near Arkalyk in Kazakhstan. This mission, known as Euromir 95, was part of ESA's precursor flight programme for the International Space Station, and followed the equally successful Euromir 94 mission by ESA Astronaut Ulf Merbold (3 October-4 November 1994). This article discusses the objectives of the two flights and presents an overview of the experiment programme, a preliminary assessment of its results and achievements, and reviews some of the lessons learnt for future Space Station operations.

  12. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  13. Mission Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura

    2007-01-01

    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.

  14. STS-80 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This mission patch for mission STS-80 depicts the Space Shuttle Columbia and the two research satellites its crew deployed into the blue field of space. The uppermost satellite is the Orbiting Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS), a telescope aimed at unraveling the life cycles of stars and understanding the gases that drift between them. The lower satellite is the Wake Shield Facility (WSF), flying for the third time. It will use the vacuum of space to create advanced semiconductors for the nation's electronics industry. ORFEUS and WSF are joined by the symbol of the Astronaut Corps, representing the human contribution to scientific progress in space. The two bright blue stars represent the mission's Extravehicular Activities (EVA), final rehearsals for techniques and tools to be used in assembly of the International Space Station (ISS). Surrounding Columbia is a constellation of 16 stars, one for each day of the mission, representing the stellar talents of the ground and flight teams that share the goal of expanding knowledge through a permanent human presence in space.

  15. EOS Aura Mission Status

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  16. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  17. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  18. Apollo 16 mission report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  19. Inspiration is "Mission Critical"

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  20. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  1. Spacelab D-1 mission

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.

    1990-01-01

    The Spacelab D-1 (Deutchland Eins) Mission is discussed from the points of view of safety, materials handling, and toxic materials; the laboratory and equipment used; and some of the different philosophies utilized on this flight. How to enhance scientific return at the same time as being safe was examined.

  2. Aircraft mission analysis

    NASA Technical Reports Server (NTRS)

    Hauge, D. S.; Rosendaal, H. L.

    1979-01-01

    Aircraft missions, from low to hypersonic speeds, are analyzed rapidly using the FORTRAN IV program NSEG. Program employs approximate equations of motion that vary in form with type of flight segment. Takeoffs, accelerations, climbs, cruises, descents, decelerations, and landings are considered.

  3. The Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  4. Mission and Assets Database

    NASA Technical Reports Server (NTRS)

    Baldwin, John; Zendejas, Silvino; Gutheinz, Sandy; Borden, Chester; Wang, Yeou-Fang

    2009-01-01

    Mission and Assets Database (MADB) Version 1.0 is an SQL database system with a Web user interface to centralize information. The database stores flight project support resource requirements, view periods, antenna information, schedule, and forecast results for use in mid-range and long-term planning of Deep Space Network (DSN) assets.

  5. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  6. The Lobster Mission

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  7. Our School's Vital Mission.

    ERIC Educational Resources Information Center

    Vershlovskii, S. G.

    1999-01-01

    Provides information on night school, also called shift school. States that night school accommodates the rehabilitation of young people. Questions whether it has the capabilities that would make it a rehabilitative educational institution. Examines the activities of night school to determine its principal mission. (CMK)

  8. Mission Operations Assurance

    NASA Technical Reports Server (NTRS)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  9. Framing Your Mission

    ERIC Educational Resources Information Center

    Jarrell, Andrea

    2009-01-01

    St. Paul's School in New Hampshire, the Orchard School in Indiana, Chestnut Hill Academy in Pennsylvania, and Dana Hall School in Massachusetts are like most independent schools--they have qualities that are distinctive and extraordinary. Line up their mission statements, however, and the schools sound almost interchangeable. They're all on a…

  10. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  11. STS-51 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by the crewmembers, the STS-51 crew patch honors all who have contributed to mission success. It symbolizes NASA's continuing quest to increase mankind's knowledge and use of space through this multi-faceted mission. The gold star represents the U.S. Advanced Communications Technology Satellite (ACTS) boosted by the Transfer Orbit Stage (TOS). The rays below the ACTTOS represent the innovative communication technologies to be tested by this experiment. The stylized Shuttle Pallet Satellite (SPAS) represents the German-sponsored ASTROSPAS mission. The constellation Orion below SPAS is representative of the types of stellar objects to be studied by its experimenters. The stars in Orion also commemorate the astronauts who have sacrificed their lives for the space program. The ascending spiral, symbolizing America's continuing commitment to leadership in space exploration and development, originates with the thousands of persons who ensure the success of each Shuttle flight. The five large white stars, representing the five crewmembers, along with the single gold star, fomm the mission's numerical designation.

  12. The Double Star mission

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Escoubet, C. P.; Pu, Z.; Laakso, H.; Shi, J. K.; Shen, C.; Hapgood, M.

    2005-11-01

    The Double Star Programme (DSP) was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC) in Beijing and the European Payload Operations Service (EPOS) at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC) and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  13. The Mothership Mission Architecture

    NASA Astrophysics Data System (ADS)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  14. Mars mission concepts and opportunities

    NASA Technical Reports Server (NTRS)

    Young, Archie C.

    1986-01-01

    Trajectory and mission requirement data are presented for Earth Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available between 1997 and 2045. The opposition class flyby mission uses direct transfer trajectories to and on return from Mars. The opposition class stopover mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg in order to reduce the propulsion requirement associated with the opposition class mission. The conjunction class mission minimizes propulsion requirements by optimizing the stopover time at Mars.

  15. Nuclear Electric Propulsion mission operations.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Spera, R. J.

    1972-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  16. Sentinel-2 Mission status

    NASA Astrophysics Data System (ADS)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  17. Gaia Mission Status

    NASA Astrophysics Data System (ADS)

    Prusti, Timo

    2015-08-01

    The commissioning phase of the Gaia satellite was completed in July 2014 and we are well into the first year of routine phase operations out of the nominal 5 year mission. All subsystems are working and the operational parameters have been tuned for optimum science performance. A final upgrade of the on-board detection software is under testing. The aim is to be operational in the final configuration by summer 2015. The magnitude limit of the survey has been set to G=20.7 mag for astrometry and photometry. The spectroscopy magnitude limit is currently G_RVS=16.2 mag, but may be adjusted pending the new on-board software testing. The Science Alerts stream based on photometry has been started while preparations are underway for the first intermediate catalogue release by summer 2016. Examples of Gaia observations will be shown to indicate the scientific power of this ESA cornerstone mission.

  18. MARS Mission research center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Mars Mission Research Center (M2RC) is one of nine University Space Engineering Research Centers established by NASA in June 1988. It is a cooperative effort between NCSU and A&T in Greensboro. The goal of the Center is to focus on research and educational technologies for planetary exploration with particular emphasis on Mars. The research combines Mission Analysis and Design, Hypersonic Aerodynamics and Propulsion, Structures and Controls, Composite Materials, and Fabrication Methods in a cross-disciplined program directed towards the development of space transportation systems for lunar and planetary travel. The activities of the students and faculty in the M2RC for the period 1 Jul. 1990 to 30 Jun. 1991 are described.

  19. STS-31 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission insignia for NASA's STS-31 mission features the Hubble Space Telescope (HST) in its observing configuration against a background of the universe it will study. The cosmos includes a stylistic depiction of galaxies in recognition of the contribution made by Sir Edwin Hubble to our understanding of the nature of galaxies and the expansion of the universe. The STS-31 crew points out that is it in honor of Hubble's work that this great observatory in space bears his name. The depicted Space Shuttle trails a spectrum symbolic of both the red shift observations that were so important to Hubble's work and new information which will be obtained with the HST. Encircling the art work, designed by the crew, are the names of its members.

  20. Spacelab 3 mission

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.

    1990-01-01

    Spacelab-3 (SL-3) was the first microgravity mission of extended duration involving crew interaction with animal experiments. This interaction involved sharing the Spacelab environmental system, changing animal food, and changing animal waste trays by the crew. Extensive microbial testing was conducted on the animal specimens and crew and on their ground and flight facilities during all phases of the mission to determine the potential for cross contamination. Macroparticulate sampling was attempted but was unsuccessful due to the unforseen particulate contamination occurring during the flight. Particulate debris of varying size (250 micron to several inches) and composition was recovered post flight from the Spacelab floor, end cones, overhead areas, avionics fan filter, cabin fan filters, tunnel adaptor, and from the crew module. These data are discussed along with solutions, which were implemented, for particulate and microbial containment for future flight facilities.

  1. NEAR mission design

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; McAdams, James V.; Farquhar, Robert W.

    2002-01-01

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft took 4 years from launch until it became the first spacecraft to orbit an asteroid in February 2000. A month later, the spacecraft was re-christened NEAR Shoemaker to honor the late Eugene Shoemaker. To save launch costs, the mission used a special 2-year-period trajectory with an Earth gravity assist. On the way, the spacecraft imaged the asteroid 253 Mathilde. On 20 December 1998, NEAR's large engine misfired, failing to brake it for entry into orbit about 433 Eros. Another attempt 2 weeks later succeeded, but the spacecraft was almost a million kilometers away and took over a year to reach the asteroid. The mission was recovered thanks to a generous fuel supply and robust contingency planning. The implementation of the spacecraft's daring orbital maneuvers is described, including those used to land on Eros' surface in February 2001.

  2. STS-44 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Designed by the participating crewmembers, the STS-44 patch shows the Space Shuttle Atlantis ascending to Earth orbit to expand mankind's knowledge. The patch illustrated by the symbolic red, white and blue of the American flag represents the American contribution and strength derived from this mission. The black background of space, indicative of the mysteries of the universe, is illuminated by six large stars, which depict the American crew of six and the hopes that travel with them. The smaller stars represent Americans who work in support of this mission. Within the Shuttle's payload bay is a Defense Support Program Satellite which will help insure peace. In the words of a crew spokesman, the stars of the flag symbolize our leadership in an exciting quest of space and the boundless dreams for humanity's future.

