Sample records for active-source seismic monitoring

  1. Measuring the effects of pore-pressure changes on seismic amplitude using crosswell continuous active-source seismic monitoring (CASSM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, Pierpaolo; Daley, Thomas; Ajo-Franklin, Jonathan

    Monitoring of time-varying reservoir properties, such as the state of stress, is a primary goal of geophysical investigations, including for geological sequestration of CO 2, enhanced hydrocarbon recovery (EOR), and other subsurface engineering activities. In this work, we used Continuous Active-Source Seismic Monitoring (CASSM), with cross-well geometry, to measure variation in seismic coda amplitude, as a consequence of effective stress change (in the form of changes in pore fluid pressure). To our knowledge, the presented results are the first in-situ example of such crosswell measurement at reservoir scale and in field conditions. Data compliment the findings of our previous workmore » which investigated the relationship between pore fluid pressure and seismic velocity (velocity-stress sensitivity) using the CASSM system at the same field site (Marchesini et al., 2017, in review). We find that P-wave coda amplitude decreases with decreasing pore pressure (increasing effective stress).« less

  2. In situ measurement of velocity-stress sensitivity using crosswell continuous active-source seismic monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, P; Ajo-Franklin, JB; Daley, TM

    2017-09-01

    © 2017 Society of Exploration Geophysicists. The ability to characterize time-varying reservoir properties, such as the state of stress, has fundamental implications in subsurface engineering, relevant to geologic sequestration of CO2. Stress variation, here in the form of changes in pore fluid pressure, is one factor known to affect seismic velocity. Induced variations in velocity have been used in seismic studies to determine and monitor changes in the stress state. Previous studies conducted to determine velocity-stress sensitivity at reservoir conditions rely primarily on laboratory measurements of core samples or theoretical relationships. We have developed a novel field-scale experiment designed tomore » study the in situ relationship between pore-fluid pressure and seismic velocity using a crosswell continuous active-source seismic monitoring (CASSM) system. At the Cranfield, Mississippi, CO2 sequestration field site, we actively monitored seismic response for five days with a temporal resolution of 5 min; the target was a 26 m thick injection zone at approximately 3.2 km depth in a fluvial sandstone formation (lower Tuscaloosa Formation). The variation of pore fluid pressure was obtained during discrete events of fluid withdrawal from one of the two wells and monitored with downhole pressure sensors. The results indicate a correlation between decreasing CASSM time delay (i.e., velocity change for a raypath in the reservoir) and periods of reduced fluid pore pressure. The correlation is interpreted as the velocity-stress sensitivity measured in the reservoir. This observation is consistent with published laboratory studies documenting a velocity (V) increase with an effective stress increase. A traveltime change (dt) of 0.036 ms is measured as the consequence of a change in pressure of approximately 2.55 MPa (dPe). For T 1/4 13 ms total traveltime, the velocity-stress sensitivity is dV/V/dPe 1/4 dt/T/dPe 1/4 10.9 × 10-4/MPa. The overall results suggest

  3. Downhole seismic monitoring with Virtual Sources

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Huge quantities of remaining oil and gas reserves are located in very challenging geological environments covered by salt, basalt or other complex overburdens. Conventional surface seismology struggles to deliver images necessary to economically explore them. Even if those reserves are found by drilling successful production critically depends on our ability to ``see" in real time where fluids are drawn from and how pressure changes throughout the reservoirs. For relatively simple overburdens surface time-lapse (4D) seismic monitoring became industry choice for aerial reservoir surveillance. For complex overburdens, 4D seismic does not have enough resolution and repeatability to answer the questions of reservoir engineers. For instance, often reservoir changes are too small to be detected from surface or these changes occur in such pace that all wells will be placed before we can detect them which greatly reduces the economical impact. Two additional challenges are present in real life that further complicate active monitoring: first, near-surface condition do change between the surveys (water level movement, freezing/thawing, tide variations etc) and second, repeating exact same acquisition geometry at the surface is difficult in practice. Both of these things may lead to false 4D response unrelated to reservoir changes. Virtual Source method (VSM) has been recently proposed as a way to eliminate overburden distortions for imaging and monitoring. VSM acknowledges upfront that our data inversion techniques are unable to unravel the details of the complex overburdens to the extent necessary to remove the distortions caused by them. Therefore VSM advocates placing permanent downhole geophones below that most complex overburden while still exciting signals with a surface sources. For instance, first applications include drilling instrumented wells below complicated near-surface, basalt or salt layer. Of course, in an ideal world we would prefer to have both downhole

  4. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  5. Imaging Stress Transients and Fault Zone Processes with Crosswell Continuous Active-Source Seismic Monitoring at the San Andreas Fault Observatory at Depth

    NASA Astrophysics Data System (ADS)

    Niu, F.; Taira, T.; Daley, T. M.; Marchesini, P.; Robertson, M.; Wood, T.

    2017-12-01

    Recent field and laboratory experiments identify seismic velocity changes preceding microearthquakes and rock failure (Niu et al., 2008, Nature; Scuderi et al., 2016, NatureGeo), which indicates that a continuous monitoring of seismic velocity might provide a mean of understanding of the earthquake nucleation process. Crosswell Continuous Active-Source Seismic Monitoring (CASSM) using borehole sources and sensors has proven to be an effective tool for measurements of seismic velocity and its temporal variation at seismogenic depth (Silver, et al, 2007, BSSA; Daley, et al, 2007, Geophysics). To expand current efforts on the CASSM development, in June 2017 we have begun to conduct a year-long CASSM field experiment at the San Andreas Fault Observatory at Depth (SAFOD) in which the preceding field experiment detected the two sudden velocity reductions approximately 10 and 2 hours before microearthquakes (Niu et al., 2008, Nature). We installed a piezoelectric source and a three-component accelerometer at the SAFOD pilot and main holes ( 1 km depth) respectively. A seismic pulse was fired from the piezoelectric source four times per second. Each waveform was recorded 150-ms-long data with a sampling rate of 48 kHz. During this one-year experiment, we expect to have 10-15 microearthquakes (magnitude 1-3) occurring near the SAFOD site, and the data collected from the new experiment would allow us to further explore a relation between velocity changes and the Parkfield seismicity. Additionally, the year-long data provide a unique opportunity to study long-term velocity changes that might be related to seasonal stress variations at Parkfield (Johnson et al., 2017, Science). We will report on initial results of the SAFOD CASSM experiment and operational experiences of the CASSM development.

  6. Seismic Monitoring of Permafrost During Controlled Thaw: An Active-Source Experiment Using a Surface Orbital Vibrator and Fiber-Optic DAS Arrays

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.

    2016-12-01

    Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.

  7. Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Chen, Y.; Wang, W.; Yang, W.

    2017-12-01

    Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity

  8. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  9. Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.

    2017-12-01

    The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.

  10. Passive monitoring for near surface void detection using traffic as a seismic source

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  11. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  12. Identification of seismic activity sources on the subsatellite track by ionospheric plasma disturbances detected with the Sich-2 onboard probes

    NASA Astrophysics Data System (ADS)

    Shuvalov, Valentin A.; Lazuchenkov, Dmitry N.; Gorev, Nikolai B.; Kochubei, Galina S.

    2018-01-01

    Using a cylindrical Langmuir probe and the authors' proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011-2012) were measured. This paper is concerned with identifying the space-time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track. It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation.

  13. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  14. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  15. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building

  16. Continuous Seismic Threshold Monitoring

    DTIC Science & Technology

    1992-05-31

    Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic

  17. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  18. Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy

  19. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  20. Time-lapse Seismic Refraction Monitoring of an Active Landslide in Lias Group Mudrocks, North Yorkshire, UK

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Whiteley, J.; Chambers, J. E.; Inauen, C.; Swift, R. T.

    2017-12-01

    Geophysical monitoring of the internal moisture content and processes of landslides is an increasingly common approach to the characterisation and assessment of the hydrogeological condition of rainfall-triggered landslides. Geoelectrical monitoring methods are sensitive to changes in the subsurface moisture conditions that cause the failure of unstable slopes, typically through the increase of pore water pressures and softening of materials within the landslide system. The application of seismic methods to the monitoring of landslides has not been as extensively applied as geoelectrical approaches, but the seismic method can determine elastic properties of landslide materials that can characterise and identify changes in the geomechanical condition of landslide systems that also lead to slope failure. We present the results of a seismic refraction monitoring campaign undertaken at the Hollin Hill Landslide Observatory in North Yorkshire, UK. This campaign has involved the repeat acquisition of surface acquired high resolution P- and S-wave seismic refraction data. The monitoring profile traverses a 142m long section from the crest to the toe of an active landslide comprising of mudstone and sandstone. Data were acquired at six to nine week intervals between October 2016 and October 2017. This repeat acquisition approach allowed for the imaging of seismically determined property changes of the landslide throughout the annual climatic cycle. Initial results showed that changes in the moisture dynamics of the landslide are reflected by changes in the seismic character of the inverted tomograms. Changes in the seismic properties are linked to the changes in the annual climatic cycle, particularly in relation to effective rainfall. The results indicate that the incorporation of seismic monitoring data into ongoing geoelectrical monitoring programmes can provide complementary geomechanical data to enhance our understanding of the internal condition of landslide systems

  1. Borehole seismic monitoring of seismic stimulation at OccidentalPermian Ltd's -- South Wason Clear Fork Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, Tom; Majer, Ernie

    2007-04-30

    Seismic stimulation is a proposed enhanced oil recovery(EOR) technique which uses seismic energy to increase oil production. Aspart of an integrated research effort (theory, lab and field studies),LBNL has been measuring the seismic amplitude of various stimulationsources in various oil fields (Majer, et al., 2006, Roberts,et al.,2001, Daley et al., 1999). The amplitude of the seismic waves generatedby a stimulation source is an important parameter for increased oilmobility in both theoretical models and laboratory core studies. Theseismic amplitude, typically in units of seismic strain, can be measuredin-situ by use of a borehole seismometer (geophone). Measuring thedistribution of amplitudes within amore » reservoir could allow improved designof stimulation source deployment. In March, 2007, we provided in-fieldmonitoring of two stimulation sources operating in Occidental (Oxy)Permian Ltd's South Wasson Clear Fork (SWCU) unit, located near DenverCity, Tx. The stimulation source is a downhole fluid pulsation devicedeveloped by Applied Seismic Research Corp. (ASR). Our monitoring used aborehole wall-locking 3-component geophone operating in two nearbywells.« less

  2. Seismic Monitoring for the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Nakanishi, K

    2005-04-11

    There is potential for earthquakes in the United Arab Emirates and in the Zagros mountains to cause structural damage and pose a threat to safety of people. Damaging effects from earthquakes can be mitigated by knowledge of the location and size of earthquakes, effects on construction, and monitoring these effects over time. Although a general idea of seismicity in the UAE may be determined with data from global seismic networks, these global networks do not have the sensitivity to record smaller seismic events and do not have the necessary accuracy to locate the events. A National Seismic Monitoring Observatory ismore » needed for the UAE that consists of a modern seismic network and a multidisciplinary staff that can analyze and interpret the data from the network. A seismic network is essential to locate earthquakes, determine event magnitudes, identify active faults and measure ground motions from earthquakes. Such a network can provide the data necessary for a reliable seismic hazard assessment in the UAE. The National Seismic Monitoring Observatory would ideally be situated at a university that would provide access to the wide range of disciplines needed in operating the network and providing expertise in analysis and interpretation.« less

  3. Seismic Sources for the Territory of Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.

    2011-12-01

    The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources

  4. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  5. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  6. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  7. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  8. Seismic reflection imaging with conventional and unconventional sources

    NASA Astrophysics Data System (ADS)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant

  9. ULF radio monitoring network in a seismic area

    NASA Astrophysics Data System (ADS)

    Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2017-04-01

    ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low

  10. A dense microseismic monitoring network in Korea for uncovering relationship between seismic activity and neotectonic features

    NASA Astrophysics Data System (ADS)

    Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.

    2012-12-01

    A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.

  11. Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.

    2017-12-01

    In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.

  12. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    NASA Astrophysics Data System (ADS)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  13. Improved earthquake monitoring in the central and eastern United States in support of seismic assessments for critical facilities

    USGS Publications Warehouse

    Leith, William S.; Benz, Harley M.; Herrmann, Robert B.

    2011-01-01

    Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.

  14. Bayesian Inference for Signal-Based Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  15. Seismic monitoring at Deception Island volcano (Antarctica): Recent advances

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.

    2012-04-01

    Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating

  16. Seismic and Biological Sources of Ambient Ocean Sound

    NASA Astrophysics Data System (ADS)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  17. Seismic Monitoring of Rock Falls in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Zimmer, V. L.; Stock, G. M.; Sitar, N.

    2008-12-01

    Between 1857 and 2007, more than 600 landslide events have been documented in Yosemite National Park, with the vast majority of events occurring as rock falls in Yosemite Valley. The conditions leading to and triggering rock fall are understood in approximately 50 percent of cases, but in the other 50 percent, there were no apparent triggers. Occasionally, large rock falls have been preceded by smaller events that, in retrospect, may have been precursors. Close range seismic monitoring presents an opportunity to study the conditions leading up to rock fall, as well as the mechanics of the actual rock fall as recorded seismically. During the winter of 2007-08, we conducted a rock fall seismic monitoring feasibility study in Yosemite Valley. A station consisting of an 8 Hz geophone and an accelerometer was placed on a ledge 1000 feet above the valley floor, in a historically active rock fall area known as the Three Brothers. At least two rock falls in this area were recorded by the instrumentation and witnessed by visitors, representing the first time rock falls have been recorded with seismic instrumentation in Yosemite Valley. Significant energy was recorded in a wide frequency range, from a few Hz to approximately 150 Hz, limited by the geophone response and attenuation of the signal due to distance to the source (400 m). Furthermore, there exists a weak signal approximately 5-10 seconds before the obvious rock fall signature. We hypothesize that the weak signal represents rock fall initiation manifesting as the first blocks sliding down the cliff face, while the stronger impulses represent these blocks impacting ledges and the bottom talus field. This study demonstrated that rock fall monitoring is feasible with seismic instrumentation, and serves as the catalyst for future studies using a network of sensors for more advanced analysis.

  18. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma

    USGS Publications Warehouse

    McNamara, Daniel E.; Rubinstein, Justin L.; Myers, Emma; Smoczyk, Gregory M.; Benz, Harley M.; Williams, Robert; Hayes, Gavin; Wilson, David; Herrmann, Robert B.; McMahon, Nicole D; Aster, R.C.; Bergman, E.; Holland, Austin; Earle, Paul

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concerns regarding the source of the activity and its potential hazard to local communities and energy-industry infrastructure. Efforts to monitor and characterize the earthquake sequences in central Oklahoma are reviewed. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma to record the evolving seismicity. A multiple-event relocation method is applied to produce a catalog of central Oklahoma earthquakes from late 2009 into early 2015. Regional moment tensor (RMT) source parameters were determined for the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled determination of the length, depth, and style of faulting occurring on reactivated subsurface fault systems. It was found that the majority of earthquakes occur on near-vertical, optimally oriented (northeast-southwest and northwest-southeast) strike-slip faults in the shallow crystalline basement. In 2014, 17 earthquakes occurred with magnitudes of 4 or larger. It is suggested that these recently reactivated fault systems pose the greatest potential hazard to the region.

  19. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    NASA Astrophysics Data System (ADS)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  20. Induced Seismicity Monitoring System

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  1. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.

  2. Test to Extract Soil Properties Using the Seismic HammerTM Active Seismic Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Rebekah F.; Abbott, Robert E.

    Geologic material properties are necessary parameters for ground motion modeling and are difficult and expensive to obtain via traditional methods. Alternative methods to estimate soil properties require a measurement of the ground's response to a force. A possible method of obtaining these measurements is active-source seismic surveys, but measurements of the ground response at the source must also be available. The potential of seismic sources to obtain soil properties is limited, however, by the repeatability of the source. Explosives, and hammer surveys are not repeatable because of variable ground coupling or swing strength. On the other hand, the Seismic Hammermore » TM (SH) is consistent in the amount of energy it inputs into the ground. In addition, it leaves large physical depressions as a result of ground compaction. The volume of ground compaction varies by location. Here, we hypothesize that physical depressions left in the earth by the SH correlate to energy recorded by nearby geophones, and therefore are a measurement of soil physical properties. Using measurements of the volume of shot holes, we compare the spatial distribution of the volume of ground compacted between the different shot locations. We then examine energy recorded by the nearest 50 geophones and compare the change in amplitude across hits at the same location. Finally, we use the percent difference between the energy recorded by the first and later hits at a location to test for a correlation to the volume of the shot depressions. We find that: * Ground compaction at the shot-depression does cluster geographically, but does not correlate to known surface features. * Energy recorded by nearby geophones reflects ground refusal after several hits. * There is no correlation to shot volume and changes in energy at particular shot locations. Deeper material properties (i.e. below the depth of surface compaction) may be contributing to the changes in energy propagation. * Without further

  3. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    NASA Astrophysics Data System (ADS)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  4. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  5. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data.

    PubMed

    Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi

    2017-11-17

    The interactions of the lithospheric plates that form the Earth's outer shell provide much of the evidentiary basis for modern plate tectonic theory. Seismic discontinuities in the lithosphere arising from mantle convection and plate motion provide constraints on the physical and chemical properties of the mantle that contribute to the processes of formation and evolution of tectonic plates. Seismological studies during the past two decades have detected seismic discontinuities within the oceanic lithosphere in addition to that at the lithosphere-asthenosphere boundary (LAB). However, the depth, distribution, and physical properties of these discontinuities are not well constrained, which makes it difficult to use seismological data to examine their origin. Here we present new active-source seismic data acquired along a 1,130 km profile across an old Pacific plate (148-128 Ma) that show oceanic mid-lithosphere discontinuities (oceanic MLDs) distributed 37-59 km below the seafloor. The presence of the oceanic MLDs suggests that frozen melts that accumulated at past LABs have been preserved as low-velocity layers within the current mature lithosphere. These observations show that long-offset, high-frequency, active-source seismic data can be used to image mid-lithospheric structure, which is fundamental to understanding the formation and evolution of tectonic plates.

  6. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  7. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.

  8. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    Earthquake source parameters underpin several aspects of nuclear explosion monitoring. Such aspects are: calibration of moment magnitudes (including coda magnitudes) and magnitude and distance amplitude corrections (MDAC); source depths; discrimination by isotropic moment tensor components; and waveform modeling for structure (including waveform tomography). This project seeks to improve methods for and broaden the applicability of estimating source parameters from broadband waveforms using the Cut-and-Paste (CAP) methodology. The CAP method uses a library of Green’s functions for a one-dimensional (1D, depth-varying) seismic velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radialmore » components), Rayleigh (vertical and radial components) and Love (transverse component). Source parameters are estimated by grid search over strike, dip, rake and depth and seismic moment or equivalently moment magnitude, MW, are adjusted to fit the amplitudes. Key to the CAP method is allowing the synthetic seismograms to shift in time relative to the data in order to account for path-propagation errors (delays) in the 1D seismic velocity model used to compute the Green’s functions. The CAP method has been shown to improve estimates of source parameters, especially when delay and amplitude biases are calibrated using high signal-to-noise data from moderate earthquakes, CAP+.« less

  9. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    USGS Publications Warehouse

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be

  10. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  11. Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yojiro; Takahashi, Tsutomu; Kaiho, Yuka; Obana, Koichiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2017-03-01

    We conduct seismic tomography to model subsurface seismicity between 2010 and 2012 and structural heterogeneity off the Kii Peninsula, southwestern Japan, and to investigate their relationships with segmentation of the Nankai and Tonankai seismogenic zones of the Nankai Trough. In order to constrain both the shallow and deep structure of the offshore seismogenic segments, we use both active- and passive-source data recorded by both ocean-bottom seismometers and land seismic stations. The relocated microearthquakes indicate a lack of seismic activity in the Tonankai seismogenic segment off Kumano, whereas there was active intraslab seismicity in the Kii Channel area of the Nankai seismogenic segment. Based on comparisons among the distribution of seismicity, age, and spreading rate of the subducting Philippine Sea plate, and the slip-deficit distribution, we conclude that seismicity in the subducting slab under the Kii Channel region nucleated from structures in the Philippine Sea slab that pre-date subduction and that fluids released by dehydration are related to decreased interplate coupling of these intraslab earthquakes. Our velocity model clearly shows the areal extent of two key structures reported in previous 2-D active-source surveys: a high-velocity zone beneath Cape Shionomisaki and a subducted seamount off Cape Muroto, both of which are roughly circular and of 15-20 km radius. The epicenters of the 1944 Tonankai and 1946 Nankai earthquakes are near the edge of the high-velocity body beneath Cape Shionomisaki, suggesting that this anomalous structure is related to the nucleation of these two earthquakes. We identify several other high- and low-velocity zones immediately above the plate boundary in the Tonankai and Nankai seismogenic segments. In comparison with the slip-deficit model, some of the low-velocity zones appear to correspond to an area of strong coupling. Our observations suggest that, unlike the Japan Trench subduction zone, in our study area

  12. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for

  13. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchkov, A. A., E-mail: DuchkovAA@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk, 630090; Stefanov, Yu. P., E-mail: stefanov@ispms.tsc.ru

    2015-10-27

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. Inmore » particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)« less

  14. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel

    2018-02-01

    Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.

  15. Geoazur's contribution in instrumentation to monitor seismic activity of the Earth

    NASA Astrophysics Data System (ADS)

    Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.

    2011-12-01

    Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global

  16. Single station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, R. S.; Lecocq, T.; Caudron, C.; Ferrazzini, V.; Francis, O.

    2016-12-01

    During volcanic eruptions, magma transport causes gas release, pressure perturbations and fracturing in the plumbing system. The potential subsequent surface deformation that can be detected using geodetic techniques and deep mechanical processes associated with magma pressurization and/or migration and their spatial-temporal evolution can be monitored with volcanic seismicity. However, these techniques respectively suffer from limited sensitivity to deep changes and a too short-term temporal distribution to expose early aseismic processes such as magma pressurisation. Seismic ambient noise cross-correlation uses the multiple scattering of seismic vibrations by heterogeneities in the crust to retrieves the Green's function for surface waves between two stations by cross-correlating these diffuse wavefields. Seismic velocity changes are then typically measured from the cross-correlation functions with applications for volcanoes, large magnitude earthquakes in the far field and smaller magnitude earthquakes at smaller distances. This technique is increasingly used as a non-destructive way to continuously monitor small seismic velocity changes ( 0.1%) associated with volcanic activity, although it is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-stations" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multi-disciplinary continuous monitoring. Over the past decade, this volcano was increasingly studied using the traditional cross-station approach and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new

  17. Source Characterization and Seismic Hazard Considerations for Hydraulic Fracture Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Bosman, K.; Viegas, G. F.; Baig, A. M.; Urbancic, T.

    2015-12-01

    Large microseismic events (M>0) have been shown to be generated during hydraulic fracture treatments relatively frequently. These events are a concern both from public safety and engineering viewpoints. Recent microseismic monitoring projects in the Horn River Basin have utilized both downhole and surface sensors to record events associated with hydraulic fracturing. The resulting hybrid monitoring system has produced a large dataset with two distinct groups of events: large events recorded by the surface network (0activity. Both datasets show very low seismic efficiency, implying slip weakening and possibly the presence of fluids in the source region. Reservoir events have shear-tensile source mechanisms ranging between tensile opening and tensile closing, and fracture orientations dominated by the rock fabric which are not always optimally oriented to the regional stress field. The observed source characteristics are expected for events driven by increased pore pressure and reduced friction due to lubrication. On average, deep events show higher stress drop, apparent stress, and rupture velocity than reservoir events. This reflects higher confining stresses with depth, and possibly the release of stored energy in the existing zone of weakness. Deep events are dominated by shear failures, but source characteristics are smaller than for naturally occurring tectonic earthquakes of similar magnitude. Most importantly from a seismic hazard perspective, large earthquakes associated with hydrofracing have lower stress drops than tectonic earthquakes, and thus produce smaller peak ground acceleration and less damage on

  18. Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Gassenmeier, M.; Sens-Schönfelder, C.; Delatre, M.; Korn, M.

    2015-01-01

    Regarding the exploitation of natural resources, storage of waste or subsurface construction, there is an increasing need to obtain comprehensive knowledge about the subsurface and its temporal changes. We investigate the possibility of a passive monitoring using ambient seismic noise, which is cheap and continuous compared to active seismics. We work with data acquired with a seismic network in Ketzin (Germany) where 67 271 tons of CO2 were injected from 2008 June until 2013 August into a saline aquifer at a depth of about 650 m. Monitoring the expansion of the CO2 plume is essential for the characterization of the reservoir as well as the detection of potential leakage. By cross-correlating about 4 yr of passive seismic data in a frequency range of 0.05-4.5 Hz we found periodic velocity variations with a period of approximately 1 yr that cannot be caused by the CO2 injection. The prominent direction of the noise wavefield indicates a wind farm as the dominant source providing the temporally stable noise field. This spacial stability excludes variations of the noise source distribution as a cause of spurious velocity variations. Based on an amplitude decrease associated with time windows towards later parts of the coda, we show that the variations must be generated in the shallow subsurface. A comparison to groundwater level data reveals a direct correlation between depth of the groundwater level and the seismic velocity. The influence of ground frost on the seismic velocities is documented by a sharp increase of velocity when the maximum daily temperature stays below 0 °C. Although the observed periodic changes and the changes due to ground frost affect only the shallow subsurface, they mask potential signals of material changes from the reservoir depths.

  19. Surface Deformation and Source Model at Semisopochnoi Volcano from InSAR and Seismic Analysis During the 2014 and 2015 Seismic Swarms

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Pesicek, J. D.; Lu, Z.

    2016-12-01

    During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi volcano in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs differential SAR techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The interferograms created from the SAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in a Mogi model in order to define the three-dimensional location and volume change required for a source at Semisopochnoi to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. While no direct conclusions as to the relationship of these seismic events and the observed surface deformation can be made at this time, these techniques are both complimentary and efficient forms of remotely monitoring volcanic activity that provide much deeper insights into the processes involved without having to risk hazardous or costly field work.

  20. Seismic source parameters of the induced seismicity at The Geysers geothermal area, California, by a generalized inversion approach

    NASA Astrophysics Data System (ADS)

    Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia

    2017-04-01

    The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.

  1. Suggested Best Practice for seismic monitoring and characterization of non-conventional reservoirs

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Bohnhoff, M.; terHeege, J. H.; Deflandre, J. P.; Sicking, C.

    2017-12-01

    High rates of induced seismicity and gas leakage in non-conventional production have become a growing issue of public concern. It has resulted in calls for independent monitoring before, during and after reservoir production. To date no uniform practice for it exists and few reservoirs are locally monitored at all. Nonetheless, local seismic monitoring is a pre-requisite for detecting small earthquakes, increases of which can foreshadow damaging ones and indicate gas leaks. Appropriately designed networks, including seismic reflection studies, can be used to collect these and Seismic Emission Tomography (SET) data, the latter significantly helping reservoir characterization and exploitation. We suggest a Step-by-Step procedure for implementing such networks. We describe various field kits, installations, and workflows, all aimed at avoiding damaging seismicity, as indicators of well stability, and improving reservoir exploitation. In Step 1, a single downhole seismograph is recommended for establishing baseline seismicity before development. Subsequent Steps are used to decide cost-effective ways of monitoring treatments, production, and abandonment. We include suggestions for monitoring of disposal and underground storage. We also describe how repeated SET observations improve reservoir management as well as regulatory monitoring. Moreover, SET acquisition can be included at incremental cost in active surveys or temporary passive deployments.

  2. Open Source Tools for Seismicity Analysis

    NASA Astrophysics Data System (ADS)

    Powers, P.

    2010-12-01

    The spatio-temporal analysis of seismicity plays an important role in earthquake forecasting and is integral to research on earthquake interactions and triggering. For instance, the third version of the Uniform California Earthquake Rupture Forecast (UCERF), currently under development, will use Epidemic Type Aftershock Sequences (ETAS) as a model for earthquake triggering. UCERF will be a "living" model and therefore requires robust, tested, and well-documented ETAS algorithms to ensure transparency and reproducibility. Likewise, as earthquake aftershock sequences unfold, real-time access to high quality hypocenter data makes it possible to monitor the temporal variability of statistical properties such as the parameters of the Omori Law and the Gutenberg Richter b-value. Such statistical properties are valuable as they provide a measure of how much a particular sequence deviates from expected behavior and can be used when assigning probabilities of aftershock occurrence. To address these demands and provide public access to standard methods employed in statistical seismology, we present well-documented, open-source JavaScript and Java software libraries for the on- and off-line analysis of seismicity. The Javascript classes facilitate web-based asynchronous access to earthquake catalog data and provide a framework for in-browser display, analysis, and manipulation of catalog statistics; implementations of this framework will be made available on the USGS Earthquake Hazards website. The Java classes, in addition to providing tools for seismicity analysis, provide tools for modeling seismicity and generating synthetic catalogs. These tools are extensible and will be released as part of the open-source OpenSHA Commons library.

  3. Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.

    2015-12-01

    The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  4. Determining the sensitivity of the amplitude source location (ASL) method through active seismic sources: An example from Te Maari Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, Braden; Jolly, Arthur; Procter, Jonathan

    2017-04-01

    Using active seismic sources on Tongariro Volcano, New Zealand, the amplitude source location (ASL) method is calibrated and optimized through a series of sensitivity tests. By applying a geologic medium velocity of 1500 m/s and an attenuation value of Q=60 for surface waves along with amplification factors computed from regional earthquakes, the ASL produced location discrepancies larger than 1.0 km horizontally and up to 0.5 km in depth. Through the use of sensitivity tests on input parameters, we show that velocity and attenuation models have moderate to strong influences on the location results, but can be easily constrained. Changes in locations are accommodated through either lateral or depth movements. Station corrections (amplification factors) and station geometry strongly affect the ASL locations laterally, horizontally and in depth. Calibrating the amplification factors through the exploitation of the active seismic source events reduced location errors for the sources by up to 50%.

  5. Active and passive seismic investigations in Alpine Permafrost at Hoher Sonnblick (Austria)

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias; Maierhofer, Theresa; Pfeiler, Stefan; Chwatal, Werner; Behm, Michael; Reisenhofer, Stefan; Schöner, Wolfgang; Straka, Wolfgang; Flores Orozco, Adrian

    2017-04-01

    Different geophysical measurements have been applied at the Hoher Sonnblick study area to gain information about permafrost distribution as well as heterogeneities controlling heat circulation, in the frame of the ÖAW-AtmoPerm project, which aims at the understanding the impacts of atmospheric extreme events on the thermal state of the active layer. Electrical Resistivity Tomography (ERT) has been widely accepted as a suitable method to characterize permafrost processes; however, limitations are imposed due to the challenges to inject high current densities in the frozen periods and the loss of resolution of electrical images at depth require the application of further geophysical methods. To overcome such problems, we investigate here the application of active and seismic methods. Seismic campaigns were performed using permanent borehole and temporarily installed surface geophones. A total of 15 borehole geophones are installed at depths of 1 m, 2 m, 5 m, 10 m and 20 m in three boreholes which are separated by a horizontal distance of 30 m between each other. Active measurements utilized 41 surface and 15 borehole geophones and a total of 199 excitation points. Surface geophones were laid out along two crossing lines with lengths of 92 m and 64 m, respectively. The longer line was placed directly along the borehole transect and the shorter one was oriented perpendicular to it. Hammer blows were performed with a spacing of 1 m inline the geophones and 4 m in crosslines rotated by 45 degrees, permitting 3D acquisition geometry. In addition to the active sources, data loggers connected to the borehole geophones permitted the collection of continuous 36-hours datasets for two different thermal conditions. Seismic ambient noise interferometry is applied to this data and aims at the identification of velocity changes in the subsurface related to seasonal changes of the active layer. A potential source of ambient seismic energy is the noise excited by hikers and the

  6. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less

  7. Development of Towed Marine Seismic Vibrator as an Alternative Seismic Source

    NASA Astrophysics Data System (ADS)

    Ozasa, H.; Mikada, H.; Murakami, F.; Jamali Hondori, E.; Takekawa, J.; Asakawa, E.; Sato, F.

    2015-12-01

    The principal issue with respect to marine impulsive sources to acquire seismic data is if the emission of acoustic energy inflicts harm on marine mammals or not, since the volume of the source signal being released into the marine environment could be so large compared to the sound range of the mammals. We propose a marine seismic vibrator as an alternative to the impulsive sources to mitigate a risk of the impact to the marine environment while satisfying the necessary conditions of seismic surveys. These conditions include the repeatability and the controllability of source signals both in amplitude and phase for high-quality measurements. We, therefore, designed a towed marine seismic vibrator (MSV) as a new type marine vibratory seismic source that employed the hydraulic servo system for the controllability condition in phase and in amplitude that assures the repeatability as well. After fabricating a downsized MSV that requires the power of 30 kVA at a depth of about 250 m in water, several sea trials were conducted to test the source characteristics of the downsized MSV in terms of amplitude, frequency, horizontal and vertical directivities of the generated field. The maximum sound level satisfied the designed specification in the frequencies ranging from 3 to 300 Hz almost omnidirectionally. After checking the source characteristics, we then conducted a trial seismic survey, using both the downsized MSV and an airgun of 480 cubic-inches for comparison, with a streamer cable of 2,000m long right above a cabled earthquake observatory in the Japan Sea. The result showed that the penetration of seismic signals generated by the downsized MSV was comparable to that by the airgun, although there was a slight difference in the signal-to-noise ratio. The MSV could become a versatile source that will not harm living marine mammals as an alternative to the existing impulsive seismic sources such as airgun.

  8. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  9. Seismic activity in northeastern Brazill-new perspectives

    NASA Astrophysics Data System (ADS)

    Ferreira, J. M.; Do Nascimento, A. F.; Vilar, C. S.; Bezerra, F. H.; Assumpcao, M.; Berrocal, J.; Fuck, R. A.

    2007-05-01

    Northeastern Brazil is the most seismic active region in the country. Some earthquakes with magnitude above 5.0 and intensity VII MM associated with swam-like seismic activity lasting for many years are a serious social concern. Since the 1980's macroseismic and instrumental surveys have been carried out in this region and they are an important data archive which allows the composition of a reliable catalogue of seismic activity for this region. Among the many scientific results it was possible to identify the main seismogenic areas, obtain reliable hypocentres and focal mechanisms. As a consequence, it was possible also to analyse the relationship between seismicity and geological features. It was also possible to determined maximum horizontal stress direction for the region. An important induced seismic activity case has also been reported in the area as being a classical example of pore pressure diffusion triggering mechanism. The majority of the results were obtained using analogic data. Recently, a new research project is being conducted and will allow us to provide a regional scale monitoring with 6 broad-band stations and a new portable six station digital seismic network equipped with short- period sensors. Thus, with the continuous seismic activity in the area we trust that the results of this project will increase the present knowledge of seismic activity in northeastern Brazil.

  10. Subsurface Characterization and Seismic Monitoring for the Southwest Partnerships Phase III Demonstration Project at Farnsworth Field, TX

    NASA Astrophysics Data System (ADS)

    Will, R. A.; Balch, R. S.

    2015-12-01

    The Southwest Partnership on Carbon Sequestration is performing seismic based characterization and monitoring activities at an active CO2 EOR project at Farnsworth Field, Texas. CO2 is anthropogenically sourced from a fertilizer and an ethanol plant. The field has 13 CO2 injectors and has sequestered 302,982 metric tonnes of CO2 since October 2013. The field site provides an excellent laboratory for testing a range of monitoring technologies in an operating CO2 flood since planned development is sequential and allows for multiple opportunities to record zero CO2 baseline data, mid-flood data, and fully flooded data. The project is comparing and contrasting several scales of seismic technologies in order to determine best practices for large scale commercial sequestration projects. Characterization efforts include an 85 km2 3D surface seismic survey, baseline and repeat 3D VSP surveys centered on injection wells, cross-well tomography baseline and repeat surveys between injector/producer pairs, and a borehole passive seismic array to monitor induced seismicity. All surveys have contributed to detailed geologic models which were then used for fluid flow and risk assessment simulations. 3D VSP and cross-well data with repeat surveys have allowed for direct comparisons of the reservoir prior to CO2 injection and at eight months into injection, with a goal of imaging the CO2 plume as it moves away from injection wells. Additional repeat surveys at regular intervals will continue to refine the plume. The goal of this work is to demonstrate seismic based technologies to monitor CO2 sequestration projects, and to contribute to best practices manuals for commercial scale CO2 sequestration projects. In this talk the seismic plan will be outlined, progress towards goals enumerated, and preliminary results from baseline and repeat seismic data will be discussed. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  11. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps

  12. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  13. Global Seismic Monitoring: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Zoback, M.; Benz, H.; Oppenheimer, D.

    2007-12-01

    Global seismological observations began in April 1889 when an earthquake in Tokyo, Japan was accurately recorded in Germany on two different horizontal pendulum instruments. However, modern global observational seismology really began 46 years ago when the 120-station World Wide Standard Seismograph Network was installed by the US to monitor underground nuclear tests and earthquakes using well-calibrated short- and long- period stations. At the same time rapid advances in computing technology enabled researchers to begin sophisticated analysis of the increasing amount of seismic data, which led to better understanding of earthquake source properties and their use in establishing plate tectonics. Today, global seismic networks are operated by German (Geophon), France (Geoscope), the United States (Global Seismograph Network) and the International Monitoring System. Presently, the Federation of Digital Seismograph Networks registers more than 1,000 broadband stations world-wide, a small percentage of the total number of digital seismic stations around the world. Following the devastating Kobe, Japan and Northridge, California earthquakes, Japan and the US have led the world in the integration of existing seismic sensor systems (weak and strong motion) into development of near-real-time, post-earthquake response products like ShakeMap, detailing the spatial distribution of strong shaking. Future challenges include expanding real-time integration of both seismic and geodetic sensor systems to produce early warning of strong shaking, rapid source determination, as well as near-realtime post- earthquake damage assessment. Seismic network data, hydro-acoustic arrays, deep water tide gauges, and satellite imagery of wave propagation should be integrated in real-time to provide input for hydrodynamic modeling yielding the distribution, timing and size of tsunamis runup--which would then be available instantly on the web, e.g. in a Google Earth format. Dense arrays of strong

  14. Monitoring induced seismicity from underground gas storage: first steps in Italy

    NASA Astrophysics Data System (ADS)

    Mucciarelli, Marco; Priolo, Enrico

    2013-04-01

    The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz (https://sites.google.com/site/s2stohaz/home) aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.

  15. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, H.H.

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots ofmore » this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.« less

  16. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten

    2017-06-01

    Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.

  17. A wireless sensor network for monitoring volcano-seismic signals

    NASA Astrophysics Data System (ADS)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  18. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  19. Comparison of the Data Products from Different Instrument Types with Application to Induced Seismic Monitoring Framework

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.; Moores, A. O.; Spriggs, N.

    2016-12-01

    Earthquakes may be induced by man-made activity in the vicinity of critically-stressed fault segments. A number of earthquakes characterized as induced with magnitudes M>3 were recorded in British Columbia, Alberta, Oklahoma and Ohio, since 2013. In response to growing induced seismicity in North America, many jurisdictions have mandated near real-time seismic monitoring around operation sites. The data products from monitoring networks are used as drivers of operational traffic light systems designed to mitigate risks associated with induced seismicity. Most traffic light protocols developed to date use staged thresholds of earthquake magnitudes. Additionally, ground motions, which are used to estimate the impact of earthquakes and specify seismic hazard, have been proposed as an enhancement to the existing protocols. There are several challenges and options to consider at the time of planning and designing a monitoring network, the most important of which is the choice of ground motion sensing technology. In order to accurately estimate event source parameters and ground motions, monitoring instruments have to record and image the low-frequency plateau and the corner frequency of the anticipated event spectrum. A flat response over a wide frequency range with a wide dynamic range is desired for a maximum benefit from ground motion products. This study evaluates the performance of three types of instruments in terms of their suitability for induced seismic monitoring (ISM): broadband seismometers, accelerometers and geophones. Each instrument type is assessed in terms of self-noise, frequency response and clip level using instrument specifications and real-world ISM application data. The impact of each sensing technology on key ISM network performance criteria, event magnitude estimations and ground motion measurements are examined.

