Science.gov

Sample records for actively creating stars

  1. Creating small transcription activating RNAs.

    PubMed

    Chappell, James; Takahashi, Melissa K; Lucks, Julius B

    2015-03-01

    We expanded the mechanistic capability of small RNAs by creating an entirely synthetic mode of regulation: small transcription activating RNAs (STARs). Using two strategies, we engineered synthetic STAR regulators to disrupt the formation of an intrinsic transcription terminator placed upstream of a gene in Escherichia coli. This resulted in a group of four highly orthogonal STARs that had up to 94-fold activation. By systematically modifying sequence features of this group, we derived design principles for STAR function, which we then used to forward engineer a STAR that targets a terminator found in the Escherichia coli genome. Finally, we showed that STARs could be combined in tandem to create previously unattainable RNA-only transcriptional logic gates. STARs provide a new mechanism of regulation that will expand our ability to use small RNAs to construct synthetic gene networks that precisely control gene expression. PMID:25643173

  2. Dead Star Creates Celestial Havoc

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A star's spectacular death in the constellation Taurus was observed on Earth as the supernova of 1054 A.D. Now, almost a thousand years later, a superdense neutron star left behind by the stellar death is spewing out a blizzard of extremely high-energy particles into the expanding debris field known as the Crab Nebula.

    This composite image uses data from three of NASA's Great Observatories. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope's infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star, which has the mass equivalent to the sun crammed into a rapidly spinning ball of neutrons twelve miles across, is the bright white dot in the center of the image.

  3. Creating NIST-traceable Spectrophotometric Standard Stars

    NASA Astrophysics Data System (ADS)

    McGraw, John T.; Zimmer, P. C.; Stubbs, C. W.; Fraser, G. T.; Lykke, K. R.; Brown, S. W.; Woodward, J. T.; Smith, A. W.

    2010-01-01

    Though spectrophotometric standard stars enable or support thousands of astrophysical observations: 1. Fundamental calibration of stars to international standards has not been done since 1975 2. The astronomical community's fundamental standard star, Vega, is unique in that it has a debris disk and is rotating pole-on at near breakup velocity making it anything but a single-temperature, uniform surface brightness source 3. NIST has created spectrophotometric standard sources and detectors that provide sub-1% relative uncertainties allowing throughput calibration from 400nm - 1100nm 4. We have built an objective spectrometer to make standardized observations and a "clear air” lidar capable of providing sub-1% extinction measurements to correct for atmospheric extinction, the most significant systematic error in standardization. These new capabilities for directly measuring and correcting for atmospheric transmission and calibrating telescope throughput enable creation of a new generation of fundamentally calibrated standard stars. The astronomical community will certainly benefit from a new network of fundamental spectrophotometric standard stars calibrated to NIST irradiance standards. We describe the techniques and technologies required to compare optical stellar spectra to NIST calibrated detectors, and the atmospheric measurements required to correct accurately for atmospheric extinction. We discuss observations of candidate standards with V ≤ 5.5 selected from an input catalog of approximately 500 northern hemisphere stars. This project is supported by NIST Grant 60NANB9D9121 and AFRL Grant FA9451-08-C-0267.

  4. Activity in F stars

    NASA Technical Reports Server (NTRS)

    Wolff, Sidney C.; Boesgaard, Ann Merchant; Simon, Theodore

    1986-01-01

    Measurements of He I 5876 A and IUE measurements of chromospheric and transition region lines in a large sample of F-type stars are presented. The data show that activity is detectable in nearly all early F-type stars and differs in several of its characteristics from that typically seen in cooler stars with slow rotation and fully developed convective zones. The onset of activity occurs near B-V = 0.28, which corresponds approximately to spectral type F0 and T(eff) = 7300 K. There is no correlation between the level of activity and the abundances of lithium and beryllium in F stars hotter than T(eff) = 6600 K. All but one of the stars in the 6600-7300 K temperature interval are active. The levels of activity in these stars are independent of Rossby number.

  5. Dying star creates sculpture of gas and dust

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Sculpture of gas and dust hi-res Size hi-res: 125 Kb Credits: ESA, NASA, HEIC and The Hubble Heritage Team (STScI/AURA) Dying star creates sculpture of gas and dust The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. High resolution version (JPG format) 125 Kb High resolution version (TIFF format) 2569 Kb Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA). Sculpture of gas and dust hi-res Size hi-res: 287 Kb Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain) Dying star creates sculpture of gas and dust An enormous but extremely faint halo of gaseous material surrounds the Cat’s Eye Nebula and is over three light-years across. Some planetary nebulae been found to have halos like this one, likely formed of material ejected during earlier active episodes in the star's evolution - most likely some 50 000 to 90 000 years ago. This image was taken by Romano Corradi with the Nordic Optical Telescope on La Palma in the Canary Islands. The image is constructed from two narrow-band exposures showing oxygen atoms (1800 seconds, in blue) and nitrogen atoms (1800 seconds, in red). High resolution version (JPG

  6. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  7. Flare Activity on Stars

    NASA Astrophysics Data System (ADS)

    Oskanian, V. S.

    A review of the existing flare data analyses indicates that most probably the flare phenomenon should be considered as one of the manifestation forms of solar-type chromospheric activity on stars and therefore has to be investigated in common with other phenomena specifying this activity. In order to estimate the reliability of such an approach different types of observational data are discussed. It could be shown that most of the phenomena specifying the solar chromospheric activity (BY Dra syndrome, indicating the spottedness of the stellar surface, long-term cyclic variations of emission line intensities, variable local magnetic fields, flares, coronal phenomena, etc.) are observable on a constantly growing number of stars of almost all spectral types and luminosity classes. This fact indicates that the proposed approach could be the right way to solve the problem of the flare phenomenon.

  8. Activities to Create Yearlong Momentum

    ERIC Educational Resources Information Center

    Berger, Molly

    2008-01-01

    The first day of school used to be exhausting for the author. To change this, the author needed to capitalize on the enthusiasm of the first day, so now she shortens the time devoted to rules so she can begin to build on real learning right away. In this article, the author shares three of her favorite opening activities. Using popular culture and…

  9. Pharmacists' Stellar experience can create Five-Star Success.

    PubMed

    Kaldy, Joanne

    2014-12-01

    The evolving health care system has put an increasing emphasis on balancing quality, outcomes, and costs. As part of this evolution, the Centers for Medicare & Medicaid Services (CMS) is using a Five-Star Quality Rating System to evaluate the quality of care provided by Medicare Advantage and Part D prescription drug plans. At the same time, drug plans are using a Five-Star system to rate pharmacies, which contribute to the CMS ratings of nursing facilities. More than ever, pharmacists can play a significant role in helping facilities, plans, and even pharmacies achieve the highest possible ratings and maintain those standards over time. PMID:25521655

  10. The magnetic activity sunlike stars.

    PubMed

    Vaughan, A H

    1984-08-24

    Sunspots, flares, and the myriad time-varying "events" observable in the Sun-the only star whose surface we can examine in detail-are testimony that the Sun is a magnetically variable or active star. Its magnetic field, carried into interplanetary space by the solar wind, produces observable changes in Earth's magnetosphere and variations in the flux of galactic cosmic-ray particles incident upon Earth's upper atmosphere. Centuries of observation have enabled solar scientists to recognize that the Sun's magnetism exists and varies in a globally organized pattern that is somehow coupled to the Sun's rotation. Within the past decade O. C. Wilson demonstrated that analogs of solar activity exist and can be studied in many other dwarf stars. From the continuing study, knowledge of the precise rates of rotation of the stars under investigation is being gained for the first time. The results are expected to increase our understanding of the origin of solar activity and stellar activity in general. PMID:17801135

  11. Activity-Induced Radial Velocity Variation of M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Andersen, Jan Marie; Korhonen, Heidi

    2014-04-01

    Stellar magnetic activity manifests itself in a variety of ways including starspots-cool, dark regions on the stellar surface. Starspots can cause variations (`jitter') in spectral line-profiles which can mimic the radial velocity (RV) variations caused by an orbiting planet, or create RV noise that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?

  12. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  13. Magnetic activity of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, Katja

    2011-05-01

    Magnetic activity in cool stars is a widely observed phenomenon, however it is still far from being understood. How fundamental stellar parameters like mass and rotational period quantitatively cause a stellar magnetic field which manifests itself in features such as spots, flares and high-energy coronal emission is a lively area of research in solar and stellar astrophysics. Especially for planet-hosting stars, stellar activity profiles are very interesting as exoplanets are affected by high-energy radiation, both at the time of planet formation as well as during the further lifetime of a star-planet system. In extreme cases, the atmosphere of a planet very close to its host star can be strongly heated by the stellar X-ray and EUV emission and finally escape the planet's gravitational attraction, so that the atmosphere of the planet evaporates over time. Theoretically, planets can also affect their host star's magnetic activity. In analogy to processes in binary stars which lead to enhanced - both overall and periodically varying - activity levels, also giant planets might influence the stellar activity by tidal or magnetic interaction processes, however on a weaker level than in binaries. Some indications for such interactions exist from chromospheric measurements in stars with Hot Jupiters. In this thesis I investigate the magnetic activity of planet-hosting stars and especially possible effects from star-planet interactions with an emphasis on stellar coronae in X-rays. I tested a complete sample of all known planet-hosting stars within 30 pc distance from the Sun for correlations of stellar X-ray properties with planetary parameters. A significant correlation exists between the stellar X-ray luminosity and the product of planetary mass and inverse semimajor axis. However, this could be traced back to a selection effect introduced by planetary detection methods. For stars in the solar neighborhood, planets are mainly detected by radial velocity shifts in the

  14. Activity in A-type Stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2013-12-01

    Kepler photometry shows that most A-type stars have low frequency variations which can be understood in terms of rotational modulation. Indeed, the distribution of equatorial velocities derived from the photometric periods agrees with the distribution of equatorial velocities of A-type stars in the general field. The amplitude of the rotational frequency varies by 20-30 percent as might be expected of star spots. From the light amplitudes we estimate that most spots are considerably larger than typical sunspots but generally smaller than the largest sunspots. The rotation peaks in the periodograms of a significant fraction of A-type stars have a peculiar structure which is not understood. Although peaks corresponding to the rotation frequency can be identified in many δ Scuti stars, the low frequency peaks in these stars are too numerous to be caused by rotational modulation. It thus appears that while the variability of non-pulsating A stars can be explained by rotation, the low-frequency variability in A-type δ Sct stars requires a new pulsation mechanism. We also find several γ Dor stars much hotter than the theoretical hot edge of the instability strip. We find 13 new A-type flare stars, which means that about 1.5 percent of A stars flare. Less dramatic flares may be common in all A-type stars. We show that these superflares cannot be attributed to normal flares on a cool companion. We conclude that A-type stars are active and, like cooler stars, have starspots and flares. Surprisingly, there does not seem to be a drop in activity as the granulation boundary is crossed.

  15. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits. PMID:26134708

  16. 3-D reconstructions of active stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2015-03-01

    Stars are usually faint point sources and investigating their surfaces and interiors observationally is very demanding. Here I give a review on the state-of-the-art observing techniques and recent results on studying interiors and surface features of active stars.

  17. Metallicity gradients and newly created star-forming systems in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Mendes de Oliveira, Claudia L.

    2015-08-01

    Interactions play an extremely important role in the evolution of galaxies, changing their morphologies and kinematics. Galaxy collisions may result in the formation of intergalactic star-forming objects, such as HII regions, young clusters and/or tidal dwarf galaxies. Several studies have found a wealth of newly created objects in interacting systems. We will exemplify the problems and challenges in this field and will describe observations of the interacting group NGC 6845, which contains four bright galaxies, two of which have extended tidal tails. We obtained Gemini/GMOS spectra for 28 of the regions located in the galaxies and in the tails. All regions in the latter are star-forming objects according to their line ratios, with ages younger than 10 Myr. A super luminous star forming complex is found in the brightest member of the group, NGC 6845A. Its luminosity reveals a star formation density of 0.19 solar masses, per year, per kpc^2, suggesting that this object is a localized starburst. We derived the gas-phase metallicity gradients across NGC 6845A and its two tails and we find that these are shallower than those for isolated galaxies. We speculate that the observed metallicity gradient may be related to one or more of the following mechanisms: (1) interaction induced inflow of fresh gas to the galaxy center, as seen in simulations, which is expected to dilute the metallicity of the central burst, (2) the formation of young metal-rich star forming regions in the tidal tails, which were born out of enriched gas expelled from the central regions of the system during the interaction and (3) the incremental growth of metals accumulated over time, due to the successful generations of star forming regions along the tails. Finally we will describe our plans to do a search for such objects on Halpha images that will soon be available for 17.5k degrees of the sky, with the A-PLUS survey.

  18. PASS: Creating Physically Active School Systems

    ERIC Educational Resources Information Center

    Ciotto, Carol M.; Fede, Marybeth H.

    2014-01-01

    PASS, a Physically Active School System, is a program by which school districts and schools utilize opportunities for school-based physical activity that enhance overall fitness and cognition, which can be broken down into four integral parts consisting of connecting, communicating, collaborating, and cooperating. There needs to be an…

  19. Chandra Reveals a Compact Nebula Created by a Shooting Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-06-01

    In one of its most bizarre images yet, NASA's Chandra X-ray Observatory shows the details of a compact nebula that resembles a gigantic cosmic crossbow. The nebula, located in the Vela supernova remnant, is created as a rapidly rotating neutron star, or pulsar, spins out rings and jets of high-energy particles while shooting through space. "What is fascinating is that the jets from the pulsar are directed exactly along the direction of the pulsar's motion," said Dr. George Pavlov of Penn State University, University Park today at the 196th national meeting of the American Astronomical Society in Rochester, New York. "The southern jet looks like a rocket exhaust!" The X-ray jet can be traced all the way in to the neutron star, and an inner ring is seen for the first time. This ring is thought to represent a shock wave due to matter rushing away from the neutron star. More focused flows at the neutron star's polar regions produce jets of particles that blast away at near the speed of light. Pavlov explained that shortly after the star exploded, jets with unequal thrust along the poles of the neutron star could have accelerated it like a rocket. The neutron star is enveloped in a cloud of high-energy particles emitting X rays as they spiral around magnetic field lines. This cloud, or nebula, is embedded in a much larger cloud produced by the supernova and has a swept-back, cometary shape because of its motion through the larger cloud. The dramatic bow-like structure at the leading edge of the nebula is perpendicular to the jets and has the appearance of a cosmic crossbow with the jets as the arrows. This bow and the smaller one inside it, are thought to be the near edges of tilted rings of X-ray emission from high-energy particles produced by the central neutron star. The neutron star-ring-jet system, which resulted from an explosion in the constellation Vela ten thousand or more years ago, is similar to the remarkable structure observed by Chandra in the Crab Nebula

  20. Daybreak Star Preschool Activities Book: A Teacher's "How-to" Book.

    ERIC Educational Resources Information Center

    Patacsil, Sharon; And Others

    The culturally-based educational materials contained in the Daybreak Star Preschool Activities Book are used with the Native American children in the United Indians of All Tribes Foundation's Daybreak Star Preschool. These educational materials reflect the cultures of the children in the Preschool. The Preschool's primary focus is to create a…

  1. Characterizing Nearby Stars: Age and Activity

    NASA Technical Reports Server (NTRS)

    Soderblom, David

    2001-01-01

    The funds in this grant were used to support costs for observing and data analysis over the past two years. During this time I have been obtaining low-resolution (R-2,000) spectra for about 5,000 solar-type stars (late-F and G dwarfs) that are within 60 parsecs of the Sun. The sample was defined with results from the Hipparcos mission, and the spectra were obtained at Kitt Peak National Observatory, using the Coude Feed telescope, and at Cerro Tololo Interamerican Observatory, using their 1.5 m telescopes for stars below -40 declination. Nearly all the observed spectra have been reduced and analyzed. What is determined is R-prime, an index of the chromospheric emission in the cores of the Ca II H and K lines relative to the nearby continuum, and normalized for the color of the star. Chromospheric emission arises from magnetic activity on the star, and that is turn is driven by rotation. Solar-type stars spin down as they age, and so they get weaker in their chromospheric emission as well. Thus this R-prime index can be used to estimate the ages of stars. A few stars remain to be observed at Kitt Peak, and follow-up high-resolution spectra are being obtained of the most active stars seen, but the majority of the starting sample have been completed. The spectra obtained are also being analyzed to yield an index of overall metallicity for each star, and this will be used to study Galactic evolution questions. These metallicities will form the first large dataset of high and consistent quality. Initial results from this work have been used to define targets for a SIRTF Legacy program, for stars to study for planetary transits, and for SETI efforts. Because of the large number of stars involved, most of the data will be made available on the web, although some specific papers about the results are in preparation. The web database is being constructed.

  2. Activity Cycles in Stars with Highly Active Chromospheres

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.

    The extended lifetime of the IUE satellite has provided an unique and unanticipated opportunity to examine the long-term evolution of magnetic activity on active chromospheric stars. We propose to obtain further IUE observations of the highly active RS CVn stars V711 Tauri, lambda Andromedae, II Pegasi, and UX Arietis in conjunction with groundbased optical and radio observations, and possibly ROSAT X-ray observations. In addition we would continue IUE observations of the unusual rapidly rotating early G giant, FK Comae, which, although not in the RS CVn category, shares a similarly high level of magnetic activity. These five stars have the most extensive IUE archival coverage for stars of their type and have almost continuous ground-based photometric coverage from about 1975 onward. We aim to trace the long-term development of magnetic activity on these stars: a detailed study of the UV emission-like fluxes will enable us to follow the variations in chromospheric and transition-region activity over an interval of 12-16 years. Optical observations reveal variations in photospheric (starspot) activity: the starspot regions are large (up to 30% of the stellar surface) and vary significantly with time. The main aim of the proposed research is to examine the relationship between chromospheric, transition-region, and photospheric active regions. Elucidation of the role of white-light faculae vis-a-vis spots in effecting stellar irradiance changes is also desirable.

  3. Creating Evidence-Based Research in Adapted Physical Activity

    ERIC Educational Resources Information Center

    Reid, Greg; Bouffard, Marcel; MacDonald, Catherine

    2012-01-01

    Professional practice guided by the best research evidence is a usually referred to as evidence-based practice. The aim of the present paper is to describe five fundamental beliefs of adapted physical activity practices that should be considered in an 8-step research model to create evidence-based research in adapted physical activity. The five…

  4. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  5. Chromospherically active stars. I - HD 136905

    NASA Technical Reports Server (NTRS)

    Fekel, F. C.; Hall, D. S.; Africano, J. L.; Gillies, K.; Quigley, R.

    1985-01-01

    The variable star HD 136905, recently designated GX Librae, is a chromospherically active K1 III single-lined spectroscopic binary with a period of 11.1345 days. It has moderate strength Ca II H and K and ultraviolet emission features, while H-alpha is strongly in absorption. The inclination of the system is 58 + or - 17 deg and the unseen secondary is most likely a G or K dwarf. The v sin i of the primary, 32 + or - 2 km/s, results in a minimum radius of 7.0 + or - 0.4 solar radii. Since the star fills a substantial fracture of its Roche lab, the double-peaked limit curve seen by photometric observers is predominantly ellipsoidal in nature. Both the photometry and the spectroscopy yield values for the period and the time of conjunction that are identical within their uncertainties.

  6. Activity in X-ray-selected late-type stars

    NASA Technical Reports Server (NTRS)

    Takalo, Leo O.; Nousek, J. A.

    1988-01-01

    A spectroscopic study has been conducted of nine X-ray bright late-type stars selected from two Einstein X-ray surveys: the Columbia Astrophysical Laboratory Survey (five stars) and the CFA Medium Sensitivity Survey (MSS; four stars). Spectral classes were determined and radial and V sin(i) velocities were measured for the stars. Four of the Columbia Survey stars were found to be new RS CVn-type binaries. The fifth Columbia survey star was found to be an active G dwarf star without evidence for binarity. None of the four MSS stars were found to be either binaries or optically active stars. Activity in these stars was assessed by measuring the excess emission in H-alpha and the Ca II IRT (8498, 8542) lines in comparison with inactive stars of similar spectral types. A correlation was found between X-ray luminosity and V sin(i) and H-alpha line excess. The measured excess line emission in H-alpha was also correlated with V sin(i) but not with the IRT line excess.

  7. Practice It: Create a Weekly Activity Plan | Smokefree.gov

    Cancer.gov

    At the beginning of the week, create an activity plan to help you reach your goals. Start by identifying your goals for the week. Based on your goals, write down when you are going to exercise and what you are going to do. If something comes up that keeps you from exercising on one of your selected days, try to find another day (or time) as a make-up. Having a routine is important but so is the ability to adapt your schedule as needed.

  8. Creating evidence-based research in adapted physical activity.

    PubMed

    Reid, Greg; Bouffard, Marcel; MacDonald, Catherine

    2012-04-01

    Professional practice guided by the best research evidence is a usually referred to as evidence-based practice. The aim of the present paper is to describe five fundamental beliefs of adapted physical activity practices that should be considered in an 8-step research model to create evidence-based research in adapted physical activity. The five beliefs are individualization, critical thinking, self-determination, program effectiveness, and multifactor complexity. The research model includes conceptualize the problem, conduct research on the process of the problem, conceptualize and specify the intervention, evaluate intervention outcomes, evaluate intervention processes, determine person-by-treatment interactions, determine context-dependent limitations, and investigate factors related to intervention adoption maintenance. The eight steps are explained with reference to two research programs that used a randomized control group design. PMID:22467832

  9. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  10. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  11. Observational evidence for enhanced magnetic activity of superflare stars

    NASA Astrophysics Data System (ADS)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  12. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  13. Active Longitudes and Flip-Flops in Binary Stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi; Järvinen, Silva P.

    2007-08-01

    In many active stars the spots concentrate on two permanent active longitudes which are 180 degrees apart. In some of these stars the dominant part of the spot activity changes the longitude every few years. This so-called flip-flop phenomenon was first reported in the early 1990's in the single, late type giant FK Com. Since then flip-flops have been reported also on binary stars, young solar type stars and the Sun itself. Even though this phenomenon has been detected on many different kinds of active stars, still less than ten stars are known to exhibit this effect. Therefore no statistically significant correlation between the stellar parameters and the flip-flop phenomenon can be carried out. Here we present results from investigation where we have studied the long-term photometry of several magnetically active RS CVn binaries to see whether or not they show permanent active longitudes and the flip-flop phenomenon. We find that it is very common for the active regions to occur on permanent active longitudes, and some of these stars also show clear flip-flop phenomenon.

  14. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  15. GALEX Observes Nearby Cool Stars: Constraints on Ultraviolet Coronal Activity

    NASA Astrophysics Data System (ADS)

    Wheatley, Jonathan; Welsh, Barry

    2016-01-01

    The GALEX ultraviolet mission (1350-2800A) has detected many late-type dwarf stars. Numerous M-type dwarf stars exhibit flaring and coronal activity; we use GALEX UV photometry to measure the variability of coronal emission in the GALEX NUV and FUV wavebands.

  16. 77 FR 46089 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR... this action are participants in EPA's ENERGY STAR Program in the Commercial and Industrial Sectors. Title: Information Collection Activities Associated with EPA's ENERGY STAR Program in the Commercial...

  17. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  18. Magnetic activity of the star Corot-Exo-2a

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2010-05-01

    Continuous photometric observations of the young active solar-type star Corot-Exo-2a using the “Corot” space telescope obtained over 142 days were used to analyze the star’s surface temperature inhomogeneities and to monitor their continuous evolution. This analysis was based on the iPH code, which reconstructs the distribution of temperature inhomogeneities on the surface of a star based on its light curve in a two-temperature approximation. We identified five time intervals in the positions of active areas, with corresponding flip-flop events, interpreted as activity periods. Their durations were between 55 and 15 days. The time scale for the active-longitude flip-flops of Corot-Exo-2a is a few tens of days, rather than years, as for other stars studied earlier. We detected motions of the active longitudes, possibly indicating differential rotation of the star. The phenomenon of flip-flops in the positions of active longitudes has a complex character. This is the first case apart fromthe Sun where we are able to follow the appearance and development of temperature inhomogeneities on a stellar surface in such detail. We determined typical timescales for variations of the activity parameter of the star in the ranges 17-20, 28-32, 33-38, and 51-55 days, which characterize changes of the brightness variation amplitude, the spotted surface area, positions of active areas, and brightness variations.

  19. Division Iv/v Working Group on Active B Stars

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Jones, Carol E.; Townsend, Richard D.; Fabregat, Juan; Bjorkman, Karen S.; McSwain, M. Virginia; Mennickent, Ronald E.; Neiner, Coralie; Stee, Philippe; Fabregat, Juan

    2010-05-01

    The meeting of the Working Group on Active B Stars consisted of a business session followed by a scientific session containing nine talks. The titles of the talks and their presenters are listed below. We plan to publish a series of articles containing summaries of these talks in Issue No. 40 of the Be Star Newsletter. This report contains an account of the announcements made during the business session, an update on a forthcoming IAU Symposium on active B stars, a report on the status of the Be Star Newsletter, the results of the 2009 election of the SOC for the Working Group for 2009-12, a listing of the Working Group bylaws that were recently adopted, and a list of the scientific talks that we presented at the meeting.

  20. A quest for activity cycles in low-mass stars

    NASA Astrophysics Data System (ADS)

    Vida, K.; Kriskovics, L.; Oláh, K.

    2013-11-01

    Long-term photometric measurements in a sample of ultrashort-period (P≈0.5 days or less) single and binary stars of different interior structures are analysed. A loose correlation exists between the rotational rate and cycle lengths of active stars, regardless of their evolutionary state and the corresponding physical parameters. The shortest cycles are expected for the fastest rotators of the order of 1-2 years, which is reported in this paper.

  1. Star formation in the filament of S254-S258 OB complex: a cluster in the process of being created

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Ojha, D. K.; Jose, J.; Zavagno, A.; Takahashi, S.; Neichel, B.; Kim, J. S.; Chauhan, N.; Pandey, A. K.; Zinchenko, I.; Tamura, M.; Ghosh, S. K.

    2015-09-01

    Infrared dark clouds are ideal laboratories for studying the initial processes of high-mass star and star-cluster formation. We investigated the star formation activity of an unexplored filamentary dark cloud (size ~5.7 pc × 1.9 pc), which itself is part of a large filament (~20 pc) located in the S254-S258 OB complex at a distance of 2.5 kpc. Using Multi-band Imaging Photometer (MIPS) Spitzer 24 μm data, we uncovered 49 sources with signal-to-noise ratios greater than 5. We identified 45 sources as candidate young stellar objects (YSOs) of Class I, flat-spectrum, and Class II natures. Additional 17 candidate YSOs (9 Class I and 8 Class II) are also identified using JHK and Wide-field Infrared Survey Explorer (WISE) photometry. We find that the protostar-to-Class II sources ratio (~2) and the protostar fraction (~70%) of the region are high. Comparison of the protostar fraction to other young clusters suggests that the star formation in the dark cloud possibly started only 1 Myr ago. Combining the near-infrared photometry of the YSO candidates with the theoretical evolutionary models, we infer that most of the candidate YSOs formed in the dark cloud are low-mass (<2 M⊙). We examine the spatial distribution of the YSOs and find that majority of them are linearly aligned along the highest column density line (N(H2)~1 × 1022 cm-2) of the dark cloud along its long axis at the mean nearest-neighbour separation of ~0.2 pc. Using the observed properties of the YSOs, physical conditions of the cloud and a simple cylindrical model, we explore the possible star formation process of this filamentary dark cloud and suggest that gravitational fragmentation within the filament should have played a dominant role in the formation of the YSOs. From the total mass of the YSOs, the gaseous mass associated with the dark cloud, and the surrounding environment, we infer that the region is presently forming stars at an efficiency of ~3% and a rate ~30 M⊙ Myr-1, and it may emerge

  2. The (Phased?) Activity of Stars Hosting Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Pillitteri, Ignazio; Wolk, Scott J.; Lopez-Santiago, J.; Sciortino, Salvatore

    2015-01-01

    The activity of stars harboring hot Jupiters could be influenced by their close-in planets. Cases of enhanced chromospheric activity are reported in literature, suggesting magnetic interaction at well determined planetary phases. In X-rays and FUV, we have studied star-planet interaction (SPI) occurring in the system of HD 189733. In X-rays, HD 189733 shows features of high activity that can be ascribed to the influence of the magnetic field of its planetary companion. Through a wavelet analysis of a flare, we inferred a long magnetic loop of 2 R_* to 4 R_*, and a local magnetic field of strength in 40-100 G. The size of the flaring loop suggests a role of the hot Jupiter in triggering this kind of X-ray variability. In FUV, HST-COS spectra of HD 189733 shows temporal variations in intensity and Doppler shifts of Si III and Si IV lines that can be ascribed to plasma flowing from the planetary atmosphere and accreting onto the star under the action of the combined magnetic field of star and planet. The material from the planetary atmosphere can flow onto the parent star as predicted by MHD models. The foot point of the accretion on the stellar surface results in phased variability observed in X-rays and FUV, when the point, comoving with the planet, emerges at the limb of the star.

  3. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  4. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  5. The Star Formation Activity in the Shapley Supercluster

    NASA Astrophysics Data System (ADS)

    Ho, P.-L.; Chen, L.-W.

    2013-10-01

    The Shapley supercluster (SSC) is the densest region in the local universe (z < 0.1)(Zucca et al. 1993), it hosts a wide variety of environments from massive clusters to filamentary structure. A total of 81 clusters and groups are identified in this region. In this study, a sample of 208 star-forming galaxies (SFGs) are used to study the effects of local galaxy density and cluster dynamic state on galaxy star formation activity. Our results show that the SFG fraction is highly suppressed in denser regions, for early type SFGs, they especially prefer the low density regions. As for the star formation activity in clusters/groups environment, higher SFG fractions are only detected in clusters/groups with velocity dispersion lower than ˜400 km sec-1, no matter the clusters/groups show merging evidence or not. These results may imply that the gas supply for star formation activity in denser and richer cluster/group regions has been removed by some cluster-specific processes, such as strangulation, ram pressure stripping and harassment, and thus the star formation activity is reduced.

  6. AN ULTRAVIOLET INVESTIGATION OF ACTIVITY ON EXOPLANET HOST STARS

    SciTech Connect

    Shkolnik, Evgenya L.

    2013-03-20

    Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, M{sub p} , or M{sub p} /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8{sigma}) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3{sigma} when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result.

  7. Student Activity Funds: Creating a System of Controls That Work.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles

    1995-01-01

    Although student-activity funds usually represent a small portion of school-system monies, their very nature makes them a high risk. Outlines three steps for maintaining an efficient and effective system of controls over student-activity funds: (1) identifying control issues; (2) designing a control system; and (3) using checks and balances.…

  8. The symbiotic star TX CVn has entered an active state

    NASA Astrophysics Data System (ADS)

    Munari, U.; Castellani, F.; Valisa, P.; Dallaporta, S.; Cherini, G.; Vagnozzi, A.; Righetti, G. L.; Belligoli, R.

    2014-01-01

    After the last active phase that begun in 2003, the symbiotic star TX CVn has now entered a new active phase. In 2003, TX CVn rose to B=10.5 and there it remained until the end of 2007 (Skopal 2007, AN 328, 909), when we started monitoring the variable with various ANS Collaboration telescopes in BVRI bands. Our observations show that the star has spent the following 6 years on a steady decline at a rate of 0.084 mag per year in the B band, that took it from B=10.55 on December 2007 to B=11.02 on September 2013, when the star begun a rapid brightening, reaching B=10.65 by early December 2013.

  9. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity. PMID:25540920

  10. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  11. The relation between star formation and active nuclei

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.

    1987-01-01

    Three questions relevant to the relation between an active nucleus and surrounding star formation are discussed. The infrared stellar CO absorption bands can be used to identify galaxies with large populations of young, massive stars and thus can identify strong starburst unambiguously, such as in NGC 6240, and can help identify composite active/starburst systems such as Arp 220. An active nucleus is probably not required for LINER spectral characteristics; dusty starburst galaxies, particularly if they are nearly edge-on, can produce LINER spectra through the shock heating of their interstellar media by supernovae combined with the obscuration of their nuclei in the optical. The Galactic Center would be an ideal laboratory for studying the interaction of starbursts and active nuclei, if both could be demonstrated to occur there. Failure to detect a cusp in the stellar distribution raises questions about the presence of an active nucleus, which should be answered by additional observations in the near future.

  12. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  13. On the determination of oxygen abundances in chromospherically active stars

    NASA Astrophysics Data System (ADS)

    Morel, T.; Micela, G.

    2004-08-01

    We discuss oxygen abundances derived from [O I] λ6300s and the O I triplet in stars spanning a wide range in chromospheric activity level, and show that these two indicators yield increasingly discrepant results with higher chromospheric/coronal activity measures. While the forbidden and permitted lines give fairly consistent results for solar-type disk dwarfs, spuriously high O I triplet abundances are observed in young Hyades and Pleiades stars, as well as in individual components of RS CVn binaries (up to 1.8 dex). The distinct behaviour of the [O I]-based abundances which consistently remain near-solar suggests that this phenomenon mostly results from large departures from LTE affecting the O I triplet at high activity level that are currently unaccounted for, but also possibly from a failure to adequately model the atmospheres of K-type stars. These results suggest that some caution should be exercised when interpreting oxygen abundances in active binaries or young open cluster stars. Based on observations collected at the European Southern Observatory, Chile (Proposals 64.L-0249 and 071.D-0260). Table \\ref{tab_data} is only available in electronic form at http://www.edpsciences.org

  14. Periods of activity cycles in late-type stars

    NASA Technical Reports Server (NTRS)

    Kliorin, N. I.; Ruzmaykin, A. A.; Sokolov, D. D.

    1983-01-01

    The mean magnetic field dynamo theory is utilized to obtain the qualitative dependence of the period of activity on the angular velocity of rotation for stars with sufficiently extensive convective shells. The dependence of the cycle period on the spectral class is also discussed.

  15. Creating Active Learners on Hawaiian Adventures through Project ALOHA.

    ERIC Educational Resources Information Center

    Sato, Claire; Anderson, Thomas; Sakuda, Katherine

    1998-01-01

    Describes an integrated curriculum project for fourth graders in a Hawaiian elementary school with a highly transient population. The project, ALOHA (Active Learners on Hawaiian Adventures) was developed to motivate students in learning about Hawaii's culture and ecosystems. Cooperation between the library media specialist, technology coordinator,…

  16. Creating Activating Events for Transformative Learning in a Prison Classroom

    ERIC Educational Resources Information Center

    Keen, Cheryl H.; Woods, Robert

    2016-01-01

    In this article, we interpreted, in light of Mezirow's theory of transformative learning, interviews with 13 educators regarding their work with marginalized adult learners in prisons in the northeastern United States. Transformative learning may have been aided by the educators' response to unplanned activating events, humor, and respect, and…

  17. Creating Games for Emerging English Speakers: Language & Content Reinforcement Activities.

    ERIC Educational Resources Information Center

    Collier, Catherine

    This paper discusses the use of games, role playing, and simulation to teach English-as-a-Second-Language (ESL) learners, particularly to reinforce new knowledge or expand emerging knowledge and skills. An introductory section looks at game theory and the ways in which it can inform the construction of classroom activities. Distinctions are made…

  18. Creating Chicago History: Making Outreach Craft Activities Meaningful

    ERIC Educational Resources Information Center

    Karp, Madeline

    2012-01-01

    When it comes to having a traveling outreach activity for a museum, a craft can seem like the perfect solution. It can seemingly be all things at once--educational, quick and fun. But, if poorly constructed, crafts can also have serious fallbacks. Using the Chicago History Museum and the Millennium Park Family Fun Festival as a case study, this…

  19. Modeling the winds and magnetospheres of active OB stars

    NASA Astrophysics Data System (ADS)

    Townsend, Richard H. D.

    2011-07-01

    After briefly reviewing the theory behind the radiative line-driven winds of OB stars, I examine the processes that can generate structure in them; these include both intrinsic instabilities, and surface perturbations such as pulsation and rotation. I then delve into wind channeling and confinement by magnetic fields as a mechanism for forming longer-lived circumstellar structures. With a narrative that largely follows the historical progression of the field, I introduce the key insights and results that link the first detection of a magnetosphere, over three decades ago, to the recent direct measurement of magnetic braking in a number of active OB stars.

  20. Photometric study of the active binary star V1430 Aquilae

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.

    2006-05-01

    New BVR light curves and a photometric analysis of the eclipsing binary star V1430 Aql are presented. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2004. The light curves are generally those of detached eclipsing binaries, but there are large asymmetries between maxima. New BVR light curves were analysed with an ILOT procedure. Light curve asymmetries of the system were explained in terms of large dark starspots on the primary component. The primary star shows a long-lived and quasi-poloidal spot distribution with active longitudes in opposite hemispheres. Absolute parameters of the system were derived. We also discuss the evolution of the system: the components are likely to be pre-main sequence stars, but a post-main sequence stage cannot be ruled out. More observations are needed to decide this point.

  1. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  2. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  3. Li abundance in the stars with solar-type activity

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.

    Li abundances, atmospheric parameters and rotational velocities for 150 dwarfs have been determined from the high resolution, high signal to noise echelle spectra, obtained with the ELODIE spectrograph at the OHP (France). Among them, there are 101 stars with a determined level of activity, a large part of them being of the BY Dra type. The level of chromospheric and coronal activity of the targets has been evaluated through the logR'_HK index and X-ray flux. We examined the Li abundance behavior with T_eff, vsini and level of the activity. Some correlations between the Li abundances, level of the chromospheric activity and rotational velocities vsini are confirmed. The correlation between the Li abundances and index of the chromospheric activity logR'_HK was found, especially for dwarfs with 5700>T_eff> 5200 K. Those correlations mainly demonstrate that measurable values of the lithium content (higher than the upper limit) refer to the stars with large spot areas in their photospheres. Considering the wider set of stars with high activity levels one can affirm that such a conclusion is valid also for the cooler, earlier K dwarfs. Our results confirm that basic factors of formation of detectable Li abundance and high activity are determined principally by smaller age and fast axial rotation, respectively; and apparently by the depth of the convective zone.

  4. Coronal Diagnostics of Intermediate Activity Star XI Boo A

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    2005-01-01

    The analysis of Xi Boo A proved difficult to adapt to our line-by-line approach because of the strong wings of the RGS instrumental profile, as has been detailed in earlier reports. While progress was also delayed because of problems in using SAS v4, we succeeded in the past year or so to bring the analysis to conclusion. Abundances have been derived using both EPIC and RGS data, confirming earlier EUVE findings of a mild solar-like FIP effect, though with some evidence of a turn-up in abundances of elements with higher FIP. Plasma densities appear normal for a moderately active stellar corona. Xi Boo A nicely bridges the gap between the very active stars and stars like the Sun, and it indeed does appear that these are the stars in which the solar-like FIP effects begins to change to the "inverse FIP" type of effect seen in the very active stars. Probing this divide was the main goal of the proposal. These results are in the process of being prepared for publication, though we have not decided the target journal as yet.

  5. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  6. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    SciTech Connect

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S. E-mail: lutz@mpe.mpg.de E-mail: popesso@mpe.mpg.de E-mail: amelie@mpe.mpg.de E-mail: swuyts@mpe.mpg.de; and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  7. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  8. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  9. Dating the Stars Next Door: Ages and Coronal X-Ray Activities of Local K-Type Stars

    NASA Astrophysics Data System (ADS)

    Katynski, Marcus; Guinan, Edward F.; Engle, Scott G.

    2016-01-01

    Age is one of the most difficult (but important) basic stellar physical property to determine. One possible means to estimate stellar age is from rotational period; it is known that as cool stars age, they lose angular momentum from magnetic braking and slow-down. Thus, good Rotation-Age relationships exist, which are calibrated with stars possessing reliable ages from: evolutionary tracks and/or memberships in clusters/moving groups or binary star systems. Further, ages of older stars can be estimated from (low) metal abundances and kinematics (high space motions). More recently, age determinations from asteroseismology are also becoming more reliable. Except for the many G, K, M stars in the Kepler/K2 fields, rotational periods are difficult to measure photometrically for older, less active stars since star spots and active regions are smaller & less prominent. Thus measuring the coronal X-ray activity of a star is an appealing alternative. Coronal X-ray emission is generated by the stellar dynamo, and so is directly related to the stars' rotation (and age). Measurement of X-ray fluxes (or upper limits) have been made for most of the nearby stars (within ~20 pc) with data available in the HEASARC archives. During the 1990's the ROSAT X-Ray Satellite carried out an all-sky survey of thousands of X-ray sources, including hundreds of nearby stars, producing a large archival database. Using these and other available X-ray data from XMM-Newton & Chandra, we explore the relation between coronal X-ray activity and stellar age of all stars within 10 pc (32.6 LY), with special emphasis on dK and early dM stars that make up ~85% of the sample. Here we report the progress made in determination the ages these nearby stars. We focused on nearby dK-stars, due to their long lifetimes (>20 Gyr) and habitable zones that lie ~0.5 -1.5 AU from their host stars. They appear to be ideal candidates for hosting potentially habitable planets, making them interesting targets. We present

  10. ACTIVITY ON THE M STAR OF QS Vir

    SciTech Connect

    Ribeiro, T.; Baptista, R.; Kafka, S.; Tappert, C.

    2010-03-15

    We report analysis of VRIJH photometry and phase-resolved optical spectroscopy of the eclipsing DA white dwarf (WD) plus dMe dwarf binary QS Vir. Modeling of the photometric data yields an inclination of i = 74.9 {+-} 0.6 and a mass ratio of q = M {sub 2}/M {sub 1} = 0.50 {+-} 0.05. Our Doppler maps indicate the presence of material in the Roche lobe of the WD, at a location near the M star, likely due to accretion from the stellar wind of the M star (as opposed to Roche-lobe overflow accretion). We also constructed images of the brightness distribution of the M star at different epochs which reveal the location of two stable active regions. Doppler tomography shows that the majority of the hydrogen and Ca II H and K emission originates on the active M dwarf, likely distributed in two preferred activity longitudes, similar to active regions on BY Dra and FK Comae systems.

  11. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  12. The Life Cycles of Stars: An Information & Activity Booklet Grades K-8, 1997-1998. Star-Child--A Learning Center for Young Astronomers.

    ERIC Educational Resources Information Center

    Truelove, Elizabeth; Dejoie, Joyce

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for kindergarten through grade 8 classrooms. Background information on massive stars and medium stars and activities with subjects such as star life, constellation shapes, nebula terminology, astronomical distances, and pulsars is included. The 12…

  13. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  14. The optical flares of active star II Pegasi in 2005

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Kim, Kang Min; Lee, Byeong-Cheol

    2015-08-01

    We observed the active star II Peg using high-resolution spectrographs of 2.16m telescope at Xinglong station of NAOC and 1.8m telescope at BOAO of KASI from November to December, 2005. By means of spectral subtraction technique, the chromospheric activities of II Peg are analyzed at several activity indicators, including CaII IRT, Hα, NaI D1D2 and HeI D3 lines. The results demonstrate that the magnetic activity of II Peg is very strong, and its chromospheric activities show rotational modulations which imply there are active regions in its chromosphere. Two flare events were hunted during the observations, which were identified by HeI D3 line emission above the continuum. The first flare was happened in November 2005, the second one in December 2005, and they were located in different hemisphere of the star. This may indicate the evolution of active regions. Considering the photospheric spot activities, the possible origin of the detected flares is discussed.