  3. All about the Mission

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    It's all about the mission at Berea College. Founded on a Utopian dream, Berea has been doing diversity longer than any school in the South. Berea College isn't a product of the civil rights movement. Not even close. The school pre-dates Reconstruction. In fact, at 150 years old, the first integrated, co-educational school in the South pre-dates…

  4. Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)

    1980-01-01

    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

  5. STS-107 Mission INSIGNIA

    NASA Technical Reports Server (NTRS)

    2001-01-01

    JOHNSON SPACE CENTER, HOUSON, TEXAS -- STS-107 INSIGNIA -- This is the insignia for STS-107, which is a multi-discipline microgravity and Earth science research mission with a multitude of international scientific investigations conducted continuously during the planned 16 days on orbit. The central element of the patch is the microgravity symbol flowing into the rays of the astronaut symbol. The mission inclination is portrayed by the 39-degree angle of the astronaut symbol to the Earth's horizon. The sunrise is representative of the numerous experiments that are the dawn of a new era for continued microgravity research on the International Space Station and beyond. The breadth of science conducted on this mission will have widespread benefits to life on Earth and our continued exploration of space, illustrated by the Earth and stars. The constellation Columba (the dove) was chosen to symbolize peace on Earth and the Space Shuttle Columbia. The seven stars also represent the mission crew members and honor the original astronauts who paved the way to make research in space possible. The Israeli flag is adjacent to the name of the payload specialist who is the first person from that country to fly on the Space Shuttle. The NASA insignia design for Space Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  6. Suborbital missions: The Joust

    NASA Technical Reports Server (NTRS)

    Ferguson, Bruce W.

    1991-01-01

    Joust 1 will carry a payload of 10 experiments. The experiments in the payload module will be mated with a service module containing accelerometers, avionics, a low gravity rate control system, and battery packs. This suborbital mission will last approximately 21 minutes, providing at least 13 minutes of microgravity time. The experiments are as follow: study into polymer membrane processes; polymer curing; plasma particle generation; automated generic bioprocessing apparatus; biomodule; thin films; materials dispersion apparatus; foam formation; electrodeposition process; and powdered materials processing.

  7. The Prospector mission

    SciTech Connect

    Edwards, B. ); Pieters, C. ); Ulmer, M. . Dept. of Physics and Astronomy); Henrikson, C. )

    1992-09-07

    The Prospector mission combines high resolution visual/near-infrared(IR) imaging spectroscopy with moderately high resolution K- and L-line X-ray fluorescence mapping. These combined capabilities can be used to map the composition of virtually all solar-system objects, ranging from those that lack atmospheres (Mercury, the Earth's Moon, asteroids, and Martian satellites) to the upper atmosphere of Venus. For the purpose of mission definition and development, we have focused here on a mapping, mission to the moons of Mars-specifically Phobos, which is an easily accessible small body of the Solar System and has long been an object of intense speculation. Phobos is variously interpreted as a captured asteroid, a captured but disrupted basaltic achondrite body with anomalously low density, a comet nucleus, a body of reassembled Mars material ejected into orbit during a large impact event, a body of unknown origin but covered by an accumulation of cosmic dust and/or material ejected from Deimos, or none of the above. Multispectral observations of Phobos by instruments on the Phobos 2 spacecraft indicate that the surface of the moon is spectrally heterogeneous, with at least four units based on extended visible color. Distribution of color ratio units are most likely caused by compositional heterogeneity and surficial processes. The composition and structure of Phobos remains a stimulating scientific question, but Phobos is much more than a cipher among planetary phenomena. The low [Delta]V requirements for missions to Phobos make it readily accessible-much more so than the Martian surface. The low orbital height of Phobos make it an attractive platform for staging Mars observation and exploration. Furthermore, the possible chondritic nature of Phobos may provide a valuable reservoir of extractable H, C, N, 0, and S.

  8. The Prospector mission

    SciTech Connect

    Edwards, B.; Pieters, C.; Ulmer, M.; Henrikson, C.

    1992-09-07

    The Prospector mission combines high resolution visual/near-infrared(IR) imaging spectroscopy with moderately high resolution K- and L-line X-ray fluorescence mapping. These combined capabilities can be used to map the composition of virtually all solar-system objects, ranging from those that lack atmospheres (Mercury, the Earth`s Moon, asteroids, and Martian satellites) to the upper atmosphere of Venus. For the purpose of mission definition and development, we have focused here on a mapping, mission to the moons of Mars-specifically Phobos, which is an easily accessible small body of the Solar System and has long been an object of intense speculation. Phobos is variously interpreted as a captured asteroid, a captured but disrupted basaltic achondrite body with anomalously low density, a comet nucleus, a body of reassembled Mars material ejected into orbit during a large impact event, a body of unknown origin but covered by an accumulation of cosmic dust and/or material ejected from Deimos, or none of the above. Multispectral observations of Phobos by instruments on the Phobos 2 spacecraft indicate that the surface of the moon is spectrally heterogeneous, with at least four units based on extended visible color. Distribution of color ratio units are most likely caused by compositional heterogeneity and surficial processes. The composition and structure of Phobos remains a stimulating scientific question, but Phobos is much more than a cipher among planetary phenomena. The low {Delta}V requirements for missions to Phobos make it readily accessible-much more so than the Martian surface. The low orbital height of Phobos make it an attractive platform for staging Mars observation and exploration. Furthermore, the possible chondritic nature of Phobos may provide a valuable reservoir of extractable H, C, N, 0, and S.

  9. Titan Saturn System Mission

    NASA Technical Reports Server (NTRS)

    Reh, Kim R.

    2009-01-01

    Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap. NASA's 2003 National Research Council (NRC) Decadal Survey and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer solar system. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

  10. A Somalia mission experience.

    PubMed

    Mahomed, Zeyn; Moolla, Muhammad; Motara, Feroza; Laher, Abdullah

    2012-08-01

    Reports about The Horn of Africa Famine Crisis in 2011 flooded our news bulletins and newspapers. Yet the nations of the world failed to respond and alleviate the unfolding disaster. In August 2011, the Gift of the Givers Foundation mobilised what was to become the largest humanitarian mission ever conducted by an African organisation. Almost a year later, the effort continues, changing the face of disaster medicine as we know it. PMID:22831938

  11. A Somalia mission experience.

    PubMed

    Mahomed, Zeyn; Moolla, Muhammad; Motara, Feroza; Laher, Abdullah

    2012-06-28

    Reports about The Horn of Africa Famine Crisis in 2011 flooded our news bulletins and newspapers. Yet the nations of the world failed to respond and alleviate the unfolding disaster. In August 2011, the Gift of the Givers Foundation mobilised what was to become the largest humanitarian mission ever conducted by an African organisation. Almost a year later, the effort continues, changing the face of disaster medicine as we know it.

  12. Bion 11 mission hardware.

    PubMed

    Golov, V K; Magedov, V S; Skidmore, M G; Hines, J W; Kozlovskaya, I B; Korolkov, V I

    2000-01-01

    The mission hardware provided for Bion 11 shared primate experiments included the launch vehicle, biosatellite, spaceflight operational systems, spacecraft recovery systems, life support systems, bioinstrumentation, and data collection systems. Under the unique Russia/US bilateral contract, the sides worked together to ensure the reliability and quality of hardware supporting the primate experiments. Parameters recorded inflight covered biophysical, biochemical, biopotential, environmental, and system operational status.

  13. A Mars 1984 mission

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  14. Asteroid Kinetic Impactor Missions

    NASA Astrophysics Data System (ADS)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  15. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1990-01-01

    This paper describes several case studies of human space exploration, considered by the NASA's Office of Exploration in 1988. Special attention is given to the mission scenarios, the critical technology required in these expeditions, and the extraterrestrial power requirements of significant system elements. The cases examined include a manned expedition to Phobos, the inner Martian moon; a human expedition to Mars; the Lunar Observatory; and a lunar outpost to early Mars evolution.

  16. SAMPEX Mission Overview

    NASA Astrophysics Data System (ADS)

    Mason, G. M.

    2012-12-01

    SAMPEX was the first of the small explorer (SMEX) series of missions begun by NASA in 1989 to perform heliosphysics and astrophysics investigations with small, rapidly developed satellites. Launched in July 1992 just 39 months after selection, SAMPEX used an 82° inclination low altitude orbit selected to allow studies of solar and interplanetary particles over the polar caps, charge state measurements when the satellite slipped under the geomagnetic cutoff, and a full sampling of magnetospheric L-shells. SAMPEX's three US and one German instrument were ion and electron detectors much more sensitive than previously flown, allowing novel new studies. SAMPEX showed that the anomalous cosmic ray (ACR) component consisted of singly and doubly ionized ions whose acceleration time in the heliosphere was approximately one year, and mapped the trapped radiation belt of ACRs around Earth. SAMPEX produced the first evidence of energy dependence in solar energetic particle ionization states, providing evidence of possible ion stripping in the solar corona. Comparing the low altitude SAMPEX measurements with higher altitude Earth orbiting satellites, SAMPEX discovered a remarkable coherence of the magnetosphere, with all L-shells sampled every ~45 minutes for its 20 year lifetime. These studies helped put the magnetospheric response into context with the changing solar activity cycle, and will provide a key baseline for the new RBSP mission. SAMPEX also traced the precipitation of relativistic electrons into the polar regions and helped illustrate the role of these particles in the production of nitrogen compounds that affect the atmospheric chemistry of ozone destruction. In addition to the science goals, the SMEX program featured development of new technologies and training, including many students at Bowie State University who received NASA Mission Control certification from flying SMEX satellites. This talk will give an overview of the mission and its scientific

  17. Geopotential Research Mission (GRM)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Geopotential Research Mission (GRM) is a satellite system proposed to determine variations in the gravitational and magnetic fields to a resolution of about 100 kilometers. Knowledge and interpretations of the potential fields on scales of 100 kilometers and greater, to clarify the needs for better data in this range of wavelengths were reviewed. The potential contribution of these data to the determination, by satellite altimetry, of a more accurate geoidal reference was discussed.