  20. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    NASA Astrophysics Data System (ADS)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  1. Considering potential seismic sources in earthquake hazard assessment for Northern Iran

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila

    2014-07-01

    Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.

  2. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Paul G.

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less

  3. Hydraulic Fracturing Induced Seismicity at Preese Hall, UK: Moment Tensors, Uncertainties and Implications for Microseismic Monitoring Strategies

    NASA Astrophysics Data System (ADS)

    O'toole, T. B.; Woodhouse, J. H.; Verdon, J.; Kendall, J.

    2012-12-01

    Hydraulic fracturing operations carried out in April and May 2011 by Cuadrilla Resources Ltd. during the exploration of a shale gas reservoir at Preese Hall, near Blackpool, UK, induced a series of microseismic events. The largest of these, with magnitude ML = 2.3, was felt at the surface and recorded by the British Geological Survey regional seismic network. Subsequently, two local seismic stations were installed, which continued to detect seismicity with ML ≤ 1.5 until the hydraulic fracture treatment was suspended due to the anomalously large magnitudes of the induced earthquakes. Here, we present the results of moment tensor inversions of seismic waveforms recorded by these two near-field stations. We determine the best point source description of an event by minimising the least-squares difference between observed and synthetic waveforms. In contrast to source mechanisms obtained from body wave polarity and amplitude picks, which require a good sampling of the focal sphere and typically assume a pure double-couple mechanism, using the whole waveform allows us to place good constraints on the moment tensor even when only a few seismograms are available, and also enables the investigation of possible non-double-couple components and volume changes associated with a source. We discuss our results in the context of the studies commissioned by Cuadrilla after the suspension of hydraulic fracturing operations at Preese Hall. Using synthetic waveform data, we investigate how different monitoring geometries can be used to reduce uncertainties in source parameters of induced microseisms. While our focus is on the monitoring of hydraulic fracturing operations, the methods developed here are general and could equally be applied to determine moment tensors from surface and borehole observations of seismicity induced by other activities.

  4. Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland.

    PubMed

    López-Comino, J A; Cesca, S; Jarosławski, J; Montcoudiol, N; Heimann, S; Dahm, T; Lasocki, S; Gunning, A; Capuano, P; Ellsworth, W L

    2018-06-05

    Shale oil and gas exploitation by hydraulic fracturing experienced a strong development worldwide over the last years, accompanied by a substantial increase of related induced seismicity, either consequence of fracturing or wastewater injection. In Europe, unconventional hydrocarbon resources remain underdeveloped and their exploitation controversial. In UK, fracturing operations were stopped after the M w 2.3 Blackpool induced earthquake; in Poland, operations were halted in 2017 due to adverse oil market conditions. One of the last operated well at Wysin, Poland, was monitored independently in the framework of the EU project SHEER, through a multidisciplinary system including seismic, water and air quality monitoring. The hybrid seismic network combines surface mini-arrays, broadband and shallow borehole sensors. This paper summarizes the outcomes of the seismological analysis of these data. Shallow artificial seismic noise sources were detected and located at the wellhead active during the fracturing stages. Local microseismicity was also detected, located and characterised, culminating in two events of M w 1.0 and 0.5, occurring days after the stimulation in the vicinity of the operational well, but at very shallow depths. A sharp methane peak was detected ~19 hours after the M w 0.5 event. No correlation was observed between injected volumes, seismicity and groundwater parameters.

  5. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  6. Seismic interferometry of the Bighorn Mountains: Using virtual source gathers to increase fold in sparse-source, dense-receiver data

    NASA Astrophysics Data System (ADS)

    Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.

    2016-12-01

    The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed

  7. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  8. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, N. Jill

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the precedingmore » year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  9. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid

  10. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C; Benson, Jody; Hanson, Stephanie

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users,more » an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  11. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  12. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  13. Enhancement of seismic monitoring in hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Götz

    2017-04-01

    Hydraulic Fracturing (HF) is widely considered as one of the most significant enablers of the successful exploitation of hydrocarbons in North America. Massive usage of HF is currently adopted to increase the permeability in shale and tight-sand deep reservoirs, despite the economical downturn. The exploitation success is less due to the subsurface geology, but in technology that improves exploration, production, and decision-making. This includes monitoring of the reservoir, which is vital. Indeed, the general mindset in the industry is to keep enhancing seismic monitoring. It allows understanding and tracking processes in hydrocarbon reservoirs, which serves two purposes, a) to optimize recovery, and b) to help minimize environmental impact. This raises the question of how monitoring, and especially seismic techniques could be more efficient. There is a pressing demand from seismic service industry to evolve quickly and to meet the oil-gas industry's changing needs. Nonetheless, the innovative monitoring techniques, to achieve the purpose, must enhance the characterization or the visualization of a superior-quality images of the reservoir. We discuss recent applications of seismic monitoring in hydrocarbon reservoirs, detailing potential enhancement and eventual limitations. The aim is to test the validity of these seismic monitoring techniques, qualitatively discuss their potential application to energy fields that are not only limited to HF. Outcomes from our investigation may benefit operators and regulators in case of future massive HF applications in Europe, as well. This work is part of the FracRisk consortium (www.fracrisk.eu), funded by the Horizon2020 research programme, whose aims is to help minimize the environmental footprint of the shale-gas exploration and exploitation.

  14. Data-Intensive Discovery Methods for Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Schaff, D. P.; Young, C. J.; Slinkard, M.; Heck, S.; Ammon, C. J.; Cleveland, M.

    2011-12-01

    For most regions of our planet, earthquakes and explosions are still located one-at-a-time using seismic phase picks-a procedure that has not fundamentally changed for more than a century. But methods that recognize and use seismogram archives as a major resource, enabling comparisons of waveforms recorded from neighboring events and relocating numerous events relative to each other, have been successfully demonstrated, especially for California, where they have enabled new insights into earthquake physics and Earth structure, and have raised seismic monitoring to new levels. We are beginning a series of projects to evaluate such data-intensive methods on ever-larger scales, using cross correlation (CC) to analyze seismicity in three different ways: (1) to find repeating earthquakes (whose waveforms are very similar, so the CC value measured over long windows must be high); (2) to measure time differences and amplitude differences to enable precise relocations and relative amplitude studies, of seismic events with respect to their neighboring events (then CC can be much lower, yet still give a better estimate of arrival time differences and relative amplitudes, compared to differencing phase picks and magnitudes); and, perhaps most importantly, (3) as a detector, to find new events in current data streams that are similar to events already in the archive, or to add to the number of detections of an already known event. Experience documented by Schaff and Waldhauser (2005) for California and Schaff (2009) for China indicates that the great majority of events in seismically active regions generate waveforms that are sufficiently similar to the waveforms of neighboring events to allow CC methods to be used to obtain relative locations. Schaff (2008, 2010) has demonstrated the capability of CC methods to achieve detections, with minimal false alarms, down to more than a magnitude unit below conventional STA/LTA detectors though CC methods are far more computationally

  15. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    USGS Publications Warehouse

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  16. Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul

    NASA Astrophysics Data System (ADS)

    Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin

    2017-12-01

    This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

  17. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  18. Precision Seismic Monitoring of Volcanic Eruptions at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Wilcock, W. S. D.; Tolstoy, M.; Baillard, C.; Tan, Y. J.; Schaff, D. P.

    2017-12-01

    Seven permanent ocean bottom seismometers of the Ocean Observatories Initiative's real time cabled observatory at Axial Seamount off the coast of the western United States record seismic activity since 2014. The array captured the April 2015 eruption, shedding light on the detailed structure and dynamics of the volcano and the Juan de Fuca midocean ridge system (Wilcock et al., 2016). After a period of continuously increasing seismic activity primarily associated with the reactivation of caldera ring faults, and the subsequent seismic crisis on April 24, 2015 with 7000 recorded events that day, seismicity rates steadily declined and the array currently records an average of 5 events per day. Here we present results from ongoing efforts to automatically detect and precisely locate seismic events at Axial in real-time, providing the computational framework and fundamental data that will allow rapid characterization and analysis of spatio-temporal changes in seismogenic properties. We combine a kurtosis-based P- and S-phase onset picker and time domain cross-correlation detection and phase delay timing algorithms together with single-event and double-difference location methods to rapidly and precisely (tens of meters) compute the location and magnitudes of new events with respect to a 2-year long, high-resolution background catalog that includes nearly 100,000 events within a 5×5 km region. We extend the real-time double-difference location software DD-RT to efficiently handle the anticipated high-rate and high-density earthquake activity during future eruptions. The modular monitoring framework will allow real-time tracking of other seismic events such as tremors and sea-floor lava explosions that enable the timing and location of lava flows and thus guide response research cruises to the most interesting sites. Finally, rapid detection of eruption precursors and initiation will allow for adaptive sampling by the OOI instruments for optimal recording of future

  19. Noise-based seismic monitoring of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Zaccarelli, Lucia; Bianco, Francesca

    2017-03-01

    The Campi Flegrei caldera is one of the highest risk volcanic fields worldwide, because of its eruptive history and the large population hosted within the caldera. It experiences bradiseismic crises: sudden uplift with low energetic seismic swarm occurrences. No seismicity is recorded out of these deformation rate changes. Therefore, a continuous seismic monitoring of the caldera is possible only by means of the ambient seismic noise. We apply a noise-based seismic monitoring technique to the cross correlations of 5 year recordings at the mobile seismic network. The resulting relative velocity variations are compared to the temporal behavior of the geophysical and geochemical observations routinely sampled at Campi Flegrei. We discriminate between two kinds of crustal stress field variations acting at different timescales. They are related to a possible magmatic intrusion and to the gradual heating of the hydrothermal system, respectively. This study sets up the basis for future volcano monitoring strategies.

  20. Comparison of Seismic Sources and Frequencies in West Texas

    NASA Astrophysics Data System (ADS)

    Kaip, G.; Harder, S. H.; Karplus, M. S.

    2017-12-01

    During October 2017 the Seismic Source Facility (SSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at SSF test facility located near Fabens, TX. The project objective was to compare source amplitudes and frequencies of various seismic sources available through the SSF. Selecting the appropriate seismic source is important to reach geological objectives. We compare seismic sources between explosive sources (pentolite and shotgun) and mechanical sources (accelerated weight drop and hammer on plate), focusing on amplitude and frequency. All sources were tested in same geologic environment. Although this is not an ideal geologic formation for source coupling, it does allow an "apples to apples" comparison. Twenty Reftek RT125A seismic recorders with 4.5 Hz geophones were laid out in a line with 3m station separation. Mechanical sources were tested first to minimize changes in the subsurface related to explosive sources Explosive sources, while yielding higher amplitudes, have lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Mechanical sources yield higher frequencies allowing better resolution at shallower depths, but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.

  1. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  2. Korea Integrated Seismic System tool(KISStool) for seismic monitoring and data sharing at the local data center

    NASA Astrophysics Data System (ADS)

    Park, J.; Chi, H. C.; Lim, I.; Jeong, B.

    2011-12-01

    The Korea Integrated Seismic System(KISS) is a back-bone seismic network which distributes seismic data to different organizations in near-real time at Korea. The association of earthquake monitoring institutes has shared their seismic data through the KISS from 2003. Local data centers operating remote several stations need to send their free field seismic data to NEMA(National Emergency Management Agency) by the law of countermeasure against earthquake hazard in Korea. It is very important the efficient tool for local data centers which want to rapidly detect local seismic intensity and to transfer seismic event information toward national wide data center including PGA, PGV, dominant frequency of P-wave, raw data, and etc. We developed the KISStool(Korea Integrated Seismic System tool) for easy and convenient operation seismic network in local data center. The KISStool has the function of monitoring real time waveforms by clicking station icon on the Google map and real time variation of PGA, PGV, and other data by opening the bar type monitoring section. If they use the KISStool, any local data center can transfer event information to NEMA(National Emergency Management Agency), KMA(Korea Meteorological Agency) or other institutes through the KISS using UDP or TCP/IP protocols. The KISStool is one of the most efficient methods to monitor and transfer earthquake event at local data center in Korea. KIGAM will support this KISStool not only to the member of the monitoring association but also local governments.

  3. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  4. Added-value joint source modelling of seismic and geodetic data

    NASA Astrophysics Data System (ADS)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  5. Seismic monitoring of the unstable rock slope at Aaknes, Norway

    NASA Astrophysics Data System (ADS)

    Roth, M.; Blikra, L. H.

    2009-04-01

    The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.

  6. Interferometric Seismic Sources on the Core Mantle Boundary Revealed by Seismic Coda Crosscorrelation

    NASA Astrophysics Data System (ADS)

    Pham, T. S.; Tkalcic, H.; Sambridge, M.

    2017-12-01

    The crosscorrelation of earthquake coda can be used to extract seismic body waves which are sensitive to deep Earth interior. The retrieved peaks in crosscorrelation of two seismic records are commonly interpreted as seismic phases that originate at a point source collocated with the first recorder (Huygens-Fresnel principle), reflected upward from prominent underground reflectors and reaching the second recorder. From the time shift of these peaks measured at different interstation distances, new travel time curves can be constructed. This study focuses on a previously unexplained interferometric phase (named temporarily a ghost or "G phase") observed in crosscorrelogram stack sections utilizing seismic coda. In particular, we deploy waveforms recorded by two regional seismic networks, one in Australia and another in Alaska. We show that the G phase cannot be explained by as a reflection. Moreover, we demonstrate that the G phase is explained through the principle of energy partitioning, and specifically, conversions from compressional to shear motions at the core-mantle boundary (CMB). This can be thought of in terms of a continuous distribution of Huygens sources across the CMB that are "activated" in long-range wavefield coda following significant earthquakes. The newly explained phase is renamed to cPS, to indicate a CMB origin and the P to S conversion. This mechanism explains a range of newly observed global interferometric phases that can be used in combination with existing phases to constrain Earth structure.

  7. Real-time seismic monitoring of instrumented hospital buildings

    USGS Publications Warehouse

    Kalkan, Erol; Fletcher, Jon Peter B.; Leith, William S.; McCarthy, William S.; Banga, Krishna

    2012-01-01

    In collaboration with the Department of Veterans Affairs (VA), the U.S. Geological Survey's National Strong Motion Project has recently installed sophisticated seismic monitoring systems to monitor the structural health of two hospital buildings at the Memphis VA Medical Center in Tennessee. The monitoring systems in the Bed Tower and Spinal Cord Injury buildings combine sensing technologies with an on-site computer to capture and analyze seismic performance of buildings in near-real time.

  8. GISMO: A MATLAB toolbox for seismic research, monitoring, & education

    NASA Astrophysics Data System (ADS)

    Thompson, G.; Reyes, C. G.; Kempler, L. A.

    2017-12-01

    GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS

  9. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  10. Monitoring the development of volcanic eruptions through volcanic lightning - Using a lightning mapping array, seismic and infrasound array, and visual plume analysis

    NASA Astrophysics Data System (ADS)

    Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.

    2017-12-01

    The period of 28 May - 7 June 2015 at Sakurajima Volcano, Japan witnessed a multitude of Vulcanian eruptive events, which resulted in plumes reaching 500-3000m above the vent. These plumes varied from white, gas-rich plumes to dark grey and black ash-rich plumes, and were recorded on lowlight and infrared cameras. A nine-station lightning mapping array (LMA) was deployed to locate sources of VHF (67-73 MHz) radiation produced by lightning flashes and other types of electrical activity such as `continuous RF (radio frequency)'. Two Nanometrics Trillium broadband seismometers and six BSU infrasound sensors were deployed. Over this ten day period we recorded 1556 events that consisted of both seismic and infrasound signals, indicating explosive activity. There are an additional 1222 events that were recorded as only seismic or infrasound signals, which may be a result of precursory seismic signals or noise contamination. Plume discharge types included both distinct lightning flashes and `continuous RF'. The LMA ran continuously for the duration of the experiment. On 30 May 2015 at least seven lightning flashes were also detected by the Vaisala Global Lightning Detection 360 network, which detects VLF (3-30 kHz) radiation. However the University of Washington's World Wide Lightning Location Network, which also detects VLF radiation, detected no volcanic lightning flashes in this time period. This indicates that the electrical activity in Sakurajima's plume occurs near the lower limits of the VLF detection threshold. We investigate relationships between the plume dynamics, the geophysical signal and the corresponding electrical activity through: plume velocity and height; event waveform cross-correlation; volcano acoustic-seismic ratios; overall geophysical energy; RSAM records; and VHF sources detected by the LMA. By investigating these relationships we hope to determine the seismic/infrasound energy threshold required to generate measurable electrical activity

  11. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    NASA Astrophysics Data System (ADS)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  12. The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap

    NASA Astrophysics Data System (ADS)

    Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten

    2015-04-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures

  13. Network Optimization for Induced Seismicity Monitoring in Urban Areas

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Husen, S.; Wiemer, S.

    2012-12-01

    With the global challenge to satisfy an increasing demand for energy, geological energy technologies receive growing attention and have been initiated in or close to urban areas in the past several years. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental

  14. Determination of Destress Blasting Effectiveness Using Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.

    2017-12-01

    Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.

  15. Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.

    NASA Astrophysics Data System (ADS)

    Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam

    2017-04-01

    The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  16. How wind turbines affect the performance of seismic monitoring stations and networks

    NASA Astrophysics Data System (ADS)

    Neuffer, Tobias; Kremers, Simon

    2017-12-01

    In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.

  17. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    USGS Publications Warehouse

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  18. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    NASA Astrophysics Data System (ADS)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  19. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  20. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  1. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    NASA Astrophysics Data System (ADS)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  2. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  3. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  4. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  5. Fluid driven torsional dipole seismic source

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  6. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C.; Mendius, E. Louise

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as wellmore » as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  7. Seismic source models for very-long period seismic signals on White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jiwani-Brown, Elliot; Neuberg, Jurgen; Jolly, Art

    2015-04-01

    Very-long-period seismic signals (VLP) from White Island have a duration of only a few tens of seconds and a waveform that indicates an elastic (or viscoelastic) interaction of a source region with the surrounding medium; unlike VLP signals on some other volcanoes that indicate a step function recorded in the near field of the seismic source, White Island VLPs exhibit a Ricker waveform. We explore a set of isotropic, seismic source models based on the interaction between magma and water/brine in direct contact. Seismic amplitude measurements are taken into account to estimate the volume changes at depth that can produce the observed displacement at the surface. Furthermore, the influence of different fluid types are explored.

  8. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  9. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  10. Windrum: a program for monitoring seismic signals in real time

    NASA Astrophysics Data System (ADS)

    Giudicepietro, Flora

    2017-04-01

    Windrum is a program devote to monitor seismic signals arriving from remote stations in real time. Since 2000, the Osservatorio Vesuviano (INGV) uses the first version of Windrum to monitor the seismic activity of Mt. Vesuvius, Campi Flegrei, Ischia and Stromboli volcano. The program has been also used at the Observatory of Bukittinggi (Indonesia), at the offices of the Italian National Civil Protection, at the COA in Stromboli and at the Civil Protection Center of the municipality of Pozzuoli (Napoli, Italy). In addition, the Osservatorio Vesuviano regularly uses Windrum in educational events such as the Festival of Science in Genova (Italy), FuturoRemoto and other events organized by Città della Scienza in Naples (Italy). The program displays the seismic trace of one station on a monitor, using short packet of data (typically 1 or 2 seconds) received through UTC Internet protocol. The data packets are in Trace_buffer format, a native protocol of Earthworm seismic system that is widely used for the data transmission on Internet. Windrum allows the user to visualize 24 hours of signals, to zoom selected windows of data, in order to estimate the duration Magnitude (Md) of an earthquake, in an intercative way, and to generate graphic images for the web. Moreover, Windrum can exchange Internet messages with other copies of the same program to synchronize actions, such as to zoom the same window of data or mark the beginning of an earthquake on all active monitors simultaneously. Originally, in 2000, Windrum was developed in VB6. I have now developed a new version in VB.net, which goes beyond the obsolescence problems that were appearing. The new version supports the decoding of binary packets received by soket in a more flexible way, allowing the generation of graphic images in different formats. In addition, the new version allows a more flexible layout configuration, suitable for use on large screens with high resolution. Over the past 17 years the use of Windrum

  11. A new impulsive seismic shear wave source for near-surface (0-30 m) seismic studies

    NASA Astrophysics Data System (ADS)

    Crane, J. M.; Lorenzo, J. M.

    2010-12-01

    Estimates of elastic moduli and fluid content in shallow (0-30 m) natural soils below artificial flood containment structures can be particularly useful in levee monitoring as well as seismic hazard studies. Shear wave moduli may be estimated from horizontally polarized, shear wave experiments. However, long profiles (>10 km) with dense receiver and shot spacings (<1m) cannot be collected efficiently using currently available shear wave sources. We develop a new, inexpensive, shear wave source for collecting fast, shot gathers over large acquisition sites. In particular, gas-charged, organic-rich sediments comprising most lower-delta sedimentary facies, greatly attenuate compressional body-waves. On the other hand, SH waves are relatively insensitive to pore-fluid moduli and can improve resolution. We develop a recoil device (Jolly, 1956) into a single-user, light-weight (<20 kg), impulsive, ground-surface-coupled SH wave generator, which is capable of working at rates of several hundred shotpoints per day. Older impulsive methods rely on hammer blows to ground-planted stationary targets. Our source is coupled to the ground with steel spikes and the powder charge can be detonated mechanically or electronically. Electrical fuses show repeatability in start times of < 50 microseconds. The barrel and shell-holder exceed required thicknesses to ensure complete safety during use. The breach confines a black-powder, 12-gauge shotgun shell, loaded with inert, environmentally safe ballast. In urban settings, produced heat and sound are confined by a detached, exterior cover. A moderate 2.5 g black-powder charge generates seismic amplitudes equivalent to three 4-kg sledge-hammer blows. We test this device to elucidate near subsurface sediment properties at former levee breach sites in New Orleans, Louisiana, USA. Our radio-telemetric seismic acquisition system uses an in-house landstreamer, consisting of 14-Hz horizontal component geophones, coupled to steel plates

  12. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry)more » are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.« less

  13. The performance of the stations of the Romanian seismic network in monitoring the local seismic activity

    NASA Astrophysics Data System (ADS)

    Ardeleanu, Luminita Angela; Neagoe, Cristian

    2014-05-01

    The seismic survey of the territory of Romania is mainly performed by the national seismic network operated by the National Institute for Earth Physics of Bucharest. After successive developments and upgrades, the network consists at present of 123 permanent stations equipped with high quality digital instruments (Kinemetrics K2, Quantera Q330, Quantera Q330HR, PS6-24 and Basalt digitizers) - 102 real time and 20 off-line stations - which cover the whole territory of the country. All permanent stations are supplied with 3 component accelerometers (episenzor type), while the real time stations are in addition provided with broadband (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2) or short period (SH-1, S13, Mark l4c, Ranger, GS21, L22_VEL) velocity sensors. Several communication systems are currently used for the real time data transmission: an analog line in UHF band, a line through GPRS (General Packet Radio Service), a dedicated line through satellite, and a dedicated line provided by the Romanian Special Telecommunication Service. During the period January 1, 2006 - June 30, 2013, 5936 shallow depth seismic events - earthquakes and quarry blasts - with local magnitude ML ≥ 1.2 were localized on the Romanian territory, or in its immediate vicinity, using the records of the national seismic network; 1467 subcrustal earthquakes (depth ≥ 60 km) with magnitude ML ≥ 1.9 were also localized in the Vrancea region, at the bend of the Eastern Carpathians. The goal of the present study is to evaluate the individual contribution of the real time seismic stations to the monitoring of the local seismicity. The performance of each station is estimated by taking into consideration the fraction of events that are localised using the station records, compared to the total number of events of the catalogue, occurred during the time of station operation. Taking into account the nonuniform space distribution of earthquakes, the location of the site and the recovery

  14. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  15. Hiding earthquakes from scrupulous monitoring eyes of dense local seismic networks

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Kiser, E.

    2012-12-01

    -dimensional structure in velocity and intrinsic attenuation to evaluate possible laterally varying patterns. Our study suggests that the phenomenon of hidden earthquakes could be present at other regions around the world with active subductions. Considering that many of these subduction zones are not as well monitored as Japan, the number of missed events, especially after large earthquakes, could be significant. The results of this work can help to identify "blind spots" of present seismic networks, and can contribute to improving monitoring activities.

  16. Using Seismic Interferometry to Investigate Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  17. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  18. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    NASA Astrophysics Data System (ADS)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. New seismic sources parameterization in El Salvador. Implications to seismic hazard.

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, Jorge; Staller, Alejandra; Jesús Martínez-Díaz, José; Benito, Belén; Álvarez-Gómez, José Antonio; Canora, Carolina

    2014-05-01

    El Salvador is located at the pacific active margin of Central America, here, the subduction of the Cocos Plate under the Caribbean Plate at a rate of ~80 mm/yr is the main seismic source. Although the seismic sources located in the Central American Volcanic Arc have been responsible for some of the most damaging earthquakes in El Salvador. The El Salvador Fault Zone is the main geological structure in El Salvador and accommodates 14 mm/yr of horizontal displacement between the Caribbean Plate and the forearc sliver. The ESFZ is a right lateral strike-slip fault zone c. 150 km long and 20 km wide .This shear band distributes the deformation among strike-slip faults trending N90º-100ºE and secondary normal faults trending N120º- N170º. The ESFZ is relieved westward by the Jalpatagua Fault and becomes less clear eastward disappearing at Golfo de Fonseca. Five sections have been proposed for the whole fault zone. These fault sections are (from west to east): ESFZ Western Section, San Vicente Section, Lempa Section, Berlin Section and San Miguel Section. Paleoseismic studies carried out in the Berlin and San Vicente Segments reveal an important amount of quaternary deformation and paleoearthquakes up to Mw 7.6. In this study we present 45 capable seismic sources in El Salvador and their preliminary slip-rate from geological and GPS data. The GPS data detailled results are presented by Staller et al., 2014 in a complimentary communication. The calculated preliminary slip-rates range from 0.5 to 8 mm/yr for individualized faults within the ESFZ. We calculated maximum magnitudes from the mapped lengths and paleoseismic observations.We propose different earthquakes scenario including the potential combined rupture of different fault sections of the ESFZ, resulting in maximum earthquake magnitudes of Mw 7.6. We used deterministic models to calculate acceleration distribution related with maximum earthquakes of the different proposed scenario. The spatial distribution of

  20. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  1. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  2. Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.

    2016-12-01

    The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.

  3. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  4. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  5. Using Seismic and Infrasonic Data to Identify Persistent Sources

    NASA Astrophysics Data System (ADS)

    Nava, S.; Brogan, R.

    2014-12-01

    Data from seismic and infrasound sensors were combined to aid in the identification of persistent sources such as mining-related explosions. It is of interest to operators of seismic networks to identify these signals in their event catalogs. Acoustic signals below the threshold of human hearing, in the frequency range of ~0.01 to 20 Hz are classified as infrasound. Persistent signal sources are useful as ground truth data for the study of atmospheric infrasound signal propagation, identification of manmade versus naturally occurring seismic sources, and other studies. By using signals emanating from the same location, propagation studies, for example, can be conducted using a variety of atmospheric conditions, leading to improvements to the modeling process for eventual use where the source is not known. We present results from several studies to identify ground truth sources using both seismic and infrasound data.

  6. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located <10 km from the epicenter exceeds 70%. Due to the sensor's self-noise, smaller magnitude events at short epicentral distances are very difficult to detect. To increase the signal-to-noise ratio, we employ array back-projection techniques on continuous data recorded by thousands of phones. In this class of methods, the array is used as a spatial filter that suppresses signals emitted from shallow noise sources. Filtered traces are stacked to further enhance seismic signals from deep sources. We benchmark our technique against traditional location algorithms using recordings from California, a region with large MyShake user database. We find that locations derived from back-projection images of M 3 events recorded by >20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los

  7. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  8. Controlled-source seismic interferometry with one way wave fields

    NASA Astrophysics Data System (ADS)

    van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.

    2008-12-01

    In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.

  9. Can We Estimate Injected Carbon Dioxide Prior to the Repeat Survey in 4D Seismic Monitoring Scheme?

    NASA Astrophysics Data System (ADS)

    Sakai, A.

    2005-12-01

    To mitigate global climate change, the geologic sequestration by injecting carbon dioxide in the aquifer and others is one of the most promising scenarios. Monitoring is required to verify the long-term safe storage of carbon dioxide in the subsurface. As evidenced in the oil industry, monitoring by time-lapse 3D seismic survey is the most effective to spatially detect fluid movements and change of pore pressure. We have conducted 3D seismic survey onshore Japan surrounding RITE/METI Iwanohara carbon dioxide injection test site. Target aquifer zone is at 1100m deep in the Pleistocene layer with 60m thick and most permeable zone is approx. 12m thick. Baseline 3D seismic survey was conducted in July-August 2003 and a monitor 3D seismic survey was in July-August 2005 by vibrating source with 10-120Hz sweep frequency band. Prior to the monitor survey, we evaluated seismic data with integrating wireline logging data. As target carbon dioxide injection layer is thin, high-resolution seismic data is required to estimate potential spreading of injected carbon dioxide. To increase seismic resolution, spectrally enhancing method was in use. The procedure is smoothing number of seismic spectral amplitude, computing well log spectrum, and constructing matching filter between seismic and well spectrum. Then it was applied to the whole seismic traces after evaluating test traces. Synthetic seismograms from logging data were computed with extracting optimal wavelets. Fitting between spectrally enhanced seismic traces and synthetic seismograms was excellent even for deviated monitor wells. Acoustic impedance was estimated by inversion of these 3D seismic traces. In analyzing logging data of sonic, density, CMR, and others, the elastic wave velocity was reconstructed by rock physics approach after estimating compositions. Based on models, velocity changes by carbon dioxide injection was evaluated. The correlation of acoustic impedance with porosity and logarithmic permeability was

  10. Retrospective application of the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)": insights from the analysis of 2012-2013 Emilia seismic sequence at the Cavone oilfield pilot site (Italy)

    NASA Astrophysics Data System (ADS)

    Buttinelli, M.; Chiarabba, C.; Anselmi, M.; Pezzo, G.; Improta, L.; Antoncecchi, I.

    2017-12-01

    In recent years, the debate on the interactions between wastewater disposal and induced seismicity is increasingly drawing the attention of the scientific community, since injections by high-rate wells have been directly associated to occurrence of even large seismic events. In February 2014, the Italian Ministry of Economic Development (MiSE), within the Commission on Hydrocarbon and Mining Resources (CIRM), issued the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)". The ILG represent the first action in italy aimed at keeping the safety standards mostly in areas where the underground resources exploitation can induce seismicity, ground deformations and pore pressure changes of the reservoirs. Such guidelines also launched a "traffic light" operating system, for the first time defining threshold values and activation levels for such monitored parameters. To test the ILG implications (in particular of the traffic light system) we select the Cavone oilfield (Northern Italy) as test case, since this area was interested during the 2012-2013 by the Emilia Seismic sequence. Moreover, the potential influence of the Cavone oilfield activities in the 2012 earthquake trigger was debated for a long time within the scientific and not contexts, highlighting the importance of seismic monitoring in hydrocarbons exploitation, re-injection and storage areas. In this work we apply the ILG retrospectively to the Cavone oilfield and surrounding areas, just for the seismicity parameter (pore pressure and ground deformation were not taken into account because out of the traffic light system). Since each seismicity catalogue available for the 2012 sequence represents a different setting of monitoring system, we carefully analyzed how the use of such catalogues impact on the overcoming of the threshold imposed by the ILG. In particular, we focus on the use of 1D and 3D velocity models developed ad hoc or

  11. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    NASA Astrophysics Data System (ADS)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    In the recent years, the concepts of seismic risk vulnerability and structural health monitoring have become very important topics in the field of both structural and civil engineering for the identification of appropriate risk indicators and risk assessment methodologies in Cultural Heritages monitoring. The latter, which includes objects, building and sites with historical, architectural and/or engineering relevance, concerns the management, the preservation and the maintenance of the heritages within their surrounding environmental context, in response to climate changes and natural hazards (e.g. seismic, volcanic, landslides and flooding hazards). Within such a framework, the complexity and the great number of variables to be considered require a multi-disciplinary approach including strategies, methodologies and tools able to provide an effective monitoring of Cultural Heritages form both scientific and operational viewpoints. Based on this rationale, in this study, an advanced, technological and operationally-oriented approach is presented and tested, which enables measuring and monitoring Cultural Heritage conservation state and geophysical/geological setting of the area, in order to mitigate the seismic risk of the historical public goods at different spatial scales*. The integration between classical geophysical methods with new emerging sensing techniques enables a multi-depth, multi-resolution, and multi-scale monitoring in both space and time. An integrated system of methodologies, instrumentation and data-processing approaches for non-destructive Cultural Heritage investigations is proposed, which concerns, in detail, the analysis of seismogenetic sources, the geological-geotechnical setting of the area and site seismic effects evaluation, proximal remote sensing techniques (e.g. terrestrial laser scanner, ground-based radar systems, thermal cameras), high-resolution aerial and satellite-based remote sensing methodologies (e.g. aeromagnetic surveys

  12. Seismic Source Scaling and Discrimination in Diverse Tectonic Environments

    DTIC Science & Technology

    2009-09-30

    3349-3352. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004). Earthquake source parameters determined by the SAFOD Pilot Hole seismic array ... seismic discrimination by performing a thorough investigation of* earthquake source scaling using diverse, high-quality datascts from varied tectonic...these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity

  13. Response in thermal neutrons intensity on the activation of seismic processes

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2017-04-01

    Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.

  14. Lithospheric Models of the Middle East to Improve Seismic Source Parameter Determination/Event Location Accuracy

    DTIC Science & Technology

    2012-09-01

    State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional

  15. Data-Intensive Discovery Methods for Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Schaff, D. P.; Ammon, C. J.; Cleveland, M.; Young, C. J.; Slinkard, M.; Heck, S.

    2012-12-01

    Sandia group has reported preliminary results using a 360-core distributed network that took about two hours to search a month-long continuous single channel (sampled at 40 sps) for the occurrence of one or more of 920 waveforms each lasting 40 s and previously recorded by the station. Speed scales with number of cores; and inversely with number of channels, sample rate, and window length. Orders-of-magnitude improvement in speed are anticipated, on these early results; and application to numerous channels. From diverse results such as these, it seems appropriate to consider the future possibility of radical improvement in monitoring virtually all seismically active areas, using archives of prior events as the major resource---though we recognize that such an approach does not directly help to characterize seismic events in inactive regions, or events in active regions which are dissimilar to previously recorded events.

  16. Dynamic of the volcanic activity of La Soufrière volcano (Guadeloupe, Lesser Antillles): Evidence for shallow fluid seismic sources

    NASA Astrophysics Data System (ADS)

    Ucciani, G.; Beauducel, F.; Bouin, M. P.; Nercessian, A.

    2015-12-01

    La Soufrière is one of the many hazardous volcanoes in the inner arc of Lesser Antilles. Located South of Basse-Terre island, it is the only active volcano of the Guadeloupe archipelago. Since the last significant magmatic eruption in 1535 AD, the activity has been exculsively phreatic. Since 1992 and the abrupt renewal of seismic and fumarollic activities, the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a progressive increasing of seismicity and degassing that led scientists and authorities to set the alert level ``Vigilance'' and hold it until today. According to the recent geophysical, geochemical and geological studies, the current volcanic activity of la Soufrière volcano seems to be exclusively associated to the hydrothermal system, while the link with seismic activity is still poorly studied. In this context of possible pre-eruptive unrest, we investigated the spatial and temporal variations of the seismicity recorded between 1981 and 2013. From a consistent seismological framework coupling spectral, statistical, signal processing, clustering, and inverse problems methods, we demonstrate that this seismicity is largely generated by shallow hydrothermal fluid sources located in a complex plumbing system. Spatial variations of Vp/Vs ratio and B-value in seismogenic structures allow us to document three main seismic zones associated to : (1) migration of magmatic gas, (2) the storage and mixing of underground water and gas and (3) the shallow migration of hydrothermal fluids in high fractured and heterogeneous system. Waveform analysis revealed a low number of significant families consistent with fracturing process, and the temporal evolution of multiplet activities highlighted several variations associated with surface manifestations and brutal dynamic changes after major local tectonic earthquakes of Les Saintes (21 November 2004, Mw=6.3), its main aftershock (14 February 2005, Mw=5.7) and the last major earthquake of la

  17. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.

    2017-05-01

    The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.

  18. A Hammer-Impact, Aluminum, Shear-Wave Seismic Source

    USGS Publications Warehouse

    Haines, Seth

    2007-01-01

    Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.

  19. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    NASA Astrophysics Data System (ADS)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  20. Multiple coincident eruptive seismic tremor sources during the 2014-2015 eruption at Holuhraun, Iceland

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Bean, Christopher J.; Jónsdóttir, Ingibjörg; Höskuldsson, Armann; Thordarson, Thorvaldur; Coppola, Diego; Witt, Tanja; Walter, Thomas R.

    2017-04-01

    We analyze eruptive tremor during one of the largest effusive eruptions in historical times in Iceland (2014/2015 Holuhraun eruption). Seismic array recordings are compared with effusion rates deduced from Moderate Resolution Imaging Spectroradiometer recordings and ground video monitoring data and lead to the identification of three coexisting eruptive tremor sources. This contrasts other tremor studies that generally link eruptive tremor to only one source usually associated with the vent. The three sources are (i) a source that is stable in back azimuth and shows bursts with ramp-like decrease in amplitude at the beginning of the eruption: we link it to a process below the open vents where the bursts correlate with the opening of new vents and temporary increases in the lava fountaining height; (ii) a source moving by a few degrees per month while the tremor amplitude suddenly increases and decreases: back azimuth and slowness correlate with the growing margins of the lava flow field, whilst new contact with a river led to fast increases of the tremor amplitude; and (iii) a source moving by up to 25° southward in 4 days that cannot be related to any observed surface activity and might be linked to intrusions. We therefore suggest that eruptive tremor amplitudes/energies are used with caution when estimating eruptive volumes, effusion rates, or the eruption explosivity as multiple sources can coexist during the eruption phase. Our results suggest that arrays can monitor both the growth of a lava flow field and the activity in the vents.

  1. Hydraulic transients: a seismic source in volcanoes and glaciers.

    PubMed

    Lawrence, W S; Qamar, A

    1979-02-16

    A source for certain low-frequency seismic waves is postulated in terms of the water hammer effect. The time-dependent displacement of a water-filled sub-glacial conduit is analyzed to demonstrate the nature of the source. Preliminary energy calculations and the observation of hydraulically generated seismic radiation from a dam indicate the plausibility of the proposed source.

  2. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zinmore » earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.« less

  3. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DC Hartshorn, SP Reidel, AC Rohay.

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event ofmore » zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.« less

  4. The evolution of seismic monitoring systems at the Hawaiian Volcano Observatory: Chapter 2 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Okubo, Paul G.; Nakata, Jennifer S.; Koyanagi, Robert Y.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the century since the Hawaiian Volcano Observatory (HVO) put its first seismographs into operation at the edge of Kīlauea Volcano’s summit caldera, seismic monitoring at HVO (now administered by the U.S. Geological Survey [USGS]) has evolved considerably. The HVO seismic network extends across the entire Island of Hawai‘i and is complemented by stations installed and operated by monitoring partners in both the USGS and the National Oceanic and Atmospheric Administration. The seismic data stream that is available to HVO for its monitoring of volcanic and seismic activity in Hawai‘i, therefore, is built from hundreds of data channels from a diverse collection of instruments that can accurately record the ground motions of earthquakes ranging in magnitude from <1 to ≥8. In this chapter we describe the growth of HVO’s seismic monitoring systems throughout its first hundred years of operation. Although other references provide specific details of the changes in instrumentation and data handling over time, we recount here, in more general terms, the evolution of HVO’s seismic network. We focus not only on equipment but also on interpretative products and results that were enabled by the new instrumentation and by improvements in HVO’s seismic monitoring, analytical, and interpretative capabilities implemented during the past century. As HVO enters its next hundred years of seismological studies, it is well situated to further improve upon insights into seismic and volcanic processes by using contemporary seismological tools.

  5. Seismic gaps and source zones of recent large earthquakes in coastal Peru

    USGS Publications Warehouse

    Dewey, J.W.; Spence, W.