  15. Comparison of the Motivational Climates Created during Multi-Activity Instruction and Sport Education

    ERIC Educational Resources Information Center

    Parker, Mitchum B.; Curtner-Smith, Matthew D.

    2014-01-01

    Previous research has suggested that sport education (SE) may be a superior curriculum model to multi-activity (MA) teaching because its pedagogies and structures create a task-involving motivational climate. The purpose of this study was to describe and compare the objective motivational climates teachers create within the MA and SE models.…

  16. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  17. Making Connections: Language Activities for Creating Interpersonal Tolerance in the Classroom

    ERIC Educational Resources Information Center

    Renaud, Susan; Tannenbaum, Elizabeth

    2013-01-01

    Using communicative activities with learners from diverse cultures can create excitement and empathy while promoting the acquisition of English. This article offers ESL/EFL activities that foster interpersonal tolerance among students who have experienced intergroup conflict. The activities are based on the idea that there are four levels of…

  18. The evolution of star formation activity in galaxy groups

    NASA Astrophysics Data System (ADS)

    Erfanianfar, G.; Popesso, P.; Finoguenov, A.; Wuyts, S.; Wilman, D.; Biviano, A.; Ziparo, F.; Salvato, M.; Nandra, K.; Lutz, D.; Elbaz, D.; Dickinson, M.; Tanaka, M.; Mirkazemi, M.; Balogh, M. L.; Altieri, M. B.; Aussel, H.; Bauer, F.; Berta, S.; Bielby, R. M.; Brandt, N.; Cappelluti, N.; Cimatti, A.; Cooper, M.; Fadda, D.; Ilbert, O.; Le Floch, E.; Magnelli, B.; Mulchaey, J. S.; Nordon, R.; Newman, J. A.; Poglitsch, A.; Pozzi, F.

    2014-12-01

    We study the evolution of the total star formation (SF) activity, total stellar mass (ΣM*) and halo occupation distribution (HOD) in massive haloes by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of star formation rate (SFR) for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from spectral energy distribution (SED) fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high-redshift groups (0.5 < z < 1.1) is higher with respect to the low-redshift (0.15 < z < 0.5) sample at any mass by 0.8 ± 0.12 dex. A milder difference (0.35 ± 0.1 dex) is observed between the low-redshift bin and the groups at z ˜ 0. We show that the level of SF activity is declining more rapidly in the more massive haloes than in the more common lower mass haloes. We do not observe any evolution in the HOD and total stellar mass-halo mass relations in groups. The picture emerging from our findings suggests that the galaxy population in the most massive systems is evolving faster than galaxies in lower mass haloes, consistently with a `halo downsizing' scenario.

  19. Chromospherically active stars. X - Spectroscopy and photometry of HD 212280

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Browning, Jared C.; Henry, Gregory W.; Morton, Mary D.; Hall, Douglas S.

    1993-01-01

    The system HD 212280 is a chromospherically active double lined spectroscopic binary with an orbital period of 45.284 days and an eccentricity of 0.50. The spectrum is composite with spectral types of G8 IV and F5-8 V for the components. An estimated inclination of 78 +/- 8 deg results in masses of 1.7 and 1.4 solar mass for the G subgiant and mid-F star, respectively. The distance to the system is estimated to be 112 pc. Photometric observations obtained between 1987 November and 1992 June reveal that HD 212280 is a newly identified variable star with a V amplitude of about 0.15 mag and a mean period of 29.46 days. Our V data were divided into 11 sets and in all but one case two spots were required to fit the data. Lifetimes of 650 days and a minimum of 1350 days have been determined for two of the four spots. The differential rotation coefficient of 0.05 is relatively small. The age of the system is about 1.9 X 10 exp 9 yrs. The G subgiant is rotating slower than pseudosynchronously while the F-type star is rotating faster.

  20. Activity and Brightness Variations of Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2015-08-01

    Long-term observations of variations in Sun-like stars now span a half century. The Mount Wilson Observatory (MWO) HK Project operated from 1966 to 2003, and the Lowell Observatory Solar-Stellar Spectrograph (SSS) project has operated since 1994; together these programs provide a record of chromospheric activity over multiple stellar cycles for more than 100 stars of V < ~7.5. Long-term photometric monitoring of Sun-like stars, including many of the MWO and SSS targets, began in the early 1980s and continues today at the Fairborn Observatory south of Tucson. I will review progress to date in combining and interpreting the spectrosopic and photometric data sets, including some new results from the most recent years of SSS and Fairborn data. I will also review where deficiencies remain in reconciling and combining the major data sets, and will discuss efforts presently underway to remedy this and provide a long-term record for the benefit of the community.

  1. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  2. Stars of the Big Dipper: A 3-D Vector Activity

    NASA Astrophysics Data System (ADS)

    Kuo, Vince H.; Beichner, Robert J.

    2006-03-01

    Most teachers of introductory physics will agree that many students have difficulty with vectors, so much so that we frequently spend a week at the beginning of the semester presenting material that students should know from previous mathematics courses. This review is often quite abstract, with little or no connection to familiar contexts, and seldom includes any motivation for students to "see it again." In this paper we present a vector activity that attempts to address both these issues using the stars of the Big Dipper, in the constellation Ursa Major, as a memorable context.

  3. EPISODIC STAR FORMATION COUPLED TO REIGNITION OF RADIO ACTIVITY IN 3C 236

    SciTech Connect

    Tremblay, Grant R.; O'Dea, Christopher P.; Baum, Stefi A.; Koekemoer, Anton M.; Sparks, William B.; De Bruyn, Ger; Schoenmakers, Arno P.

    2010-05-20

    We present Hubble Space Telescope Advanced Camera for Surveys and STIS FUV/NUV/optical imaging of the radio galaxy 3C 236, whose relic {approx}4 Mpc radio jet lobes and inner 2 kpc compact steep spectrum (CSS) radio source are evidence of multiple epochs of active galactic nucleus (AGN) activity. Consistent with previous results, our data confirm the presence of four bright knots of FUV emission in an arc along the edge of the inner circumnuclear dust disk in the galaxy's nucleus, as well as FUV emission cospatial with the nucleus itself. We interpret these to be sites of recent or ongoing star formation. We present photometry of these knots, as well as an estimate for the internal extinction in the source using line ratios from archival ground-based spectroscopy. We estimate the ages of the knots by comparing our extinction-corrected photometry with stellar population synthesis models. We find the four knots cospatial with the dusty disk to be young, of order {approx}10{sup 7} yr old. The FUV emission in the nucleus, to which we do not expect scattered light from the AGN to contribute significantly, is likely due to an episode of star formation triggered {approx}10{sup 9} yr ago. We argue that the young {approx}10{sup 7} yr old knots stem from an episode of star formation that was roughly coeval with the event resulting in reignition of radio activity, creating the CSS source. The {approx}10{sup 9} yr old stars in the nucleus may be associated with the previous epoch of radio activity that generated the 4 Mpc relic source, before being cut off by exhaustion or interruption. The ages of the knots, considered in the context of both the disturbed morphology of the nuclear dust and the double-double morphology of the 'old' and 'young' radio sources, present evidence for an AGN/starburst connection that is possibly episodic in nature. We suggest that the AGN fuel supply was interrupted for {approx}10{sup 7} yr due to a minor merger event and has now been restored. The

  4. Spots and active longitudes on the star V815 Her

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2009-10-01

    An analysis of photometric observations for the starHD166181 (V815Her) is presented. B and V light curves were used to reconstruct temperature inhomogeneities on the stellar surface. The spots on the surface of V815 Her are concentrated at two preferred longitudes separated by 0.5 in phase (180° in longitude). The positions of more and less active regions quasi-periodically “flip-flop,” on time scales of about 600, 950, and 1250 days. The times of active-longitude switches coincide with the maxima and minima of the light curve and the amplitude of the brightness variations, as well as with the minima and maxima of the star’s spottedness.

  5. Chemical Fingerprints of Star Forming Regions and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, Juan-Pablo

    2010-10-01

    This thesis is devoted to the study of the physical conditions of the interstellar medium (ISM) in active galactic nuclei (AGNs) and Galactic star-forming regions, using mostly single-dish millimeter observations. I first study the excitation conditions of dense gas in a group of Seyfert galaxies using radiative transfer models (Chapter 2). I then study the galaxy NGC 1068, and try to distinguish signatures of the contributions from the AGN and the starburst ring by incorporating observations of high-J transitions of dense gas tracers (Chapter 3). Later, I venture into the mid-infrared spectral region to study different aspects of the AGN and starburst components in the galaxy NGC 4945 (Chapter 4). In Chapter 5 I delve into theoretical aspects of the dynamical evolution of gas in an AGN torus. I use a 3D hydrodynamic simulation with chemical abundances driven by X-rays. The aim is to understand the effects of X-ray irradiation by the AGN on the temperature, formation and destruction of the molecular gas. I finally explore a Galactic star-forming region, the Omega Nebula, with high resolution single dish observations, to study the properties of the warm gas and to constrain chemical models (Chapters 6 and 7).

  6. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  7. Active Pixel Sensor Characterization for the STAR Detector

    NASA Astrophysics Data System (ADS)

    King, Jake

    2004-10-01

    The STAR collaboration is studying matter at high temperatures and densities. If a significant improvement to the measurement of particle trajectories can be made, charmed mesons that decay away from the primary collision point could be identified. To achieve this goal, STAR is building a vertex detector consisting of a new technology Â- active pixel sensors. (APS) An APS is an implementation of standard CMOS technology in which each pixel has a photodiode directly above the epitaxial layer. Incident particles produce electron-hole pairs in the epitaxial layer, and these electrons accumulate on the photodiode. Charge from the photodiode is digitized to identify the position of the incident particle. It is important to characterize the signal to noise, readout time, and resolution on several different pixel sizes so that the vertex detector can be optimized for cost and speed. Larger pixels result in a faster data acquisition, while smaller pixels have better resolution. We will present studies of 5, 10, 20 and 30μm square pixel geometries that measure charge distribution and collection. We will also display the results of using a field emission scanning electron microscope with energies from 1 to 30 keV. This tool has the potential to probe regions of the APS integrated circuit and contribute to understanding its properties.

  8. Creating Classrooms of and for Activism at the Intersections of Class, Race, Ethnicity, Gender, and Disability

    ERIC Educational Resources Information Center

    Nishida, Akemi; Fine, Michelle

    2014-01-01

    In this article the authors describe pedagogy which rests on commitments to solidarity, activism, and intersectional understandings of personhood and social (in)justices. The authors seek to create accessible classrooms where our many selves and critical consciousness can be in (dis)comforting conversation with one another. Then, they hope to…

  9. Active beam shaping in multiple laser guide stars

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    Adaptive beam shaping is a critical part of multiple Laser Guide Stars (LGS) for Multiple Conjugate Adaptive Optics (MCAO) for ground-based astronomical telescopes. There are two kinds of Laser Guide Stars: Na Laser Guide Stars (at 589 nm and 92 km altitude) and Rayleigh Laser Guide Stars (at 532 nm and 20 km altitude). Multiple Conjugate Adaptive Optics (MCAO) corrects for each "layer" of atmosphere independently. Multiple Laser Guide Stars are being developed to achieve a measure of tilt and increase the isoplanatic patch. Multiple Laser Guide Stars are being combined with Multiple Conjugate Optics in the Large Binocular Telescope (LBT): more than one Laser Guide Star (4-5) and two different wavelengths: 589 nm and 532 nm. Other observatories have multiple Laser Guide Stars but only one wavelength: 589 nm or 532 nm. Because Laser Guide Stars are launched into the atmosphere, adaptive beam shaping will be carried out before the laser is launched and will be different depending on which laser is being used, presumably to effect the tightest beam which can be achieved at the power level which is required to provide the requisite return to gound-based wavefront sensors. A complete range of devices are used. Beam attenuation and divergnece will take place. Multiple Laser Guide Stars of major observatories (SOR, LBT, MMT, ESO VLT and Gemini South) will be evaluated for effective adaptive beam shaping and impact on performance

  10. The evolution of galaxy star formation activity in massive haloes

    NASA Astrophysics Data System (ADS)

    Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; Berta, S.; Elbaz, D.; Dickinson, M.; Lutz, D.; Altieri, B.; Aussel, H.; Cimatti, A.; Fadda, D.; Ilbert, O.; Le Floch, E.; Nordon, R.; Poglitsch, A.; Xu, C. K.

    2015-02-01

    Context. There is now a large consensus that the current epoch of the cosmic star formation history (CSFH) is dominated by low mass galaxies while the most active phase, between redshifts 1 and 2, is dominated by more massive galaxies, which evolve more quickly. Aims: Massive galaxies tend to inhabit very massive haloes, such as galaxy groups and clusters. We aim to understand whether the observed "galaxy downsizing" could be interpreted as a "halo downsizing", whereas the most massive haloes, and their galaxy populations, evolve more rapidly than the haloes with lower mass. Methods: We studied the contribution to the CSFH of galaxies inhabiting group-sized haloes. This is done through the study of the evolution of the infra-red (IR) luminosity function of group galaxies from redshift 0 to redshift ~1.6. We used a sample of 39 X-ray-selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel satellite. Results: Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute ≤10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift ≳1, the most IR-luminous galaxies (LIRGs and ULIRGs) are mainly located in groups, and this is consistent with a reversal of the star formation rate (SFR) vs. density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z ~ 1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Conclusions: Our results are consistent with a "halo downsizing" scenario and highlight the

  11. A CATALOG OF ROTATION AND ACTIVITY IN EARLY-M STARS

    SciTech Connect

    Reiners, Ansgar; Joshi, Nandan; Goldman, Bertrand

    2012-04-15

    We present a catalog of rotation and chromospheric activity in a sample of 334 M dwarfs of spectral types M0-M4.5 populating the parameter space around the boundary to full convection. We obtain high-resolution optical spectra for 206 targets and determine projected rotational velocity, vsin i, and H{alpha} emission. The data are combined with measurements of vsin i in field stars of the same spectral type from the literature. Our sample adds 157 new rotation measurements to the existing literature and almost doubles the sample of available vsin i. The final sample provides a statistically meaningful picture of rotation and activity at the transition to full convection in the solar neighborhood. We confirm a steep rise in the fraction of active stars at the transition to full convection known from earlier work. In addition, we see a clear rise in rotational velocity in the same stars. In very few stars, no chromospheric activity but a detection of rotational broadening is reported. We argue that all of them are probably spurious detections; we conclude that in our sample all significantly rotating stars are active, and all active stars are significantly rotating. The rotation-activity relation is valid in partially and in fully convective stars. Thus, we do not observe any evidence for a transition from a rotationally dominated dynamo in partially convective stars to a rotation-independent turbulent dynamo in fully convective stars; turbulent dynamos in fully convective stars of spectral types around M4 are still driven by rotation. Finally, we compare projected rotational velocities of 33 stars to rotational periods derived from photometry in the literature and determine inclinations for a few of them.

  12. Investigation of x ray variability in highly active cool stars

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1989-01-01

    Ginga x ray observations of highly active cool star coronae were obtained and analyzed in an effort to better understand the nature of their time variability. The possible types of variability studied included x ray occultations via eclipses in a binary system, rotational modulation of x ray emission, flares, and a search for microflaring. Observation of both sigma(sup 2) CrB and Algol were performed successfully by Ginga. The sigma(sup 2) CrB observations occurred on 27 to 30 June 1988, and the Algol observations on 12 to 14 January 1989. In the sigma(sup 2) CrB observation, simultaneous IUE and Very Large Array (VLA) observations were obtained during part of the Ginga observation. Flaring activity was detected on sigma(sup 2) CrB in the Ginga 1.7 to 11 KeV band and in the IUE microwave region. A large flare on Algol which lasted well over 12 hours was detected, began with a maximum temperature of 65 MK which gradually decayed to 36 MK, and evidence was shown of highly ionized Fe line emission.

  13. Stars and Planets: A New Set of Middle School Activities

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.

    2002-01-01

    A set of lesson plans for grades 6-8 which deal with the sizes and distances of stars and planets using a scale factor of 1 to 10 billion, the life cycle of stars, and the search for planets beyond the solar system. Additional information is contained in the original extended abstract.

  14. Pattern formation for active particles on optically created ordered and disordered substrates (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles M.; Ray, Dipanjan; Reichhardt, Cynthia J.

    2015-08-01

    There has been tremendous growth in the field of active matter, where the individual particles that comprise the system are self-driven. Examples of this class of system include biological systems such as swimming bacteria and crawling cells. More recently, non-biological swimmers have been created using colloidal Janus particles that undergo chemical reactions on one side to produce self-propulsion. These active matter systems exhibit a wide variety of behaviors that are absent in systems undergoing purely thermal fluctuations, such as transitions from uniform liquids to clusters or living crystals, pushing objects around, ratchet effects, and phase separation in mixtures of active and passive particles. Here we examine the collective effects of active matter disks in the presence of static or dynamic substrates. For colloids, such substrates could be created optically in the form of periodic, random, or quasiperiodic patterns. For thermal particles, increasing the temperature generally increases the diffusion or mobility of the particles when they move over a random or periodic substrates. We find that when the particles are active, increasing the activity can increase the mobility for smaller run lengths but decrease the mobility at large run lengths. Additionally we find that at large run lengths on a structured substrate, a variety of novel active crystalline states can form such as stripes, squares and triangular patterns.

  15. Meridional flow velocities on solar-like stars with known activity cycles

    NASA Astrophysics Data System (ADS)

    Baklanova, Dilyara; Plachinda, Sergei

    2015-02-01

    The direct measurements of the meridional flow velocities on stars are impossible today. To evaluate the meridional flow velocities on solar-like stars with stable activity periods, we supposed that during the stellar Hale cycle the matter on surfaces of stars passes the meridional way equivalent to 2 πR★ . We present here the dependence of the mean meridional flow velocity on Rossby number, which is an effective parameter of the stellar magnetic dynamo.

  16. Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter

    NASA Astrophysics Data System (ADS)

    Martínez-Arnáiz, R.; Maldonado, J.; Montes, D.; Eiroa, C.; Montesinos, B.

    2010-09-01

    Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca ii H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF echelle package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R'_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity

  17. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  18. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    PubMed Central

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  19. BAR EFFECTS ON CENTRAL STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M{sub r} < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  20. Star Formation Activity in a z>4 Protocluster

    NASA Astrophysics Data System (ADS)

    Menéndez-Delmestre, Karín; Capak, Peter; Sheth, Kartik

    2015-08-01

    Local studies show that galaxy properties are linked to the galaxy number density within their local environment. Galaxy clusters represent the most extreme density environments and are ideal laboratories to investigate the interplay between galaxy evolution and the environment. However, to understand the origin of the galaxy-environment relation, one needs to look back at the epoch of galaxy formation (z > 1), where the local high-density environments of well-established, virialized clusters give way to looser large-scale structures (LSS) extending over regions of several megaparsecs in size (protoclusters). Clustering analysis indicate that at z~2 submm-selected galaxies (SMGs) reside in very massive halos, suggesting that these may trace high-density environments that likely evolve into rich clusters of galaxies. Conversely, recent work has suggests that SMGs are tracers of a broader range of environments, including structures with more modest masses caught in highly active periods. This suggests that since galaxies in these structures are likely caught during episodes of peak starbursts, SMGs may be tracers of a wider range of environments beyond the progenitors of today’s very rich clusters, opening a window for a more complete exploration of the details underpinning the process of galaxy evolution in concert with the assembly of LSS. We undertook a large observing program comprising deep narrow-band Ly-alpha imaging and multi-object spectroscopy using the IMACS camera on Magellan (Las Campanas) to probe for the presence of a galaxy overdensity in the vicinity of a 4-member group of SMGs at z>4. With ~100 spectroscopically-confirmed Ly-alpha emitters, we are in a position to gauge the level of galaxy overdensity in this region. Furthermore, we have initiated a detailed follow-up study of these Ly-alpha emitters to obtain star-formation rates based on the IRAC and MIPS Spitzer archives, in an effort to probe for trends in the intra-LSS distribution.

  1. The regulation and function of the striated muscle activator of rho signaling (STARS) protein

    PubMed Central

    Wallace, Marita A.; Lamon, Séverine; Russell, Aaron P.

    2012-01-01

    Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function. PMID:23248604

  2. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro. PMID:15155547

  3. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  4. The quiescent chromospheres and transition regions of active dwarf stars - What are we learning from recent observations and models?

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1983-01-01

    Progress in understanding active dwarf stars based on recent IUE, Einstein, and ground-based observations is reviewed. The extent of magnetic field control over nonflare phenomena in active dwarf stars is considered, and the spatial homogeneity and time variability of active dwarf atmospheres is discussed. The possibility that solar like flux tubes can explain enhanced heating in active dwarf stars in examined, and the roles of systematic flows in active dwarf star atmospheres are considered. The relation between heating rates in different layers of active dwarf stars is summarized, and the mechanism of chromosphere and transition region heating in these stars are discussed. The results of one-component and two-component models of active dwarf stars are addressed.

  5. Photometric Variations in Spotted Pleiades Stars as Probes of Long-Term Activity Cycles

    NASA Astrophysics Data System (ADS)

    Bardenett, E.; Milingo, J. B.; Marschall, L. A.; Backman, D. E.

    2004-12-01

    Through the collaborative efforts of undergraduates and faculty at Franklin & Marshall and Gettysburg Colleges, we present new photometric data for 3 K-type stars in the Pleiades. Continuing 8+ years of observations, this data contributes to the long-term study of photometric variations in these stars. These young stars have rotational light curves with V-band amplitudes of a few percent (up to 10% in the most active stars) due to large photospheric active regions or "starspots". Quantifying the level of starspot activity from year to year allows us to look for long-term trends analogous to the solar sunspot cycle. These observations were acquired with the National Undergraduate Research Observatory's (NURO) 31" telescope, which is operated by Lowell Observatory and Northern Arizona University. This work is supported by Franklin & Marshall College, the Delaware Space Grant Consortium, and Arizona Space Grant (NASA Space Grant programs).

  6. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  7. Building inhabitant feedback: Creating a reflective practice for environmental design using activity theory

    NASA Astrophysics Data System (ADS)

    Cunningham, Dara Suzanne

    The way buildings are designed now, there is little feedback from use involved in the design process. Attempts to correct this problem have been made in the form of Post Occupancy Evaluations (POEs) for 50-years but have largely failed. POEs are the accepted method for environmental designers to collect feedback about buildings in use. They are infrequently conducted, after the building is built, in a one-time only evaluation, and not funded as part of the build process. Other products receive feedback about the design in use from online critiques. Online critiques could provide a platform for feedback from actors engaged with buildings in use for environmental designers to utilize in developing reflective design rationale to avoid adverse consequences in future designs or correct consequences in past and current designs. Since buildings constitute such a large part of the human environment, it's important to research the effects of buildings on their inhabitants. In order for environmental designers to act on feedback from situated use, designers need to have access to that feedback and all actors interacting with the building design need to have an easy, inexpensive, and accessible method to submit feedback. These needs can be addressed by utilizing modern networked and mobile computing to collect and access building feedback. The analysis presented in this dissertation is informed by a thorough evaluation of the theory of reflective practice, activity theory, environmental design, and cognitive science research. From this analysis, I developed the following contributions. First, I expanded Schon's reflective practice by combining his theory with a modified version of activity theory, using activity theory to enrich reflective practice and create Reflective Activity Systems Theory (RAST), which provides a new framework to develop design rationale based on feedback from use and a focus on the activity. Second, I suggest the design of an activity information system

  8. Rotation and activity among solar-type stars of the Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Mayor, Michel

    1993-01-01

    We examine rotation and chromospheric activity among G and K dwarfs recently shown to be members of the Ursa Major Group (UMaG). Rotation periods for UMaG stars are smaller than for stars of the same colors in the Hyades, and by an amount corresponding to the Skumanich relation. Most UMaG stars have about the same level of Ca II and K emission, implying that they also have nearly uniform intrinsic rotation rates. That means that the diversity of rotation rates and levels of activity seen among solar-type stars in the Alpha Persei and Pleiades clusters has largely converged by the age of UMaG (0.3 Gyr).

  9. Community design and policies for free-range children: creating environments that support routine physical activity.

    PubMed

    Fenton, Mark

    2012-02-01

    Growing concern over childhood obesity has prompted a focus on underlying epidemics of physical inactivity and poor nutrition. Regarding the former, there is increasing understanding that behavior change promotion alone has not increased population physical activity levels and that an ecological approach is necessary. Therefore, the public health profession has moved beyond traditional behavior change campaigns toward a growing focus on altering policies and the built environment to create settings that support increases in routine, not just exercise or leisure time, physical activity among children. A survey of the literature suggests four broad factors that define settings where routine physical activity, especially active transportation, is more likely to occur: • a compact variety of land uses, with a mix of destinations in close proximity; • a comprehensive network of bicycle, pedestrian, and transit facilities; • inviting and functional site designs for pedestrians, cyclists, and transit users; • safety and access for users of all ages, incomes, abilities and disabilities. Although these principles are increasingly accepted as beneficial, not just to health but to a community's economic, environmental, and social well-being, many contemporary ordinances and development practices undermine these outcomes. Therefore, five specific policy and intervention approaches are recommended to guide communities to these outcomes: 1. zoning and development policies to protect open space, contain sprawl, and focus investment toward thriving, mixed downtowns and village centers; 2. Complete Streets policies, which require roadways that are safe and functional for pedestrians, bicyclists, and transit users, as well as motor vehicles; 3. a transportation- (not just recreation-) oriented trail network; 4. creation of bicycle- and transit-friendly infrastructure and incentive policies; 5. development of policy-based Safe Routes to School interventions. This proposed

  10. No first ionization potential fractionation in the active stars AR Piscium and AY Ceti

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; Affer, L.; Micela, G.

    2009-10-01

    Context: The comparison of coronal and photospheric abundances in cool stars is an essential question to resolve. In the Sun an enhancement of the elements with low first ionization potential (FIP) is observed in the corona with respect to the photosphere. Stars with high levels of activity seem to show a depletion of elements with low FIP when compared to solar standard values; however, the few cases of active stars in which photospheric values are available for comparison lead to confusing results, and an enlargement of the sample is mandatory for solving this longstanding problem. Aims: We calculate in this paper the photospheric and coronal abundances of two well known active binary systems, AR Psc and AY Cet, to get further insight into the complications of coronal abundances. Methods: Coronal abundances of 9 elements were calculated by means of the reconstruction of a detailed emission measure distribution, using a line-based method that considers the lines from different elements separately. Photospheric abundances of 8 elements were calculated using high-resolution optical spectra of the stars. Results: The results once again show a lack of any FIP-related effect in the coronal abundances of the stars. The presence of metal abundance depletion (MAD) or inverse FIP effects in some stars could stem from a mistaken comparison to solar photospheric values or from a deficient calculation of photospheric abundances in fast-rotating stars. Conclusions: The lack of FIP fractionation seems to confirm that Alfvén waves combined with pondermotive forces are dominant in the corona of active stars. Tables 2 and 3 are only available in electronic form at http://www.aanda.org

  11. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  12. Schools and Obesity Prevention: Creating School Environments and Policies to Promote Healthy Eating and Physical Activity

    PubMed Central

    Story, Mary; Nanney, Marilyn S; Schwartz, Marlene B

    2009-01-01

    Context: Research consistently shows that the majority of American children do not consume diets that meet the recommendations of the Dietary Guidelines for Americans, nor do they achieve adequate levels of daily physical activity. As a result, more children are overweight today than at any other time in U.S. history. Schools offer many opportunities to develop strategies to prevent obesity by creating environments in which children eat healthfully and engage regularly in physical activity. Methods: This article discusses the role of schools in obesity prevention efforts. Current issues in schools' food and physical activity environments are examined, as well as federal, state, and local policies related to food and physical activity standards in schools. The article is organized around four key areas: (1) school food environments and policies, (2) school physical activity environments and policies, (3) school body mass index measurements, and (4) school wellness policies. Recommendations for accelerating change also are addressed. Findings: The article found that (1) competitive foods (foods sold outside of federally reimbursed school meals) are widely available in schools, especially secondary schools. Studies have related the availability of snacks and drinks sold in schools to students' high intake of total calories, soft drinks, total fat and saturated fat, and lower intake of fruits and vegetables; (2) physical activity can be added to the school curriculum without academic consequences and also can offer physical, emotional, and social benefits. Policy leadership has come predominantly from the districts, then the states, and, to a much lesser extent, the federal government; (3) few studies have examined the effectiveness or impact of school-based BMI measurement programs; and (4) early comparative analyses of local school wellness policies suggest that the strongest policies are found in larger school districts and districts with a greater number of

  13. Hydroxyl 1.563 Micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.; Saar, Steven H.; Mines, Jonathan K.

    2001-10-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563 μm. We detect excess OH absorption due to dark, cool starspots on several active stars of the RS CVn and BY Dra classes. Our results for the single-lined spectroscopic binaries II Pegasi, V1762 Cygni, and λ Andromedae augment those from a previous study that used a less sensitive detector. In this study, we were able for the first time to use molecular absorption features to measure starspot properties on double-lined spectroscopic binaries. Measuring the equivalent widths of these OH lines in inactive giant and dwarf stars of spectral types G, K, and M, we find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 to 3000 K. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and nonspot regions of the star.

  14. Neural activities in V1 create the bottom-up saliency map of natural scenes.

    PubMed

    Chen, Cheng; Zhang, Xilin; Wang, Yizhou; Zhou, Tiangang; Fang, Fang

    2016-06-01

    A saliency map is the bottom-up contribution to the deployment of exogenous attention. It, as well as its underlying neural mechanism, is hard to identify because of the influence of top-down signals. A recent study showed that neural activities in V1 could create a bottom-up saliency map (Zhang et al. in Neuron 73(1):183-192, 2012). In this paper, we tested whether their conclusion can generalize to complex natural scenes. In order to avoid top-down influences, each image was presented with a low contrast for only 50 ms and was followed by a high contrast mask, which rendered the whole image invisible to participants (confirmed by a forced-choice test). The Posner cueing paradigm was adopted to measure the spatial cueing effect (i.e., saliency) by an orientation discrimination task. A positive cueing effect was found, and the magnitude of the cueing effect was consistent with the saliency prediction of a computational saliency model. In a following fMRI experiment, we used the same masked natural scenes as stimuli and measured BOLD signals responding to the predicted salient region (relative to the background). We found that the BOLD signal in V1, but not in other cortical areas, could well predict the cueing effect. These results suggest that the bottom-up saliency map of natural scenes could be created in V1, providing further evidence for the V1 saliency theory (Li in Trends Cogn Sci 6(1):9-16, 2002). PMID:26879771

  15. Upgrading the Solar-Stellar Connection: News about activity in Cool Stars

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Poppenhaeger, K.; Testa, P.; Borgniet, S.; Brun, A. S.; Cegla, H. M.; Garraffo, C.; Kowalski, A.; Shapiro, A.; Shkolnik, E.; Spada, F.; Vidotto, A. A.

    2015-01-01

    In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theoretical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.

  16. Red Dwarf Stars: Ages, Rotation, Magnetic Dynamo Activity and the Habitability of Hosted Planets

    NASA Astrophysics Data System (ADS)

    Engle, S. G.; Guinan, E. F.

    2011-12-01

    We report on our continued efforts to understand and delineate the magnetic dynamo-induced behavior/variability of red dwarf (K5 V - M6 V) stars over their long lifetimes. These properties include: rotation, light variations (from star spots), coronal-chromospheric XUV activity and flares. This study is being carried out as part of the NSF-sponsored Living with a Red Dwarf program. The Living with a Red Dwarf program's database of dM stars with photometrically determined rotation rates (from starspot modulations) continues to expand, as does the inventory of archival XUV observations. Recently, the photometric properties of several hundred dM stars from the Kepler database are being analyzed to determine the rotation rates, starspot areal coverage/distributions and stellar flare rates. When all data setsare combined with ages from cluster/population memberships and kinematics, the determination of Age-Rotation-Activity relationships is possible. Such relationships have broad impacts not only on the studies of magnetic dynamo theory and angular momentum loss of low-mass stars with deep convective zones, but also on the suitability of planets hosted by red dwarfs to support life. With intrinsically low luminosities (L< 0.02L⊙), the liquid water habitable zones (HZs) for hosted planets are very close to their host stars - typically at ˜0.1 AU < HZ < 0.4 AU. Planets located close to their host stars risk damage and atmospheric loss from coronal & chromospheric XUV radiation, flares and plasma blasts via strong winds and coronal mass ejections. In addition, our relationships permit the stellar ages to be determined through measures of either the stars' rotation periods (best way) or XUV activity levels. This also permits a determination of the ages of their hosted planets. We illustrate this with examples of age determinations of the exoplanet systems: GJ 581 and HD 85512 (both with large Earth-size planets within the host star's HZ), GJ 1214 (hot, close

  17. OH 1.563 micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.

    1997-03-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563mu m. We detect excess OH absorption due to dark, cool starspots on the RS CVn binaries II Pegasi, V1762 Cygni, and lambda Andromedae. This is the first detection of OH absorption from spots on stars other than the Sun. We have measured absorption equivalent widths of these OH lines (which are blended at the resolution of our observations) in inactive giant and dwarf stars of spectral types G, K, and M. We find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 K to 3000 K. This greatly extends the temperature range over which starspots can be detected through molecular absorption features. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and non-spot regions of the star. Fitting only one spectral feature, we cannot derive independent constraints on starspot area and temperature. Assuming spot temperatures based on previous analyses, we find (for one epoch) spot filling factors between 35% and 48% for II Peg, 22% and 26% for lambda And, and 27% and 32% for V1762 Cyg.

  18. Activity and cold spots on the surface of G-type superflare stars

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2015-07-01

    Based on the high precision photometric observations of the Kepler space telescope, we have investigated the properties of the active regions (cold spots) on the surface of 279 stars of the spectral class G, for which 1547 superflares with energies in the range of 1033-1036 erg have been revealed. The main conclusion of our study is the quantitative estimation of the increased surface spottedness of superflare stars, which indicates enhancedmagnetic activity of these objects. The increased spottedness on the surfaces of the studied stars was confirmed based on two independent estimations of stellar brightness variations. In addition, it was concluded that superflare stars do not stand out in the common dataset of differential rotation parameters. Based on the data considered, no correlation was found of the spottedness parameters or the differential rotation parameters with the characteristics of these objects—their Rossby numbers and superflare energy. Additionally, the correlation between the superflare energy and the inverse Rossby number was considered. None of these comparisons gave an indication for the presence of any obvious correlation. The results of the analysis of five stars with a few dozen flares registered indicate that for the same star whereas spottedness S variations are small, significant changes in the superflare energy can be achieved. On the example of KIC 10422252, we show that at sixfold S variations, the flare energy varies by orders of magnitude at any given S value.

  19. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  20. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  1. Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Brown, Alexander

    2015-08-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  2. Star formation and black hole accretion activity in rich local clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bianconi, Matteo; Marleau, Francine R.; Fadda, Dario

    2016-04-01

    Context. We present a study of star formation and central black hole accretion activity of galaxies that are hosted in the two nearby (z ~ 0.2) rich galaxy clusters Abell 983 and 1731. Aims: We aim to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy at 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations (~3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star-forming members of the two clusters present star formation rates that are comparable with those measured in coeval field galaxies. Analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: Analysis of the specific star formation rate reveals evidence of ongoing galaxy pre-processing along A1731's filament-like structure. Furthermore, the decrease in the number of star-forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of the galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity. The catalogue and the reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A105

  3. The onset of chromospheric activity among the A- and F- type stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  4. Creating a psychiatric mental health portfolio: An assignment activity that works.

    PubMed

    Melrose, Sherri

    2006-09-01

    Creating lively, engaging and reflection-oriented assignments for learners is an important area of focus for educators. The Center for Nursing and Health Studies at Athabasca University in Canada offers a program for Licensed Practical Nurses to earn a Bachelor of Nursing degree from their home communities both virtually through online course delivery and in-person through attending clinical placements. This article provides a description of one novel assignment, the construction of a portfolio, which is completed during a course in psychiatric mental health. Students work on the assignment both online and as a member of a clinical learning group. The four portfolio artifacts include, first, learners examine the incidence and prevalence of mental health issues in their own community. Second, they explore nursing and psychological theorists. Third, they analyze a referral instrument relevant to their current or future practice noting author, reliability and validity. Fourth, they construct two inpatient case studies in collaboration with the mental health team. Insights into the experiences students found engaging and difficult as they completed the assignment are discussed and practical suggestions for designing portfolio learning activities are offered. PMID:19040891

  5. A Mid-infrared Census of Star Formation Activity in Bolocam Galactic Plane Survey Sources

    NASA Astrophysics Data System (ADS)

    Dunham, Miranda K.; Robitaille, Thomas P.; Evans, Neal J., II; Schlingman, Wayne M.; Cyganowski, Claudia J.; Urquhart, James

    2011-04-01

    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3712 of 8358) of the BGPS sources contain at least one mid-IR source, including 2457 of 5067 (49%) within the area where all surveys overlap (10° < ell < 65°). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects and Red MSX Sources make up the highest probability group, while the lowest probability group is comprised of "starless" BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the "starless" BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H2 column density also increase with probability of star formation activity.

  6. Chromospherically active stars. II - HD 82558, a young single BY Draconis variable

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Bopp, Bernard W.; Africano, John L.; Goodrich, Bret D.; Palmer, Leigh Hunter

    1986-01-01

    It is presently noted that the HD 82558 chromospherically active star is a young and rapidly rotating K2 V single BY Draconis variable with very strong far-UV emission features and an H-alpha line filled to the continuum level by emission. HD 82558 has constant velocity and is not a member of the Hyades Supercluster. Its light curve behavior, which appears to have been stable for several hundred rotation cycles, is reminiscent of that of the young, rapidly rotating, single K V variable H II 1883 in the Pleiades; this stability may be characteristic of young, single, chromospherically active stars.

  7. A Cluster Of Activities On Coma From The Hubble Space Telescope, StarDate, And McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Jogee, S.; Fricke, K.; Preston, S.

    2011-01-01

    With a goal of providing a vast audience of students, teachers, the general public, and Spanish-speakers with activities to learn about research on the Coma cluster of galaxies based on the HST ACS Treasury survey of Coma, McDonald Observatory used a many-faceted approach. Since this research offered an unprecedented legacy dataset, part of the challenge was to convey the importance of this project to a diverse audience. The methodology was to create different products for different (overlapping) audiences. Five radio programs were produced in English and Spanish for distribution on over 500 radio stations in the US and Mexico with a listening audience of over 2 million; in addition to the radio listeners, there were over 13,000 downloads of the English scripts and almost 6000 of the Spanish. Images were prepared for use in the StarDate Online Astronomy Picture of the Week, for ViewSpace (used in museums), and for the StarDate/Universo Teacher Guide. A high-school level activity on the Coma Cluster was prepared and distributed both on-line and in an upgraded printed version of the StarDate/Universo Teacher Guide. This guide has been distributed to over 1700 teachers nationally. A YouTube video about careers and research in astronomy using the Coma cluster as an example was produced. Just as the activities were varied, so were the evaluation methods. This material is based upon work supported by the National Aeronautics and Space Administration under Grant/Contract/Agreement No. HST-EO-10861.35-A issued through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  8. Modelling of Hot Jupiter thermospheres and ionospheres under irradiation from active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J.; Galand, M.; Unruh, Y.; Koskinen, T.; Sanz-Forcada, J.

    2014-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in atmospheric escape. The composition and structure of the thermosphere and ionosphere of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Hot Jupiter planets orbiting K and M dwarf stars. As an example, XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the thermosphere of hypothetical, Hot Jupiters orbiting these stars are then obtained from a fluid model of the upper atmosphere, incorporating atmospheric chemistry and taking atmospheric escape into account. Using these models of both the host star and the planetary atmosphere, we have derived a method to scale the X-ray and EUV regions of the solar spectrum to produce a very similar outcome in terms of the planet's neutral thermosphere as using a detailed coronal model of the host star. We also calculate ion production rates and densities in the ionospheres of such planets, considering ionisation through both photo-ionisation and electronimpact processes. We find that in planets subjected to radiation from more active stars, the transition to a regime of hydrodynamic escape from the top of the atmosphere occurs at larger orbital distances. A greater X-ray to EUV flux ratio in these stars compared with the solar case also produces ionospheres that extend to lower altitudes and are significantly more pronounced.

  9. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity — comparison with the Sun

    NASA Astrophysics Data System (ADS)

    Shimanovskaya, Elena; Bruevich, Vasiliy; Bruevich, Elena

    2016-09-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.

  10. Creating a Star: The Science of Fusion--Fusion Power Would Not Contribute to Global Warming, Acid Rain, or Other Forms of Air Pollution, nor Would It Create Long-Lived Radioactive Waste

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Fusion is the process that powers the sun and the stars. Since the 1950s, scientists and engineers in the United States and around the world have been conducting fusion research in pursuit of the creation of a new energy source for our planet and to further our understanding and control of plasma, the fourth state of matter that dominates the…

  11. CHROMOSPHERIC ACTIVITY OF SOUTHERN STARS FROM THE MAGELLAN PLANET SEARCH PROGRAM

    SciTech Connect

    Arriagada, Pamela

    2011-06-10

    I present chromospheric-activity measurements of {approx}670 F, G, K, and M main-sequence stars in the Southern Hemisphere, from {approx}8000 archival high-resolution echelle spectra taken at Las Campanas Observatory since 2004. These stars were targets from the Old Magellan Planet Search, and are now potential targets for the New Magellan Planet Search that will look for rocky and habitable planets. Activity indices (S values) are derived from Ca II H and K line cores and then converted to the Mount Wilson system. From these measurements, chromospheric (log R'{sub HK}) indices are derived, which are then used as indicators of the level of radial-velocity jitter, age, and rotation periods these stars present.

  12. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR THE SAME STAR FORMATION ACTIVITIES

    SciTech Connect

    Deng Xinfa; Bei Yang; He Jizhou; Tang Xiaoxun

    2010-01-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 above and below the value of M*, we have investigated the environmental dependence of other galaxy properties for the same star formation activities. Only in the luminous passive class, a strong environmental dependence of the g - r color is observed, but the environmental dependence of other properties in this class is very weak. In other classes, we can conclude that the local density dependence of luminosity, g - r color, concentration index ci, and morphologies for star-forming galaxies and passive ones is much weaker than that obtained in the volume-limited Main galaxy samples. This suggests that star formation activity is a galaxy property very predictive of the local environment. In addition, we also note that passive galaxies are more luminous, redder, highly concentrated, and preferentially 'early type'.

  13. The Life Cycles of Stars: An Information and Activity Booklet, Grades 9-12, 1997-1998. Imagine the Universe! Probing the Structure & Evaluation of the Cosmos.

    ERIC Educational Resources Information Center

    Whitlock, Laura A.; Granger, Kara C.