  18. Orion Exploration Mission-1 Animation

    NASA Video Gallery

    Animation of the Orion spacecraft’s Exploration Mission-1 in 2017. Exploration Mission-1 will be the first integrated flight test with both the Orion spacecraft and NASA’s new Space Launch System.

  19. The Juno Mission

    NASA Astrophysics Data System (ADS)

    Bolton, S. J.

    2015-12-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the origin of Jupiter will be presented.

  20. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2007-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.

  1. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Thorpe, james; McNamara, P. W.

    2011-01-01

    LISA Pathfinder is a dedicated technology demonstration space mission for the Laser Interferometer Space Antenna (LISA), a NASA/ESA collaboration to operate a space-based observatory for gravitational waves in the milli-Hertz band. Although the formal partnership between the agencies was dissolved in the Spring of 2011, both agencies are actively pursuing concepts for LISA-like gravitational wave observatories. These concepts take advantage of the significant technology development efforts that have already been made, especially those of the LISA Pathfinder mission. LISA Pathfinder, which is in the late stages of implementation, will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, microNewton thrusters, and picometer-level laser metrology. We will present the current status of the LISA Pathfinder mission and associated activities.

  2. Bion-11 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Skidmore, M.

    1999-01-01

    The Sensors 2000! Program, in support of the Space Life Sciences Payloads Office at NASA Ames Research Center developed a suite of bioinstrumentation hardware for use on the Joint US/Russian Bion I I Biosatellite Mission (December 24, 1996 - January 7, 1997). This spaceflight included 20 separate experiments that were organized into a complimentary and interrelated whole, and performed by teams of US, Russian, and French investigators. Over 40 separate parameters were recorded in-flight on both analog and digital recording media for later analysis. These parameters included; Electromyogram (7 ch), Electrogastrogram, Electrooculogram (2 ch), ECG/EKG, Electroencephlogram (2 ch), single fiber firing of Neurovestibular afferent nerves (7 ch), Tendon Force, Head Motion Velocity (pitch & yaw), P02 (in vivo & ambient), temperature (deep body, skin, & ambient), and multiple animal and spacecraft performance parameters for a total of 45 channels of recorded data. Building on the close cooperation of previous missions, US and Russian engineers jointly developed, integrated, and tested the physiologic instrumentation and data recording system. For the first time US developed hardware replaced elements of the Russian systems resulting in a US/Russian hybrid instrumentation and data system that functioned flawlessly during the 14 day mission.

  3. The Spartan 1 mission

    NASA Technical Reports Server (NTRS)

    Cruddace, Raymond G.; Fritz, G. G.; Shrewsberry, D. J.; Brandenstein, D. J.; Creighton, D. C.; Gutschewski, G.; Lucid, S. W.; Nagel, J. M.; Fabian, J. M.; Zimmerman, D.

    1989-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  4. STS-79 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 was the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompassed research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 was also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the Space Shuttle's airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) which are suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries space personnel in science, engineering, medicine and logistics.

  5. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  6. Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  7. STS-103 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Designed by the crew members, the STS-103 emblem depicts the Space Shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission was to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that had been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the Telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability was one of the primary objectives of the mission. After the flight, the Telescope resumed its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the Sun, providing a striking contrast with the blackness of space and the night side of Earth.

  8. Power systems for future missions

    NASA Technical Reports Server (NTRS)

    Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.

    1994-01-01

    A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.

  9. Nuclear electric propulsion mission performance for fast piloted Mars missions

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Dudzinski, L. A.

    1991-01-01

    A mission study aimed at minimizing the time humans would spend in the space environment is presented. The use of nuclear electric propulsion (NEP), when combined with a suitable mission profile, can reduce the trip time to durations competitive with other propulsion systems. Specifically, a split mission profile utilizing an earth crew capture vehicle accounts for a significant portion of the trip time reduction compared to previous studies. NEP is shown to be capable of performing fast piloted missions to Mars at low power levels using near-term technology and is considered to be a viable candidate for these missions.

  10. GPM Mission Overview

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. Relative to current global rainfall products, GPM data products will be characterized by: (1) more accurate instantaneous precipitation measurements (especially for light rain and cold-season solid/snow precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers that include operational humidity sounders over land, (3) inter-calibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori cloud hydrometeor database derived from GPM Core sensor measurements. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 degree non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of dedicated and operational passive microwave sensors. The Core Observatory will carry a KulKa-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The combined use ofDPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction

  11. 75 FR 6178 - Mission Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    .... Mission Statement Secretarial Indonesia Clean Energy Business Development Mission May 23-25, 2010. Mission... in a broad range of clean energy technologies, including the geothermal, biomass, hydropower, wind... comprised of approximately 10-15 U.S. firms representing a cross-section of U.S. clean energy...

  12. Airborne active and passive L-band measurements using PALS instrument in SMAPVEX12 soil moisture field campaign

    NASA Astrophysics Data System (ADS)

    Colliander, Andreas; Yueh, Simon; Chazanoff, Seth; Dinardo, Steven; O'Dwyer, Ian; Jackson, Thomas; McNairn, Heather; Bullock, Paul; Wiseman, Grant; Berg, Aaron; Magagi, Ramata; Njoku, Eni

    2012-10-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in late 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada, and other Canadian and US institutions in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of a data record that features long time-series with varying soil moisture and vegetation conditions over an aerial domain of multiple parallel flight lines. The coincident active and passive L-band data was acquired with the PALS (Passive Active L-band System) instrument. The measurements were conducted over the experiment domain every 2-3 days on average, over a period of 43 days. The preliminary calibration of the brightness temperatures obtained in the campaign has been performed. Daily lake calibrations were used to adjust the radiometer calibration parameters, and the obtained measurements were compared against the raw in situ soil moisture measurements. The evaluation shows that this preliminary calibration of the data produces already a consistent brightness temperature record over the campaign duration, and only secondary adjustments and cleaning of the data is need before the data can be applied to the development and validation of SMAP algorithms.

  13. Mission and vehicle sizing sensitivities

    NASA Technical Reports Server (NTRS)

    Young, Archie C.

    1986-01-01

    Representative interplanetary space vehicle systems are sized to compare and show sensitivity of the initial mass required in low Earth orbit to one mission mode and mission opportunity. Data are presented to show the requirements for Earth-Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available during the time period from year 1997 to year 2045. The interplanetary space vehicle consists of a spacecraft and a space vehicle acceleration system. Propellant boil-off for the various mission phases is given for the Lox/LH (Liquid Oxygen/Liquid Hydrogen) propulsion systems. Mission abort information is presented for the 1999 Venus outbound swingby trajectory, transfer profile.

  14. Science and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy

    2011-01-01

    Have you ever wondered about the science goals of various deep space missions? Or why scientists want such seemingly complicated spacecraft and operations scenarios? With a focus on outer planets) this talk will cover the scientific goals and results of several recent and future missions) how scientists approach a requirements flow down) and how the disparate needs of mission engineers and scientists can come together for mission success. It will also touch on several up and coming technologies and how they will change mission architectures in the future.

  15. The Mars Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  16. NEO Sample Return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Neo-Sr Team

    The NEOs are representative of the population of asteroids and dead comets thought to be the remnants of the ancient planetesimals that accreted to form the planets. The chemical investigation of NEOs having primitive characteristics is thus essential in the understanding the planet formation and evolution. They carry records of the solar system's birth/early phases and the geological evolution of small bodies in the interplanetary regions. Moreover, collisions of NEOs with Earth represent a serious hazard to life. For all these reasons the exploration and characterization of these objects are particularly interesting and urgent. NEOs are interesting and highly accessible targets for scientific research and robotic exploration. Within this framework, the mission LEONARD including an orbiter and a lander to the primitive double object (1996 FG3) has been studied by CNES, in collaboration with a number of European planetologists (France, Italy, Germany and United Kingdom) and related Space Agencies. A new Sample Return mission is under study within a large European community and possible collaboration with the Japanese Space Agency JAXA to reply to the ESA Cosmic Vision AO. The principal objectives are to investigate on 1) the properties of the building blocks of the terrestrial planets; 2) the major events (e.g. agglomeration, heating, ... . . ) which ruled the history of planetesimals; 3) the primitive asteroids which could contain presolar material unknown in meteoritic samples; 4) the organics in primitive materials; 5) the initial conditions and evolution history of the solar nebula; and 6) how they can shed light on the origin of molecules necessary for life. This type of mission appears clearly to have the potential to revolutionize our understanding of primitive materials.

  17. Solar Electric Propulsion Mission Architectures

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2003-01-01

    This presentation reviews Solar Electric Propulsion (SEP) Mission Architectures with a slant towards power system technologies and challenges. The low-mass, high-performance attributes of SEP systems have attracted spacecraft designers and mission planners alike and have led to a myriad of proposed Earth orbiting and planetary exploration missions. These SEP missions are discussed from the earliest missions in the 1960's, to first demonstrate electric thrusters, to the multi-megawatt missions envisioned many decades hence. The technical challenges and benefits of applying high-voltage arrays, thin film and low-intensity, low-temperature (LILT) photovoltaics, gossamer structure solar arrays, thruster articulating systems and microsat systems to SEP spacecraft power system designs are addressed. The overarching conclusion from this review is that SEP systems enhance, and many times enable, a wide class of space missions.

  18. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoebert, Mark R.; Douglass, A. R.; Hilsenrath, E.; Bhartia, P. K.; Barnett, J.; Gille, J.; Beer, R.; Gunson, M.; Waters, J.; Levelt, P. F.

    2004-01-01

    The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.

  19. Space Shuttle Missions Summary

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Legler, Robert D.