    1979-01-01

    The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station

  6. Real-time Seismic Amplitude Measurement (RSAM): a volcano monitoring and prediction tool

    USGS Publications Warehouse

    Endo, E.T.; Murray, T.

    1991-01-01

    Seismicity is one of the most commonly monitored phenomena used to determine the state of a volcano and for the prediction of volcanic eruptions. Although several real-time earthquake-detection and data acquisition systems exist, few continuously measure seismic amplitude in circumstances where individual events are difficult to recognize or where volcanic tremor is prevalent. Analog seismic records provide a quick visual overview of activity; however, continuous rapid quantitative analysis to define the intensity of seismic activity for the purpose of predicing volcanic eruptions is not always possible because of clipping that results from the limited dynamic range of analog recorders. At the Cascades Volcano Observatory, an inexpensive 8-bit analog-to-digital system controlled by a laptop computer is used to provide 1-min average-amplitude information from eight telemetered seismic stations. The absolute voltage level for each station is digitized, averaged, and appended in near real-time to a data file on a multiuser computer system. Raw realtime seismic amplitude measurement (RSAM) data or transformed RSAM data are then plotted on a common time base with other available volcano-monitoring information such as tilt. Changes in earthquake activity associated with dome-building episodes, weather, and instrumental difficulties are recognized as distinct patterns in the RSAM data set. RSAM data for domebuilding episodes gradually develop into exponential increases that terminate just before the time of magma extrusion. Mount St. Helens crater earthquakes show up as isolated spikes on amplitude plots for crater seismic stations but seldom for more distant stations. Weather-related noise shows up as low-level, long-term disturbances on all seismic stations, regardless of distance from the volcano. Implemented in mid-1985, the RSAM system has proved valuable in providing up-to-date information on seismic activity for three Mount St. Helens eruptive episodes from 1985 to

  7. The INGV seismic monitoring system: activities during the first month of the 2016 Amatrice seismic sequence.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Margheriti, L.; Moretti, M.; Pintore, S.

    2016-12-01

    At 01:36:32 UTC on August 24, 2016 an earthquake of ML=6.0 occurred in Central Italy, near Amatrice village; 21 s after the origin time, the first automatic location became available while the first magnitude estimate followed 47s after. The INGV seismologists on duty provided the alert to the Italian Civil Protection Department and thereby triggered the seismic emergency protocol In the hours after the earthquake, hundreds of events were recorded by the Italian Seismic Network of the INGV. SISMIKO, the coordinating body of the emergency seismic network, was activated few minutes after the mainshock. The main goal of this emergency group is to install temporary dense seismic network integrated with the existing permanent networks in the epicentral area to better constrain the aftershock hypocenters. From August the 24th to the 30th, SISMIKO deployed 18 seismic stations, generally six components (equipped with both seismometer and accelerometer), 13 of which were transmitting in real-time to the INGV seismic surveillance room in Rome. All data acquired are available at the European Integrated Data Archive (EIDA). The seismic sequence in the first month generated thousands of earthquakes which were processed and detected by the INGV automated localization system. We analyzed the performance of this system. Hundreds of those events were located by seismologists on shifts, the others were left to be analyzed by the Bollettino Sismico Italiano (BSI). The procedures of the BSI revise and integrate all available data. This allows for a better constrained location and for a more realistic hypocentral depth estimation. The first eight hours of August 24th were the most critical for the INGV surveillance room. Data recorded in these hours were carefully re-analyzed by BSI operators and the number of located events increased from 133 to 408, while the magnitude of completeness dropped significantly from about 3.5 to 2.7.

  8. A GIS-based time-dependent seismic source modeling of Northern Iran

    NASA Astrophysics Data System (ADS)

    Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza

    2017-01-01

    The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.

  9. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  10. Online monitoring of seismic damage in water distribution systems

    NASA Astrophysics Data System (ADS)

    Liang, Jianwen; Xiao, Di; Zhao, Xinhua; Zhang, Hongwei

    2004-07-01

    It is shown that water distribution systems can be damaged by earthquakes, and the seismic damages cannot easily be located, especially immediately after the events. Earthquake experiences show that accurate and quick location of seismic damage is critical to emergency response of water distribution systems. This paper develops a methodology to locate seismic damage -- multiple breaks in a water distribution system by monitoring water pressure online at limited positions in the water distribution system. For the purpose of online monitoring, supervisory control and data acquisition (SCADA) technology can well be used. A neural network-based inverse analysis method is constructed for locating the seismic damage based on the variation of water pressure. The neural network is trained by using analytically simulated data from the water distribution system, and validated by using a set of data that have never been used in the training. It is found that the methodology provides an effective and practical way in which seismic damage in a water distribution system can be accurately and quickly located.

  11. A Seismic Source Model for Central Europe and Italy

    NASA Astrophysics Data System (ADS)

    Nyst, M.; Williams, C.; Onur, T.

    2006-12-01

    We present a seismic source model for Central Europe (Belgium, Germany, Switzerland, and Austria) and Italy, as part of an overall seismic risk and loss modeling project for this region. A separate presentation at this conference discusses the probabilistic seismic hazard and risk assessment (Williams et al., 2006). Where available we adopt regional consensus models and adjusts these to fit our format, otherwise we develop our own model. Our seismic source model covers the whole region under consideration and consists of the following components: 1. A subduction zone environment in Calabria, SE Italy, with interface events between the Eurasian and African plates and intraslab events within the subducting slab. The subduction zone interface is parameterized as a set of dipping area sources that follow the geometry of the surface of the subducting plate, whereas intraslab events are modeled as plane sources at depth; 2. The main normal faults in the upper crust along the Apennines mountain range, in Calabria and Central Italy. Dipping faults and (sub-) vertical faults are parameterized as dipping plane and line sources, respectively; 3. The Upper and Lower Rhine Graben regime that runs from northern Italy into eastern Belgium, parameterized as a combination of dipping plane and line sources, and finally 4. Background seismicity, parameterized as area sources. The fault model is based on slip rates using characteristic recurrence. The modeling of background and subduction zone seismicity is based on a compilation of several national and regional historic seismic catalogs using a Gutenberg-Richter recurrence model. Merging the catalogs encompasses the deletion of double, fake and very old events and the application of a declustering algorithm (Reasenberg, 2000). The resulting catalog contains a little over 6000 events, has an average b-value of -0.9, is complete for moment magnitudes 4.5 and larger, and is used to compute a gridded a-value model (smoothed historical

  12. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  13. Source-independent full waveform inversion of seismic data

    DOEpatents

    Lee, Ki Ha

    2006-02-14

    A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.

  14. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  15. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  16. High frequency seismic signal generated by landslides on complex topographies: from point source to spatially distributed sources

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Kuehnert, J.; Capdeville, Y.; Durand, V.; Stutzmann, E.; Kone, E. H.; Sethi, S.

    2017-12-01

    During their flow along the topography, landslides generate seismic waves in a wide frequency range. These so called landquakes can be recorded at very large distances (a few hundreds of km for large landslides). The recorded signals depend on the landslide seismic source and the seismic wave propagation. If the wave propagation is well understood, the seismic signals can be inverted for the seismic source and thus can be used to get information on the landslide properties and dynamics. Analysis and modeling of long period seismic signals (10-150s) have helped in this way to discriminate between different landslide scenarios and to constrain rheological parameters (e.g. Favreau et al., 2010). This was possible as topography poorly affects wave propagation at these long periods and the landslide seismic source can be approximated as a point source. In the near-field and at higher frequencies (> 1 Hz) the spatial extent of the source has to be taken into account and the influence of the topography on the recorded seismic signal should be quantified in order to extract information on the landslide properties and dynamics. The characteristic signature of distributed sources and varying topographies is studied as a function of frequency and recording distance.The time dependent spatial distribution of the forces applied to the ground by the landslide are obtained using granular flow numerical modeling on 3D topography. The generated seismic waves are simulated using the spectral element method. The simulated seismic signal is compared to observed seismic data from rockfalls at the Dolomieu Crater of Piton de la Fournaise (La Réunion).Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15):1-5.

  17. Seismic risk mitigation in deep level South African mines by state of the art underground monitoring - Joint South African and Japanese study

    NASA Astrophysics Data System (ADS)

    Milev, A.; Durrheim, R.; Nakatani, M.; Yabe, Y.; Ogasawara, H.; Naoi, M.

    2012-04-01

    Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approximately 40m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m located at 3300m below the surface were analysed. A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase.Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as 'slow' or aseismic events. During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. The aftershock activities were also well recorded by the acoustic emission and the mine seismic networks. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock was related to after tilt in order to

  18. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  19. Toward seismic source imaging using seismo-ionospheric data

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  20. Historical seismicity in the Middle East: new insights from Ottoman primary sources (sixteenth to mid-eighteenth centuries)

    NASA Astrophysics Data System (ADS)

    Tülüveli, Güçlü

    2015-10-01

    Considerable academic effort has been given to chart the history of the seismic activity in Middle East region. This short survey intends to contribute to these scientific attempts by analyzing Ottoman primary sources. There had been previous studies which utilized similar primary sources from Ottoman archives, yet 15 new earthquakes emerged from these sources. Moreover, the seismic impact of five known earthquakes will be analyzed in the light of new data from Ottoman primary sources. A possible tsunami case is also included in this section. The sources cover the period between sixteenth to the end of the eighteenth century. This article intends to foster interdisciplinary dialogue for the purpose of initiating further detailed studies on past seismic events.

  1. Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset

    NASA Astrophysics Data System (ADS)

    Seelig, William George

    The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and

  2. Induced Seismicity from different sources in Italy: how to interpret it?

    NASA Astrophysics Data System (ADS)

    Pastori, M.; De Gori, P.; Piccinini, D.; Bagh, S.; Improta, L.; Chiarabba, C.

    2015-12-01

    Typically the term "induced seismicity" is used to refer minor earthquakes and tremors caused by human activities that alter the stresses and strains on the Earth's crust. In the last years, the interest in the induced seismicity related to fluids (oil and gas, and geothermal resources) extraction or injection is increased, because it is believed to be responsible to enucleate earthquakes. Possible sources of induced seismicity are not only represented by the oil and gas production but also, i.e., by changes in the water level of artificial lakes. The aim of this work is to show results from two different sources, wastewater injection and changes in the water level of an artificial reservoir (Pertusillo lake), that can produce induced earthquakes observed in the Val d'Agri basin (Italy) and to compare them with variation in crustal elastic parameters. Val d'Agri basin in the Apennines extensional belt hosts the largest oilfield in onshore Europe and is bordered by NW-SE ­trending fault systems. Most of the recorded seismicity seems to be related to these structures. We correlated the seismicity rate, injection curves and changes in water levels with temporal variations of Vp/Vs and anisotropic parameters of the crustal reservoirs and in the nearby area. We analysed about 983 high-quality recordings occurred from 2002 to 2014 in Val d'Agri basin from temporary and permanent network held by INGV and ENI corporate. 3D high-precision locations and manual-revised P- and S-picking are used to estimate anisotropic parameters (delay time and fast direction polarization) and Vp/Vs ratio. Seismicity is mainly located in two areas: in the SW of the Pertusillo Lake, and near the Eni Oil field (SW and NE of the Val d'Agri basin respectively). Our correlations well recognize the seismicity diffusion process, caused by both water injection and water level changes; these findings could help to model the active and pre-existing faults failure behaviour.

  3. Classifying elephant behaviour through seismic vibrations.

    PubMed

    Mortimer, Beth; Rees, William Lake; Koelemeijer, Paula; Nissen-Meyer, Tarje

    2018-05-07

    Seismic waves - vibrations within and along the Earth's surface - are ubiquitous sources of information. During propagation, physical factors can obscure information transfer via vibrations and influence propagation range [1]. Here, we explore how terrain type and background seismic noise influence the propagation of seismic vibrations generated by African elephants. In Kenya, we recorded the ground-based vibrations of different wild elephant behaviours, such as locomotion and infrasonic vocalisations [2], as well as natural and anthropogenic seismic noise. We employed techniques from seismology to transform the geophone recordings into source functions - the time-varying seismic signature generated at the source. We used computer modelling to constrain the propagation ranges of elephant seismic vibrations for different terrains and noise levels. Behaviours that generate a high force on a sandy terrain with low noise propagate the furthest, over the kilometre scale. Our modelling also predicts that specific elephant behaviours can be distinguished and monitored over a range of propagation distances and noise levels. We conclude that seismic cues have considerable potential for both behavioural classification and remote monitoring of wildlife. In particular, classifying the seismic signatures of specific behaviours of large mammals remotely in real time, such as elephant running, could inform on poaching threats. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Lecocq, T.; Caudron, C.; Brenguier, F.

    2013-12-01

    Earthquakes occur every day all around the world and are recorded by thousands of seismic stations. In between earthquakes, stations are recording "noise". In the last 10 years, the understanding of this noise and its potential usage have been increasing rapidly. The method, called "seismic interferometry", uses the principle that seismic waves travel between two recorders and are multiple-scattered in the medium. By cross-correlating the two records, one gets an information on the medium below/between the stations. The cross-correlation function (CCF) is a proxy to the Green Function of the medium. Recent developments of the technique have shown those CCF can be used to image the earth at depth (3D seismic tomography) or study the medium changes with time. We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. We present a validation of the software on a dataset acquired during the UnderVolc[1] project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011.

  5. A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source

    DOE PAGES

    Lord, Neal; Wang, Herbert; Fratta, Dante

    2016-09-01

    We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less

  6. A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, Neal; Wang, Herbert; Fratta, Dante

    We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less

  7. Seismic Monitoring of Volcanic Hazards in Valles Caldera, NM

    NASA Astrophysics Data System (ADS)

    House, L.; Frostenson, D. K.

    2002-12-01

    Valles Caldera, in north central New Mexico, was formed by major eruptions at about 1.2 and 1.6 Ma. Less intense volcanism has continued since then, with the most recent activity dated at about 60Ka. Since the caldera lies only about 20 km west of Los Alamos, any new volcanic activity within it could endanger Los Alamos (as well as other communities nearby). To help monitor any new activity, a seismic station (PER) was installed near the southern edge of the caldera, about 6 km SE of the El Cajete vent, the source of the most recent activity. Proximity to El Cajete was the major siting criteria, though the exact placement of the station also depended on factors such as quality of rock outcrop, solar exposure, radio telemetry (limited by mountains), and accessibility. There have been no earthquakes within the caldera during nearly 30 years of operation of the Los Alamos Seismograph Network (LASN). Several earthquakes were located to the south of the caldera and within about 10 km of it; the largest was about magnitude 1.5, the smallest, about magnitude 0. Thus, it appears that the interior of the caldera is non-seismic, perhaps down to magnitude 0.5 or 0. The data from the new PER station improves the sensitivity of the monitoring, and can provide hypocenters of earthquakes too small to be located by the network. PER initially had short-period, high-gain, three-component instrumentation, and recently was upgraded with broad-band equipment. Data from PER are recorded as part of the full network, which requires several station triggers for an event trigger, and as a single-station network, which event triggers with just a single trace. The single-station recording resulted in many thousands of spurious triggers. We chose to study microearthquakes whose S-P times were 2 s or less at PER. These were very small, with magnitudes of about -1 or less. To locate them, we used P-wave particle motions, which can have large uncertainties, because of relatively low signal to

  8. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  9. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  10. Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2008-12-01

    The physical properties of carbonate rock are strongly influenced by the rock fabric which depends on the depositional environment, diagenetic and tectonic processes. The most common form of heterogeneity is layering caused by a variation in porosity among layers and within layers. The variation in porosity among layers leads to anisotropic behavior in the hydraulic, mechanical and seismic properties of carbonate rocks. We present the results of a laboratory study to examine the effect of fabric-controlled layering on fluid flow and seismic wave propagation through intact and fractured carbonate rock. Experiments were performed on cubic samples of Austin Chalk Cordova Cream. Samples AC1, AC5 and AC6 are cubic samples that measure 100 mm on edge. The samples were sealed and contained three inlet and three outlet ports for fluid invasion experiments. Two orthogonal seismic arrays were used to record both compressional and shear wave transmission through intact and fractured samples. The arrays used piezoelectric contact transducers with a central frequency 1.0 MHz. Between the two arrays, sixteen sources and sixteen receivers were used. Seismic measurements were made on the samples as a function of stress and during fluid saturation. The location of the invading fluid front as a function of time was monitored by using the peak-to-peak amplitude of the transmitted signals. The front was assumed to be between a source-receiver pair when the signal amplitude decreased by 50% over the initial value. The hydraulic gradient was parallel and perpendicular to the layers for AC5 and AC6, respectively. Sample AC1 was fractured and flow ports were established on the edges of the fracture plane. The weakly directed fabric controlled the rate at which fluid flowed through the samples. From the seismic data on AC6, the fluid first spread vertically along a layer before flowing across the layers. For AC6, it took the fluid two and half hours to flow between the inlet and the outlet

  11. Developments in seismic monitoring for risk reduction

    USGS Publications Warehouse

    Celebi, M.

    2007-01-01

    This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.

  12. Seismic imaging of the oil and geothermal reservoirs using the induced seismicity

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Toksoz, M. N.; Fehler, M.

    2011-12-01

    It is known that microseismicity can be induced in the oil field due to the stress change caused by oil/gas production. Similarly, injection of high-pressure fluids into the reservoir can also induce microseismicity. Due to the proximity of induced seismicity to the reservoir, in some cases, it may be advantageous to use induced seismicity to image the reservoir. The seismic stations for monitoring the induced seismicity are usually sparse. Conventional travel time tomography using travel times from seismic events to stations may not be applicable because of poor ray coverage outside the source region. In comparison, the double-difference tomography method of Zhang and Thurber (2003) that uses the differential travel times is able to image the reservoir by avoiding determining the velocity structure outside the source region. In this study, we present two case studies of applying double-difference tomography to induced seismicity monitored by borehole stations. In the case of an oil field in Oman, five closely spaced monitoring wells are used to monitor microseismicity induced by gas production. In each well, multiple seismic sensors are positioned from depths 750 m - 1250 m and about 2000 events are selected for tomography. Reservoir imaging shows encouraging results in identifying structures and velocity changes within reservoir layers. Clear velocity contrast was seen across the major northeast-southwest faults. Low Vp, low Vs and low Vp/Vs anomalies are mainly associated with the gas production layer. For the case of the Soultz Enhanced Geothermal System at Soultz-sous-Forets, France, we used travel time data from the September and October 1993 hydraulic stimulations, where only four borehole stations are available. The results showed that the S-wave velocity structure correlated well with seismicity and showed low velocity zones at depths between 2900 and 3300 meters, where fluid was believed to have infiltrated the reservoir. We also attempt time

  13. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  14. High-resolution seismic reflection survey at Dover AFB: A comparison of three seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardimona, S.; Kadinsky-Cade, K.; Miller, R.

    1996-11-01

    In June of 1995, the Earth Sciences Division of the Air Force Phillips Lab, with survey equipment from the University of Delaware and assisted by the Kansas Geological Survey and Elohi Geophysics, conducted a geophysical site characterization of the SERDP-funded Groundwater Remediation Field Lab (GRFL) located at Dover AFB, Delaware and administered by Applied Research Associates for USAF Armstrong Lab. Seismic data were collected in order to (1) compare the results using three different compressional sources and (2) cover the field site well enough to characterize the seismic response of the shallow subsurface. This paper will focus primarily on themore » first of these two goals. Seismic data were collected along three north-south profiles set 10 meters apart, each profile with a different compressional source: a 5.5kg sledgehammer, a 12-gauge firing rod from Betsy Seisgun Inc. shooting 150 grain blanks, and a portable piezoelectrically driven vibrator, developed by Elohi Geophysics, operating with a 90Hz-450Hz sweep. An east-west cross line was collected using the sledgehammer source in order to tie the three profiles together. A laser theodolite provided station location and elevation control. The primary targets were the water table (that had been marked on maps at a depth of about 3 meters) and a sand-clay interface at about 15 meters depth. We collected 24-channel CMP data using a half meter spacing of both source and 100Hz geophones. Field C after initial walkaway noise testing with each source did not show any one source to be outstanding A practical early result of the seismic survey showed the water table to be at just over 10 meters. We have associated the strongest reflection event with the water-table interface. Seismic data comparison in this study is based on spectral content, total energy and signal-to-noise ratios, as well as a discussion of coherency of the primary reflection event at the water table.« less

  15. Effective CO2 sequestration monitoring using joint inversion result of seismic and electromagnetic data

    NASA Astrophysics Data System (ADS)

    Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.

    2015-12-01

    Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a

  16. InSAR Surface Deformation and Source Modelling at Semisopochnoi Island During the 2014 and 2015 Seismic Swarms with Constraints from Geochemical and Seismic Analysis

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Pesicek, J. D.; Lu, Z.

    2017-12-01

    During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.

  17. The Canarian Seismic Monitoring Network: design, development and first result

    NASA Astrophysics Data System (ADS)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  18. A decade of passive seismic monitoring experiments with local networks in four Italian regions

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Valoroso, L.; Anselmi, M.; Bagh, S.; Chiarabba, C.

    2009-10-01

    We report on four seismic monitoring experiments that in the past ten years we carried out with dense local networks in seismically active Italian areas where for at least a year, tens of three component seismic stations were set up to record microseismicity. The areas observed are Alpago-Cansiglio, located in the Venetian Alps, Città di Castello in the Northern Apennines, Marsica in the Central Apennines and Val d'Agri located in the Southern Apennines. We produced homogeneous catalogues regarding earthquake locations and local magnitudes to investigate seismicity patterns during an inter-seismic period. The four regions are characterised by different kinematics, strain rates and historical/recent seismicity. We investigate earthquake distribution in space, time and size obtaining reference seismic rates and parameters of the Gutenberg and Richter law. We declustered the catalogues to look for coherent signs in the background seismic activity. Despite a difference in the catalogues magnitudes of completeness due both to the diverse detection threshold of the local networks and different seismic release, we detect and observe two common main behaviours: a) The Alpago-Cansiglio and Marsica regions are characterised by a relatively lower rate of seismic release associated to the episodic occurrence of seismic sequences with the largest event being 3 < ML < 4. In these areas the seismicity is not localised around the main faults. b) The Città di Castello and Val d'Agri regions have a relatively high rate of seismicity release almost continuously with time, and the increase in earthquake production is not clearly related to seismic sequences. In these areas the seismicity nucleates around defined fault systems and is usually lower than ML < 3. We suggest that the presence of over-pressured fluids in the Città di Castello and Val d'Agri uppermost crustal volume may favour and mould the higher rate of microseismic release.

  19. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.

    2004-12-01

    The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California

  20. Source-Type Identification Analysis Using Regional Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2012-12-01

    Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar

  1. Seismicity pattern: an indicator of source region of volcanism at convergent plate margins

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2004-04-01

    The results of detailed investigation into the geometry of distribution of earthquakes around and below the volcanoes Korovin, Cleveland, Makushin, Yake-Dake, Oshima, Lewotobi, Fuego, Sangay, Nisyros and Montagne Pelée at convergent plate margins are presented. The ISC hypocentral determinations for the period 1964-1999, based on data of global seismic network and relocated by Engdahl, van der Hilst and Buland, have been used. The aim of this study has been to contribute to the solution of the problem of location of source regions of primary magma for calc-alkaline volcanoes spatially and genetically related to the process of subduction. Several specific features of seismicity pattern were revealed in this context. (i) A clear occurrence of the intermediate-depth aseismic gap (IDAG) in the Wadati-Benioff zone (WBZ) below all investigated active volcanoes. We interpret this part of the subducted slab, which does not contain any teleseismically recorded earthquake with magnitude greater than 4.0, as a partially melted domain of oceanic lithosphere and as a possible source of primary magma for calc-alkaline volcanoes. (ii) A set of earthquakes in the shape of a seismically active column (SAC) seems to exists in the continental wedge below volcanoes Korovin, Makushin and Sangay. The seismically active columns probably reach from the Earth surface down to the aseismic gap in the Wadati-Benioff zone. This points to the possibility that the upper mantle overlying the subducted slab does not contain large melted domains, displays an intense fracturing and is not likely to represent the site of magma generation. (iii) In the continental wedge below the volcanoes Cleveland, Fuego, Nisyros, Yake-Dake, Oshima and Lewotobi, shallow seismicity occurs down to the depth of 50 km. The domain without any earthquakes between the shallow seismically active column and the aseismic gap in the Wadati-Benioff zone in the depth range of 50-100 km does not exclude the melting of the mantle

  2. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOEpatents

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  3. Monitoring and descriptive analysis of radon in relation to seismic activity of Northern Pakistan.

    PubMed

    Jilani, Zeeshan; Mehmood, Tahir; Alam, Aftab; Awais, Muhammad; Iqbal, Talat

    2017-06-01

    Earthquakes are one of the major causes of natural disasters and its forecasting is challenging task. Some precursory phenomenon exists in theory in relation to earthquakes occurrence. The emission of radioactive gas named 'radon' before the earthquakes is a potential earthquake precursory candidate. The study aims to monitor and to analyze the radon in relation to seismic activity in Northern Pakistan. For this purpose RTM-2200 has been used to monitor the changes in radon concentration from August 01, 2014 to January 31, 2015 in Northern Pakistan. Significant temporal variations has been observed in radon concentration. The bivariate analysis of radon with other variables manifests its positive relationship with air pressure and relative humidity and negative relationship with temperature. 2σ upper control limit on monthly basis are computed for detection of anomalous trends in the data. Overall increasing trend is detected in radon concentration. Five earthquakes from August 01, 2014 to January 31, 2015 have been selected from earthquake catalogue, depending upon their magnitude and distance from monitoring station and out of which radon concentration can be associated with only two earthquakes correlated with tectonic effect of radon concentration. Both of events have same magnitude 5.5 and occurred on September 13 and October 14, 2014 respectively. Very large variations have been observed in radon for the last two months of the study period, which may be occurred due to some other geological and environmental changes, but are not related to the earthquake activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  5. Tsunamis hazard assessment and monitoring for the Back Sea area

    NASA Astrophysics Data System (ADS)

    Partheniu, Raluca; Ionescu, Constantin; Constantin, Angela; Moldovan, Iren; Diaconescu, Mihail; Marmureanu, Alexandru; Radulian, Mircea; Toader, Victorin

    2016-04-01

    NIEP has improved lately its researches regarding tsunamis in the Black Sea. As part of the routine earthquake and tsunami monitoring activity, the first tsunami early-warning system in the Black Sea has been implemented in 2013 and is active during these last years. In order to monitor the seismic activity of the Black Sea, NIEP is using a total number of 114 real time stations and 2 seismic arrays, 18 of the stations being located in Dobrogea area, area situated in the vicinity of the Romanian Black Sea shore line. Moreover, there is a data exchange with the Black Sea surrounding countries involving the acquisition of real-time data for 17 stations from Bulgaria, Turkey, Georgia and Ukraine. This improves the capability of the Romanian Seismic Network to monitor and more accurately locate the earthquakes occurred in the Black Sea area. For tsunamis monitoring and warning, a number of 6 sea level monitoring stations, 1 infrasound barometer, 3 offshore marine buoys and 7 GPS/GNSS stations are installed in different locations along and near the Romanian shore line. In the framework of ASTARTE project, few objectives regarding the seismic hazard and tsunami waves height assessment for the Black Sea were accomplished. The seismic hazard estimation was based on statistical studies of the seismic sources and their characteristics, compiled using different seismic catalogues. Two probabilistic methods were used for the evaluation of the seismic hazard, the Cornell method, based on the Gutenberg Richter distribution parameters, and Gumbel method, based on extremes statistic. The results show maximum values of possible magnitudes and their recurrence periods, for each seismic source. Using the Tsunami Analysis Tool (TAT) software, a set of tsunami modelling scenarios have been generated for Shabla area, the seismic source that could mostly affect the Romanian shore. These simulations are structured in a database, in order to set maximum possible tsunami waves that could be

  6. Source parameters derived from seismic spectrum in the Jalisco block

    NASA Astrophysics Data System (ADS)

    Gutierrez, Q. J.; Escudero, C. R.; Nunez-Cornu, F. J.

    2012-12-01

    The direct measure of the earthquake fault dimension represent a complicated task nevertheless a better approach is using the seismic waves spectrum. With this method we can estimate the dimensions of the fault, the stress drop and the seismic moment. The study area comprises the complex tectonic configuration of Jalisco block and the subduction of the Rivera plate beneath the North American plate; this causes that occur in Jalisco some of the most harmful earthquakes and other related natural disasters. Accordingly it is important to monitor and perform studies that helps to understand the physics of earthquake rupture mechanism in the area. The main proposue of this study is estimate earthquake seismic source parameters. The data was recorded by the MARS network (Mapping the Riviera Subduction Zone) and the RESAJ network. MARS had 51 stations and settled in the Jalisco block; that is delimited by the mesoamerican trench at the west, the Colima grabben to the south, and the Tepic-Zacoalco to the north; for a period of time, of January 1, 2006 until December 31, 2007 Of this network was taken 104 events, the magnitude range of these was between 3 to 6.5 MB. RESJAL has 10 stations and is within the state of Jalisco, began to record since October 2011 and continues to record. We firs remove the trend, the mean and the instrument response, then manually chosen the S wave, then the multitaper method was used to obtain the spectrum of this wave and so estimate the corner frequency and the spectra level. We substitude the obtained in the equations of the Brune model to calculate the source parameters. Doing this we obtained the following results; the source radius was between .1 to 2 km, the stress drop was between .1 to 2 MPa.

  7. Seismic activity in the Sunnyside mining district, Utah, during 1967

    USGS Publications Warehouse

    Barnes, Barton K.; Dunrud, C. Richard; Hernandez, Jerome

    1969-01-01

    A seismic monitoring network near Sunnyside, Utah, consisting of a triangular array of seismometer stations that encompasses most of the mine workings in the district, recorded over 50,000 local earth tremors during 1967. About 540 of the tremors were of sufficient magnitude to be accurately located. Most of these were located within 2-3 miles of mine workings and were also near known or suspected faults. The district-wide seismic activity generally consisted of two different patterns--a periodic increase in the daily number of tremors at weekly intervals, and also a less regular and longer term increase and decrease of seismic activity that occurred over a period of weeks or even months. The shorter and more regular pattern can be correlated with the mine work week and seems to result from mining. The longer term activity, however, does not correlate with known mining causes sad therefore seems to be .caused by natural stresses.

  8. Variations of seismic parameters during different activity levels of the Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Powell, T.; Neuberg, J.

    2003-04-01

    The low-frequency seismic events on Montserrat are linked to conduit resonance and the pressurisation of the volcanic system. Analysis of these events tell us more about the behaviour of the volcanic system and provide a monitoring and interpretation tool. We have written an Automated Event Classification Algorithm Program (AECAP), which finds and classifies seismic events and calculates seismic parameters such as energy, intermittency, peak frequency and event duration. Comparison of low-frequency energy with the tilt cycles in 1997 allows us to link pressurisation of the volcano with seismic behaviour. An empirical relationship provides us with an estimate of pressurisation through released seismic energy. During 1997, the activity of the volcano varied considerably. We compare seismic parameters from quiet periods to those from active periods and investigate how the relationships between these parameters change. These changes are then used to constrain models of magmatic processes during different stages of volcanic activity.

  9. Micro-seismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  10. Time-reversal in geophysics: the key for imaging a seismic source, generating a virtual source or imaging with no source (Invited)

    NASA Astrophysics Data System (ADS)

    Tourin, A.; Fink, M.

    2010-12-01

    The concept of time-reversal (TR) focusing was introduced in acoustics by Mathias Fink in the early nineties: a pulsed wave is sent from a source, propagates in an unknown media and is captured at a transducer array termed a “Time Reversal Mirror (TRM)”. Then the waveforms received at each transducer are flipped in time and sent back resulting in a wave converging at the original source regardless of the complexity of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified by observations that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does not depend on the TRM aperture. We show that the time-reversal concept is also at the heart of very active research fields in seismology and applied geophysics: imaging of seismic sources, passive imaging based on noise correlations, seismic interferometry, monitoring of CO2 storage using the virtual source method. All these methods can indeed be viewed in a unified framework as an application of the so-called time-reversal cavity approach. That approach uses the fact that a wave field can be predicted at any location inside a volume (without source) from the knowledge of both the field and its normal derivative on the surrounding surface S, which for acoustic scalar waves is mathematically expressed in the Helmholtz Kirchhoff (HK) integral. Thus in the first step of an ideal TR process, the field coming from a point-like source as well as its normal derivative should be measured on S. In a second step, the initial source is removed and monopole and dipole sources reemit the time reversal of the components measured in the first step. Instead of directly computing

  11. Seismic monitoring of small alpine rockfalls - validity, precision and limitations

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Mohadjer, Solmaz; Turowski, Jens M.; Ehlers, Todd A.; Hovius, Niels

    2017-10-01

    Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS) data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81-29+59 m (about 7 % of the average inter-station distance of the seismometer network). Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data processing: 2175 initially picked

  12. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data

    NASA Astrophysics Data System (ADS)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group

    2009-04-01

    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the

  13. Time-lapse seismic tomography using the data of microseismic monitoring network and analysis of mine-induced events, seismic tomography results and technological data in Pyhäsalmi mine, Finland

    NASA Astrophysics Data System (ADS)

    Nevalainen, Jouni; Kozlovskaya, Elena

    2016-04-01

    We present results of a seismic travel-time tomography applied to microseismic data from the Pyhäsalmi mine, Finland. The data about microseismic events in the mine is recorded since 2002 when the passive microseismic monitoring network was installed in the mine. Since that over 130000 microseismic events have been observed. The first target of our study was to test can the passive microseismic monitoring data be used with travel-time tomography. In this data set the source-receiver geometry is based on non-even distribution of natural and mine-induced events inside and in the vicinity of the mine and hence, is a non-ideal one for the travel-time tomography. The tomographic inversion procedure was tested with the synthetic data and real source-receiver geometry from Pyhäsalmi mine and with the real travel-time data of the first arrivals of P-waves from the microseismic events. The results showed that seismic tomography is capable to reveal differences in seismic velocities in the mine area corresponding to different rock types. For example, the velocity contrast between the ore body and surrounding rock is detectable. The velocity model recovered agrees well with the known geological structures in the mine area. The second target of the study was to apply the travel-time tomography to microseismic monitoring data recorded during different time periods in order to track temporal changes in seismic velocities within the mining area as the excavation proceeds. The result shows that such a time-lapse travel-time tomography can recover such changes. In order to obtain good ray coverage and good resolution, the time interval for a single tomography round need to be selected taking into account the number of events and their spatial distribution. The third target was to compare and analyze mine-induced event locations, seismic tomography results and mining technological data (for example, mine excavation plans) in order to understand the influence of mining technology

  14. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  15. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Rogers

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from

  16. Analysis of seismic patterns observed at Nevado del Ruiz volcano, Colombia during August September 1985

    NASA Astrophysics Data System (ADS)

    Martinelli, Bruno

    1990-07-01

    The seismic activity of the Nevado del Ruiz volcano was monitored during August-September 1985 using a three-component portable seismograph station placed on the upper part of the volcano. The objective was to investigate the frequency content of the seismic signals and the possible sources of the volcanic tremor. The seismicity showed a wide spectrum of signals, especially at the beginning of September. Some relevant patterns from the collected records, which have been analyzed by spectrum analysis, are presented. For the purpose of analysis, the records have been divided into several categories such as long-period events, tremor, cyclic tremor episodes, and strong seismic activity on September 8, 1985. The origin of the seismic signals must be considered in relation to the dynamical and acoustical properties of fluids and the shape and dimensions of the volcano's conduits. The main results of the present experiment and analysis show that the sources of the seismic signals are within the volcanic edifice. The signal characteristics indicate that the sources lie in fluid-phase interactions rather than in brittle fracturing of solid components.

  17. A preliminary probabilistic analysis of tsunami sources of seismic and non-seismic origin applied to the city of Naples, Italy

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Anita, G.

    2011-12-01

    In both worldwide and regional historical catalogues, most of the tsunamis are caused by earthquakes and a minor percentage is represented by all the other non-seismic sources. On the other hand, tsunami hazard and risk studies are often applied to very specific areas, where this global trend can be different or even inverted, depending on the kind of potential tsunamigenic sources which characterize the case study. So far, few probabilistic approaches consider the contribution of landslides and/or phenomena derived by volcanic activity, i.e. pyroclastic flows and flank collapses, as predominant in the PTHA, also because of the difficulties to estimate the correspondent recurrence time. These considerations are valid, for example, for the city of Naples, Italy, which is surrounded by a complex active volcanic system (Vesuvio, Campi Flegrei, Ischia) that presents a significant number of potential tsunami sources of non-seismic origin compared to the seismic ones. In this work we present the preliminary results of a probabilistic multi-source tsunami hazard assessment applied to Naples. The method to estimate the uncertainties will be based on Bayesian inference. This is the first step towards a more comprehensive task which will provide a tsunami risk quantification for this town in the frame of the Italian national project ByMuR (http://bymur.bo.ingv.it). This three years long ongoing project has the final objective of developing a Bayesian multi-risk methodology to quantify the risk related to different natural hazards (volcanoes, earthquakes and tsunamis) applied to the city of Naples.

  18. Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi

    2017-10-01

    The characteristics of the oceanic Moho are known to depend on various factors, such as seafloor spreading rate, crustal age, and accretionary processes at a ridge. However, the effect of local magmatic activities on the seismic signature of the Moho is poorly understood. Here an active-source reflection and refraction survey is used to investigate crustal structure and Moho characteristics along a >1000-km-long profile southeast of the Shatsky Rise in a Pacific Ocean basin formed from the Late Jurassic to Early Cretaceous and spanning the onset of Shatsky Rise volcanism. Although the seismic velocity structure estimated from the refraction data showed typical characteristics of the oceanic crust of the old Pacific plate, the appearance of the Moho reflections was spatially variable. We observed clear Moho reflections such as those to be expected where the spreading rate is fast to intermediate only at the southwestern end of the profile, whereas Moho reflections were diffuse, weak, or absent along other parts of the profile. The poor Moho reflections can be explained by the presence of a thick crust-mantle transition layer, which is temporally coincident with the formation of the Shatsky Rise. We inferred that the crust-mantle transition layer was formed by changes in on-axis accretion process or modification of the primary Moho by off-axis magmatism, induced by magmatic activity of the Shatsky Rise.

  19. New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Peter Morse

    Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can bemore » used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.« less

  20. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  1. Seismic source dynamics of gas-piston activity at Kı¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip

    2015-04-01

    Since 2008, eruptive activity at the summit of Kı¯lauea Volcano, Hawai`i has been confined to the new Overlook pit crater within the Halema`uma`u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20-25 August 2011 during a gentle inflation of the Kı¯lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1-10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ˜1 km below the eastern perimeter of the Halema`uma`u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter

  2. Effects of Source RDP Models and Near-source Propagation: Implication for Seismic Yield Estimation

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Helmberger, D. V.; Stead, R. J.; Woods, B. B.

    - It has proven difficult to uniquely untangle the source and propagation effects on the observed seismic data from underground nuclear explosions, even when large quantities of near-source, broadband data are available for analysis. This leads to uncertainties in our ability to quantify the nuclear seismic source function and, consequently the accuracy of seismic yield estimates for underground explosions. Extensive deterministic modeling analyses of the seismic data recorded from underground explosions at a variety of test sites have been conducted over the years and the results of these studies suggest that variations in the seismic source characteristics between test sites may be contributing to the observed differences in the magnitude/yield relations applicable at those sites. This contributes to our uncertainty in the determination of seismic yield estimates for explosions at previously uncalibrated test sites. In this paper we review issues involving the relationship of Nevada Test Site (NTS) source scaling laws to those at other sites. The Joint Verification Experiment (JVE) indicates that a magnitude (mb) bias (δmb) exists between the Semipalatinsk test site (STS) in the former Soviet Union (FSU) and the Nevada test site (NTS) in the United States. Generally this δmb is attributed to differential attenuation in the upper-mantle beneath the two test sites. This assumption results in rather large estimates of yield for large mb tunnel shots at Novaya Zemlya. A re-examination of the US testing experiments suggests that this δmb bias can partly be explained by anomalous NTS (Pahute) source characteristics. This interpretation is based on the modeling of US events at a number of test sites. Using a modified Haskell source description, we investigated the influence of the source Reduced Displacement Potential (RDP) parameters ψ ∞ , K and B by fitting short- and long-period data simultaneously, including the near-field body and surface waves. In general

  3. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 1: Model components for sources parameterization

    NASA Astrophysics Data System (ADS)

    Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana

    2017-11-01

    The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps

  4. Comparison of Amplitudes and Frequencies of Explosive vs. Hammer Seismic Sources for a 1-km Seismic Line in West Texas

    NASA Astrophysics Data System (ADS)

    Kaip, G.; Harder, S. H.; Karplus, M. S.; Vennemann, A.