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for grade 9 through grade 12 classrooms. Background information about star birth and life, black dwarfs, supernovae, white dwarfs, neutron stars, black holes, and the electromagnetic spectrum is included. The seven activities focus on star mass,…

  14. Creating Novel Activated Factor XI Inhibitors through Fragment Based Lead Generation and Structure Aided Drug Design

    PubMed Central

    Fjellström, Ola; Akkaya, Sibel; Beisel, Hans-Georg; Eriksson, Per-Olof; Erixon, Karl; Gustafsson, David; Jurva, Ulrik; Kang, Daiwu; Karis, David; Knecht, Wolfgang; Nerme, Viveca; Nilsson, Ingemar; Olsson, Thomas; Redzic, Alma; Roth, Robert; Sandmark, Jenny; Tigerström, Anna; Öster, Linda

    2015-01-01

    Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1’-S2’ FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1’-S2’ binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1’-S2’ binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds. PMID:25629509

  15. Stellar Activity Mimics a Habitable-zone Planet around Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath

    2015-06-01

    Kapteyn’s star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets—Kapteyn b (P = 48 days)—resides within the circumstellar habitable zone (HZ). Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn’s star is photometrically very stable, a suite of spectral activity indices reveal a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of “planet b,” and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the HZ, but an artifact of stellar activity.

  16. Deriving Age-Activity Relations in M Dwarf Stars Using Clusters of Known Ages

    NASA Astrophysics Data System (ADS)

    Andersen, J. M.; West, A. A.; Covey, K. R.; McDonald, M.; Veilleux, S.; Seth, A.

    2011-12-01

    We present preliminary results from a study of M dwarf magnetic activity in clusters of known ages with the ultimate goal of constraining the age-activity relation. The age-activity relation provides clues to the mechanisms generating magnetic dynamos, especially in late-type dwarfs where their stellar interiors become fully convective. Broadband griz photometry was obtained for four clusters with ages ranging from ˜110 Myrs to 4 Gyrs. Narrowband images of each cluster were acquired with the Maryland Magellan Tunable Filter, tuned to the frequency of Hα, including a correction for the cluster's radial velocity, and a nearby, similarly sized bandpass sampling the stellar pseudo-continuum. This permits a "photometric" measurement of the Hα emission for each star, and thus a measure of activity. Cluster membership is determined from broadband photometry and comparison to stellar positions from previous studies. We report on our findings for the cluster NGC 2516. Hα measurements are stronger for cluster stars than for field stars of the same magnitude. A clear correlation is seen between our Hα strengths measured by narrowband imaging and previous spectroscopic activity measurements for stars where spectra have been obtained.

  17. Vanderbilt University Study Creates New Roadmap for Cellular Activity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Scientists studying cellular processes have long sought to measure redox modifications because they provide one of the normal layers of cell control. But redox disruption or oxidative stress at the cellular level can also create a pathway to diseases like

  18. A CORRELATION BETWEEN HOST STAR ACTIVITY AND PLANET MASS FOR CLOSE-IN EXTRASOLAR PLANETS?

    SciTech Connect

    Poppenhaeger, K.; Schmitt, J. H. M. M.

    2011-07-01

    The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

  19. A connection between star formation activity and cosmic rays in the starburst galaxy M82

    NASA Astrophysics Data System (ADS)

    VERITAS Collaboration; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Celik, O.; Cesarini, A.; Chow, Y. C.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Dickherber, R.; Duke, C.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lebohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.

    2009-12-01

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse γ-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of γ-ray emission. Here we report the detection of >700-GeV γ-rays from M82. From these data we determine a cosmic-ray density of 250eVcm-3 in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  20. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  1. LITHIUM ABUNDANCE IN SOLAR-TYPE STARS WITH LOW CHROMOSPHERIC ACTIVITY: APPLICATION TO THE SEARCH FOR MAUNDER MINIMUM ANALOGS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2010-06-10

    We use measurements of lithium abundance to examine the evolutionary history of stars frequently believed to be in a Maunder minimum (MM) state due to their low chromospheric activity. In a sample whose main-sequence membership has been verified using Hipparcos parallax data, we find that stars with very low chromospheric activity log R'{sub HK} {<=} -5.0 have substantially depleted lithium compared with the full sample, with half of these lithium abundances lying more than one standard deviation below the sample mean for their range of color index. One interpretation is that these stars are near the end of their main-sequence lifetime, and therefore their low activity does not necessarily signify a transient MM state in a solar-age star. Conversely, using information in published activity time series for some stars, and combined lithium and activity measurements from the Ursa Major moving group and M67, we find limited evidence that a low-activity star having lithium abundance in the normal range for its color index may be a viable MM candidate. Thus, lithium abundance, which can be readily observed or even retrieved from some of the spectroscopic data collected by recent planet-search surveys, may have value for expanding and refining the program star lists for long-term MM searches. Finally, we find that the use of Hipparcos parallax data to ascertain main-sequence membership sharpens the distinction in sample-mean lithium abundance between stars with planet detections and comparison stars.

  2. Spectroscopic Measurements of Starspot Area and Temperature on Magnetically Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, D.

    1996-12-01

    I describe spectroscopic techniques for studying starspots on late-type active stars. I develop an empirical spectral synthesis technique that independently measures starspot filling factor and temperature by fitting TiO absorption bands of different temperature sensitivities. Spectra of inactive G and K stars are used as proxies for the unspotted photospheres of the active stars, and spectra of M stars represent the spots. The set of TiO bands beginning at 7055 Angstroms and the band at 8860 Angstroms are most useful for this procedure; the starspots must be cooler than 4000 K. I apply this technique to spectra of seven RS CVn systems and one FK Comae star. Measured spot filling factors range from below the detection threshold ( ~ 8%) to nearly 60%. By comparing our measurements with contemporaneous photometry, we find, for some active stars, that the unspotted brightness of the star is significantly brighter than historical light maximum, and conclude that some starspot coverage has always been present. In some cases we find much higher spot filling factors than measured using other techniques, implying a uniform component to the starspot coverage. I extend this technique into the H band (where starspots contribute much more to the overall stellar spectrum than in the visible) by observing a pair of OH lines near 1.563mu m in three RS CVn systems. In inactive stars the equivalent width of these lines increases approximately linearly as temperature decreases from 5000 K to 3000 K; the OH lines greatly extend the temperature range over which starspots can be studied through molecular absorption features. Also, I apply TiO-band spectroscopy to the problem of Doppler imaging. Doppler imaging better constrains the sizes and shapes of starspots than their temperatures. TiO-band spectroscopy can supply the needed temperature constraint; the Doppler image is made to reproduce the observed depths of the TiO bands as well as the atomic line profiles. For the star II Pegasi

  3. Activities of X-ray binaries accompanied by a neutron star with weak magnetic field: Cir X-1, Aql X-1 and 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masaru; Mihara, Tatehiro; Asai, Kazumi

    This paper is presented on X-ray activities of X-ray binaries accompanied by a neutron star with weak magnetic field. Neutron star low mass X-ray binaries (NS-LMXBs) have been well studied so far, but there are still unknown problems concerning activities of outbursts and X-ray spectral features. We can define the soft and hard states which show different spectra created from each disk structure. These states depend on the gas accretion rate causing viscosity change in the disk, whereas we have pointed out an importance of magnetic field in NS-LMXB for X-ray activities (Matsuoka & Asai 2013). Thus, we have obtained decay features occurred by a propeller effect for Aql X-1 and 4U1608-52, and thus, we have defined the propeller effect levels of these sources (Asai et al. 2013). A companion star of Cir X-1 is a star of B5~A0 type, but it has X-ray spectral feature similar to NS-LMXB as well as it produced type I X-ray bursts. A long history over 40 years of X-ray observations has provided that Cir X-1 X-ray intensities have many varieties from continuous variable fluxes with Z-type feature of NS-LMXB to recurrent outburst fluxes with Atoll-type feature on a time scale of years. Recent MAXI observations have revealed a strange sudden decay feature in some outbursts. It is difficult to explain this decay feature by the simple picture which causes by ordinary mechanisms known in NS-LMXB such as a state transition, a propeller effect and a brink due to disk irradiation (Powell et al. 2007). Therefore, we introduced new type of instability of the accretion disk in relation to stellar wind stripping effect (Asai et al. 2014) which may be common to a system consisting of a compact star and an ordinary massive star.

  4. Economic Development Activities at the Young - Rainey Science, Technology, & Research (STAR) Center

    SciTech Connect

    Paul S. Sacco; Carl Smeigh; John Caponiti, Jr.

    2008-06-30

    Project mission was to mitigate the adverse economic effects of closing the U.S. Department of Energy's Pinellas Plant in Largo, Florida. This project was to facilitate the physical renovation of the plant and to help maintain and create jobs for the employees that worked at the plant when DOE terminated its operations. It also included finding and attracting high technology, industrial manufacturing and related firms to utilize the space and high tech equipment to remain at the plant. Stakeholders included the affected plant employees, local government and related public organizations, and businesses and universities in the Tampa Bay Florida area. The $17.6 million funded for this project helped produce 2,780 jobs at the Young - Rainey STAR Center at an average cost of $6,328. Rental income from STAR Center tenants and third party cash input amounted to approximately $66 million over the project period of 13.3 years.

  5. Magnetic fields and activity of the sun and stars - An overview

    NASA Technical Reports Server (NTRS)

    Rosner, R.

    1983-01-01

    Recent work on the observation and theory of solar and stellar magnetic field activity and its relation to stellar activity is reviewed, emphasizing those aspects relevant to the problem of activity of red dwarf stars. New observational facts relevant to understanding the root cause of stellar surface activity are summarized and theoretical questions concerning the underlying physical basis for the observed correlations between stellar activity, rotation, and magnetic fields are addressed. These include dyanamo theory and the rotation-activity connection as well as flux tube dynamics and plasma heating.

  6. Star Power: Providing for the Gifted & Talented. Module 5. Enrichment Activities for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Mallis, Jackie; Gilman, Sharlene

    The document presents Module 5, enrichment activities for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction,…

  7. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙activity regimes: fast rotators clearly show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr, h Per is therefore the youngest cluster showing activity-rotation regimes analogous to those of MS stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  8. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-04-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙activity regimes: fast rotators clearly show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr, h Per is therefore the youngest cluster showing activity-rotation regimes analogous to those of MS stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  9. HerMES: disentangling active galactic nuclei and star formation in the radio source population

    NASA Astrophysics Data System (ADS)

    Rawlings, J. I.; Page, M. J.; Symeonidis, M.; Bock, J.; Cooray, A.; Farrah, D.; Guo, K.; Hatziminaoglou, E.; Ibar, E.; Oliver, S. J.; Roseboom, I. G.; Scott, Douglas; Seymour, N.; Vaccari, M.; Wardlow, J. L.

    2015-10-01

    We separate the extragalactic radio source population above ˜50 μJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC (Infrared Array Camera) and Multiband Imaging Photometer for Spitzer (MIPS) and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ˜1 mJy for the extragalactic radio source population.

  10. X-ray cycles and magnetic activity of solar-like stars

    NASA Astrophysics Data System (ADS)

    Robrade, J.

    2016-06-01

    Since the beginning of its operation XMM-Newton carries out a monitoring program to study coronal cyclic behavior in stars similar to our Sun. I present highlights and recent results from the X-ray monitoring campaign, that observes neighboring stellar systems like Alpha Centauri and 61 Cygni. Cyclic activity phenomena and coronal properties are discussed and put into context of X-ray emission from the Sun and solar-type stars. As an outlook, future perspectives of stellar X-ray studies with a focus on the eROSITA all-sky survey are presented.

  11. Measuring stars with Gaia

    NASA Astrophysics Data System (ADS)

    Thévenin, F.

    2013-12-01

    Beyond the extraordinary three dimensional map that Gaia will create for a billion of stars, it will reveal the origin and history of the Milky Way as the major goal. This does not weakness the fantastic impact of Gaia on the stellar physic. It will put constraints on the modeling of stars to an extreme that consequently new input physics will be mandatory to understand a Gaia HR diagram. Stars are formed in populations and evolve as collection of objects revealing important clues on how they formed, what kind of mass function is active during the star formation, how frequent is the star formation, all of this is imprinted in the intrinsic properties of stars that large surveys combined together like Gaia, Kepler, PLATO will revealed. The characterization of stars hosting planets is also a goal of such combination of large surveys and in particular of the measure of distances in the Galaxy. The launch of Gaia is for November of 2013 and the output catalogue is expected for 2020. Then will start the beginning of a new Astrophysics touching so many topics that a new age of astrophysics is then foreseen.

  12. Observation and modelling of main-sequence star chromospheres - XII. Two-component model chromospheres for five active dM1e stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2009-08-01

    We aim to constrain the Hα, CaII H and CaII K profiles from quiescent and active regions on active dM1e stars. A preliminary analysis of all the data available for dM1e stars shows that the Hα/CaII equivalent width (EW) ratio varies by up to a factor of 7 for different stars in our sample. We find that spectroscopic binaries have a significantly smaller ratio than single dM1e stars. We also find that the pre-main-sequence stars Gl 616.2, GJ 1264 and Gl 803 have a ratio lower than main-sequence single dM1e stars. These differences imply that different chromospheric structures are present on different stars, notably the temperature minimum must decrease with an increasing Hα/CaII EW ratio. For these reasons, it is impossible to reproduce all observations with only one grid of model chromospheres. We show that the grid of model chromospheres of Paper VI is adequate to describe the physical conditions that prevail in the chromospheres of spectroscopic binaries and pre-main-sequence M1e stars, but not for the conditions in single dM1e stars. One or more additional grids of model chromospheres will be necessary to reproduce all observations. We use the method developed in Paper XI in this series, in order to build two-component model chromospheres for five M1e field stars: FF And A, FF And B, GJ 1264, AU Mic and Gl 815A. Our solutions provide an exact match of the Hα and the mean CaII H & K EWs within measurement uncertainties. We compare the theoretical profiles and the observed profiles of Hα and the CaII H & K resonance lines. On the one hand, our fits to the CaII lines are reasonably good. On the other hand, our models tend to produce Hα profiles with a central absorption that is too deep. This suggests that the column mass at the transition region for plages is underestimated, but this would imply that the contrast factor between quiescent and active regions in the CaII lines is larger than 5. We find that, except in the cases of FF And A and AU Mic, the total

  13. Chromospheric activity on late-type star LQ Hya

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Pi, Qingfeng; Zhu, Zhongzhong; Zhang, Xiliang; Li, Zhongmu

    2014-10-01

    We present new high-resolution echelle spectra of LQ Hya to study its chromospheric activity. We analyzed our spectroscopic observations including several optical indicators of chromospheric activity (the He ID3 , Na I D1, D2, Hα, and Ca II infrared triplet lines), by means of the spectral subtraction technique. All the chromospheric activity indicators (the Na I D1, D2, Hα, and Ca II IRT lines) confirmed chromospheric emissions. The ratio of EW8542 /EW8498 for LQ Hya is around 1.5, which indicates that there is optically thick emission in a plage-like region. As for the Ca II IRT and Hα lines, it seems that there is also a weak rotation modulation of chromospheric activity in our data, which might be explained by the strong plage or flare. The contemporaneous monitoring of photospheric and chromospheric emissions for LQ Hya indicate chromospheric plages might spatially associated with the spots.

  14. FREQUENCY OF MAUNDER MINIMUM EVENTS IN SOLAR-TYPE STARS INFERRED FROM ACTIVITY AND METALLICITY OBSERVATIONS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2012-03-10

    We consider the common proposition that the fraction of chromospherically very inactive stars in a solar-type sample is analogous to the fraction of the Sun's main-sequence lifetime spent in a grand minimum state. In a new approach to this proposition, we examine chromospheric activity log R'{sub HK} in a stellar sample having Hipparcos parallax measurements, and having spectroscopically determined metallicity close to solar (-0.1 {<=} [Fe/H] {<=} 0.1). We evaluate height above the Hipparcos main sequence, and estimate age using isochrones, to identify the most Sun-like stars in this sample. As a threshold below which a star is labeled very inactive, we use the peak of the HK activity distribution mapped over the quiet Sun during the 1968 epoch. We estimate the fraction of Maunder Minimum (MM) analog candidates in our sample at 11.1%. Given the 70 yr duration of the historical MM, this suggests that in any given year there is a 1/630 chance of entering a similar grand minimum. There are three important cautions with this type of estimate. First, recent investigation using actual activity and photometric time series has suggested that very low activity may not be a necessary criterion for identifying a non-cycling MM analog candidate. Second, this type of estimate depends very strongly on the choice of very low activity threshold. Third, in instantaneous measurements of log R'{sub HK}, it is not always clear whether a star is a viable MM analog candidate or merely an older star nearing the end of its main-sequence lifetime.

  15. A maximum entropy approach to detect close-in giant planets around active stars

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Hébrard, E.; Morin, J.; Folsom, C. P.; Böhm, T.; Boisse, I.; Borgniet, S.; Bouvier, J.; Delfosse, X.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Barnes, J. R.

    2015-12-01

    Context. The high spot coverage of young active stars is responsible for distortions of spectral lines that hamper the detection of close-in planets through radial velocity methods. Aims: We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler imaging in radial velocity measurements. Methods: We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Results: Using a simulated time series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km s-1, in most cases we are able to recover the radial velocity amplitude, orbital phase, and orbital period of an artificial planet down to a radial velocity semi-amplitude of the order of the radial velocity scatter due to the photon noise alone (about 50 m s-1 in our case). One noticeable exception occurs when the planetary orbit is close to co-rotation, in which case significant biases are observed in the reconstructed radial velocity amplitude, while the orbital period and phase remain robustly recovered. Conclusions: The present method constitutes a very simple way to extract orbital parameters from heavily distorted line profiles of active stars, when more classical radial velocity detection methods generally fail. It is easily adaptable to most existing Doppler imaging codes, paving the way towards a systematic search for close-in planets orbiting young, rapidly

  16. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  17. Cosmic web and star formation activity in galaxies at z ∼ 1

    SciTech Connect

    Darvish, B.; Mobasher, B.; Sales, L. V.; Sobral, D.; Scoville, N. Z.; Best, P.; Smail, I.

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  18. Multiwavelength study of the magnetically active T Tauri star HD 283447

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Welty, Alan D.; Imhoff, Catherine; Hall, Jeffrey C.; Etzel, Paul B.; Phillips, Robert B.; Lonsdale, Colin J.

    1994-01-01

    We observed the luminous T Tauri star HD 283447 = V773 Tauri simultaneously at X-ray, ultraviolet, optical photometric and spectroscopic, and radio wavelengths for several hours on UT 1992 September 11. ROSAT, IUE, Very Large Array (VLA) and an intercontinental Very Long Baseline Interferometry (VLBI) network, and three optical observatories participated in the campaign. The star is known for its unusually high and variable nonthermal radio continuum emission. High levels of soft X-ray and Mg II line emission are discovered, with luminosity L(sub x) = 5.5 x 10(exp 30) ergs/s (0.2 - 2 keV) and L(sub Mg II) = 1 x 10(exp 29) ergs/s, respectively. Optically, the spectrum exhibits rather weak characteristics of `classical' T Tauri stars. A faint, broad emission line component, probably due to a collimated wind or infall, is present. During the campaign, the radio luminosity decreased by a factor of 4, while optical/UV lines and X-ray emission remained strong but constant. The large gyrosynchrotron-emitting regions are therefore decoupled from the chromospheric and coronal emission. Five models for the magnetic geometry around the star are discussed; solar-type activity, dipole magnetosphere, star-disk magnetic coupling, disk magnetic fields, and close binary interaction. The data suggest that two magnetic geometries are simultaneously present: complex multipolar fields like those on the Sun, and a large-scale field possibly associated with the circumstellar disk.

  19. Spectral characterization and differential rotation study of active CoRoT stars

    NASA Astrophysics Data System (ADS)

    Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.

  20. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats

    PubMed Central

    Vasant, Rupal A.

    2014-01-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress. PMID:26109886

  1. Examining How Activity Shapes Students' Interactions While Creating Representations in Early Elementary Science

    ERIC Educational Resources Information Center

    Danish, Joshua Adam; Saleh, Asmalina

    2014-01-01

    It is common practice in elementary science classrooms to have students create representations, such as drawings, as a way of exploring new content. While numerous studies suggest the benefits of representation in science, the majority focus on specific, canonical representations, such as graphs. Few offer insight or guidance regarding how…

  2. Popes in the Pizza: Analyzing Activity Reports to Create and Sustain a Strategic Plan

    ERIC Educational Resources Information Center

    Sweet, Charlie; Blythe, Hal; Keeley, E. J.; Forsyth, Ben

    2008-01-01

    This article presents a practical methodology for creating and sustaining strategic planning, the task analysis. Utilizing our Teaching & Learning Center Strategic Plan as a model, we demonstrate how working with a weekly status report provides a comprehensive listing of detail necessary to analyze and revise the plan. The new methodology is…

  3. Spots and activity cycles of the star FKCom—2013-2015 data analysis

    NASA Astrophysics Data System (ADS)

    Puzin, V. B.; Savanov, I. S.; Dmitrienko, E. S.; Romanyuk, I. I.; Semenko, E. A.; Yakunin, I. A.; Burdanov, A. Yu.

    2016-04-01

    We present an analysis of new photometric and spectropolarimetric observations of a chromospherically active star FKCom. Based on this observational data and the data from the literature sources, applying a common technique, we performed an analysis of a complete set of the available photometric data, which were divided into 218 individual light curves. For each of them a reverse problem of restoring largescale temperature irregularities on the surface of the star from its light curve was solved. We analyzed the time series for the brightness of the star in the U-, B-, and V-bands, the brightness variability amplitudes, the total area of the spots on the surface of the star, and the average brightness of each set considered. The analysis of determination results of the positions of active longitudes leads to the conclusion about the existence of two systems of active regions on the FKCom surface. It was determined that the positions of each of these systems undergo cyclic changes. This confirms the conclusion on the likely absence of a strongly pronounced regularity of the flip-flops in FKCom, earlier suggested by other researchers. The results of the new polarimetric observations FKCom in 2014-2015 are presented. These measurements evidence the legitimacy of the proposed interpretation the behavior of the longitudinal magnetic field strength < B z >, indicating the settling-in of a more symmetric distribution of magnetic region on the FKCom surface. An increasing activity of the star over the recent years, registered from the photometric observations is also consistent with the probable onset of growth in the < B z > parameter starting from 2014.

  4. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  5. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  6. Monitoring the Stellar Activity of Transit-Hosting Stars II: supporting HST exoplanet atmosphere observations

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Anthony; Evans, Tom; Sing, David K.; Aigrain, Suzanne

    2012-02-01

    We propose to use the CTIO 1.3m telescope with ANDICAM to monitor 5 bright stars that host transiting exoplanets in an effort to characterise their activity. These observations will provide critical ground-based support for our large HST program that has been granted 124 orbits to perform a survey of UV-optical atmospheric transmission spectra for 8 hot Jupiters using the STIS instrument (Cycle 19, Prog 12473, PI D Sing). They are required because active stellar regions inevitably contaminate measured planetary light curves by causing the apparent planet-to-star radius to vary in a wavelength dependent manner. Regular ground-based photometric monitoring performed using the CTIO 1.3m telescope will allow us to determine the spot activity at the time of the HST observations, so that the stellar baseline flux can be accurately normalised for every transit observed, enabling transmission spectra from multiple visits to be combined.

  7. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    NASA Astrophysics Data System (ADS)

    Roettenbacher, R. M.; Monnier, J. D.; Korhonen, H.; Aarnio, A. N.; Baron, F.; Che, X.; Harmon, R. O.; Kővári, Zs.; Kraus, S.; Schaefer, G. H.; Torres, G.; Zhao, M.; Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.

    2016-05-01

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north–south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north–south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  8. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.

    PubMed

    Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L

    2016-05-12

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos. PMID:27144357

  9. How Environment Affects Star Formation: Tracing Activity in High Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, A.; Brodwin, M.; Atlee, D. W.; Lin, Y.; Chary, R.; Dey, A.; Eisenhardt, P. R.; Gettings, D.; Gonzalez, A. H.; Jannuzi, B.; Mancone, C.; Moustakas, J.; Snyder, G. F.; Stanford, S. A.; Stern, D.; Weiner, B. J.; Zeimann, G.

    2014-01-01

    The emerging picture of the evolution of cluster galaxies indicates that the epoch of z>1 is a crucial period of active star formation and mass assembly in clusters. In this dissertation, I leverage a uniformly-selected cluster sample from the IRAC Shallow Cluster Survey (ISCS) with Herschel imaging to analyse the star formation (SF) activity in cluster galaxies over the past ten billion years. This analysis is two-fold: 1) using 274 clusters across the 9 square degree Bootes field, I perform a stacking analysis of mass-limited samples of cluster and field galaxies using wide-field Herschel observations over a long redshift baseline, z=0.3-1.5. I find that the average SF activity in cluster galaxies is evolving faster than in the field, with field-like SF in the cluster cores and enhanced SF activity in the cluster outskirts at z>1.2. By further breaking down my analysis by galaxy mass and type, I determine which mechanisms are capable of driving this evolution. 2) I use unique, deep Herschel imaging of 11 spectroscopically-confirmed clusters from z=1.1-1.8 to study the properties of individual infrared bright cluster galaxies as a function of redshift and cluster-centric radius. Combined with ancillary data, I determine the star formation, dust, and AGN properties of the most active cluster galaxies and tie the evolution of these properties back to the environment by comparing to field populations. By combining these two approaches, I constrain cluster galaxy properties during a pivotal epoch of dust-obscured star formation activity and mass assembly in some of the most extreme structures in the Universe.

  10. Stellar activity as noise in exoplanet detection - I. Methods and application to solar-like stars and activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Järvinen, S. P.; Jørgensen, U. G.

    2015-04-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused `jitter' we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 and 9 m s-1. With a realistic observing frequency a Neptune-mass planet on a 1-yr orbit can be reliably recovered. On the other hand, the recovery of an Earth-mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.

  11. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    Aim: We address the relation between star formation and AGN activity in a large sample of nearby early type (E and S0) galaxies. The redshift range of the galaxies is 0.0002star formation and thus the process of galaxy evolution and formation. Evidence of AGN feedback is found in massive galaxies in galaxy clusters. However, how common AGN feedback is in the local universe and in small scale systems is still not evident.Methods: To answer this question, we carried out a multiple wavelength study of a sample of 231 early type galaxies which were selected to have an apparent K-band magnitude brighter than 13.5 and whose positions correlate with Chandra ACIS-I and ACIS-S sources. The galaxies in the sample are unbiased regarding their star formation and radio source properties. Using the archival observations at radio, IR and UV from VLA, WISE and GALEX respectively, we obtained the radio power, estimate FUV star formation rate (SFR) and other galaxy properties to study AGN activity and ongoing star formation.Results: The relationship between radio power and stellar mass shows that there is an upper envelope of radio power that is a steep function of stellar luminosity. This suggests that less massive galaxies have low radio power while massive galaxies are capable of hosting powerful radio sources. The Radio-MIR relation shows that galaxies with P>=1022 WHz-1 are potential candidates for being AGN. About ~ 7% of the sample show evidence of ongoing star formation with SFR ranging from 10-3 to 1 M⊙yr-1. These are also less massive and radio faint suggesting the absence of active accretion. There is nearly equal fraction of star forming galaxies in radio faint (P<1022 WHz-1) and radio bright galaxies (P>=1022 WHz-1) . Only ~ 5% of the galaxies in our sample have P>=1022 WHz-1 and most of them do not show evidence of bright accretion disks. We see a weak correlation and a dispersion of

  12. A Community-Based Volunteer After-School Activity Program Created for Middle School Students.

    ERIC Educational Resources Information Center

    Greaser, Thomas C., Jr.

    This practicum was designed to provide an after-school activity program to middle school students not engaged in interscholastic sports. Utilizing community volunteers, an enrichment-prevention program that featured 19 different activities in 2 class sessions per week over a 10-week period was developed and implemented. Activities included…

  13. Navigating the Active Learning Swamp: Creating an Inviting Environment for Learning.

    ERIC Educational Resources Information Center

    Johnson, Marie C.; Malinowski, Jon C.

    2001-01-01

    Reports on a survey of faculty members (n=29) asking them to define active learning, to rate how effectively different teaching techniques contribute to active learning, and to list the three teaching techniques they use most frequently. Concludes that active learning requires establishing an environment rather than employing a specific teaching…

  14. Discovering Geography: Teacher Created Activities for High School and Middle School.

    ERIC Educational Resources Information Center

    Petersen, James F., Ed.

    This guide contains 20 classroom activities designed by teachers to study topics in geography with the eventual goal of aiding in the development of geographic literacy in students. The various activities involve map reading skills, climatology, current events, urban development, and community planning. Each activity presentation includes an event…

  15. [Structure and biological activity of glycosphingolipids from starfish and feather stars].

    PubMed

    Inagaki, Masanori

    2008-08-01

    Glycosphingolipids (GSLs) are contained in a various cell membranes and have recently been implicated in many physiologic functions. They are classified based on their sugar moieties into ceramides, cerebrosides, sulfatides, ceramide-oligohexosides, globosides, and gangliosides. A number of GSLs have been obtained from marine invertebrates such as echinoderms, poriferans, and mollusks and have unique biological activities. During the course of our search for biologically active GSLs from echinoderms, we conducted the isolation and structural elucidation of GSLs from starfish and feather stars and found numerous GSLs, some of which have unique structures. In particular, gangliosides from feather stars were unique in that the sialic acids bind to inositol-phosphoceramide. We also found that the GSLs from starfish and feather stars possess neuritogenic activity toward the rat pheochromocytoma cell line PC12, antihyperglycemic effects against type 2 diabetic BKS. Cg-m+/+Leprdb/J (db/db) mice, and antiosteoporosis effects toward the osteoporosis model mice (OVX mice). These biological activities are thought to be related to dementia, osteoporosis, and diabetes, which are becoming social problems, and are expected to become the seeds of preventive or therapeutic drugs for these illness. PMID:18670184

  16. Signatures of Young Star Formation Activity within Two Parsecs of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Sewilo, M.; Roberts, D. A.; Smith, I.; Arendt, R.; Cotton, W.; Lacy, J.; Martin, S.; Pound, M. W.; Rickert, M.; Royster, M.

    2015-07-01

    We present radio and infrared observations indicating ongoing star formation activity inside the ˜2-5 pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of ongoing star formation has taken place near Sgr A* over the last few million years. First, Very Large Array observations with spatial resolution 2.″17 × 0.″81 reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4× {10}6 {M}⊙ black hole. Second, spectral energy distribution modeling of stellar sources indicates massive young stellar object (YSO) candidates interior to the molecular ring, supporting in situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of ˜100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS 5) have bow shock structures, suggesting that they have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on Combined Array for Research in Millimeter-wave Astronomy and Sub-Millimeter Array observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of ˜0.8 pc show blue and redshifted velocities between +50 and -40 km s-1, suggesting protostellar jet driven outflows with mass-loss rates of ˜ 5× {10}-5 {M}⊙ yr-1. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.

  17. Star-formation Activity in the Neighborhood of W–R 1503-160L Star in the Mid-infrared Bubble N46

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-07-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ˜4 × 1037 erg s‑1. A deviation of the H-band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ˜18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H2) ˜9.2 × 1022 cm‑2 and A V ˜ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (˜1–2 Myr) and a typical age of WN7 W–R star (˜4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  18. Star-formation Activity in the Neighborhood of W–R 1503-160L Star in the Mid-infrared Bubble N46

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-07-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 1037 erg s‑1. A deviation of the H-band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H2) ∼9.2 × 1022 cm‑2 and A V ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  19. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  20. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  1. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  2. Measurements of Starspot Area and Temperature on Five Active, Evolved Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Saar, Steven H.; Neff, James E.

    1996-06-01

    We resent results from a study of starspot areas and temperatures on active stars using the 7055 and 8860 Å bands of the titanium oxide molecule. Because the two bands have different temperature sensitivities, the ratio of their strengths provides a measure of the spot temperature, while their absolute strengths are a function of total starspot area. We have analyzed the TiO bands of four active, evolved, single-lined spectroscopic binaries (EI Eridani, σ Geminorum, V1762 Cygni, and II Pegasi) and of the FK Comae star V1794 Cygni. Where possible, we compare our results with contemporaneous photometry, which is used to refine our estimate of the nonspotted photospheric temperature. We find that, over multiple epochs of observation, the spot filling factor ranges from below our detection threshold (≍8%) to just under 60%. In some cases, we find that significant starspot coverage was likely present at historical light maxima. Our results suggest a possible correlation between increasing surface gravity and the temperature difference between the spotted and nonspotted photosphere. This might result from smaller starspot magnetic field strengths on active stars of lower gravity and the corresponding decrease in the pressure and temperature contrast between the photosphere and the umbra.

  3. A Method for Measuring Active Region Filling Factors on Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark Steven; Andretta, Vincenzo; Beeck, Benjamin; Reiners, Ansgar; Schussler, Manfred

    2015-04-01

    Radiative diagnostics of “activity” in the Sun and solar-type stars are spatially associated with sites of emergent magnetic flux. The magnetic fields themselves are widely regarded as the surface manifestations of a dynamo mechanism. The further development of both dynamo theory and models of the non-radiative heating of outer stellar atmospheres requires a knowledge of stellar magnetic field properties. In this context, it becomes important to determine the surface distribution, or at least the fractional coverage of, magnetic active regions as one critical constraint for dynamo models. But, while information on the spatial distribution of activity on stellar surfaces can be gathered in some special cases (mostly rapid rotators), such measurements have always been elusive in more solar-like stars. We discuss the challenges and results obtained from a method that relies on the non-linear response of the two principal He I triplet lines (at 1083 nm and 587.6 nm) to infer useful constraints on the fractional area coverage of magnetic active regions on solar-type stars.

  4. Create an Adventure Challenge: Using Recess Time to Supplement Physical Activity during the School Day

    ERIC Educational Resources Information Center

    DiGiacinto, Kacey Lynn; Jones, Emily

    2010-01-01

    NASPE recommends children ages 5-12 accumulate at least 60 minutes of moderate to vigorous physical activity each day of the week. With the growing occurrence of obesity in the United States, it is clear that too many of America's youth are not meeting the recommended amount of daily physical activity. Given that America's youth are having…

  5. Active Learning to Overcome Sample Selection Bias: Application to Photometric Variable Star Classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Starr, Dan L.; Brink, Henrik; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; James, J. Berian; Long, James P.; Rice, John

    2012-01-01

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  6. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  7. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

    SciTech Connect

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Berian James, J.; Brink, Henrik; Long, James P.; Rice, John

    2012-01-10

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL-where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up-is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  8. Modelling the photosphere of active stars for planet detection and characterization

    NASA Astrophysics Data System (ADS)

    Herrero, Enrique; Ribas, Ignasi; Jordi, Carme; Morales, Juan Carlos; Perger, Manuel; Rosich, Albert

    2016-02-01

    Context. Stellar activity patterns are responsible for jitter effects that are observed at different timescales and amplitudes in the measurements obtained from photometric and spectroscopic time series observations. These effects are currently in the focus of many exoplanet search projects, since the lack of a well-defined characterization and correction strategy hampers the detection of the signals associated with small exoplanets. Aims: Accurate simulations of the stellar photosphere based on the most recent available models for main-sequence stars can provide synthetic photometric and spectroscopic time series data. These may help to investigate the relation between activity jitter and stellar parameters when considering different active region patterns. Moreover, jitters can be analysed at different wavelength scales (defined by the passbands of given instruments or space missions) to design strategies to remove or minimize them. Methods: We present the StarSim tool, which is based on a model for a spotted rotating photosphere built from the integration of the spectral contribution of a fine grid of surface elements. The model includes all significant effects affecting the flux intensities and the wavelength of spectral features produced by active regions and planets. The resulting synthetic time series data generated with this simulator were used to characterize the effects of activity jitter in extrasolar planet measurements from photometric and spectroscopic observations. Results: Several cases of synthetic data series for Sun-like stars are presented to illustrate the capabilities of the methodology. A specific application for characterizing and modelling the spectral signature of active regions is considered, showing that the chromatic effects of faculae are dominant for low-temperature contrasts of spots. Synthetic multi-band photometry and radial velocity time series are modelled for HD 189733 by adopting the known system parameters and fitting for the

  9. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  10. NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

  11. Engineering neprilysin activity and specificity to create a novel therapeutic for Alzheimer's disease.

    PubMed

    Webster, Carl I; Burrell, Matthew; Olsson, Lise-Lotte; Fowler, Susan B; Digby, Sarah; Sandercock, Alan; Snijder, Arjan; Tebbe, Jan; Haupts, Ulrich; Grudzinska, Joanna; Jermutus, Lutz; Andersson, Christin

    2014-01-01

    Neprilysin is a transmembrane zinc metallopeptidase that degrades a wide range of peptide substrates. It has received attention as a potential therapy for Alzheimer's disease due to its ability to degrade the peptide amyloid beta. However, its broad range of peptide substrates has the potential to limit its therapeutic use due to degradation of additional peptides substrates that tightly regulate many physiological processes. We sought to generate a soluble version of the ectodomain of neprilysin with improved activity and specificity towards amyloid beta as a potential therapeutic for Alzheimer's disease. Extensive amino acid substitutions were performed at positions surrounding the active site and inner surface of the enzyme and variants screened for activity on amyloid beta 1-40, 1-42 and a variety of other physiologically relevant peptides. We identified several mutations that modulated and improved both enzyme selectivity and intrinsic activity. Neprilysin variant G399V/G714K displayed an approximately 20-fold improved activity on amyloid beta 1-40 and up to a 3,200-fold reduction in activity on other peptides. Along with the altered peptide substrate specificity, the mutant enzyme produced a markedly altered series of amyloid beta cleavage products compared to the wild-type enzyme. Crystallisation of the mutant enzyme revealed that the amino acid substitutions result in alteration of the shape and size of the pocket containing the active site compared to the wild-type enzyme. The mutant enzyme offers the potential for the more efficient degradation of amyloid beta in vivo as a therapeutic for the treatment of Alzheimer's disease. PMID:25089527

  12. Star-forming galaxy models: Blending star formation into TREESPH

    NASA Technical Reports Server (NTRS)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  13. Creating Neighbourhood Groupings Based on Built Environment Features to Facilitate Health Promotion Activities

    PubMed Central

    Schopflocher, Donald; VanSpronsen, Eric; Spence, John C.; Vallianatos, Helen; Raine, Kim D.; Plotnikoff, Ronald C.; Nykiforuk, Candace I.J.

    2016-01-01

    Objectives Detailed assessments of the built environment often resist data reduction and summarization. This project sought to develop a method of reducing built environment data to an extent that they can be effectively communicated to researchers and community stakeholders. We aim to help in an understanding of how these data can be used to create neighbourhood groupings based on built environment characteristics and how the process of discussing these neighbourhoods with community stakeholders can result in the development of community-informed health promotion interventions. Methods We used the Irvine Minnesota Inventory (IMI) to assess 296 segments of a semi-rural community in Alberta. Expert raters “created” neighbourhoods by examining the data. Then, a consensus grouping was developed using cluster analysis, and the number of IMI variables to characterize the neighbourhoods was reduced by multiple discriminant function analysis. Results The 296 segments were reduced to a consensus set of 10 neighbourhoods, which could be separated from each other by 9 functions constructed from 24 IMI variables. Biplots of these functions were an effective means of summarizing and presenting the results of the community assessment, and stimulated community action. Conclusions It is possible to use principled quantitative methods to reduce large amounts of information about the built environment into meaningful summaries. These summaries, or built environment neighbourhoods, were useful in catalyzing action with community stakeholders and led to the development of health-promoting built environment interventions. PMID:23618092

  14. Neural activities in v1 create a bottom-up saliency map.

    PubMed

    Zhang, Xilin; Zhaoping, Li; Zhou, Tiangang; Fang, Fang

    2012-01-12

    The bottom-up contribution to the allocation of exogenous attention is a saliency map, whose neural substrate is hard to identify because of possible contamination by top-down signals. We obviated this possibility using stimuli that observers could not perceive, but that nevertheless, through orientation contrast between foreground and background regions, attracted attention to improve a localized visual discrimination. When orientation contrast increased, so did the degree of attraction, and two physiological measures: the amplitude of the earliest (C1) component of the ERP, which is associated with primary visual cortex, and fMRI BOLD signals in areas V1-V4 (but not the intraparietal sulcus). Significantly, across observers, the degree of attraction correlated with the C1 amplitude and just the V1 BOLD signal. These findings strongly support the proposal that a bottom-up saliency map is created in V1, challenging the dominant view that the saliency map is generated in the parietal cortex. PMID:22243756

  15. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  16. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  17. Competency-based medical education and scholarship: Creating an active academic culture during residency.

    PubMed

    Bourgeois, James A; Hategan, Ana; Azzam, Amin

    2015-10-01

    The competency-based medical education movement has been adopted in several medical education systems across the world. This has the potential to result in a more active involvement of residents in the educational process, inasmuch as scholarship is regarded as a major area of competency. Substantial scholarly activities are well within the reach of motivated residents, especially when faculty members provide sufficient mentoring. These academically empowered residents have the advantage of early experience in the areas of scholarly discovery, integration, application, and teaching. Herein, the authors review the importance of instituting the germinal stages of scholarly productivity in the creation of an active scholarly culture during residency. Clear and consistent institutional and departmental strategies to promote scholarly development during residency are highly encouraged. PMID:26449362

  18. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers.

    PubMed

    Wong, Edgar H H; Khin, Mya Mya; Ravikumar, Vikashini; Si, Zhangyong; Rice, Scott A; Chan-Park, Mary B

    2016-03-14

    The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10 000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases. PMID:26859230

  19. EChO spectra and stellar activity II. The case of dM stars

    NASA Astrophysics Data System (ADS)

    Scandariato, Gaetano; Micela, Giuseppina

    2015-12-01

    EChO is a dedicated mission to investigate exoplanetary atmospheres. When extracting the planetary signal, one has to take care of the variability of the hosting star, which introduces spectral distortion that can be mistaken as planetary signal. Magneticvariability has to be taken into account in particular for M stars. To this purpose, assuming a one spot dominant model for the stellar photosphere, we develop a mixed observational-theoretical tool to extract the spot's parameters from the observed optical spectrum. This method relies on a robust library of spectral M templates, which we derive using the observed spectra of quiet M dwarfs in the SDSS database. Our procedure allows to correct the observed spectra for photospheric activity in most of the analyzed cases, reducing the spectral distortion down to the noise levels. Ongoing refinements of the template library and the algorithm will improve the efficiency of our algorithm.

  20. Creating Healthier Afterschool Environments in the Healthy Eating Active Communities Program

    ERIC Educational Resources Information Center

    Hinkle, Arnell J.; Yoshida, Sallie

    2014-01-01

    Afterschool programs in California have the potential to play a major role in obesity prevention given that they serve close to a million low-income children. A five-year initiative called the Healthy Eating Active Communities (HEAC) was funded in 2005 by the California Endowment to demonstrate that disparities related to childhood obesity and…

  1. The Interactive, Virtual Management Information Systems (MIS) Classroom: Creating an Active Learning Environment on the Internet.

    ERIC Educational Resources Information Center

    Abraham, Thomas

    This paper describes the creation of an active learning environment within an Internet-based course in the School of Business, Government and Technology at Kean University (New Jersey). The introductory Management Information Systems (MIS) course is an elective that has become increasingly popular with junior and senior business majors. The main…

  2. Creating a Cell Map as an Active-Learning Tool in a Biochemistry Course

    ERIC Educational Resources Information Center

    Del Bianco, Cristina

    2010-01-01

    Teaching metabolism to a biochemistry class with diverse academic backgrounds is a challenging task. Often students lack the global perspective that is needed to understand how different metabolic pathways are reciprocally regulated. The classroom activity presented in this article is designed to facilitate the learning of metabolism by having the…

  3. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Charlot, S.; Gutkin, J.