    2011-01-01

    This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

  20. Mars mission research center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Mars Mission Research Center is one of nine University Space Engineering Research Centers established by NASA to broaden the nation's engineering capability to meet the critical needs of the civilian space program. It has the goal of focusing on research and training technologies for planetary exploration with particular emphasis on Mars. The research combines: (1) composite materials and fabrication, (2) light weight structures and controls, and (3) hypersonic aerodynamics and propulsion in a cross disciplined program directed towards the development of the space transportation system for planetary travel.

  1. The CHEOPS Mission

    NASA Astrophysics Data System (ADS)

    Broeg, Christopher; benz, willy; fortier, andrea; Ehrenreich, David; beck, Thomas; cessa, Virginie; Alibert, Yann; Heng, Kevin

    2015-12-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry. It is expected to be launch-ready at the end of 2017.CHEOPS will be the first space observatory dedicated to search for transits on bright stars already known to host planets. It will have access to more than 70% of the sky. This will provide the unique capability of determining accurate radii for planets for which the mass has already been estimated from ground-based radial velocity surveys and for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The measurement of the radius of a planet from its transit combined with the determination of its mass through radial velocity techniques gives the bulk density of the planet, which provides direct insights into the structure and/or composition of the body. In order to meet the scientific objectives, a number of requirements have been derived that drive the design of CHEOPS. For the detection of Earth and super-Earth planets orbiting G5 dwarf stars with V-band magnitudes in the range 6 ≤ V ≤ 9 mag, a photometric precision of 20 ppm in 6 hours of integration time must be reached. This time corresponds to the transit duration of a planet with a revolution period of 50 days. In the case of Neptune-size planets orbiting K-type dwarf with magnitudes as faint as V=12 mag, a photometric precision of 85 ppm in 3 hours of integration time must be reached. To achieve this performance, the CHEOPS mission payload consists of only one instrument, a space telescope of 30 cm clear aperture, which has a single CCD focal plane detector. CHEOPS will be inserted in a low Earth orbit and the total duration of the CHEOPS mission is 3.5 years (goal: 5 years).The presentation will describe the current payload and mission design of CHEOPS, give the development status, and show the expected performances.

  2. The Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1971-01-01

    The Apollo 11 and 12 lunar landings are briefly reviewed together with the problems experienced with Apollo 13. As a result of the first two landing missions it became known that parts of the moon are at least four and one-half billion years old. If the moon was once part of the earth, it must have split off very early in its history. Starting with Apollo 16, changes in hardware will result in very significant improvements and capabilities. The landed payload will be increased by over 100%.

  3. Climate Benchmark Missions: CLARREO

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  4. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  5. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  6. Mars exploration mission

    NASA Astrophysics Data System (ADS)

    Matsuda, Seiji

    1991-07-01

    Mars exploration scenarios are reviewed. An emphasis is placed on scientific exploration. The review and evaluation results are reported for the following items: (1) orbit plans for Mars surface exploration missions that begin in Low Earth Orbit (LEO); (2) powered and aerodynamic capturing payloads from the transfer orbit to a Mars revolving orbit; and (3) a penetrator system as a Mars landing vehicle. Proposed Mars transfer orbits have the following advantages over Hohmann orbits: (1) transfer time and angle are less; (2) the inclination between the orbital planes of Earth and Mars is considered; and (3) velocity variations are not required to change orbit plane.

  7. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  8. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  9. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  10. The Euclid mission design

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe D.; Laureijs, René; Stagnaro, Luca; Salvignol, Jean-Christophe; Lorenzo Alvarez, José; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis; Short, Alex; Strada, Paolo; Bönke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jérôme; Berthé, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha

    2016-07-01

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.

  11. The SPICA mission

    NASA Astrophysics Data System (ADS)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.

    2016-05-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 years. The spacecraft will house a 2.5 m telescope actively cooled to 8 K, providing unprecedented sensitivity at mid-far infrared wavelengths. The low background environment and wavelength coverage provided by SPICA will make it possible to conduct detailed spectroscopic surveys of sources in both the local and distant Universe, deep into the most obscured regions. Using these data the evolution of galaxies over a broad and continuous range of cosmic time can be studied, spanning the era of peak star forming activity. SPICA will also provide unique access to, among others, the deep-lying water-ice spectral features and HD lines within planet forming discs. SPICA will conduct an extensive survey of both planet forming discs and evolved planetary systems, with the aim of providing the missing link between planet formation models and the large number of extrasolar planetary systems now being discovered.

  12. STS-54 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Designed by the crewmembers, the STS-54 crew patch depicts the Amefican bald eagle soaring above Earth and is emblematic of the Space Shuttle Endeavour in service to the United States and the world. The eagle is clutching an eightpointed star in its talons and is placing this larger star among a constellation of four others, representing the placement of the fifth Tracking and Data Relay Satellite (TDRS) into orbit to join the four already in service. The blackness of space -- with stars conspicuously absent -- represents the crew's other primary mission in carrying the Diffuse X-ray Spectrometer to orbit to conduct astronomical observations of invisible x-ray sources within the Milky Way Galaxy. The depiction of Earth showing North America is an expression of the crewmembers and NASA's intention that the medical and scientific experiments conducted onboard be for the benefit of mankind. The clouds and blue of Earth represent the crew's part in NASA's Mission to Planet Earth in conducting Earthobseation photography.

  13. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  14. The OHMIC Mission

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Burch, J. L.; Lotko, W.; Frey, H. U.; Chaston, C. C.

    2013-12-01

    The Observatory for Heteroscale Magnetosphere-Ionosphere Coupling (OHMIC) investigates the coupling of Earth's magnetosphere and ionosphere (MI) focusing on the conversion of electromagnetic energy into particle energy in auroral acceleration regions. Energy conversion and acceleration are universal processes that are a critical part of MI coupling and govern the energy deposition into Earth's upper atmosphere. These same processes are known to occur in planetary magnetospheres and in the magnetized plasmas of stars. Energy conversion and acceleration in the auroral regions are known to occur on small spatial scales through dispersive Alfvén waves and nonlinear plasma structures such as double layers. OHMIC advances our understanding of MI coupling over previous missions using two spacecraft equipped with high-time resolution measurements of electron distributions, ion distributions, and vector electric and magnetic fields. One of the spacecraft will carry two high-time and high-spatial resolution imagers and a wide-angle imager in the far ultraviolet. The mission has two phases. The first phase investigates meridional phenomena by using the combination of two-point measurements and high-resolution to distinguishing spatial and temporal phenomena. The second phase investigates field-aligned phenomena with spacecraft separations between 10 and 1100 km. Primary science objectives include (1) determining how energy conversion and transport vary along the magnetic field, (2) determining how ionospheric outflow is mediated by ion heating, convection and field-aligned transport, and (3) determining how charged-particle acceleration and injection vary in time and space.

  15. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  16. Asteroid Redirect Mission: EVA and Sample Collection

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Stich, Steve

    2015-01-01

    Asteroid Redirect Mission (ARM) Overview (1) Notional Development Schedule, (2) ARV Crewed Mission Accommodations; Asteroid Redirect Crewed Mission (ARCM) Mission Summary; ARCM Accomplishments; Sample collection/curation plan (1) CAPTEM Requirements; SBAG Engagement Plan

  17. STS-78 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  18. General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.

  19. Mission requirements: Skylab rescue mission SL-R

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Skylab Program includes three low earth orbit missions. These missions are designated SL-1/SL-2,SL-3 and SL-4. In addition to the three nominal Skylab missions, the program includes the Skylab Rescue Mission (SL-R). The SL-R mission is designed to provide a safe return of the Skylab crew in the event the Command Service Module (CSM) becomes disabled while docked to the Saturn Workshop (SWS). Mission requirements for the SL-R mission only are presented. SL-R mission configuration will be a CSM (modified with a field installed kit) manned by two crewmen launched on a Saturn IB Launch Vechicle. The SL-R CSM will rendezvous and dock with the SWS (or Orbital Assembly (OA), consisting of the SWS and disabled CSM, if the disabled CSM has not previously been jettisoned). The SWS configuration includes a Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Airlock Module (AM), and an S-IVB stage (modified as an Orbital Workshop (OWS), previously launched and inserted into orbit on a two-stage Saturn V Launch Vehicle for the SL-1/SL-2 mission.

  20. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  1. XEUS mission and instruments

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Peacock, Anthony J.; Parmar, Arvind N.; Beijersbergen, Marco W.

    2002-01-01

    The X-ray Evolving Universe Spectroscopy mission (XEUS) is an ambitious project under study by the European Space Agency (ESA), which aims to probe the distant hot universe with comparable sensitivity to NGST and ALMA. The effective optical area and angular resolution required to perform this task is 30 m2 effective area and <5 inch angular resolution respectively at 1 keV. The single Wolter-I X-ray telescope having these characteristics will be equipped with large area semiconductor detectors and high-resolution cryogenic imaging spectrometers with 2 eV resolution at 1 keV. A novel approach to mission design has been developed, placing the detector instruments on one dedicated spacecraft and the optics on another. The International Space Station (ISS) with the best ever-available infrastructure in space will be used to expand the mirror diameter from 4.5 m to 10 m, by using the European Robotic Arm on the ISS. The detector spacecraft (DSC) uses solar-electric propulsion to maintain its position while flying in formation with the mirror spacecraft. The detector instruments are protected from straylight and contamination by sophisticated baffles and filters, and employing the Earth as a shield to make the most sensitive low energy X-ray observations of the heavily red-shifted universe. After completion of an initial observation phase lasting 5 years, the mirror spacecraft will be upgraded (basically expanded to a full 10 m diameter mirror) at the ISS, while the DSC is replaced by a new spacecraft with a new suite of detector instruments optimised to the full area XEUS mirror. An industrial feasibility study was successfully completed and identified no major problem area. Current activities focus on a full system level study and the necessary technology developments. XEUS is likely to become a truly global mission, involving many of the partners that have teamed up to build the ISS. Japan is already a major partner int the study of XEUS, with ISAS having its main

  2. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency

  3. Phobos Sample Return mission

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  4. IMP - INTEGRATED MISSION PROGRAM

    NASA Technical Reports Server (NTRS)

    Dauro, V. A.