    2016-12-01

    In May 2016, the National Seismic Source Facility (NSSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at the Indio Ranch located 30 km southwest of Van Horn, Texas. Both hammer on an aluminum plate and explosive sources were used. The project objective was to image subsurface structures at the ranch, owned by UTEP. Selecting the appropriate seismic source is important to reach project objectives. We compare seismic sources between explosions and hammer on plate, focusing on amplitude and frequency. The seismic line was 1 km long, trending WSW to ENE, with 200 4.5 Hz geophones at 5m spacing and shot locations at 10m spacing. Clay slurry was used in shot holes to increase shot coupling around booster. Trojan Spartan cast boosters (150g) were used in explosive sources in each shot hole (1 hole per station). The end of line shots had 5 shot holes instead of 1 (750g total). The hammer source utilized a 5.5 kg hammer and an aluminum plate. Five hammer blows were stacked at each location to improve signal-to-noise ratio. Explosive sources yield higher amplitude, but lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Hammer sources yield higher frequencies, allowing better resolution at shallower depths but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.

  5. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    NASA Astrophysics Data System (ADS)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  6. Remote monitoring of electromagnetic signals and seismic events using smart mobile devices

    NASA Astrophysics Data System (ADS)

    Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine

    2009-06-01

    This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.

  7. Sources of seismic events in the cooling lava lake of Kilauea Iki, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouet, B.

    1979-05-10

    Seismic surveys conducted in recent years revealed a suprisingly high and sustained activity of local seismic events originating in the partially frozen lava lake of Kilauea Iki crater, Hawaii. About 8000 events per day were counted in 1976 at the center of the lake with a seismograph having a peak magnification of 280,000 at 60 Hz. The activity was found to be uniform over the whole area above the inferred magma lens and very weak in the periphery of the lake. The frequency-amplitude relation for these shocks obeys the Ishimoto-Iida or Gutenberg-Richter law very well, with a b value ofmore » 1.19( +- 0.06). Locations of a few selected events indicate that they occur both above and below the layer of melt, although the seismic activity appears to be much higher in the upper crust. Whenever clear, the first motion is always outward from the source, suggesting that a crack opening under tensile stress owing to cooling is the responsible source mechanism. A simple model of a circular tensile crack nucleating at a point and growing at subsonic velocity can match the far-field P wave from these sources fairly well. Typical parameters for a large event inferred from the model are the following: radius, 2.7 m; maximum static tensile displacement between crack faces, 2.9..mu..; cavity volume, 4.4 x 10/sup -5/ m/sup 3/; and a seismic moment tensor with diagonal elements only, having the values 3.8 x 10/sup 2/exclamation2, 4.5 x 10/sup 12/, and 3.8 x 10/sup 12/ dyn cm. The magnitude of the event is about -1, and its stress drop is of the order of 0.01 bar. A Q as low as 10 is required to satisfy the shape of the observed wave forms. The total cavity volume integrated over all cracks which is generated daily in the upper crust of Kilauea Iki is of the order of 1--20 m/sup 3/. An alternate interpretation of the data, the seismic activity as reflecting the extension by up to several tens of centimeters of long existing cracks rather than the formation of new cracks.« less

  8. Iceberg calving as a primary source of regional‐scale glacier‐generated seismicity in the St. Elias Mountains, Alaska

    USGS Publications Warehouse

    O'Neel, Shad; Larsen, Christopher F.; Rupert, Natalia; Hansen, Roger

    2010-01-01

    Since the installation of the Alaska Regional Seismic Network in the 1970s, data analysts have noted nontectonic seismic events thought to be related to glacier dynamics. While loose associations with the glaciers of the St. Elias Mountains have been made, no detailed study of the source locations has been undertaken. We performed a two-step investigation surrounding these events, beginning with manual locations that guided an automated detection and event sifting routine. Results from the manual investigation highlight characteristics of the seismic waveforms including single-peaked (narrowband) spectra, emergent onsets, lack of distinct phase arrivals, and a predominant cluster of locations near the calving termini of several neighboring tidewater glaciers. Through these locations, comparison with previous work, analyses of waveform characteristics, frequency-magnitude statistics and temporal patterns in seismicity, we suggest calving as a source for the seismicity. Statistical properties and time series analysis of the event catalog suggest a scale-invariant process that has no single or simple forcing. These results support the idea that calving is often a response to short-lived or localized stress perturbations. Our results demonstrate the utility of passive seismic instrumentation to monitor relative changes in the rate and magnitude of iceberg calving at tidewater glaciers that may be volatile or susceptible to ensuing rapid retreat, especially when existing seismic infrastructure can be used.

  9. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    NASA Astrophysics Data System (ADS)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  10. New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  11. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  12. Seismic intensity monitoring: from mature basins in the North Sea to sample-scale porosity measurements.

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Sketsiou, Panayiota

    2017-04-01

    We plan the application of a joint velocity, attenuation, and scattering tomography to the North Sea basins. By using seismic phases and intensities from previous passive and active surveys our aim is to image and monitor fluids under the subsurface. Seismic intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the volcanoes and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island), continental calderas (Campi Flegrei) and Quaternary Volcanoes (Mount. St. Helens) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability, with as key output a novel computational code with strong commercial potential. Data are readily available in the framework of the NERC CDT Oil & Gas project.

  13. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of

  14. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  15. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have

  16. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    NASA Astrophysics Data System (ADS)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  17. Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio

    2017-10-01

    The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.

  18. Calibrating and monitoring the western gray whale mitigation zone and estimating acoustic transmission during a 3D seismic survey, Sakhalin Island, Russia.

    PubMed

    Rutenko, A N; Borisov, S V; Gritsenko, A V; Jenkerson, M R

    2007-11-01

    A 3D marine seismic survey of the Odoptu license area off northeastern Sakhalin Island, Russia, was conducted by DalMorNefteGeofizika (DMNG) on behalf of Exxon Neftegas Limited and the Sakhalin-1 consortium during mid-August through early September 2001. The key environmental issue identified in an environmental impact assessment was protection of the critically endangered western gray whale (Eschrichtius robustus), which spends the summer-fall open water period feeding off northeast Sakhalin Island in close proximity to the seismic survey area. Seismic mitigation and monitoring guidelines and recommendations were developed and implemented to reduce impacts on the feeding activity of western gray whales. Results of the acoustic monitoring program indicated that the noise monitoring and mitigation program was successful in reducing exposure of feeding western gray whales to seismic noise.

  19. Seismicity around the source areas of the 1946 Nankai and the 1944 Tonankai earthquakes detected from data recorded at DONET stations

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Kamiya, S.; Takahashi, N.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) installed DONET (Dense Oceanfloor Network System for Earthquakes and Tsunamis) off the Kii Peninsula, southwest of Japan, to monitor earthquakes and tsunamis. Stations of DONET1, which are distributed in Kumano-nada, and DONET2, which are distributed off Muroto, were installed by August 2011 and April 2016, respectively. After the installation of all of the 51 stations, DONET was transferred to National Research Institute for Earth Science and Disaster Resilience (NIED). NIED and JAMSTEC have now corroborated in the operation of DONET since April 2016. To investigate the seismicity around the source areas of the 1946 Nankai and the 1944 Tonankai earthquakes, we detected earthquakes from the records of the broadband seismometers installed to DONET. Because DONET stations are apart from land stations, we can detect smaller earthquakes than by using only land stations. It is important for understanding the stress state and seismogenic mechanism to monitoring the spatial-temporal seismicity change. In this study we purpose to evaluate to the seismicity around the source areas of the Nankai and the Tonankai earthquakes by using our earthquake catalogue. The frequency-magnitude relationships of earthquakes in the areas of DONET1&2 had an almost constant slope of about -1 for earthquakes of ML larger than 1.5 and 2.5, satisfying the Gutenberg-Richter law, and the slope of smaller earthquakes approached 0, reflecting the detection limits. While the most of the earthquakes occurred in the aftershock area of the 2004 off the Kii Peninsula earthquakes, very limited activity was detected in the source region of the Nankai and Tonankai earthquake except for the large earthquake (MJMA = 6.5) on 1st April 2016 and its aftershocks. We will evaluate the detection limit of the earthquake in more detail and investigate the spatial-temporal seismicity change with waiting the data store.

  20. Fifty Years of Seismic Monitoring in Davao,Philippines

    NASA Astrophysics Data System (ADS)

    McNamara, D. J.

    2016-12-01

    The Manila Observatory was a 150 years old as of 2015. Fiftry years ago it began a seismic monitoring station in the Island of Mindanao, outside the city of Davao, 7 deg. N and 121 deg. E. approxiamtely. This station was chosen not only for its position on the Ring of Fire but also for the fact the the dip angle of the earth's manetic field is zeo at that location. When the CTBT was established and the Republic of the Philippines (RP) a signatory, the Davao station by agreement with RP, began to send its seismic data to the CTBT database in Vienna. This has continued to the present day with support from CTBTO for updates in equipment and maintainence. We discuss if such a private+government model is the way forward for more comprehensive monitoring in the future.

  1. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  2. Sources of Seismic Hazard in British Columbia: What Controls Earthquakes in the Crust?

    NASA Astrophysics Data System (ADS)

    Balfou, Natalie Joy

    This thesis examines processes causing faulting in the North American crust in the northern Cascadia subduction zone. A combination of seismological methods, including source mechanism determination, stress inversion and earthquake relocations are used to determine where earthquakes occur and what forces influence faulting. We also determine if forces that control faulting can be monitored using seismic anisotropy. Investigating the processes that contribute to faulting in the crust is important because these earthquakes pose significant hazard to the large population centres in British Columbia and Washington State. To determine where crustal earthquakes occur we apply double-difference earthquake relocation techniques to events in the Fraser River Valley, British Columbia, and the San Juan Islands, Washington. This technique is used to identify "hidden" active structures using both catalogue and waveform cross-correlation data. Results have significantly reduced uncertainty over routine catalogue locations and show lineations in areas of clustered seismicity. In the Fraser River Valley these lineations or streaks appear to be hidden structures that do not disrupt near-surface sediments; however, in the San Juan Islands the identified lineation can be related to recently mapped surface expressions of faults. To determine forces that influence faulting we investigate the orientation and sources of stress using Bayesian inversion results from focal mechanism data. More than ˜600 focal mechanisms from crustal earthquakes are calculated to identify the dominant style of faulting and inverted to estimate the principal stress orientations and the stress ratio. Results indicate the maximum horizontal compressive stress (SHmax) orientation changes with distance from the subduction interface, from margin-normal along the coast to margin-parallel further inland. We relate the margin-normal stress direction to subduction-related strain rates due to the locked interface

  3. Comparing methods suitable for monitoring marine mammals in low visibility conditions during seismic surveys.

    PubMed

    Verfuss, Ursula K; Gillespie, Douglas; Gordon, Jonathan; Marques, Tiago A; Miller, Brianne; Plunkett, Rachael; Theriault, James A; Tollit, Dominic J; Zitterbart, Daniel P; Hubert, Philippe; Thomas, Len

    2018-01-01

    Loud sound emitted during offshore industrial activities can impact marine mammals. Regulations typically prescribe marine mammal monitoring before and/or during these activities to implement mitigation measures that minimise potential acoustic impacts. Using seismic surveys under low visibility conditions as a case study, we review which monitoring methods are suitable and compare their relative strengths and weaknesses. Passive acoustic monitoring has been implemented as either a complementary or alternative method to visual monitoring in low visibility conditions. Other methods such as RADAR, active sonar and thermal infrared have also been tested, but are rarely recommended by regulatory bodies. The efficiency of the monitoring method(s) will depend on the animal behaviour and environmental conditions, however, using a combination of complementary systems generally improves the overall detection performance. We recommend that the performance of monitoring systems, over a range of conditions, is explored in a modelling framework for a variety of species. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Optimal distribution of borehole geophones for monitoring CO2-injection-induced seismicity

    NASA Astrophysics Data System (ADS)

    Huang, L.; Chen, T.; Foxall, W.; Wagoner, J. L.

    2016-12-01

    The U.S. DOE initiative, National Risk Assessment Partnership (NRAP), aims to develop quantitative risk assessment methodologies for carbon capture, utilization and storage (CCUS). As part of tasks of the Strategic Monitoring Group of NRAP, we develop a tool for optimal design of a borehole geophones distribution for monitoring CO2-injection-induced seismicity. The tool consists of a number of steps, including building a geophysical model for a given CO2 injection site, defining target monitoring regions within CO2-injection/migration zones, generating synthetic seismic data, giving acceptable uncertainties in input data, and determining the optimal distribution of borehole geophones. We use a synthetic geophysical model as an example to demonstrate the capability our new tool to design an optimal/cost-effective passive seismic monitoring network using borehole geophones. The model is built based on the geologic features found at the Kimberlina CCUS pilot site located in southern San Joaquin Valley, California. This tool can provide CCUS operators with a guideline for cost-effective microseismic monitoring of geologic carbon storage and utilization.

  5. Seismic source dynamics of gas-piston activity at Kı̄lauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2015-01-01

    Since 2008, eruptive activity at the summit of Kı̄lauea Volcano, Hawai‘i has been confined to the new Overlook pit crater within the Halema‘uma‘u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20–25 August 2011 during a gentle inflation of the Kı̄lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ∼1 km below the eastern perimeter of the Halema‘uma‘u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a

  6. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    NASA Astrophysics Data System (ADS)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  7. Induced Seismicity Monitoring of an Underground Salt Cavern Prone to Collapse

    NASA Astrophysics Data System (ADS)

    Mercerat, E. D.; Driad-Lebeau, L.; Bernard, P.

    2010-02-01

    Within the framework of a large research project launched to assess the feasibility of microseismic monitoring of growing underground caverns, this specific work focuses on the analysis of the induced seismicity recorded in a salt mine environment. A local seismic network has been installed over an underground salt cavern located in the Lorraine basin (Northeast of France). The microseismic network includes four 3-components and three single component geophones deployed at depths between 30 and 125 m in cemented boreholes drilled in the vicinity of the study area. The underground cavern under monitoring is located within a salt layer at 180 m depth and it presents a rather irregular shape that can be approximated by a cylindrical volume of 50 m height and 180 m diameter. Presently, the cavern is full of saturated brine inducing a significant pressure on its walls (~2.0 MPa) to keep the overburden mechanically stable. Nevertheless some small microseismic events were recorded by the network and analyzed (approximately 2,000 events in 2 years of recording). In October 2005 and April 2007, two controlled pressure transient experiments were carried out in the cavern, in order to analyze the mechanical response of the overburden by tracking the induced microseismicity. The recorded events were mainly grouped in clusters of 3-30 s of signal duration with emergent first arrivals and rather low frequency content (between 20 and 120 Hz). Some of these events have been spatially located by travel-time picking close to the actual cavern and its immediate roof. Preliminary spectral analysis of isolated microearthquakes suggests sources with non-negligible tensile components possibly related to fluid-filled cracks. Rock-debris falling into the cavern from delamination of clay marls in the immediate roof is probably another source of seismic excitation. This was later confirmed when the most important seismic swarms occurred at the site during May 2007, accompanied by the

  8. Pre-seismic anomalies from optical satellite observations: a review

    NASA Astrophysics Data System (ADS)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  9. A western gray whale mitigation and monitoring program for a 3-D seismic survey, Sakhalin Island, Russia.

    PubMed

    Johnson, S R; Richardson, W J; Yazvenko, S B; Blokhin, S A; Gailey, G; Jenkerson, M R; Meier, S K; Melton, H R; Newcomer, M W; Perlov, A S; Rutenko, S A; Würsig, B; Martin, C R; Egging, D E

    2007-11-01

    The introduction of anthropogenic sounds into the marine environment can impact some marine mammals. Impacts can be greatly reduced if appropriate mitigation measures and monitoring are implemented. This paper concerns such measures undertaken by Exxon Neftegas Limited, as operator of the Sakhalin-1 Consortium, during the Odoptu 3-D seismic survey conducted during 17 August-9 September 2001. The key environmental issue was protection of the critically endangered western gray whale (Eschrichtius robustus), which feeds in summer and fall primarily in the Piltun feeding area off northeast Sakhalin Island. Existing mitigation and monitoring practices for seismic surveys in other jurisdictions were evaluated to identify best practices for reducing impacts on feeding activity by western gray whales. Two buffer zones were established to protect whales from physical injury or undue disturbance during feeding. A 1 km buffer protected all whales from exposure to levels of sound energy potentially capable of producing physical injury. A 4-5 km buffer was established to avoid displacing western gray whales from feeding areas. Trained Marine Mammal Observers (MMOs) on the seismic ship Nordic Explorer had the authority to shut down the air guns if whales were sighted within these buffers. Additional mitigation measures were also incorporated: Temporal mitigation was provided by rescheduling the program from June-August to August-September to avoid interference with spring arrival of migrating gray whales. The survey area was reduced by 19% to avoid certain waters <20 m deep where feeding whales concentrated and where seismic acquisition was a lower priority. The number of air guns and total volume of the air guns were reduced by about half (from 28 to 14 air guns and from 3,390 in(3) to 1,640 in(3)) relative to initial plans. "Ramp-up" (="soft-start") procedures were implemented. Monitoring activities were conducted as needed to implement some mitigation measures, and to assess

  10. Seismic array observations for monitoring phreatic eruptions in Iwojima Island, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Kawaguchi, R.; Chiba, K.; Fujita, E.; Tanada, T.

    2015-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The volcanic activity is characterized by intensive earthquake activity associated with an island-wide uplift with high uplift rate (30~40 cm/year) and hydrothermal activity. In the last 10 years, phreatic eruptions took place in and near the island in 2012, 2013, and 2015. In such restless volcano, predictions and detections of occurrence points of phreatic eruptions are important for ensuring safety of residents. In the previous studies, we found that the earthquake activity of Iwojima highly correlates with the island wide large uplift, but the precursory activity of the phreatic eruption in 2012 was deviated from the correlation (Ueda et al. 2013 AGU Fall Meeting). For prediction of occurrence points of phreatic eruptions and investigation of the eruption mechanism, we began observation by seismic arrays at two areas in December 2014. The seismic arrays enable to locate epicenters of volcanic tremors, which are not well located by existing seismic stations. In May and June 2015, Japan Maritime Self-Defense Force stayed in Iwojima and a live camera of Japan Meteorological Agency found very small phreatic eruptions occurred at the northern beach. Existing seismic stations could not detect seismic signals related with the eruptions. The seismic array could detect weak seismic signals related with the eruptions. Although the seismic arrays could not detect precursory signals because of too small eruption, we expect the seismic arrays can detect precursory seismic signals suggesting occurrence points of small or medium-sized phreatic eruptions. The seismic arrays also detected epicenters of harmonic and monotonic tremors took place at an active fumarolic field in the north earthen part of Iwojima. The apparent velocity of seismic waves (~1km/s) strongly suggests that the tremors relate with hydrothermal activity near ground surface.

  11. The SISMA Project: A pre-operative seismic hazard monitoring system.

    NASA Astrophysics Data System (ADS)

    Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio

    2009-04-01

    Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of

  12. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  13. Feasibility of Active Monitoring for Plate Coupling Using ACROSS

    NASA Astrophysics Data System (ADS)

    Yamaoka, K.; Watanabe, T.; Ikuta, R.

    2004-12-01

    Detectability of temporal changes in reflected wave from the boundary of subducting plates in Tokai district with active sources are studied. Based on rock experiments the change in the intensity of reflection wave can be caused by change in coupling between subducting and overriding plates. ACROSS (Accurately-Controlled Rountine-Operated Signal System) consists of sinusoidal vibration sources and receivers is proved to provide a data of excellent signal resolution. The following technical issues should be overcome to monitor the returned signal from boundaries of subducting plates. (1) Long term operation of the source. (2) Detection of temporal change. (3) Accurate estimation of source functions and their temporal change. First two issues have already overcome. We have already succeeded a long-term operation experiment with the ACROSS system in Awaji, Japan. The operation was carried out for 15 months with only minor troubles. Continuous signal during the experiment are successfully obtained. In the experiment we developed a technique to monitor the temporal change of travel time with a resolution of several tens of microseconds. The third issue is one of the most difficult problem for practical monitoring using artificial sources. In the 15-month experiment we correct the source function using the record of seismometers that were deployed around the source We also estimate the efficiency of the reflected wave detection using ACROSS system. We use a data of seismic exploration experiment by blasts that carried out above subducting plate in Tokai district. Clear reflection from the surface of the Philippine Sea plate is observed in the waveform. Assuming that the ACROSS source is installed at the same place of the blast source, the detectability of temporal variation of reflection wave can be estimated. As we have measured the variation of signal amplitude that depends on the distance from an ACROSS source, ground noise at seismic stations (receivers) provide us

  14. A Monolithic Electrochemical Micro Seismic Sensor Capable of Monitoring Three-Dimensional Vibrations

    PubMed Central

    Chen, Lianhong; Sun, Zhenyuan; Li, Guanglei; Chen, Deyong; Wang, Junbo

    2018-01-01

    A monolithic electrochemical micro seismic sensor capable of monitoring three-axial vibrations was proposed in this paper. The proposed micro sensor mainly consisted of four sensing units interconnected within flow channels and by interpreting the voltage outputs of the sensing units, vibrations with arbitrary directions can be quantified. The proposed seismic sensors are fabricated based on MEMS technologies and characterized, which produced sensitivities along x, y, and z axes as 2473.2 ± 184.5 V/(m/s), 2261.7 ± 119.6 V/(m/s), and 3480.7 ± 417.2 V/(m/s) at 30 Hz. In addition, the vibrations in x-y, x-z, and y-z planes were applied to the developed seismic sensors, leading to comparable monitoring results after decoupling calculations with the input velocities. Furthermore, the results have shown its feasibilities for seismic data recording. PMID:29614720

  15. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  16. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  17. Seismic source and structure estimation in the western Mediterranean using a sparse broadband network

    NASA Astrophysics Data System (ADS)

    Thio, Hong Kie; Song, Xi; Saikia, Chandan K.; Helmberger, Donald V.; Woods, Bradley B.

    1999-01-01

    We present a study of regional earthquakes in the western Mediterranean geared toward the development of methodologies and path calibrations for source characterization using regional broadband stations. The results of this study are useful for the monitoring and discrimination of seismic events under a comprehensive test ban treaty, as well as the routine analysis of seismicity and seismic hazard using a sparse array of stations. The area consists of several contrasting geological provinces with distinct seismic properties, which complicates the modeling of seismic wave propagation. We started by analyzing surface wave group velocities throughout the region and developed a preliminary model for each of the major geological provinces. We found variations of crustal thickness ranging from 45 km under the Atlas and Betic mountains and 37 km under the Saharan shield, to 20 km for the oceanic crust of the western Mediterranean Sea, which is consistent with earlier works. Throughout most of the region, the upper mantle velocities are low which is typical for tectonically active regions. The most complex areas in terms of wave propagation are the Betic Cordillera in southern Spain and its north African counterparts, the Rif and Tell Atlas mountains, as well as the Alboran Sea, between Spain and Morocco. The complexity of the wave propagation in these regions is probably due to the sharp velocity contrasts between the oceanic and continental regions as well as the the existence of deep sedimentary basins that have a very strong influence on the surface wave dispersion. We used this preliminary regionalized velocity model to correct the surface wave source spectra for propagation effects which we then inverted for source mechanism. We found that this method, which is in use in many parts of the world, works very well, provided that data from several stations are available. In order to study the events in the region using very few broadband stations or even a single station

  18. Citizen Science Seismic Stations for Monitoring Regional and Local Events

    NASA Astrophysics Data System (ADS)

    Zucca, J. J.; Myers, S.; Srikrishna, D.

    2016-12-01

    The earth has tens of thousands of seismometers installed on its surface or in boreholes that are operated by many organizations for many purposes including the study of earthquakes, volcanos, and nuclear explosions. Although global networks such as the Global Seismic Network and the International Monitoring System do an excellent job of monitoring nuclear test explosions and other seismic events, their thresholds could be lowered with the addition of more stations. In recent years there has been interest in citizen-science approaches to augment government-sponsored monitoring networks (see, for example, Stubbs and Drell, 2013). A modestly-priced seismic station that could be purchased by citizen scientists could enhance regional and local coverage of the GSN, IMS, and other networks if those stations are of high enough quality and distributed optimally. In this paper we present a minimum set of hardware and software specifications that a citizen seismograph station would need in order to add value to global networks. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    NASA Astrophysics Data System (ADS)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  20. Monitoring glacier surface seismicity in time and space using Rayleigh waves

    USGS Publications Warehouse

    Mikesell, T. D.; Van Wijk, K.; Haney, Matthew M.; Bradford, J.H.; Marshall, Hans P.; Harper, J. T.

    2012-01-01

    Sliding glaciers and brittle ice failure generate seismic body and surface wave energy characteristic to the source mechanism. Here we analyze continuous seismic recordings from an array of nine short-period passive seismometers located on Bench Glacier, Alaska (USA) (61.033°N, 145.687°W). We focus on the arrival-time and amplitude information of the dominant Rayleigh wave phase. Over a 46-hour period we detect thousands of events using a cross-correlation based event identification method. Travel-time inversion of a subset of events (7% of the total) defines an active crevasse, propagating more than 200 meters in three hours. From the Rayleigh wave amplitudes, we estimate the amount of volumetric opening along the crevasse as well as an average bulk attenuation (  = 42) for the ice in this part of the glacier. With the remaining icequake signals we establish a diurnal periodicity in seismicity, indicating that surface run-off and subglacial water pressure changes likely control the triggering of these surface events. Furthermore, we find that these events are too weak (i.e., too noisy) to locate individually. However, stacking individual events increases the signal-to-noise ratio of the waveforms, implying that these periodic sources are effectively stationary during the recording period.

  1. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less

  2. The Irpinia Seismic Network (ISN): a new Monitoring Infrastructure for Seismic Alert Management in Campania Region, Southern Italy

    NASA Astrophysics Data System (ADS)

    Iannaccone, G.; Satriano, C.; Weber, E.; Cantore, L.; Corciulo, M.; Romano, L.; Martino, C.; Dicrosta, M.; Zollo, A.

    2005-12-01

    The Irpinia Seismic Network is an high dynamics, high density seismographic network under development in the Southern Apenninic chain. It is deployed in the area stroken by several destructive earthquakes during last centuries. In its final configuration the network will consist of more than fourty high dynamic seismic stations subdivided in physical subnetworks inter-connected by a robust data transmission system. The system is being designed with two primary targets: -Monitoring and analysis of background seismic activity produced by the active fault system which is the cause for large earthquakes in the past, included the 1980, Irpinia earthquake (Ms=6.9) - Development and experimentation of a prototype system for seismic early and post-event warning to be used for protecting public infrastructures and buildings of strategic relevance of the Regione Campania The seismic network will be completed in two stages: 1 - Deployment of 30 seismic stations along the Campania-Lucania Apenninic chain (to date almost completed) 2 - Setting up radio communication system for data transmission. Installation of 12 additional seismic stations (end of year 2006) To ensure an high dynamic recording range each site is equipped with two type of sensors: 30 force-balance accelerometer (model Guralp CMG5-T) and a velocimeter. In particular, 25 sites with short period three components instrument (model Geotech S13-J) and 5 with broad-band sensor (Nanometrics Trillium, with frequency response in the 0.033-50 Hz band). The used data logger is the Osiris-6 model produced by Agecodagis whose main features are: six channels, O/N 24 bit A/D converter, ARM processor with embedded Linux and open source software, two PCMCIA slots (used for two 5GB microdrive or one disk and wi-fi card), Ethernet, wi-fi and serial communication, low power cosumption (~1 W). Power is ensured by two 120 W solar panels and two 130 Ah gel batteries. Each recording site is equipped with a control/alarm system through

  3. Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry

    NASA Astrophysics Data System (ADS)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    2015-12-01

    The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia

  4. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    NASA Astrophysics Data System (ADS)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  5. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  6. Seismic and infrasonic source processes in volcanic fluid systems

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.

    inadequate to explain the observations, and propose that the signals may result from sudden containment failure of a pressurized hydrothermal crack. For the broadband eruption tremor signals, we propose that the infrasonic signals represent a low-frequency form of jet noise, analogous to the noise from man-made jet engines, but operating with larger spatial scales and consequently longer time-scales. For the persistent hawaiian tremor signals, we propose that bubble cloud oscillation in the upper section of a roiling magma conduit and vortex dynamics in the shallow degassing region act as broadband and harmonic tremor sources. We also consider infrasound propagation effects in a dynamic atmosphere and discuss their effects on recorded signals. This dissertation demonstrates that combined seismic and infrasonic data provide complementary perspectives on eruptive activity.

  7. High-Resolution Analysis of Seismicity Induced at Berlín Geothermal Field, El Salvador

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Bulut, F.; Dresen, G. H.; Bohnhoff, M.

    2012-12-01

    We investigate induced microseismic activity monitored at Berlín Geothermal Field, El Salvador, during a hydraulic stimulation. The site was monitored for a time period of 17 months using thirteen 3-component seismic stations located in shallow boreholes. Three stimulations were performed in the well TR8A with a maximum injection rate and well head pressure of 160l/s and 130bar, respectively. For the entire time period of our analysis, the acquisition system recorded 581 events with moment magnitudes ranging between -0.5 and 3.7. The initial seismic catalog provided by the operator was substantially improved: 1) We re-picked P- and S-wave onsets and relocated the seismic events using the double-difference relocation algorithm based on cross-correlation derived differential arrival time data. Forward modeling was performed using a local 1D velocity model instead of homogeneous full-space. 2) We recalculated source parameters using the spectral fitting method and refined the results applying the spectral ratio method. We investigated the source parameters and spatial and temporal changes of the seismic activity based on the refined dataset and studied the correlation between seismic activity and production. The achieved hypocentral precision allowed resolving the spatiotemporal changes in seismic activity down to a scale of a few meters. The application of spectral ratio method significantly improved the quality of source parameters in a high-attenuating and complex geological environment. Of special interest is the largest event (Mw3.7) and its nucleation process. We investigate whether the refined seismic data display any signatures that the largest event is triggered by the shut-in of the well. We found seismic activity displaying clear spatial and temporal patterns that could be easily related to the amount of water injected into the well TR8A and other reinjection wells in the investigated area. The migration of seismicity outside of injection point is observed

  8. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  9. Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance

    USGS Publications Warehouse

    Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg

    2010-01-01

    An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

  10. Initial results from seismic monitoring at the Aquistore CO 2 storage site, Saskatchewan, Canada

    DOE PAGES

    White, D. J.; Roach, L. A.N.; Roberts, B.; ...

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO 2 storage projects in the world that is designed to demonstrate CO 2 storage in a deep saline aquifer. Starting in 2014, CO 2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO 2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will hostmore » the injected CO 2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m 3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO 2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO 2. Prior to the onset of CO 2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D

  11. Theoretical and practical considerations for the design of the iMUSH active-source seismic experiment

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Harder, S. H.; Abers, G. A.; Creager, K. C.; Vidale, J. E.; Moran, S. C.; Malone, S. D.

    2013-12-01

    The multi-disciplinary imaging of Magma Under St. Helens (iMUSH) experiment seeks to understand the details of the magmatic system that feeds Mount St. Helens using active- and passive-source seismic, magnetotelluric, and petrologic data. The active-source seismic component of this experiment will take place in the summer of 2014 utilizing all of the 2600 PASSCAL 'Texan' Reftek instruments which will record twenty-four 1000-2000 lb shots distributed around the Mount St. Helens region. The instruments will be deployed as two consecutive refraction profiles centered on the volcano, and a series of areal arrays. The actual number of areal arrays, as well as their locations, will depend strongly on the length of the experiment (3-4 weeks), the number of instrument deployers (50-60), and the time it will take per deployment given the available road network. The current work shows how we are balancing these practical considerations against theoretical experiment designs in order to achieve the proposed scientific goals with the available resources. One of the main goals of the active-source seismic experiment is to image the magmatic system down to the Moho (35-40 km). Calculating sensitivity kernels for multiple shot/receiver offsets shows that direct P waves should be sensitive to Moho depths at offsets of 150 km, and therefore this will likely be the length of the refraction profiles. Another primary objective of the experiment is to estimate the locations and volumes of different magma accumulation zones beneath the volcano using the areal arrays. With this in mind, the optimal locations of these arrays, as well as their associated shots, are estimated using an eigenvalue analysis of the approximate Hessian for each possible experiment design. This analysis seeks to minimize the number of small eigenvalues of the approximate Hessian that would amplify the propagation of data noise into regions of interest in the model space, such as the likely locations of magma

  12. Detection and localization capability of an urban seismic sinkhole monitoring network

    NASA Astrophysics Data System (ADS)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  13. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  14. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  15. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methodsmore » in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.« less

  16. Polarization Analysis of Ambient Seismic Noise Green's Functions for Monitoring Glacial State

    NASA Astrophysics Data System (ADS)

    Fry, B.; Horgan, H. J.; Levy, R. H.; Bertler, N. A. N.

    2017-12-01

    Analysis of continuously recorded background seismic noise has emerged as a powerful technique to monitor changes within the Earth. In a process analogous to Einstein's 'Brownian motion', seismic energy enters the Earth through a variety of mechanisms and then is dissipated through scattering processes or through a semi-random distribution of sources. Eventually, in stratified media, some of this energy assembles itself in coherent packets and propagates as seismic surface waves. Through careful analysis of these waves as recorded by two seismic stations over a short period of time, we can reconstruct Empirical Green's Functions (EGF). EGF are sensitive to the material through which the waves are travelling between the two stations. They can thus provide 4D estimates of material properties such as seismic velocity and anisotropy. We specifically analyze both the bulk velocity and the complex phase of these EGF to look for subtle changes in velocity with direction of propagation as well as the nature of particle polarization and ellipticity. These characteristics can then be used as a proxy for contemporaneous stress and strain or 'inherited' strain. Similar approaches have proven successful in mapping stresses and strain in the crust, on plate interface faults, volcanoes, and on glaciers and the Greenland ice sheet. We will present results from applying this approach to continuous broadband data recorded on the West Antarctic Ice Sheet through the Polenet project. Our results suggest that we can reconstruct EGF at least between frequencies of 300mHz and 50mHz for time periods, providing information about the contemporary state of ice and underlying lithosphere on a seasonal or annual basis. Our primary goals are determining glacial state by linking wave propagation to material fabric on micro (crystal orientation) and macro (strain marker) scales and well as rebound processes in the lithosphere during glacial loading and unloading. We will present our current

  17. Seismic surveys negatively affect humpback whale singing activity off northern Angola.

    PubMed

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations.

  18. Seismic Surveys Negatively Affect Humpback Whale Singing Activity off Northern Angola

    PubMed Central

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations. PMID:24618836

  19. On the use of a laser ablation as a laboratory seismic source

    NASA Astrophysics Data System (ADS)

    Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane

    2017-04-01

    Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the

  20. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation

    NASA Astrophysics Data System (ADS)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.

    2017-12-01

    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  1. Time-lapse CO2 monitoring using ambient-noise seismic interferometry: a feasibility study from Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Boullenger, Boris; Verdel, Arie; Paap, Bob; Thorbecke, Jan; Draganov, Deyan

    2015-04-01

    necessarily exclude acceptable time-lapse signal retrieval. Furthermore, the clarity of the time-lapse signal at the reservoir level increases with increasing repeatability of the two passive experiments. The increase in repeatability is achieved when the contributing noise sources form denser clusters that share analogous spatial coverage. To support the merits of the numerical experiments, we applied ANSI (by auto-correlation) to three days of Ketzin passive field-data and compare the retrieved responses with the modelling results. The data are recorded at a permanent array of sensors (hydrophones and geophones) installed above the injection site. We used the records from the buried line of the array that consists of sensors lying at 50-meters depth. These records are less contaminated with surface noise and preserve passive body-wave events better than surface-recorded data. The retrieved responses exhibit significant correspondence with the existing active-seismic field data as well as with our modelled ANSI and active responses. Key reflection events seem to be retrieved at the expected arrival times and support the idea that the settings and characteristics of the ambient noise at Ketzin offer good potential for time-lapse ANSI to monitor CO2 sequestration.

  2. Analysing seismic-source mechanisms by linear-programming methods.

    USGS Publications Warehouse

    Julian, B.R.

    1986-01-01

    Linear-programming methods are powerful and efficient tools for objectively analysing seismic focal mechanisms and are applicable to a wide range of problems, including tsunami warning and nuclear explosion identification. The source mechanism is represented as a point in the 6-D space of moment-tensor components. The present method can easily be extended to fit observed seismic-wave amplitudes (either signed or absolute) subject to polarity constraints, and to assess the range of mechanisms consistent with a set of measured amplitudes. -from Author

  3. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  4. The Seismicity activity toward east of Bogotá D. C., Colombia

    NASA Astrophysics Data System (ADS)

    Chicangana, G.; Vargas, C. A.; Gomez-Capera, A.; Pedraza, P.; Mora-Paez, H.; Salcedo, E.; Caneva, A.

    2013-12-01

    In the eastern flank of Eastern Cordillera very close to Bogotá D.C metropolitan area at least in last 450 years five magnitude 5.0 or higher earthquakes has occur. These were confirmed by both historical and instrumental seismicity information. Among these earthquakes, the first one in Colombian historical times was occur at March 16th, 1644 and was sense toward south of Santa Fé de Bogotá. Then on October 18th, 1743 occurred with a current probabilistic magnitude greater than 6.5 an earthquake that transcended in this region due to the economic slump and loss of lives that it caused. Recently the Quetame Earthquake with M = 5.9 occur on May 24th, 2008, that destroyed the Quetame town. This last earthquake was registered locally by Colombian Seismological Network (RSNC). In this study we realized an analysis over this seismicity activity both by historical chronicles with macroseismic estimation data, the seismicity record obtained mainly by the Colombian National Seismological Network (RSNC) data for the 1993-2012 lapse, for searching the seismogenics sources that produced this seismicity activity. So, with these results we show the tectonic panorama of this region indicating of this manner the faults that possibility can be potentially seismic actives. For this we have considered mainly geomorphologic features associated to the faults activity additionally corroborated with GPS velocities data of GEORED project of Colombian Geological Survey.

  5. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  6. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  7. Passive seismic monitoring of the Bering Glacier during its last surge event

    NASA Astrophysics Data System (ADS)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  8. Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.

    2012-09-01

    Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can

  9. Investigating glide snow avalanche release using seismic monitoring in combination with time-lapse photography

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Failletaz, Jerome; Berhod, Nicole; Mitterer, Christoph

    2013-04-01

    Glide avalanches occur when the entire snowpack glides over the ground until an avalanche releases. These avalanches are difficult to forecast since the gliding process can take place over a few hours up to several weeks or months. The presence of liquid water at the interface between the snow cover and the ground surface is of primary importance as it reduces frictional support. Glide avalanches are often preceded by the opening of a tensile crack in the snow cover, called a glide crack. Past research has shown that glide crack opening accelerates prior to avalanche release. During the winter of 2012-2013, we monitored glide crack expansion using time-lapse photography in combination with a seismic sensor and two heat flux sensors on a slope with well documented glide avalanche activity in the Eastern Swiss Alps above Davos, Switzerland. To track changes in glide rates, the number of dark pixels in an area around the glide crack is counted in each image. Using this technique, we observed an increase in glide rates prior to avalanche release. Since the field site is located very close to the town of Davos, the seismic data was very noisy. Nevertheless, the accelerated snow gliding observed in the time-lapse images coincided with increased seismic activity. Overall, these results show that a combination of time-lapse photography with seismic monitoring could provide valuable insight into glide avalanche release. Recordings of the heat flux plates show that the energy input from the soil is fairly small and constant throughout the observed period. The results suggest that ground heat flux is a minor contributor to the water production at the snow-soil interface. Instead, the presence of water at the base of the snowpack is probably due to a strong hydraulic pressure gradient at the snow-soil interface.