    2016-03-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as C IV λλ1548, 1551, O III] λλ1661, 1666, N III] λ1750, [Si III] λ1883+Si III] λ1892 and [C III] λ1907+C III] λ1909, with the He II λ1640 recombination line are individually good discriminants of the nature of the ionizing source. Diagrams involving at least three of these lines allow an even more stringent distinction between active and inactive galaxies, as well as valuable constraints on interstellar gas parameters and the shape of the ionizing radiation. Several line ratios involving Ne-based emission lines, such as [Ne IV] λ2424, [Ne III] λ3343 and [Ne V] λ3426, are also good diagnostics of nuclear activity. Our results provide a comprehensive framework to identify the sources of photoionization and physical conditions of the ionized gas from the ultraviolet and optical nebular emission from galaxies. This will be particularly useful to interpret observations of high-redshift galaxies with future facilities, such as the James Webb Space Telescope and extremely large ground-based telescopes.

  4. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy. PMID:27586937

  5. Activity-based costing via an information system: an application created for a breast imaging center.

    PubMed

    Hawkins, H; Langer, J; Padua, E; Reaves, J

    2001-06-01

    Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis. PMID:11442093

  6. Liver segmentation with new supervised method to create initial curve for active contour.

    PubMed

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations. PMID:27286186

  7. New Insights on Late-A and Early-F Star Activity

    NASA Astrophysics Data System (ADS)

    Freire Ferrero, R.; Catalano, S.; Marilli, E.; Gouttebroze, P.; Talavera, A.; Bruhweiler, F.

    The onset of chromospheric activity in late-A and early-F stars is here discussed. The detection of Ly- emission core in several A and F atars with the IUE satellite, gives evidence for the presence of chromospheric layers in these stars up to B - V = 0m.19 (Marilli et al., 1996). Semiempirical chromospheric models for Altair allowed us (Freire Ferrero et al., 1995) to explain the observed emission profiles taking into account normal H I interstellar (IS) absorption. However, due to the very high rotational velocity, we analysed alternative hypotheses to explain the observed emissions: (1) circumstellar or shell matter; (2) co-rotating expanding optically thin wind. We ruled out these hypotheses because their effects are negligible and as a consequence, this result reinforces the chromospheric origin of the observed Ly- core in Altair. The stars of our sample, having observed Ly- profilies similar to Altair's and similar stellar and IS properties, should reproduce similar chromospheric behaviour. Here we discuss several important questions that are raised by these results.

  8. Activity and magnetic field structure of the Sun-like planet-hosting star HD 1237

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Grunhut, J.; Fares, R.; Donati, J.-F.; Alecian, E.; Kochukhov, O.; Oksala, M.; Morin, J.; Redfield, S.; Cohen, O.; Drake, J. J.; Jardine, M.; Matt, S.; Petit, P.; Walter, F. M.

    2015-10-01

    We analyse the magnetic activity characteristics of the planet-hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements that is consistent with our ZDI analysis with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on the shape of the extracted Stokes V profile but does result in a small increase in the S/N (~7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also affects the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI map solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (~45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution affeccts the coronal magnetic field and extended environment around this planet-hosting star.

  9. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E.; Altieri, B.; Coia, D.; Charmandaris, V.; Daddi, E.; Le Floc'h, E.; Leiton, R.; Dasyra, K.; Dickinson, M.; Kartaltepe, J.; Hickox, R. C.; Ivison, R. J.; Magnelli, B.; Popesso, P.; Rosario, D.; and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  10. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    PubMed

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P < 0.05), but feed intake was stimulated by cLEPR ECD immunization (P < 0.05). The treatment also upregulated the gene expression levels of lepR, AMP-activated protein kinase (AMPK), acetyl CoA carboxylase-2 (ACC2), and uncoupling protein 3 (UCP3) in liver, abdominal fat, and breast muscle (P < 0.05) but decreased fasn expression levels (P < 0.01). Apart from that of lepR, the expression of appetite-regulating genes, such as orexigenic genes, agouti-related peptide (AgRP) and neuropeptide Y (NPY), were upregulated (P < 0.01), whereas the anorexigenic gene proopiomelanocortin (POMC) was downregulated in the hypothalamic tissue of cLEPR-immunized pullets (P < 0.01). Blood concentrations of metabolic molecules, such as glucose, triglycerides, and very-low-density lipoprotein, were significantly decreased in cLEPR-immunized pullets but those of cholesterol, high-density lipoprotein, and low-density lipoprotein increased. These results demonstrate that antibodies to membrane proximal cLEPR ECD enhance cLEPR signal transduction, which stimulates metabolism and reduces fat deposition in chickens. PMID:25447880

  11. Application of active controls technology to the NASA Jet Star airplane

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Cahill, J. F.; Campion, M. C.; Bradley, E. S.; Macwilkinson, D. G.; Phillips, J. W.

    1975-01-01

    The feasibility was studied of modifying a Jet Star airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables. Also, an alternate configuration which incorporated composite structures, but not active controls technology, was defined in order to compare the benefits of composite structures with those of active controls technology.

  12. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    NASA Astrophysics Data System (ADS)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  13. Creating Stimulating Learning and Thinking Using New Models of Activity-Based Learning and Metacognitive-Based Activities

    ERIC Educational Resources Information Center

    Pang, Katherine

    2010-01-01

    The purpose of this paper is to present a novel way to stimulate learning, creativity, and thinking based on a new understanding of activity-based learning (ABL) and two methods for developing metacognitive-based activities for the classroom. ABL, in this model, is based on the premise that teachers are distillers and facilitators of information…

  14. The role of memory activation in creating false memories of encoding context.

    PubMed

    Arndt, Jason

    2010-01-01

    Using 3 experiments, I examined false memory for encoding context by presenting Deese-Roediger-McDermott themes (Deese, 1959; Roediger & McDermott, 1995) in usual-looking fonts and by testing related, but unstudied, lure items in a font that was shown during encoding. In 2 of the experiments, testing lure items in the font used to study their associated themes increased false recognition relative to testing lure items in a font that was used to study a different lure's theme. Further, studying a larger number of associates exacerbated the influence of testing lure items in a font used to study their associated themes. Finally, testing lures in a font that was encoded many times, but was not used to present the lures' studied associates, increased lure errors more than testing lures in a font that was encoded relatively fewer times. These results favor the explanation of false recognition offered by global-matching models of recognition memory over the explanations of activation-monitoring theory and fuzzy-trace theory. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:20053045

  15. The Role of Memory Activation in Creating False Memories of Encoding Context

    PubMed Central

    Arndt, Jason

    2010-01-01

    Three experiments examined false memory for encoding context by presenting DRM themes (Deese, 1959; Roediger & McDermott, 1995) in usual-looking fonts and testing related, but unstudied, lure items in a font that was shown during encoding. In two of the experiments, testing lure items in the font used to study their associated themes increased false recognition relative to testing lure items in a font that was used to study a different lure's theme. Further, studying a larger number of associates exacerbated the influence of testing lure items in a font used to study their associated themes. Finally, testing lures in a font that was encoded many times, but was not used to present the lures' studied associates, increased lure errors more than testing lures in a font that was encoded relatively fewer times. These results favor the explanation of false recognition offered by global-matching models of recognition memory over the explanations of activation-monitoring theory and fuzzy-trace theory. PMID:20053045

  16. THE EFFECT OF MAGNETIC ACTIVITY ON LOW-MASS STARS IN ECLIPSING BINARIES

    SciTech Connect

    Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Baraffe, Isabelle; Chabrier, Gilles

    2010-07-20

    In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed from models are {approx}5%-10% lower and {approx}3%-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when mainly distributed over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when {approx}35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of {approx}3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to the explanation of the differences seen in some of the systems with shorter orbital periods.

  17. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  18. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    SciTech Connect

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; David, L. P.; Giacintucci, S.; Trevisan, M.; Ponman, T. J.; Raychaudhury, S.; Mamon, G. A.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  19. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    NASA Astrophysics Data System (ADS)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  20. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  1. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners

  2. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    SciTech Connect

    Diaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  3. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-11-20

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F{sub 1.4{sub GHz}} {approx}> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z {approx}< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  4. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  5. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  6. A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2013-06-20

    Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the equator at low latitudes between {+-}15 Degree-Sign . We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.

  7. Looking for activity cycles in late-type Kepler stars using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Vida, K.; Oláh, K.; Szabó, R.

    2014-07-01

    We analyse light curves covering four years of 39 fast-rotating (Prot ≲ 1 d) late-type active stars from the Kepler data base. Using time-frequency analysis (short-term Fourier transform), we find hints for activity cycles of 300-900 d at nine targets from the changing typical latitude of the starspots, which with the differential rotation of the stellar surface change the observed rotation period over the activity cycle. We also give a lowest estimation for the shear parameter of the differential rotation, which is ≈0.001 for the cycling targets. These results populate the less studied, short-period end of the rotation-cycle length relation.

  8. The Evolution of Accretion and Activity Signatures in Young A Stars

    NASA Astrophysics Data System (ADS)

    Williger, G. M.; Grady, C. A.; Hamaguchi, K.; Hubrig, S.; Bouret, J.-C.; Roberge, A.; Sahu, M.; Woodgate, B.; Kimble, R.

    2005-12-01

    FUV spectroscopy obtained with FUSE reveals excess continuum light in 12 lightly reddened Herbig Ae stars, as well as the routine presence of emission in a range of ionization stages sampling material from neutral atomic gas to transition region temperature plasma. The FUV excess light is correlated with the near IR colors of the stars which has previously been noted as a tracer of mass accretion rate. In several cases, sufficient data exist to demonstrate that FUV continuum variability is present and is correlated with changes in the FUV emission lines, particularly red-shifted material. Combining the FUV spectra with disk inclination data, we find that the red-shifted C III 1176 emission is seen for inclinations between 0 and 60 degrees with no dependence upon inclination in that range, as expected for funneled accretion scenarios. The FUV excess light and X-ray luminosity show the same evolutionary trend, dropping gradually over the 1st 10 Myr as long as the star is accreting material from the disk. Centrally-cleared A debris disk systems have X-ray luminosities which are at least 3 orders of magnitude fainter than the Herbig Ae stars, demonstrating that the X-ray emission is related to accretion and not to more conventional stellar activity. Plasma at transition region and chromospheric temperatures persists longer, at least in some systems. Recent magnetic field detections for 5 of the FUSE Herbig Ae stars and Beta Pictoris indicate that magnetic fields with typical field strengths of 50 to several hundred Gauss are present over the entire age range where the accretion signatures are seen. This study is based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. Data included in this study were obtained under FUSE GO Programs C126, D065, and the FUSE Legacy program E510. HST observations of HD 163296 and HD 104237 were obtained under HST

  9. Warm dust and aromatic bands as quantitative probes of star-formation activity

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Roussel, H.; Sauvage, M.; Charmandaris, V.

    2004-05-01

    We combine samples of spiral galaxies and starburst systems observed with ISOCAM on board ISO to investigate the reliability of mid-infrared dust emission as a quantitative tracer of star formation activity. The total sample covers very diverse galactic environments and probes a much wider dynamic range in star formation rate density than previous similar studies. We find that both the monochromatic 15 μm continuum and the 5-8.5 μm emission constitute excellent indicators of the star formation rate as quantified by the Lyman continuum luminosity LLyc, within specified validity limits which are different for the two tracers. Normalized to projected surface area, the 15 μm continuum luminosity Σ15 μm,ct is directly proportional to ΣLyc over several orders of magnitude. Two regimes are distinguished from the relative offsets in the observed relationship: the proportionality factor increases by a factor of ≈5 between quiescent disks in spiral galaxies, and moderate to extreme star-forming environments in circumnuclear regions of spirals and in starburst systems. The transition occurs near ΣLyc ˜ 102 L⊙ pc-2 and is interpreted as due to very small dust grains starting to dominate the emission at 15 μm over aromatic species above this threshold. The 5-8.5 μm luminosity per unit projected area is also directly proportional to the Lyman continuum luminosity, with a single conversion factor from the most quiescent objects included in the sample up to ΣLyc ˜ 104 L⊙ pc-2, where the relationship then flattens. The turnover is attributed to depletion of aromatic band carriers in the harsher conditions prevailing in extreme starburst environments. The observed relationships provide empirical calibrations useful for estimating star formation rates from mid-infrared observations, much less affected by extinction than optical and near-infrared tracers in deeply embedded H II regions and obscured starbursts, as well as for theoretical predictions from evolutionary

  10. An Evolutionary Model for Collapsing Molecular Clouds and their Star Formation Activity. II. Mass Dependence of the Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M max <~ 104 M ⊙) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ~104 M ⊙ Myr-1, although their time-averaged SFR is only langSFRrang ~ 102 M ⊙ Myr-1. The corresponding efficiencies are SFEfinal <~ 60% and langSFErang <~ 1%. For more massive clouds (M max >~ 105 M ⊙), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, langSFRrang and langSFErang are well represented by the fits langSFRrang ≈ 100(1 + M max/1.4 × 105 M ⊙)1.68 M ⊙ Myr-1 and langSFErang ≈ 0.03(M max/2.5 × 105 M ⊙)0.33, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao & Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  11. Chromospheric activity and lithium line variations in the spectra of the spotted star LQ Hydrae

    NASA Astrophysics Data System (ADS)

    Flores Soriano, M.; Strassmeier, K. G.; Weber, M.

    2015-03-01

    Context. Although the relationship between lithium abundance in stars and their magnetic activity is commonly accepted, it is still unclear how the different phenomena related to it can increase the amount of Li, reduce its depletion, or be a source of bias for the measurements. Aims: We study the rotational modulation of chromospheric and photospheric parameters of the young, active, single K2 dwarf LQ Hya and their connection with the variability of the Li i 6708 Å line. Methods: A total of 199 high-resolution STELLA spectra and quasi-simultaneous photometry were used to compute effective temperature, gravity, and chromospheric activity indicators such as Hα and Hβ emission, Balmer decrement, and chromospheric electron density, as a function of the rotational phase. The variation of the Li i 6708 Å line was characterized in terms of equivalent width, abundance, and of 6Li/7Li isotopic ratio in the form of line shifts. Results: Photospheric and chromospheric parameters show clear rotational modulation. Effective temperatures and continuum variations reveal a higher concentration of cool spots on the side of the star on which we also detect stronger chromospheric activity. Increased electron densities and the modulation of the He i D3 line suggest that the source of this activity can be a combination of plages and repeated low-intensity flares. The Li line and other temperature-sensitive lines are clearly enhanced by the spots located on the most active side of the star. Li abundances calculated taking into account the temperature variations simultaneously show, although with high dispersion, a small overabundance of this element that correlates well with the surface magnetic activity. In addition, the Li line center is more intensely redshifted than in the other hemisphere, which might be interpreted as a weak enrichment of 6Li. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Vienna

  12. Hide and Seek: Radial-Velocity Searches for Planets around Active Stars

    NASA Astrophysics Data System (ADS)

    Haywood, Raphaëlle Dawn

    2015-11-01

    The detection of low-mass extra-solar planets through radial-velocity searches is currently limited by the intrinsic magnetic activity of the host stars. The correlated noise that arises from their natural radial-velocity variability can easily mimic or conceal the orbital signals of super-Earth and Earth-mass extra-solar planets. I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the photometric variations of the star, thus allowing me to determine precise and reliable planetary masses. I applied this technique to three recently discovered planetary systems: CoRoT-7, Kepler-78 and Kepler-10. I determined the masses of the transiting super-Earth CoRoT-7b and the small Neptune CoRoT-7c to be 4.73 ± 0.95 M⊕ and 13.56 ± 1.08 M⊕, respectively. The density of CoRoT-7b is 6.61 ± 1.72 g.cm-3, which is compatible with a rocky composition. I carried out Bayesian model selection to assess the nature of a previously identified signal at 9 days, and found that it is best interpreted as stellar activity. Despite the high levels of activity of its host star, I determined the mass of the Earth-sized planet Kepler-78b to be 1.76 ± 0.18 M⊕. With a density of 6.2(+1.8:-1.4) g.cm-3, it is also a rocky planet. I found the masses of Kepler-10b and Kepler-10c to be 3.31 ± 0.32 M⊕ and 16.25 ± 3.66 M⊕, respectively. Their densities, of 6.4(+1.1:-0.7) g.cm-3 and 8.1 ± 1.8 g.cm-3, imply that they are both of rocky composition - even the 2 Earth-radius planet Kepler-10c! In parallel, I deepened our understanding of the physical origin of stellar radial-velocity variability through the study of the Sun, which is the only star whose surface can be imaged at high resolution. I found that the full-disc magnetic flux is an excellent proxy for activity-induced radial-velocity variations; this result may become key to breaking the activity barrier in coming

  13. HATS-2b: A transiting extrasolar planet orbiting a K-type star showing starspot activity

    NASA Astrophysics Data System (ADS)

    Mohler-Fischer, M.; Mancini, L.; Hartman, J. D.; Bakos, G. Á.; Penev, K.; Bayliss, D.; Jordán, A.; Csubry, Z.; Zhou, G.; Rabus, M.; Nikolov, N.; Brahm, R.; Espinoza, N.; Buchhave, L. A.; Béky, B.; Suc, V.; Csák, B.; Henning, T.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Schmidt, B.; Noyes, R. W.; Papp, I.; Lázár, J.; Sári, P.; Conroy, P.

    2013-10-01

    We report the discovery of HATS-2b, the second transiting extrasolar planet detected by the HATSouth survey. HATS-2b is moving on a circular orbit around a V = 13.6 mag, K-type dwarf star (GSC 6665-00236), at a separation of 0.0230 ± 0.0003 AU and with a period of 1.3541 days. The planetary parameters have been robustly determined using a simultaneous fit of the HATSouth, MPG/ESO 2.2 m/GROND, Faulkes Telescope South/Spectral transit photometry, and MPG/ESO 2.2 m/FEROS, Euler 1.2 m/CORALIE, AAT 3.9 m/CYCLOPS radial-velocity measurements. HATS-2b has a mass of 1.37 ± 0.16 MJ, a radius of 1.14 ± 0.03 RJ, and an equilibrium temperature of 1567 ± 30 K. The host star has a mass of 0.88 ± 0.04 M⊙ and a radius of 0.89 ± 0.02 R⊙, and it shows starspot activity. We characterized the stellar activity by analyzing two photometric follow-up transit light curves taken with the GROND instrument, both obtained simultaneously in four optical bands (covering the wavelength range of 3860-9520 Å). The two light curves contain anomalies compatible with starspots on the photosphere of the host star along the same transit chord. Tables of the individual photometric measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A55

  14. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  15. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  16. A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Endl, Michael; Cochran, William D.; Meschiari, Stefano; Robertson, Paul; MacQueen, Phillip J.; Brugamyer, Erik J.; Caldwell, Caroline; Hatzes, Artie P.; Ramírez, Ivan; Wittenmyer, Robert A.

    2016-04-01

    The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca ii SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1σ objects with M{sin}i\\gt 0.36{M}J at 12 years (corresponding to the orbital period of Jupiter) and M{sin}i\\gt 0.72{M}J at a period of 16.4 years (assuming a circular orbit for an outer companion).

  17. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  18. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  19. Mid- to far-infrared properties of star-forming galaxies and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Magdis, G. E.; Rigopoulou, D.; Helou, G.; Farrah, D.; Hurley, P.; Alonso-Herrero, A.; Bock, J.; Burgarella, D.; Chapman, S.; Charmandaris, V.; Cooray, A.; Dai, Y. Sophia; Dale, D.; Elbaz, D.; Feltre, A.; Hatziminaoglou, E.; Huang, J.-S.; Morrison, G.; Oliver, S.; Page, M.; Scott, D.; Shi, Y.

    2013-10-01

    We study the mid- to far-IR properties of a 24 μm-selected flux-limited sample (S24> 5 mJy) of 154 intermediate redshift (⟨ z ⟩ ~ 0.15), infrared luminous galaxies, drawn from the 5 Milli-Jansky Unbiased Spitzer Extragalactic Survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the Herschel Multi-tiered Extragalactic Survey, we derived robust total infrared luminosity (LIR) and dust mass (Mdust) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total (8-1000 μm) infrared emission of galaxies with weak 6.2 μm PAH emission (EW6.2 ≤ 0.2 μm) is dominated by AGN activity, while for galaxies with EW6.2> 0.2 μm more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500 μm Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8 μm luminosity ratio, IR8 ≡ LIR/L8 and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHsemission, and not by variations in the 5-15 μm mid-IR continuum emission. Using the [Ne iii]/[Ne ii] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Mdust), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument

  20. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    SciTech Connect

    Link, Bennett

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  1. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  2. VizieR Online Data Catalog: Stellar activity and kinematics of FGK stars (Murgas+, 2013)

    NASA Astrophysics Data System (ADS)

    Murgas, F.; Jenkins, J. S.; Rojo, P.; Jones, H. R. A.; Pinfield, D. J.

    2013-02-01

    We present a compilation of stellar activity catalogs combined with galactic velocity information of 2529 F, G, and K stars. The stellar activity catalogs use in this work are: Jenkins et al. 2011 (Cat. J/A+A/531/A8); Gray et al. 2003 (Cat. J/AJ/126/2048), 2006 (Cat. J/AJ/132/161); Henry et al 1996 (Cat. J/A+A/111/439); Wright et al. 2004 (Cat. J/ApJS/152/261); Duncan et al. (1991ApJS...76..383D, Cat. III/159). The galactic velocities are taken from the Jenkins et al. 2011 (Cat. J/A+A/531/A8) and the Geneva-Copenhaguen Survey (GCS) Nordstrom et al. (2004A&A...418..989N, Cat. V/117). (1 data file).

  3. Zeeman-Doppler imaging of active young solar-type stars

    NASA Astrophysics Data System (ADS)

    Hackman, T.; Lehtinen, J.; Rosén, L.; Kochukhov, O.; Käpylä, M. J.

    2016-03-01

    Context. By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo. Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an α2-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots. Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013. Based on observations made with the HARPSpol instrument on the ESO 3.6 m telescope at La Silla (Chile), under the program ID 091.D-0836.

  4. A NEW MULTI-BAND RADIAL VELOCITY TECHNIQUE FOR DETECTING EXOPLANETS AROUND ACTIVE STARS

    SciTech Connect

    Ma Bo; Ge Jian E-mail: jge@astrto.ufl.edu

    2012-05-10

    The radial velocity (RV) technique is one of the most efficient ways of detecting exoplanets. However, large RV jitters induced by starspots on an active star can inhibit detection of any exoplanet present or even lead to a false positive detection. This paper presents a new multi-band RV technique capable of substantially reducing starspot-induced RV jitters from stellar RV measurements to allow efficient and accurate extraction of RV signals caused by exoplanets. It takes full advantage of the correlation of RV jitters at different spectral bands and the independence of exoplanet signals at the corresponding bands. Simulations with a single-spot model and a multi-spot model have been conducted to investigate the RV jitter reduction capability of this method. The results show that this method can reduce the RV jitter amplitude by at least an order of magnitude, allowing detection of weaker exoplanet signals without significantly increasing RV observation time and cadence. This method can greatly reduce the observation time required to detect Earth-like planets around solar type stars with {approx}0.1 m s{sup -1} long term Doppler precision if spot-induced jitter is the dominant astrophysical noise source for RV measurements. This method can work efficiently for RV jitter removal if: (1) all the spots on a target star have approximately the same temperature during RV observations; (2) the RV jitter amplitude changes with wavelength, i.e., the RV jitter amplitude ratio, {alpha}, between two different spectral bands is not close to one; (3) the spot-induced RV jitter dominates the RV measurement error.

  5. Mechanisms for quenching star formation activities in green valley galaxies and its depends on morphologies

    NASA Astrophysics Data System (ADS)

    Kong, Xu; Pan, Zhizheng; Lian, Jianhui

    2015-08-01

    Galaxies are categorized into two main populations, red quiescent galaxies and blue star-forming galaxies. One of the key questions is which physical mechanisms are responsible for quenching star formation activities in blue galaxies and the resulting transformation? In this talk, we present research on the morphologies, spectra, and environments of "green valley" galaxies in the COSMOS field and low redshift "green valley" galaxies in SDSS. Our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M* < 10^10.0 Msun blue galaxies into red galaxies, especially at z < 0.5. Using image from SDSS and GALEX, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, and investigate how quenching is processing in a galaxy. The early-type "green valley" galaxies (ETGs) have dramatically different radial NUV-r color distributions compared to late-type "green valley" galaxies (LTGs), most of ETGs have blue cores, nearly all LTGs have uniform color profiles that can be well-interpreted as red bulges plus blue disk components. These results suggest that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy; for ETGs, their star formations are centrally concentrated. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI (2013ApJ...776...14P, 2014ApJ...792L...4P, 2015MNRAS.446.1449L).

  6. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  7. Creating realistic models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data

    NASA Astrophysics Data System (ADS)

    Stupina, T.; Koulakov, I.; Kopp, H.

    2009-04-01

    We consider questions of creating structural models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data. For our investigations, we use the PROFIT (Profile Forward and Inverse Tomographic modeling) algorithm which was tested earlier with different datasets. Here we consider offshore seismic profiling data from three areas (Chile, Java and Central Pacific). Two of the study areas are characterized by subduction zones whereas the third data set covers a seamount province. We have explored different algorithmic issues concerning the quality of the solution, such as (1) resolution assessment using different sizes and complexity of synthetic anomalies; (2) grid spacing effects; (3) amplitude damping and smoothing; (4) criteria for rejection of outliers; (5) quantitative criteria for comparing models. Having determined optimal algorithmic parameters for the observed seismic profiling data we have created structural synthetic models which reproduce the results of the observed data inversion. For the Chilean and Java subduction zones our results show similar patterns: a relatively thin sediment layer on the oceanic plate, thicker inhomogeneous sediments in the overlying plate and a large area of very strong low velocity anomalies in the accretionary wedge. For two seamounts in the Pacific we observe high velocity anomalies in the crust which can be interpreted as frozen channels inside the dormant volcano cones. Along both profiles we obtain considerable crustal thickening beneath the seamounts.

  8. Photospheric Activity in Selected Be STARS: lambda Eri and gamma Cas

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1994-01-01

    Recent observations of rapid variations in optical He I lines, X-rays, and FUV wavelengths in the prototypical classical Be stars lambda Eri and star gamma Cas hint that the violent processes occur on the surfaces of these stars almost all the time. We suggest that of these phenomena show greater similarities with magnetic flaring than any other process through to occur on stars.

  9. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  10. MHD seismology as a tool to diagnose the coronae of X-ray active sun-like flaring stars

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Lalitha, Sairam

    It is now well accepted that the detection of impulsively generated multiple MHD modes are potentially used in diagnosing the local plasma conditions of the solar corona. Analogously, such analyses can also be significantly used in diagnosing the coronae of X-ray active Sun-like stars. In the present paper, we briefly review the detection of MHD modes in coronae of some X-ray active Sun-like stars, e.g. Proxima Centauri, ξ-Boo etc using XMM-Newton observations, and discuss the implications in deriving physical information about their localized magnetic atmosphere. We conclude that the refinement in the MHD seismology of solar corona is also providing the best analogy to develop the stellar seismology of magnetically active and flaring Sun-like stars to deduce the local physical conditions of their coronae.

  11. Star formation activity in the southern Galactic H II region G351.63-1.25

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.; Tamura, M.

    2014-06-01

    The southern Galactic high-mass star-forming region, G351.63-1.25, is an H II region-molecular cloud complex with a luminosity of ˜2.0 × 105 L⊙, located at a distance of 2.4 kpc from the Sun. In this paper, we focus on the investigation of the associated H II region, embedded cluster and the interstellar medium in the vicinity of G351.63-1.25. We address the identification of exciting source(s) as well as the census of the stellar populations, in an attempt to unfold star formation activity in this region. The ionized gas distribution has been mapped using the Giant Metrewave Radio Telescope, India, at three frequencies: 1280, 610 and 325 MHz. The H II region shows an elongated morphology and the 1280 MHz map comprises six resolved high-density regions encompassed by diffuse emission spanning 1.4 × 1.0 pc2. Based on the measurements of flux densities at multiple radio frequencies, the brightest ultracompact core has electron temperature Te˜7647 {±} 153 K and emission measure, EM˜2.0 {±} 0.8×107 cm-6 pc. The zero-age main-sequence spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS camera on the 1.4 m Infrared Survey Facility telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be ˜0.27 ± 0.03, and the fraction of the near-infrared excess stars is estimated to be 43 per cent. These indicate that the age of the cluster is consistent with ˜1 Myr. Other available data of this region show that the warm (mid-infrared) and cold (millimetre) dust emission peak at different locations indicating progressive stages of star formation process. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.

  12. The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Davies, R. I.

    2013-08-01

    Galactic gas-gas collisions involving a turbulent multiphase interstellar medium (ISM) share common ISM properties: dense extraplanar gas visible in CO, large linewidths (≳50 km s-1), strong mid-infrared H2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ram pressure stripping caused by the rapid motion of a spiral galaxy within the intracluster medium, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, or external gas accretion on an existing gas torus in a galactic center. We suggest that the common theme of all these gas-gas interactions is adiabatic compression of the ISM leading to an increase of the turbulent velocity dispersion of the gas. The turbulent gas clouds are then overpressured and star formation is quenched. Within this scenario we developed a model for turbulent clumpy gas disks where the energy to drive turbulence is supplied by external infall or the gain of potential energy by radial gas accretion within the disk. The cloud size is determined by the size of a continuous (C-type) shock propagating in dense molecular clouds with a low ionization fraction at a given velocity dispersion. We give expressions for the expected volume and area filling factors, mass, density, column density, and velocity dispersion of the clouds. The latter is based on scaling relations of intermittent turbulence whose open parameters are estimated for the circumnuclear disk in the Galactic center. The properties of the model gas clouds (~0.1 pc, ~100 M⊙, Δv ≳ 6 km s-1) and the external mass accretion rate necessary for the quenching of the star formation rate due to adiabatic compression (Ṁ ~ 1-10 M⊙ yr-1) are consistent with those derived from high-resolution H2 2.12 μm line observations. Based on these findings, a scenario for the evolution of gas tori in galactic centers is

  13. Long-term chromospheric activity of non-eclipsing RS CVn-type stars

    NASA Astrophysics Data System (ADS)

    Buccino, A. P.; Mauas, P. J. D.

    2009-02-01

    Context: The IUE database provides several UV high and low-resolution spectra of RS CVn-type stars from 1978 to 1996. In particular, many of these stars were monitored continuously during several seasons by IUE. Aims: Our main purpose is to study the short and long-term chromospheric activity of the RS CVn systems most observed by IUE: HD 22 468 (V711 Tau, HR 1099, K1IV+G5V), HD 21 242 (UX Ari, K0IV+G5V), and HD 224 085 (II Peg, K2IV). Methods: We first obtained the Mount Wilson index S from the IUE high and low-resolution spectra. Secondly, we used the Lomb-Scargle periodogram to analyse the mean annual index < S> and the amplitude of the rotational modulation of the index S. Results: For HD 22 468 (V711 Tau, HR 1099), we find a possible chromospheric cycle with a period of ~18 years and a shorter cycle with a period of ~3 years, which could be associated to a chromospheric “flip-flop” cycle. The data of HD 224 085 (II Peg) also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~7 years for HD 21 242 (UX Ari).

  14. A Re-Analysis of Einstein SSS Spectra of Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; White, N. E.

    1992-12-01

    We have re-analyzed the highest signal-to-noise spectra that were obtained by the Einstein Solid State Spectrometer (SSS) of active RS CVn binary stars. We compare our results with those obtained by Swank et al. (1981, ApJ, 246, 208) who also analyzed these same data. The new analysis incorporates several improvements over the original: (i) it makes use of the improved understanding of the SSS instrument response matrix and of how to correct the observed spectrum for the affect of the ice build-up on the detector window; (ii) it uses the simultaneously obtained Einstein Monitor Proportional Counter (MPC) data to constrain more tightly the high-temperature thermal emission component; and (iii) it uses modern versions of the Mewe and Gronenschild and Raymond and Smith plasma codes to model the data. We discuss in some detail the X-ray spectrum of the nearby giant binary system Capella which is anomalously soft compared to the other binary stars, and for which the fit to the data of a two-component thermal emission model is by far the worst. In addition, we analyze the Exosat Transmission Grating Spectrometer spectrum of Capella and contrast the best-fit model to these data with the best-fit model to the SSS spectrum.

  15. Rotational modulation of the chromospheric activity in the young solar-type star, X-1 Orionis

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Simon, T.

    1982-01-01

    The IUE satellite was used to observe one of the youngest G stars (GO V) for which Duncan (1981) derives an age of 6 x 10 to the 8th power years from the Li abundance. Rotational modulation was looked for in the emission flux in the chromospheric and transition region lines of this star. Variations in the Ca 11 K-lines profile were studied with the CHF telescope at Mauna Kea. Results show that the same modulation of the emission flux of Ca 11 due to stellar rotation is present in the transition region feature of C IV and probably of He II. For other UV lines the modulation is not apparent, due to a more complex surface distribution of the active areas or supergranulation network, or a shorter lifetime of the conditions which give rise to these features, or to the uncertainities in the measured line strengths. The Mg II emission flux is constant to within + or - 3.4% implying a rather uniform distribution of Mg II emission areas. The Ca II emission not only shows a measurable variation in intensity but also variations in detailed line profile shape when observed at high resolution.

  16. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  17. Activity-brightness Correlations For The Sun And Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Preminger, D.; Chapman, G.; Cookson, A.

    2011-05-01

    We examine the effects of active regions on the relative brightness of the solar disk at three different wavelengths. Our study is based on photometric parameters derived from images taken at the San Fernando Observatory, and examines daily data for two full solar cycles. We measure the contrast of solar features on broadband red and blue images, and on Ca II K-line images, which allows us to compute the net brightness variations due to solar activity. We show that while the Ca II K-line variability is directly correlated with the solar activity cycle, variability in the red and blue continuum is anti-correlated with solar activity, on solar cycle timescales. Our blue and red continuum filters are quite similar to the Stromgren b and y filters used to measure stellar photometric variability. Sun-like stars whose continuum brightness varies inversely with activity are therefore revealed to be similar to the Sun. This work has been supported in part by NASA LWS Grant NNX07AT19G and NSF Grant ATM-0848518.

  18. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  19. Coronal and transition-region Doppler shifts of an active region 3D-MHD model as indicator for the magnetic activity cycle of solar-like stars

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe A.

    2015-08-01

    For the Sun and solar-like stars, Doppler blueshifts are observed in the hot corona, while in average redshifts are seen in the cooler transition region layer below the corona. This clearly contradicts the idea of a continuous flow-equilibrium starting from a star's atmosphere and forming the stellar wind. To explain this, we implement a 3D-MHD model of the solar corona above an observed active region and use an atomic database to obtain the emission from the million Kelvin hot plasma. The generated EUV-bright loops system from the model compares well to the observed coronal loops. Therefore, we have access to realistic plasma parameters, including the flow dynamics within the active region core, and can derive total spectra as if we look the Sun as a star. We compare the model spectra to actual statistical observations of the Sun taken at different magnetic activity levels. We find characteristic Doppler-shift statistics that can be used to identify the magnetic activity state of the Sun and solar-like stars. This should help to model the variability of such stars by inferring their activity level from total spectra of coronal and transition-region emission lines.

  20. The photometric variability of the chromospherically active binary star HD 80715

    NASA Technical Reports Server (NTRS)

    Strassmeier, Klaus G.; Hooten, James T.; Hall, Douglas S.; Fekel, Francis C.

    1989-01-01

    Differential UBVRI photometry of the double-lined BY Dra system HD 80715 (K3 V + K3 V) obtained in December 1987 is presented. The star is found to be a variable with a full amplitude of 0.06 mag in V and a period similar or equal to the orbital period of 3.804 days. The mechanism of the variability is interpreted as rotational modulation due to dark starspots. In an attempt to detect chromospheric activity, high-resolution CCD spectra were obtained at Ca II H and K and at Fe I 6430 A and Ca I 6439 A, the photospheric lines normally used for Doppler imaging. HD 80715 shows double H and K emission features at a constant flux level for each component.

  1. A Search for Hard X-ray Emission from Active Stars Using CGRO/BATSE

    NASA Astrophysics Data System (ADS)

    White, S. M.; Harmon, B. A.; Lim, J.; Kundu, M. R.

    We report the results of a search for > 20 keV photons from active stars using CGRO/BATSE Earth-occultation observations. Twelve of the "usual suspects" together with 12 "placebo" locations have been analyzed using the BATSE software for occultation analysis developed at NASA/MSFC. There are four detections at the nominal 5sigma level, and eight at the 3sigma level. However the strongest detection (that of AB Dor) shows clear evidence for contamination from the nearby strong source LMC X-4. 18 of the 24 fields yield positive fluxes, indicating a clear bias in the results, and possibly indicating the presence of weak background hard X-ray sources detectable by BATSE in long-term studies.

  2. Chromospheric activity in Delta Scuti stars - The suspected variable Tau Cygni

    NASA Technical Reports Server (NTRS)

    Fracassini, M.; Pasinetti Fracassini, L. E.; Mariani, A.; Pastori, L.; Teays, T. J.

    1991-01-01

    High-resolution IUE spectra of the suspected variable Tau Cyg were obtained to search for a possible variability of the Mg II h, k double-peaked emission. The observations, spanning an interval of about 6.3 h, have shown flux excursions within or just near 15 percent, a value suggested as the detection limit of actual variations with IUE spectra. A variability, difficult to explain, could be present in the ratios Fk2v/Fk2r. The emission fluxes seem to be higher than those of the Delta Scuti variables Rho Pup and Beta Cas. This comparison could give some insights on the possible role of the convection on the pulsational and chromospheric activities of Tau Cyg. A positive correlation between the total emission fluxes and the rotational velocities of these stars was found.

  3. Community-driven learning activities, creating futures: 30,000 people can't be wrong - can they?

    PubMed

    Dowrick, Peter W

    2007-03-01

    A major vehicle for the practice of community psychology is through the organization of community-based activities. My colleagues and I have developed many programs for community learning centers, in-school and after school programs, and community technology centers. In the last 10 years, 30,000 people (mostly children) have participated in activities designed for enjoyment and learning, with a view to adding protective factors and reducing negative factors in at-risk communities. Development of these programs for literacy, education, life and work skills, has increasingly followed a community responsive model. Within each program, we created explicit images of future success. That is, people could see themselves being successful where they normally fail: self modeling with feedforward. Data reports show that individuals generalized and maintained their new skills and attitudes, but the sustainability of programs has been variable. Analysis of the variations indicates the importance of program level feedforward that brings the future into the present. The discussion includes consideration of how individual-level and community-level practices can inform each other. PMID:17437187

  4. Modelling galaxy and AGN evolution in the infrared: black hole accretion versus star formation activity

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Pozzi, F.; Zamorani, G.; Vignali, C.

    2011-09-01

    We present a new backward evolution model for galaxies and active galactic nuclei (AGNs) in the infrared (IR). What is new in this model is the separate study of the evolutionary properties of different IR populations (i.e. spiral galaxies, starburst galaxies, low-luminosity AGNs, 'unobscured' type 1 AGNs and 'obscured' type 2 AGNs) defined through a detailed analysis of the spectral energy distributions (SEDs) of large samples of IR-selected sources. The evolutionary parameters have been constrained by means of all the available observables from surveys in the mid- and far-IR (source counts, redshift and luminosity distributions, luminosity functions). By decomposing the SEDs representative of the three AGN classes into three distinct components (a stellar component emitting most of its power in the optical/near-IR, an AGN component due to the hot dust heated by the central black hole peaking in the mid-IR, and a starburst component dominating the far-IR spectrum), we have disentangled the AGN contribution to the monochromatic and total IR luminosity emitted by different populations considered in our model from that due to star formation activity. We have then obtained an estimate of the total IR luminosity density [and star formation density (SFD) produced by IR galaxies] and the first ever estimate of the black hole mass accretion density (BHAR) from the IR. The derived evolution of the BHAR is in agreement with estimates from X-rays, though the BHAR values we derive from the IR are slightly higher than the X-ray ones. Finally, we have simulated source counts, redshift distributions, and SFD and BHAR that we expect to obtain with the future cosmological surveys in the mid-/far-IR that will be performed with the JWST-MIRI and SPICA-SAFARI. Outputs of the model are available online.1

  5. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  6. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    SciTech Connect

    Esquej, P.; Alonso-Herrero, A.; Hernán-Caballero, A.; González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Roche, P.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  7. Nuclear Star Formation Activity and Black Hole Accretion in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Esquej, P.; Alonso-Herrero, A.; González-Martín, O.; Hönig, S. F.; Hernán-Caballero, A.; Roche, P.; Ramos Almeida, C.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Rodríguez Espinosa, J. M.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, \\dot{M}_BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (~0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ~65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ⊙ yr-1 kpc-2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ~65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and \\dot{M}_BH and showed that numerical simulations reproduce our observed relation fairly well.

  8. THE STAR OFFLINE FRAMEWORK.

    SciTech Connect

    FINE,V.; FISYAK,Y.; PEREVOZTCHIKOV,V.; WENAUS,T.

    2000-02-07

    The Solenoidal Tracker At RHIC (STAR) is a-large acceptance collider detector, commissioned at Brookhaven National Laboratory in 1999. STAR has developed a software framework supporting simulation, reconstruction and analysis in offline production, interactive physics analysis and online monitoring environments that is well matched both to STAR's present status of transition between Fortran and C++ based software and to STAR's evolution to a fully OO software base. This paper presents the results of two years effort developing a modular C++ framework based on the ROOT package that encompasses both wrapped Fortran components (legacy simulation and reconstruction code) served by IDL-defined data structures, and fully OO components (all physics analysis code) served by a recently developed object model for event data. The framework supports chained components, which can themselves be composite subchains, with components (''makers'') managing ''data sets'' they have created and are responsible for. An St-DataSet class from which data sets and makers inherit allows the construction of hierarchical organizations of components and data, and centralizes almost all system tasks such as data set navigation, I/O, database access, and inter-component communication. This paper will present an overview of this system, now deployed and well exercised in production environments with real and simulated data, and in an active physics analysis development program.

  9. The 2006/2007 photometric activity of three chromospherically active stars: V2075 Cyg, FG UMa and BM CVn

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Soydugan, E.; Bakış, H.; Doğru, D.; Doğru, S. S.; Tüysüz, M.; Kaçar, Y.; Dönmez, A.; Soydugan, F.

    2009-08-01

    We present new multiband CCD photometric observations of three chromospherically active stars with long periods (V2075 Cyg, FG UMa and BM CVn). The observations were made at the Çanakkale Onsekiz Mart University Observatory in 2006 and 2007. We analyzed BVRI (Bessell) CCD observations of these three RS CVn-type SB1 binaries with the following three steps: (i) Photometric rotation periods were obtained by analyzing their light variations with a differential corrections method and a Fourier transform technique. (ii) Light variations, observed over three or more consecutive orbital cycles, were investigated by using dark (cool) spot models with the program SPOT. (iii) Surface differential rotation coefficients for the primary components of these binaries were derived using our own photometric periods together with orbital periods taken from the literature.