    1994-01-01

    IMP is a simulation language that is used to model missions around the Earth, Moon, Mars, or other planets. It has been used to model missions for the Saturn Program, Apollo Program, Space Transportation System, Space Exploration Initiative, and Space Station Freedom. IMP allows a user to control the mission being simulated through a large event/maneuver menu. Up to three spacecraft may be used: a main, a target and an observer. The simulation may begin at liftoff, suborbital, or orbital. IMP incorporates a Fehlberg seventh order, thirteen evaluation Runge-Kutta integrator with error and step-size control to numerically integrate the equations of motion. The user may choose oblate or spherical gravity for the central body (Earth, Mars, Moon or other) while a spherical model is used for the gravity of an additional perturbing body. Sun gravity and pressure and Moon gravity effects are user-selectable. Earth/Mars atmospheric effects can be included. The optimum thrust guidance parameters are calculated automatically. Events/maneuvers may involve many velocity changes, and these velocity changes may be impulsive or of finite duration. Aerobraking to orbit is also an option. Other simulation options include line-of-sight communication guidelines, a choice of propulsion systems, a soft landing on the Earth or Mars, and rendezvous with a target vehicle. The input/output is in metric units, with the exception of thrust and weight which are in English units. Input is read from the user's input file to minimize real-time keyboard input. Output includes vehicle state, orbital and guide parameters, event and total velocity changes, and propellant usage. The main output is to the user defined print file, but during execution, part of the input/output is also displayed on the screen. An included FORTRAN program, TEKPLOT, will display plots on the VDT as well as generating a graphic file suitable for output on most laser printers. The code is double precision. IMP is written in

  5. Manned Mars mission cost estimate

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph; Smith, Keith

    1986-01-01

    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  6. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development. The goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities, businesses, and other government organizations, and to share that technology in an open and unhindered way. GMAT is a free and open source software system licensed under the NASA Open Source Agreement: free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or further technology development.

  7. Ulysses mission operations

    NASA Technical Reports Server (NTRS)

    Beech, P.

    1992-01-01

    The Ulysses mission is described in terms of in-Shuttle operations, initial in-orbit operations, routine operations, operational organization, and data gathering and production. The configuration of the Ulysses payload is illustrated, and the flight to orbit is described including a three-hour on-orbit checkout. The first contact was reported at the Deep Space Network station followed by an adjustment of the spacecraft solar-aspect angle and the acquisition of ranging and Doppler data. In-orbit operations include the earth acquisition maneuver, a trajectory correction maneuver, and a payload switch. Continuous data gathering is discussed with reference to the Jupiter encounter and the first and second oppositions and conjunctions. The data-gathering components comprise ground stations, a data-processing computer, and a data-records system. Data production is performed in an off-line mode that does not interfere with the real-time operations.

  8. Mission Operations Insights

    NASA Technical Reports Server (NTRS)

    Littman, Dave; Parksinson, Lou

    2006-01-01

    The mission description Polar Operational Environmental Satellites (POES): I) Collect and disseminate worldwide meteorological and environmental data: a) Provide day and night information (AVHRR): 1) cloud cover distribution and type; 2) cloud top temperature; 3) Moisture patterns and ice/snow melt. b) Provide vertical temperature and moisture profiles of atmospheres (HIRS, AMSU, MHS. c) Measure global ozone distribution and solar UV radiation (SBUV). d) Measure proton, electro, and charged particle density to provide solar storm warnings (SEM). d) Collect environmental data (DCS): 1) Stationary platforms in remote locations; 2) Free floating platforms on buoys, balloons, migratory animals. II) Provide Search and Rescue capabilities (SARR, SARP): a) Detection and relay of distress signals. b) Has saved thousands of lives around the world.

  9. Venus Aerobot Multisonde Mission

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Kerzhanovich, Viktor; Balaram, J. Bob; Campbell, Bruce; Gershaman, Robert; Greeley, Ronald; Hall, Jeffery L.; Cameron, Jonathan; Klaasen, Kenneth; Hansen, David M.

    1999-01-01

    Robotic exploration of Venus presents many challenges because of the thick atmosphere and the high surface temperatures. The Venus Aerobot Multisonde mission concept addresses these challenges by using a robotic balloon or aerobot to deploy a number of short lifetime probes or sondes to acquire images of the surface. A Venus aerobot is not only a good platform for precision deployment of sondes but is very effective at recovering high rate data. This paper describes the Venus Aerobot Multisonde concept and discusses a proposal to NASA's Discovery program using the concept for a Venus Exploration of Volcanoes and Atmosphere (VEVA). The status of the balloon deployment and inflation, balloon envelope, communications, thermal control and sonde deployment technologies are also reviewed.

  10. STS-73 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The crew patch of STS-73, the second flight of the United States Microgravity Laboratory (USML-2), depicts the Space Shuttle Columbia in the vastness of space. In the foreground are the classic regular polyhedrons that were investigated by Plato and later Euclid. The Pythagoreans were also fascinated by the symmetrical three-dimensional objects whose sides are the same regular polygon. The tetrahedron, the cube, the octahedron, and the icosahedron were each associated with the Natural Elements of that time: fire (on this mission represented as combustion science); Earth (crystallography), air and water (fluid physics). An additional icon shown as the infinity symbol was added to further convey the discipline of fluid mechanics. The shape of the emblem represents a fifth polyhedron, a dodecahedron, which the Pythagoreans thought corresponded to a fifth element that represented the cosmos.

  11. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  12. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  13. The Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Golombek, Matthew P.

    1997-01-01

    Mars Pathfinder, one of the first Discovery-class missions (quick, low-cost projects with focused science objectives), will land a single spacecraft with a microrover and several instruments on the surface of Mars in 1997. Pathfinder will be the first mission to use a rover, carrying a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. In addition to the rover, which also performs a number of technology experiments, Pathfinder carries three science instruments: a stereoscopic imager with spectral filters on an extendable mast, an alpha proton X ray spectrometer, and an atmospheric structure instrument/meteorology package. The instruments, the rover technology experiments, and the telemetry system will allow investigations of the surface morphology and geology at submeter to a hundred meters scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations, and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis at 19.5 deg N, 32.8 deg W, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains, and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products, and tile early environments and conditions on Mars.

  14. Biosatellite II mission.

    PubMed

    Reynolds, O E

    1969-01-01

    Biosatellite B was launched from Cape Kennedy, Florida, on a two-stage DELTA launch vehicle at 6:04 p.m. on 7 September, 1967. Approximately nine minutes later the 435 kg spacecraft biological laboratory was placed into a satisfactory 315 km near-circular earth orbit, successfully separated from the launch vehicle's second stage and was designated Biosatellite II. The scientific payload consisting of thirteen selected general biology and radiation experiments were subjected to planned, carefully controlled environmental conditions during 45 hours of earth-orbital flight. The decision was made to abbreviate the scheduled 3-day mission by approximately one day because of a threatening tropical storm in the recovery area, and a problem of communication with the spacecraft from the tracking stations. Highest priority was placed on recovery which was essential to obtain the scientific results on all the experiments. The operational phase of the mission came to a successful conclusion with the deorbit of the recovery capsule, deployment of the parachute system and air recovery by the United States Air Force. The 127 kg recovery capsule was returned to biology laboratories at Hickam Air Force Base, Hawaii, for disassembly and immediate inspection and analysis of the biological materials by the experimenters. It was evident immediately that the quality of the biology was excellent and this fact gave promise of a high return of scientific data. The environmental conditions provided to the experimental material in the spacecraft, provisions for experimental controls, and operational considerations are presented as they relate to interpretation of the experimental results. PMID:11949687

  15. Biosatellite II mission.

    PubMed

    Reynolds, O E

    1969-01-01

    Biosatellite B was launched from Cape Kennedy, Florida, on a two-stage DELTA launch vehicle at 6:04 p.m. on 7 September, 1967. Approximately nine minutes later the 435 kg spacecraft biological laboratory was placed into a satisfactory 315 km near-circular earth orbit, successfully separated from the launch vehicle's second stage and was designated Biosatellite II. The scientific payload consisting of thirteen selected general biology and radiation experiments were subjected to planned, carefully controlled environmental conditions during 45 hours of earth-orbital flight. The decision was made to abbreviate the scheduled 3-day mission by approximately one day because of a threatening tropical storm in the recovery area, and a problem of communication with the spacecraft from the tracking stations. Highest priority was placed on recovery which was essential to obtain the scientific results on all the experiments. The operational phase of the mission came to a successful conclusion with the deorbit of the recovery capsule, deployment of the parachute system and air recovery by the United States Air Force. The 127 kg recovery capsule was returned to biology laboratories at Hickam Air Force Base, Hawaii, for disassembly and immediate inspection and analysis of the biological materials by the experimenters. It was evident immediately that the quality of the biology was excellent and this fact gave promise of a high return of scientific data. The environmental conditions provided to the experimental material in the spacecraft, provisions for experimental controls, and operational considerations are presented as they relate to interpretation of the experimental results.

  16. STS-40 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  17. Combining multiple altimeter missions

    NASA Astrophysics Data System (ADS)

    Jacobs, G. A.; Mitchell, J. L.