  10. Development of a time synchronization methodology for a wireless seismic array

    NASA Astrophysics Data System (ADS)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  11. A unified approach to fluid-flow, geomechanical, and seismic modelling

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya; Minakov, Alexander

    2016-04-01

    The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by

  12. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  13. Scanning seismic intrusion detection method and apparatus. [monitoring unwanted subterranean entry and departure

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1983-01-01

    An intrusion monitoring system includes an array of seismic sensors, such as geophones, arranged along a perimeter to be monitored for unauthorized intrusion as by surface movement or tunneling. Two wires lead from each sensor to a central monitoring station. The central monitoring station has three modes of operation. In a first mode of operation, the output of all of the seismic sensors is summed into a receiver for amplification and detection. When the amplitude of the summed signals exceeds a certain predetermined threshold value an alarm is sounded. In a second mode of operation, the individual output signals from the sensors are multiplexed into the receiver for sequentially interrogating each of the sensors.

  14. 5 years of continuous seismic monitoring of a mountain river in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Sanchez-Pastor, Pilar S.; Gallart, Josep

    2017-04-01

    The analysis of background seismic noise variations in the proximity of river channels has revealed as a useful tool to monitor river flow, even for modest discharges. Nevertheless, this monitoring is usually carried on using temporal deployments of seismic stations. The CANF seismic broad-band station, acquiring data continuously since 2010 and located inside an old railway tunnel in the Central Pyrenees, at about 400 m of the Aragón River channel, provides an excellent opportunity to enlarge this view and present a long term monitoring of a mountain river. Seismic signals in the 2-10 Hz band clearly related to river discharges have been identified in the seismic records. Discharge increases due to rainfall, large storms resulting in floods and snowmelt periods can be discriminated from the analysis of the seismic data. Up to now, two large rainfall events resulting in large discharge and damaging floods have been recorded, both sharing similar properties which can be used to implement automatic procedures to identify seismically potentially damaging floods. Another natural process that can be characterized using continuouly acquired seismic data is mountain snowmelt, as this process results in characteristic discharge patterns which can be identified in the seismic data. The time occurrence and intensity of the snowmelt stages for each season can be identified and the 5 seasons available so far compared to detect possible trends The so-called fluvial seismology can also provide important clues to evaluate the beadload transport in rivers, an important parameter to evaluate erosion rates in mountain environments. Analyzing both the amplitude and frequency variations of the seismic data and its hysteresis cycles, it seems possible to estimate the relative contribution of water flow and bedload transport to the seismic signal. The available results suggest that most of the river-generated seismic signal seems related to bed load transportation, while water

  15. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    NASA Astrophysics Data System (ADS)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  16. Active faulting in low- to moderate-seismicity regions: the SAFE project

    NASA Astrophysics Data System (ADS)

    Sebrier, M.; Safe Consortium

    2003-04-01

    SAFE (Slow Active Faults in Europe) is an EC-FP5 funded multidisciplinary effort which proposes an integrated European approach in identifying and characterizing active faults as input for evaluating seismic hazard in low- to moderate-seismicity regions. Seismically active western European regions are generally characterized by low hazard but high risk, due to the concentration of human and material properties with high vulnerability. Detecting, and then analysing, tectonic deformations that may lead to destructive earthquakes in such areas has to take into account three major limitations: - the typical climate of western Europe (heavy vegetation cover and/or erosion) ; - the subdued geomorphic signature of slowly deforming faults ; - the heavy modification of landscape by human activity. The main objective of SAFE, i.e., improving the assessment of seismic hazard through understanding of the mechanics and recurrence of active faults in slowly deforming regions, is achieved through four major steps : (1) extending geologic and geomorphic investigations of fault activity beyond the Holocene to take into account various time-windows; (2) developing an expert system that combines diverse lines of geologic, seismologic, geomorphic, and geophysical evidence to diagnose the existence and seismogenic potential of slow active faults; (3) delineating and characterising high seismic risk areas of western Europe, either from historical or geological/geomorphic evidence; (4) demonstrating and discussing the impact of the project results on risk assessment through a seismic scenario in the Basel-Mulhouse pilot area. To take properly into account known differences in source behavior, these goals are pursued both in extensional (Lower and Upper Rhine Graben, Catalan Coast) and compressional tectonic settings (southern Upper Rhine Graben, Po Plain, and Provence). Two arid compressional regions (SE Spain and Moroccan High Atlas) have also been selected to address the limitations

  17. Seismological investigation of earthquakes in the New Madrid Seismic Zone. Final report, September 1986--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, R.B.; Nguyen, B.

    Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35{degrees}--39{degrees}N and longitudes 87{degrees}--92{degrees}W. Most of these earthquakes occur within a 1.5{degrees} x 2{degrees} zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful toolmore » in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions.« less

  18. Controllable seismic source

    DOEpatents

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2015-09-29

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  19. Controllable seismic source

    DOEpatents

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  20. Reassessment of the Seismicity and seismic hazards of Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, A.; Elmeladi, A.

    2009-04-01

    The tectonic evolution of Libya, located at the northern extreme of the African continent, has yielded a complex crustal structure that is composed of a series of basins and uplifts. The present day deformation of Libya is the result of the Eurasia-Africa continental collision. At the end of the year 2005, The Libyan National Seismological Network was established to monitor local, regional and teleseismic activities, as well as to provide high quality data for research projects both locally and on the regional and global scale. This study aims to discuss the seismicity of Libya by using the new data from the Libyan national seismological network and to focus on the seismic hazards. At first glance the seismic activity map shows dominant trends of seismicity with most of the seismic activity concentrated along the northern coastal areas. Four major seismic trends were quite noticeable. A first trend is a NW-SE direction coinciding with the eastern boarder of the Hun Graben. A second trend is also a NW-SE direction in the offshore area and might be a continuation of this trend. The other two trends were located in the western Gulf of Sirt and Cyrenaica platform. The rest of seismicity is diffuse either offshore or in land, with no good correlation with well-mapped faults. Detailed investigations of the Libyan seismicity indicates that the Libya has experienced earthquakes of varying magnitudes and that there is definitely a certain amount of seismic risk involved in engineering projects, particularly in the northern regions. Detailed investigation of the distribution of the Libyan earthquakes in space and time along with all other geological considerations suggested the classification of the country into four seismic zones with the Hun graben zone being the most seismically active zone.

  1. A one year long continuous record of seismic activity and surface motion at the tongue of Rhonegletscher (Valais, Switzerland)

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Röösli, Claudia; Walter, Fabian; Gabbi, Jeannette

    2014-05-01

    A critical gap in our current understanding of glaciers is how high sub-glacial water pressure controls the coupling of the glacier to its bed. Processes at the base of a glacier are inherently difficult to investigate due to their remoteness. Investigation of the sub-glacial environment with passive seismic methods is an innovative, rapidly growing interdisciplinary and promising endeavor. In combination with observations of surface motion and basal water pressure, this method is ideally suited to localize and quantify frictional and fracture processes which occur during periods of rapidly changing sub-glacial water pressure with consequent stress redistribution at the contact interface between ice and bed. Here we present the results of the first one-year-long glacier seismic monitoring performed on an Alpine glacier to our knowledge. Together with records of surface motion and hydrological measurements, we examine whether seasonal changes can be captured by seismic recording. Experiments were carried out from June 2012 to July 2013 on Rhonegletscher (Valais, Switzerland), by means of 3 three-components seismometers settled close to the tongue in 2 meters boreholes. An additional array of eleven sensors installed at the ice surface was also maintained during September 2012, in order to achieve more accurate icequakes locations. A high seismic emission is observed on Rhonegletscher, with icequakes located close to the surface or in the vicinity of the bedrock. The temporal distribution of seismic activity is shown to nicely reflect the seasonal evolution of the glacier hydrology, with a dramatic seismic release in early spring. During summer, released seismic activity is generally driven by diurnal ice/snow melting cycle. In winter, snow-cover conditions are associated with a reduced seismic release, with nevertheless some unexpected activity possibly related to snow-pack metamorphism. Based on icequake locations derived from data recorded in September, we discuss

  2. Current state of active-fault monitoring in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Lin, C.; Chen, Y.; Liu, H.; Chen, C.; Lin, Y.; Chen, C.

    2008-12-01

    The earthquake is one of the major hazard sources in Taiwan where an arc-continent collision is on-going. For the purpose of seismic hazard mitigation, to understand current situation of each already-known active fault is urgently needed. After the 1999 Chi-chi earthquake shocked Taiwan, the Central Geological Survey (CGS) of Taiwan aggressively promoted the tasks on studying the activities of active faults. One of them is the deployment of miscellaneous monitoring networks to cover all the target areas, where the earthquake occurrence potentials on active faults are eager to be answered. Up to the end of 2007, CGS has already deployed over 1000 GPS campaign sites, 44 GPS stations in continuous mode, and 42 leveling transects across the major active faults with a total ground distance of 974 km. The campaign sites and leveling tasks have to be measured once a year. The resulted crustal deformation will be relied on to derive the fault slip model. The time series analysis on continuous mode of GPS can further help understand the details of the fault behavior. In addition, 12 down-hole strain meters, five stations for liquid flux and geochemical proxies, and two for water table monitoring have been also installed to seek possible anomalies related to the earthquake activities. It may help discover reliable earthquake precursors.

  3. Infrasound Generation from the HH Seismic Hammer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  4. Monitoring temporal variations of seismic properties of the crust induced by the 2013 Ruisui earthquake in eastern Taiwan from coda wave interferometry with ambient seismic and strain fields

    NASA Astrophysics Data System (ADS)

    Dai, W. P.; Hung, S. H.; Wu, S. M.; Hsu, Y. J.

    2017-12-01

    Owing to the rapid development in ambient noise seismology, time-lapse variations in delay time and waveform decorrelation of coda derived from noise cross correlation (NCF) have been proved very effective to monitor slight changes in seismic velocity and scattering properties of the crust induced by various loadings such as the earthquake and healing process. In this study, we employ coda wave interferometry to detect the crustal perturbations immediately preceding and following the 2013 Mw 6.2 Ruisui Earthquake which struck the northern segment of the Longitudinal Valley Fault in eastern Taiwan, a seismically very active thrust suture zone separating the Eurasian and Philippine Sea Plate. By comparing the pre- and post-event coda waves extracted from the auto- and cross-correlation functions (ACFs and CCFs) of ambient seismic and strain fields recorded by the seismometers and borehole strainmeters, respectively, in the vicinity of the source region, we present a strong case that not only coseismic velocity reduction but also preceding decorrelation of waveforms are explicitly revealed in both the seismic and strain CCFs filtered in the secondary microseism frequency band of 0.1-0.9 Hz. Such precursory signals susceptible to the scattering properties of the crust are more unequivocally identified in the coda retrieved from the strainmeter data, suggesting that the ambient strain field can act as a more sensible probe to detect tiny structural perturbations in the critically stressed fault zone at the verge of failure. In addition to coseismic velocity changes detected in both the seismic and strain NCFs, we find quasi-periodic velocity variations that only appear in the strain retrieved coda signals, with a predominant cycle of 3-4 months correlating with the groundwater fluctuations observed at Ruisui.

  5. Acquisition of Crosswell Seismic Monitoring Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, T.M.; Niu, F.; Silver, P.G.

    2008-02-15

    Crosswell seismic acquisition provides an ideal geometry for monitoring travel time changes in the subsurface. Analysis of delay time in terms of a characteristic frequency allows us to estimate optimal acquisition parameters (frequency and distance). We have deployed standard data acquisition equipment for continuous monitoring of crosswell travel time in two separate field experiments, with well spacing of 3 and 30 m. The acquisition hardware used for the field experiments is described, along with environmental effects (such as temperature) that influence the measurements. Two field experiments are described that correlate changes in travel time (and therefore velocity) with changes inmore » barometric pressure. The results from the two field sites show a pressure sensitivity for velocity of 10{sup -6}/Pa to 10{sup -8}/Pa.« less

  6. Source characterization and dynamic fault modeling of induced seismicity

    NASA Astrophysics Data System (ADS)

    Lui, S. K. Y.; Young, R. P.

    2017-12-01

    In recent years there are increasing concerns worldwide that industrial activities in the sub-surface can cause or trigger damaging earthquakes. In order to effectively mitigate the damaging effects of induced seismicity, the key is to better understand the source physics of induced earthquakes, which still remain elusive at present. Furthermore, an improved understanding of induced earthquake physics is pivotal to assess large-magnitude earthquake triggering. A better quantification of the possible causes of induced earthquakes can be achieved through numerical simulations. The fault model used in this study is governed by the empirically-derived rate-and-state friction laws, featuring a velocity-weakening (VW) patch embedded into a large velocity-strengthening (VS) region. Outside of that, the fault is slipping at the background loading rate. The model is fully dynamic, with all wave effects resolved, and is able to resolve spontaneous long-term slip history on a fault segment at all stages of seismic cycles. An earlier study using this model has established that aseismic slip plays a major role in the triggering of small repeating earthquakes. This study presents a series of cases with earthquakes occurring on faults with different fault frictional properties and fluid-induced stress perturbations. The effects to both the overall seismicity rate and fault slip behavior are investigated, and the causal relationship between the pre-slip pattern prior to the event and the induced source characteristics is discussed. Based on simulation results, the subsequent step is to select specific cases for laboratory experiments which allow well controlled variables and fault parameters. Ultimately, the aim is to provide better constraints on important parameters for induced earthquakes based on numerical modeling and laboratory data, and hence to contribute to a physics-based induced earthquake hazard assessment.

  7. Seismic image of a CO2 reservoir beneath a seismically active volcano

    USGS Publications Warehouse

    Julian, B.R.; Pitt, A.M.; Foulger, G.R.

    1998-01-01

    Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt and Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day-1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997) which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds Vp/VS was about 9% lower than in the surrounding rocks. Theory (Mavko and Mukerji 1995), experiment (Ito, DeVilbiss and Nur 1979) and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that Vp/VS is sensitive to pore-fluid compressibility, through its effect on Vp. The observed Vp/VS anomaly is probably caused directly by CO2, and seismic Vp/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  8. The excitation of long period seismic waves by a source spanning a structural discontinuity

    NASA Astrophysics Data System (ADS)

    Woodhouse, J. H.

    Simple theoretical results are obtained for the excitation of seismic waves by an indigenous seismic source in the case that the source volume is intersected by a structural discontinuity. In the long wavelength approximation the seismic radiation is identical to that of a point source placed on one side of the discontinuity or of a different point source placed on the other side. The moment tensors of these two equivalent sources are related by a specific linear transformation and may differ appreciably both in magnitude and geometry. Either of these sources could be obtained by linear inversion of seismic data but the physical interpretation is more complicated than in the usual case. A source which involved no volume change would, for example, yield an isotropic component if, during inversion, it were assumed to lie on the wrong side of the discontinuity. The problem of determining the true moment tensor of the source is indeterminate unless further assumptions are made about the stress glut distribution; one way to resolve this indeterminancy is to assume proportionality between the integrated stress glut on each side of the discontinuity.

  9. Low-frequency seismic events in a wider volcanological context

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.; Collombet, M.

    2006-12-01

    Low-frequency seismic events have been in the centre of attention for several years, particularly on volcanoes with highly viscous magmas. The ultimate aim is to detect changes in volcanic activity by identifying changes in the seismic behaviour in order to forecast an eruption, or in case of an ongoing eruption, forecast the short and longterm behaviour of the volcanic system. A major boost in recent years arose through several attempts of multi-parameter volcanic monitoring and modelling programs, which allowed multi-disciplinary groups of volcanologists to interpret seismic signals together with, e.g. ground deformation, stress field analysis and petrological information. This talk will give several examples of such multi-disciplinary projects, focussing on the joint modelling of seismic source processes for low-frequency events together with advanced magma flow models, and the signs of magma movement in the deformation and stress field at the surface.

  10. Broadband seismic effects from train vibrations

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Bokelmann, Götz

    2017-04-01

    Seismologists rarely study train induced vibrations which are mainly regarded an unwanted source of noise for classical seismological applications such as earthquake monitoring. A few seismological studies try to utilize train vibrations however as active sources, e.g. for subsurface imaging, but they do not focus on the characteristics of the train signal itself. Most available studies on train induced vibrations take an engineering approach and aim at better understanding the generation and short-distance propagation of train induced vibrations, mainly for mitigation and construction purposes. They mostly rely on numerical simulations and/or short-period or accelerometer recordings obtained directly on the train track or up to few hundred meters away and almost no studies exist with seismic recordings further away from the track. In some of these previous studies sharp and equidistant peaks are present in the vibration spectrum of heavy freight trains, but they do not attempt to explain them. Here we show and analyze various train vibration signals obtained from a set of seismic broadband stations installed in the context of the temporary, large-scale regional seismic network AlpArray. The geometrical restrictions of this seismic network combined with budget and safety considerations resulted in a number of broad-band instruments deployed in the vicinity of busy railway lines. On these stations we observe very characteristic seismic signals associated with different types of trains, typically showing pronounced equidistant spectral lines over a wide frequency range. In this study we analyze the nature of such signals and discuss if they are generated by a source effect or by wave propagation effects in near-surface soil layers.

  11. Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment

    DTIC Science & Technology

    2012-09-01

    ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow

  12. Continuous seismic monitoring of Nishinoshima volcano, Izu-Ogasawara, by using long-term ocean bottom seismometers

    NASA Astrophysics Data System (ADS)

    Shinohara, Masanao; Ichihara, Mie; Sakai, Shin'ichi; Yamada, Tomoaki; Takeo, Minoru; Sugioka, Hiroko; Nagaoka, Yutaka; Takagi, Akimichi; Morishita, Taisei; Ono, Tomozo; Nishizawa, Azusa

    2017-11-01

    Nishinoshima in Izu-Ogasawara started erupting in November 2013, and the island size increased. Continuous monitoring is important for study of the formation process. Since it is difficult to make continuous observations on a remote uninhabited island, we started seismic observations near Nishinoshima using ocean bottom seismometers (OBSs) from February 2015. Our OBSs have a recording period of 1 year, and recovery and re-deployment of OBSs were repeated to make continuous observations. The OBSs were deployed with distances of less than 13 km from the crater. Events with particular characteristics were frequently recorded during the eruption period and are estimated to correlate with the release of plumes from the crater by comparison with temporal on-site records using a video camera and microphones. We estimated the number of events using the amplitude average of records to monitor volcanic activity. There were approximately 1800 detected events per day from February to July 2015. The number started to decrease from July 2015, and reached less than 100 per day in November 2015. The surface activity of the volcano was estimated to have ceased in November 2015. Characteristic events began re-occurring in the middle of April 2017. The number of events reached approximately 1400 events per day at the end of May 2017. Seafloor seismic observations using OBSs are a powerful tool for continuous monitoring of island volcanic activity.[Figure not available: see fulltext.

  13. Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.

    2016-12-01

    Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.

  14. Hydra—The National Earthquake Information Center’s 24/7 seismic monitoring, analysis, catalog production, quality analysis, and special studies tool suite

    USGS Publications Warehouse

    Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.

    2016-08-18

    This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.

  15. Exploring the interior of Venus with seismic and infrasonic techniques

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Cutts, J. A.; Pauken, M.; Komjathy, A.; Smrekar, S. E.; Kedar, S.; Mimoun, D.; Garcia, R.; Schubert, G.; Lebonnois, S.; Stevenson, D. J.; Lognonne, P. H.; Zhan, Z.; Ko, J. Y. T.; Tsai, V. C.

    2016-12-01

    The dense atmosphere of Venus, which efficiently couples seismic energy into the atmosphere as infrasonic waves, enables an alternative to conventional seismology: detection of infrasonic waves in the upper atmosphere using either high altitude balloons or orbiting spacecraft. Infrasonic techniques for probing the interior of Venus can be implemented without exposing sensors to the severe surface environments on Venus. This approach takes advantage of the fact that approximately sixty-times the energy from a seismic event on Venus is coupled into the atmosphere on Venus as would occur for a comparable event on Earth. The direct or epicentral wave propagates vertically above the event, and the indirect wave propagates through the planet as a Rayleigh wave and then couples to an infrasonic wave. Although there is abundant evidence of tectonic activity on Venus, questions remain as to whether the planet is still active and whether energy releases are seismic or aseismic. In recent years, seismologists have developed techniques for probing crustal and interior structure in parts of the Earth where there are very few quakes. We have begun an effort to determine if this is also possible for Venus. Just as seismic energy propagates more efficiently upward across the surface atmosphere interface, equally acoustic energy originating in the atmosphere will propagate downwards more effectively. Measurements from a balloon platform in the atmosphere of Venus could assess the nature and spectral content of such sources, while having the ability to identify and discriminate signatures from volcanic events, storm activity, and meteor impacts. We will discuss our ongoing assessment on the feasibility of a balloon acoustic monitoring system. In particular, we will highlight our results of the flight experiment on Earth that will focus on using barometer instruments on a tethered helium-filled balloon in the vicinity of a known seismic source generated by a seismic hammer

  16. Analysis of the seismicity in the region of Mirovo salt mine after 8 years monitoring

    NASA Astrophysics Data System (ADS)

    Dimitrova, Liliya; Solakov, Dimcho; Simeonova, Stela; Aleksandrova, Irena; Georgieva, Gergana

    2015-04-01

    Mirovo salt deposit is situated in the NE part of Bulgaria and 5 kilometers away from the town of Provadiya. The mine is in operation since 1956. The salt is produced by dilution and extraction of the brine to the surface. A system of chambers-pillars is formed within the salt body as a result of the applied technology. The mine is situated in a seismically quiet part of the state. The region is characterized with complex geological structure and several faults. During the last 3 decades a large number of small and moderate earthquakes (M<4.5) are realized in the close vicinity of the salt deposit. Local seismological network (LSN) is deployed in the region to monitor the local seismicity. It consists of 6 three component digital stations. A real-time data transfer from LSN stations to National Data Center (in Sofia) is implemented using the VPN and MAN networks of the Bulgarian Telecommunication Company. Common processing and interpretation of the data from LSN and the national seismic network is performed. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. More than 700 earthquakes are registered by the LSN within 30km region around the mine during the 8 years monitoring. First we processed the data and compile a catalogue of the earthquakes occur within the studied region (30km around the salt mine). Spatial pattern of seismicity is analyzed. A large number of the seismic events occurred within the northern and north-western part of the salt body. Several earthquakes occurred in close vicinity of the mine. Concerning that the earthquakes could be tectonic and/or induced an attempt is made to find criteria to distinguish natural from induced seismicity. To characterize and distinguish the main processes active in the area we also made waveform and spectral analysis of a number of earthquakes.

  17. Wave-equation migration velocity inversion using passive seismic sources

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2015-12-01

    Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.

  18. Complex source mechanisms of mining-induced seismic events - implications for surface effects

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, B.; Cesca, S.; Lasocki, S.; Rudzinski, L.; Lizurek, L.; Wiejacz, P.; Urban, P.; kozlowska, M.

    2012-04-01

    The seismicity of Legnica-Głogów Copper District (LGCD) is induced by mining activities in three mines: Lubin, Rudna and Polkowice-Sieroszowice. Ground motion caused by strong tremors might affect local infrastructure. "Żelazny Most" tailings pond, the biggest structure of this type in Europe, is here under special concern. Due to surface objects protection, Rudna Mine has been running ground motion monitoring for several years. From June 2010 to June 2011 unusually strong and extensive surface impact has been observed for 6 mining tremors induced in one of Rudna mining sections. The observed peak ground acceleration (PGA) for both horizontal and vertical component were in or even beyond 99% confidence interval for prediction. The aim of this paper is analyze the reason of such unusual ground motion. On the basis of registrations from Rudna Mine mining seismological network and records from Polish Seismological Network held by the Institute of Geophysics Polish Academy of Sciences (IGF PAN), the source mechanisms of these 6 tremors were calculated using a time domain moment tensor inversion. Furthermore, a kinematic analysis of the seismic source was performed, in order to determine the rupture planes orientations and rupture directions. These results showed that in case of the investigated tremors, point source models and shear fault mechanisms, which are most often assumed in mining seismology, are invalid. All analyzed events indicate extended sources with non-shear mechanism. The rapture planes have small dip angles and the rupture starts at the tremors hypocenter and propagates in the direction opposite to the plane dip. The tensional component plays here also big role. These source mechanisms well explain such observed strong ground motion, and calculated synthetic PGA values well correlates with observed ones. The relationship between mining tremors were also under investigation. All subsequent tremors occurred in the area of increased stress due to

  19. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  20. TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods

    NASA Astrophysics Data System (ADS)

    Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten

    2017-04-01

    The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible

  1. On-line Data Transmission, as Part of the Seismic Evaluation Process in the Buildings Field

    NASA Astrophysics Data System (ADS)

    Sorin Dragomir, Claudiu; Dobre, Daniela; Craifaleanu, Iolanda; Georgescu, Emil-Sever

    2017-12-01

    The thorough analytical modelling of seismic actions, of the structural system and of the foundation soil is essential for a proper dynamic analysis of a building. However, the validation of the used models should be made, whenever possible, with reference to results obtained from experimental investigations, building instrumentation and monitoring of vibrations generated by various seismic or non-seismic sources. In Romania, the permanent seismic instrumentation/monitoring of buildings is part of a special follow-up activity, performed in accordance with the P130/1999 code for the time monitoring of building behaviour and with the seismic design code, P100-2013. By using the state-of-the-art modern equipment (GeoSIG and Kinemetrics digital accelerographs) in the seismic network of the National Institute for Research and Development URBAN-INCERC, the instrumented buildings can be monitored remotely, with recorded data being sent to authorities or to research institutes in the field by a real-time data transmission system. The obtained records are processed, computing the Fourier amplitude spectra and the response spectra, and the modal parameters of buildings are determined. The paper presents some of the most important results of the institute in the field of building monitoring, focusing on the situation of some significant instrumented buildings located in different parts of the country. In addition, maps with data received from seismic stations after the occurrence of two recent Vrancea (Romania) earthquakes, showing the spatial distribution of ground accelerations, are presented, together with a comparative analysis, performed with reference to previous studies in the literature.

  2. A new tool for rapid and automatic estimation of earthquake source parameters and generation of seismic bulletins

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo

    2016-04-01

    RISS S.r.l. is a Spin-off company recently born from the initiative of the research group constituting the Seismology Laboratory of the Department of Physics of the University of Naples Federico II. RISS is an innovative start-up, based on the decade-long experience in earthquake monitoring systems and seismic data analysis of its members and has the major goal to transform the most recent innovations of the scientific research into technological products and prototypes. With this aim, RISS has recently started the development of a new software, which is an elegant solution to manage and analyse seismic data and to create automatic earthquake bulletins. The software has been initially developed to manage data recorded at the ISNet network (Irpinia Seismic Network), which is a network of seismic stations deployed in Southern Apennines along the active fault system responsible for the 1980, November 23, MS 6.9 Irpinia earthquake. The software, however, is fully exportable and can be used to manage data from different networks, with any kind of station geometry or network configuration and is able to provide reliable estimates of earthquake source parameters, whichever is the background seismicity level of the area of interest. Here we present the real-time automated procedures and the analyses performed by the software package, which is essentially a chain of different modules, each of them aimed at the automatic computation of a specific source parameter. The P-wave arrival times are first detected on the real-time streaming of data and then the software performs the phase association and earthquake binding. As soon as an event is automatically detected by the binder, the earthquake location coordinates and the origin time are rapidly estimated, using a probabilistic, non-linear, exploration algorithm. Then, the software is able to automatically provide three different magnitude estimates. First, the local magnitude (Ml) is computed, using the peak-to-peak amplitude

  3. Design and application of an electromagnetic vibrator seismic source

    USGS Publications Warehouse

    Haines, S.S.

    2006-01-01

    Vibrational seismic sources frequently provide a higher-frequency seismic wavelet (and therefore better resolution) than other sources, and can provide a superior signal-to-noise ratio in many settings. However, they are often prohibitively expensive for lower-budget shallow surveys. In order to address this problem, I designed and built a simple but effective vibrator source for about one thousand dollars. The "EMvibe" is an inexpensive electromagnetic vibrator that can be built with easy-to-machine parts and off-the-shelf electronics. It can repeatably produce pulse and frequency-sweep signals in the range of 5 to 650 Hz, and provides sufficient energy for recording at offsets up to 20 m. Analysis of frequency spectra show that the EMvibe provides a broader frequency range than the sledgehammer at offsets up to ??? 10 m in data collected at a site with soft sediments in the upper several meters. The EMvibe offers a high-resolution alternative to the sledgehammer for shallow surveys. It is well-suited to teaching applications, and to surveys requiring a precisely-repeatable source signature.

  4. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  5. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller

    2012-01-31

    Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work

  6. Blind Source Separation of Seismic Events with Independent Component Analysis: CTBT related exercise

    NASA Astrophysics Data System (ADS)

    Rozhkov, Mikhail; Kitov, Ivan

    2015-04-01

    International Monitoring System of CTBTO and by small-aperture seismic array Mikhnevo (MHVAR) operated by the Institute of Geosphere Dynamics, Russian Academy of Sciences. Our approach demonstrated a good ability of separation of seismic sources with very close origin times and locations (hundreds of meters), and/or having close arrival times (fractions of seconds), and recovering their waveforms from the mixture. Perspectives and limitations of the method are discussed.

  7. Apollo 14 and 16 Active Seismic Experiments, and Apollo 17 Lunar Seismic Profiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Seismic refraction experiments were conducted on the moon by Apollo astronauts during missions 14, 16, and 17. Seismic velocities of 104, 108, 92, 114 and 100 m/sec were inferred for the lunar regolith at the Apollo 12, 14, 15, 16, and 17 landing sites, respectively. These data indicate that fragmentation and comminution caused by meteoroid impacts has produced a layer of remarkably uniform seismic properties moonwide. Brecciation and high porosity are the probable causes of the very low velocities observed in the lunar regolith. Apollo 17 seismic data revealed that the seismic velocity increases very rapidly with depth to 4.7 km/sec at a depth of 1.4 km. Such a large velocity change is suggestive of compositional and textural changes and is compatible with a model of fractured basaltic flows overlying anorthositic breccias. 'Thermal' moonquakes were also detected at the Apollo 17 site, becoming increasingly frequent after sunrise and reaching a maximum at sunset. The source of these quakes could possibly be landsliding.

  8. Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 1 - a geopressured-geothermal test well, 1978. Volume II. Appendix I. Microseismic monitoring, Teledyne Geotech, Garland, Texas. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.

    1979-01-01

    This is an interim report on a project to monitor microseismic activity in the vicinity of a future geopressured well test site in Brazoria County, Texas. The data collected to date indicate that numerous weak seismic sources are intermittently active in the vicinity of the test site. However, all of these sources appear to be related to cultural or industrial activity of undetermined origin. At the present time there is no evidence for naturally occurring seismic acitivty within 4 kilometers of the future test site with local magnitudes in excess of 0.25.

  9. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit

  10. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  11. Study of the Seismic Source in the Jalisco Block

    NASA Astrophysics Data System (ADS)

    Gutierrez, Q. J.; Escudero, C. R.; Nunez-Cornu, F. J.; Ochoa, J.; Cruz, L. H.

    2013-05-01

    The direct measure of the earthquake fault dimension and the orientation, as well as the direction of slip represent a complicated task nevertheless a better approach is using the seismic waves spectrum and the direction of P-first motions observed at each station. With these methods we can estimate the seismic source parameters like the stress drop, the corner frequency which is linked to the rupture duration time, the fault radius (For the particular case of a circular fault), the rupture area, the seismic moment , the moment magnitude and the focal mechanisms. The study area where were estimated the source parameters comprises the complex tectonic configuration of Jalisco block, that is delimited by the mesoamerican trench at the west, the Colima grabben to the south, and the Tepic-Zacoalco to the north The data was recorded by the MARS network (Mapping the Riviera Subduction Zone) and the RESAJ network. MARS had 50 stations and settled in the Jalisco block; for a period of time, of January 1, 2006 until June, 2007, the magnitude range of these was between 3 to 6.5 MB. RESJAL has 10 stations and is within the state of Jalisco, began to record since October 2011 and continues to record. Before of apply the method we firs remove the trend, the mean and the instrument response and we corrected for attenuation; then manually chosen the S wave, the multitaper method was used to obtain the spectrum of this wave and so estimate the corner frequency and the spectra level. We substitute the obtained in the equations of the Brune model to calculate the source parameters. To calculate focal mechanisms HASH software was used which determines the most likely mechanism. The main propose of this study is estimate earthquake seismic source parameters with the objective of that helps to understand the physics of earthquake rupture mechanism in the area.

  12. Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)

    NASA Astrophysics Data System (ADS)

    Selva, J.; Tonini, R.; Molinari, I.; Tiberti, M. M.; Romano, F.; Grezio, A.; Melini, D.; Piatanesi, A.; Basili, R.; Lorito, S.

    2016-06-01

    We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.

  13. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  14. Monitoring of seismic time-series with advanced parallel computational tools and complex networks

    NASA Astrophysics Data System (ADS)

    Kechaidou, M.; Sirakoulis, G. Ch.; Scordilis, E. M.

    2012-04-01

    Earthquakes have been in the focus of human and research interest for several centuries due to their catastrophic effect to the everyday life as they occur almost all over the world demonstrating a hard to be modelled unpredictable behaviour. On the other hand, their monitoring with more or less technological updated instruments has been almost continuous and thanks to this fact several mathematical models have been presented and proposed so far to describe possible connections and patterns found in the resulting seismological time-series. Especially, in Greece, one of the most seismically active territories on earth, detailed instrumental seismological data are available from the beginning of the past century providing the researchers with valuable and differential knowledge about the seismicity levels all over the country. Considering available powerful parallel computational tools, such as Cellular Automata, these data can be further successfully analysed and, most important, modelled to provide possible connections between different parameters of the under study seismic time-series. More specifically, Cellular Automata have been proven very effective to compose and model nonlinear complex systems resulting in the advancement of several corresponding models as possible analogues of earthquake fault dynamics. In this work preliminary results of modelling of the seismic time-series with the help of Cellular Automata so as to compose and develop the corresponding complex networks are presented. The proposed methodology will be able to reveal under condition hidden relations as found in the examined time-series and to distinguish the intrinsic time-series characteristics in an effort to transform the examined time-series to complex networks and graphically represent their evolvement in the time-space. Consequently, based on the presented results, the proposed model will eventually serve as a possible efficient flexible computational tool to provide a generic

  15. Source character of microseismicity in the San Francisco Bay block, California, and implications for seismic hazard

    USGS Publications Warehouse

    Olson, J.A.; Zoback, M.L.

    1998-01-01

    We examine relocated seismicity within a 30-km-wide crustal block containing San Francisco Bay and bounded by two major right-lateral strike-slip fault systems, the Hayward and San Andreas faults, to determine seismicity distribution, source character, and possible relationship to proposed faults. Well-located low-level seismicity (Md ??? 3.0) has occurred persistently within this block throughout the recording interval (1969 to 1995), with the highest levels of activity occurring along or directly adjacent to (within ???5 km) the bounding faults and falling off toward the long axis of the bay. The total seismic moment release within the interior of the Bay block since 1969 is equivalent to one ML 3.8 earthquake, one to two orders of magnitude lower than activity along and within 5 km of the bounding faults. Focal depths of reliably located events within the Bay block are generally less than 13 km with most seismicity in the depth range of 7 to 12 km, similar to focal depths along both the adjacent portions of the San Andreas and Hayward faults. Focal mechanisms for Md 2 to 3 events within the Bay block mimic focal mechanisms along the adjacent San Andreas fault zone and in the East Bay, suggesting that Bay block is responding to a similar regional stress field. Two potential seismic source zones have been suggested within the Bay block. Our hypocentral depths and focal mechanisms suggest that a proposed subhorizontal detachment fault 15 to 18 km beneath the Bay is not seismically active. Several large-scale linear NW-trending aeromagnetic anomalies within the Bay block were previously suggested to represent large through-going subvertical fault zones. The two largest earthquakes (both Md 3.0) in the Bay block since 1969 occur near two of these large-scale linear aeromagnetic anomalies; both have subvertical nodal planes with right-lateral slip subparallel to the magnetic anomalies, suggesting that structures related to the anomalies may be capable of brittle

  16. Towards monitoring the englacial fracture state using virtual-reflector seismology

    NASA Astrophysics Data System (ADS)

    Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.

    2018-04-01

    In seismology, coda wave interferometry (CWI) is an effective tool to monitor time-lapse changes using later arriving, multiply scattered coda waves. Typically, CWI relies on an estimate of the medium's impulse response. The latter is retrieved through simple time-averaging of receiver-receiver cross-correlations of the ambient field, i.e. seismic interferometry (SI). In general, the coda are induced by heterogeneities in the Earth. Being comparatively homogeneous, however, ice bodies such as glaciers and ice sheets exhibit little scattering. In addition, the temporal stability of the time-averaged cross-correlations suffers from temporal variations in the distribution and amplitude of the passive seismic sources. Consequently, application of CWI to ice bodies is currently limited. Nevertheless, fracturing and changes in the englacial macroscopic water content alter the bulk elastic properties of ice bodies, which can be monitored with cryoseismological measurements. To overcome the current limited applicability of CWI to ice bodies, we therefore introduce virtual-reflector seismology (VRS). VRS relies on a so-called multidimensional deconvolution (MDD) process of the time-averaged crosscorrelations. The technique results in the retrieval of a medium response that includes virtual reflections from a contour of receivers enclosing the region of interest (i.e., the region to be monitored). The virtual reflections can be interpreted as artificial coda replacing the (lacking) natural scattered coda. Hence, this artificial coda might be exploited for the purpose of CWI. From an implementation point of view, VRS is similar to SI by MDD, which, as its name suggests, also relies on a multidimensional deconvolution process. SI by MDD, however, does not generate additional virtual reflections. Advantageously, both techniques mitigate spurious coda changes associated with temporal variations in the distribution and amplitude of the passive seismic sources. In this work, we

  17. A//r//m//s AND SEISMIC SOURCE STUDIES.

    USGS Publications Warehouse

    Hanks, T.C.; ,

    1984-01-01

    This paper briefly summarizes some recent developments in studies of seismic source parameter estimation, emphasizing the essential similarities between mining-induced seismogenic-failure and naturally occurring, tectonically driven earthquakes. The root-mean-square acceleration, a//r//m//s, shows much promise as an observational measure of high-frequency ground motion; it is very stable observationally, is insensitive to radiation pattern, and can be related linearly to the dynamic stress differences arising in the faulting process. To interpret a//r//m//s correctly, however, requires knowledge of f//m//a//x, the high-frequency band-limitation of the radiated field of earthquakes. As a practical matter, f//m//a//x can be due to any number of causes, but an essential ambiguity is whether or not f//m//a//x can arise from source properties alone. The interaction of the aftershocks of the Oroville, California, earthquake illustrates how a//r//m//s stress drops may be connected to detailed seismicity patterns.

  18. Earthquake source properties of a shallow induced seismic sequence in SE Brazil

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, Hans; Bianchi, Marcelo; Prieto, Germán. A.; Assumpção, Marcelo

    2017-04-01

    We study source parameters of a cluster of 21 very shallow (<1 km depth) small-magnitude (Mw < 2) earthquakes induced by percolation of water by gravity in SE Brazil. Using a multiple empirical Green's functions (meGf) approach, we estimate seismic moments, corner frequencies, and static stress drops of these events by inversion of their spectral ratios. For the studied magnitude range (-0.3 < Mw < 1.9), we found an increase of stress drop with seismic moment. We assess associated uncertainties by considering different signal time windows and by performing a jackknife resampling of the spectral ratios. We also calculate seismic moments by full waveform inversion to independently validate our moments from spectral analysis. We propose repeated rupture on a fault patch at shallow depth, following continuous inflow of water, as the cause for the observed low absolute stress drop values (<1 MPa) and earthquake size dependency. To our knowledge, no other study on earthquake source properties of shallow events induced by water injection with no added pressure is available in the literature. Our study suggests that source parameter characterization may provide additional information of induced seismicity by hydraulic stimulation.

  19. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data

    NASA Astrophysics Data System (ADS)

    Goswami, Bedanta K.; Weitemeyer, Karen A.; Bünz, Stefan; Minshull, Timothy A.; Westbrook, Graham K.; Ker, Stephan; Sinha, Martin C.

    2017-03-01

    The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Ωm2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Ωm2. Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.