  10. Constraints on Feedback in the Local Universe: The Relation between Star Formation and AGN Activity in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi A.; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2016-02-01

    We address the relation between star formation and active galactic nucleus (AGN) activity in a sample of 231 nearby (0.0002 < z < 0.0358) early-type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR, and radio. Our results indicate that early-type galaxies in the current epoch are rarely powerful AGNs, with P\\lt {10}22 {{WHz}}-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The star formation rate (SFR) of these galaxies is less than 0.1 M⊙ yr-1. They also tend to be radio faint (P\\lt {10}22 {{WHz}}-1). There is a nearly equal fraction of star-forming galaxies in radio faint (P\\lt {10}22 {{WHz}}-1) and radio bright galaxies (P≥slant {10}22 {{WHz}}-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  11. Voluntary physical activity abolishes the proliferative tumor growth microenvironment created by adipose tissue in animals fed a high fat diet.

    PubMed

    Theriau, Christopher F; Shpilberg, Yaniv; Riddell, Michael C; Connor, Michael K

    2016-07-01

    The molecular mechanisms behind the obesity-breast cancer association may be regulated via adipokine secretion by white adipose tissue. Specifically, adiponectin and leptin are altered with adiposity and exert antagonistic effects on cancer cell proliferation. We set out to determine whether altering adiposity in vivo via high fat diet (HFD) feeding changed the tumor growth supporting nature of adipose tissue and whether voluntary physical activity (PA) could ameliorate these HFD-dependent effects. We show that conditioned media (CM) created from the adipose tissue of HFD fed animals caused an increase in the proliferation of MCF7 cells compared with cells exposed to CM prepared from the adipose of lean chow diet fed counterparts. This increased proliferation was driven within the MCF7 cells by an HFD-dependent antagonism between AMP-activated protein kinase (AMPK) and protein kinase B (Akt) signaling pathways, decreasing p27 protein levels via reduced phosphorylation at T198 and downregulation of adiponectin receptor 1 (AdipoR1). PA can ameliorate these proliferative effects of HFD-CM on MCF7 cells, increasing p27(T198) by AMPK, reducing pAkt(T308), and increasing AdipoR1, resulting in cell cycle withdrawal in a manner that depends on the PA intensity. High physical activity (>3 km/day) completely abolished the effects of HFD feeding. In addition, AdipoR1 overexpression mimics the effects of exercise, abolishing the proliferative effects of the HFD-CM on MCF7 cells and further enhancing the antiproliferative effects of PA on the HFD-CM. Thus voluntary PA represents a means to counteract the proliferative effects of adipose tissue on breast cancers in obese patients. PMID:27150834

  12. Creating Poetry.

    ERIC Educational Resources Information Center

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  13. Stars and star systems

    NASA Astrophysics Data System (ADS)

    Martynov, D. Ia.

    Topics examined include close binary systems, supernovae and their remnants, variable stars, young star groups (e.g., clusters and associations), spherical star clusters, and planetary nebulae. Also considered are the interstellar medium and star formation, systems of galaxies, and current problems in cosmology.

  14. WZ Cephei: A Dynamically Active W UMa-Type Binary Star

    NASA Astrophysics Data System (ADS)

    Jeong, Jang-Hae; Kim, Chun-Hwey

    2011-09-01

    An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of -9.d97 × 10-8 y-1, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of -6.d72 × 10-8 y-1 due to AML contributes about 67% to the observed period decrease. The mass flow of about 5.16 × 10-8 M⊙ y-1 from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an 11.y8 period with amplitude of 0.d0054 and a 41.y3 period with amplitude of 0.d0178. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of 0.30 M⊙ for the shorter period and 0.49 M⊙ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical

  15. ENVIRONMENTAL EFFECTS ON STAR FORMATION ACTIVITY AT z {approx} 0.9 IN THE COSMOS FIELD

    SciTech Connect

    Kajisawa, M.; Shioya, Y.; Taniguchi, Y.; Nagao, T.; Matsubayashi, K.; Riguccini, L.; Aida, Y.; Ideue, Y.; Murayama, T.

    2013-05-01

    We investigated the fraction of [O II] emitters in galaxies at z {approx} 0.9 as a function of the local galaxy density in the Hubble Space Telescope (HST) COSMOS 2 deg{sup 2} field. [O II] emitters are selected by the narrowband excess technique with the NB711-band imaging data taken with Suprime-Cam on the Subaru telescope. We carefully selected 614 photo-z-selected galaxies with M{sub U3500} < -19.31 at z = 0.901 - 0.920, which includes 195 [O II] emitters, to directly compare the results with our previous study at z {approx} 1.2. We found that the fraction is almost constant at 0.3 Mpc{sup -2} < {Sigma}{sub 10th} < 10 Mpc{sup -2}. We also checked the fraction of galaxies with blue rest-frame colors of NUV - R < 2 in our photo-z-selected sample, and found that the fraction of blue galaxies does not significantly depend on the local density. On the other hand, the semi-analytic model of galaxy formation predicted that the fraction of star-forming galaxies at z {approx} 0.9 decreases with increasing projected galaxy density even if the effects of the projection and the photo-z error in our analysis were taken into account. The fraction of [O II] emitters decreases from {approx}60% at z {approx} 1.2 to {approx}30% at z {approx} 0.9 independent of galaxy environment. The decrease of the [O II] emitter fraction could be explained mainly by the rapid decrease of star formation activity in the universe from z {approx} 1.2 to z {approx} 0.9.

  16. THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wright, Shelley A.; Graham, James R.; Ma, C-P; Larkin, James E.

    2010-03-10

    We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared {integral} field spectrograph OSIRIS. Using previous Halpha and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central {approx}1.5 kpc (0.''2) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Halpha) = -0.22 +- 0.05 and 2sigma limit of log ([O III]/Hbeta) {approx}>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the 'elevated' nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L{sub Halpha} = (3.7 +- 0.5) x 10{sup 41} erg s{sup -1} and L{sub [O{sub III}]} = (5.8 +- 1.9) x 10{sup 41} erg s{sup -1}, making it one of the lowest luminosity AGNs discovered at this early epoch.

  17. Determining the Covering Factor of Compton-thick Active Galactic Nuclei with NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fuerst, F.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S.; Puccetti, S.; Rivers, E.; Vasudevan, R.; Walton, D. J.; Zhang, W. W.

    2015-05-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (NH > 1.5 × 1024 cm-2) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman & Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with NH measured from 1024 to 1026 cm-2, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, fc, is a strongly decreasing function of the intrinsic 2-10 keV luminosity, LX, where fc = (-0.41 ± 0.13)log10(LX/erg s-1)+18.31 ± 5.33, across more than two orders of magnitude in LX (1041.5-1044 erg s-1). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with LX > 1042.5 erg s-1.

  18. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Santerne, A.; Almenara, J.-M.; Anderson, D. R.; Collier-Cameron, A.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Udry, S.; Van Grootel, V.; West, R. G.

    2016-06-01

    We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255_{-0.000 0025}^{+0.000 0020} days an active F6-type main-sequence star (V = 10.4, 1.353_{-0.079}^{+0.080} M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ˜1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (˜7.1 109 erg s-1 cm-2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ˜4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8°_{-5.5°}^{+5.3°}. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body.

  19. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. PMID:25002267

  20. Symmetry-breaking magnetic fields create a vortex fluid that exhibits a negative viscosity, active wetting, and strong mixing.

    PubMed

    Martin, James E; Solis, Kyle J

    2014-06-14

    There are many areas of science and technology where being able to generate vigorous, noncontact flow would be desirable. We have discovered that three dimensional, time-dependent electric or magnetic fields having key symmetries can be used to generate controlled fluid motion by the continuous injection of energy. Unlike natural convection, this approach does not require a thermal gradient as an energy source, nor does it require gravity, so space applications are feasible. The result is a highly active material we call a vortex fluid. The homogeneous torque density of this fluid enables it to climb walls, induce ballistic droplet motion, and mix vigorously, even in such complex geometries as porous media. This vortex fluid can also exhibit a negative viscosity, which can immeasurably extend the control range of the "smart fluids" used in electro- and magnetorheological devices and can thus significantly increase their performance. Because the applied fields are uniform and modest in strength, vortex fluids of any scale can be created, making applications of any size, from directing microdroplet motion to controlling damping in magnetorheological dampers that protect bridges and buildings from earthquakes, feasible. PMID:24733404

  1. Creating Community

    PubMed Central

    Budin, Wendy C.

    2009-01-01

    In this column, the editor of The Journal of Perinatal Education describes ways that Lamaze International is helping to create a community for those who share a common interest in promoting, supporting, and protecting natural, safe, and healthy childbirth. The editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth. PMID:19936112

  2. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices

    NASA Astrophysics Data System (ADS)

    Gomes da Silva, J.; Santos, N. C.; Bonfils, X.; Delfosse, X.; Forveille, T.; Udry, S.

    2011-10-01

    Context. The search for extra-solar planets similar to Earth is becoming a reality, but as the level of the measured radial-velocity reaches the sub-m s-1, stellar intrinsic sources of noise capable of hiding the signal of these planets from scrutiny become more important. Aims: Other stars are known to have magnetic cycles similar to that of the Sun. The relationship between these activity variations and the observed radial-velocity is still not satisfactorily understood. Following our previous work, which studied the correlation between activity cycles and long-term velocity variations for K dwarfs, we now expand it to the lower end of the main sequence. In this first paper our aim is to assess the long-term activity variations in the low end of the main sequence, having in mind a planetary search perspective. Methods: We used a sample of 30 M0-M5.5 stars from the HARPS M-dwarf planet search program with a median timespan of observations of 5.2 years. We computed chromospheric activity indicators based on the Ca ii H and K, Hα, He i D3, and Na i D1 and D2 lines. All data were binned to average out undesired effects such as rotationally modulated atmospheric inhomogeneities. We searched for long-term variability of each index and determined the correlations between them. Results: While the SCa II, Hα, and Na i indices showed significant variability for a fraction of our stellar sample (39%, 33%, and 37%, respectively), only 10% of our stars presented significant variability in the He i index. We therefore conclude that this index is a poor activity indicator at least for this type of stars. Although the Hα shows good correlation with SCa II for the most active stars, the correlation is lost when the activity level decreases. This result appears to indicate that the Ca ii - Hα correlation is dependent on the activity level of the star. The Na i lines correlate very well with the SCa II index for the stars with low activity levels we used, and are thus a good

  3. IUE observations of rapidly rotating low-mass stars in young clusters - The relation between chromospheric activity and rotation

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1990-01-01

    If the rapid spindown of low-mass stars immediately following their arrival on the ZAMS results from magnetic braking by coronal winds, an equally sharp decline in their chromospheric emission may be expected. To search for evidence of this effect, the IUE spacecraft was used to observe the chromospheric Mg II emission lines of G-M dwarfs in the nearby IC 2391, Alpha Persei, Pleiades, and Hyades clusters. Similar observations were made of a group of X-ray-selected 'naked' T Tauri stars in Taurus-Auriga. The existence of a decline in activity cannot be confirmed from the resulting data. However, the strength of the chromospheric emission in the Mg II lines of the cluster stars is found to be correlated with rotation rate, being strongest for the stars with the shortest rotation periods and weakest for those with the longest periods. This provides indirect support for such an evolutionary change in activity. Chromospheric activity may thus be only an implicit function of age.

  4. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    PubMed

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells. PMID:27601530

  5. FUV Spectra of Evolved Late-K and M Stars: Mass Loss Revisited and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2002-01-01

    This is the final report for the FUSE Cycle 1 program A100: FUV Spectra of Evolved Late-K and M Stars: Mass Loss revisited and Stellar Activity. Targets alpha TrA (K3 II) and gamma Cru (M3 III) were originally assigned 25 ksec each, to be observed in the medium aperture. Once the in-flight performance and telescope alignment problems were known, the observations were reprogrammed to optimized the scientific return of the program. Alpha TrA was scheduled for 25 ksec observations in both the medium and large apertures. The principle aim of this program was to measure the stellar FUV line and continuum emission, in order to estimate the photoionization radiation field and to determine the level of stellar activity through the fluxes in the collisionally excited high temperature diagnostics: C III 977Angstroms and O VI 1032,1038Angstrom doublet. The medium aperture observations were obtained successfully while the large aperture observations were thought by Johns Hopkins University (JHU)to be lost to satellite problems. There was insufficient signal-to- noise in the medium aperture short wavelength Sic channels to do quantitative science.

  6. Can Star Teachers Create Learning Communities?

    ERIC Educational Resources Information Center

    Haberman, Martin

    2004-01-01

    A group is a learning community when members share a common vision that learning is the primary purpose for their association and the ultimate value to preserve in their workplace and that learning outcomes are the primary criteria for evaluating the success of their work. Some attributes of a learning community include modeling, continual sharing…

  7. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    SciTech Connect

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-10-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, {Sigma}, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, {Sigma}{sub r} and {Sigma}{sub b}, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, {Sigma}{sub K}, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of {Sigma}{sub r} and {Sigma}{sub K}. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  8. Activity-brightness Correlations for the Sun and Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-10-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, Σ, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, Σr and Σb, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, ΣK, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of Σr and ΣK. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Strömgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  9. Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Zank, Gary P.; Linsky, Jeffrey L.

    2002-07-01

    Collisions between the winds of solar-like stars and the local interstellar medium result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high-resolution Lyα spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass-loss rate. We present new mass-loss rate measurements derived in this fashion for four stars (ɛ Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields M~F1.15+/-0.20X. The active M dwarf Proxima Cen and the very active RS CVn system λ And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power-law relation for solar-like stars suggests that mass loss decreases with time. We infer a power-law relation of M~t-2.00+/-0.52. This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. POLYCYCLIC AROMATIC HYDROCARBONS IN GALAXIES AT z approx 0.1: THE EFFECT OF STAR FORMATION AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, S.; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2009-11-01

    We present the analysis of the polycyclic aromatic hydrocarbon (PAH) spectra of a sample of 92 typical star-forming galaxies at 0.03 < z < 0.2 observed with the Spitzer intensified Reticon spectrograph (IRS). We compare the relative strengths of PAH emission features with Sloan Digital Sky Survey optical diagnostics to probe the relationship between PAH grain properties and star formation and active galactic nuclei (AGNs) activity. Short-to-long wavelength PAH ratios, and in particular the 7.7 mum-to-11.3 mum feature ratio, are strongly correlated with the star formation diagnostics D{sub n} (4000) and Halpha equivalent width, increasing with younger stellar populations. This ratio also shows a significant difference between active and non-active galaxies, with the active galaxies exhibiting weaker 7.7 mum emission. A hard radiation field as measured by [O{sub III}]/Hbeta and [Ne{sub III}]{sub 15.6m}u{sub m}/[Ne{sub II}]{sub 12.8m}u{sub m} effects PAH ratios differently depending on whether this field results from starburst activity or an AGN. Our results are consistent with a picture in which larger PAH molecules grow more efficiently in richer media and in which smaller PAH molecules are preferentially destroyed by the AGN.

  11. What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2016-08-01

    We explore the role that gravitational instability plays in NGC 1068, a nearby Seyfert galaxy that exhibits unusually vigorous starburst activity. For this purpose, we use the Romeo-Falstad disc instability diagnostics and data from the BIMA Survey of Nearby Galaxies, the Sloan Digital Sky Survey and the Spectrographic Areal Unit for Research on Optical Nebulae. Our analysis illustrates that NGC 1068 is a gravitationally unstable `monster'. Its starburst disc is subject to unusually powerful instabilities. Several processes, including feedback from the active galactic nucleus and starburst activity, try to quench such instabilities from inside out by depressing the surface density of molecular gas across the central kpc, but they do not succeed. Gravitational instability `wins' because it is driven by the stars via their much higher surface density. In this process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.

  12. The HARPS search for southern extra-solar planets. XX. Planets around the active star BD -08°2823

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Udry, S.; Lo Curto, G.; Robichon, N.; Naef, D.; Ehrenreich, D.; Benz, W.; Bouchy, F.; Lecavelier Des Etangs, A.; Lovis, C.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santos, N. C.; Ségransan, D.

    2010-03-01

    We report the detection of a planetary system around BD -08°2823 that includes at least one Uranus-mass planet and one Saturn-mass planet. This discovery serendipitously originates from a search for planetary transits in the Hipparcos photometry database. This program preferentially selected active stars and did not allow the detection of new transiting planets. It allowed however the identification of the K3V star BD -08°2823 as a target harboring a multiplanet system, which we secured and characterized thanks to an intensive monitoring with the HARPS spectrograph at the 3.6-m ESO telescope in La Silla. The stellar activity level of BD -08°2823 complicates the analysis but does not prohibit the detection of two planets around this star. BD -08°2823b has a minimum mass of 14.4±2.1 M⊕ and an orbital period of 5.60 days, whereas BD -08°2823c has a minimum mass of 0.33±0.03 MJup and an orbital period of 237.6 days. This new system strengthens the observation that low-mass planets are preferentially found in multiplanetary systems, but not around high-metallicity stars as is the case for massive planets. It also supports the belief that active stars should not be neglected in exoplanet searches even when searching for low-mass planets. Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope at La Silla Observatory, Chile, under the programs ID 072.C-0488, 074.C-0364 and 078.C-0044. The full version of Table 1 (HARPS measurements of BD -08°2823) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/512/A46

  13. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  14. Tomography of Accretion Flows in Binary Stars and Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Livio, Mario

    2001-01-01

    Under this project, a variety of accretion problems have been studied, with two in particular. In the first, astrophysical jets are observed in many objects ranging from young stars to Active Galactic Nuclei. A major unsolved problem is how do these jets originate from accretion disks. In a series of works, I have examined the launching of outflows from magnetized disks, the extraction of energy from black holes, and the formation of jets in systems like Cataclysmic Variables and supermassive accreting black holes. The results of these works were published in a number of papers. In the second, I examined the potential role of vortices in accretion disks around Young Stellar Objects, for the formation of planets and for angular momentum transport. I showed that vortices are surprisingly stable, and that they are able to concentrate dust in their cores. I also examined the development of spiral shocks in disks. Finally, I studied the evolution of magnetically layered protoplanetary disks, and showed that they exhibit outbursts which could 'pump' the jets that are observed in Herbig-Haro objects. The results of these works were published in a number of papers as well. Additional information on the published papers is contained in the original abstract.

  15. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  16. Constraining magnetic-activity modulations in three solar-like stars observed by CoRoT and NARVAL

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Morgenthaler, A.; Salabert, D.; Petit, P.; Ballot, J.; Régulo, C.; Catala, C.

    2013-02-01

    Context. Stellar activity cycles are the manifestation of dynamo process running in the stellar interiors. They have been observed from years to decades thanks to the measurement of stellar magnetic proxies on the surface of the stars, such as the chromospheric and X-ray emissions, and to the measurement of the magnetic field with spectropolarimetry. However, all of these measurements rely on external features that cannot be visible during, for example, a Maunder-type minimum. With the advent of long observations provided by space asteroseismic missions, it has been possible to penetrate the stars and study their properties. Moreover, the acoustic-mode properties are also perturbed by the presence of these dynamos. Aims: We track the temporal variations of the amplitudes and frequencies of acoustic modes allowing us to search for signature of magnetic activity cycles, as has already been done in the Sun and in the CoRoT target HD 49933. Methods: We used asteroseimic tools and more classical spectroscopic measurements performed with the NARVAL spectropolarimeter to check that there are hints of any activity cycle in three solar-like stars observed continuously for more than 117 days by the CoRoT satellite: HD 49385, HD 181420, and HD 52265. To consider that we have found a hint of magnetic activity in a star we require finding a change in the amplitude of the p modes that should be anti-correlated with a change in their frequency shifts, as well as a change in the spectroscopic observations in the same direction as the asteroseismic data. Results: Our analysis gives very small variation in the seismic parameters preventing us from detecting any magnetic modulation. However, we are able to provide a lower limit of any magnetic-activity change in the three stars that should be longer than 120 days, which is the length of the time series. Moreover we computed the upper limit for the line-of-sight magnetic field component being 1, 3, and 0.6 G for HD 49385, HD 181420

  17. The effect of local and large-scale environments on nuclear activity and star formation

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Shen, S.; Sabater, J.; Duarte Puertas, S.; Verley, S.; Yang, X.

    2016-07-01

    Context. Active galactic nuclei (AGN) are one of the main drivers for the transition from star-forming disk to passive spheroidal galaxies, however, the role of large-scale environment versus one-on-one interactions in triggering different types of AGN is still uncertain. We present a statistical study of the prevalence of the nuclear activity in isolated galaxies and physically bound isolated pairs. Aims: For the purpose of this study we considered optically and radio selected nuclear activity types. We aim to assess the effect of one-on-one interaction on the fraction of AGN and the role of their large-scale environment. Methods: To study the effect of one-on-one interaction on the fraction of AGN in isolated galaxy pairs, we compare these AGN with a sample of isolated galaxies homogeneously selected under the same isolation criterion. We examine the effect of the large-scale environment by comparing isolated systems with control samples of single galaxies and galaxy pairs. We use the tidal strength parameter to quantify the effects of local and large-scale environments. Results: In general we found no difference in the prevalence of optical AGN for the considered samples. For massive galaxies, the fraction of optical AGN in isolated galaxies is slightly higher than that in the control samples. Also, the fraction of passives in high mass isolated galaxies is smaller than in any other sample. Generally, there is no dependence on optical nuclear activity with local environment. On the other hand, we found evidence that radio AGN are strongly affected by the local environment. Conclusions: The optical AGN phenomenon is related to cold gas accretion, while radio AGN are related to hot gas accretion. In this context, there is more cold gas, fuelling the central optical AGN, in isolated systems. Our results are in agreement with a scenario where cold gas accretion by secular evolution is the main driver of optical AGN, while hot gas accretion and one

  18. Photometric activity of UX orionis stars and related objects in the near infrared and optical: CO Ori, RR Tau, UX Ori, and VV Ser

    NASA Astrophysics Data System (ADS)

    Shenavrin, V. I.; Rostopchina-Shakhovskaya, A. N.; Grinin, V. P.; Demidova, T. V.; Shakhovskoi, D. N.; Belan, S. P.

    2016-08-01

    This paper continues a study of the photometric activity of UX Ori stars in the optical and near-infrared ( JHKLM bands) initiated in 2000. For comparison, the list of program stars contains two Herbig Ae stars that are photometrically quiet in the optical: MWC480 andHD179218. Fadings ofUXOri stars in the optical ( V band) due to sporadic increases of the circumstellar extinction are also observed in the infrared (IR), but with decreasing amplitude. Two stars, RR Tau and UX Ori, displayed photometric events when V -band fadings were accompanied by an increase in IR fluxes. Among the two Herbig Ae stars that are photometrically quiet in the optical, MWC 480 proved to be fairly active in the IR. Unlike the UX Ori stars, the variation amplitude of MWC 480 increases from the J band to the M band. In the course of the observations, no deep fadings in the IR bands were detected. This indicates that eclipses of the program stars have a local nature, and are due to extinction variations in the innermost regions of the circumstellar disks. The results presented testify to an important role of the alignment of the circumstellar disks relative to the direction towards the observer in determining the observed IR variability of young stars.

  19. Nothing to Hide -- An X-ray Survey of Star Formation Activity in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Posselt, Bettina; Lada, Charles J.; Covey, Kevin

    2009-09-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In a recent mid-infrared survey using Spitzer-MIPS to cover 13 square degrees, we have established that the star formation efficiency for the entire cloud is only ˜0.06%. The mid-infrared data are most sensitive for the earliest evolutionary stages of Young Stellar Objects (YSOs), covering class I protostars and typical class II sources (classical T Tauri stars). X-ray observations allow us to extend our survey to constrain any population of classical and weak-line T Tauri stars. In a first step, we use the ROSAT All-Sky Survey to constrain any overall T Tauri star population of the Pipe Nebula. Due to the fact that the Pipe Nebula is at a distance of only 130 pc, the ROSAT survey is already quite sensitive. Assuming a typical level of extinction, the completeness for G- and K-type stars is estimated to be about 50%. Subsequently, we use XMM-Newton observations pointed at three high-extinction regions within the Pipe Nebula to analyze these areas at higher sensitivity. These three regions are Barnard 59, the only core with ongoing star formation, the ``ring'' (i.e., the highest extinction region in the ``bowl'' of the Pipe), and Barnard 68. We additionally analyze the YSOs of Barnard 59 in the radio continuum to constrain high-energy processes. Overall, our results corroborate our previous Spitzer result that the star formation efficiency of the Pipe Nebula is very low.

  20. Star formation and accretion in the circumnuclear disks of active galaxies

    NASA Astrophysics Data System (ADS)

    Wutschik, Stephanie; Schleicher, Dominik R. G.; Palmer, Thomas S.

    2013-12-01

    Aims: We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. Methods: A system of equations describing star formation, black hole accretion and angular momentum transport in the disk was solved self-consistently for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu & Wada (2008, ApJ, 681, 73), by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk. Results: We find that current data provide no strong constraint on the star formation recipe, and can in particular not distinguish between models entirely regulated by the surface density, and models including a dependence on the turbulent velocity. The evolution of the black hole mass, on the other hand, strongly depends on the applied star formation law, as well as the mass supply from the host galaxy. We suggest to explore the star formation process in local AGN with high-resolution ALMA observations to break the degeneracy between different star formation models.

  1. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  2. Constraints on Feedback in the Local Universe: The Relation Between Star Formation and AGN Activity in Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi Alison

    2016-01-01

    We address the relation between star formation and AGN activity in a sample of 231 nearby (0.0002 < z < 0.0358) early type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR and radio. Our results indicate that early type galaxies in the current epoch are rarely powerful AGNs, with P < 1022 WHz-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The SFR of these galaxies is less than 0.1 M⊙yr-1. They also tend to be radio faint (P < 1022 WHz-1). There is a nearly equal fraction of star forming galaxies in radio faint (P < 1022 WHz-1) and radio bright galaxies (P ≥ 1022 WHz-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies (BCGs) follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  3. Magnetic activity cycles in solar-like stars: The cross-correlation technique of p-mode frequency shifts

    NASA Astrophysics Data System (ADS)

    Régulo, C.; García, R. A.; Ballot, J.

    2016-04-01

    Aims: We set out to study the use of cross-correlation techniques to infer the frequency shifts that are induced by changing magnetic fields in p-mode frequencies and to provide a precise estimation of error bars. Methods: This technique and the calculation of the associated errors is first tested and validated on the Sun where p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546, observed by Kepler. Results: We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three stars analyzed, we confirm the presence of a magnetic activity cycle in HD 49933 with this methodology and we unveil the seismic signature of ongoing magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.

  4. THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS?

    SciTech Connect

    Lutz, D.; Shao, L.; Foerster Schreiber, N. M.; Genzel, R.; Mainieri, V.; Rafferty, D.; Brandt, W. N.; Hasinger, G.; Weiss, A.; Menten, K. M.; Walter, F.; Greve, T. R.; Smail, I.; Coppin, K.; Alexander, D. M.; Chapman, S.; Gawiser, E.; Kurczynski, P.; Ivison, R. J.; Koekemoer, A. M.

    2010-04-01

    We study the co-existence of star formation and active galactic nucleus (AGN) activity in Chandra X-ray-selected AGN by analyzing stacked 870 {mu}m submillimeter emission from a deep and wide map of the Extended Chandra Deep Field South (ECDFS), obtained with the LABOCA instrument at the APEX telescope. The total X-ray sample of 895 sources with median redshift z {approx} 1 drawn from the combined (E)CDFS X-ray catalogs is detected at >11sigma significance at a mean submillimeter flux of 0.49 +- 0.04 mJy, corresponding to a typical star formation rate (SFR) around 30 M{sub sun} yr{sup -1} for a T = 35 K, beta = 1.5 graybody far-infrared spectral energy distribution. The good signal-to-noise ratio permits stacking analyses for major subgroups, splitting the sample by redshift, intrinsic luminosity, and AGN obscuration properties. We observe a trend of SFR increasing with redshift. An increase of SFR with AGN luminosity is indicated at the highest L{sub 2-10{sub keV}} {approx}> 10{sup 44} erg s{sup -1} luminosities only. Increasing trends with X-ray obscuration as expected in some AGN evolutionary scenarios are not observed for the bulk of the X-ray AGN sample but may be present for the highest intrinsic luminosity objects with L{sub 2-10{sub keV}} {approx}> 10{sup 44} erg s{sup -1}. This behavior suggests a transition between two modes in the co-existence of AGN activity and star formation. For the bulk of the sample, the X-ray luminosity and obscuration of the AGN are not intimately linked to the global SFR of their hosts. The hosts are likely massive and forming stars secularly, at rates similar to the pervasive star formation seen in massive galaxies without an AGN at similar redshifts. In these systems, star formation is not linked to a specific state of the AGN and the period of moderately luminous AGN activity may not highlight a major evolutionary transition of the galaxy. The change indicated toward more intense star formation, and a more pronounced increase

  5. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    . Complementing this study of normal star-forming galaxies, my study of quasar host galaxies utilizes narrow- and medium-band images of eight Palomar-Green (PG) quasars from the WFPC2 and NICMOS instruments aboard the Hubble Space Telescope. Using images of a point-spread function (PSF) star in the same filters, I subtract the PSF of the quasar from each of the target images. The residual light images clearly show the host galaxies of the respective quasars. The narrow-band images were chosen to be centered on the Hbeta, [O II ], [O III], and Paalpha emission lines, allowing the use of line ratios and luminosities to create extinction and star formation maps. Additionally, I utilize the line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission with line-diagnostic diagrams. I find star formation in each of the eight quasar host galaxies in my study. The bulk star-formation rates are lower than expected, suggesting that quasar host galaxies may be dynamically more advanced than previously believed. Seven of the eight quasar host galaxies in this study have higher-than-typical mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses presented in earlier works that suggest that AGN activity quenches star formation in its host galaxy by disrupting its gas reservoir.

  6. Creating Materials.

    ERIC Educational Resources Information Center

    Yin, Mary

    1990-01-01

    Describes practical materials that relate to places within the English-as-a-Second-Language learner's own community, such as the supermarket, local fast food restaurants, pharmacy, and library. Each literacy booklet contains approximately 35 pages of activities that can be used as classroom handouts. (LB)

  7. Creating an Interactive Globe.

    ERIC Educational Resources Information Center

    Martin, Kurt D.

    1989-01-01

    Describes a hands-on geography activity that is designed to teach longitude and latitude to fifth-grade students. Children create a scale model of the earth from a 300 gram weather balloon. This activity incorporates geography, mathematics, science, art, and homework. Provides information for obtaining materials. (KO)

  8. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  9. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  10. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger; Scott, Douglas; Magnelli, Benjamin; Popesso, Paola; Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan; Dannerbauer, Helmut; Dickinson, Mark; Kartaltepe, Jeyhan; Magdis, Georgios

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  11. Radio wavelength observations of magnetic fields on active dwarf M, RS CVn and magnetic stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The dwarf M stars, YZ Canis Minoris and AD Leonis, exhibit narrow-band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars, AD Leonis and Wolf 424, emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process. They are attributed to coherent mechanisms such as an electron-cyclotron maser or coherent plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic gyrofrequency, the coronal magnetic field strength equals 250 G or 167 G, and constraints on the plasma frequency imply an electron density of 6 x 10 to the 9th/cu cm. Radio spikes from AD Leonis and Wolf 424 have rise times less than or equal to 5 ms, indicating a linear size of less than or equal to 1.5 x 10 to the 8th cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour.

  12. Creating Active and High-Impact Learning: Moving out of the Classroom with Field-Based Student Consulting Projects

    ERIC Educational Resources Information Center

    Heriot, Kirk C.; Cook, Ronald G.; Matthews, Charles H.; Simpson, Leo

    2007-01-01

    Active learning has attracted considerable attention in higher education in response to concerns about how and what students are learning. Many pedagogies may be categorized as active learning, although most are classroom-based. The authors propose an alternative to "active learning in the classroom", which they characterize as "active learning…

  13. SP CREATE. Creating Sample Plans

    SciTech Connect

    Spears, J.H.; Seebode, L.

    1998-11-10

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to be analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.

  14. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-05-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (<1000 AU) as we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 M⊙, assuming [NH3]/[H2] = 10-7) with respect to the mass of the central

  15. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  16. AN EVOLUTIONARY MODEL FOR COLLAPSING MOLECULAR CLOUDS AND THEIR STAR FORMATION ACTIVITY

    SciTech Connect

    Zamora-Aviles, Manuel; Vazquez-Semadeni, Enrique; Colin, Pedro

    2012-05-20

    We present an idealized, semi-empirical model for the evolution of gravitationally contracting molecular clouds (MCs) and their star formation rate (SFR) and efficiency (SFE). The model assumes that the instantaneous SFR is given by the mass above a certain density threshold divided by its free-fall time. The instantaneous number of massive stars is computed assuming a Kroupa initial mass function. These stars feed back on the cloud through ionizing radiation, eroding it. The main controlling parameter of the evolution turns out to be the maximum cloud mass, M{sub max}. This allows us to compare various properties of the model clouds against their observational counterparts. A giant molecular cloud (GMC) model (M{sub max} {approx} 10{sup 5} M{sub Sun }) adheres very well to the evolutionary scenario recently inferred by Kawamura et al. for GMCs in the Large Magellanic Cloud. A model cloud with M{sub max} Almost-Equal-To 2000 M{sub Sun} evolves in the Kennicutt-Schmidt diagram, first passing through the locus of typical low-to-intermediate-mass star-forming clouds, and then moving toward the locus of high-mass star-forming ones over the course of {approx}10 Myr. Also, the stellar age histograms for this cloud a few Myr before its destruction agree very well with those observed in the {rho}-Oph stellar association, whose parent cloud has a similar mass, and imply that the SFR of the clouds increases with time. Our model thus agrees well with various observed properties of star-forming MCs, suggesting that the scenario of gravitationally collapsing MCs, with their SFR regulated by stellar feedback, is entirely feasible and in agreement with key observed properties of MCs.

  17. What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2016-08-01

    We explore the role that gravitational instability plays in NGC 1068, a nearby Seyfert galaxy that exhibits unusually vigorous starburst activity. For this purpose, we use the Romeo-Falstad disc instability diagnostics and data from BIMA SONG, SDSS and SAURON. Our analysis illustrates that NGC 1068 is a gravitationally unstable "monster". Its starburst disc is subject to unusually powerful instabilities. Several processes, including AGN/stellar feedback, try to quench such instabilities from inside out by depressing the surface density of molecular gas across the central kpc, but they do not succeed. Gravitational instability "wins" because it is driven by the stars via their much higher surface density. In this process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.

  18. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    PubMed Central

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  19. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  20. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  1. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  2. Effects of droplet-vitrification cryopreservation based on physiological and antioxidant enzyme activities of Brassidium shooting star orchid.

    PubMed

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor; Subramaniam, Sreeramanan

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  3. After-School All-Stars: Providing Structured Health and Physical Activity Programs in Urban Environments

    ERIC Educational Resources Information Center

    Thompson, Walter R.

    2009-01-01

    Physical education time has been reduced or even eliminated in middle and high schools in favor of more time for standardized test preparation, especially in urban schools and inner cities. One way to replace the time lost is by providing it after school as part of a comprehensive program. After-School All-Stars (ASAS) is such a program, networked…

  4. Star-like gold nanoparticles as highly active substrate for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo; Mehn, Dora; Vanna, Renzo; Bedoni, Marzia; Pascual García, César; Prosperi, Davide; Gramatica, Furio

    2013-02-01

    Surface Enhanced Raman Spectroscopy (SERS) is a popular method in bio-analytical chemistry and a potentially powerful enabling technology for in vitro diagnostics. SERS combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by enhancement of the signal that is observed when a molecule is located on (or very close to) the surface of nanostructured metallic materials. Star-like gold nanoparticles (SGN) are a new class of multibranched nanoparticles that in the last few years have attracted the attention of SERS community for their plasmonic properties. In this work we present a new method to prepare star-like gold nanoparticles with a simple one step protocol at room temperature using hydroquinone as reducing agent. Besides we compare the enhancement of Raman signal of malachite green, a dye commonly employed as label in biological studies, by star-like gold nanoparticles having different size, directly in liquid. This study shows that SGN provide good enhancement of Raman signal and that the effect of their dimension is strongly dependent on the wavelength used. Moreover preliminary results suggest that SGN produced using this method are characterized by good physical-chemical properties and they can be functionalized using the standard thiol chemistry. Overall, these results suggest that star-like gold nanoparticles produced through this method could be used for the further development of highly specific and sensitive SERS-based bio-analytical tests.

  5. Optical and X-ray studies of chromospherically active stars: FR Cancri, HD 95559 and LO Pegasi

    NASA Technical Reports Server (NTRS)

    Pandey, J. C.; Singh, K. P.; Drake, S. A.; Sagar, R.

    2005-01-01

    We present a multiwavelength study of three chromospherically active stars, namely FR Cnc (= BD +16 degrees 1753), HD 95559 and LO Peg (=BD +22 degrees 4409), including newly obtained optical photometry, (for FR Cnc) low-resolution optical spectroscopy, as well as archival IR and X-ray observations. The BVR photometry carried out during the years 2001 - 2004 has found significant photometric variability to be present in all three stars. For FR Cnc, a photometric period 0.826685 +/- 0.000034 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. Two independent spots with migration periods of 0.97 and 0.93 years respectively are inferred. The photometry of HD 95559 suggests the formation of a spot (group) during the interval of our observations. We infer the existence of two independent spots or groups in the photosphere of LO Peg, one of which has a migration period of 1.12 years. The optical spectroscopy of FR Cnc carried out during 2002-2003, reveals the presence of strong and variable Ca I1 H and K, H(sub beta) and H(sub alpha) emission features indicative of high level of chromospheric activity. The value of 5.3 for the ratio of the excess emission in H(sub alpha) to H(sub beta), EH(sub alpha)/EH(sub beta), suggests that the chromospheric emission may arise from an extended off-limb region. We have searched for the presence of color excesses in the near-IR JHK bands of these stars using 2MASS data, but none of them appear to have any significant color excess. We have also analyzed archival X-ray observations of HD 95559 and LO Peg carried out by with the ROSAT observatory. The best fit models to their X-ray spectra imply the presence of two coronal plasma components of differing temperatures and with sub-solar metal abundances. The inferred emission measures and temperatures of these systems are similar to

  6. Optical and X-Ray Studies of Chromospherically Active Stars: FR Cancri, HD 95559, and LO Pegasi

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.; Singh, K. P.; Drake, S. A.; Sagar, R.

    2005-09-01

    We present a multiwavelength study of three chromospherically active stars, namely, FR Cnc (BD +16°1753), HD 95559, and LO Peg (BD +22°4409), including newly obtained optical photometry and low-resolution optical spectroscopy for FR Cnc, as well as archival IR and X-ray observations. The BVR photometry carried out from 2001 to 2004 has found significant photometric variability to be present in all three stars. For FR Cnc, a photometric period of 0.8267+/-0.0004 days has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. Two independent spots with migration periods of 0.97 and 0.93 yr, respectively, are inferred. The photometry of HD 95559 suggests the formation of a spot (group) during the interval of our observations. We infer the existence of two independent spots or groups in the photosphere of LO Peg, one of which has a migration period of 1.12 yr. The optical spectroscopy of FR Cnc carried out during 2002-2003 reveals the presence of strong and variable Ca II H and K, Hβ, and Hα emission features indicative of a high level of chromospheric activity. The value of 5.3 for the ratio of the excess emission in Hα to Hβ, EHα/EHβ, suggests that the chromospheric emission may arise from an extended off-limb region. We have searched for the presence of color excesses in the near-IR JHK bands of these stars using Two Micron All Sky Survey data, but none of them appear to have any significant color excess. We have also analyzed archival X-ray observations of HD 95559 and LO Peg carried out with the ROSAT observatory. The best-fit models to their X-ray spectra imply the presence of two coronal plasma components of differing temperatures and with subsolar metal abundances. The inferred emission measures and temperatures of these systems are similar to those found for other active dwarf stars. The kinematics of FR

  7. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing

  8. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    SciTech Connect

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    2014-08-10

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

  9. Star Formation Activity in a Young Galaxy Cluster at Z = 0.866

    NASA Astrophysics Data System (ADS)

    Laganá, T. F.; Ulmer, M. P.; Martins, L. P.; da Cunha, E.

    2016-07-01

    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation–density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μm imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR–density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.

  10. Star formation activity in Balmer break galaxies at z< 1.5

    NASA Astrophysics Data System (ADS)

    Díaz Tello, J.; Donzelli, C.; Padilla, N.; Akiyama, M.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.

    2016-03-01

    Aims: We present a spectroscopic study of the properties of 64 Balmer break galaxies that show signs of star formation. The studied sample of star-forming galaxies spans a redshift range from 0.094 to 1.475 with stellar masses in the range 108-1012M⊙. The sample also includes eight broad emission line galaxies with redshifts between 1.5 star formation rates (SFRs) from emission line luminosities and investigated the dependence of the SFR and specific SFR (SSFR) on the stellar mass and color. Furthermore, we investigated the evolution of these relations with the redshift. Results: We found that the SFR correlates with the stellar mass; our data is consistent with previous results from other authors in that there is a break in the correlation, which reveals the presence of massive galaxies with lower SFR values (i.e., decreasing star formation). We also note an anticorrelation for the SSFR with the stellar mass. Again in this case, our data is also consistent with a break in the correlation, revealing the presence of massive star-forming galaxies with lower SSFR values, thereby increasing the anticorrelation. These results might suggest a characteristic mass (M0) at which the red sequence could mostly be assembled. In addition, at a given stellar mass, high-redshift galaxies have on average higher SFR and SSFR values than local galaxies. Finally, we explored whether a similar trend could be observed with redshift in the SSFR-(u - B) color diagram, and we hypothesize that a possible (u - B)0 break color may define a characteristic color for the formation of the red sequence.

  11. Behavior of Li abundances in solar-analog stars. II. Evidence of the connection with rotation and stellar activity

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Honda, S.; Kawanomoto, S.; Ando, H.; Sakurai, T.

    2010-06-01

    Context. We previously attempted to ascertain why the Li i 6708 line-strengths of Sun-like stars differ so significantly despite the superficial similarities of stellar parameters. We carried out a comprehensive analysis of 118 solar analogs and reported that a close connection exists between the Li abundance (ALi) and the line-broadening width (vr+m; mainly contributed by rotational effect), which led us to conclude that stellar rotation may be the primary control of the surface Li content. Aims: To examine our claim in more detail, we study whether the degree of stellar activity exhibits a similar correlation with the Li abundance, which is expected because of the widely believed close connection between rotation and activity. Methods: We measured the residual flux at the line center of the strong Ca ii 8542 line, r0(8542), known to be a useful index of stellar activity, for all sample stars using newly acquired spectra in this near-IR region. The projected rotational velocity (ve sin i) was estimated by subtracting the macroturbulence contribution from vr+m that we had already established. Results: A remarkable (positive) correlation was found in the ALi versus (vs.) r0(8542) diagram as well as in both the r0(8542) vs. ve sin i and ALi vs. ve sin i diagrams, as had been expected. With the confirmation of rotation-dependent stellar activity, this clearly shows that the surface Li abundances of these solar analogs progressively decrease as the rotation rate decreases. Conclusions: Given this observational evidence, we conclude that the depletion of surface Li in solar-type stars, probably caused by effective envelope mixing, operates more efficiently as stellar rotation decelerates. It may be promising to attribute the low-Li tendency of planet-host G dwarfs to their different nature in the stellar angular momentum. Based on observations carried out at Okayama Astrophysical Observatory (Okayama, Japan).