    1997-10-01

    Viewing altimeter data only at the points where separate altimeter missions' ground tracks cross provides a method to observe long time period sea surface height (SSH) variations and avoids many of the problems inherent in combining separate altimeter data sets through an independently determined geoid. TOPEX/POSEIDON (T/P) data over the time period from January 1, 1993, to December 31, 1995, form a mean SSH that is used as a reference by other altimeter data sets. A least squares analysis of the mean T/P SSH determines the portion of the Geographically Correlated Orbit Error (GCOE) that may be observed through crossover differences and removes this portion of the GCOE. The analysis removes errors of 0.86 cm RMS at 1 cycle per orbit revolution (cpr) and indicates negligible errors at higher frequencies. After the GCOE removal, the accuracy of the T/P reference mean is better than 1 cm RMS as measured by crossover differences. The GCOE contained in the Geosat-Exact Repeat Mission (ERM) and ERS 1 data with orbit solutions using the Joint Gravity Model (JGM) 3 is evaluated through an adjustment to the T/P reference mean surface. The Geosat-ERM data indicate a bias of about 28 cm averaged over the globe, and the ERS 1 bias is 44 cm. The T/P data used here is not corrected for the oscillator drift correction error so that the actual bias is less by about 13 cm. Both the Geosat-ERM and ERS 1 GCOE are mainly 1 cpr. GCOE estimates at frequencies above 1 cpr indicate little actual orbit error but are more correlated to instrument correction errors (particularly water vapor). Simultaneous T/P and ERS 1 SSH anomalies to the T/P mean indicate good correlation.

  18. SEPAC: Spacelab Mission 1 report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The SEPAC Spacelab Mission 1 activities relevant to software operations are reported. Spacelab events and problems that did not directly affect SEPAC but are of interest to experimenters are included. Spacelab Mission 1 was launched from KSC on 28 November 1983 at 10:10 Huntsville time. The Spacelab Mission met its objectives. There were two major problems associated with SEPAC: the loss of the EBA gun and the RAU 21.

  19. Spacelab Mission 3 experiment descriptions

    NASA Technical Reports Server (NTRS)

    Hill, C. K. (Editor)

    1982-01-01

    The Spacelab 3 mission is the first operational flight of Spacelab aboard the shuttle transportation system. The primary objectives of this mission are to conduct application, science, and technology experimentation that requires the low gravity environment of Earth orbit and an extended duration, stable vehicle attitude with emphasis on materials processing. This document provides descriptions of the experiments to be performed during the Spacelab 3 mission.

  20. Mission planning for autonomous systems

    NASA Technical Reports Server (NTRS)

    Pearson, G.

    1987-01-01

    Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.

  1. NASA's Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  2. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  3. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  4. 1998 Mars Missions Science Briefing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA executives gathered together for an interview to discuss the 1998 Mars Mission. A simulated overview of the Lander Mission is presented. Also presented are views of pre-launch activities, countdown, and launch of the spacecraft, burnouts of the first, second, and third engines, and the probe separating from the spacecraft. During this mission the Lander performs in situ investigations that address the science theme "Volatiles and Climate History" on Mars. The purpose of this mission is to study the following: climate; life; water; carbon dioxide; and dust particles.

  5. EVAL mission requirements, phase 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aspects of NASA's applications mission were enhanced by utilization of shuttle/spacelab, and payload groupings which optimize the cost of achieving the mission goals were defined. Preliminary Earth Viewing Application Laboratory (EVAL) missions, experiments, sensors, and sensor groupings were developed. The major technological EVAL themes and objectives which NASA will be addressing during the 1980 to 2,000 time period were investigated. Missions/experiments which addressed technique development, sensor development, application development, and/or operational data collection were considered as valid roles for EVAL flights.

  6. Future NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2005-01-01

    With the launch of the last Earth Observation System (EOS) Missions, Aura, NASA now has a new fleet of 13+ highly capable remote sensing spacecraft orbiting the earth. Results from these missions are showing us the earth system as never seen before. But, what are the new challenges in understanding the Earth in an era of rapid change? In this talk I will outline some of the exciting results from the EOS missions and pull back the curtain on NASA's future earth science missions.

  7. Asteroid Redirect Mission: Robotic Segment

    NASA Video Gallery

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  8. Mission and surface infrastructure concepts

    NASA Technical Reports Server (NTRS)

    Butler, J.; Mcdaniel, S. G.

    1986-01-01

    Several types of manned Mars surface missions, including sorties, fixed-base, and hybrid missions, which can be envisioned as potentially desirable approaches to the exploration and utilization of Mars are identified and discussed. Some of the advantages and disadvantages of each type are discussed briefly. Also, some of the implications of the types of missions on the surface elements' design are discussed briefly. Typical sets of surface elements are identified for each type of mission, and weights are provided for each element and set.

  9. IRIS Mission Operations Director's Colloquium

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  10. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  11. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  12. Remote Sensing of Water Resources During the California Drought

    NASA Astrophysics Data System (ADS)

    David, Cedric; Reager, John; Das, Narendra; Famiglietti, James; Farr, Thomas; Painter, Thomas

    2016-07-01

    The combination of human population growth and changes in water availability increasingly raises global awareness on the importance of sustainable water usage and management. While the traditional in situ measurements provide a detailed description of local water availability, space science and technology can depict a broader perspective that has great potential for securing our global water future. We use the severe drought that the State of California has been experiencing since the beginning of 2011 as an example of a comprehensive water resources characterization and monitoring allowed by satellites. We focus here on observations of water availability on and underneath the land surface, and provide a summary of the findings from the following remote sensing assets: the Soil Moisture Active Passive (SMAP) mission, the Gravity Recovery And Climate Experiment (GRACE) mission, the Airborne Snow Observatory (ASO), and Synthetic Aperture Radars (SAR) missions such as PALSAR, Radarsat-2, and UAVSAR.

  13. Generic mission planning concepts for space astronomy missions

    NASA Technical Reports Server (NTRS)

    Guffin, O. T.; Onken, J. F.

    1993-01-01

    The past two decades have seen the rapid development of space astronomy, both manned and unmanned, and the concurrent proliferation of the operational concepts and software that have been produced to support each individual project. Having been involved in four of these missions since the '70's and three yet to fly in the present decade, the authors believe it is time to step back and evaluate this body of experience from a macro-systems point of view to determine the potential for generic mission planning concepts that could be applied to future missions. This paper presents an organized evaluation of astronomy mission planning functions, functional flows, iteration cycles, replanning activities, and the requirements that drive individual concepts to specific solutions. The conclusions drawn from this exercise are then used to propose a generic concept that could support multiple missions.

  14. Business analysis: The commercial mission of the International Asteroid Mission

    NASA Astrophysics Data System (ADS)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  15. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  16. Simulation of Mission Phases

    NASA Technical Reports Server (NTRS)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  17. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  18. Life at Mission Creep U

    ERIC Educational Resources Information Center

    Dubrow, Greg; Moseley, Bryan; Dustin, Daniel

    2006-01-01

    The term "mission creep" was originally coined nearly a hundred years ago to describe the gradual process by which a military mission's stated methods and goals change, and recently the term has been applied to incremental organizational changes. In this article, the term is used to describe what happens when a teaching-oriented college or…

  19. NASA SSA for Robotic Missions

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.

    2009-01-01

    This viewgraph presentation reviews NASA's Space Situational Awareness (SSA) activities as preparation for robotic missions and Goddard's role in this work. The presentation includes the preparations that Goddard Space Flight Center (GSFC) has made to provide consolidated space systems protection indluding consolidating GSFC support for Orbit Debris analysis, conjunction assessment and collision avoidance, commercial and foreign support, and protection of GSFC managed missions.

  20. ESA CHEOPS mission: development status

    NASA Astrophysics Data System (ADS)

    Rando, N.; Asquier, J.; Corral Van Damme, C.; Isaak, K.; Ratti, F.; Safa, F.; Southworth, R.; Broeg, C.; Benz, W.

    2016-07-01

    The European Space Agency (ESA) Science Programme Committee (SPC) selected CHEOPS (Characterizing Exoplanets Satellite) in October 2012 as the first S-class mission (S1) within the Agency's Scientific Programme, targeting launch readiness by the end of 2017. The CHEOPS mission is devoted to the first-step characterization of known exoplanets orbiting bright stars, to be achieved through the precise measurement of exo-planet radii using the technique of transit photometry. It is implemented as a partnership between ESA and a consortium of Member States led by Switzerland. CHEOPS is considered as a pilot case for implementing "small science missions" in ESA with the following requirements: science driven missions selected through an open Call for missions (bottom-up process); spacecraft development schedule much shorter than for M and L missions, in the range of 4 years; and cost-capped missions to ESA with possibly higher Member States involvement than for M or L missions. The paper describes the CHEOPS development status, focusing on the performed hardware manufacturing and test activities.

  1. Life Cycle of a Mission

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    2004-01-01

    A viewgraph presentation describing the the six phases of a space mission is shown. The contents include: 1) What Does Planning Involve?; 2) Designing the Flight System; 3) Building the Flight System; 4) Testing the Flight System; 5) Flying the Mission; and 6) Analyzing the Data.

  2. Mission Dolores and Jim Corbin.

    ERIC Educational Resources Information Center

    Heaton, Moss, Ed.

    1985-01-01

    Written by history students at Gary High School, Gary, Texas, this issue includes two articles relevant to East Texas history. "Mission Dolores and Jim Corbin," (Moss Heaton and others) is a summary of material presented by Professor James Corbin about the early Spanish presence in East Texas. The first attempt at setting up a mission was in 1690…

  3. Pioneer Mars 1979 mission options

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Hartmann, W. K.; Niehoff, J. C.

    1974-01-01

    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers.

  4. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.

  5. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  6. COSMOS 2044 Mission: Overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  7. Giotto Extended Mission (GEM)

    NASA Technical Reports Server (NTRS)

    Wilkins, D. E. B.; Grensemann, M.

    1991-01-01

    The primary objectives of the Giotto Extended Mission (GEM), are to determine the composition and physical state of the Grigg Skjellerup Comet's nucleus; to determine the processes that govern the composition and distribution of neutral and ionized species in the cometary atmosphere. Giotto consists of a single European Space Agency (ESA) spacecraft that was launched in 1985 from Center Spatial Guyanis in French Guiana on an Ariane launch vehicle. After a successful launch into geostationary orbit and a heliocentric transfer trajectory, the spacecraft successfully encountered Halley's Comet in 1986. One month after encountering Halley's Comet, Mar. 1986, the spacecraft was placed in hibernation in a heliocentric orbit slightly less than 1 AU. Between Feb. and Jul. 1990 the spacecraft was successfully reactivated, checked out, and placed on a trajectory course to intercept comet Grigg Skjellerup. The spacecraft has been in hibernation since Jul. 1990. Information is presented in tabular form in the following areas: coverage goals, Deep Space Network Support, frequency assignments, telemetry, command, and tracking support responsibility.