  20. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    NASA Astrophysics Data System (ADS)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  1. The evaluation of the earthquake hazard using the exponential distribution method for different seismic source regions in and around Ağrı

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrak, Yusuf, E-mail: ybayrak@agri.edu.tr; Türker, Tuğba, E-mail: tturker@ktu.edu.tr

    The aim of this study; were determined of the earthquake hazard using the exponential distribution method for different seismic sources of the Ağrı and vicinity. A homogeneous earthquake catalog has been examined for 1900-2015 (the instrumental period) with 456 earthquake data for Ağrı and vicinity. Catalog; Bogazici University Kandilli Observatory and Earthquake Research Institute (Burke), National Earthquake Monitoring Center (NEMC), TUBITAK, TURKNET the International Seismological Center (ISC), Seismological Research Institute (IRIS) has been created using different catalogs like. Ağrı and vicinity are divided into 7 different seismic source regions with epicenter distribution of formed earthquakes in the instrumental period, focalmore » mechanism solutions, and existing tectonic structures. In the study, the average magnitude value are calculated according to the specified magnitude ranges for 7 different seismic source region. According to the estimated calculations for 7 different seismic source regions, the biggest difference corresponding with the classes of determined magnitudes between observed and expected cumulative probabilities are determined. The recurrence period and earthquake occurrence number per year are estimated of occurring earthquakes in the Ağrı and vicinity. As a result, 7 different seismic source regions are determined occurrence probabilities of an earthquake 3.2 magnitude, Region 1 was greater than 6.7 magnitude, Region 2 was greater than than 4.7 magnitude, Region 3 was greater than 5.2 magnitude, Region 4 was greater than 6.2 magnitude, Region 5 was greater than 5.7 magnitude, Region 6 was greater than 7.2 magnitude, Region 7 was greater than 6.2 magnitude. The highest observed magnitude 7 different seismic source regions of Ağrı and vicinity are estimated 7 magnitude in Region 6. Region 6 are determined according to determining magnitudes, occurrence years of earthquakes in the future years, respectively, 7.2 magnitude

  2. The evaluation of the earthquake hazard using the exponential distribution method for different seismic source regions in and around Aǧrı

    NASA Astrophysics Data System (ADS)

    Bayrak, Yusuf; Türker, Tuǧba

    2016-04-01

    The aim of this study; were determined of the earthquake hazard using the exponential distribution method for different seismic sources of the Aǧrı and vicinity. A homogeneous earthquake catalog has been examined for 1900-2015 (the instrumental period) with 456 earthquake data for Aǧrı and vicinity. Catalog; Bogazici University Kandilli Observatory and Earthquake Research Institute (Burke), National Earthquake Monitoring Center (NEMC), TUBITAK, TURKNET the International Seismological Center (ISC), Seismological Research Institute (IRIS) has been created using different catalogs like. Aǧrı and vicinity are divided into 7 different seismic source regions with epicenter distribution of formed earthquakes in the instrumental period, focal mechanism solutions, and existing tectonic structures. In the study, the average magnitude value are calculated according to the specified magnitude ranges for 7 different seismic source region. According to the estimated calculations for 7 different seismic source regions, the biggest difference corresponding with the classes of determined magnitudes between observed and expected cumulative probabilities are determined. The recurrence period and earthquake occurrence number per year are estimated of occurring earthquakes in the Aǧrı and vicinity. As a result, 7 different seismic source regions are determined occurrence probabilities of an earthquake 3.2 magnitude, Region 1 was greater than 6.7 magnitude, Region 2 was greater than than 4.7 magnitude, Region 3 was greater than 5.2 magnitude, Region 4 was greater than 6.2 magnitude, Region 5 was greater than 5.7 magnitude, Region 6 was greater than 7.2 magnitude, Region 7 was greater than 6.2 magnitude. The highest observed magnitude 7 different seismic source regions of Aǧrı and vicinity are estimated 7 magnitude in Region 6. Region 6 are determined according to determining magnitudes, occurrence years of earthquakes in the future years, respectively, 7.2 magnitude was in 158

  3. High-resolution seismic measurements at loamy dikes for monitoring high-water influences

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger

    2010-05-01

    For the risk management of high-water events it is important to know how secure river dikes are. Even the structures of dikes are often unknown. Methods for the exploration of existing dikes and of their underground, for an evaluation of failure potential and strengthening requirements are needed. In the presented work, the potential of a high-resolution seismics to monitor the moisture penetration of dikes during flood periods was analyzed. To identify the extent of moisture penetration and to determine the structures of a loamy dike body would enable to determine the probability of a dike failure. Dikes made of loam show a different behavior of moisture penetration under high-water influence. The distribution and penetration of water is moderate compared to sandy dikes and resist longer high-water events. The water expands slowly in the dike body in all directions known as fingering. It should be analyzed how the moisture penetration from a dike can be displayed with seismic methods. The aim was to identify on the basis of seismic measurements the areas of moisture penetration within a dike during a flood and out of it to determine the probability of collapse of the dike. For that purpose the structures in the dike body should be determined in reference to the materials and his soil parameters like water content and porosity. A test facility was built for dikes including a regulation for the water level. This allowed the simulation of flood scenarios at dikes. Two dikes with different loam content were built in order to determine the failure mechanism of dikes. With a width of 8 meters at the basis they had nearly the dimension of river dikes. Seismic instrumentation was installed on both dike models. The seismic survey consists of three parallel receiver lines on the dike which recorded seismic signals emitted along the same lines, resulting in a 3D-seismic data set. The receivers were 3-component-geophones fixed in spikes, at the flooded side of the dike were

  4. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    NASA Astrophysics Data System (ADS)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  5. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    NASA Astrophysics Data System (ADS)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  6. Monitoring earthen dams and levees with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, T.; Mooney, M.; Rittgers, J. B.; Kanning, W.; Draganov, D.

    2017-12-01

    Internal erosion is a major cause of failure of earthen dams and levees and is difficult to detect at an early stage by traditional visual inspection techniques. The passive and non-invasive ambient-noise correlation technique could help detect and locate internal changes taking place within these structures. First, we apply this passive seismic method to monitor a canal embankment model submitted to piping erosion, in laboratory-controlled conditions. We then present the monitoring of a sea levee in the Netherlands. A 150m-long section of the dike shows sandboils in the drainage ditch located downstream of the levee. These sandboils are the sign of concentrated seepage and potential initiation of internal erosion in the structure. Using the ambient-noise correlation technique, we retrieve surface waves propagating along the crest of the dike. Temporal variations of the seismic wave velocity are then computed during the tide cycle. These velocity variations are correlated with local in-situ pore water pressure measurements and are possibly influenced by the presence of concentrated seepage paths.

  7. Extending the life of mature basins in the North Sea and imaging sub-basalt and sub-intrusive structures using seismic intensity monitoring.

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Rawlinson, Nicholas

    2016-04-01

    Non-standard seismic imaging (velocity, attenuation, and scattering tomography) of the North Sea basins by using unexploited seismic intensities from previous passive and active surveys are key for better imaging and monitoring fluid under the subsurface. These intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the crust and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability with as key output a novel computational code with strong commercial potential.

  8. Time-lapse seismic - repeatability versus usefulness and 2D versus 3D

    NASA Astrophysics Data System (ADS)

    Landro, M.

    2017-12-01

    Time-lapse seismic has developed rapidly over the past decades, especially for monitoring of oil and gas reservoirs and subsurface storage of CO2. I will review and discuss some of the critical enabling factors for the commercial success of this technology. It was early realized that how well we are able to repeat our seismic experiment is crucial. However, it is always a question of detectability versus repeatability. For marine seismic, there are several factors limiting the repeatability: Weather conditions, positioning of sources and receivers and so on. I will discuss recent improvements in both acquisition and processing methods over the last decade. It is well known that repeated 3D seismic data is the most accurate tool for reservoir monitoring purposes. However, several examples show that 2D seismic data may be used for monitoring purposes despite lower repeatability. I will use examples from an underground blow out in the North Sea, and repeated 2D seismic lines acquired before and after the Tohoku earthquake in 2011 to illustrate this. A major challenge when using repeated 2D seismic for subsurface monitoring purposes is the lack of 3D calibration points and significantly less amount of data. For marine seismic acquisition, feathering issues and crossline dip effects become more critical compared to 3D seismic acquisition. Furthermore, the uncertainties arising from a non-ideal 2D seismic acquisition are hard to assess, since the 3D subsurface geometry has not been mapped. One way to shed more light on this challenge is to use 3D time lapse seismic modeling testing various crossline dips or geometries. Other ways are to use alternative data sources, such as bathymetry, time lapse gravity or electromagnetic data. The end result for all time-lapse monitoring projects is an interpretation associated with uncertainties, and for the 2D case these uncertainties are often large. The purpose of this talk is to discuss how to reduces and control these

  9. Enhanced characterization of faults and fractures at EGS sites by CO2 injection coupled with active seismic monitoring, pressure-transient testing, and well logging

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Daley, T. M.; Borgia, A.; Zhang, R.; Doughty, C.; Jung, Y.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.

    2016-12-01

    Faults and fractures in geothermal systems are difficult to image and characterize because they are nearly indistinguishable from host rock using traditional seismic and well-logging tools. We are investigating the use of CO2 injection and production (push-pull) in faults and fractures for contrast enhancement for better characterization by active seismic, well logging, and push-pull pressure transient analysis. Our approach consists of numerical simulation and feasibility assessment using conceptual models of potential enhanced geothermal system (EGS) sites such as Brady's Hot Spring and others. Faults in the deep subsurface typically have associated damage and gouge zones that provide a larger volume for uptake of CO2 than the slip plane alone. CO2 injected for push-pull well testing has a preference for flowing in the fault and fractures because CO2 is non-wetting relative to water and the permeability of open fractures and fault gouge is much higher than matrix. We are carrying out numerical simulations of injection and withdrawal of CO2 using TOUGH2/ECO2N. Simulations show that CO2 flows into the slip plane and gouge and damage zones and is driven upward by buoyancy during the push cycle over day-long time scales. Recovery of CO2 during the pull cycle is limited because of buoyancy effects. We then use the CO2 saturation field simulated by TOUGH2 in our anisotropic finite difference code from SPICE-with modifications for fracture compliance-that we use to model elastic wave propagation. Results show time-lapse differences in seismic response using a surface source. Results suggest that CO2 can be best imaged using time-lapse differencing of the P-wave and P-to-S-wave scattering in a vertical seismic profile (VSP) configuration. Wireline well-logging tools that measure electrical conductivity show promise as another means to detect and image the CO2-filled fracture near the injection well and potential monitoring well(s), especially if a saline-water pre

  10. Seismic footprints of shallow dyke propagation at Etna, Italy.

    PubMed

    Falsaperla, Susanna; Neri, Marco

    2015-07-15

    One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 × 10(4) nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).

  11. Repeated Earthquakes in the Vrancea Subcrustal Source and Source Scaling

    NASA Astrophysics Data System (ADS)

    Popescu, Emilia; Otilia Placinta, Anica; Borleasnu, Felix; Radulian, Mircea

    2017-12-01

    The Vrancea seismic nest, located at the South-Eastern Carpathians Arc bend, in Romania, is a well-confined cluster of seismicity at intermediate depth (60 - 180 km). During the last 100 years four major shocks were recorded in the lithosphere body descending almost vertically beneath the Vrancea region: 10 November 1940 (Mw 7.7, depth 150 km), 4 March 1977 (Mw 7.4, depth 94 km), 30 August 1986 (Mw 7.1, depth 131 km) and a double shock on 30 and 31 May 1990 (Mw 6.9, depth 91 km and Mw 6.4, depth 87 km, respectively). The probability of repeated earthquakes in the Vrancea seismogenic volume is relatively large taking into account the high density of foci. The purpose of the present paper is to investigate source parameters and clustering properties for the repetitive earthquakes (located close each other) recorded in the Vrancea seismogenic subcrustal region. To this aim, we selected a set of earthquakes as templates for different co-located groups of events covering the entire depth range of active seismicity. For the identified clusters of repetitive earthquakes, we applied spectral ratios technique and empirical Green’s function deconvolution, in order to constrain as much as possible source parameters. Seismicity patterns of repeated earthquakes in space, time and size are investigated in order to detect potential interconnections with larger events. Specific scaling properties are analyzed as well. The present analysis represents a first attempt to provide a strategy for detecting and monitoring possible interconnections between different nodes of seismic activity and their role in modelling tectonic processes responsible for generating the major earthquakes in the Vrancea subcrustal seismogenic source.

  12. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Thelen, Weston A.

    2014-01-01

    The installation of new seismic stations is only the first part of building a volcanic early warning capability for seismicity in the State of Hawaii. Additional personnel will likely be required to study the volcanic processes at work under each volcano, analyze the current seismic activity at a level sufficient for early warning, build new tools for monitoring, maintain seismic computing resources, and maintain the new seismic stations.

  13. TexNet seismic network performance and reported seismicity in West Texas

    NASA Astrophysics Data System (ADS)

    Savvaidis, A.; Lomax, A.; Aiken, C.; Young, B.; Huang, D.; Hennings, P.

    2017-12-01

    In 2015, the Texas State Legislature began funding the Texas Seismological Network (TexNet). Since then, 22 new permanent broadband three-component seismic stations have been added to 17 existing stations operated by various networks [US, N4, IM]. These stations together with 4 auxiliary stations, i.e. long term deployments of 20 sec portable stations, were deployed to provide a baseline of Texas seismicity. As soon as the deployment of the new permanent stations took place in West Texas, TexNet was able to detect and characterize smaller magnitude events than was possible before, i.e. M < 2.5. As a consequence, additional portable stations were installed in the area in order to better map the current seismicity level. During the different stages of station deployment, we monitored the seismic network performance and its ability to detect earthquake activity. We found that a key limitation to the network performance is industrial noise in West Texas. For example, during daytime, phase picking and event detection rates are much lower than during nighttime at noisy sites. Regarding seismicity, the high density portable station deployment close to the earthquake activity minimizes hypocentral location uncertainties. In addition, we examined the effects of different crustal velocity models in the area of study on hypocentral location using the local network first arrivals. Considerable differences in location were obtained, which shows the importance of local networks and/or reliable crustal velocity models for West Texas. Given the levels of seismicity in West Texas, a plan to continuously monitor the study area is under development.

  14. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    NASA Astrophysics Data System (ADS)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  15. Development of a software for monitoring of seismic activity through the analysis of satellite images

    NASA Astrophysics Data System (ADS)

    Soto-Pinto, C.; Poblete, A.; Arellano-Baeza, A. A.; Sanchez, G.

    2010-12-01

    A software for extraction and analysis of the lineaments has been developed and applied for the tracking of the accumulation/relaxation of stress in the Earth’s crust due to seismic and volcanic activity. A lineament is a straight or a somewhat curved feature in a satellite image, which reflects, at least partially, presence of faults in the crust. The technique of lineament extraction is based on the application of directional filters and Hough transform. The software has been checked for several earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, analyzing temporal sequences of the ASTER/TERRA multispectral satellite images for the regions around an epicenter. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changes significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion.

  16. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  17. Frequency power analyses of seismic sources on firn

    NASA Astrophysics Data System (ADS)

    Sanz, Christopher; Diez, Anja; Coen, Hofstede; Kristoffersen, Yngve; Mayer, Christoph; Lambrecht, Astrid; Miller, Heinz; Eisen, Olaf

    2013-04-01

    A great obstacle for seismic surveys on firn-covered ice masses is the ability of firn to strongly attenuate seismic energy and divert downward ray paths away from the vertical because of the velocity gradient. The standard way to overcome these limitations is the drilling of shotholes about 10-30 m deep. However, drilling of shotholes is a time and energy consuming task. Another possibility is to use vibroseismic sources at the surface and increase the signal-to-noise ratio by repeated stacking. However, compared to explosive charges, vibroseismic signals are bandlimited per se. As a third variant, we investigate the usage of ordered patterns of surface charges consisting of detonation cord. Previous applications of detonation cord only explored their general comparison to bulk explosives when deployed in a linear fashion, i.e. a single line. Our approach extends these results to other geometries, like fan- or comb-shaped patterns. These have two advantages: first, over the pattern area a locally plane wave is generated, limiting the spherical and velocity-gradient induced spreading of energy during propagation; second, the ratio between seismic wave speed of the firn and the detonation cord of typically about 1:5 causes the wave to propagate in an angle downward. When using large offsets like a snow streamer, it is possible to direct the refected energy towards the streamer, depending on offset range and reflector depth. We compare the different source types for several surveys conducted in Antarctica in terms of frequency spectra. Our results show that ordered patterns of detonation cord serve as suitable seismic surface charges, avoiding the need to drill shotholes. Moreover, an example of a short profile with patterned surface charges is presented. The technique can be of advantage for surveys in remote areas, which can only be accessed by aircrafts.

  18. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  19. Lunar seismicity and tectonics

    NASA Technical Reports Server (NTRS)

    Lammlein, D. R.

    1977-01-01

    Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.

  20. Classifying seismic noise and sources from OBS data using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Mosher, S. G.; Audet, P.

    2017-12-01

    The paradigm of plate tectonics was established mainly by recognizing the central role of oceanic plates in the production and destruction of tectonic plates at their boundaries. Since that realization, however, seismic studies of tectonic plates and their associated deformation have slowly shifted their attention toward continental plates due to the ease of installation and maintenance of high-quality seismic networks on land. The result has been a much more detailed understanding of the seismicity patterns associated with continental plate deformation in comparison with the low-magnitude deformation patterns within oceanic plates and at their boundaries. While the number of high-quality ocean-bottom seismometer (OBS) deployments within the past decade has demonstrated the potential to significantly increase our understanding of tectonic systems in oceanic settings, OBS data poses significant challenges to many of the traditional data processing techniques in seismology. In particular, problems involving the detection, location, and classification of seismic sources occurring within oceanic settings are much more difficult due to the extremely noisy seafloor environment in which data are recorded. However, classifying data without a priori constraints is a problem that is routinely pursued via unsupervised machine learning algorithms, which remain robust even in cases involving complicated datasets. In this research, we apply simple unsupervised machine learning algorithms (e.g., clustering) to OBS data from the Cascadia Initiative in an attempt to classify and detect a broad range of seismic sources, including various noise sources and tremor signals occurring within ocean settings.

  1. Source Monitoring in Alzheimer's Disease

    ERIC Educational Resources Information Center

    El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe

    2012-01-01

    Source monitoring is the process of making judgments about the origin of memories. There are three categories of source monitoring: reality monitoring (discrimination between self- versus other-generated sources), external monitoring (discrimination between several external sources), and internal monitoring (discrimination between two types of…

  2. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    NASA Astrophysics Data System (ADS)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  3. Calibration of Seismic Sources during a Test Cruise with the new RV SONNE

    NASA Astrophysics Data System (ADS)

    Engels, M.; Schnabel, M.; Damm, V.

    2015-12-01

    During autumn 2014, several test cruises of the brand new German research vessel SONNE were carried out before the first official scientific cruise started in December. In September 2014, BGR conducted a seismic test cruise in the British North Sea. RV SONNE is a multipurpose research vessel and was also designed for the mobile BGR 3D seismic equipment, which was tested successfully during the cruise. We spend two days for calibration of the following seismic sources of BGR: G-gun array (50 l @ 150 bar) G-gun array (50 l @ 207 bar) single GI-gun (3.4 l @ 150 bar) For this experiment two hydrophones (TC4042 from Reson Teledyne) sampling up to 48 kHz were fixed below a drifting buoy at 20 m and 60 m water depth - the sea bottom was at 80 m depth. The vessel with the seismic sources sailed several up to 7 km long profiles around the buoy in order to cover many different azimuths and distances. We aimed to measure sound pressure level (SPL) and sound exposure level (SEL) under the conditions of the shallow North Sea. Total reflections and refracted waves dominate the recorded wave field, enhance the noise level and partly screen the direct wave in contrast to 'true' deep water calibration based solely on the direct wave. Presented are SPL and RMS power results in time domain, the decay with distance along profiles, and the somehow complicated 2D sound radiation pattern modulated by topography. The shading effect of the vessel's hull is significant. In frequency domain we consider 1/3 octave levels and estimate the amount of energy in frequency ranges not used for reflection seismic processing. Results are presented in comparison of the three different sources listed above. We compare the measured SPL decay with distance during this experiment with deep water modeling of seismic sources (Gundalf software) and with published results from calibrations with other marine seismic sources under different conditions: E.g. Breitzke et al. (2008, 2010) with RV Polarstern

  4. Assessing the Uncertainties on Seismic Source Parameters: Towards Realistic Estimates of Moment Tensor Determinations

    NASA Astrophysics Data System (ADS)

    Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.

    2014-12-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.

  5. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  6. Southern Africa seismic structure and source studies

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    1998-09-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data. Waveform and travel time data used in this study come mainly from a large mine tremor in South Africa (msb{b} 5.6) recorded on stations of the southern Africa and the Tanzania Broadband Seismic Experiment. Auxiliary data along similar profiles are obtained from other moderate events within eastern and southern Africa. The waveform data from the large tremor show upper mantle triplications for both the 400 and 670-km discontinuities between 18sp° and 27sp° distance. The most notable feature of the data is a large, late P phase that propagates to at least 27sp°. This phase is striking because of its late arrival time (as much as 15 seconds after direct P at 27sp°) and high amplitude relative to the first arrival. Travel times from all available stations are used to invert for the P wave velocity structure down to 800 km depth and S wave velocity structure down to 200 km using the Wiechert-Herglotz (W-H) inversion technique. The P wave velocities from the uppermost mantle down to 300 km are as much as 3% higher than the global average and are slightly slower than the global average between 300 and 400 km depths. The velocity gradient between 300 and 400 km is 0.0015 1/s. The S wave travel time data yield fast velocities above 200-km depth. The S wave velocity structure appears inconsistent with the P wave structure model indicating varying Poisson's ratio in the upper mantle. Little evidence is found for a pronounced upper mantle low velocity zone. Both sharp and gradual-change 400-km discontinuities are favored by the waveform data. The 670-km discontinuity appears as a gradual-change zone. The source mechanism of the mb 5.6 mining tremor itself is important for seismic discrimination and insight into mining tremor sources. Source parameters for this event as well as some other large mining tremors from the South African gold mines are studied

  7. Comprehensive Seismological Monitoring of Geomorphic Processes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, W. A.; Chen, C. H.

    2016-12-01

    Geomorphic processes such as hillslope mass wasting and river sediment transport are important for studying landscape dynamics. Mass movements induced from geomorphic events can generate seismic waves and be recorded by seismometers. Recent studies demonstrate that seismic monitoring techniques not only fully map the spatiotemporal patterns of geomorphic activity but also allow for exploration of the dynamic links between hillslope failures and channel processes, which may not be resolved by conventional techniques (e.g., optical remote sensing). We have recently developed a real-time landquake monitoring system (RLMS, here we use the term `landquake' to represent all hillslope failures such as rockfall, rock avalanche and landslide), which has been continuously monitoring landquake activities in Taiwan since June 2015 based on broadband seismic records, yielding source information (e.g., location, occurrence time, magnitude and mechanism) for large-sized events (http://140.112.57.117/main.html). Several seismic arrays have also been deployed over the past few years around the catchments and along the river channels in Taiwan for monitoring erosion processes at catchment scale, improving the spatiotemporal resolution in exploring the interaction between geomorphic events and specific meteorological conditions. Based on a forward model accounting for the impulsive impacts of saltating particles, we can further invert for the sediment load flux, a critical parameter in landscape evolution studies, by fitting the seismic observations only. To test the validity of the seismologically determined sediment load flux, we conduct a series of controlled dam breaking experiments that are advantageous in well constraining the spatiotemporal variations of the sediment transport. Incorporating the seismological constrains on geomorphic processes with the effects of tectonic and/or climate perturbations can provide valuable and quantitative information for more fully

  8. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  9. Propagation of Exploration Seismic Sources in Shallow Water

    NASA Astrophysics Data System (ADS)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  10. Seismicity in Pennsylvania: Evidence for Anthropogenic Events?

    NASA Astrophysics Data System (ADS)

    Homman, K.; Nyblade, A.

    2015-12-01

    The deployment and operation of the USArray Transportable Array (TA) and the PASEIS (XY) seismic networks in Pennsylvania during 2013 and 2014 provide a unique opportunity for investigating the seismicity of Pennsylvania. These networks, along with several permanent stations in Pennsylvania, resulted in a total of 104 seismometers in and around Pennsylvania that have been used in this study. Event locations were first obtained with Antelope Environmental Monitoring Software using P-wave arrival times. Arrival times were hand picked using a 1-5 Hz bandpass filter to within 0.1 seconds. Events were then relocated using a velocity model developed for Pennsylvania and the HYPOELLIPSE location code. In this study, 1593 seismic events occurred between February 2013 and December 2014 in Pennsylvania. These events ranged between magnitude (ML) 1.04 and 2.89 with an average MLof 1.90. Locations of the events occur across the state in many areas where no seismicity has been previously reported. Preliminary results indicate that most of these events are related to mining activity. Additional work using cross-correlation techniques is underway to examine a number of event clusters for evidence of hydraulic fracturing or wastewater injection sources.

  11. Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Maury, Julie

    2018-04-01

    Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.

  12. Induced Seismicity and Public Communication: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Buchanan, R.

    2017-12-01

    Beginning in 2009, induced seismicity became a major public policy issue in the midcontinent. Based on my experience with induced seismicity in south-central Kansas, conversations about man-made earthquakes, and their connection to hydraulic fracturing, are challenging, yet they provide an opening for geoscientists to engage the public in conversations about energy regulation, environmental issues, and basic geology. In many respects, hydraulic fracturing and induced seismicity became the lenses through which the public saw the geoscience community. Interaction with the media, regulators, decision-makers, and the general public, through interviews, presentations, panels, and public meetings, provided opportunities to describe current knowledge of the subsurface and to advocate for improved seismic monitoring and subsurface data-collection. Equally important, it provided geoscientists the opportunity to learn about public understanding and concerns about these issues. Successful communication required multiple, in-depth conversations and willingness to listen carefully. Results included support for additional monitoring from both public and private sources.

  13. Seismic Source Scaling and Characteristics of Six North Korean Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Park, J.; Stump, B. W.; Che, I. Y.; Hayward, C.

    2017-12-01

    We estimate the range of yields and source depths for the six North Korean underground nuclear explosions in 2006, 2009, 2013, 2016 (January and September), and 2017, based on regional seismic observations in South Korea and China. Seismic data used in this study are from three seismo-acoustic stations, BRDAR, CHNAR, and KSGAR, cooperatively operated by SMU and KIGAM, the KSRS seismic array operated by the Comprehensive Nuclear Test Ban Treaty Organization, and MDJ, a station in the Global Seismographic Network. We calculate spectral ratios for event pairs using seismograms from the six explosions observed along the same paths and at the same receivers. These relative seismic source scaling spectra for Pn, Pg, Sn, and surface wave windows provide a basis for a grid search source solution that estimates source yield and depth for each event based on both the modified Mueller and Murphy (1971; MM71) and Denny and Johnson (1991; DJ91) source models. The grid search is used to identify the best-fit empirical spectral ratios subject to the source models by minimizing the goodness-of-fit (GOF) in the frequency range of 0.5-15 Hz. For all cases, the DJ91 model produces higher ratios of depth and yield than MM71. These initial results include significant trade-offs between depth and yield in all cases. In order to better take the effect of source depth into account, a modified grid search was implemented that includes the propagation effects for different source depths by including reflectivity Greens functions in the grid search procedure. This revision reduces the trade-offs between depth and yield, results in better model fits to frequencies as high as 15 Hz, and GOF values smaller than those where the depth effects on the Greens functions were ignored. The depth and yield estimates for all six explosions using this new procedure will be presented.

  14. Infrasound from thunder: A natural seismic source

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2007-07-01

    A small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones was built to investigate thunder-induced ground motions. Data from two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen as examples of data collected by the array. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters at the site. Although the depth of the borehole is relatively shallow compared to a seismic wave wavelength, velocity amplitude in the radial component decays as much as 63 percent with depth but vertical component amplitudes are unaffected consistent with air-coupled Rayleigh wave excitation. Naturally occurring thunder appears to be a useful seismic source to empirically determine site resonance characteristics for hazards assessments.

  15. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  16. Time-lapse seismic waveform inversion for monitoring near-surface microbubble injection

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Jang, U.; Lumley, D. E.; Mouri, T.; Nakatsukasa, M.; Takanashi, M.

    2016-12-01

    Seismic monitoring of the Earth provides valuable information regarding the time-varying changes in subsurface physical properties that are caused by natural or man-made processes. However, the resulting changes in subsurface properties are often small both in terms of magnitude and spatial extent, leading to seismic data differences that are difficult to detect at typical non-repeatable noise levels. In order to better extract information from the time-lapse data, exploiting the full seismic waveform information can be critical, since detected amplitude or traveltime changes may be minimal. We explore methods of waveform inversion that estimate an optimal model of time-varying elastic parameters at the wavelength scale to fit the observed time-lapse seismic data with modelled waveforms based on numerical solutions of the wave equation. We apply acoustic waveform inversion to time-lapse cross-well monitoring surveys of 64-m well intervals, and estimate the velocity changes that occur during the injection of microbubble water into shallow unconsolidated Quaternary sediments in the Kanto basin of Japan at a depth of 25 m below the surface. Microbubble water is comprised of water infused with air bubbles of a diameter less than 0.1mm, and may be useful to improve resistance to ground liquefaction during major earthquakes. Monitoring the space-time distribution and physical properties of microbubble injection is therefore important to understanding the full potential of the technique. Repeated monitoring surveys (>10) reveal transient behaviours in waveforms during microbubble injection. Time-lapse waveform inversion detects changes in P-wave velocity of less than 1 percent, initially as velocity increases and subsequently as velocity decreases. The velocity changes are mainly imaged within a thin (1 m) layer between the injection and the receiver well, inferring the fluid-flow influence of the fluvial sediment depositional environment. The resulting velocity models

  17. Anisotropy and tectonic deformation in the Ordos basin revealed by an active source seismic experiment

    NASA Astrophysics Data System (ADS)

    Jun, W. S.; Wang, F.; Xu, T.

    2016-12-01

    With the purpose of exploring the Ordos block, western North China Craton, two controlled-source deep seismic transects were conducted across this region. The first one is a 650 km long profile oriented N-S; the second is 1530 km and is oriented E-W. The upper mantle P wave-velocity derived from these profiles features a 0.25 km/s difference between them. Being the E-W higher that the N-S. The results obtained from both seismic profiles indicate that the upper mantle beneath the Ordos block presents seismic anisotropy in terms of discrepancy in Pn-wave velocity, such as the apparent seismic velocities observed along the two reference profiles demonstrate. This result is consistent with SKS-wave splitting measurements in the interior of the Ordos block. This indicates that the compressive stress state in Ordos during the Mesozoic became an extensional stress state in the Cenozoic. The high-velocity anomaly in the uppermost mantle under the west-east profile suggests that the lithospheric mantle is still not water-rich. Unlike what happened in the NCC to east of the Taihang Mountains, where the lithosphere experienced its thinning and destruction since the Mesozoic, the lithosphere in the interior of Ordos has suffered less deformation and remained tectonically stable. Keywords: wide-angle seismic profiling, Pn phase, high-velocity anomaly, upper mantle anisotropy, Ordos block, North China Craton. ReferencesChen L., 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys. Earth Planet. Inter. 173, 216-227. Gao S., Rudnick R.L., Xu W.L., et al., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270, 41-53. Xu T., Zhang Z.J., Gao E.G., et al., 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seism. Soc. Am. 100, 841-850. Zhu R.X., Zheng T.Y., 2009. Destruction

  18. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  19. Seismic monitoring of the bedload transport in La Réunion Island rivers during tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gonzalez, Alicia; Fontaine, Fabrice. R.; Burtin, Arnaud; Barruol, Guilhem; Recking, Alain; Join, Jean-Lambert; Delcher, Eric

    2017-04-01

    La Réunion Island, located in the western Indian Ocean, undergoes heavy annual precipitations during the rainy season (Dec to Apr) and particularly during tropical depressions and cyclones. Large rainfalls that affect this volcanic island modify the stream dynamic and control the sediment transport and the very active erosion. However, in situ characterization of sediment transport is difficult during high water stage, requiring indirect observation such as seismic noise. In order to monitor spatial and temporal variations of the river's bed-load during tropical cyclones from the high-frequency seismic noise in La Réunion, we deployed a temporary seismic network of 9 three-component broadband seismometers along two rivers: Rivière des Pluies and Rivière du Mât, both located on the northern side of the island. Seismic data are supplemented by meteorological and hydrological stations installed in these experimental watersheds. They provide valuable data such as precipitations, water discharge and water level. We also characterized the stream morphology and the bed surface grain size distribution to set the current characteristics and we aim to repeat this analyze after each flood event in order to quantify the effect of the flood episode on the sediment transport. We present the results of the signature of the cyclone Bejisa which passed close to the island in January 2014 recorded at three broadband seismic stations, among which two are located near instrumented streams: station SALA installed close to the Rivière du Mât and the permanent GEOSCOPE seismic station RER installed in a 4.7 km long tunnel close to the Rivière de l'Est. The third station MAID is used as a reference station since it is located on a summit (2.190 km altitude) and far from any active river. We observe a significant increase of the precipitation as the cyclone eye was at 300 km to the island and the associated increase of the water discharge clearly generates a sudden increase of the

  20. Rethinking moment tensor inversion methods to retrieve the source mechanisms of low-frequency seismic events

    NASA Astrophysics Data System (ADS)

    Karl, S.; Neuberg, J.

    2011-12-01

    Volcanoes exhibit a variety of seismic signals. One specific type, the so-called long-period (LP) or low-frequency event, has proven to be crucial for understanding the internal dynamics of the volcanic system. These long period (LP) seismic events have been observed at many volcanoes around the world, and are thought to be associated with resonating fluid-filled conduits or fluid movements (Chouet, 1996; Neuberg et al., 2006). While the seismic wavefield is well established, the actual trigger mechanism of these events is still poorly understood. Neuberg et al. (2006) proposed a conceptual model for the trigger of LP events at Montserrat involving the brittle failure of magma in the glass transition in response to the upwards movement of magma. In an attempt to gain a better quantitative understanding of the driving forces of LPs, inversions for the physical source mechanisms have become increasingly common. Previous studies have assumed a point source for waveform inversion. Knowing that applying a point source model to synthetic seismograms representing an extended source process does not yield the real source mechanism, it can, however, still lead to apparent moment tensor elements which then can be compared to previous results in the literature. Therefore, this study follows the proposed concepts of Neuberg et al. (2006), modelling the extended LP source as an octagonal arrangement of double couples approximating a circular ringfault bounding the circumference of the volcanic conduit. Synthetic seismograms were inverted for the physical source mechanisms of LPs using the moment tensor inversion code TDMTISO_INVC by Dreger (2003). Here, we will present the effects of changing the source parameters on the apparent moment tensor elements. First results show that, due to negative interference, the amplitude of the seismic signals of a ringfault structure is greatly reduced when compared to a single double couple source. Furthermore, best inversion results yield a

  1. Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, Julián; Martín-Banda, Raquel; Insua-Arévalo, Juan M.; Álvarez-Gómez, José A.; Martínez-Díaz, José J.; Cabral, João

    2017-08-01

    Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Hence, active fault databases should be updated and thoroughly reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should somehow indicate the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, such as maximum magnitude and recurrence interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of maximum magnitude and recurrence interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.

  2. Seismic footprints of shallow dyke propagation at Etna, Italy

    PubMed Central

    Falsaperla, Susanna; Neri, Marco

    2015-01-01

    One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 × 104 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage). PMID:26173557

  3. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  4. Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.

    2009-08-01

    The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.

  5. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    .I. Gushchenko, 1979) and seismological (database of USGS/NEIC Significant Worldwide Earthquakes, 2150 B.C.- 1994 A.D.) information which displays dynamics of endogenic relief-forming processes over a period of 1900 to 1994. In the course of the analysis, a substitution of calendar variable by a corresponding astronomical one has been performed and the epoch superposition method was applied. In essence, the method consists in that the massifs of information on volcanic eruptions (over a period of 1900 to 1977) and seismic events (1900-1994) are differentiated with respect to value of astronomical parameters which correspond to the calendar dates of the known eruptions and earthquakes, regardless of the calendar year. The obtained spectra of volcanic eruptions and violent earthquake distribution in the fields of the Earth orbital movement parameters were used as a basis for calculation of frequency spectra and diurnal probability of volcanic and seismic activity. The objective of the proposed investigations is a probabilistic model development of the volcanic and seismic events, as well as GIS designing for monitoring and forecast of volcanic and seismic activities. In accordance with the stated objective, three probability parameters have been found in the course of preliminary studies; they form the basis for GIS-monitoring and forecast development. 1. A multidimensional analysis of volcanic eruption and earthquakes (of magnitude 7) have been performed in terms of the Earth orbital movement. Probability characteristics of volcanism and seismicity have been defined for the Earth as a whole. Time intervals have been identified with a diurnal probability twice as great as the mean value. Diurnal probability of volcanic and seismic events has been calculated up to 2020. 2. A regularity is found in duration of dormant (repose) periods has been established. A relationship has been found between the distribution of the repose period probability density and duration of the period. 3

  6. Seismic source characteristics of the intraslab 2017 Chiapas-Mexico earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Jiménez, César

    2018-07-01

    Inversion of the parameters characterising the seismic source of the instraslab 2017 Chiapas Mexico earthquake (Mw 8.2) shows a simple rupture process with a unidirectional propagation and directivity towards the North-West and a duration of the rupture process around 75 s. The initial point source values of strike, dip and rake are 316°, 80° and -91° respectively. The focal mechanism indicates a normal fault type within the oceanic Cocos plate, with an almost vertical fault plane for a focal depth of 59 km. The seismic data was obtained from 51 seismic stations of the global seismic network IRIS for the epicentral distances between 30° and 90°. In the finite-fault inversion, 75 seismic signals between P and SH waves were used. The epicenter is on the southeast margin of the large slip zone which extends 75 km to the northwest, this large slip zone is located to the south of the city of Arriaga. The scalar seismic moment was estimated at 2.55 ×1021Nm , equivalent to a moment magnitude of Mw 8.2. The maximum dislocation or slip is 14.5 m. As a coseismic effect, a local tsunami was generated, recorded by several tidal gauges and offshore buoys. The deformation pattern shows a coastal uplift and subsidence.

  7. Catalogs of micro-seismicity recorded at the Pechgraben landslide (Upper Austria)

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Hibert, Clément; Vouillamoz, Naomi; Malet, Jean-Philippe; Ottowitz, David; Jochum, Birgit

    2017-04-01

    The microseismicity activity of soft-rock landslides (i.e. developed in clays and clay-shales) present various types of seismic event associated with the slope deformation. They are assumed to be linked to the slip at the interface with the bedrock or at the boundaries of the landslide, to material failures, to fissure openings or to fluid transfers within the medium. It is currently necessary to document the microseismicity generated by soft-rock landslides on a larger amount of instrumented slopes in order to validate the current seismic typology and understand the source mechanisms in relation with the deformation. Previous studies have shown the interest of the Pechgraben (Upper Austria) clay-shale landslide for such documentation. This landslide was reactivated in summer 2013 after heavy rainfalls and is characterized by a shallow bedrock (<10m) and varying displacement rates in space and time (from mm.day-1 to cm.day-1). A short pilot seismic campaign (<9 days) was carried out in 2015 and micro-earthquakes as well as episodic tremor-like signals were recorded. A new passive seismic campaign was conducted during one month in November-December 2016. Two broadband three-component seismometers were installed facing each other on the two stable borders of the slope with one tripartite seismic array deployed in the center, on top of the most active area of the landslide. The deformation pattern of the slope was monitored remotely with a ground-based InSAR at a high frequency (10 min). This study aims to present the variety of seismic sources generated by the landslide, using supervised machine learning algorithms for event detection and classification, and to correlate the resulting micro-seismic catalog with the changes in time of the slope deformation.