  12. Creating an Environment Conducive to Active and Collaborative Learning: Redesigning Introduction to Sociology at a Large Research University

    ERIC Educational Resources Information Center

    Lo, C. C.; Prohaska, A.

    2011-01-01

    In 2003 a Southeastern research university undertook the redesign of an introductory sociology course in order to improve student success by adding active and collaborative learning activities that gave students greater responsibility for learning. The new "hybrid" course provides most course materials online, requires electronic submission of…

  13. The different origins of magnetic fields and activity in the Hertzsprung gap stars, OU Andromedae and 31 Comae

    NASA Astrophysics Data System (ADS)

    Borisova, A.; Aurière, M.; Petit, P.; Konstantinova-Antova, R.; Charbonnel, C.; Drake, N. A.

    2016-06-01

    Context. When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We compare the surface magnetic fields and activity indicators of two active, fast rotating red giants with similar masses and spectral class but different rotation rates - OU And (Prot = 24.2 d) and 31 Com (Prot = 6.8 d) - to address the question of the origin of their magnetism and high activity. Methods: Observations were carried out with the Narval spectropolarimeter in 2008 and 2013. We used the least-squares deconvolution (LSD) technique to extract Stokes V and I profiles with high signal-to-noise ratio to detect Zeeman signatures of the magnetic field of the stars. We then provide Zeeman-Doppler imaging (ZDI), activity indicators monitoring, and a precise estimation of stellar parameters. We use state-of-the-art stellar evolutionary models, including rotation, to infer the evolutionary status of our giants, as well as their initial rotation velocity on the main sequence, and we interpret our observational results in the light of the theoretical Rossby numbers. Results: The detected magnetic field of OU Andromedae (OU And) is a strong one. Its longitudinal component Bl reaches 40 G and presents an about sinusoidal variation with reversal of the polarity. The magnetic topology of OU And is dominated by large-scale elements and is mainly poloidal with an important dipole component, as well as a significant toroidal component. The detected magnetic field of 31 Comae (31 Com) is weaker, with a magnetic map showing a more complex field geometry, and poloidal and toroidal components of equal contributions. The evolutionary models show that the progenitors of OU And and 31 Com must have been rotating at velocities that correspond to 30 and 53%, respectively, of their critical rotation velocity on the zero age main sequence

  14. A Survey of Chromospheric Activity in the Solar-Type Stars in the Open Cluster M67

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.; Hall, Jeffrey C.; Radick, Richard R.; Baliunas, Sallie L.

    2006-11-01

    We present the results of a spectroscopic survey of the Ca II H and K core strengths in a sample of 60 solar-type stars that are members of the solar-age and solar-metallicity open cluster M67. We adopt the HK index, defined as the summed H+K core strengths in 1 Å bandpasses centered on the H and K lines, respectively, as a measure of the chromospheric activity that is present. We compare the distribution of mean HK index values for the M67 solar-type stars with the variation of this index as measured for the Sun during the contemporary solar cycle. We find that the stellar distribution in our HK index is broader than that for the solar cycle. Approximately 17% of the M67 Sun-like stars exhibit average HK indices that are less than solar minimum. About 7%-12% are characterized by relatively high activity in excess of solar maximum values, while 72%-80% of the solar analogs exhibit Ca II H+K strengths within the range of the modern solar cycle. The ranges given reflect uncertainties in the most representative value of the maximum in the HK index to adopt for the solar cycle variations observed during the period AD 1976-2004. Thus, ~20%-30% of our homogeneous sample of Sun-like stars have mean chromospheric H+K strengths that are outside the range of the contemporary solar cycle. Any cycle-like variability that is present in the M67 solar-type stars appears to be characterized by periods greater than ~6 yr. Finally, we estimate a mean chromospheric age for M67 in the range of 3.8-4.3 Gyr. The results presented herein are based on data obtained at the WIYN telescope and at the McMath-Pierce Solar Telescope. The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatory. The McMath-Pierce Solar Telescope Facility is operated by the National Solar Observatory for the National Science Foundation. This paper is WIYN Open Cluster Study XXVIII in the series.

  15. Stimulation of StAR expression by cAMP is controlled by inhibition of highly inducible SIK1 via CRTC2, a co-activator of CREB.

    PubMed

    Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin

    2015-06-15

    In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci. PMID:25662274

  16. The PEP survey: evidence for intense star-forming activity in the majority of radio-selected AGN at z ≳ 1

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Lutz, D.; Santini, P.; Salvato, M.; Popesso, P.; Berta, S.; Pozzi, F.

    2016-02-01

    In order to investigate the far-infrared (FIR) properties of radio-active active galactic nuclei (AGN), we have considered three different fields where both radio and FIR observations are the deepest to date: GOODS-South, GOODS-North and the Lockman Hole. Out of a total of 92 radio-selected AGN, ˜64 per cent are found to have a counterpart in Herschel maps. The percentage is maximum in the GOODS-North (72 per cent) and minimum (˜50 per cent) in the Lockman Hole, where FIR observations are shallower. Our study shows that in all cases FIR emission is associated with star-forming activity within the host galaxy. Such an activity can even be extremely intense, with star-forming rates as high as ˜103-104 M⊙ yr-1. AGN activity does not inhibit star formation in the host galaxy, just as on-site star formation does not seem to affect AGN properties, at least those detected at radio wavelengths and for z ≳ 1. Given the very high rate of FIR detections, we stress that this refers to the majority of the sample: most radio-active AGN are associated with intense episodes of star formation. However, the two processes proceed independently within the same galaxy, at all redshifts but in the local universe, where powerful enough radio activity reaches the necessary strength to switch off the on-site star formation. Our data also show that for z ≳ 1 the hosts of radio-selected star-forming galaxies and AGN are indistinguishable from each other in terms of both mass and IR luminosity distributions. The two populations only differentiate in the very local universe, whereby the few AGN which are still FIR-active are found in galaxies with much higher masses and luminosities.

  17. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion.

    PubMed

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones. PMID:26074206

  18. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion

    NASA Astrophysics Data System (ADS)

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-06-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones.

  19. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion

    PubMed Central

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones. PMID:26074206

  20. Star formation and nuclear activity in the blue early-type galaxy NGC 5373

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Miller, Brendan P.; Gallo, Elena; Alfvin, Erik; Martinkus, Charlotte; Molter, Edward

    2015-01-01

    We present new optical and X-ray observations of NGC 5373, an isolated star-forming elliptical that has a stellar mass of 7e10 solar and lies at a distance of 175 Mpc. Our B and R band Magellan IMACS imaging substantially improves on SDSS resolution and sensitivity, enabling accurate modeling of the galaxy surface brightness profile. As expected from its mass, NGC 5373 is a core galaxy with a best-fit Sersic profile of n~3.8; no prominent tidal tails or shells are found, although there are slight residual asymmetries. The H-alpha emission in the SDSS spectrum is narrow, and the line ratios confirm a star-forming classification in the BPT diagram, near the transition/composite line. The star formation rate is about 6 solar masses per year, making NGC 5373 an extreme outlier relative to typical local early-type galaxies of similar mass. Our 50 ks Chandra ACIS-S exposure provides a clear detection of a central X-ray source, with a hardness ratio consistent with a power-law photon index of 2.0+/-0.5. The unabsorbed luminosity is Lx = 2e40 erg/s over 0.3-8 keV. Comparison with a MARX simulated point spread function suggests the central source may be extended, for example due to contributions from one or more unresolved high-mass X-ray binaries, as might be present given the high star formation rate. For a black hole of 1.6e8 solar masses as predicted from scaling relations, Lx/Ledd is then around 1e-6 (or potentially lower).

  1. Coronal Activity in Low-Mass Pre-Main Sequence Stars: NGC 2264

    NASA Technical Reports Server (NTRS)

    Tebbe, H. J.; Patten, B. M.

    2000-01-01

    We present the preliminary results of an analysis of ROSAT images in the region of the populous young (age approx. 3 Myr) star-forming region NGC 2264. The cluster was imaged with the ROSAT HRI in two sets of pointings -- one set near the central region of the cluster, centered on the star LW Mon, and the other set in the southern part of the cluster, centered near the star V428 Mon, just south of the Cone Nebula. In total 113 unique X-ray sources have been identified in the ROSAT images with signal-to-noise ratios greater than 3. The limiting luminosities (log Lx(ergs/sec)) for 3-sigma detections are estimated to be 30.18, 30.23, and 30.08 for the northern field, southern field, and overlap region between the two fields respectively. Extensive optical photometry, classification spectroscopy, and proper motions, obtained from recent ground-based surveys of this region, were used to identify the most likely optical counterpart to each X-ray source. Although most of our X-ray selected sample appears to be associated with NGC 2264 members, we find that the vast majority of the cluster membership was undetected in the ROSAT HRI survey. The X-ray cumulative luminosity function for solar-mass stars in NGC 2264 shows that most of the low-mass members probably have X-ray luminosities similar to those seen for the X-ray brightest members of older clusters such as IC 2391/IC 2602 (age approx. 50 Myr) and the Pleiades (age approx. 100 Myr). This research was funded in part by the SAO Summer Intern Program and NASA grant NAG5-8120.

  2. THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

    SciTech Connect

    Saintonge, Amelie; Fabello, Silvia; Wang Jing; Catinella, Barbara; Tacconi, Linda J.; Genzel, Reinhard; Gracia-Carpio, Javier; Wuyts, Stijn; Kramer, Carsten; Moran, Sean; Heckman, Timothy M.; Schiminovich, David; Schuster, Karl

    2012-10-20

    Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H{sub 2} mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M {sub *} plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies ({mu}{sub *} >5 Multiplication-Sign 10{sup 8} M {sub Sun} kpc{sup -2}, C > 2.6) that are either gas-poor (M{sub H{sub 2}}/M {sub *} <1.5%) or else on average less efficient by a factor of {approx}2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO

  3. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  4. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  5. Investigating the quality of mental models deployed by undergraduate engineering students in creating explanations: The case of thermally activated phenomena

    NASA Astrophysics Data System (ADS)

    Fazio, Claudio; Battaglia, Onofrio Rosario; Di Paola, Benedetto

    2013-12-01

    This paper describes a method aimed at pointing out the quality of the mental models undergraduate engineering students deploy when asked to create explanations for phenomena or processes and/or use a given model in the same context. Student responses to a specially designed written questionnaire are quantitatively analyzed using researcher-generated categories of reasoning, based on the physics education research literature on student understanding of the relevant physics content. The use of statistical implicative analysis tools allows us to successfully identify clusters of students with respect to the similarity to the reasoning categories, defined as “practical or everyday,” “descriptive,” or “explicative.” Through the use of similarity and implication indexes our method also enables us to study the consistency in students’ deployment of mental models. A qualitative analysis of interviews conducted with students after they had completed the questionnaire is used to clarify some aspects which emerged from the quantitative analysis and validate the results obtained. Some implications of this joint use of quantitative and qualitative analysis for the design of a learning environment focused on the understanding of some aspects of the world at the level of causation and mechanisms of functioning are discussed.

  6. Star parties in Mexico, extended to Colombia and China

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, Silvia; Franco, Jose

    2015-08-01

    Sparked by the enthusiasm of the International Year of Astronomy, a set of simultaneous star parties have been held since 2008 in several cities in Mexico. These star parties have raised big expectations among the population and they have been repeated at least yearly. The activity has increased in size and participating sites. The most recent one took place on November 29th 2014, and it included 55 locations across Mexico as well as 5 in Colombia and one in China. To organize this activity a Mexican National Committee was created formed by several universities, the French Embassy, related industries and astronomical societies. We present more information on this activity.

  7. The SEEDS High-Contrast Imaging Survey: Exoplanet and Brown Dwarf Survey for Nearby Young Stars Dated with Gyrochronology and Activity Age Indicators

    NASA Astrophysics Data System (ADS)

    Kuzuhara, Masayuki; Tamura, Motohide; Helminiak, Kris; Mede, Kyle; Brandt, Timothy; Janson, Markus; Kandori, Ryo; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun

    2015-12-01

    The SEEDS campaign has successfully discovered and characterized exoplanets, brown dwarfs, and circumstellar disks since it began in 2009, via the direct imaging technique. The survey has targeted nearby young stars, as well as stars associated to star-forming regions, the Pleiades open cluster, moving groups, and debris disks. We selected the nearby young stars that have been dated with age indicators based on stellar rotation periods (i.e., gyrochronology) and chromoshperic/coronal activities. Of these, nearly 40 were observed, with ages mainly between 100 and 1000 Myr and distances less than 40 pc. Our observations typically attain the contrast of ~6 x 10-6 at 1'' and better than ~1 x 10-6 beyond 2'', enabling us to detect a planetary-mass companion even around such old stars. Indeed, the SEEDS team reported the discovery that the nearby Sun-like star GJ 504 hosts a Jovian companion GJ 504b, which has a mass of 3-8.5 Jupiter masses that is inferred according to the hot-start cooling models and our estimated system age of 100-510 Myr. The remaining observations out of the selected ~40 stars have resulted in no detection of additional planets or brown dwarf companions. Meanwhile, we have newly imaged a low-mass stellar companion orbiting the G-type star HIP 10321, for which the presence of companion was previously announced via radial velocity technique. The astrometry and radial velocity measurements are simultaneously analyzed to determine the orbit, providing constraints on the dynamical mass of both objects and stellar evolution models. Here we summarize our direct imaging observations for the nearby young stars dated with gyrochrolorogy and activity age indicators. Furthermore, we report the analysis for the HIP 10321 system with the imaged low-mass companion.

  8. Riding the Active Learning Wave: Problem-Based Learning as a Catalyst for Creating Faculty-Librarian Instructional Partnerships.

    ERIC Educational Resources Information Center

    Fosmire, Michael; Macklin, Alexius

    2002-01-01

    Discusses active learning as a technique to improve learning outcomes; describes the background and history of problem-based learning, explaining why information skills are an integral part; and relates the experiences of librarians at Purdue University in forming collaborations with subject faculty and in the development of problem-based learning…

  9. Creating a Before-School Physical Activity Program: Pre-Service Physical Educators' Experiences and Implications for PETE

    ERIC Educational Resources Information Center

    McMullen, Jaimie; van der Mars, Hans; Jahn, Julie A.

    2014-01-01

    The purpose of this study is to describe the experiences of physical education teacher education (PETE) majors enrolled in an internship course that provided them with authentic experiences promoting and facilitating a before-school physical activity (PA) program and to examine the associated implications for PETE programs within the Comprehensive…

  10. Creating a Safe Climate for Active Learning and Student Engagement: An Example from an Introductory Social Work Module

    ERIC Educational Resources Information Center

    Ni Raghallaigh, M.; Cunniffe, R.

    2013-01-01

    This article explores the experiences of students who participated in a series of seminars that employed active learning methodologies. The study on which the article is based involved two parts. First, students completed a questionnaire after each seminar, resulting in 468 questionnaires. Second, nine students participated in a focus group where…

  11. Star Light, Star Bright.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    1984-01-01

    Presents a technique for obtaining a rough measure of the brightness among different stars. Materials needed include a standard 35-mm camera, a plastic ruler, and a photo enlarger. Although a telescope can be used, it is not essential. (JN)

  12. Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    NASA Astrophysics Data System (ADS)

    Hernán-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escudé, G.; Kane, S. R.; Barnes, J. R.; de Castro, E.; Cornide, M.

    2010-03-01

    Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims: We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods: We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results: Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations made with the Italian Telescopio Nazionale Galileo

  13. Building neuroscientific evidence and creating best practices for Active and Healthy Aging through ubiquitous exergaming and Living Labs.

    PubMed

    Bamidis, Panagiotis D

    2015-08-01

    Ageing is a major global demographic trend, which seems to be intensified. The earlier detection of risks associated with ageing, can enable earlier intervention to ameliorate their negative consequences. Many of these recent efforts are associated with the use of Information and Communication Technologies (ICTs) and the stemming from them innovations in the fight against this age related decline and frailty. Ubiquitous unobtrusive monitoring and training (recently much blended by means of exergames) has become reality due to the availability of new mobile sensors and devices and the emergence of new technologies and services. The current piece of work presents the different milestones we have achieved as best practices during the past seven years of piloting training and exergaming ICT components in an effort to support Active and Healthy Aging. Our impact verification and results validation methodologies are revisited here in an effort to outline best practices and build up neuroscientific evidence. Finally, this paper demonstrates how the construction of an Active and Healthy Aging Living Lab was materialised in an attempt to gauge evidence based research in the field of active and health aging. PMID:26738090

  14. EVIDENCE FOR LOW EXTINCTION IN ACTIVELY STAR-FORMING GALAXIES AT z > 6.5

    SciTech Connect

    Walter, F.; Decarli, R.; Carilli, C.; Riechers, D.; Bertoldi, F.; Weiss, A.; Cox, P.; Neri, R.; Maiolino, R.; Ouchi, M.; Egami, E.

    2012-06-20

    We present a search for the [C II] 158 {mu}m fine structure line (a main cooling line of the interstellar medium) and the underlying far-infrared (FIR) continuum in three high-redshift (6.6 < z < 8.2) star-forming galaxies using the IRAM Plateau de Bure Interferometer. We targeted two Ly{alpha}-selected galaxies (Ly{alpha} emitters, LAEs) with moderate UV-based star formation rates (SFRs {approx} 20 M{sub Sun} yr{sup -1}; Himiko at z = 6.6 and IOK-1 at z = 7.0) and a gamma-ray burst (GRB) host galaxy (GRB 090423 at z {approx} 8.2). Based on our 3{sigma} rest-frame FIR continuum limits, previous (rest-frame) UV continuum measurements and spectral energy distribution (SED) fitting, we rule out SED shapes similar to highly obscured galaxies (e.g., Arp 220, M 82) and less extreme dust-rich nearby spiral galaxies (e.g., M 51) for the LAEs. Conservatively assuming an SED shape typical of local spiral galaxies we derive upper limits for the FIR-based star formation rates (SFRs) of {approx}70 M{sub Sun} yr{sup -1}, {approx}50 M{sub Sun} yr{sup -1}, and {approx}40 M{sub Sun} yr{sup -1} for Himiko, IOK-1, and GRB 090423, respectively. For the LAEs these limits are only a factor {approx}3 higher than the published UV-based SFRs (uncorrected for extinction). This indicates that the dust obscuration in the z > 6 LAEs studied here is lower by a factor of a few than what has recently been found in some LAEs at lower redshift (2 < z < 3.5) with similar UV-based SFRs. A low obscuration in our z > 6 LAE sample is consistent with recent rest-frame UV studies of z {approx} 7 Lyman break galaxies.

  15. EVIDENCE OF HOT HIGH VELOCITY PHOTOIONIZED PLASMA FALLING ON ACTIVELY ACCRETING T TAURI STARS

    SciTech Connect

    Gómez de Castro, Ana Ines

    2013-10-01

    The He II (1640 Å) line and the resonance doublet of N V (UV1) provide a good diagnostic tool to constrain the excitation mechanism of hot (T{sub e} > 40,000 K) atmospheric/magnetospheric plasmas in T Tauri stars (TTSs). Making use of the data available in the Hubble Space Telescope archive, this work shows that there are at least two distinct physical components contributing to the radiation in these tracers: the accretion flow sliding on the magnetosphere and the atmosphere. The N V profiles in most sources are symmetric and at rest with respect to the star. The velocity dispersion of the profile increases from non-accreting (σ = 40 km s{sup –1}) to accreting (σ = 120 km s{sup –1}) TTSs, suggesting that the macroturbulence field in the line formation region decreases as the stars approach the main sequence. Evidence of the N V line being formed in a hot solar-like wind has been found in RW Aur, HN Tau, and AA Tau. The He II profile has a strong narrow component that dominates the line flux; the dispersion of this component ranges from 20 to 60 km s{sup –1}. Current data suggest that both accretion shocks and atmospheric emission might contribute to the line flux. In some sources, the He II line shows a broad and redward-shifted emission component often accompanied by semiforbidden O III] emission that has a critical electron density of ∼3.4 × 10{sup 10} cm{sup 3}. In spite of their different origins (inferred from the kinematics of the line formation region), N V and He II fluxes are strongly correlated, with only the possible exception of some of the heaviest accretors.

  16. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean; Guillochon, James

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular, will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ∼> 10{sup 7} M{sub ☉}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.

  17. Creating a flipbook as a medium of instruction based on the research on activity test of kencur extract

    NASA Astrophysics Data System (ADS)

    Monika, Icha; Yeni, Laili Fitri; Ariyati, Eka

    2016-02-01

    This research aimed to reveal the validity of the flipbook as a medium of learning for the sub-material of environmental pollution in the tenth grade based on the results of the activity test of kencur (Kaempferia galanga) extract to control the growth of the Fusarium oxysporum fungus. The research consisted of two stages. First, testing the validity of the medium of flipbook through validation by seven assessors and analyzed based on the total average score of all aspects. Second, testing the activity of the kencur extract against the growth of Fusarium oxysporum by using the experimental method with 10 treatments and 3 repetitions which were analyzed using one-way analysis of variance (ANOVA) test. The making of the flipbook medium was done through the stages of analysis for the potential and problems, data collection, design, validation, and revision. The validation analysis on the flipbook received an average score of 3.7 and was valid to a certain extent, so it could be used in the teaching and learning process especially in the sub-material of environmental pollution in the tenth grade of the senior high school.

  18. On the coronae of rapidly rotating stars. I - The relation between rotation and coronal activity in RS CVn systems

    NASA Technical Reports Server (NTRS)

    Walter, F. M.; Bowyer, S.

    1981-01-01

    Soft X-ray observations are presented of a nearly complete sample of RS Canum Venaticorum systems taken with the Einstein X-ray Observatory. It is shown that the quiescent coronal activity, as measured by the ratio of the X-ray to bolometric flux, is directly proportional to the angular velocity of the star with the active chromosphere in these systems. This relation is found to hold over two decades in angular velocity. It is also found that the stellar surface gravity has no obvious influence on the ratio of the X-ray luminosity to the bolometric luminosity over two decades in surface gravity. It is pointed out that the linear relation between the ratio of the X-ray luminosity to the bolometric luminosity on the one hand, and the angular velocity, on the other, holds important implications for dynamo theories of the generation of stellar magnetic fields.

  19. Enigma of Runaway Stars Solved

    NASA Astrophysics Data System (ADS)

    1997-01-01

    . In fact, this is one of the most `perfect' bow shocks of parabolic form ever observed around an OB-runaway. Moreover, the orientation of the bow shock indicates that the system is moving towards the north; its origin must therefore lie somewhere south of its present position in the sky. It also turns out that the accordingly deduced path of HD77581 crosses a well-known OB-association with the designation Vel OB1 . At the measured distance of Vel OB1 of about 6000 lightyears, the observed proper motion and radial velocity of HD77581 indicate a space velocity of 90 km/sec. With this velocity, it would have taken HD77581 and its compact companion about 2.5 million years to travel the distance between Vel OB1 and its present position. This corresponds exactly to the expected time that has passed since the supernova explosion of the progenitor star of Vela~X-1, as deduced from the observed properties of the binary system. The puzzle comes together Now everything fits! The observation of a bow shock around the OB star HD77581 and its compact companion Vela X-1 supports the scenario originally proposed by Blaauw to create OB-runaway stars by the supernova explosion of the binary companion. Following back the path of the system resulted in the discovery of the place where it was born and from where it escaped after the violent supernova explosion which produced the neutron star that now manifests itself as the strong X-ray source known as Vela X-1. More information about this research project This research project is described in ESO Preprint no.~1199 and will appear shortly as a Letter to the Editor in `Astrophysical Journal' (ApJ 475, L37-L40). Notes: [1] Professor Adriaan Blaauw is a well-known Dutch astronomer (Leiden and Groningen). He participated very actively in the build-up of ESO in the 1950's and 60's and he was ESO Director General from 1970 - 1974. He is the author of ` ESO's Early History - The European Southern Observatory from concept to reality ' (1991). [2

  20. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  1. STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT z = 5.3

    SciTech Connect

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.; Benford, Dominic J.; Fixsen, Dale; Maher, Stephen F.; Moseley, Samuel H.; Sharp, Elmer H.; Capak, Peter L.; Kovacs, Attila; Karim, Alexander; Schinnerer, Eva; Leclercq, Samuel

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PEGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of {approx}200 Myr, with an SFR of {approx}500 M{sub sun} yr{sup -1}. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  2. Orphan Stars Found in Long Galaxy Tail

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers have found evidence that stars have been forming in a long tail of gas that extends well outside its parent galaxy. This discovery suggests that such "orphan" stars may be much more prevalent than previously thought. The comet-like tail was observed in X-ray light with NASA's Chandra X-ray Observatory and in optical light with the Southern Astrophysical Research (SOAR) telescope in Chile. The feature extends for more than 200,000 light years and was created as gas was stripped from a galaxy called ESO 137-001 that is plunging toward the center of Abell 3627, a giant cluster of galaxies. "This is one of the longest tails like this we have ever seen," said Ming Sun of Michigan State University, who led the study. "And, it turns out that this is a giant wake of creation, not of destruction." Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 The observations indicate that the gas in the tail has formed millions of stars. Because the large amounts of gas and dust needed to form stars are typically found only within galaxies, astronomers have previously thought it unlikely that large numbers of stars would form outside a galaxy. "This isn't the first time that stars have been seen to form between galaxies," said team member Megan Donahue, also of MSU. "But the number of stars forming here is unprecedented." The evidence for star formation in this tail includes 29 regions of ionized hydrogen glowing in optical light, thought to be from newly formed stars. These regions are all downstream of the galaxy, located in or near the tail. Two Chandra X-ray sources are near these regions, another indication of star formation activity. The researchers believe the orphan stars formed within the last 10 million years or so. The stars in the tail of this fast-moving galaxy, which is some 220 million light years away, would be much more isolated than the vast majority of stars in galaxies. H-alpha Image of

  3. Activity and cool spots on the surfaces of G-type stars with superflares from observations with the Kepler Space Telescope

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2015-09-01

    The properties of active regions (cool spots) on the surfaces of 279 G-type stars in which more than 1500 superflares with energies of 1033-1036 erg were detected are analyzed. Diagrams plotting the superflare energy against activity parameters of the stars (the area of their magnetic spots) are considered, and a more extensive study of the activity of two stars with the highest numbers of flares is presented. The range of variation of the superflare energies (up to two orders of magnitude) is realized over the entire interval of rotation periods. It is proposed that the plot of superflare energy vs. rotational period is bimodal. There are probably no appreciable differences in the maximum flare energies for the two groups of objects, which have rotational periods of more than and less than 10 days. Three groups of stars with different surface spottednesses can be distinguished in a plot of superflare energy vs. cool-spot area. The range of variation of the flare energy within a group is roughly the same for these three groups. Most of the points on this diagram lie to the right of the dependence corresponding to B = 3000Gand an inclination i = 90° (the first two groups of objects). It is confirmed that the flare activity is not related directly to circumpolar active regions, since the majority of the points on the diagram lie to the right of the dependence for B = 1000 G and i = 3°. Analysis of stars from the sample, including objects with more than 20 superflares, shows that large variations of the energy (by up to two orders of magnitude) can be reached with small variations of the spottedness parameter S for a single star. Appreciable variability of the spottedness (by factors of five to six) was detected for only two objects from the sample (KIC 10422252 and KIC 11764567). These stars displayed an increase in the flare energy by orders of magnitude for any spottedness level. The activity of KIC 11551430 and KIC 11764567 is analyzed in detail using all

  4. Creating functional sophistication from simple protein building blocks, exemplified by factor H and the regulators of complement activation.

    PubMed

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2015-10-01

    Complement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a β-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis. CCP-containing proteins are important as cytokine receptors and in neurotransmission, cell adhesion, blood clotting, extracellular matrix formation, haemoglobin metabolism and development, but CCPs are particularly well represented in the vertebrate complement system. For example, factor H (FH), a key soluble regulator of the alternative pathway of complement activation, is made up entirely from a chain of 20 CCPs joined by short linkers. Collectively, therefore, the 20 CCPs of FH must mediate all its functional capabilities. This is achieved via collaboration and division of labour among these modules. Structural studies have illuminated the dynamic architectures that allow FH and other CCP-rich proteins to perform their biological functions. These are largely the products of a highly varied set of intramolecular interactions between CCPs. The CCP can act as building block, spacer, highly versatile recognition site or dimerization mediator. Tandem CCPs may form composite binding sites or contribute to flexible, rigid or conformationally 'switchable' segments of the parent proteins. PMID:26517887

  5. Comparison of morphology of active cyclic steps created by turbidity currents on Squamish Delta, British Columbia, Canada with flume experiments

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamamoto, Shinya; Higuchi, Hiroyuki; Hughes Clarke, John E.; Izumi, Norihiro

    2015-04-01

    Upper-flow-regime bedforms, such as cyclic steps and antidunes, have been reported to be formed by turbidity currents. Their formative conditions are, however, not fully understood because of the difficulty of field surveys in the deep sea. Field observations of turbidity currents and seabed topography on the Squamish delta in Howe Sound, British Columbia, Canada have been undertaken which found bedwaves actively migrating in the upstream direction in channels formed on the prodelta slope. Their topography and behavior suggest that they are cyclic steps formed by turbidity currents. Because Squamish delta is as shallow as around 150 m, and easy to access compared with general submarine canyons, it is thought to be one of the best places for studying characteristics of cyclic steps formed by turbidity currents through field observations. In this study, we have analyzed configurations of cyclic steps with the use of data obtained in the field observation of 2011, and compare them with the data from the flume experiments. On the prodelta slope, three major active channels are clearly developed. In addition to the sonar survey, a 600 kHz ADCP was installed in 150m of water just seaward of the termination of the North Channel. In addition, 1200kHz ADCP and 500kHz M3s are suspended from the research vessel in 60 m of water and 300 m distance from the delta edge. We selected images showing large daily differences. The steps move vigorously at the upper 600m parts of the prodelta slope, so that we measured the steps in this area. From the profiles perpendicular to the bedwave crest lines through the center of channels, wavelength and wave height for each step, mean slope were measured on the software for quantitative image analyses manually. Wave steepness for each step was calculated using the wavelength and wave height measured as above. The mean slope ranges from 6.8° ~ 2.7° (more proximal, steeper), mean wavelength and wave heights of steps range from 24.5 to 87.6m

  6. Self Creating Universe

    NASA Astrophysics Data System (ADS)

    Terry, Bruce

    2001-04-01

    Cosmology has deduced that our existence began 15 billion years ago but that does not constitute a true story. When compared against infinity, the true question one must as is, ‘why did creation begin now (a mere 15 billion give or take years ago) and not at some infinite point before? What could keep the one common original source static for an infinity, and then spring forth into existence?’ Also, accelerators are actually creating atmospheres much like that within quasars, black holes and stars. This destructive/creative environment is not that of original creation, it is of that which occurs in a later stage of cosmic evolution. Knowing that it is only a matter of movement or change, understanding what is moving is the key. Regardless of how much power is used to alter the character of a particle’s matter, it does not make its essence go away, nor does it make the understanding of original essence clearer. To find the true answer of what occurred, one must look back in time and think carefully over the process of elimination to find the original creation of matter, albeit different than that of the later processes. Matter and the physical laws formed themselves in an absolute infinity of blackness prior to light and no Big Bang scenario was necessary.

  7. Chromospherically active stars. III - HD 26337 = EI Eri: An RS CVn candidate for the Doppler-imaging technique

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Quigley, Robert; Gillies, Kim; Africano, John L.

    1987-01-01

    Spectroscopic observations of the chromospherically active G5 IV single-lined binary HD 26337 = EI Eri are presented. An orbital period of 1.94722 days is found for the star. It has moderately strong Ca II H and K emission and strong ultraviolet emission features, while H-alpha is a weak absorption feature that is variable in strength. The inclination of the system is 46 + or - 12 deg, and the unseen secondary is probably a late K or early M dwarf. The v sin i of the primary is 50 + or - 3 km/s, resulting in a minimum radius of 1.9 + or - 0.1 solar radius. The star is within the required limits for Doppler imaging. The primary is close to filling its Roche lobe, resulting in a strong constraint that the mass ratio is 2.6 or greater, with a primary mass of at least 1.4 solar mass. The distance to the system is estimated at 75 pc.

  8. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A.; Goulding, Andy D.

    2016-07-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  9. TIME VARIABILITY OF EMISSION LINES FOR FOUR ACTIVE T TAURI STARS. I. OCTOBER-DECEMBER IN 2010

    SciTech Connect

    Chou, Mei-Yin; Takami, Michihiro; Karr, Jennifer L.; Shang Hsien; Liu, Hauyu Baobab; Manset, Nadine; Beck, Tracy; Pyo, Tae-Soo; Chen, Wen-Ping; Panwar, Neelam

    2013-04-15

    We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW Aur A) at high spectral resolution (R {approx}> 1 Multiplication-Sign 10{sup 4}), to investigate the correlation between time variable mass ejection seen in the jet/wind structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. We perform comparisons between the line profiles we observed and those in the literature over a period of decades and confirm the presence of time variability separate from the daily and monthly variability during our observations. This is so far consistent with the idea that these line profiles have a long-term variability (3-20 yr) related to episodic mass ejection suggested by the structures in the extended flow components. We also investigate the correlations between equivalent widths and between luminosities for different lines. We find that these correlations are consistent with the present paradigm of steady magnetospheric mass accretion and emission line regions that are close to the star.

  10. ASCA X-ray spectra of the active single stars Beta Ceti and pi(1) Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Singh, K. P.; White, N. E.; Simon, Theodore

    1994-01-01

    We present X-ray spectra obtaiined by ASCA of two single, active stars, the G dwarf pi(1) UMa, and the G9/K0 giant Beta Cet. The spectra of both stars require the presence of at least two plasma components with different temperatures, 0.3-0.4 keV and approximately 0.7 keV, in order for acceptable fits to be obtained. The spectral resolving power and signal-to-noise ratio of the solid state imaging spectrometer (SIS) spectra allow us to formally constrain the coronal abundances of a number of elements. In Beta Cet, we find Mg to be overabundant, while other elements such as O, Ne, and N are underabundant, relative to the solar photospheric values. From the lower signal-to-noise ratio SIS spectrum of pi(1) UMa, we find evidence for underabundances of O, Ne, and Fe. These results are discussed in the context of the present understanding of elemental abundances in solar and stellar coronae.

  11. Fast Variability in Selected Chromospherically Active Dwarf Stars and Observational Equipment for Their Study

    NASA Astrophysics Data System (ADS)

    Bogdanovski, Rumen G.

    2015-06-01

    The observations of variable stars, especially those which show fast changes in their brightness, require high speed and high precision photometry. In order to study events like low amplitude optical oscillations and small scale fluctuations in the light curves, synchronous observations are required. These observations have to be carried out simultaneously at two or more, preferably distant, sites (Romanyuk et al., 2001), which allows the identification and elimination of artifacts produced by the equipment and the atmospheric interferences. In this way the fine structure of the light curve is revealed with a significant certainty. In order to study these events a new high speed time synchronized photometric system had to be designed, which addresses the requirements of the observations of high frequency subtle phenomena during stellar flares. It provides remote automatedand centralized control of the photometric equipment over a computer network,as well as remotemonitoring. Furthermore, some preliminary data processing can be performed at the time the data is obtained.

  12. A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Montes, D.; Gálvez-Ortiz, M. C.; Crespo-Chacón, I.; Martínez-Arnáiz, R. M.; Fernández-Figueroa, M. J.; de Castro, E.; Cornide, M.

    2010-05-01

    Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood, which may be used to investigate different aspects of its formation and evolution in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF echelle package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line λ6707.8 Å and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in λ6708 Å. Fluxes in the chromospheric emission lines and R'_HK are also determined for each observation of a star in the sample. We used these data to investigate the emission levels of our stars. The study of the Hα emission line revealed two different populations of chromospheric emitters in the sample, clearly separated in the logFHα/Fbol - (V-J) diagram. The dichotomy may be associated with the age of the stars. Based on observations made with the 2.2 m telescope of the German-Spanish Astronomical Centre, Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institute for Astronomy, Heidelberg, and the Spanish

  13. Policy change to create supportive environments for physical activity and healthy eating: which options are the most realistic for local government?

    PubMed

    Allender, Steven; Gleeson, Erin; Crammond, Brad; Sacks, Gary; Lawrence, Mark; Peeters, Anna; Loff, Bebe; Swinburn, Boyd

    2012-06-01

    The objective is to identify and test regulatory options for creating supportive environments for physical activity and healthy eating among local governments in Victoria, Australia. A literature review identified nine potential areas for policy intervention at local government level, including the walking environment and food policy. Discussion documents were drafted which summarized the public health evidence and legal framework for change in each area. Levels of support for particular interventions were identified through semi-structured interviews conducted with key informants from local government. We conducted 11 key informant interviews and found support for policy intervention to create environments supportive of physical activity but little support for policy changes to promote healthy eating. Participants reported lack of relevance and competing priorities as reasons for not supporting particular interventions. Promoting healthy eating environments was not considered a priority for local government above food safety. There is a real opportunity for action to prevent obesity at local government level (e.g. mandate the promotion of healthy eating environments). For local government to have a role in the promotion of healthy food environments, regulatory change and suitable funding are required. PMID:21421579

  14. Intelligent star tracker

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2001-11-01

    Current state-of-the-art commercial star sensors typically weigh 15 pounds, attain 5 to 10 arc-second accuracy, and use roughly 10 watts of power. Unfortunately, the current state-of-the-art commercial star sensors do not meet many of NASA's next-generation spacecraft and instrument needs. Nor do they satisfy Air Force's needs for micro/nano-satellite systems. In an effort to satisfy micro/nano satellite mission needs the Air Force Research Laboratory is developing an intelligent star Tracker, called IntelliStar, which incorporates several novel technologies including Silicon carbide optical housing, MEMs based adaptive optic technologies, smart active pixels, and algebraic coding theory. The design considerations associated with the development of the IntelliStar system are presented along with experimental results which characterize each technologies contribution to overall system performance. In addition to being light weight, the IntelliStar System offers advantages in speed, size, power consumption, and radiation tolerance.

  15. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  16. THE ROLE OF GALAXY INTERACTION IN ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION ACTIVITY AT z {approx_equal} 1.2

    SciTech Connect

    Ideue, Y.; Taniguchi, Y.; Shioya, Y.; Kajisawa, M.; Nagao, T.; Trump, J. R.; Iovino, A.; Koekemoer, A. M.; Le Fevre, O.; Ilbert, O.; Scoville, N. Z.

    2012-03-01

    In order to understand environmental effects on star formation in high-redshift galaxies, we investigate the physical relationships between the star formation activity, stellar mass, and environment for z {approx_equal} 1.2 galaxies in the 2 deg{sup 2} COSMOS field. We estimate star formation using the [O II]{lambda}3727 emission line and environment from the local galaxy density. Our analysis shows that for massive galaxies (M{sub *} {approx}> 10{sup 10} M{sub Sun }), the fraction of [O II] emitters in high-density environments ({Sigma}{sub 10th} {approx}> 3.9 Mpc{sup -2}) is 1.7 {+-} 0.4 times higher than in low-density environments ({Sigma}{sub 10th} {approx}< 1.5 Mpc{sup -2}), while the [O II] emitter fraction does not depend on environment for low-mass M{sub *} {approx}< 10{sup 10} M{sub Sun} galaxies. In order to understand what drives these trends, we investigate the role of companion galaxies in our sample. We find that the fraction of [O II] emitters in galaxies with companions is 2.4 {+-} 0.5 times as high as that in galaxies without companions at M{sub *} {approx}> 10{sup 10} M{sub Sun }. In addition, massive galaxies are more likely to have companions in high-density environments. However, although the number of star-forming galaxies increases for massive galaxies with close companions and in dense environments, the average star formation rate of star-forming galaxies at a given mass is independent of environment and the presence/absence of a close companion. These results suggest that interactions and/or mergers in a high-density environment could induce star formation in massive galaxies at z {approx} 1.2, increasing the fraction of star-forming galaxies with M{sub *} {approx}> 10{sup 10} M{sub Sun }.

  17. Stars and Star Myths.

    ERIC Educational Resources Information Center

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  18. Be Stars

    NASA Astrophysics Data System (ADS)

    Peters, G.; Murdin, P.

    2000-11-01

    A Be star (pronounced `bee-ee' star) is a non-supergiant B-type star whose spectrum displays or has displayed one or more Balmer lines in emission and Be is the notation for the spectral classification of such a star (see also CLASSIFICATION OF STELLAR SPECTRA). `Classical' Be stars are believed to have acquired the circumstellar (CS) material that produces the Balmer emission through ejection of...

  19. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  20. Hysteresis Effect in the Activity Indices of the Atmospheres of the Sun and Solar-Type Stars During the Rising and Falling Phases of Cycles

    NASA Astrophysics Data System (ADS)

    Bruevich, E. A.; Yakunina, G. V.

    2016-09-01

    The hysteresis effect that shows up as a nonunique relationship among the emissions from the photosphere, chromosphere, and corona during the rising and falling phases of solar and stellar activity is analyzed. The following solar indices are analyzed and compared in different phases of the cycle: the radiative flux in the hydrogen Lyman alpha line FLα, radio emission at 10.7 cm F10.7, the sunspot number SSN, the radiative flux in the 530.0 nm green coronal line F530.3, the solar constant TSI, and the relative flux ratio c/w (ratio of the fluxes in the center and in the wings) for the 280 nm Mg II line. In stars with cycles, a hysteresis effect is observed between the CaII chromospheric S-activity index for stars in the Mount Wilson HK project and the photospheric flux Fph for these stars.

  1. ENVIRONMENTAL EFFECTS ON THE STAR FORMATION ACTIVITY IN GALAXIES AT z {approx_equal} 1.2 IN THE COSMOS FIELD

    SciTech Connect

    Ideue, Y.; Nagao, T.; Sasaki, S.; Taniguchi, Y.; Shioya, Y.; Saito, T.; Murayama, T.; Trump, J. R.; Koekemoer, A. M.; Aussel, H.; Ilbert, O.; Sanders, D. B.; McCracken, H.; Mobasher, B.

    2009-08-01

    We investigate the relation between the star formation activity in galaxies and environment at z {approx_equal} 1.2 in the Cosmic Evolution Survey field, using the fraction of [O II] emitters and the local galaxy density. The fraction of [O II] emitters appears to be almost constant over the surface density of galaxies between 0.2 and 10 Mpc{sup -2}. This trend is different from that seen in the local universe where the star formation activity is weaker in higher density regions. To understand this difference between z {approx} 1 and z {approx} 0, we study the fraction of non-isolated galaxies as a function of local galaxy density. We find that the fraction of non-isolated galaxies increases with increasing density. Our results suggest that the star formation in galaxies at z {approx} 1 is triggered by galaxy interaction and/or mergers.

  2. The roles of star formation and AGN activity of IRS sources in the HerMES fields

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Hatziminaoglou, E.; Hernán-Caballero, A.; Fritz, J.; Franceschini, A.; Bock, J.; Cooray, A.; Farrah, D.; Solares, E. A. González; Ibar, E.; Isaak, K. G.; Faro, B. Lo; Marchetti, L.; Oliver, S. J.; Page, M. J.; Rigopoulou, D.; Roseboom, I. G.; Symeonidis, M.; Vaccari, M.