  8. The Sunrise Mission

    NASA Astrophysics Data System (ADS)

    Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T. L.; Tomasch, G.; Knölker, M.; Lites, B. W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Title, A. M.; Domingo, V.; Gasent Blesa, J. L.; Del Toro Iniesta, J. C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E.

    2011-01-01

    The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed.

  9. Draft Mission Plan Amendment

    SciTech Connect

    1991-09-01

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  10. UNAIDS: mission and roles.

    PubMed

    1995-01-01

    The UN has responded to the ongoing AIDS crisis by creating a new Joint UN Programme on HIV/AIDS (UNAIDS). UNAIDS is the AIDS program of six UN agencies (UNICEF; the Development Programme; the Population Fund; the Educational, Scientific and Cultural Organization; the World Health Organization, and the World Bank). The mission of UNAIDS is to lead a multisectoral effort to prevent HIV transmission, provide care and support, alleviate the impact of the epidemic, and reduce vulnerability to HIV/AIDS. Thus, UNAIDS will operate in the areas of policy development and research, technical support, and advocacy. UNAIDS has had an executive director since January 1995, and a formal review of its strategic plan was scheduled for November 1995. At the country level, country representatives of the various agencies that make up UNAIDS will meet regularly to plan, program, and evaluate their HIV/AIDS activities. UNAIDS staff will be available to aid the country efforts. While UNAIDS will assume most of the global-level activities of its six cosponsor agencies, each agency will integrate HIV/AIDS considerations into their ongoing efforts.

  11. STS-68 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.

  12. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  13. Multi-mission Satellite Management

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  14. Comparison of mission design options for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Babb, Gus R.; Stump, William R.

    1986-01-01

    A number of manned Mars mission types, propulsion systems, and operational techniques are compared. Conjunction and opposition class missions for cryogenic, hybrid (cryo/storable), and NERVA propulsion concepts are addressed. In addition, both Earth and Mars orbit aerobraking, direct entry of landers, hyperbolic rendezvous, and electric propulsion cases are examined. A common payload to Mars was used for all cases. The basic figure of merit used was weight in low Earth orbit (LEO) at mission initiation. This is roughly proportional to launch costs.

  15. The Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  16. Mission operations for Astronomy Spacelab Payloads

    NASA Technical Reports Server (NTRS)

    Osler, S. J.

    1975-01-01

    An overview is provided of mission operations for Astronomy Spacelab Payloads. Missions considered are related to solar physics, high energy astrophysics, and stellar ultraviolet/optical astronomy. Operational aspects are examined. Mission operations include the flight activities and associated ground support work for implementing the mission. The prelaunch activity will begin about a year before launch with the assignment of a mission operations manager.

  17. Human Mars Mission Performance Crew Taxi Profile

    NASA Technical Reports Server (NTRS)

    Duaro, Vince A.

    1999-01-01

    Using the results from Integrated Mission Program (IMP), a simulation language and code used to model present and future Earth Moon, or Mars missions, this report presents six different case studies of a manned Mars mission. The mission profiles, timelines, propellant requirements, feasibility and perturbation analysis is presented for two aborted, two delayed rendezvous, and two normal rendezvous cases for a future Mars mission.

  18. The SCOPE Mission

    SciTech Connect

    Fujimoto, M.; Tsuda, Y.; Saito, Y.; Shinohara, I.; Takashima, T.; Matsuoka, A.; Kojima, H.; Kasaba, Y.

    2009-06-16

    In order to reach the new horizon of the space physics research, the Plasma Universe, via in-situ measurements in the Earth's magnetosphere, SCOPE will perform formation flying observations combined with high-time resolution electron measurements. The simultaneous multi-scale observations by SCOPE of various plasma dynamical phenomena will enable data-based study of the key space plasma processes from the cross-scale coupling point of view. Key physical processes to be studied are magnetic reconnection under various boundary conditions, shocks in space plasma, collisionless plasma mixing at the boundaries, and physics of current sheets embedded in complex magnetic geometries. The SCOPE formation is made up of 5 spacecraft and is put into the equatorial orbit with the apogee at 30 Re (Re: earth radius). One of the spacecraft is a large mother ship which is equipped with a full suite of particle detectors including ultra-high time resolution electron detector. Among other 4 small spacecraft, one remains near ({approx}10 km) the mother ship and the spacecraft-pair will focus on the electron-scale physics. Others at the distance of 100{approx}3000 km(electron{approx}ion spatial scales) from the mother ship will monitor plasma dynamics surrounding the mother-daughter pair. There is lively on-going discussion on Japan-Europe international collaboration (ESA's Cross-Scale), which would certainly make better the coverage over the scales of interest and thus make the success of the mission, i.e., clarifying the multi-scale nature of the Plasma Universe, to be attained at an even higher level.

  19. Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Irons, James; Dabney, Philip

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is currently under development and is on schedule to launch the 8th satellite in the Landsat series in December of 2012. LDCM is a joint project between the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS). NASA is responsible for developing and launching the flight hardware and on-orbit commissioning and USGS is responsible for developing the ground system and operating the system onorbit after commissioning. Key components of the flight hardware are the Operational Land Imager (OLI), nearing completion by Ball Aerospace & Technologies Corp in Boulder, CO, the Thermal Infrared Sensor (TIRS), being built by NASA's Goddard Space Flight Center and the spacecraft, undergoing integration at Orbital Sciences Corp in Gilbert, Arizona. The launch vehicle will be an Atlas-5 with launch services provided by NASA's Kennedy Space Center. Key ground systems elements are the Mission Operations Element, being developed by the Hammers Corporation, and the Collection Activity Planning Element, Ground Network Element, and Data Processing and Archive System, being developed internally by the USGS Earth Resources Observations and Science (EROS) Center. The primary measurement goal of LDCM is to continue the global coverage of moderate spatial resolution imagery providing continuity with the existing Landsat record. The science goal for this imagery is to monitor land use and land cover, particularly as it relates to global climate change. Together the OLI and TIRS instruments on LDCM replace the ETM+ instrument on Landsat-7 with significant enhancements. The OLI is a pushbroom design instrument where the scanning mechanism of the ETM+ is effectively replaced by a long line of detectors. The OLI has 9 spectral bands with similar spatial resolution to ETM+: 7 of them similar to the reflective spectral bands on ETM+ and two new bands. The two new bands cover (1) the shorter wavelength blue part

  20. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  1. STS-99 / Endeavour Mission Overview

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  2. Autonomous collaborative mission systems (ACMS) for multi-UAV missions

    NASA Astrophysics Data System (ADS)

    Chen, Y.-L.; Peot, M.; Lee, J.; Sundareswaran, V.; Altshuler, T.

    2005-05-01

    UAVs are a key element of the Army"s vision for Force Transformation, and are expected to be employed in large numbers per FCS Unit of Action (UoA). This necessitates a multi-UAV level of autonomous collaboration behavior capability that meets RSTA and other mission needs of FCS UoAs. Autonomous Collaborative Mission Systems (ACMS) is a scalable architecture and behavior planning / collaborative approach to achieve this level of capability. The architecture is modular and the modules may be run in different locations/platforms to accommodate the constraints of available hardware, processing resources and mission needs. The Mission Management Module determines the role of member autonomous entities by employing collaboration mechanisms (e.g., market-based, etc.), the individual Entity Management Modules work with the Mission Manager in determining the role and task of the entity, the individual Entity Execution Modules monitor task execution and platform navigation and sensor control, and the World Model Module hosts local and global versions of the environment and the Common Operating Picture (COP). The modules and uniform interfaces provide a consistent and platform-independent baseline mission collaboration mechanism and signaling protocol across different platforms. Further, the modular design allows flexible and convenient addition of new autonomous collaborative behaviors to the ACMS through: adding new behavioral templates in the Mission Planner component, adding new components in appropriate ACMS modules to provide new mission specific functionality, adding or modifying constraints or parameters to the existing components, or any combination of these. We describe the ACMS architecture, its main features, current development status and future plans for simulations in this report.

  3. Advanced automation for space missions

    SciTech Connect

    Freitas, R.A., Jr.; Healy, T.J.; Long, J.E.

    1982-01-01

    A NASA/ASEE summer study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: an intelligent earth-sensing information system; an autonomous space exploration system; an automated space manufacturing facility; and a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by the century's end. 18 references.

  4. Manned Mars mission psychological issues

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    The research on isolated environments over the last thirty years suggests that psychological factors associated with such environments will lead to negative changes in individual and group performance. A mission to Mars will be the greatest undertaking ever devised by the human species. The members of such a mission will be in an environment whose potential dangers are not even completely known at this time. The psychological factors generated by such an environment, and which might adversely affect accomplishment of mission goals, can be minimized or planned for in advance. It is hoped that these issues will not be ignored in planning for this great adventure.

  5. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  6. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  7. EOS Terra: Mission Status Constellation MOWG

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Mission Status Constellation MOWG will discuss mission summary; spacecraft subsystems summary, recent and planned activities; inclination adjust maneuvers, conjunction history, propellant usage and lifetime estimate; and end of mission plan.

  8. General Mission Analysis Tool (GMAT) Mathematical Specifications

    NASA Technical Reports Server (NTRS)

    Hughes, Steve

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.

  9. ISS Update: Robotic Refueling Mission

    NASA Video Gallery

    NASA Public Affairs Office Dan Huot interviews Jill McGuire, the Robotic Refueling Mission (RRM) Project Manager at Goddard Space Flight Center, about the current RRM operation taking place outside...