  8. SOME APPLICATIONS OF SEISMIC SOURCE MECHANISM STUDIES TO ASSESSING UNDERGROUND HAZARD.

    USGS Publications Warehouse

    McGarr, A.; ,

    1984-01-01

    Various measures of the seismic source mechanism of mine tremors, such as magnitude, moment, stress drop, apparent stress, and seismic efficiency, can be related directly to several aspects of the problem of determining the underground hazard arising from strong ground motion of large seismic events. First, the relation between the sum of seismic moments of tremors and the volume of stope closure caused by mining during a given period can be used in conjunction with magnitude-frequency statistics and an empirical relation between moment and magnitude to estimate the maximum possible sized tremor for a given mining situation. Second, it is shown that the 'energy release rate,' a commonly-used parameter for predicting underground seismic hazard, may be misleading in that the importance of overburden stress, or depth, is overstated. Third, results involving the relation between peak velocity and magnitude, magnitude-frequency statistics, and the maximum possible magnitude are applied to the problem of estimating the frequency at which design limits of certain underground support equipment are likely to be exceeded.

  9. Web Based Seismological Monitoring (wbsm)

    NASA Astrophysics Data System (ADS)

    Giudicepietro, F.; Meglio, V.; Romano, S. P.; de Cesare, W.; Ventre, G.; Martini, M.

    Over the last few decades the seismological monitoring systems have dramatically improved tanks to the technological advancements and to the scientific progresses of the seismological studies. The most modern processing systems use the network tech- nologies to realize high quality performances in data transmission and remote controls. Their architecture is designed to favor the real-time signals analysis. This is, usually, realized by adopting a modular structure that allow to easy integrate any new cal- culation algorithm, without affecting the other system functionalities. A further step in the seismic processing systems evolution is the large use of the web based appli- cations. The web technologies can be an useful support for the monitoring activities allowing to automatically publishing the results of signals processing and favoring the remote access to data, software systems and instrumentation. An application of the web technologies to the seismological monitoring has been developed at the "Os- servatorio Vesuviano" monitoring center (INGV) in collaboration with the "Diparti- mento di Informatica e Sistemistica" of the Naples University. A system named Web Based Seismological Monitoring (WBSM) has been developed. Its main objective is to automatically publish the seismic events processing results and to allow displaying, analyzing and downloading seismic data via Internet. WBSM uses the XML tech- nology for hypocentral and picking parameters representation and creates a seismic events data base containing parametric data and wave-forms. In order to give tools for the evaluation of the quality and reliability of the published locations, WBSM also supplies all the quality parameters calculated by the locating program and allow to interactively display the wave-forms and the related parameters. WBSM is a modular system in which the interface function to the data sources is performed by two spe- cific modules so that to make it working in conjunction with a

  10. National physical activity surveillance: Users of wearable activity monitors as a potential data source.

    PubMed

    Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Fulton, Janet E

    2017-03-01

    The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5%) reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.

  11. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation

  12. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    salt dome at slightly shallower depth ˜0.35-0.65 km, with preferred isotropic volume-increase MT solutions. We find that GFs computed using the 3D velocity model generally result in better fits to the data than GFs computed using 1D velocity models, especially for the smaller amplitude tangential and vertical components, and result in better resolution of event locations. The dominant seismicity during 24-30 July 2012 is characterized by steady occurrence of seismic events with similar locations and MT solutions at a near-characteristic inter-event time. The steady activity is sometimes interrupted by tremor-like sequences of multiple events in rapid succession, followed by quiet periods of little of no seismic activity, in turn followed by the resumption of seismicity with a reduced seismic moment-release rate. The dominant volume-increase MT solutions and the steady features of the seismicity indicate a crack-valve-type source mechanism possibly driven by pressurized natural gas.

  13. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  14. Discrimination and Assessment of Induced Seismicity in Active Tectonic Zones: A Case Study from Southern California

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Lindsey, N.; Foxall, W.; Robertson, M.

    2014-12-01

    Earthquakes induced by human activity have become a matter of heightened public concern during recent years. Of particular concern is seismicity associated with wastewater injection, which has included events having magnitudes greater than 5. The causes of the induced events are primarily changes in pore-pressure, fluid volume and perhaps temperature due to injection. Recent research in the US has focused on mid-continental regions having low rates of naturally-occurring seismicity, where induced events can be identified by relatively straightforward spatial and temporal correlation of seismicity with high-volume injection activities. Recent examples include events correlated with injection of wastewater in Oklahoma, Arkansas, Texas and Ohio, and long-term brine injection in the Paradox Valley in Colorado. Even in some of the cases where there appears at first sight to be a clear spatial correlation between seismicity and injection, it has been difficult to establish causality definitively. Here, we discuss methods to identify induced seismicity in active tectonic regions. We concentrate our study on Southern California, where large numbers of wastewater injection wells are located in oil-producing basins that experience moderate to high rates of naturally-occurring seismicity. Using the catalog of high-precision CISN relocations produced by Hauksson et al. (BSSA, 2012), we aim to discriminate induced from natural events based on spatio-temporal patterns of seismicity occurrence characteristics and their relationships to injection activities, known active faults and other faults favorably oriented for slip under the tectonic stress field. Since the vast majority of induced earthquakes are very small, it is crucial to include all events above the detection threshold of the CISN in each area studied. In addition to exploring the correlation of seismicity to injection activities in time and space, we analyze variations in frequency-magnitude distributions, which can

  15. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE PAGES

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  16. Seismic Borehole Monitoring of CO2 Injection in an Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Daley, T. M.; Myer, L. R.

    2002-12-01

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous (~ 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data.

  17. Earthquake Source Parameter Estimates for the Charlevoix and Western Quebec Seismic Zones in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Onwuemeka, J.; Liu, Y.; Harrington, R. M.; Peña-Castro, A. F.; Rodriguez Padilla, A. M.; Darbyshire, F. A.

    2017-12-01

    The Charlevoix Seismic Zone (CSZ), located in eastern Canada, experiences a high rate of intraplate earthquakes, hosting more than six M >6 events since the 17th century. The seismicity rate is similarly high in the Western Quebec seismic zone (WQSZ) where an MN 5.2 event was reported on May 17, 2013. A good understanding of seismicity and its relation to the St-Lawrence paleorift system requires information about event source properties, such as static stress drop and fault orientation (via focal mechanism solutions). In this study, we conduct a systematic estimate of event source parameters using 1) hypoDD to relocate event hypocenters, 2) spectral analysis to derive corner frequency, magnitude, and hence static stress drops, and 3) first arrival polarities to derive focal mechanism solutions of selected events. We use a combined dataset for 817 earthquakes cataloged between June 2012 and May 2017 from the Canadian National Seismograph Network (CNSN), and temporary deployments from the QM-III Earthscope FlexArray and McGill seismic networks. We first relocate 450 events using P and S-wave differential travel-times refined with waveform cross-correlation, and compute focal mechanism solutions for all events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for all events. We choose the final corner frequency and moment values for each event using the median estimate at all stations. We use the corner frequency and moment estimates to calculate moment magnitudes, static stress-drop values and rupture radii, assuming a circular rupture model. We also investigate scaling relationships between parameters, directivity, and compute apparent source dimensions and source time functions of 15 M 2.4+ events from second-degree moment estimates. To the first-order, source dimension

  18. Joint the active source and passive source seismic to research the fine crustal structure of the Lushan area

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yu, C.

    2017-12-01

    On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.

  19. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  20. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    NASA Astrophysics Data System (ADS)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  1. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank

    2012-04-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of - 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = - 0.4, when compared to the regional networks operating in West Bohemia ( M c > 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.

  2. Active fault databases and seismic hazard calculations: a compromise between science and practice. Review of case studies from Spain.

    NASA Astrophysics Data System (ADS)

    Garcia-Mayordomo, Julian; Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Alvarez-Gomez, Jose Antonio; Martinez-Diaz, Jose Jesus

    2017-04-01

    Since the Quaternary Active Faults Database of Iberia (QAFI) was released in February 2012 a number of studies aimed at producing seismic hazard assessments have made use of it. We will present a summary of the shortcomings and advantages that were faced when QAFI was considered in different seismic hazard studies. These include the production of the new official seismic hazard map of Spain, performed in the view of the foreseen adoption of Eurocode-8 throughout 2017. The QAFI database was considered as a complementary source of information for designing the seismogenic source-zone models used in the calculations, and particularly for the estimation of maximum magnitude distribution in each zone, as well as for assigning the predominant rupture mechanism based on style of faulting. We will also review the different results obtained by other studies that considered QAFI faults as independent seismogenic-sources in opposition to source-zones, revealing, on one hand, the crucial importance of data-reliability and, on the other, the very much influence that ground motion attenuation models have on the actual impact of fault-sources on hazard results. Finally, we will present briefly the updated version of the database (QAFI v.3, 2015), which includes an original scheme for evaluating the reliability of fault seismic parameters specifically devised to facilitate decision-making to seismic hazard practitioners.

  3. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    NASA Astrophysics Data System (ADS)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  4. Feasibility of the Scalable, Automated, Semipermanent Seismic Array (SASSA) to Monitor Possible Carbon Dioxide Migration

    NASA Astrophysics Data System (ADS)

    Livers, A. J.; Burnison, S. A.; Salako, O.; Barajas-Olalde, C.; Hamling, J. A.; Gorecki, C. D.

    2016-12-01

    The feasibility of monitoring potential carbon dioxide (CO2) migration in a reservoir using a sparse seismic array is being evaluated by the Energy & Environmental Research Center (EERC) at the Denbury Onshore LLC-operated Bell Creek oil field in Montana, which is undergoing commercial CO2 enhanced oil recovery (EOR). This new method may provide an economical means of continuously monitoring the CO2 plume edge and the CO2 reservoir boundaries and/or to interpret vertical or lateral out-of-reservoir CO2 migration. A 96-station scalable, automated, semipermanent seismic array (SASSA) was deployed in October 2015 to detect and track CO2 plume migration not by imaging, but by monitoring discrete source-receiver midpoints. Midpoints were strategically located within and around four injector-producer patterns covering approximately one square mile. Three-dimensional (3-D) geophysical ray tracing was used to determine surface receiver locations. Receivers used were FairfieldNodal Zland three-component, autonomous, battery-powered nodes. A GISCO ESS850 accelerated weight drop source located in a secure structure was remotely fired on a weekly basis for one calendar year, including a two-month period prior to initiation of CO2 injection to establish a baseline. Fifty shots were fired one day each week to facilitate increased signal-to-noise through novel receiver domain processing and vertical stacking. Receiver domain processing allowed for individualization of processing parameters to maximize signal enhancement and noise attenuation. Reflection events in the processed SASSA data correlate well to 3-D surface survey data collected in the field. Preliminary time-lapse data results for several individual SASSA receivers show a phase shift in the reflection events below the reservoir after injection, suggesting possible migration of the CO2 in the reservoir to the corresponding midpoint locations. This work is supported by the U.S. Department of Energy National Energy

  5. Electrical Tomography for seismic hazard monitoring: state-of-the-art and future challenges.

    NASA Astrophysics Data System (ADS)

    Lapenna, Vincenzo; Piscitelli, Sabatino

    2010-05-01

    The Self-Potential (passive) and DC resistivity (active) methods have been considered for a long period as ancillary and/or secondary tools in geophysical exploration, simplified procedures for data processing and purely qualitative techniques for data inversion were the main drawbacks. Recently, innovative algorithms for tomographic data inversion, new models for describing the electrokinetic phenomena associated to the subsurface fluid migration and modern technologies for the field surveying have rapidly transformed these geoelectrical methods in powerful tools for geo-hazard monitoring. These technological and methodological improvements disclose the way for a wide spectra of interesting and challenging applications: mapping of the water content in landslide bodies; identification of fluid and gas emissions in volcanic areas; search of earthquake precursors. In this work we briefly resume the current start-of-the-art and analyse the new applications of the Electrical Tomography in the seismic hazard monitoring. An overview of the more interesting results obtained in different worldwide areas (i.e. Mediterranean Basin, California, Japan) is presented and discussed. To-date, combining novel techniques for data inversion and new strategies for the field data acquisition is possible to obtain high-resolution electrical images of complex geological structures. One of the key challenges for the near-future will be the integration of active (DC resistivity) and passive (Self-Potential) measurements for obtaining 2D, 3D and 4D electrical tomographies able to follow the spatial and temporal dynamics of electrical parameters (i.e. resistivity, self-potential). This approach could reduce the ambiguities related to the interpretation of anomalous SP signals in seismic active areas and their applicability for short-term earthquake prediction. The resistivity imaging can be applied for illuminating the fault geometry, while the SP imaging is the key instrument for capturing

  6. Romanian Data Center: A modern way for seismic monitoring

    NASA Astrophysics Data System (ADS)

    Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin

    2014-05-01

    The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating

  7. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    NASA Astrophysics Data System (ADS)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Studying spatial-temporal variations of subsurface velocity structures is still a challenge work, but it can provide important information not only on geometry of a fault, but also the rheology change induced from the strong earthquake. In 1999, a disastrous Chi-Chi earthquake (Mw7.6; Chi-Chi EQ) occurred in central Taiwan and caused great impacts on Taiwan's society. Therefore, the major objective of this research is to investigate whether the rheology change of fault can be associated with seismogenic process before strong earthquake. In addition, after the strike of the Chi-Chi EQ, whether the subsurface velocity structure resumes to its steady state is another issue in this study. Therefore, for the above purpose, we have applied a 3D tomographic technique to obtain P- and S-wave velocity structures in central Taiwan using travel time data provided by the Central Weather Bureau (CWB). One major advantage of this method is that we can include out-of-network data to improve the resolution of velocity structures at deeper depths in our study area. The results show that the temporal variations of Vp are less significant than Vs (or Vp/Vs ratio), and Vp is not prominent perturbed before and after the occurrence of the Chi-Chi EQ. However, the Vs (or Vp/Vs ratio) structure in the source area demonstrates significant spatial-temporal difference before and after the mainshock. From the results, before the mainshock, Vs began to decrease (Vp/Vs ratio was increased as well) at the hanging wall of Chelungpu fault, which may be induced by the increasing density of microcracks and fluid. But in the vicinities of Chi-Chi Earthquake's source area, Vs was increasing (Vp/Vs ratio was also decreased). This phenomenon may be owing to the closing of cracks or migration of fluid. Due to the different physical characteristics around the source area, strong earthquake may be easily nucleated at the junctional zone. Our findings suggest that continuously monitoring the Vp and Vs (or

  8. Data Analysis of Seismic Sequence in Central Italy in 2016 using CTBTO- International Monitoring System

    NASA Astrophysics Data System (ADS)

    Mumladze, Tea; Wang, Haijun; Graham, Gerhard

    2017-04-01

    The seismic network that forms the International Monitoring System (IMS) of the Comprehensive Nuclear-test-ban Treaty Organization (CTBTO) will ultimately consist of 170 seismic stations (50 primary and 120 auxiliary) in 76 countries around the world. The Network is still under the development, but currently more than 80% of the network is in operation. The objective of seismic monitoring is to detect and locate underground nuclear explosions. However, the data from the IMS also can be widely used for scientific and civil purposes. In this study we present the results of data analysis of the seismic sequence in 2016 in Central Italy. Several hundred earthquakes were recorded for this sequence by the seismic stations of the IMS. All events were accurately located the analysts of the International Data Centre (IDC) of the CTBTO. In this study we will present the epicentral and magnitude distribution, station recordings and teleseismic phases as obtained from the Reviewed Event Bulletin (REB). We will also present a comparison of the database of the IDC with the databases of the European-Mediterranean Seismological Centre (EMSC) and U.S. Geological Survey (USGS). Present work shows that IMS data can be used for earthquake sequence analyses and can play an important role in seismological research.

  9. Seismic Monitoring of Stability of Unique Historical Buildings in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Broz, M.; Strunc, J.; Buben, J.

    2008-05-01

    The persistence of unique Historical Buildings is restricted due to weathering of construction material enhanced by meteorological processes such as storms, driving rain and temperature variations beneath the freezing point. Dynamic forces endangering the mechanical stability of exposed elements of building structures could be caused also by impacts of seismic waves. The long-time decrease of earthquake resistance is monitored using empirical functions of seismic response. This method is based on evaluation the co-spectra of exciting and forced vibrations of foundations and the structure elements in question. This poster notifies three examples of utilization of this method as follows: 1) In the course of renovating the St. Barbora temple in the Kutná Hora village, the vibrations caused by meteorological processes, supersonic aircraft transit and blasting in quarries have been evaluated. After completing the renovation of endangered spire elements, the local maximum of co-spectral function at 4Hz was shifted to 7Hz and the function approached more likely a wide-band course. 2) In the course of installation of the third bell in the bell tower of the of the Sázava monastery, the co-spectra of forced vibrations of tower walls were monitored and a more convenient time-function of bell clang was adjusted. 3) In connection with the construction of a highway tunnel in the 1,4 km distance from the St. Vit cathedral in the Praha-Hradèany castle, the long-term schedule of motoring seismic vibrations was started. In the course of driving the tunnels, the mili-sec blasting of charges up to 5 kg is used. Seismic vibrations are recorded by pickups situated on the subsoil and on the voussoir arch. The digital multichannel seismic recording apparatus (256 samples per sec) is equipped for continuous telemetric data transfer and automated evaluation. (Grant Foundation of the Czech Republic, 103/07/1522).

  10. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less

  11. Using Ambient Seismic Noise to Monitor Post-Seismic Relaxation After the 2010 Mw 7.1 Darfield Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Heckels, R.; Townend, J.

    2015-12-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into the crustal response of the earth. The use of ambient seismic noise to monitor these changes is becoming increasingly widespread. Cross-correlations of long-duration ambient noise records can be used to give stable impulse response functions without the need for repeated seismic events. Temporal velocity changes were detected in the four months following the September 2010 Mw 7.1 Darfield event in South Island, New Zealand, using temporary seismic networks originally deployed to record aftershocks in the region. The arrays consisted of stations lying on and surrounding the fault, with a maximum inter-station distance of 156km. The 2010-2011 Canterbury earthquake sequence occurred largely on previously unknown and buried faults. The Darfield earthquake was the first and largest in a sequence of events that hit the region, rupturing the Greendale Fault. A surface rupture of nearly 30km was observed. The sequence also included the Mw 6.3 February 2011 Christchurch event, which caused widespread damage throughout the city and resulted in almost 200 deaths. Nine-component, day-long Green's functions were computed for frequencies between 0.1 - 1.0 Hz for full waveform seismic data from immediately after the 4th September 2010 earthquake until mid-January 2011. Using the moving window cross-spectral method, stacks of daily functions covering the study period (reference functions), were compared to consecutive 10 day stacks of cross-correlations to measure time delays between them. These were then inverted for seismic velocity changes with respect to the reference functions. Over the study period an increase in seismic velocity of 0.25% ± 0.02% was determined proximal to the Greendale fault. These results are similar to studies in other regions, and we attribute the changes to post-seismic relaxation through crack-healing of the Greendale Fault and throughout the region.

  12. Cluster Computing For Real Time Seismic Array Analysis.

    NASA Astrophysics Data System (ADS)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  13. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    NASA Astrophysics Data System (ADS)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  14. Seismic monitoring at the Decatur, Ill., CO2 sequestration demonstration site

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Walter, Steve R.; Ellsworth, William L.

    2014-01-01

    The viability of carbon capture and storage (CCS) to reduce emissions of greenhouse gases depends on the ability to safely sequester large quantities of CO2 over geologic time scales. One concern with CCS is the potential of induced seismicity. We report on ongoing seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL, in an effort to understand the potential hazards posed by injection-induced seismicity associated with geologic CO2 sequestration. At Decatur, super-critical CO2 is injected at 2.1 km depth into the 550-m-thick Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap rock is the Eau Claire Shale, a 100- to 150-m-thick unit at a depth of roughly 1.5 km. The USGS seismic network consists of 12 stations, three of which have surface accelerometers and three-component borehole geophones. We derived a one-dimensional velocity models from a vertical seismic profile acquired by Archer-Daniels-Midland (ADM) and the Illinois State Geological Survey (ISGS) to a depth of 2.2 km, tied into shallow acoustic logs from our borehole stations and assuming a 6 km/sec P-wave velocity for granite below 2.2 km. We further assume a constant ratio of P- to S-wave velocities of 1.83, as derived from velocity model inversions. We use this velocity model to locate seismic events, all of which are within the footprint of our network. So far magnitudes of locatable events range from Mw = -1.52 to 1.07. We further improved the hypocentral precision of microseismic events when travel times and waveforms are sufficiently similar by employing double-difference relocation techniques, with relative location errors less than 80 m horizontally and 100 m vertically. We observe tend to group in three distinct clusters: ∼0.4 to 1.0 km NE, 1.6 to 2.4 km N, and ∼1.8 to 2.6 km WNW from the injection well. The first cluster of microseismicity forms a roughly linear trend, which may represent a pre-existing geologic

  15. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    NASA Astrophysics Data System (ADS)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability

  16. Studying temporal velocity changes with ambient seismic noise at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P. G.; Haney, M. M.; Thurber, C. H.

    2012-04-01

    In order to understand the dynamics of volcanoes and to assess the associated hazards, the analysis of ambient seismic noise - a continuous passive source - has been used for both imaging and monitoring temporal changes in seismic velocity. Between pairs of seismic stations, surface wave Green's functions can be retrieved from the background ocean-generated noise being sensitive to the shallow subsurface. Such Green's functions allow the measurement of very small temporal perturbations in seismic velocity with a variety of applications. In particular, velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. Here we perform ambient seismic noise interferometry to study temporal changes in seismic velocities within the shallow (<5km) subsurface of the Hawaiian volcanoes. Our study is the first to assess the potential for using ambient noise analyses as a tool for Hawaiian volcano monitoring. Five volcanoes comprise the island of Hawaii, of which two are active: Mauna Loa volcano, which last erupted in 1984, and Kilauea volcano, where the Pu'u'O'o-Kupaianaha eruption along the east rift zone has been ongoing since 1983. For our analysis, we use data from the USGS Hawaiian Volcano Observatory (HVO) seismic network from 05/2007 to 12/2009. Our study period includes the Father's Day dike intrusion into Kilauea's east rift zone in mid-June 2007 as well as increased summit activity commencing in late 2007 and leading to several minor explosions in early 2008. These volcanic events are of interest for the study of potential associated seismic velocity changes. However, we find that volcanic tremor complicates the measurement of velocity changes. Volcanic tremor is continuously present during most of our study period, and contaminates the recovered Green's functions for station pairs across the entire island. Initial results suggest that a careful quality assessment (i.e. visually inspecting the Green's functions and filtering

  17. Variation in harbour porpoise activity in response to seismic survey noise

    PubMed Central

    Pirotta, Enrico; Brookes, Kate L.; Graham, Isla M.; Thompson, Paul M.

    2014-01-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  18. Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio

    2016-07-01

    From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.

  19. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  20. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  1. Expected Seismicity and the Seismic Noise Environment of Europa

    NASA Astrophysics Data System (ADS)

    Panning, Mark P.; Stähler, Simon C.; Huang, Hsin-Hua; Vance, Steven D.; Kedar, Sharon; Tsai, Victor C.; Pike, William T.; Lorenz, Ralph D.

    2018-01-01

    Seismic data will be a vital geophysical constraint on internal structure of Europa if we land instruments on the surface. Quantifying expected seismic activity on Europa both in terms of large, recognizable signals and ambient background noise is important for understanding dynamics of the moon, as well as interpretation of potential future data. Seismic energy sources will likely include cracking in the ice shell and turbulent motion in the oceans. We define a range of models of seismic activity in Europa's ice shell by assuming each model follows a Gutenberg-Richter relationship with varying parameters. A range of cumulative seismic moment release between 1016 and 1018 Nm/yr is defined by scaling tidal dissipation energy to tectonic events on the Earth's moon. Random catalogs are generated and used to create synthetic continuous noise records through numerical wave propagation in thermodynamically self-consistent models of the interior structure of Europa. Spectral characteristics of the noise are calculated by determining probabilistic power spectral densities of the synthetic records. While the range of seismicity models predicts noise levels that vary by 80 dB, we show that most noise estimates are below the self-noise floor of high-frequency geophones but may be recorded by more sensitive instruments. The largest expected signals exceed background noise by ˜50 dB. Noise records may allow for constraints on interior structure through autocorrelation. Models of seismic noise generated by pressure variations at the base of the ice shell due to turbulent motions in the subsurface ocean may also generate observable seismic noise.

  2. Ambient Seismic Noise Monitoring of Time-lapse Velocity Changes During CO2 Injection at Otway, South Australia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Lumley, D. E.

    2017-12-01

    We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.

  3. Advancing internal erosion monitoring using seismic methods in field and laboratory studies

    NASA Astrophysics Data System (ADS)

    Parekh, Minal L.

    embankment surface. Analysis of root mean squared amplitude and AE threshold counts indicated activity focused at the toe in locations matching the sand boils. This analysis also compared the various detection methods employed at the 2012 test to discuss a timeline of detection related to observable behaviors of the structure. The second area of research included designing and fabricating an instrumented laboratory apparatus for investigating active seismic wave propagation through soil samples. This dissertation includes a description of the rigid wall permeameter, instrumentation, control, and acquisitions systems along with descriptions of the custom-fabricated seismic sensors. A series of experiments (saturated sand, saturated sand with a known static anomaly placed near the center of the sample, and saturated sand with a diminishing anomaly near the center of the sample) indicated that shear wave velocity changes reflected changes in the state of stress of the soil. The mean effective stress was influenced by the applied vertical axial load, the frictional interaction between the soil and permeameter wall, and the degree of preloading. The frictional resistance was sizeable at the sidewall of the permeameter and decreased the mean effective stress with depth. This study also included flow tests to monitor changes in shear wave velocities as the internal erosion process started and developed. Shear wave velocity decreased at voids or lower density zones in the sample and increased as arching redistributes loads, though the two conditions compete. Finally, the social and political contexts surrounding nondestructive inspection were considered. An analogous approach utilized by the aerospace industry was introduced: a case study comparing the path toward adopting nondestructive tools as standard practices in monitoring aircraft safety. Additional lessons for dam and levee safety management were discussed from a Science, Technology, Engineering, and Policy (STEP

  4. Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy

    USGS Publications Warehouse

    Auger, E.; D'Auria, L.; Martini, M.; Chouet, B.; Dawson, P.

    2006-01-01

    We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green's functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano. Copyright 2006 by the American Geophysical Union.

  5. PRESS40: a project for involving students in active seismic risk mitigation

    NASA Astrophysics Data System (ADS)

    Barnaba, Carla; Contessi, Elisa; Rosa Girardi, Maria

    2016-04-01

    To memorialize the anniversary of the 1976 Friuli earthquake, the Istituto Statale di Istruzione Superiore "Magrini Marchetti" in Gemona del Friuli (NE Italy), with the collaboration of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), has promoted the PRESS40 Project (Prevenzione Sismica nella Scuola a 40 anni dal terremoto del Friuli, that in English sounds like "Seismic Prevention at School 40 years later the Friuli earthquake"). The project has developed in the 2015-2016 school year, starting from the 40th anniversary of the Friuli earthquake, and it aims to disseminate historical memory, seismic culture and awareness of seismic safety in the young generations, too often unconscious of past experiences, as recent seismic hazard perception tests have demonstrated. The basic idea of the PRESS40 Project is to involve the students in experimental activities to be active part of the seismic mitigation process. The Project is divided into two main parts, the first one in which students learn-receive knowledge from researchers, and the second one in which they teach-bring knowledge to younger students. In the first part of the project, 75 students of the "Magrini Marchetti" school acquired new geophysical data, covering the 23 municipalities from which they come from. These municipalities represent a wide area affected by the 1976 Friuli earthquake. In each locality a significant site was examined, represented by a school area. At least, 127 measurements of ambient noise have been acquired. Data processing and interpretation of all the results are still going on, under the supervision of OGS researchers.The second part of the project is planned for the early spring, when the students will present the results of geophysical survey to the younger ones of the monitored schools and to the citizens in occasion of events to commemorate the 40th anniversary of the Friuli earthquake.

  6. A seismically active section of the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Wald, David J.; Wallace, Terry C.

    1986-10-01

    The section of the Southwest Indian Ocean Ridge west of the Prince Edward Fracture zone has a large ridge axis offset and a complicated ridge-transform morphology. We have determined the source mechanisms of transform earthquakes along this portion of the ridge from an inversion of long-period P and SH waveforms. The seismicity is characterized by anomalous faulting mechanisms, source complexity and an unexpectedly large seismic moment release. Several earthquakes with dip-slip components of faulting have been recognized on the central section of the Andrew Bain and 32° E transforms suggesting geometrical complexity along the transform. This region has experienced a Mw = 8.0 transform earthquake in 1942, yet we observe a seismic slip rate during the last 20 years that is still comparable to the predicted spreading rate (1.6 cm/yr). The calculated slip rate over a period of 60 years is three times greater than the expected rate of spreading.

  7. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

  8. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    NASA Astrophysics Data System (ADS)

    De Freitas, J. M.

    2011-05-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance.

  9. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  10. Satellite Monitoring of Accumulation of Strain in the Earth's Crust Related to Seismic and Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.

    2009-12-01

    Our studies have shown that the strain energy accumulation deep in the Earth’s crust that precedes seismic and volcanic activity can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.

  11. Seismic databases of The Caucasus

    NASA Astrophysics Data System (ADS)

    Gunia, I.; Sokhadze, G.; Mikava, D.; Tvaradze, N.; Godoladze, T.

    2012-12-01

    The Caucasus is one of the active segments of the Alpine-Himalayan collision belt. The region needs continues seismic monitoring systems for better understanding of tectonic processes going in the region. Seismic Monitoring Center of Georgia (Ilia State University) is operating the digital seismic network of the country and is also collecting and exchanging data with neighboring countries. The main focus of our study was to create seismic database which is well organized, easily reachable and is convenient for scientists to use. The seismological database includes the information about more than 100 000 earthquakes from the whole Caucasus. We have to mention that it includes data from analog and digital seismic networks. The first analog seismic station in Georgia was installed in 1899 in the Caucasus in Tbilisi city. The number of analog seismic stations was increasing during next decades and in 1980s about 100 analog stations were operated all over the region. From 1992 due to political and economical situation the number of stations has been decreased and in 2002 just two analog equipments was operated. New digital seismic network was developed in Georgia since 2003. The number of digital seismic stations was increasing and in current days there are more than 25 digital stations operating in the country. The database includes the detailed information about all equipments installed on seismic stations. Database is available online. That will make convenient interface for seismic data exchange data between Caucasus neighboring countries. It also makes easier both the seismic data processing and transferring them to the database and decreases the operator's mistakes during the routine work. The database was created using the followings: php, MySql, Javascript, Ajax, GMT, Gmap, Hypoinverse.

  12. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  13. The seismic traffic footprint: Tracking trains, aircraft, and cars seismically

    NASA Astrophysics Data System (ADS)

    Riahi, Nima; Gerstoft, Peter

    2015-04-01

    Although naturally occurring vibrations have proven useful to probe the subsurface, the vibrations caused by traffic have not been explored much. Such data, however, are less sensitive to weather and low visibility compared to some common out-of-road traffic sensing systems. We study traffic-generated seismic noise measured by an array of 5200 geophones that covered a 7 × 10 km area in Long Beach (California, USA) with a receiver spacing of 100 m. This allows us to look into urban vibrations below the resolution of a typical city block. The spatiotemporal structure of the anthropogenic seismic noise intensity reveals the Blue Line Metro train activity, departing and landing aircraft in Long Beach Airport and their acceleration, and gives clues about traffic movement along the I-405 highway at night. As low-cost, stand-alone seismic sensors are becoming more common, these findings indicate that seismic data may be useful for traffic monitoring.

  14. Calving seismicity from iceberg-sea surface interactions

    USGS Publications Warehouse

    Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.

    2012-01-01

    Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.

  15. Exploring hydrocarbon-bearing shale formations with multi-component seismic technology and evaluating direct shear modes produced by vertical-force sources

    NASA Astrophysics Data System (ADS)

    Alkan, Engin

    -P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University's Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents.

  16. A new approach to geographic partitioning of probabilistic seismic hazard using seismic source distance with earthquake extreme and perceptibility statistics: an application to the southern Balkan region

    NASA Astrophysics Data System (ADS)

    Bayliss, T. J.

    2016-02-01

    The southeastern European cities of Sofia and Thessaloniki are explored as example site-specific scenarios by geographically zoning their individual localized seismic sources based on the highest probabilities of magnitude exceedance. This is with the aim of determining the major components contributing to each city's seismic hazard. Discrete contributions from the selected input earthquake catalogue are investigated to determine those areas that dominate each city's prevailing seismic hazard with respect to magnitude and source-to-site distance. This work is based on an earthquake catalogue developed and described in a previously published paper by the author and components of a magnitude probability density function. Binned magnitude and distance classes are defined using a joint magnitude-distance distribution. The prevailing seismicity to each city-as defined by a child data set extracted from the parent earthquake catalogue for each city considered-is divided into distinct constrained data bins of small discrete magnitude and source-to-site distance intervals. These are then used to describe seismic hazard in terms of uni-variate modal values; that is, M* and D* which are the modal magnitude and modal source-to-site distance in each city's local historical seismicity. This work highlights that Sofia's dominating seismic hazard-that is, the modal magnitudes possessing the highest probabilities of occurrence-is located in zones confined to two regions at 60-80 km and 170-180 km from this city, for magnitude intervals of 5.75-6.00 Mw and 6.00-6.25 Mw respectively. Similarly, Thessaloniki appears prone to highest levels of hazard over a wider epicentral distance interval, from 80 to 200 km in the moment magnitude range 6.00-6.25 Mw.

  17. Monitoring the englacial fracture state using virtual-reflector seismology

    NASA Astrophysics Data System (ADS)

    Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.

    2017-12-01

    Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.

  18. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  19. Multichannel seismic/oceanographic/biological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.

    2011-12-01

    Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent

  20. Determination of source parameters of the 2017 Mount Agung volcanic earthquake from moment-tensor inversion method using local broadband seismic waveforms

    NASA Astrophysics Data System (ADS)

    Madlazim; Prastowo, T.; Supardiyono; Hardy, T.

    2018-03-01

    Monitoring of volcanoes has been an important issue for many purposes, particularly hazard mitigation. With regard to this, the aims of the present work are to estimate and analyse source parameters of a volcanic earthquake driven by recent magmatic events of Mount Agung in Bali island that occurred on September 28, 2017. The broadband seismogram data consisting of 3 local component waveforms were recorded by the IA network of 5 seismic stations: SRBI, DNP, BYJI, JAGI, and TWSI (managed by BMKG). These land-based observatories covered a full 4-quadrant region surrounding the epicenter. The methods used in the present study were seismic moment-tensor inversions, where the data were all analyzed to extract the parameters, namely moment magnitude, type of a volcanic earthquake indicated by percentages of seismic components: compensated linear vector dipole (CLVD), isotropic (ISO), double-couple (DC), and source depth. The results are given in the forms of variance reduction of 65%, a magnitude of M W 3.6, a CLVD of 40%, an ISO of 33%, a DC of 27% and a centroid-depth of 9.7 km. These suggest that the unusual earthquake was dominated by a vertical CLVD component, implying the dominance of uplift motion of magmatic fluid flow inside the volcano.

  1. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions.

    PubMed

    Gibbons, Steven J; Ringdal, Frode; Kvaerna, Tormod

    2007-11-01

    A database has been established of seismic and infrasonic recordings from more than 100 well-constrained surface explosions, conducted by the Finnish military to destroy old ammunition. The recorded seismic signals are essentially identical and indicate that the variation in source location and magnitude is negligible. In contrast, the infrasonic arrivals on both seismic and infrasound sensors exhibit significant variation both with regard to the number of detected phases, phase travel times, and phase amplitudes, which would be attributable to atmospheric factors. This data set provides an excellent database for studies in sound propagation, infrasound array detection, and direction estimation.

  2. New seismic study begins in Puerto Rico

    USGS Publications Warehouse

    Tarr, A.C.

    1974-01-01

    A new seismological project is now underway in Puerto Rico to provide information needed for accurate assessment of the island's seismic hazard. The project should also help to increase understanding of the tectonics and geologic evolution of the Caribbean region. The Puerto Rico Seismic Program is being conducted by the Geological Survey with support provided by the Puerto Rico Water Resources Authority, an agency responsible for generation and distribution of electric power throughout the Commonwealth. The Program will include the installation of a network of high quality seismograph stations to monitor seismic activity on and around Puerto Rico. These stations will be distributed across the island to record the seismicity as uniformly as possible. The detection and accurate location of small earthquakes, as well as moderate magnitude shocks, will aid in mapping active seismic zones and in compiling frequency of occurrence statistics which ultimately wil be useful in seismic risk-zoning of hte island. 

  3. Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Pondrelli, Silvia; Salimbeni, Simone; Cavaliere, Adriano; Serpelloni, Enrico; Danecek, Peter; Lovati, Sara; Massa, Marco

    2015-06-01

    The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~ 1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~ NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms < 0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds > 0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.

  4. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  5. Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework

    NASA Astrophysics Data System (ADS)

    Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.

    2015-12-01

    Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes

  6. Monitoring the tidal response of a sea levee with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, Thomas; Rittgers, Justin B.; Mooney, Michael A.; Kanning, Wim; Draganov, Deyan

    2017-03-01

    Internal erosion, a major cause of failure of earthen dams and levees, is often difficult to detect at early stages using traditional visual inspection. The passive seismic-interferometry technique could enable the early detection of internal changes taking place within these structures. We test this technique on a portion of the sea levee of Colijnsplaat, Netherlands, which presents signs of concentrated seepage in the form of sandboils. Applying seismic interferometry to ambient noise collected over a 12-hour period, we retrieve surface waves propagating along the levee. We identify the contribution of two dominant ambient seismic noise sources: the traffic on the Zeeland bridge and a nearby wind turbine. Here, the sea-wave action does not constitute a suitable noise source for seismic interferometry. Using the retrieved surface waves, we compute time-lapse variations of the surface-wave group velocities during the 12-hour tidal cycle for different frequency bands, i.e., for different depth ranges. The estimated group-velocity variations correlate with variations in on-site pore-water pressure measurements that respond to tidal loading. We present lateral profiles of these group-velocity variations along a 180-meter section of the levee, at four different depth ranges (0m-40m). On these profiles, we observe some spatially localized relative group-velocity variations of up to 5% that might be related to concentrated seepage.

  7. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  8. Definition of a unique model for the improvement of the monitoring network and seismic risk reduction of the school buildings in Italy

    NASA Astrophysics Data System (ADS)

    Greco, M.; Console, R.; Colangelo, A.; Cioè, A.; Trivigno, L.

    2015-12-01

    In the latest decade the safety of the Italian schools against seismic risk is a crucial subject for the Italian legislation as well as to the UN Convention on the DRR and the more specific priorities adopted even within the OECD. Recently, the Italian Parliament approved a law (L98/2013) which launched the Commissioning Safety of School Buildings Plan and the Definition of a Unique Model, to be developed by the CGIAM, in order to improve monitoring network and seismic risk reduction (SRR). The objectives of such a law deals with increasing in the knowledge of public actions aimed to improve the effectiveness of the SRR policy on school buildings. The actions of the CGIAM will consist in the identification of a significant number of school buildings in Italy, mainly in terms of type of construction and material, on which calibrate specific synthetic parameters and test models. Furthermore, the activities are addressed to quantitatively evaluation of intervention efficacy, to set up simple systems of instrumental monitoring, even able to test the possibility of periodical checks of the state of general preservation. The main issues carried on by the CGIAM mainly concern the completion and enrichment of the existing data base of school buildings, even through the collaboration of the Ministries and other relevant Italian research institutions, the evaluation of seismic hazard and site condition analysis as well as the definition of other seismic risk factors. Nevertheless a cost-benefit analysis as well as application and dissemination of such tools are proposed too. At the same time, the CGIAM contributes to the definition of experimental installation and use of a Simplified Accelerometric Monitoring Network for school buildings comprehensive of testing phase on a limited number of structures. The work proposes a synthetic overview of the employed methodologies as well as the first results arising from the research and implementation activities.

  9. The GNSS Component of the Seismic Monitoring System in Chile

    NASA Astrophysics Data System (ADS)

    Barrientos, S. E.