    2013-09-01

    In this work, we explore the impact of the presence of an active galactic nucleus (AGN) on the mid- and far-infrared (IR) properties of galaxies as well as the effects of simultaneous AGN and starburst activity in the same galaxies. To do this, we apply a multicomponent, multiband spectral synthesis technique to a sample of 250 μm selected galaxies of the Herschel Multi-tiered Extragalactic Survey (HerMES), with Infrared Spectrograph (IRS) spectra available for all galaxies. Our results confirm that the inclusion of the IRS spectra plays a crucial role in the spectral analysis of galaxies with an AGN component improving the selection of the best-fitting hot dust (torus) model. We find a correlation between the obscured star formation rate, SFRIR, derived from the IR luminosity of the starburst component, and SFRPAH, derived from the luminosity of the PAH features, LPAH, with SFRFIR taking higher values than SFRPAH. The correlation is different for AGN- and starburst-dominated objects. The ratio of LPAH to that of the starburst component, LPAH/LSB, is almost constant for AGN-dominated objects but decreases with increasing LSB for starburst-dominated objects. SFRFIR increases with the accretion luminosity, Lacc, with the increase less prominent for the very brightest, unobscured AGN-dominated sources. We find no correlation between the masses of the hot (AGN-heated) and cold (starburst-heated) dust components. We interpret this as a non-constant fraction of gas driven by the gravitational effects to the AGN while the starburst is ongoing. We also find no evidence of the AGN affecting the temperature of the cold dust component, though this conclusion is mostly based on objects with a non-dominant AGN component. We conclude that our findings do not provide evidence that the presence of AGN affects the star formation process in the host galaxy, but rather that the two phenomena occur simultaneously over a wide range of luminosities.

  3. Eight Stars of Gold--The Story of Alaska's Flag. Primary Grade Activities.

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This activities booklet focuses on the story of Alaska's flag. The booklet is intended for teachers to use with primary-grade children. Each activity in the booklet contains background information, a summary and time estimate, Alaska state standards, a step-by-step technique for implementing the activity, assessment tips, materials and resource…

  4. Eight Stars of Gold--The Story of Alaska's Flag. Intermediate Activities (Grades 3-5).

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This activities booklet focuses on the story of Alaska's flag. The booklet is intended for teachers to use with students in the intermediate grades. Each activity in the booklet contains: background information, a summary and time estimate, state standards, a step-by-step technique for implementation of the activity, assessment tips, materials and…

  5. MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19

    NASA Astrophysics Data System (ADS)

    Sobral, David; Stroe, Andra; Dawson, William A.; Wittman, David; Jee, M. James; Röttgering, Huub; van Weeren, Reinout J.; Brüggen, Marcus

    2015-06-01

    Cluster mergers may play a fundamental role in the formation and evolution of cluster galaxies. Stroe et al. revealed unexpected overdensities of candidate Hα emitters near the ˜1-Mpc-wide shock fronts of the massive (˜2 × 1015 M⊙) `Sausage' merging cluster, CIZA J2242.8+5301. We used the Keck/Deep Imaging Multi-Object Spectrograph and the William Herschel Telescope/AutoFib2+WYFFOS to confirm 83 Hα emitters in and around the merging cluster. We find that cluster star-forming galaxies in the hottest X-ray gas and/or in the cluster subcores (away from the shock fronts) show high [S II]6716/[S II]6761 and high [S II] 6716/Hα, implying very low electron densities (<30 × lower than all other star-forming galaxies outside the cluster) and/or significant contribution from supernovae, respectively. All cluster star-forming galaxies near the cluster centre show evidence of significant outflows (blueshifted Na D ˜200-300 km s-1), likely driven by supernovae. Strong outflows are also found for the cluster Hα active galactic nucleus (AGN). Hα star-forming galaxies in the merging cluster follow the z ˜ 0 mass-metallicity relation, showing systematically higher metallicity (˜0.15-0.2 dex) than Hα emitters outside the cluster (projected R > 2.5 Mpc). This suggests that the shock front may have triggered remaining metal-rich gas which galaxies were able to retain into forming stars. Our observations show that the merger of impressively massive (˜1015 M⊙) clusters can provide the conditions for significant star formation and AGN activity, but, as we witness strong feedback by star-forming galaxies and AGN (and given how massive the merging cluster is), such sources will likely quench in a few 100 Myr.

  6. Photometric activity of UX Ori stars and related objects in the near infrared and visual. BF Ori, CQ Tau, WW Vul, and SV Cep

    NASA Astrophysics Data System (ADS)

    Shenavrin, V. I.; Grinin, V. P.; Rostopchina-Shakhovskaja, A. N.; Demidova, T. V.; Shakhovskoi, D. N.

    2012-05-01

    We have analyzed the activity of four UX Ori stars in the near-IR ( JHKL) and visual ( V) using the results of long-term photometric observations. For comparison, we also obtained IR ( JHKLM) photometric observations of two visually quiet young stars of close spectral types (AB Aur and HD 190073). For the photometrically most active UX Ori stars BF Ori, CQ Tau, and WW Vul, the Algol-like declines of brightness in the visual, which are due to sporadic enhancements of the circumstellar extinction, are also observed (with decreasing amplitude) in the IR bands. A strict correlation between the V and J brightness variations is observed for all the stars except for SV Cep. For some of the UX Ori stars, a strong correlation between the visual and IR activity is observed up to L, where the main contribution to the emission is made by circumstellar dust. In the case of SV Cep, the visual variability is not correlated with the variability of the IR fluxes. On one occasion, a clear anti-correlation was even observed: a shallow, but prolonged decrease of the visual brightness was accompanied by an increase in the IR fluxes. This indicates that circumstellar clouds themselves can become powerful sources of IR emission. Our results provide evidence that the photometric activity of UX Ori stars is a consequence of instability of the deepest layers of their gas-dust accretion disks. In some cases (SV Cep), fluctuations of the density in this region are global, in the sense that they occur along a significant part of the circle marking the inner boundary of the dust disk. It is interesting that AB Aur, which is the quietest in the visual, appeared to be the most active in the IR. In contrast to UX Ori stars, the amplitude of its brightness variations increases from the J to the M band. It follows from analysis of the IR colors of this star that their variability cannot be described by models in which the variable IR emission has a temperature close to the sublimation temperature of

  7. The active W UMa type binary star V781 Tau revisited

    NASA Astrophysics Data System (ADS)

    Li, K.; Gao, D.-Y.; Hu, S.-M.; Guo, D.-F.; Jiang, Y.-G.; Chen, X.

    2016-02-01

    In this paper, new determined BVRcIc light curves and radial velocities of V781 Tau are presented. By analyzing the light curves and radial velocities simultaneously, we found that V781 Tau is a W-subtype medium contact binary star with a mass ratio of q=2.207±0.005 and a contact degree of f=21.6(±1.0) %. The difference between the two light maxima was explained by a dark spot on the less massive primary component. The change of the orbital period of V781 Tau was also investigated. A secular decrease at a rate of -6.01(±2.28)× 10^{-8} d/yr and a cyclic modulation with a period of 44.8 ± 5.7 yr and an amplitude of 0.0064±0.0011 day were discovered. The continuous period decrease may be caused by angular momentum loss due to a magnetic stellar wind. The Applegate mechanism failed to explain the cyclic modulation. It is highly possible that the cyclic oscillation is the result of the light travel time effect by a third companion.

  8. Activity-related characteristics of the convective envelopes in evolving low-mass stars

    SciTech Connect

    Rucinski, S.M.; Vandenberg, D.A.

    1986-07-01

    Convective envelope structures have been computed for the post-main-sequence evolutionary phases of 0.7-1.6 solar mass model stars having initial mass-fraction abundances of helium and heavier elements equal to Y = 0.25 and Z = 0.0169 (solar), respectively. Two types of quantities as a function of the basic stellar parameters have been studied. The first of these is relevant to the theory of stellar dynamos and includes estimates of the convective turnover time, various dynamo number parameters, and the maximum nonthermal energy which is available for the dynamo action. The other is related to the expected sizes of inhomogeneities on the stellar surfaces and comprises the determination of the depth of the convective zone, the pressure scale height at the outer edge of the convective region, and the thicknesses of the shells where the superadiabatic gradient is large and where the opacity is within 10 percent of its maximum. All of the above properties, which are fully discussed, are extensively tabulated and their variations as a function of evolutionary state are conveniently displayed in a number of contour plots to facilitate comparisons with observations. 29 references.

  9. Production and evolution of light elements in active star-forming regions.

    PubMed

    Cassé, M; Lehoucq, R; Vangioni-Flam, E

    1995-01-26

    Collisions between cosmic rays (energetic protons and alpha-particles) and carbon, nitrogen and oxygen in the interstellar medium have been considered to be the main source of lithium, beryllium and boron, through fragmentation of the larger nuclei. But this mechanism is unable to account for the observed Solar System abundances of the isotopes 7Li and 11B. The recent detection of an excess of gamma-rays in the direction of the star-forming region in the Orion cloud has been interpreted as arising from the excitation of carbon and oxygen nuclei ejected from supernovae when they collide with the surrounding gas, which is primarily molecular and atomic hydrogen. Here we investigate the consequences of the two-body interactions of the ejected carbon and oxygen nuclei (and the alpha-particles ejected with them) with the hydrogen and helium in the surrounding gas, using a model developed previously. We show that these interactions offer a way to make lithium, beryllium and boron that is independent of the abundance of heavy elements in the surrounding medium. Such supernova-driven interactions, combined with the effect of galactic cosmic rays, can explain the observed Solar System abundances of these light elements. PMID:7830765

  10. Reaching for the Stars.

    ERIC Educational Resources Information Center

    Roper-Davis, Sharon

    1999-01-01

    Describes "Reaching for the Stars," a program which develops teaming and mentoring skills in senior physics students. Phase 1 requires student pairs to design a rocket; Phase 2 pairs seniors with gifted second graders who build the rocket from written instructions; and in Phase 3, pairs of seniors create a children's storybook explaining one of…

  11. Upscaling Self-Sustaining Treatment for Active Remediation (STAR): Experimental Study of Scaling Relationships for Smouldering Combustion to Remediate Soil

    NASA Astrophysics Data System (ADS)

    Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.

    2013-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large

  12. Strange Nonchaotic Stars

    NASA Astrophysics Data System (ADS)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  13. Creating a replicable, valid cross-platform buffering technique: The sausage network buffer for measuring food and physical activity built environments

    PubMed Central

    2012-01-01

    Background Obesity researchers increasingly use geographic information systems to measure exposure and access in neighborhood food and physical activity environments. This paper proposes a network buffering approach, the “sausage” buffer. This method can be consistently and easily replicated across software versions and platforms, avoiding problems with proprietary systems that use different approaches in creating such buffers. Methods In this paper, we describe how the sausage buffering approach was developed to be repeatable across platforms and places. We also examine how the sausage buffer compares with existing alternatives in terms of buffer size and shape, measurements of the food and physical activity environments, and associations between environmental features and health-related behaviors. We test the proposed buffering approach using data from EAT 2010 (Eating and Activity in Teens), a study examining multi-level factors associated with eating, physical activity, and weight status in adolescents (n = 2,724) in the Minneapolis/St. Paul metropolitan area of Minnesota. Results Results show that the sausage buffer is comparable in area to the classic ArcView 3.3 network buffer particularly for larger buffer sizes. It obtains similar results to other buffering techniques when measuring variables associated with the food and physical activity environments and when measuring the correlations between such variables and outcomes such as physical activity and food purchases. Conclusions Findings from various tests in the current study show that researchers can obtain results using sausage buffers that are similar to results they would obtain by using other buffering techniques. However, unlike proprietary buffering techniques, the sausage buffer approach can be replicated across software programs and versions, allowing more independence of research from specific software. PMID:22554353

  14. Multiband Photometry of the Chromospherically Active & Spotted Binary System IM Peg—the Guide Star for the Gravity Probe B Mission

    NASA Astrophysics Data System (ADS)

    Zellem, Robert; Guinan, Edward F.; Messina, Sergio; Lanza, Antonino F.; Wasatonic, Richard; McCook, George P.

    2010-06-01

    We report on the starspot properties of IM Pegasi—the guide star of the Gravity Probe B (GP-B) satellite. GP-B's mission is to measure two predicted consequences of general relativity—the frame-dragging and geodetic effects—via its extremely precise onboard gyroscopes. However, IM Peg is a chomospherically active binary system with a luminous K2 III primary star showing rotationally modulated (Prot ≈ 24.5 days) light variations from starspots. The starspots can potentially cause problems as GP-B can erroneously interpret a change in starspot coverage (and corresponding shifts in the light center) as the star's movement. This apparent shift can also be exacerbated by possible changes in the light center (photocenter) of the binary system arising from changes in the light balance with the fainter ~1 Msolar (main-sequence early G-type star) component. Since 2000, we have carried out multiband high-precision photoelectric photometry of IM Peg to determine its activity and starspot coverage. Our photometry uses Strömgren uvby intermediate-band filters, VRI filters, and TiO (720/750 nm) narrowband filter sets. Measurements were made relative to nearby comparison and check stars using 0.8 m and 0.25 m telescopes. Analysis of TiO and multiband continuum photometry constrains the starspot areas, temperatures, and surface distributions. The photometry has been modeled using the maximum entropy and Tikhonov regularizations to determine the properties of starspots and to evaluate the effects of changing starspot areas and distributions on the light center of the binary. Our results indicate that IM Peg's activity should not affect the GP-B mission. We also present a study of IM Peg's long-term starspot cycle, which shows evidence of being 20 yr long. Lastly, we have determined the intrinsic (unspotted) brightness of the star to be V mag = 5.62 ± 0.03.

  15. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  16. Surveillance Television and Recording System (STAR): Test, evaluation and implementation activities under POTAS (US Program for Technical Assistance to International Atomic Energy Agency Safeguards) Tasks E. 25 and E. 54: Final report

    SciTech Connect

    Holt, R.C.; Sonnier, C.S.

    1987-01-01

    The IAEA and Sandia National Laboratories activities, following the completion of the first three Class III STAR Systems in April 1981, are described. These activities led to the IAEA order of 16 Class IV STAR Systems, with the intent to use these systems as a replacement for the Psychotronics CCTV System and for use in other selected applications.

  17. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s‑1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr‑1 and the mean gas mass is ∼1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH–M * scaling relation.

  18. Magnetic activity and hot Jupiters of young Suns: the weak-line T Tauri stars V819 Tau and V830 Tau

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Hébrard, E.; Hussain, G. A. J.; Moutou, C.; Malo, L.; Grankin, K.; Vidotto, A. A.; Alencar, S. H. P.; Gregory, S. G.; Jardine, M. M.; Herczeg, G.; Morin, J.; Fares, R.; Ménard, F.; Bouvier, J.; Delfosse, X.; Doyon, R.; Takami, M.; Figueira, P.; Petit, P.; Boisse, I.; MaTYSSE Collaboration

    2015-11-01

    We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri stars (wTTSs) V819 Tau and V830 Tau within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme, involving the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. At ≃3 Myr, both stars dissipated their discs recently and are interesting objects for probing star and planet formation. Profile distortions and Zeeman signatures are detected in the unpolarized and circularly polarized lines, whose rotational modulation we modelled using tomographic imaging, yielding brightness and magnetic maps for both stars. We find that the large-scale magnetic fields of V819 Tau and V830 Tau are mostly poloidal and can be approximated at large radii by 350-400 G dipoles tilted at ≃30° to the rotation axis. They are significantly weaker than the field of GQ Lup, an accreting classical T Tauri star (cTTS) with similar mass and age which can be used to compare the magnetic properties of wTTSs and cTTSs. The reconstructed brightness maps of both stars include cool spots and warm plages. Surface differential rotation is small, typically ≃4.4 times smaller than on the Sun, in agreement with previous results on wTTSs. Using our Doppler images to model the activity jitter and filter it out from the radial velocity (RV) curves, we obtain RV residuals with dispersions of 0.033 and 0.104 km s-1 for V819 Tau and V830 Tau, respectively. RV residuals suggest that a hot Jupiter may be orbiting V830 Tau, though additional data are needed to confirm this preliminary result. We find no evidence for close-in giant planet around V819 Tau.

  19. Creating healthy futures. 2000 NOVA Award winners.

    PubMed

    Larson, L

    2000-05-01

    Winners of this year's NOVA awards, sponsored by the American Hospital Association and H&HN magazine, all share a broad definition of health. These five stars of community benefit also understand that a community and a health care organization share responsibility for what creates health, and that collaborative efforts are the only way to sustain innovative programs. PMID:11785219

  20. The PD-1 Axis Enforces an Anatomical Segregation of CTL Activity that Creates Tumor Niches after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Michonneau, David; Sagoo, Pervinder; Breart, Béatrice; Garcia, Zacarias; Celli, Susanna; Bousso, Philippe

    2016-01-19

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a curative treatment for hematologic malignancies, relies on donor cytotoxic T lymphocyte (CTL)-mediated graft-versus-leukemia (GVL) effect. Major complications of HSCT are graft-versus-host disease (GVHD) that targets specific tissues and tumor relapses. However, the mechanisms dictating the anatomical features of GVHD and GVL remain unclear. Here, we show that after HSCT, CTLs exhibited different killing activity in distinct tissues, being highest in the liver and lowest in lymph nodes. Differences were imposed by the microenvironment, partly through differential PD-1 ligand expression, which was strongly elevated in lymph nodes. Two-photon imaging revealed that PD-1 blockade restored CTL sensitivity to antigen and killing in lymph nodes. Weak CTL activity in lymph nodes promoted local tumor escape but could be reversed by anti-PD-1 treatment. Our results uncover a mechanism generating an anatomical segregation of CTL activity that might dictate sites of GVHD and create niches for tumor escape. PMID:26795248

  1. Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: Investigation and optimization of attributes associated with photocatalytic activity.

    PubMed

    Aladpoosh, Razieh; Montazer, Majid

    2016-05-01

    In this study, nano-photo active cellulosic fabric was prepared through in situ phytosynthesis of star-like Ag/ZnO nanocomposites using the ashes of Seidlitzia rosmarinus plants so-called Keliab. This is provided alkali media as a vital condition for synthesis of nanocomposites, further increasing the reduce-ability of cellulosic chains by activation of hydroxyl groups. The intermolecular dehydrolysis of intermediates ions under thermal and alkaline conditions leads to formation of Ag/ZnO heterostructure. Various analytical techniques were employed to confirm Ag/ZnO nanocomposites on the cotton fabric. The surface morphology, crystal phase and chemical structure of the treated fabrics were characterized by field emission and scanning electron microscopy (FE-SEM and SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). Moreover, influence of precursors: silver nitrate, zinc acetate and Keliab solution on attributes associated with photocatalytic activities including self-cleaning, whiteness and wettability was investigated via central composite design (CCD). The treated cotton samples exhibited self-cleaning activities through methylene blue degradation under day-light exposure along with improved wettability and whiteness. The prepared sample in optimized conditions showed good antibacterial activities against Staphylococcus aureus and Escherichia coli with enhanced fabric tensile strength. PMID:26877003

  2. NEAR-ULTRAVIOLET ABSORPTION, CHROMOSPHERIC ACTIVITY, AND STAR-PLANET INTERACTIONS IN THE WASP-12 SYSTEM

    SciTech Connect

    Haswell, C. A.; Fossati, L.; Holmes, S.; Kolb, U. C.; Busuttil, R.; Carter, A.; Ayres, T.; France, K.; Froning, C. S.; Street, R. A.; Hebb, L.; Cameron, A. Collier; Enoch, B.; Burwitz, V.; Rodriguez, J.; West, R. G.; Pollacco, D.; Wheatley, P. J. E-mail: l.fossati@open.ac.uk E-mail: leslie.hebb@vanderbilt.edu

    2012-11-20

    Extended gas clouds have been previously detected surrounding the brightest known close-in transiting hot Jupiter exoplanets, HD 209458 b and HD 189733 b; we observed the distant but more extreme close-in hot Jupiter system, WASP-12, with Hubble Space Telescope (HST). Near-UV (NUV) transits up to three times deeper than the optical transit of WASP-12 b reveal extensive diffuse gas, extending well beyond the Roche lobe. The distribution of absorbing gas varies between visits. The deepest NUV transits are at wavelength ranges with strong stellar photospheric absorption, implying that the absorbing gas may have temperature and composition similar to those of the stellar photosphere. Our spectra reveal significantly enhanced absorption (greater than 3{sigma} below the median) at {approx}200 individual wavelengths on each of two HST visits; 65 of these wavelengths are consistent between the two visits, using a strict criterion for velocity matching that excludes matches with velocity shifts exceeding {approx}20 km s{sup -1}. Excess transit depths are robustly detected throughout the inner wings of the Mg II resonance lines independently on both HST visits. We detected absorption in Fe II {lambda}2586, the heaviest species yet detected in an exoplanet transit. The Mg II line cores have zero flux, emission cores exhibited by every other observed star of similar age and spectral type are conspicuously absent. WASP-12 probably produces normal Mg II profiles, but the inner portions of these strong resonance lines are likely affected by extrinsic absorption. The required Mg{sup +} column is an order of magnitude greater than expected from the interstellar medium, though we cannot completely dismiss that possibility. A more plausible source of absorption is gas lost by WASP-12 b. We show that planetary mass loss can produce the required column. Our Visit 2 NUV light curves show evidence for a stellar flare. We show that some of the possible transit detections in resonance

  3. The Dust Content and Opacity of Actively Star-Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Armus, Lee; Bohlin, Ralph C.; Kinney, Anne L.; Koornneef, Jan; Storchi-Bergmann, Thaisa

    2000-01-01

    ), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

  4. The Dust Content and Opacity of Actively Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Armus, Lee; Bohlin, Ralph C.; Kinney, Anne L.; Koornneef, Jan; Storchi-Bergmann, Thaisa

    2000-04-01

    We present far-infrared (FIR) photometry at 150 and 205 μm of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at λ>~40 μm. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T~40-55 K (warm dust) and T~20-23 K (cool dust) and with a dust emissivity index ɛ=2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to ~150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once rescaled for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 μm and the IRAS FIR emission in the range 40-120 μm is ~1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as ``UV bright,'' for four of them the UV energy emerging shortward of 0.2 μm is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of ~2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z>~1), UV-bright, star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys

  5. Chemical Composition and Biological Activity of Star Anise Illicium verum Extracts Against Maize Weevil, Sitophilus zeamais Adults

    PubMed Central

    Wei, Linlin; Hua, Rimao; Li, Maoye; Huang, Yanzhang; Li, Shiguang; He, Yujie; Shen, Zonghai

    2014-01-01

    This study aims to develop eco-friendly botanical pesticides. Dried fruits of star anise (Illicium verum Hook.f. (Austrobaileyales: Schisandraceae)) were extracted with methyl alcohol (MA), ethyl acetate (EA), and petroleum ether (PE) at 25°C. The constituents were determined by gas chromatography-mass spectrometry, and the repellency and contact toxicity of the extracts against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) adults were tested. Fortyfour compounds, whose concentrations were more than 0.2%, were separated and identified from the MA, EA, and PE extracts. The extraction yields of trans-anethole, the most abundant biologically active compound in I. verum, were 9.7%, 7.5%, and 10.1% in the MA, EA, and PE extracts, respectively. Repellency increased with increasing extract dose. The average repellency rate of the extracts against S. zeamais adults peaked at 125.79 μg/cm2 72 hr after treatment. The percentage repellency of the EA extract reached 76.9%, making it a class IV repellent. Contact toxicity assays showed average mortalities of 85.4% (MA), 94.5% (EA), and 91.1% (PE). The EA extract had the lowest median lethal dose, at 21.2 μg/cm2 72 hr after treatment. The results suggest that I. verum fruit extracts and trans-anethole can potentially be developed as a grain protectant to control stored-product insect pests. Other active constituents in the EA extract merit further research. PMID:25368036

  6. Chemical composition and biological activity of star anise Illicium verum extracts against maize weevil, Sitophilus zeamais adults.

    PubMed

    Wei, Linlin; Hua, Rimao; Li, Maoye; Huang, Yanzhang; Li, Shiguang; He, Yujie; Shen, Zonghai

    2014-01-01

    This study aims to develop eco-friendly botanical pesticides. Dried fruits of star anise (Illicium verum Hook.f. (Austrobaileyales: Schisandraceae)) were extracted with methyl alcohol (MA), ethyl acetate (EA), and petroleum ether (PE) at 25°C. The constituents were determined by gas chromatography-mass spectrometry, and the repellency and contact toxicity of the extracts against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) adults were tested. Forty-four compounds, whose concentrations were more than 0.2%, were separated and identified from the MA, EA, and PE extracts. The extraction yields of trans-anethole, the most abundant biologically active compound in I. verum, were 9.7%, 7.5%, and 10.1% in the MA, EA, and PE extracts, respectively. Repellency increased with increasing extract dose. The average repellency rate of the extracts against S. zeamais adults peaked at 125.79 µg/cm(2) 72 hr after treatment. The percentage repellency of the EA extract reached 76.9%, making it a class IV repellent. Contact toxicity assays showed average mortalities of 85.4% (MA), 94.5% (EA), and 91.1% (PE). The EA extract had the lowest median lethal dose, at 21.2 µg/cm(2) 72 hr after treatment. The results suggest that I. verum fruit extracts and trans-anethole can potentially be developed as a grain protectant to control stored-product insect pests. Other active constituents in the EA extract merit further research. PMID:25368036

  7. Shadows across mu-Star? Constitutively active mu-opioid receptors revisited.

    PubMed

    Connor, Mark

    2009-04-01

    Constitutively active mu-opioid receptors (mu* receptors) are reported to be formed following prolonged agonist treatment of cells or whole animals. mu* receptors signal in the absence of activating ligand and a blockade of mu* activation of G-proteins by naloxone and naltrexone has been suggested to underlie the profound withdrawal syndrome precipitated by these antagonists in vivo. In this issue of the Journal, Divin et al. examined whether treatment of C6 glioma cells with mu-opioid receptor agonists produced constitutively active mu-opioid receptors or other commonly reported adaptations to prolonged agonist treatment. Adenylyl cyclase superactivation was readily apparent following agonist treatment but there was no evidence of the formation of constitutively active mu-opioid receptors. This result challenges the notion that prolonged agonist exposure inevitably produces mu* receptors, and is consistent with many studies of adaptations in neurons produced by chronic agonist treatment. The investigators provide no explanation of their failure to see mu* receptors in C6 cells, but this is perhaps understandable because the molecular nature of mu* receptors remains elusive, and the precise mechanisms that lead to their formation are unknown. Without knowing exactly what mu* receptors are, how they are formed and how they signal, understanding their role in cellular adaptations to prolonged opioid treatment will remain impossible. Studies such as this should refocus attention on establishing the molecular mechanisms that underlie that phenomenon of mu* receptors. PMID:19368530

  8. Chromospheric activity on late-type star DM UMa using high-resolution spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Zhang, LiYun; Pi, QingFeng; Han, Xianming L.; Chang, Liang; Wang, Daimei

    2016-06-01

    We present new 14 high-resolution echelle spectra to discuss the level of chromospheric activity of DM UMa in {He I} D3, {Na I} D1, D2, Hα, and {Ca II} infrared triplet lines (IRT). It is the first time to discover the emissions above the continuum in the {He I} D3 lines on 2015 February 9 and 10. The emission on February 9 is the strongest one ever detected for DM UMa. We analysed these chromospheric active indicators by employing the spectral subtraction technique. The subtracted spectra reveal weak emissions in the {Na I} D1, D2 lines, strong emission in the Hα line, and clear excess emissions in the {Ca II} IRT lines. Our values for the EW8542/EW8498 ratio are on the low side, in the range of 1.0-1.7. There are also clear phase variations of the level of chromospheric activity in equivalent width (EW) light curves in these chromospheric active lines (especially the Hα line). These phenomena might be explained by flare events or rotational modulations of the level of chromospheric activity.

  9. Creating innovative departments.

    PubMed

    von Segesser, Ludwig K

    2004-12-01

    'Creating an innovative department' as an objective implies further improvements in organization, function, and progression of a surgical unit active in patient care, research, and education. It is of prime importance to stress here the mutual benefits of patient care, research (the basis for future patient care) and education (the channel for training health care professionals in future patient care). Neither innovation (from latin innovare: to renew, revive) nor creation (from latin creare: to make, produce) is something that will fall from heaven without effort any time soon. Hence, a pro-active attitude towards progress is indicated. This requires searching for new ideas, allocation of resources, finding allies, getting focussed, and being persistent. One word says it all: WORK! PMID:15776856

  10. Activities and Achievements of the Double Star Committee of the Socié té Astronomique de France

    NASA Astrophysics Data System (ADS)

    Agati, Jean-Louis; Caille, Sébastien; Debackère, André; Durand, Pierre; Losse, Florent; Manté, René; Mauroy, Florence; Mauroy, Pascal; Morlet, Guy; Pinlou, Claude; Salaman, Maurice; Soulié, Edgar; Thorel, Yvonne; Thorel, Jean-Claude

    2007-08-01

    In a synthesis article (see ref. below), the double star expert Paul COUTEAU put the work of French pioneers of double stars observation in the perspective of the double star work carried in the world. After Antoine Yvon VILLARCEAU and Camille FLAMMARION, one prominent pioneer of double stars was Robert JONCKHEERE (1888toiles Doubles, Maurice DURUY (1894le with a 40-cm and later a 60-cm telescope at Le Rouret (Alpes1995) had started the measurement of double stars as an amateur. He was granted permission to measure them with the 38-cm of the Paris Observatory and made an impressive number of measures during his long 2006) made double star observations for the book which was then in preparation under the title La revue des constellations. Their measures remained unpublished; but publication of the measures made by Robert SAGOT is in preparation. At about the same time, the neurology professor Jacques LE BEAU (1908toiles doubles visuelles. That book triggered the interest of more amateur astronomers for double stars and indirectly influenced the creation of a group of double star observers which was transformed into the Commission des É toiles Doubles

  11. Creating new library services through collaboration with resident groups : Aimimg at human resource development and information literacy education in ways only libraries can do : Study on activities of an NPO called Ueda Library Club

    NASA Astrophysics Data System (ADS)

    Morita, Utako

    Creating new library services through collaboration with resident groups : Aimimg at human resource development and information literacy education in ways only libraries can do : Study on activities of an NPO called Ueda Library Club

  12. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  13. STAR System.

    ERIC Educational Resources Information Center

    Doverspike, James E.

    The STAR System is a developmental guidance approach to be used with elementary school children in the 5th or 6th grades. Two basic purposes underlie STAR: to increase learning potential and to enhance personal growth and development. STAR refers to 4 basic skills: sensory, thinking, adapting, and revising. Major components of the 4 skills are:…

  14. Making Stars … With a Little Help

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    Extremely high star formation rates have been observed in galaxies at high redshifts, posing somewhat of a mystery: how are these enormous rates achieved? A team of scientists has proposed that these high rates of star formation could be explained by feedback from active nuclei at the centers of the galaxies.Pressurized BubbleWe believe that star formation occurs in galaxies as a result of gas clumps that collapse under their own gravity, eventually becoming dense enough to launch nuclear fusion. Recently, theres been mounting evidence that the star formation rate is significantly higher in high-redshift galaxies, particularly those with active galactic nuclei (AGN). Could this simply be caused by a higher gas fraction at higher redshifts? Or is it possible that a different mechanism is at work in these galaxies, producing more efficient star formation?A team of authors led by Rebekka Bieri (Paris Institute of Astrophysics) has proposed that this enhanced star formation may be caused by positive feedback from the active nucleus of the galaxy. The team suggests that an outflow from the AGN could create an over-pressurized bubble around the galactic disk that pushes back on the disk, leading to a higher rate of star formation.Simulating a BoostThe authors test this toy model by simulating the scenario. They model a disk galaxy with roughly a tenth of the mass of the Milky Way, which starts in a relaxed state. The galaxy is then evolved either with or without an applied external pressure, representing the isotropic pressure from the bubble created by the AGN outflow. These models are tested in two different scenarios: one where the initial gas fraction is 10%, and one where the initial gas fraction is 50%.Star formation rates for the low-gas-fraction (left) and high-gas-fraction (right) simulated galaxies. The blue lines show the rates without external pressure; the red lines show the rates with external pressure applied. [Bieri et al. 2015]The simulations show that

  15. Living with a Star: An Educator Guide with Activities in Sun-Earth Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator guide is designed to provide references and resource materials to K-12 educators about the connection between the sun and the earth. Chapters include: (1) "Common Questions and Answers"; (2) "Sun-Earth Connection Missions"; (3) "Website Resources"; (4) "NASA CORE Materials"; (5) "Activities"; (6) "NASA Educator Workshop Resources";…

  16. Is II-Pegasi HD224085 a New Spot-Cycle Activity Star

    NASA Astrophysics Data System (ADS)

    Bohusz, E.; Udalski, A.

    New observations of II Pegasi (HD 224085) are presented. They are used together with the earlier ones to study the photometric period variations. Basing on the spot model the photometric period changes can be explained by solar-like spot activity with the period 8-10 years.

  17. Starring role of toll-like receptor-4 activation in the gut-liver axis

    PubMed Central

    Carotti, Simone; Guarino, Michele Pier Luca; Vespasiani-Gentilucci, Umberto; Morini, Sergio

    2015-01-01

    Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types. PMID:26600967

  18. GLOBAL STAR FORMATION REVISITED

    SciTech Connect

    Silk, Joseph; Norman, Colin E-mail: norman@stsci.edu

    2009-07-20

    A general treatment of disk star formation is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star formation law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star formation, enhances star formation efficiency. An upper limit is derived for the disk star formation rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid formation, AGN-driven winds trigger star formation, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star formation rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star formation is mediated by turbulent pressure and relates spheroid star formation rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star formation can occur at high redshift.

  19. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100.

    PubMed Central

    Hübner, A; Hendrickson, W

    1997-01-01

    Transposition and transcriptional activation by insertion sequences in Burkholderia cepacia AC1100 were investigated. Two closely related new elements, IS1413 and IS1490, were identified and characterized. These elements are not highly related to other insertion sequences identified in AC1100 or other B. cepacia isolates. Based on their structures and the sequences of the inverted terminal repeats and the putative transposase protein, the insertion elements (IS elements) are similar to IST2 of Thiobacillus ferrooxidans and several related elements. All the IS elements that have been identified in this strain are found in multiple copies (10 to 40), and they have high-level promoter activity capable of stimulating transcription from a distance up to 500 bp from a target gene. Strain AC1100 was originally isolated after prolonged selection for the ability to utilize the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole carbon source. Three IS elements are located near the first gene of the 2,4,5-T catabolic pathway, tftA. IS1490 inserted 110 bp upstream of tftA and created a fusion promoter responsible for constitutive transcription of the gene. Our results confirm the hypothesis that IS elements play a central role in transcription of 2,4,5-T genes and likely have stimulated rapid evolution of the metabolic pathway. PMID:9098071

  20. CH Stars and Barium Stars

    NASA Astrophysics Data System (ADS)

    Bond, H.; Sion, E.; Murdin, P.

    2000-11-01

    The classical barium (or `Ba II') stars are RED GIANT STARS whose spectra show strong absorption lines of barium, strontium and certain other heavy elements, as well as strong features due to carbon molecules. Together with the related class of CH stars, the Ba II stars were crucial in establishing the existence of neutron-capture reactions in stellar interiors that are responsible for the synt...

  1. A Star on Earth

    ScienceCinema

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-06-06

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  2. A Star on Earth

    SciTech Connect

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  3. Identifying Young, Nearby Stars

    NASA Technical Reports Server (NTRS)

    Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

    2001-01-01

    Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better

  4. Outburst Activity Driven by Evolved Pulsating Star in the Symbiotic Binary AG Dra

    NASA Astrophysics Data System (ADS)

    Gális, R.; Hric, L.; Leedjärv, L.

    2015-12-01

    The symbiotic system AG Dra regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one around ≈ 550 d is related to the orbital motion and the shorter one ≈355 d could be due to pulsation of the cool component of AG Dra.

  5. VizieR Online Data Catalog: Star formation in active and normal galaxies (Tsai+, 2015)

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Hwang, C.-Y.

    2015-11-01

    We selected 104 active galaxies from the lists of Melendez et al. (2010MNRAS.406..493M), Condon et al. 1991 (cat. J/ApJ/378/65), and Ho & Ulvestad 2001 (cat. J/ApJS/133/77). Most of the sources are identified as Active Galactic Nuclei (AGNs), and a few of them are classified as Luminous InfraRed Galaxies (LIRGs). We obtained 3.6 and 8μm infrared images of these galaxies from the Spitzer Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA/) and 8GHz images from the VLA archive (http://archive.nrao.edu/archive/archiveimage.html). We also selected a nearby AGN sub-sample containing 21 radio-selected AGNs for further spatial analysis. We selected 25 nearby AGNs exhibiting no detected radio emission in order to compare with the results of the radio-selected sources. For comparison, we also selected normal galaxies with distances less than 15Mpc from the catalog of Tully 1994 (see cat. VII/145). We only selected the galaxies that have Spitzer archive data and are not identified as AGNs in either the Veron-Cetty & Veron 2006 (see cat. VII/258) AGN catalog or in the NED database (http://ned.ipac.caltech.edu/). Our results for the radio-selected and the non-radio-selected active galaxies are listed in Table1, and those for the normal galaxies are listed in Table2. (2 data files).

  6. Seeing Stars in Serpens

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA's Spitzer Space Telescope.

    The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or 'protoplanetary disk,' that may eventually form planets, surrounds the infant stars.

    Wisps of green throughout the image indicate the presence of carbon rich molecules called polycyclic aromatic hydrocarbons. On Earth, these molecules can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way galaxy.

    The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation.

    The image is a three-channel, false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.

  7. Identification of striated muscle activator of Rho signaling (STARS) as a novel calmodulin target by a newly developed genome-wide screen.

    PubMed

    Furuya, Yusui; Denda, Miwako; Sakane, Kyohei; Ogusu, Tomoko; Takahashi, Sumio; Magari, Masaki; Kanayama, Naoki; Morishita, Ryo; Tokumitsu, Hiroshi

    2016-07-01

    To search for novel target(s) of the Ca(2+)-signaling transducer, calmodulin (CaM), we performed a newly developed genome-wide CaM interaction screening of 19,676 GST-fused proteins expressed in human. We identified striated muscle activator of Rho signaling (STARS) as a novel CaM target and characterized its CaM binding ability and found that the Ca(2+)/CaM complex interacted stoichiometrically with the N-terminal region (Ala13-Gln35) of STARS in vitro as well as in living cells. Mutagenesis studies identified Ile20 and Trp33 as the essential hydrophobic residues in CaM anchoring. Furthermore, the CaM binding deficient mutant (Ile20Ala, Trp33Ala) of STARS further enhanced its stimulatory effect on SRF-dependent transcriptional activation. These results suggest a connection between Ca(2+)-signaling via excitation-contraction coupling and the regulation of STARS-mediated gene expression in muscles. PMID:27132186

  8. Patrol of the short wavelength activity and flares of Sun as star

    NASA Astrophysics Data System (ADS)

    Afanasiev, I.; Avakyan, S.; Leonov, N.; Serova, A.; Voronin, N.

    Monitoring of the spectral range which most affects solar-terrestrial relationship - soft X-ray and extreme UV-radiations allows to solve ? problem of solar activity influence on all aspects of the Sun - Earth ties and to select the most important precursors of solar flares and the solar events related with a flare (such as proton events, high-velocity plasma streams in the solar wind, shock waves, coronal mass ejection and, the most important, the beginning of principal magnetic storms). Solar activity is constantly monitored at present (in the USA) only in two sections of the spectrum of ionizing radiation: <0.8 nm and >115 (119) nm. However, so far there has been no monitoring of the flux in the most geoeffective region of the spectrum (0.8-115 nm) from the entire disk of the sun; this region completely monitors the main part of the ionosphere of the earth and the ionosphere of the other planets of the solar system, including the formation and status of the main ionospheric maxima. This occurs solely because of technical and methodological difficulties in performing the measurements and calibration in this spectral range on spacecraft, because it is necessity to use only windowless optics. At the present the solar the optical - electronic equipment (OEE) is testing and there are plans to launch OEE of Space Solar Patrol (SSP) consisting of solar radiometers and spectrometers at the Russian Module of the International Space Station. So the solving the problem of the permanent monitoring-patrol of ionizing radiation from the full disk of the Sun appears in the main tasks of fundamental scientific studies in space. The results of this monitoring can be contribution in development of simultaneous studies in several sciences, such as: - solar astrophysics (state of all solar atmospheric regions), - meteorology, physics of atmosphere (the influence of solar activity on global changes, climate and weather including the effects of atmo s pheric electricity), - aeronomy

  9. Four-colour photometry of EY Dra: A study of an ultra-fast rotating active dM1-2e star

    NASA Astrophysics Data System (ADS)

    Vida, K.; Oláh, K.; Kovári, Zs.; Jurcsik, J.; Sódor, Á.; Váradi, M.; Belucz, B.; Dékány, I.; Hurta, Zs.; Nagy, I.; Posztobányi, K.

    2010-03-01

    We present more than 1000-day long photometry of EY Draconis in BV(RI)_C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip-flop phenomenon. Using Fourier analysis, we detect a rotation period of P_rot=0.45875 d, and an activity cycle with P≈350 d, similar to the 11-year long cycle of the Sun. This cycle with its year-long period is the shortest one ever detected on active stars. Two bright flares are also detected and analysed.

  10. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility.

    PubMed

    Senda, Yoshie; Murata-Kamiya, Naoko; Hatakeyama, Masanori

    2016-07-01

    Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis. PMID:27116701

  11. Further observations of the lambda 10830 He line in stars and their significance as a measure of stellar activity

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1975-01-01

    Measurements of the lambda 1030 He line in 198 stars are given along with data on other features in that spectral range. Nearly 80% of all G and K stars show some lambda 10830; of these, half are variable and 1/4 show emission. It was confirmed that lambda 10830 is not found in M stars, is weak in F stars, and is particularly strong in close binaries. The line is found in emission in extremely late M and S stars, along with P gamma, but P gamma is not in emission in G and K stars with lambda 10830 emissions. Variable He emission and Ti I emission are found in the RV Tauri variables R Scuti and U Mon. In R Aqr the Fe XIII coronal line lambda 10747 and a line at lambda 11012 which may be singlet He or La II are found, as well as lambda 10830 and P gamma. The nature of coronas or hot chromospheres in the various stars is discussed. It was concluded that the lambda 10830 intensity must be more or less proportional to the energy deposited in the chromosphere corona by non-thermal processes.

  12. An Investigation of the Largest Flares in Active Cool Star Binaries with ALEXIS

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent.

  13. Creating corporate advantage.

    PubMed

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum. PMID:10179655

  14. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    NASA Technical Reports Server (NTRS)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Wollack, Edward

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 - 1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, alpha(sub 148-218), of 3.7 +0.62/-0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  15. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    NASA Technical Reports Server (NTRS)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Duenner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, EriK D.; Wollack, Edward

    2013-01-01

    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218GHz in the 2008 Southern survey. Flux densities span 14-1700mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148GHz, with the trend continuing to 218GHz. The ACT dust-dominated source population has a median spectral index, alpha(sub 148-218), of 3.7+0.62 or -0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  16. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    NASA Technical Reports Server (NTRS)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Johnathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  17. LANL Activities Supporting Electron Accelerator Production of 99Mo for NorthStar Medical Radioisotopes, LLC

    SciTech Connect

    Dale, Gregory E.; Kelsey, Charles T. IV; Woloshun, Keith A.; Holloway, Michael A.; Olivas, Eric R.; Dalmas, Dale A.; Romero, Frank P.; Hurtle, Kenneth P.