  10. Gravitational models for mission planning

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1982-01-01

    A fitted truncated model is developed and any differences between this fitted model and one derived by simply truncating are analyzed. Based on the study, recommendations are made for an appropriate model for use in a mission planning environment.

  11. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  12. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  13. Catalog of lunar mission data

    NASA Technical Reports Server (NTRS)

    Mantel, E. J. (Editor); Miller, E. R. (Editor)

    1977-01-01

    Several series of spacecraft were developed, designed, built and launched to determine different characteristics of the lunar surface and environment for a manned landing. Both unmanned and manned spacecrafts, spacecraft equipment and lunar missions are documented.

  14. Mission Level Autonomy for USSV

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  15. Asteroid Redirect Mission: Crew Segment

    NASA Video Gallery

    NASA announced the next step in the plan to retrieve an asteroid boulder from a near-Earth asteroid and redirect it into a stable orbit around the moon to carry out human exploration missions, all ...

  16. Progress on the Cluster Mission

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret; Khurana, Krishan; Acuna, Mario (Technical Monitor)

    2002-01-01

    Prof M. G. Kivelson and Dr. K. K. Khurana (UCLA (University of California, Los Angeles)) are co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA will also participate in the analysis and interpretation of the data. The UCLA group here reports its excellent progress in developing fully intra-calibrated data for large portions of the mission and an excellent start in developing inter-calibrated data for selected time intervals, especially extended intervals in August, 2001 on which a workshop held at ESTEC in March, 2002 focused. In addition, some scientific investigations were initiated and results were reported at meetings.

  17. ISS Update: Robotic Refueling Mission

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Alex Janas, robotics operator from the Goddard Space Flight Center, about the Robotic Refueling Mission that has been taking place on the space stati...

  18. ISS Update: Autonomous Mission Operations

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Jeff Mauldin, Simulation Supervisor for Autonomous Mission Operations at Johnson Space Center in Houston, Texas. Ask us on Twitter @NASA_Johnson a...

  19. STS-41D Mission Insignia

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.

  20. KEPLER Mission: development and overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  1. Rosetta mission operations for landing

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  2. Intravenous Solutions for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Niederhaus, Charles; Barlow, Karen; Griffin, DeVon

    2007-01-01

    This paper describes the intravenous (IV) fluids requirements being developed for medical care during NASA s future exploration class missions. Previous research on IV solution generation and mixing in space is summarized. The current exploration baseline mission profiles are introduced, potential medical conditions described and evaluated for fluidic needs, and operational issues assessed. We briefly introduce potential methods for generating IV fluids in microgravity. Conclusions on the recommended fluid volume requirements are presented.

  3. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. PMID:26863223

  4. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  5. The Extreme Ultraviolet Explorer mission

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) is a NASA astronomy mission which will operate in the 70-760A spectral band. The science payload consists of three grazing incidence scanning telescopes and an EUV spectrometer/deep survey instrument. An overview of the planned mission profile is given, and the instrumentation which comprises the science payload is discussed. The EUVE is scheduled for launch in late August 1991.

  6. Urinary albumin in space missions.

    PubMed

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina; Norsk, Peter; Elmann-Larsen, Benny; Bellini, Luigi; Stellato, Davide; Drummer, Christian

    2002-07-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity).

  7. Descope of the ALIA mission

    NASA Astrophysics Data System (ADS)

    Gong, Xuefei; Lau, Yun-Kau; Xu, Shengnian; Amaro-Seoane, Pau; Bai, Shan; Bian, Xing; Cao, Zhoujian; Chen, Gerui; Chen, Xian; Ding, Yanwei; Dong, Peng; Gao, Wei; Heinzel, Gerhard; Li, Ming; Li, Shuo; Liu, Fukun; Luo, Ziren; Shao, Mingxue; Spurzem, Rainer; Sun, Baosan; Tang, Wenlin; Wang, Yan; Xu, Peng; Yu, Pin; Yuan, Yefei; Zhang, Xiaomin; Zhou, Zebing

    2015-05-01

    The present work reports on a feasibility study commissioned by the Chinese Academy of Sciences of China to explore various possible mission options to detect gravitational waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative merits assigned to science and technological viability, a few representative mission options descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is carried out to understand the cosmic black hole merger histories and the possible scientific merits of the mission options in probing the light seed black holes and their coevolution with galaxies in early Universe. The study indicates that, by choosing the armlength of the interferometer to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz, together with a very moderate improvement on the position noise budget, there are certain mission options capable of exploring light seed, intermediate mass black hole binaries at high redshift that are not readily accessible to eLISA/LISA, and yet the technological requirements seem to within reach in the next few decades for China.

  8. Social Tagging of Mission Data

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; Pyrzak, Guy; Vaughn, Michael B.

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  9. A review of Spacelab mission management approach

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  10. Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture

    USGS Publications Warehouse

    McNally, Amy; Gregory J. Husak,; Molly Brown,; Mark Carroll,; Funk, Christopher C.; Soni Yatheendradas,; Kristi Arsenault,; Christa Peters-Lidard,; Verdin, James

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture data with unprecedented accuracy, resolution, and coverage, enabling models to better track agricultural drought and estimate yields. In turn, this information can be used to shape policy related to food and water from commodity markets to humanitarian relief efforts. New data alone, however, do not translate to improvements in drought and yield forecasts. New tools will be needed to transform SMAP data into agriculturally meaningful products. The objective of this study is to evaluate the possibility and efficiency of replacing the rainfall-derived soil moisture component of a crop water stress index with SMAP data. The approach is demonstrated with 0.1°-resolution, ~10-day microwave soil moisture from the European Space Agency and simulated soil moisture from the Famine Early Warning Systems Network Land Data Assimilation System. Over a West Africa domain, the approach is evaluated by comparing the different soil moisture estimates and their resulting Water Requirement Satisfaction Index values from 2000 to 2010. This study highlights how the ensemble of indices performs during wet versus dry years, over different land-cover types, and the correlation with national-level millet yields. The new approach is a feasible and useful way to quantitatively assess how satellite-derived rainfall and soil moisture track agricultural water deficits. Given the importance of soil moisture in many applications, ranging from agriculture to public health to fire, this study should inspire other modeling communities to reformulate existing tools to take advantage of SMAP data.

  11. The SOLAR-C mission: current status

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshifumi; Tsuneta, Saku; Hara, Hirohisa; Ichimoto, Kiyoshi; Kusano, Kanya; Sakao, Taro; Sekii, Takashi; Suematsu, Yoshinori; Watanabe, Tetsuya

    2011-10-01

    Two mission concepts (plan A: out-of-ecliptic mission and plan B: high resolution spectroscopic mission) have been studied for the next Japanese-led solar mission Solar-C, which will follow the scientific success of the Hinode mission. The both mission concepts are concluded as equally important and attractive for the promotion of space solar physics. In the meantime we also had to make efforts for prioritizing the two options, in order to proceed to next stage of requesting the launch of Solar-C mission at the earliest opportunity. This paper briefly describes the two mission concepts and the current status on our efforts for prioritizing the two options. More details are also described for the plan B option as the first-priority Solar-C mission. The latest report from the Solar-C mission concept studies was documented as "Interim Report on the Solar-C Mission Concept."

  12. A review of mission planning systems

    NASA Technical Reports Server (NTRS)

    Jones, M.; Sorensen, E. M.; Wolff, T.; Haddow, C. R.

    1993-01-01

    A general definition of Mission Planning is given. The definition covers the full scope of an end-to-end mission planning system. Noting the mission-specific nature of most mission planning systems, a classification of autonomous spacecraft missions is made into Observatory, Survey, multi-instrument science, and Telecommunications missions. The mission planning approach for one mission in each category is examined critically. The following missions were chosen: ISO (Infrared Space Observatory); ERS-1 (European Remote Sensing Satellite); and Eureca (European Retrievable Carrier). The paper gives a summary of lessons learned from these missions suggesting improvements in areas such as requirements analysis, testing, user interfacing, rules, and constraints handling. The paper will also examine commonalities in functions, which could constitute a basis for identification of generic mission planning support tools.

  13. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  14. The Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  15. Mission Design Overview for the Phoenix Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Mark D.; Fujii, Kenneth K.

    2007-01-01

    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  16. How mission requirements affect observations: case of the PICARD mission

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Hauchecorne, A.; Damé, L.; Djafer, D.

    2016-07-01

    The scientific objectives of a space mission result into instrumental developments and specific satellite operations to observe astronomical objects of interest. The payload in its space environment is however subject to important thermal variations that affect observations. This is well observed when images of the Sun are recorded with the constraint of keeping the solar rotational axis in a constant direction relatively to the camera reference frame. Consequences are clearly observed on image positions that follow the thermal variations induced by the satellite orbit. This is, in particular, the case for the space mission PICARD. This phenomenon is similar to defocus and motions of images recorded with ground-based telescopes. We first present some simulations showing these effects. We then compare our results with real data obtained from the space mission PICARD.

  17. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM

  18. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  19. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  20. Austere Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Price, Hoppy; Hawkins, Alisa; Radcliffe, Torrey

    2009-01-01

    This slide presentation reviews a possible mission architecture for a more austere Mars mission, than the one developed by NASA outlined in the Design Reference Architecture 5 (DRA 5). "Austere" architecture is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. This approach will not meet all the DRA 5 mission requirements. Included in the presentation are the elements of an Austere mission, diagrams of the trans-Mars injection (TMI), cruise, and Mars Orbital Insertion for various phases of the mission, the entry descent landing (EDL) concept. The key features of the Transit Habitat (TransHab), the Earth Departure Stage (EDS), the landers, are reviewed. A chart shows the Mass in tons, of the conceptual types of Mars Landers. The EDL concept, EDL Phase diagrams for the Mars Lander are reviewed. New technologies that would be required are also reviewed. Flight test programs for the various parts of the architecture and a flight schedule are reviewed.