    2016-12-01

    Chile is amongst the most seismically active countries in the world. Since mid-XVI Century, a magnitude 8 or more earthquake has taken place every dozen of years, as an average. In the last 100 years, more than ten events with magnitudes around 8 or larger have taken place in this part of world. Three events with M>8 have taken place only in the last six years. The largest earthquake ever recorded took place in May, 1960, in southern Chile. Such extreme seismic activity is the result of the interaction of the Nazca, Antarctic, Scotia and South American plates in southwestern South America where Chile is located. These megathrust earthquakes exhibit long rupture regions reaching several hundreds of km with fault displacements of several tens of meters. At least eighteen of these earthquakes have generated local tsunamis with runups larger than 4 m -including events in 2010, 2014 and 2015- therefore it is mandatory to establish a system with capabilities to rapidly evaluate the tsunamigenic potential of these events. In 2013, the newly created National Seismological Center (CSN) of the University of Chile was tasked to upgrade the countrýs seismic network by increasing the numbers of real-time monitoring stations. The most important change to previous practices is the establishment of a GNSS network composed by 130 devices, in addition to the incorporation of 65 new collocated broadband and strong motion instruments. Additional 297 strong motion instruments for engineering purposes complement the system. Forty units -of the 130 devices- present an optional RTX capability, where satellite orbits and clock corrections are sent to the field device producing a 1-Hz position stream at 4-cm level. First records of ground displacement -using this technology-were recorded at the time of the largest aftershock (Mw=7.6) of the sequence that affected northern Chile in 2014. The CSN is currently developing automatic detectors and amplitude estimators of displacement from the

  10. Georgia-Armenia Transboarder seismicity studies

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  11. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there

  12. Real-time seismic monitoring and functionality assessment of a building

    USGS Publications Warehouse

    Celebi, M.; ,

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  13. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding

  14. Long term monitoring of the micro-seismicity along the Main Marmara Fault, Turkey using template matching

    NASA Astrophysics Data System (ADS)

    Matrullo, Emanuela; Lengliné, Olivier; Schmittbuhl, Jean; Karabulut, Hayrullah; Bouchon, Michel

    2017-04-01

    The Main Marmara Fault (MMF) represents a 150 km un-ruptured segment of the North Anatolian Fault located below the Marmara Sea. It poses a significant hazard for the large cities surrounding the region and in particular for the megalopolis of Istanbul. The seismic activity has been continuously monitored since 2007 by various seismic networks. For this purpose it represents an extraordinary natural laboratory to study in details the whole seismicity bringing insights into the geometry of the faults systems at depth and mechanical properties at various space-time scales. Waveform similarity-based analysis is performed on the continuous recordings to construct a refined catalog of earthquakes from 2009 to 2014. High-resolution relocation was applied using the double-difference algorithm, using cross-correlation differential travel-time data. Seismic moment magnitudes (Mw) have been computed combining the inversion of earthquake S-wave displacement spectra for the larger events and the estimation of the relative size of multiplets using the singular value decomposition (SVD) thanks the highly coherent waveforms. The obtained catalog of seismicity includes more than 15,000 events. The seismicity strongly varying along the strike and depth exhibits a complex structure that confirms the segmentation of the fault with different mechanical behavior (Schmittbuhl et al., GGG, 2016). In the central part of the Marmara Sea, seismicity is poor and scattered. To the east, in the Cinarcick basin, along the MMF, the seismicity is mainly located around 8-15 km in depth, except at both ends of this basin where the seismicity extends vertically up to surface. In the Yalova and Gemlik region (to the east not on the MMF) the seismicity is distributed over a wide range of depth (from surface to 15 km deep) and is characterized by several clusters vertically elongated. The spatio-temporal evolution of earthquake sequences, which repeatedly occur in specific sub-areas, and the seismic

  15. New constraints on the magmatic system beneath Newberry Volcano from the analysis of active and passive source seismic data, and ambient noise

    NASA Astrophysics Data System (ADS)

    Heath, B.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    Magmatic systems beneath arc-volcanoes are often poorly resolved by seismic imaging due to the small spatial scale and large magnitude of crustal heterogeneity in combination with field experiments that sparsely sample the wavefield. Here we report on our continued analysis of seismic data from a line of densely-spaced (~300 m), three-component seismometers installed on Newberry Volcano in central Oregon for ~3 weeks; the array recorded an explosive shot, ~20 teleseismic events, and ambient noise. By jointly inverting both active and passive-source travel time data, the resulting tomographic image reveals a more detailed view of the presumed rhyolitic magma chamber at ~3-5 km depth, previously imaged by Achauer et al. (1988) and Beachly et al. (2012). The magma chamber is elongated perpendicular to the trend of extensional faulting and encircled by hypocenters of small (M < 2) earthquakes located by PNSN. We also model teleseismic waveforms using a 2-D synthetic seismogram code to recreate anomalous amplitudes observed in the P-wave coda for sites within the caldera. Autocorrelation of ambient noise data also reveals large amplitude waveforms for a small but spatially grouped set of stations, also located within the caldera. On the basis of these noise observations and 2-D synthetic models, which both require slow seismic speeds at depth, we conclude that our tomographic model underestimates low-velocity anomalies associated with the inferred crustal magma chamber; this is due in large part to wavefront healing, which reduces observed travel time anomalies, and regularization constraints, which minimize model perturbations. Only by using various methods that interrogate different aspects of the seismic data are we able to more realistically constrain the complicated, heterogeneous volcanic system. In particular, modeling of waveform characteristics provides a better measure of the spatial scale and magnitude of crustal velocities near magmatic systems.

  16. The Detection of Very Low Frequency Earthquake using Broadband Seismic Array Data in South-Western Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamanaka, Y.; Kikuchi, M.

    2002-12-01

    The existences of variety of low-frequency seismic sources are obvious by the dense and equalized equipment_fs seismic network. Kikuchi(2000) and Kumagai et.al. (2001) analyzed about 50sec period ground motion excited by the volcanic activities Miyake-jima, Izu Islands. JMA is listing the low frequency earthquakes routinely in their hypocenter determination. Obara (2002) detected the low frequency, 2-4 Hz, tremor that occurred along subducting Philippine Sea plate by envelope analysis of high dense and short period seismic network (Hi-net). The monitoring of continuos long period waveform show us the existence of many unknown sources. Recently, the broadband seismic network of Japan (F-net, previous name is FREESIA) is developed and extends to linear array about 3,000 km. We reviewed the long period seismic data and earthquake catalogues. Many candidates, which are excited by unknown sources, are picked up manually. The candidates are reconfirmed in detail by the original seismograms and their rough frequency characteristics are evaluated. Most events have the very low frequency seismograms that is dominated period of 20 _E30 sec and smaller amplitude than ground noise level in shorter period range. We developed the hypocenter determination technique applied the grid search method. Moreover for the major events moment tensor inversion was performed. The most source locates at subducting plate and their depth is greater than 30km. However the location don_ft overlap the low frequency tremor source region. Major event_fs moment magnitude is 4 or greater and estimated source time is around 20 sec. We concluded that low frequency seismic event series exist in wide period range in subduction area. The very low frequency earthquakes occurred along Nankai and Ryukyu trough at southwestern Japan. We are planing to survey the very low frequency event systematically in wider western Pacific region.

  17. Landquake dynamics inferred from seismic source inversion: Greenland and Sichuan events of 2017

    NASA Astrophysics Data System (ADS)

    Chao, W. A.

    2017-12-01

    In June 2017 two catastrophic landquake events occurred in Greenland and Sichuan. The Greenland event leads to tsunami hazard in the small town of Nuugaarsiaq. A landquake in Sichuan hit the town, which resulted in over 100 death. Both two events generated the strong seismic signals recorded by the real-time global seismic network. I adopt an inversion algorithm to derive the landquake force time history (LFH) using the long-period waveforms, and the landslide volume ( 76 million m3) can be rapidly estimated, facilitating the tsunami-wave modeling for early warning purpose. Based on an integrated approach involving tsunami forward simulation and seismic waveform inversion, this study has significant implications to issuing actionable warnings before hazardous tsunami waves strike populated areas. Two single-forces (SFs) mechanism (two block model) yields the best explanation for Sichuan event, which demonstrates that secondary event (seismic inferred volume: 8.2 million m3) may be mobilized by collapse-mass hitting from initial rock avalanches ( 5.8 million m3), likely causing a catastrophic disaster. The later source with a force magnitude of 0.9967×1011 N occurred 70 seconds after first mass-movement occurrence. In contrast, first event has the smaller force magnitude of 0.8116×1011 N. In conclusion, seismically inferred physical parameters will substantially contribute to improving our understanding of landquake source mechanisms and mitigating similar hazards in other parts of the world.

  18. pySeismicDQA: open source post experiment data quality assessment and processing

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2017-04-01

    Seismic Data Quality Assessment is python based, open source set of tools dedicated for data processing after passive seismic experiments. Primary goal of this toolset is unification of data types and formats from different dataloggers necessary for further processing. This process requires additional data checks for errors, equipment malfunction, data format errors, abnormal noise levels, etc. In all such cases user needs to decide (manually or by automatic threshold) if data is removed from output dataset. Additionally, output dataset can be visualized in form of website with data availability charts and waveform visualization with earthquake catalog (external). Data processing can be extended with simple STA/LTA event detection. pySeismicDQA is designed and tested for two passive seismic experiments in central Europe: PASSEQ 2006-2008 and "13 BB Star" (2013-2016). National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  19. Joint inversion of active and passive seismic data in Central Java

    NASA Astrophysics Data System (ADS)

    Wagner, Diana; Koulakov, I.; Rabbel, W.; Luehr, B.-G.; Wittwer, A.; Kopp, H.; Bohm, M.; Asch, G.

    2007-08-01

    Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low-velocity anomaly (-30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java Mw = 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.

  20. Seismic noise study for a new seismic station at King Fahd University of Petroleum and Minerals in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kaka, S. I.

    2012-04-01

    deployed for twenty eight days (based on the memory available with the recorder) continuously collecting data at all three potential sites. This continuous data collection was done as part of a larger study where microtremor measurements were made to better understand and characterize the origin of various near-surface noises over a non-producing reservoir in Dhahran, Saudi Arabia (Papoola and Kaka, 2011). The new station at KFUPM will be equipped with a 3-component 120s to 50Hz Trillium120 broad band seismometer, Taurus 24-bit data acquisition system along with a large LCD to display the waveform data in real-time. The KFUPM community will have an opportunity to observe daily seismic activity in real-time and to monitor/record both regional and teleseismic events. Moreover, students will gain the opportunity to identify P, S, Love, and Rayleigh waves and learn how to locate an earthquake. The station will also play an important role in providing a source of information about seismic activity for the general public. The new station is expected to be operational in a few months time.

  1. Geothermal induced seismicity: What links source mechanics and event magnitudes to faulting regime and injection rates?

    NASA Astrophysics Data System (ADS)

    Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg

    2017-04-01

    Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW < 2) reveal substantial NDC components indicating dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to the hydraulic operations and the local stress state.

  2. Surface-Source Downhole Seismic Analysis in R

    USGS Publications Warehouse

    Thompson, Eric M.

    2007-01-01

    This report discusses a method for interpreting a layered slowness or velocity model from surface-source downhole seismic data originally presented by Boore (2003). I have implemented this method in the statistical computing language R (R Development Core Team, 2007), so that it is freely and easily available to researchers and practitioners that may find it useful. I originally applied an early version of these routines to seismic cone penetration test data (SCPT) to analyze the horizontal variability of shear-wave velocity within the sediments in the San Francisco Bay area (Thompson et al., 2006). A more recent version of these codes was used to analyze the influence of interface-selection and model assumptions on velocity/slowness estimates and the resulting differences in site amplification (Boore and Thompson, 2007). The R environment has many benefits for scientific and statistical computation; I have chosen R to disseminate these routines because it is versatile enough to program specialized routines, is highly interactive which aids in the analysis of data, and is freely and conveniently available to install on a wide variety of computer platforms. These scripts are useful for the interpretation of layered velocity models from surface-source downhole seismic data such as deep boreholes and SCPT data. The inputs are the travel-time data and the offset of the source at the surface. The travel-time arrivals for the P- and S-waves must already be picked from the original data. An option in the inversion is to include estimates of the standard deviation of the travel-time picks for a weighted inversion of the velocity profile. The standard deviation of each travel-time pick is defined relative to the standard deviation of the best pick in a profile and is based on the accuracy with which the travel-time measurement could be determined from the seismogram. The analysis of the travel-time data consists of two parts: the identification of layer-interfaces, and the

  3. Seismic activity noted at Medicine Lake Highlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, D.

    1988-12-01

    The sudden rumble of earthquakes beneath Medicine Lake Highlands this fall gave geologists an early warning that one of Northern California's volcanoes may be stirring back to life. Researchers stressed that an eruption of the volcano is not expected soon. But the flurry of underground shocks in late September, combined with new evidence of a pool of molten rock beneath the big volcano, has led them to monitor Medicine Lake with new wariness. The volcano has been dormant since 1910, when it ejected a brief flurry of ash - worrying no one. A federal team plans to take measurements ofmore » Medicine Lake, testing for changes in its shape caused by underground pressures. The work is scheduled for spring because snows have made the volcano inaccessible. But the new seismic network is an effective lookout, sensitive to very small increases in activity.« less

  4. A deep towed explosive source for seismic experiments on the ocean floor

    NASA Astrophysics Data System (ADS)

    Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.

    1986-12-01

    A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.

  5. Avoidance of seismic survey activities by penguins.

    PubMed

    Pichegru, Lorien; Nyengera, Reason; McInnes, Alistair M; Pistorius, Pierre

    2017-11-24

    Seismic surveys in search for oil or gas under the seabed, produce the most intense man-made ocean noise with known impacts on invertebrates, fish and marine mammals. No evidence to date exists, however, about potential impacts on seabirds. Penguins may be expected to be particularly affected by loud underwater sounds, due to their largely aquatic existence. This study investigated the behavioural response of breeding endangered African Penguins Spheniscus demersus to seismic surveys within 100 km of their colony in South Africa, using a multi-year GPS tracking dataset. Penguins showed a strong avoidance of their preferred foraging areas during seismic activities, foraging significantly further from the survey vessel when in operation, while increasing their overall foraging effort. The birds reverted to normal behaviour when the operation ceased, although longer-term repercussions on hearing capacities cannot be precluded. The rapid industrialization of the oceans has increased levels of underwater anthropogenic noises globally, a growing concern for a wide range of taxa, now also including seabirds. African penguin numbers have decreased by 70% in the last 10 years, a strong motivation for precautionary management decisions, including the exclusion of seismic exploratory activities within at least 100 km of their breeding colonies.

  6. Nuclear Explosion Monitoring History and Research and Development

    NASA Astrophysics Data System (ADS)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  7. Deviant Earthquakes: Data-driven Constraints on the Variability in Earthquake Source Properties and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel Taylor

    The complexity of the earthquake rupture process makes earthquakes inherently unpredictable. Seismic hazard forecasts often presume that the rate of earthquake occurrence can be adequately modeled as a space-time homogenenous or stationary Poisson process and that the relation between the dynamical source properties of small and large earthquakes obey self-similar scaling relations. While these simplified models provide useful approximations and encapsulate the first-order statistical features of the historical seismic record, they are inconsistent with the complexity underlying earthquake occurrence and can lead to misleading assessments of seismic hazard when applied in practice. The six principle chapters of this thesis explore the extent to which the behavior of real earthquakes deviates from these simplified models, and the implications that the observed deviations have for our understanding of earthquake rupture processes and seismic hazard. Chapter 1 provides a brief thematic overview and introduction to the scope of this thesis. Chapter 2 examines the complexity of the 2010 M7.2 El Mayor-Cucapah earthquake, focusing on the relation between its unexpected and unprecedented occurrence and anthropogenic stresses from the nearby Cerro Prieto Geothermal Field. Chapter 3 compares long-term changes in seismicity within California's three largest geothermal fields in an effort to characterize the relative influence of natural and anthropogenic stress transients on local seismic hazard. Chapter 4 describes a hybrid, hierarchical clustering algorithm that can be used to relocate earthquakes using waveform cross-correlation, and applies the new algorithm to study the spatiotemporal evolution of two recent seismic swarms in western Nevada. Chapter 5 describes a new spectral decomposition technique that can be used to analyze the dynamic source properties of large datasets of earthquakes, and applies this approach to revisit the question of self-similar scaling of

  8. Oil Sands Characteristics and Time-Lapse and P-SV Seismic Steam Monitoring, Athabasca, Canada

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Nakayama, T.; Kashihara, K.; Skinner, L.; Kato, A.

    2008-12-01

    A vast amount of oil sands exists in the Athabasca area, Alberta, Canada. These oil sands consist of bitumen (extra-heavy oil) and unconsolidated sand distributed from surface to a depth of 750 meters. Including conventional crude oil, the total number of proved remaining oil reserves in Canada ranks second place in the world after Saudi Arabia. For the production of bitumen from the reservoir 200 to 500 meters in depth, the Steam Assisted Gravity Drainage (SAGD) method (Steam Injection EOR) has been adopted as bitumen is not movable at original temperatures. It is essential to understand the detailed reservoir distribution and steam chamber development extent for optimizing the field development. Oil sands reservoir characterization is conducted using 3D seismic data acquired in February 2002. Conducting acoustic impedance inversion to improve resolution and subsequent multi-attribute analysis integrating seismic data with well data facilitates an understanding of the detailed reservoir distribution. These analyses enable the basement shale to be imaged, and enables identification to a certain degree of thin shale within the reservoir. Top and bottom depths of the reservoir are estimated in the range of 2.0 meters near the existing wells even in such a complex channel sands environment characterized by abrupt lateral sedimentary facies changes. In March 2006, monitoring 3D seismic data was acquired to delineate steam-affected areas. The 2002 baseline data is used as a reference data and the 2006 monitoring data is calibrated to the 2002 seismic data. Apparent differences in the two 3D seismic data sets with the exception of production related response changes are removed during the calibration process. P-wave and S-wave velocities of oil sands core samples are also measured with various pressures and temperatures, and the laboratory measurement results are then combined to construct a rock physics model used to predict velocity changes induced by steam

  9. Earthquakes in the Orozco transform zone: seismicity, source mechanisms, and tectonics

    USGS Publications Warehouse

    Tréhu, Anne M.; Solomon, Sean C.

    1983-01-01

    As part of the Rivera Ocean Seismic Experiment, a network of ocean bottom seismometers and hydrophones was deployed in order to determine the seismic characteristics of the Orozco transform fault in the central eastern Pacific. We present hypocentral locations and source mechanisms for 70 earthquakes recorded by this network. All epicenters are within the transform region of the Orozco Fracture Zone and clearly delineate the active plate boundary. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough that forms the northern boundary of the transform zone (region 1). Most focal depths for these events are very shallow, within 4 km of the seafloor; several well-determined focal depths, however, are as great as 7 km. No shallowing of seismic activity is observed as the rise-transform intersection is approached; to the contrary, the deepest events are within 10 km of the intersection. First motion polarities for most of the earthquakes in region 1 are compatible with right-lateral strike slip faulting along a nearly vertical plane, striking parallel to the spreading direction. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity in this region is more scattered than in the first, and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. Pronounced lateral variations in crustal velocity structure are indicated for the transform region from refraction data and measurements of wave propagation directions. The effect of this lateral heterogeneity on hypocenters and fault plane solutions is evaluated by tracing rays through a three-dimensional velocity grid. While findings for events in region 1 are not significantly affected, in region 2, epicentral mislocations of up to 10 km and azimuthal deflections of up to 45° may result from

  10. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  11. The April 16th 2016 Pedernales Earthquake and Instituto Geofisico efforts for improving seismic monitoring in Ecuador

    NASA Astrophysics Data System (ADS)

    Ruiz, M. C.; Alvarado, A. P.; Hernandez, S.; Singaucho, J. C.; Gabriela, P.; Landeureau, A.; Perrault, M.; Acero, W.; Viracucha, C.; Plain, M.; Yepes, H. A.; Palacios, P.; Aguilar, J.; Mothes, P. A.; Segovia, M.; Pacheco, D. A.; Vaca, S.

    2016-12-01

    On April 16th, 2016, Ecuador's coastal provinces were struck by a devastating earthquake with 7.8 Mw magnitude. This event caused the earthquake-related largest dead toll in Ecuador (663 fatalities) since 1987 inland event. It provoked also a widespread destruction of houses, hotels, hospitals, affecting economic activities. Damaged was very worthy in the city of Pedernales, one of the nearest localities to the epicenter. Rupture area extended about a 100 km from the southern limit marked by the aftershock area of the 1998, 7.1 Mw earthquake to its northern limit controlled by the Punta Galera-Mompiche seismic zone, which is one of the several elongated swarms oriented perpendicular to the trench that occurred since 2007. Historical accounts of the Ecuador Colombia subduction zone have few mentions of felt earthquakes in the XVIII and XIX century likely related to poor communication and urban settlements in this area. A cycle of noticeable earthquakes began in 1896, including the 1906 8.8 Mw event and three earthquakes with magnitudes larger than 7.7 in the period 1942-1979, that preceded the 2016 earthquake. The Instituto Geofiísico of the Escuela Politécnica Nacional (IGEPN) has been monitoring the coastal area through the National Seismic Network (RENSIG) since 30 years back and recently enhanced through SENASCYT and SENPLADES supported projects. International collaboration from Japanese JICA and French IRD also contributed to expand the network and implement research projects in the area. Nowadays, the RENSIG has 135 seismic stations including 105 broadband and 5 strong motion velocimeters. Processing performed by Seiscomp3 software allows an automatic distribution of seismic parameters. A joint cooperation between IGEPN, the Navy Oceanographic Institute and the National Department for Risk Management is in charge of tsunami monitoring.

  12. Scalable Metadata Management for a Large Multi-Source Seismic Data Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaylord, J. M.; Dodge, D. A.; Magana-Zook, S. A.

    In this work, we implemented the key metadata management components of a scalable seismic data ingestion framework to address limitations in our existing system, and to position it for anticipated growth in volume and complexity. We began the effort with an assessment of open source data flow tools from the Hadoop ecosystem. We then began the construction of a layered architecture that is specifically designed to address many of the scalability and data quality issues we experience with our current pipeline. This included implementing basic functionality in each of the layers, such as establishing a data lake, designing a unifiedmore » metadata schema, tracking provenance, and calculating data quality metrics. Our original intent was to test and validate the new ingestion framework with data from a large-scale field deployment in a temporary network. This delivered somewhat unsatisfying results, since the new system immediately identified fatal flaws in the data relatively early in the pipeline. Although this is a correct result it did not allow us to sufficiently exercise the whole framework. We then widened our scope to process all available metadata from over a dozen online seismic data sources to further test the implementation and validate the design. This experiment also uncovered a higher than expected frequency of certain types of metadata issues that challenged us to further tune our data management strategy to handle them. Our result from this project is a greatly improved understanding of real world data issues, a validated design, and prototype implementations of major components of an eventual production framework. This successfully forms the basis of future development for the Geophysical Monitoring Program data pipeline, which is a critical asset supporting multiple programs. It also positions us very well to deliver valuable metadata management expertise to our sponsors, and has already resulted in an NNSA Office of Defense Nuclear

  13. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    NASA Astrophysics Data System (ADS)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  14. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  15. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault

  16. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  17. Effective seismic acceleration measurements for low-cost Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Pentaris, Fragkiskos; Makris, John P.

    2015-04-01

    There is increasing demand on cost effective Structural Health Monitoring systems for buildings as well as important and/or critical constructions. The front end for all these systems is the accelerometer. We present a comparative study of two low cost MEMS accelaration sensors against a very sensitive, high dynamic range strong motion accelerometer of force balance type but much more expensive. A real experiment was realized by deploying the three sesnors in a reinforced concrete building of the premises of TEI of Crete at Chania Crete, an earthquake prone region. The analysis of the collected accelararion data from many seismic events indicates that all sensors are able to efficiently reveal the seismic response of the construction in terms of PSD. Furthermore, it is shown that coherence diagrams between excitation and response of the building under study, depict structural characteristics but also the seismic energy distribution. This work is supported by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled "Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC)" and is co-financed by the European Union (European Social Fund) and Greek national funds.

  18. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    PubMed

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  19. Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; Sigloch, Karin

    2016-11-01

    Seismic source inversion, a central task in seismology, is concerned with the estimation of earthquake source parameters and their uncertainties. Estimating uncertainties is particularly challenging because source inversion is a non-linear problem. In a companion paper, Stähler and Sigloch (2014) developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements, a problem we address here. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D = 1 - CC of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. By identifying and quantifying this likelihood function, we make D and thus waveform cross

  20. Seismic activity in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1968

    USGS Publications Warehouse

    Dunrud, C. Richard; Maberry, John O.; Hernandez, Jerome H.

    1970-01-01

    More than 20,000 local earth tremors were recorded by the seismic monitoring network in the Sunnyside mining district during 1968. This is about 40 percent of the number of tremors recorded by the network in 1967. In 1968 a total of 281 tremors were of sufficient magnitude to be located accurately--about 50 percent of the number of tremors in 1967 that were located accurately. As in previous years, nearly all the earth tremors originated near, or within a few thousand feet of, the mine workings. This distribution indicates that mine-induced stress changes caused most of the seismic activity. However, over periods of weeks and months there were significant changes in the distribution of seismic activity caused by tremors that were not directly related to mining but probably were caused by adjustment of natural stresses 6r by a complex combination of both natural and mine-induced stress changes. In 1968 the distribution of tremor hypocenters varied considerably with time, relative to active mining areas and to faults present in the mine workings. During the first 6 months, most tremors originated along or near faults that trend close to or through the active mine workings. However, in the last 6 months, the tremor hypocenters tended to concentrate in the rock mass closer to, or around, the active mining areas. This shift in concentration of seismic activity with time has been noted throughout the district many times since recording began in 1963, and is apparently caused by spontaneous releases of stored strain energy resulting from mine-induced stress changes. These spontaneous releases of strain energy, together with rock creep, apparently are the mechanism of adjustment within the rock mass toward equilibrium conditions, which are continually disrupted by mining. Although potentially hazardous bumps were rare in the Sunnyside mining district during 1968, smaller bumps and rock falls were more common in a given active mining area whenever hypocenters of larger

  1. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the

  2. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Chouet, Bernard A.; Power, John

    2011-02-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

  3. National Seismic Network of Georgia

    NASA Astrophysics Data System (ADS)

    Tumanova, N.; Kakhoberashvili, S.; Omarashvili, V.; Tserodze, M.; Akubardia, D.

    2016-12-01

    Georgia, as a part of the Southern Caucasus, is tectonically active and structurally complex region. It is one of the most active segments of the Alpine-Himalayan collision belt. The deformation and the associated seismicity are due to the continent-continent collision between the Arabian and Eurasian plates. Seismic Monitoring of country and the quality of seismic data is the major tool for the rapid response policy, population safety, basic scientific research and in the end for the sustainable development of the country. National Seismic Network of Georgia has been developing since the end of 19th century. Digital era of the network started from 2003. Recently continuous data streams from 25 stations acquired and analyzed in the real time. Data is combined to calculate rapid location and magnitude for the earthquake. Information for the bigger events (Ml>=3.5) is simultaneously transferred to the website of the monitoring center and to the related governmental agencies. To improve rapid earthquake location and magnitude estimation the seismic network was enhanced by installing additional 7 new stations. Each new station is equipped with coupled Broadband and Strong Motion seismometers and permanent GPS system as well. To select the sites for the 7 new base stations, we used standard network optimization techniques. To choose the optimal sites for new stations we've taken into account geometry of the existed seismic network, topographic conditions of the site. For each site we studied local geology (Vs30 was mandatory for each site), local noise level and seismic vault construction parameters. Due to the country elevation, stations were installed in the high mountains, no accessible in winter due to the heavy snow conditions. To secure online data transmission we used satellite data transmission as well as cell data network coverage from the different local companies. As a result we've already have the improved earthquake location and event magnitudes. We

  4. Source water monitoring and biomonitoring systems

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  5. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault

  6. Volcano deformation source parameters estimated from InSAR: Sensitivities to uncertainties in seismic tomography

    USGS Publications Warehouse

    Masterlark, Timothy; Donovan, Theodore; Feigl, Kurt L.; Haney, Matt; Thurber, Clifford H.; Tung, Sui

    2016-01-01

    The eruption cycle of a volcano is controlled in part by the upward migration of magma. The characteristics of the magma flux produce a deformation signature at the Earth's surface. Inverse analyses use geodetic data to estimate strategic controlling parameters that describe the position and pressurization of a magma chamber at depth. The specific distribution of material properties controls how observed surface deformation translates to source parameter estimates. Seismic tomography models describe the spatial distributions of material properties that are necessary for accurate models of volcano deformation. This study investigates how uncertainties in seismic tomography models propagate into variations in the estimates of volcano deformation source parameters inverted from geodetic data. We conduct finite element model-based nonlinear inverse analyses of interferometric synthetic aperture radar (InSAR) data for Okmok volcano, Alaska, as an example. We then analyze the estimated parameters and their uncertainties to characterize the magma chamber. Analyses are performed separately for models simulating a pressurized chamber embedded in a homogeneous domain as well as for a domain having a heterogeneous distribution of material properties according to seismic tomography. The estimated depth of the source is sensitive to the distribution of material properties. The estimated depths for the homogeneous and heterogeneous domains are 2666 ± 42 and 3527 ± 56 m below mean sea level, respectively (99% confidence). A Monte Carlo analysis indicates that uncertainties of the seismic tomography cannot account for this discrepancy at the 99% confidence level. Accounting for the spatial distribution of elastic properties according to seismic tomography significantly improves the fit of the deformation model predictions and significantly influences estimates for parameters that describe the location of a pressurized magma chamber.

  7. Source Repeatability of Time-Lapse Offset VSP Surveys for Monitoring CO2 Injection

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Huang, L.; Rutledge, J. T.; Denli, H.; Zhang, H.; McPherson, B. J.; Grigg, R.

    2009-12-01

    Time-lapse vertical seismic profiling (VSP) surveys have the potential to remotely track the migration of injected CO2 within a geologic formation. To accurately detect small changes due to CO2 injection, the sources of time-lapse VSP surveys must be located exactly at the same positions. However, in practice, the source locations can vary from one survey to another survey. Our numerical simulations demonstrate that a variation of a few meters in the VSP source locations can result in significant changes in time-lapse seismograms. To address the source repeatability issue, we apply double-difference tomography to downgoing waves of time-lapse offset VSP data to invert for the source locations and the velocity structures simultaneously. In collaboration with Resolute Natural Resources, Navajo National Oil and Gas Company, and the Southwest Regional Partnership on Carbon Sequestration under the support of the U.S. Department of Energy’s National Energy Technology Laboratory, one baseline and two repeat offset VSP datasets were acquired in 2007-2009 for monitoring CO2 injection at the Aneth oil field in Utah. A cemented geophone string was used to acquire the data for one zero-offset and seven offset source locations. During the data acquisition, there was some uncertainty in the repeatability of the source locations relative to the baseline survey. Our double-difference tomography results of the Aneth time-lapse VSP data show that the source locations for different surveys are separated up to a few meters. Accounting for these source location variations during VSP data analysis will improve reliability of time-lapse VSP monitoring.

  8. Swift-BAT: Transient Source Monitoring

    NASA Astrophysics Data System (ADS)

    Barbier, L. M.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Markwardt, C.; Mushotzky, R.; Parsons, A.; Sakamoto, T.; Tueller, J.; Fenimore, E.; Palmer, D.; Skinner, G.; Swift-BAT Team

    2005-12-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets of time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing ( ˜20 minutes) to the full mission duration for the hard X-ray survey program. In the transient monitor program, sky images are processed to detect astrophysical sources in six energy bands covering 15-350 keV. The detected flux or upper limit in each energy band is calculated for >300 objects on time scales up to one day. In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is ˜1500 - 3000 seconds, with a 1-sigma sensitivity of ˜4mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. The BAT team will soon make the results of the transient monitor public to the astrophysical community through the Swift mission web page. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  9. Code for Calculating Regional Seismic Travel Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BALLARD, SANFORD; HIPP, JAMES; & BARKER, GLENN

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forward travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minusmore » predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  10. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    NASA Astrophysics Data System (ADS)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  11. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation

  12. Application of Collocated GPS and Seismic Sensors to Earthquake Monitoring and Early Warning

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Guo, Bofeng

    2013-01-01

    We explore the use of collocated GPS and seismic sensors for earthquake monitoring and early warning. The GPS and seismic data collected during the 2011 Tohoku-Oki (Japan) and the 2010 El Mayor-Cucapah (Mexico) earthquakes are analyzed by using a tightly-coupled integration. The performance of the integrated results is validated by both time and frequency domain analysis. We detect the P-wave arrival and observe small-scale features of the movement from the integrated results and locate the epicenter. Meanwhile, permanent offsets are extracted from the integrated displacements highly accurately and used for reliable fault slip inversion and magnitude estimation. PMID:24284765

  13. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Kitov, Ivan; Zerbo, Lassina

    2014-03-01

    We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5-2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts' experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a

  14. Evaluation of Alternative Seismic Source Characterization Models for the Inner Borderlands of Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, K. L.; Angell, M.; Foxall, W.; Rietman, J.

    2002-12-01

    Alternative source characterizations for seismic hazard analysis are developed to capture the range of plausible fault geometries and interactions between postulated thrusts (i.e., the Oceanside blind thrust (OBT) and San Joaquin Hills blind fault (SJBF)) and strike-slip faults (Rose Canyon (RC)-Newport Inglewood (NI) faults) along the Southern California inner borderlands. Evaluation of 2D and high-resolution shallow seismic data show evidence for a relatively continuous zone of deformation (OZD) linking the RC and NI, both of which are active strike-slip faults, based on seismicity and paleoseismic data. Geodetic data are consistent with NNW-shear and show little or no convergence across the inner borderland, or evidence of a regional "driving" force that would reactivate a large seismogenic thrust (see Moriwaki and others, this volume). Fault and fold deformation observed along the OZD between the RC and NI is consistent with transpressional right lateral slip along a N20W-trending fault zone. Evidence to support reactivation of the entire OBT in the current tectonic environment is not demonstrated. Seismicity and possible late Pleistocene/Holocene reverse faults and associated folding can be explained by localized contraction in left steps or bends in a transpressional right-slip tectonic environment. Clockwise rotation of crustal blocks in the inner borderland (which is not inconsistent with geodetic data suggesting a component of extension across the southern inner borderland) could account for the greater intensity of contractional structures in the hanging wall of the northern OBT west of the OZD. This might explain the local reactivation of portions of the OBT, but would not require reactivation of the entire detachment. Much of the contractional deformation observed in the inner borderland (e.g., the San Mateo thrust belt) could have occurred during the Pliocene. Regional coastal uplift, which has been cited as evidence that the Oceanside and Thirtymile

  15. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  16. Intense Seismic Activity at Chiles and Cerro Negro Volcanoes on the Colombia-Ecuador Border

    NASA Astrophysics Data System (ADS)

    Torres, R. A.; Cadena, O.; Gomez, D.; Ruiz, M. C.; Prejean, S. G.; Lyons, J. J.; White, R. A.

    2015-12-01

    The region of Chiles and Cerro Negro volcanoes, located on the Colombian-Ecuadorian border, has experienced an ongoing seismic swarm beginning in Aug. 2013. Based on concern for local residents and authorities, a cooperative broadband monitoring network was installed by the Servicio Geológico Colombiano in Colombia and the Instituto Geofísico of the Escuela Politécnica Nacional in Ecuador. Since November 2013 more than 538,000 earthquakes were recorded; although since May 2015 the seismicity has decreased significantly to an average of 70 events per day. Three large earthquake swarms with increasing energy occurred in Aug.-Oct. 2013, March-May 2014, and Sept.-Dec. 2014. By the end of 2014, roughly 400 earthquakes greater than M 3 had occurred with a maximum rate of 8000 earthquakes per day. The largest earthquake was a 5.6 ML on Oct. 20, 2014. This event produced an InSAR coseismic deformation of ~23 cm (S. Ebmeier, personal communication). Most events are typical brittle failure volcano-tectonic (VT) earthquakes that are located in a cluster beneath the southern flank of Chiles volcano, with depths between 1.5 and 10 km. Although the great majority of earthquakes are VT, some low-frequency (LF, ~0.5 Hz) and very-low-frequency (VLF) events have occurred. Particle motion analysis suggests that the VLF source migrated with time. While a VLF on Oct. 15, 2014 was located south of Chiles volcano, near the InSAR source, the VLF registered on Feb. 14, 2015 was likely located very close to Chiles Volcano. We infer that magma intrusion and resulting fluid exsolution at depths greater than 5 km are driving seismicity in the Chiles-Cerro Negro region. However earthquakes are failing in a manner consistent with regional tectonics. Relative relocations reveal a structure consistent with mapped regional faults. Thus seismicity is likely controlled by an interaction of magmatic and tectonic processes. Because the regional stress field is highly compressional and the volcanoes

  17. Relative seismic velocity variations correlate with deformation at Kīlauea volcano.

    PubMed

    Donaldson, Clare; Caudron, Corentin; Green, Robert G; Thelen, Weston A; White, Robert S

    2017-06-01

    Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression-hence closing cracks and producing faster velocities-and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool.

  18. Relative seismic velocity variations correlate with deformation at Kīlauea volcano

    PubMed Central

    Donaldson, Clare; Caudron, Corentin; Green, Robert G.; Thelen, Weston A.; White, Robert S.

    2017-01-01

    Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression—hence closing cracks and producing faster velocities—and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool. PMID:28782009

  19. Preliminary seismic studies at Ceboruco Volcano

    NASA Astrophysics Data System (ADS)

    Escudero, C. R.; Nunez-Cornu, F. J.; Ochoa, J.; Robles, F. J.

    2012-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano is located at the west of the Mexican volcanic belt at 21.125o north, 76 km from the pacific coast and 2,280 meters above sea level. It has an eruptive recurrence of 200 years and its last activity was at 1875. This natural hazard could affect more than eight communities and important highways. Scientific knowledge constitutes the only way to avoid or at least to mitigate the negative effects of an eventual eruptive event, accordingly the main objective of this project is monitor and analyze the potential destructive effects of the Ceboruco volcano. Seismic studies began at 2003 with the deployment of one MARSlite station equipped LE3d (1Hz) sensor. Station that works until 2009 and allow us to identify and characterize the seismic activity associated to the volcano;. Since March 2012 we installed four seismic stations, each includes a digital acquisition system TAURUS of Nanometrix and a Lennartz 3D lite seismometer. Batteries are change and data collected monthly. We use the data to establish the average seismic activity rate; we also aim to corroborate previous studies that showed four families of seismic events; and to localize and make preliminary evaluations of the events.

  20. High frequency seismic monitoring of debris flows at Chalk Cliffs (CO), USA

    NASA Astrophysics Data System (ADS)

    Coviello, Velio; Kean, Jason; Smith, Joel; Coe, Jeffrey; Arattano, Massimo; McCoy, Scott

    2015-04-01

    A growing number of studies adopt passive seismic monitoring techniques to investigate slope instabilities and landslide processes. These techniques are attractive and convenient because large areas can be monitored from a safe distance. This is particularly true when the phenomena under investigation are rapid and infrequent mass movements like debris flows. Different types of devices are used to monitor debris flow processes, but among them ground vibration detectors (GVDs) present several, specific advantages that encourage their use. These advantages include: (i) the possibility to be installed outside the channel bed, (ii) the high adaptability to different and harsh field conditions, and (iii) the capability to detect the debris flow front arrival tens of seconds earlier than contact and stage sensors. Ground vibration data can provide relevant information on the dynamics of debris flows such as timing and velocity of the main surges. However, the processing of the raw seismic signal is usually needed, both to obtain a more effective representation of waveforms and to decrease the amount of data that need to be recorded and analyzed. With this objective, the methods of Amplitude and Impulses are commonly adopted to transform the raw signal to a 1-Hz signal that allows for a more useful representation of the phenomenon. In that way, peaks and other features become more visible and comparable with data obtained from other monitoring devices. In this work, we present the first debris flows seismic recordings gathered in the Chalk Cliffs instrumented basin, central Colorado, USA. In May 2014, two 4.5-Hz, three-axial geophones were installed in the upper part of the catchment. Seismic data are sampled at 333 Hz and then recorded by a standalone recording unit. One geophone is directly installed on bedrock, the other one mounted on a 1-m boulder partially buried in colluvium. This latter sensor integrates a heavily instrumented cross-section consisting of a 225 cm2