    2012-07-11

    Summary of LANL FY12 Activities are: (1) Preparation, performance, and data analysis for the FY12 accelerator tests at ANL - (a) LANL designed and installed a closed-loop helium target cooling system at ANL for the FY12 accelerator tests, (b) Thermal test was performed on March 27, (c) 24 h production test to follow the accelerator upgrade at ANL; (2) Local target shielding design and OTR/IR recommendations - (a) Target dose rate and activation products were calculated with MCNPX, (b) {sup 206}Pb({gamma},2n){sup 204m}Pb vs {sup 204g}Pb branching ratio unpublished, will measure using the LANL microtron, (c) OTR system nearing final configuration, (d) IR prototype system demonstrated during the recent thermal test at ANL; (3) Target housing lifetime estimation - Target housing material specifications and design to be finalized following the thermal test, lifetime not believed to be an issue; and (4) Target cooling system reliability - Long duration system characterizations will begin following the thermal test.

  18. Pronounced Star Formation Activity, and its Effect on the Interstellar Medium and Evolution in the Magellanic Irregular Galaxy, NGC 4449

    NASA Astrophysics Data System (ADS)

    Home, Allen Tam

    1997-09-01

    NGC 4449, a nearby Magellanic Irregular Galaxy (at 5.4 Mpc, v = 214 km s-1) provides a unique laboratory to explore the processes that cause star formation. This UV bright galaxy exhibits a high star formation rate (SER) despite having a modest size and a lack of a spiral structure. Of the 22 OB associations in NGC 4449, UV spectra are taken from the seven brightest OB associations (or 'knots') using the SWP camera (at low dispersion mode) aboard the IUE satellite. Analysis using our newly developed Population Synthesis Code and Stellar library yields accurate ages, stellar populations and luminosities for each knot after assuming a initial mass function with a power law slope (α = 1.0) and a appropriate dust extinction law. UV rocket imagery (1430 A) and ground imagery at Hα (6563 A) and Hβ(4861A) supplement our analysis of NGC 4449. The OB associations (Knot 6, 10, 14, 16, and 18) that reside on the 'major ridge' of the galaxy, have at least two successive bursts of star formation in the last 12 Myr. Each of these knots exhibit a older generation of stars residing near a smaller, younger association at age 5 Myr. Knots 19 and 21 (11 & 12 Myr) have only a single burst of star formation. Our analysis of these knots indicate a high SFR spanning 0.013Msolaryr-1 to 0.063 Msolar yr-1 with a galactic SFR = 0.055 Msolar yr-1 (no reddening) to 2.4 Msolar yr-1 (corrected for internal galactic reddening). The high SFR implies a high supernova rate (SNR), with one supernova every 3 × 104 yr (knot 16) to 2 × 105 yr (knot 10). Future star formation regions are predicted in NGC 4449 using a simple plane-parallel model of star formation. The short-range plane-parallel model predicts localized, sequential star formation in a photoionization shock layer propagating in dense H2 clouds near OB stars. Long-range star formation using a thin-shell plane-parallel approximation show that star formation will propagate outwards to a range of 500pc (knot 6). A composite spatial map

  19. Star formation in Galactic flows

    NASA Astrophysics Data System (ADS)

    Smilgys, Romas; Bonnell, Ian A.

    2016-06-01

    We investigate the triggering of star formation in clouds that form in Galactic scale flows as the interstellar medium passes through spiral shocks. We use the Lagrangian nature of smoothed particle hydrodynamics simulations to trace how the star-forming gas is gathered into self-gravitating cores that collapse to form stars. Large-scale flows that arise due to Galactic dynamics create shocks of the order of 30 km s-1 that compress the gas and form dense clouds (n > several × 102 cm-3) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of n > 103 cm-3 which occur on size scales of ≈1 pc for low-mass star-forming regions (M < 100 M⊙), and up to sizes approaching 10 pc for higher mass regions (M > 103 M⊙). Star formation in the 250 pc region lasts throughout the 5 Myr time-scale of the simulation with a star formation rate of ≈10-1 M⊙ yr-1 kpc-2. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 per cent at our sink accretion radius to values of <10-3 at low densities.

  20. TESTING DIAGNOSTICS OF NUCLEAR ACTIVITY AND STAR FORMATION IN GALAXIES AT z > 1

    SciTech Connect

    Trump, Jonathan R.; Barro, Guillermo; Koo, David C.; Faber, S. M.; Kocevski, Dale D.; Yan, Renbin; Juneau, Stephanie; McLean, Ian S.; Perez-Gonzalez, Pablo G.; Villar, Victor

    2013-01-20

    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z {approx} 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/H{beta} ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/H{beta} versus [N II]/H{alpha} and [S II]/H{alpha}) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that 'composite' galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly {approx}2/3 of the z {approx} 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

  1. The Spatially-Resolved Star Formation History of the M31 Disk from Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Lewis, Alexia R.; Dalcanton, Julianne J.; Dolphin, Andrew E.; Weisz, Daniel R.; Williams, Benjamin F.

    2015-02-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that has mapped the resolved stellar populations of ~1/3 of the disk of M31 from the UV through the near-IR. This data provides color and luminosity information for more than 150 million stars. Using stellar evolution models, we model the optical color-magnitude diagram to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. With these gridded SFHs, we create movies of star formation activity to study the evolution of individual star-forming events across the disk. We analyze the structure of star formation and examine the relation between star formation and gas throughout the disk and particularly in the 10-kpc star-forming ring. We find that the ring has been continuously forming stars for at least 500 Myr. As the only large disk galaxy that is close enough to obtain the photometry for this type of spatially-resolved SFH mapping, M31 plays an important role in our understanding of the evolution of an L* galaxy.

  2. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). PMID:27528753

  3. ASP2408 and ASP2409, novel CTLA4-Ig variants with CD86-selective ligand binding activity and improved immunosuppressive potency, created by directed evolution.

    PubMed

    Oshima, Shinsuke; Karrer, Erik E; Paidhungat, Madan M; Neighbors, Margaret; Chapin, Steven J; Fan, Rong A; Reed, Margaret A; Wu, Kuoting; Wong, Clifford; Chen, Yonghong; Whitlow, Marc; Anderson, Francisco A; Bam, Rujuta A; Zhang, Qian; Larsen, Brent R; Viswanathan, Sridhar; Devens, Bruce H; Bass, Steven H; Higashi, Yasuyuki

    2016-05-01

    The CTLA4-Ig therapeutics abatacept and belatacept inhibit CD28-mediated T cell activation by binding CD80 (B7-1) and CD86 (B7-2) co-stimulatory ligands. Both compounds preferentially bind CD80, yet CD86 has been implicated as the dominant co-stimulatory ligand. Using directed evolution methods, novel CTLA4-Ig variants were created with selective CD86 binding affinity, a property that confers increased immunosuppressive potency and potentially improved efficacy and safety profiles. Relative to abatacept (wild-type CTLA4-Ig), ASP2408 and ASP2409 have 83-fold and 220-fold enhanced binding affinity to CD86 while retaining 1.5-fold and 5.6-fold enhanced binding affinity to CD80, respectively. Improvements in CD86 binding affinity correlates with increased immunosuppressive potencyin vitroandin vivo Our results highlight the power of directed evolution methods to obtain non-intuitive protein engineering solutions and represent the first examples of CD86-selective CTLA4-Ig compounds that have entered clinical trials. PMID:26968452

  4. Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Cai, Shiyu; Sun, Leilei; Chen, Tianyi

    2014-10-01

    The efficient delivery of therapeutic drugs into interested cells is a critical challenge to broad application of nonviral vector systems. In this research, emtansine (DM1)-loaded star-shaped folate-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (FA-PLA-TPGS-DM1) copolymer which demonstrated superior anticancer activity in vitro/ vivo in comparison with linear FA-PLA-TPGS nanoparticles was applied to be a vector of DM1 for FR+ breast cancer therapy. The DM1- or coumarin 6-loaded nanoparticles were fabricated, and then characterized in terms of size, morphology, drug encapsulation efficiency, and in vitro drug release. And the viability of MCF-7/HER2 cells treated with FA-DM1-nanoparticles (NPs) was assessed. Severe combined immunodeficient mice carrying MCF-7/HER2 tumor xenografts were treated in several groups including phosphate-buffered saline control, DM1, DM1-NPs, and FA-DM1-NPs. The antitumor activity was then assessed by survival time and solid tumor volume. All the specimens were prepared for formalin-fixed and paraffin-embedded tissue sections for hematoxylin-eosin staining. The data showed that the FA-DM1-NPs could efficiently deliver DM1 into MCF-7/HER2 cells. The cytotoxicity of DM1 to MCF-7/HER2 cells was significantly increased by FA-DM1-NPs when compared with the control groups. In conclusion, the FA-DM1-NPs offered a considerable potential formulation for FR+ tumor-targeting biotherapy.

  5. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.

    2012-01-20

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations r{sub p} < 100 h{sup -1}{sub 70} kpc and velocity offsets <600 km s{sup -1} from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] {lambda}5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger H{delta} absorption and smaller 4000 A break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for r{sub p} {approx}< 10-30 h{sup -1}{sub 70} kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  6. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  7. The active binary star II Pegasi with it BeppoSAX

    NASA Astrophysics Data System (ADS)

    Covino, S.; Tagliaferri, G.; Pallavicini, R.; Mewe, R.; Poretti, E.

    2000-03-01

    II Peg is an ideal target to study stellar activity and flares, since intense and long lasting flares have been frequently detected from this system at all wavelengths. We report here about a BeppoSAX observation of II Peg. We followed the system for ~ 19 hours on December 5 and 6 1997 with BeppoSAX and the X-ray light curve resembles the typical behavior of a decay phase of a long-lasting flare. The spectral analysis shows that the II Peg X-ray spectrum is described by a two-temperature components, with the two dominant temperatures centered in the range of 9-11 and 24-26 MK. The derived coronal metal abundance is low ( Z ~ 0.2 Z_sun) compared to recent determinations of the photospheric abundance (Z ~ 0.6 Z_sun). Some possible explanations for this phenomenology are reviewed. As for most other stellar coronal sources observed with BeppoSAX, we find that in order to fit the BeppoSAX spectra an interstellar column density about a factor ten higher than previously determined is required.

  8. Lithium and Isotopic Ratio Li6/Li7 in Magnetic roAp Stars as an Indicator of Active Processes

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.; Shavrina, A.; Lyashko, D.; Nesvacil, N.; Drake, N.; Smirnova, M.

    2015-04-01

    The lines of lithium at 6708 Å and 6103 Å are analyzed in high resolution spectra of some sharp-lined and slowly rotating roAp stars. Three spectral synthesis codes— STARSP, ZEEMAN2, and SYNTHM—were used. New lines of rare earth elements (REE) from the DREAM database and the lines calculated on the basis of the NIST energy levels were included. Magnetic splitting and other line broadening processes were taken into account. For both lithium lines, the enhanced abundances of lithium in the atmospheres of the stars studied are obtained. The lithium abundance determined from the Li 6103 Å line is higher than that from the Li 6708 Å for all the stars. This may be evidence of vertical lithium stratification, abnormal temperature distribution, or unidentified blending of the 6103 Å line. Our work on two roAp stars, HD 83368 and HD 60435 (Shavrina et al. 2001) provides evidence of an enhanced lithium abundance near the magnetic-field poles. We can expect similar effects in the sharp-lined roAp stars. High lithium abundance for all the stars and the estimates of the 6Li/7Li ratio (0.2-0.5) can be explained by production of Li in the cosmic ray spallation reactions in the interstellar medium where the stars were born, and by preservation of the original 6Li and 7Li by strong magnetic fields of these stars. The values of the 6Li/7Li ratio expected from production by cosmic rays are about 0.5-0.8 (Knauth et al. 2003; Webber et al. 2002). New laboratory and theoretical gf-values for REE lines are necessary in order to refine our estimates of lithium abundances and the isotopic ratio.

  9. Collapsing Enormous Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    One of the big puzzles in astrophysics is how supermassive black holes (SMBHs) managed to grow to the large sizes weve observed in the very early universe. In a recent study, a team of researchers examines the possibility that they were formed by the direct collapse of supermassive stars.Formation MysterySMBHs billions of times as massive as the Sun have been observed at a time when the universe was less than a billion years old. But thats not enough time for a stellar-mass black hole to grow to SMBH-size by accreting material so another theory is needed to explain the presence of these monsters so early in the universes history. A new study, led by Tatsuya Matsumoto (Kyoto University, Japan), poses the following question: what if supermassive stars in the early universe collapsed directly into black holes?Previous studies of star formation in the early universe have suggested that, in the hot environment of these primordial times, stars might have been able to build up mass much faster than they can today. This could result in early supermassive stars roughly 100,000 times more massive than the Sun. But if these early stars end their lives by collapsing to become massive black holes in the same way that we believe massive stars can collapse to form stellar-mass black holes today this should result in enormously violent explosions. Matusmoto and collaborators set out to model this process, to determine what we would expect to see when it happens!Energetic BurstsThe authors modeled the supermassive stars prior to collapse and then calculated whether a jet, created as the black hole grows at the center of the collapsing star, would be able to punch out of the stellar envelope. They demonstrated that the process would work much like the widely-accepted collapsar model of massive-star death, in which a jet successfully punches out of a collapsing star, violently releasing energy in the form of a long gamma-ray burst (GRB).Because the length of a long GRB is thought to

  10. STAR heavy flavor tracker

    NASA Astrophysics Data System (ADS)

    Qiu, Hao

    2014-11-01

    Hadrons containing heavy quarks are a clean probe of the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. To explore heavy quark production at RHIC, the Heavy Flavor Tracker (HFT) for the STAR experiment was built and installed in time for RHIC Run 14. The HFT consists of four layers of silicon detectors. The two outermost layers are silicon strip detectors and the two innermost layers are made from state-of-the-art ultra-thin CMOS Monolithic Active Pixel Sensors (MAPS). This is the first application of a CMOS MAPS detector in a collider experiment. The use of thin pixel sensors plus the use of carbon fiber supporting material limits the material budget to be only 0.4% radiation length per pixel detector layer, enabling the reconstruction of low pT heavy flavor hadrons. The status and performance of the HFT in the RHIC 200 GeV Au + Au run in 2014 are reported. Very good detector efficiency, hit residuals and track resolution (DCAs) were observed in the cosmic ray data and in the Au + Au data.

  11. Pseudosynchronization of Heartbeat Stars

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mara; Thompson, Susan E.; Hambleton, Kelly; Fuller, Jim; Shporer, Avi; Isaacson, Howard T.; Howard, Andrew; Kurtz, Donald

    2016-01-01

    A type of eccentric binary star that undergoes extreme dynamic tidal forces, known as Heartbeat stars, were discovered by the Kepler Mission. As the two stars pass through periastron, the tidal distortion causes unique brightness variations. Short period, eccentric binary stars, like these, are theorized to pseudosynchronize, or reach a rotational frequency that matches the weighted average orbital angular velocity of the system. This pseudosynchronous rate, as predicted by Hut (1981), depends on the binary's orbital period and eccentricity. We tested whether sixteen heartbeat stars have pseudosynchronized. We measure the rotation rate from obvious spot signatures in the light curve. We measure the eccentricity by fitting the light curve using PHOEBE and are actively carrying out a radial velocity monitoring program with Keck/HIRES in order to improve these orbital parameters. Our initial results show that while most heartbeat stars appear to have pseudosynchronized we find stars with rotation frequencies both longer and shorter than this rate. We thank the SETI Institute REU program, the NSF, and the Kepler Guest Observer Program for making this work possible.

  12. Rotational Velocities and Chromospheric/Coronal Activity of Low-Mass Stars in the Young Open Clusters IC 2391 and IC 2602

    NASA Astrophysics Data System (ADS)

    Stauffer, John R.; Hartmann, Lee W.; Prosser, Charles F.; Randich, Sofia; Balachandran, Suchitra; Patten, Brian M.; Simon, Theodore; Giampapa, Mark

    1997-04-01

    coronal activity as is found in several other young open clusters. That is, there is a large spread in coronal activity for stars with v sin i < 25 km s-1, where we assume there is an intrinsic link between increasing rotation and increasing activity superimposed upon which are a variety of observational and physical mechanisms that act to smear out this relation; above v sin i ~ 25 km s-1, all of the low-mass stars have log (LX/Lbol) ~ -3.0, the canonical ``saturation'' limit. Our measurements of the Hα equivalent widths are consistent with a similar relationship holding for chromospheric activity. One and possibly two of our spectra for M dwarf members of the IC clusters show broad wings for the Hα profile, which we attribute to a flare event or to microflares. Since spectra of a small sample of late-type M dwarfs in the Pleiades also showed similarly broad Hα wings, this suggests that flare frequencies for very young M dwarfs may be quite high.

  13. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    SciTech Connect

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola; Spitler, Lee R.; Cowley, Michael; Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya; Labbé, Ivo; Straatman, Caroline M. S.; Allen, Rebecca; Davé, Romeel; Dekel, Avishai; Ferguson, Henry C.; Koekemoer, Anton M.; Hartley, W. G.; Koo, David C.; and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  14. The Distribution of Satellites around Massive Galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on Star Formation Activity

    NASA Astrophysics Data System (ADS)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Spitler, Lee R.; Kacprzak, Glenn G.; Labbé, Ivo; Straatman, Caroline M. S.; Glazebrook, Karl; Allen, Rebecca; Cowley, Michael; Davé, Romeel; Dekel, Avishai; Ferguson, Henry C.; Hartley, W. G.; Koekemoer, Anton M.; Koo, David C.; Lu, Yu; Mehrtens, Nicola; Nanayakkara, Themiya; Persson, S. Eric; Rees, Glen; Salmon, Brett; Tilvi, Vithal; Tomczak, Adam R.; van Dokkum, Pieter

    2014-09-01

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M ⊙) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M ⊙) > 10.78, have ~2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M ⊙) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ~0 for log (Mh /M ⊙) ~ 11 to ~1 for log (Mh /M ⊙) ~ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Deepest Image of Exploded Star Uncovers Bipolar Jets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star's central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA's Marshall Space Flight Center in Huntsville, Alabama.

  16. Star formation activity in spiral galaxy disks and the properties of radio halos: Observational evidence for a direct dependence

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Lisenfeld, Ute; Golla, Gotz

    1995-01-01

    In this article we address observationally the questions: how does star formation (SF) in the disks of galaxies lead to the creation of radio halos, and what minimum energy input into the interstellar medium (ISM) is needed to facilitate this? For the investigation we use a sample of five edge-on galaxies exhibiting radio continuum emmission in their halos and enhanced SF spread over large parts of their disks. In a detailed study of the two galaxies in our sample for which we have the best data, NGC 891 and NGC 4631, we show that the radio halos cut off abruptly at galactocentric radii smaller than those of the underlying thin radio disks. Our most important result is that the halo cutoffs are spatially coincident with the radii where the SF activity in the underlying disks drops sharply. The difference in radius of the emission distributions tracing ongoing SF in the disks (IRAS 50 micrometers, H alpha) versus that of the nonthermal radio continuum thin disks (tracing the distribution of cosmic-ray (CR) electrons) is typically a few kpc. This difference in extent is caused by CR diffusion. We have measured the CR diffusion coefficients in the thin disks of both NGC 891 and NGC 4631. For radial diffusion of CR electrons within the galactic disks the values are D(sub r) = 1.1-2.5 x 10 (exp 29) sq cm/s (NGC 4631) and D(sub r) = 1.2 x 10(exp 29) sq cm/s (NGC 891). For motions in the z-direction in areas within the thin disks where no outflows occur, we derive a firm upper limit of D(sub z) less than or equal to 0.2 x 10(exp 28) sq cm/s for NGC 891. The value for NGC 4631 is D(sub z = 1.4 x 10 (exp 28) sq cm/s. The other three galaxies in our sample, NGC 3044, NGC 4666, and NGC 5775 show (at the sensitivity of our data) less extended, more filamentary radio halos. Isolates spurs or filaments of nonthermal radio continuum emission in their halos are traced only above the most actively star-forming regions in the disks. This, in conjuction with the results obtained for

  17. Early science with the large millimeter telescope: exploring the effect of AGN activity on the relationships between molecular gas, dust, and star formation

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Calzetti, Daniela; Narayanan, Gopal; Schloerb, F. Peter; Yun, Min S.; Aretxaga, Itziar; Montaña, Alfredo; Vega, Olga; Armus, Lee; Helou, George; Shi, Yong

    2014-12-01

    The molecular gas, H{sub 2}, that fuels star formation in galaxies is difficult to observe directly. As such, the ratio of L {sub IR} to L{sub CO}{sup ′} is an observational estimate of the star formation rate compared with the amount of molecular gas available to form stars, which is related to the star formation efficiency and the inverse of the gas consumption timescale. We test what effect an IR luminous active galactic nucleus (AGN) has on the ratio L{sub IR}/L{sub CO}{sup ′} in a sample of 24 intermediate redshift galaxies from the 5 mJy Unbiased Spitzer Extragalactic Survey (5MUSES). We obtain new CO(1-0) observations with the Redshift Search Receiver on the Large Millimeter Telescope. We diagnose the presence and strength of an AGN using Spitzer IRS spectroscopy. We find that removing the AGN contribution to L{sub IR}{sup tot} results in a mean L{sub IR}{sup SF}/L{sub CO}{sup ′} for our entire sample consistent with the mean L{sub IR}/L{sub CO}{sup ′} derived for a large sample of star forming galaxies from z ∼ 0-3. We also include in our comparison the relative amount of polycyclic aromatic hydrocarbon emission for our sample and a literature sample of local and high-redshift ultra luminous infrared galaxies and find a consistent trend between L{sub 6.2}/L{sub IR}{sup SF} and L{sub IR}{sup SF}/L{sub CO}{sup ′}, such that small dust grain emission decreases with increasing L{sub IR}{sup SF}/L{sub CO}{sup ′} for both local and high-redshift dusty galaxies.

  18. The R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.

    1996-03-01

    This year marks the bicentennial of the discovery of the variability of R Coronae Borealis. The R Coronae Borealis (RCB) stars are distinguished from other hydrogen-deficient objects by their spectacular dust formation episodes. They may decline by up to 8 magnitudes in a few weeks revealing a rich emission-line spectrum. Their atmospheres have unusual abundances with very little hydrogen and an overabundance of carbon and nitrogen. The RCB stars are thought to be the product of a final helium shell flash or the coalescence of a binary white-dwarf system. Dust may form in non-equilibrium conditions created behind shocks caused by pulsations in the atmospheres of these stars. The RCB stars are interesting and important, first because they represent a rare, or short-lived stage of stellar evolution, and second because these stars regularly produce large amounts of dust so they are laboratories for the study of dust formation and evolution. (SECTION: Invited Review Paper)

  19. MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Uchimoto, Y. K.; Yoshikawa, T.; Onodera, M.

    2010-11-01

    We study the evolution of star formation activity of galaxies at 0.5 < z < 3.5 as a function of stellar mass, using very deep NIR data taken with the Multi-Object Infrared Camera and Spectrograph on the Subaru telescope in the GOODS-North region. The NIR imaging data reach K{approx} 23-24 Vega magnitude and they allow us to construct a nearly stellar-mass-limited sample down to {approx}10{sup 9.5-10} M{sub sun} even at z {approx} 3. We estimated star formation rates (SFRs) of the sample with two indicators, namely, the Spitzer/MIPS 24 {mu}m flux and the rest-frame 2800 A luminosity. The SFR distribution at a fixed M{sub star} shifts to higher values with increasing redshift at 0.5 < z < 3.5. More massive galaxies show stronger evolution of SFR at z {approx}> 1. We found galaxies at 2.5 < z < 3.5 show a bimodality in their SSFR distribution, which can be divided into two populations by a constant SSFR of {approx}2 Gyr{sup -1}. Galaxies in the low-SSFR group have SSFRs of {approx}0.5-1.0 Gyr{sup -1}, while the high-SSFR population shows {approx}10 Gyr{sup -1}. The cosmic SFR density (SFRD) is dominated by galaxies with M{sub star} = 10{sup 10-11} M{sub sun} at 0.5 < z < 3.5, while the contribution of massive galaxies with M{sub star} = 10{sup 11-11.5} M{sub sun} shows a strong evolution at z>1 and becomes significant at z {approx} 3, especially in the case with the SFR based on MIPS 24 {mu}m. In galaxies with M{sub star} = 10{sup 10-11.5} M{sub sun}, those with a relatively narrow range of SSFR ({approx}<1 dex) dominates the cosmic SFRD at 0.5 < z < 3.5. The SSFR of galaxies that dominate the SFRD systematically increases with redshift. At 2.5 < z < 3.5, the high-SSFR population, which is relatively small in number, dominates the SFRD. Major star formation in the universe at higher redshift seems to be associated with a more rapid growth of stellar mass of galaxies.

  20. Modelling the magnetic activity and filtering radial velocity curves of young Suns : the weak-line T Tauri star LkCa 4

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Hébrard, E.; Hussain, G.; Moutou, C.; Grankin, K.; Boisse, I.; Morin, J.; Gregory, S. G.; Vidotto, A. A.; Bouvier, J.; Alencar, S. H. P.; Delfosse, X.; Doyon, R.; Takami, M.; Jardine, M. M.; Fares, R.; Cameron, A. C.; Ménard, F.; Dougados, C.; Herczeg, G.; Matysse Collaboration

    2014-11-01

    We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star LkCa 4 within the Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets (MaTYSSE) programme, involving ESPaDOnS at the Canada-France-Hawaii Telescope. Despite an age of only 2 Myr and a similarity with prototypical classical T Tauri stars, LkCa 4 shows no evidence for accretion and probes an interesting transition stage for star and planet formation. Large profile distortions and Zeeman signatures are detected in the unpolarized and circularly polarized lines of LkCa 4 using Least-Squares Deconvolution (LSD), indicating the presence of brightness inhomogeneities and magnetic fields at the surface of LkCa 4. Using tomographic imaging, we reconstruct brightness and magnetic maps of LkCa 4 from sets of unpolarized and circularly polarized LSD profiles. The large-scale field is strong and mainly axisymmetric, featuring a ≃2 kG poloidal component and a ≃1 kG toroidal component encircling the star at equatorial latitudes - the latter making LkCa 4 markedly different from classical T Tauri stars of similar mass and age. The brightness map includes a dark spot overlapping the magnetic pole and a bright region at mid-latitudes - providing a good match to the contemporaneous photometry. We also find that differential rotation at the surface of LkCa 4 is small, typically ≃5.5 times weaker than that of the Sun, and compatible with solid-body rotation. Using our tomographic modelling, we are able to filter out the activity jitter in the radial velocity curve of LkCa 4 (of full amplitude 4.3 km s-1) down to an rms precision of 0.055 km s-1. Looking for hot Jupiters around young Sun-like stars thus appears feasible, even though we find no evidence for such planets around LkCa 4.

  1. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings. PMID:27299693

  2. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  3. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    SciTech Connect

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-02-20

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N{sub H} {approx}< 10{sup 22} cm{sup -2} in the metal-rich regions whereas they have N{sub H} {approx}> 10{sup 22} cm{sup -2} in the

  4. Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol

    1995-01-01

    We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.

  5. A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-09-01

    Despite their reputation as being `red and dead', the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of `active' BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG `activity' with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG `activity' and the intracluster medium.

  6. Sounds of a Star

    NASA Astrophysics Data System (ADS)

    2001-06-01

    colours show element displacements in opposite directions. Geologists monitor how seismic waves generated by earthquakes propagate through the Earth, and thus learn about the inner structure of our planet. The same technique works for stars. The Sun, our nearest star and a typical middle-age member of its class, has been investigated in this way since the 1960's. With "solar seismology" , astronomers have been able to learn much about the inner parts of the star, and not only the outer layers normally visible to the telescopes. In the Sun, heat is bubbling up from the central regions where enormous amount of energy is created by nuclear reactions . In the so-called convective zone , the gas is virtually boiling, and hot gas-bubbles are rising with a speed that is close to that of sound. Much like you can hear when water starts to boil, the turbulent convection in the Sun creates noise . These sound waves then propagate through the solar interior and are reflected on the surface, making it oscillate. This "ringing" is well observed in the Sun, where the amplitude and frequency of the oscillations provide astronomers with plenty of information about the physical conditions in the solar interior. From the Sun to the stars There is every reason to believe that our Sun is a quite normal star of its type. Other stars that are similar to the Sun are therefore likely to pulsate in much the same way as the Sun. The search for such oscillations in other solar-like stars has, however, been a long and difficult one. The problem is simply that the pulsations are tiny, so very great precision is needed in the measurements. However, the last few years have seen considerable progress in asteroseismology, and François Bouchy and Fabien Carrier from the Geneva Observatory have now been able to detect unambiguous acoustic oscillations in the Solar-twin star, Alpha Centauri A. The bright and nearby star Alpha Centauri Alpha Centauri (Alpha Cen) [1] is the brightest star in the constellation

  7. A GALAXY BLAZES WITH STAR FORMATION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most galaxies form new stars at a fairly slow rate, but members of a rare class known as 'starburst' galaxies blaze with extremely active star formation. Scientists using NASA's Hubble Space Telescope are perfecting a technique to determine the history of starburst activity in galaxies by using the colors of star clusters. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue, and older stars redder, the colors can be related to the ages, somewhat similar to counting the rings in a fallen tree trunk in order to determine the tree's age. The galaxy NGC 3310 is forming clusters of new stars at a prodigious rate. Astronomer Gerhardt Meurer of The Johns Hopkins University leads a team of collaborators who are studying several starburst galaxies, including NGC 3310, which is showcased in this month's Hubble Heritage image. There are several hundred star clusters in NGC 3310, visible in the Heritage image as the bright blue diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show that they have ages ranging from about one million up to more than one hundred million years. This suggests that the starburst 'turned on' over 100 million years ago. It may have been triggered when a companion galaxy collided with NGC 3310. These observations may change astronomers' view of starbursts. Starbursts were once thought to be brief episodes, resulting from catastrophic events like a galactic collision. However, the wide range of cluster ages in NGC 3310 suggests that the starbursting can continue for an extended interval, once

  8. Can Children Really Create Knowledge?

    ERIC Educational Resources Information Center

    Bereiter, Carl; Scardamalia, Marlene

    2010-01-01

    Can children genuinely create new knowledge, as opposed to merely carrying out activities that resemble those of mature scientists and innovators? The answer is yes, provided the comparison is not to works of genius but to standards that prevail in ordinary research communities. One important product of knowledge creation is concepts and tools…

  9. Creating alternatives in science

    PubMed Central

    2009-01-01

    Traditional scientist training at the PhD level does not prepare students to be competitive in biotechnology or other non-academic science careers. Some universities have developed biotechnology-relevant doctoral programmes, but most have not. Forming a life science career club makes a statement to university administrators that it is time to rework the curriculum to include biotechnology-relevant training. A career club can supplement traditional PhD training by introducing students to available career choices, help them develop a personal network and teach the business skills that they will need to be competitive in science outside of academia. This paper is an instructional guide designed to help students create a science career club at their own university. These suggestions are based on the experience gained in establishing such a club for the Graduate School at the University of Colorado Denver. We describe the activities that can be offered, the job descriptions for the offices required and potential challenges. With determination, a creative spirit, and the guidance of this paper, students should be able to greatly increase awareness of science career options, and begin building the skills necessary to become competitive in non-academic science. PMID:20161069

  10. A Multi-Wavelength Photometric Census of AGN and Star Formation Activity in the Brightest Cluster Galaxies of X-ray Selected Clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-06-01

    Despite their reputation as being "red and dead", the unique environment inhabited by Brightest Cluster Galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and AGN activity in the BCG. However the prevalence of "active" BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and Mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14% of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG "activity" with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG "activity" and the intracluster medium.

  11. Effects of the STAR Intervention Program on Interactions between Campers with and without Disabilities during Inclusive Summer Day Camp Activities

    ERIC Educational Resources Information Center

    Boyd, Christina M.; Fraiman, Jeffrey L.; Hawkins, Kelly A.; Labin, Jennifer M.; Sutter, Mary Beth; Wahl, Meghan R.

    2008-01-01

    The purpose of this study was to examine the effects of a peer intervention program designed to increase interactions between children with and without disabilities in an inclusive summer camp. A multiple probe single subject design was used to determine the effects of the STAR intervention on six dyads of campers aged five through ten over two…

  12. Active galactic nuclei. IV - Supplying black hole clusters by tidal disruption and by tidal capture of stars

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.; Pacholczyk, A. G.; Stepinski, T. F.

    1992-01-01

    The extent to which individual holes in a cluster of black holes with a mass spectrum can liberate and accrete the resulting material by tidally disrupting stars they encounter, or by capturing stars as binary companions is studied. It is found that the smaller black holes in 'the halo' of such clusters can adequately supply themselves to the level M-dot sub h or greater than 0.0001(M-dot sub h) sub crit, and up to 0.05(M-dot sub h)sub crit for the smallest holes, by tidal disruption, as long as the cluster is embedded in a distribution of stars of relatively high density (not less than 0.1M sub cl/cu pc), and as long as the entire cluster of stars is not too compact (not less than 0.5 pc). Consideration is given to modifications this 'internal' mode of supply introduces in the spectrum emitted by such black hole clusters, and to the current status of their viability as models for AGN and QSOs in light of dynamical studies by Quinlan and Shapiro (1987, 1989).

  13. INVESTIGATION OF DUAL ACTIVE NUCLEI, OUTFLOWS, SHOCK-HEATED GAS, AND YOUNG STAR CLUSTERS IN MARKARIAN 266

    SciTech Connect

    Mazzarella, J. M.; Chan, B. H. P.; Iwasawa, K. E-mail: bchan@ipac.caltech.edu; and others

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a Almost-Equal-To 2.5 Multiplication-Sign 10{sup 8} M{sub Sun} black hole. Although the nuclei have an observed hard X-ray flux ratio of f{sub X} (NE)/f{sub X} (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe K{alpha} line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H{sub 2} line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T {approx} 10{sup 7} K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 {mu}m emission aligned with soft X-rays, radio continuum, and ionized gas emission extending {approx}34'' (20 kpc) north of the galaxies is interpreted as {approx}2 Multiplication-Sign 10{sup 7} M{sub Sun} of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust 'blow-out' phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent

  14. Journaling: creating space for "I".

    PubMed

    Charles, Jennell P

    2010-01-01

    As nurses engaged in a caring profession, it is critical that we learn not only to care for others but also to care for ourselves. To care effectively for ourselves, we must create the space and time in which to do this. Journaling is one tool that scholars offer as a way to create this space. Although there is no clear consensus about the best techniques for journaling, there is evidence that journaling, as a reflective, meditative activity, can promote creativity, self-awareness, and personal development. PMID:21140872

  15. A Sleeping Giant Awakened: Reignition of AGN Activity, Reborn Star Formation, and a Multiphase Outflow in one of the Largest Radio Galaxies Known

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant; O'Dea, Christopher; Labiano, Alvaro; Baum, Stefi; McDermid, Richard; Combes, Francoise; Garcia-Burillo, Santiago; Davis, Timothy

    2014-08-01

    3C 236 is the second largest known radio galaxy and one of the largest objects in the known Universe. Its central AGN has recently reignited after a 10 Myr dormancy period, giving rise to a very young and compact radio source and a 1000 km/sec outflow of warm ionized and atomic HI gas. We propose GMOS-N IFU observations to resolve this outflow, determine its driver, and estimate the relative coupling efficiencies between the warm ionized, atomic, and cold molecular gas phases. We will assemble a much-needed spatially resolved Balmer decrement (extinction map) across the dramatic double dust lanes of this source, enabling high spatial resolution star formation rate, efficiency, and gas excitation and velocity maps. These will address several mysteries related to the very high star formation efficiency and the unique nature of the multiphase outflow in this source. 3C 236 is such a remarkable galaxy that whatever the results of the proposed observations, they will have wide-ranging implications for the triggering of star formation and AGN activity, their possibly coupled co-evolution, and the feedback effects of the latter on the former.

  16. America's Star Libraries: Top-Rated Libraries

    ERIC Educational Resources Information Center

    Lance, Keith Curry; Lyons, Ray

    2009-01-01

    "Library Journal"'s national rating of public libraries, the "LJ" Index of Public Library Service 2009, Round 2, identifies 258 "star" libraries. Created by Keith Curry Lance and Ray Lyons and based on 2007 data from the IMLS, it rates 7,268 public libraries. The top libraries in each group get five, four, or three stars. All included libraries,…

  17. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  18. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method. PMID:25299950

  19. Conserved sequences of sperm-activating peptide and its receptor throughout evolution, despite speciation in the sea star Asterias amurensis and closely related species.

    PubMed

    Nakachi, Mia; Hoshi, Motonori; Matsumoto, Midori; Moriyama, Hideaki

    2008-08-01

    The asteroidal sperm-activating peptides (asterosaps) from the egg jelly bind to their sperm receptor, a membrane-bound guanylate cyclase, on the tail to activate sperm in sea stars. Asterosaps are produced as single peptides and then cleaved into shorter peptides. Sperm activation is followed by the acrosome reaction, which is subfamily specific. In order to investigate the molecular details of the asterosap-receptor interaction, corresponding cDNAs have been cloned, sequenced and analysed from the Asteriinae subfamily including Asterias amurensis, A. rubens, A. forbesi and Aphelasterias japonica, as well as Distolasterias nipon from the Coscinasteriinae subfamily. Averages of 29% and 86% identity were found from the deduced amino acid sequences in asterosap and its receptor extracellular domains, respectively, across all species examined. The phylogenic tree topology for asterosap and its receptor was similar to that of the mitochondrial cytochrome c oxidase subunit I. In spite of a certain homology, the amino acid sequences exhibited speciation. Conservation was found in the asterosap residues involved in disulphide bonding and proteinase-cleaving sites. Conversely, similarities were detected between potential asterosap-binding sites and the structure of the atrial natriuretic peptide receptor. Although the sperm-activating peptide and its receptor share certain common sequences, they may serve as barriers that ensure speciation in the sea star A. amurensis and closely related species. PMID:18578950

  20. ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2

    NASA Astrophysics Data System (ADS)

    Cowley, Michael J.; Spitler, Lee R.; Tran, Kim-Vy H.; Rees, Glen A.; Labbé, Ivo; Allen, Rebecca J.; Brammer, Gabriel B.; Glazebrook, Karl; Hopkins, Andrew M.; Juneau, Stéphanie; Kacprzak, Glenn G.; Mullaney, James R.; Nanayakkara, Themiya; Papovich, Casey; Quadri, Ryan F.; Straatman, Caroline M. S.; Tomczak, Adam R.; van Dokkum, Pieter G.

    2016-03-01

    We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep Ks-band imaging of ZFOURGE with overlapping multiwavelength data. From this, we construct a mass-complete (log(M_{{*}}/M_{{⊙}}) ≥9.75), AGN luminosity limited sample of 235 AGN hosts over z = 0.2-3.2. We compare the rest-frame U - V versus V - J (UVJ) colours and specific star formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160 μm Herschel PACS data, we find the mean specific star formation rate of AGN hosts to be elevated by 0.34 ± 0.07 dex with respect to the control sample across all redshifts. This offset is primarily driven by infrared-selected AGN, where the mean sSFR is found to be elevated by as much as a factor of ˜5. The remaining population, comprised predominantly of X-ray AGN hosts, is found mostly consistent with inactive galaxies, exhibiting only a marginal elevation. We discuss scenarios that may explain these findings and postulate that AGN are less likely to be a dominant mechanism for moderating galaxy growth via quenching than has previously been suggested.

  1. ALMA observations of a z ≈ 3.1 protocluster: star formation from active galactic nuclei and Lyman-alpha blobs in an overdense environment

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Simpson, J. M.; Harrison, C. M.; Mullaney, J. R.; Smail, I.; Geach, J. E.; Hickox, R. C.; Hine, N. K.; Karim, A.; Kubo, M.; Lehmer, B. D.; Matsuda, Y.; Rosario, D. J.; Stanley, F.; Swinbank, A. M.; Umehata, H.; Yamada, T.

    2016-09-01

    We exploit Atacama Large Interferometer Array (ALMA) 870 μm observations to measure the star formation rates (SFRs) of eight X-ray detected active galactic nuclei (AGNs) in a z ≈ 3.1 protocluster, four of which reside in extended Lyα haloes (often termed Lyman-alpha blobs: LABs). Three of the AGNs are detected by ALMA and have implied SFRs of ≈220-410 M⊙ yr-1; the non-detection of the other five AGNs places SFR upper limits of ≲210 M⊙ yr-1. The mean SFR of the protocluster AGNs (≈110-210 M⊙ yr-1) is consistent (within a factor of ≈0.7-2.3) with that found for co-eval AGNs in the field, implying that the galaxy growth is not significantly accelerated in these systems. However, when also considering ALMA data from the literature, we find evidence for elevated mean SFRs (up-to a factor of ≈5.9 over the field) for AGNs at the protocluster core, indicating that galaxy growth is significantly accelerated in the central regions of the protocluster. We also show that all of the four protocluster LABs are associated with an ALMA counterpart within the extent of their Lyα emission. The SFRs of the ALMA sources within the LABs (≈150-410 M⊙ yr-1) are consistent with those expected for co-eval massive star-forming galaxies in the field. Furthermore, the two giant LABs (with physical extents of ≳100 kpc) do not host more luminous star formation than the smaller LABs, despite being an order of magnitude brighter in Lyα emission. We use these results to discuss star formation as the power source of LABs.

  2. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  3. MUSE three-dimensional spectroscopy and kinematics of the gigahertz peaked spectrum radio galaxy PKS 1934-63: interaction, recently triggered active galactic nucleus and star formation

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Humphrey, Andrew; Lagos, Patricio; Papaderos, Polychronis; Silva, Marckelson; Cardoso, Leandro S. M.; Gomes, Jean Michel

    2016-07-01

    We observe the radio galaxy PKS 1934-63 (at z = 0.1825) using the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The radio source is a gigahertz peaked spectrum source and is compact (0.13 kpc), implying an early stage of evolution (≤104 yr). Our data show an interacting pair of galaxies, with projected separation 9.1 kpc and velocity difference Δ(v) = 216 km s-1. The larger galaxy is a M* ≃ 1011 M⊙ spheroidal with the emission-line spectrum of a high-excitation young radio active galactic nucleus (AGN; e.g. strong [O I]6300 and [O III]5007). Emission-line ratios indicate a large contribution to the line luminosity from high-velocity shocks (≃ 550 km s-1). The companion is a non-AGN disc galaxy, with extended Hα emission from which its star formation rate is estimated as 0.61 M⊙ yr-1. Both galaxies show rotational velocity gradients in Hα and other lines, with the interaction being prograde-prograde. The SE-NW velocity gradient of the AGN host is misaligned from the E-W radio axis, but aligned with a previously discovered central ultraviolet source, and a factor of 2 greater in amplitude in Hα than in other (forbidden) lines (e.g. [O III]5007). This could be produced by a fast rotating (100-150 km s-1) disc with circumnuclear star fo