Science.gov

Sample records for actively dividing cells

  1. HIV-1 latency in actively dividing human T cell lines

    PubMed Central

    Jeeninga, Rienk E; Westerhout, Ellen M; van Gerven, Marja L; Berkhout, Ben

    2008-01-01

    Background Eradication of HIV-1 from an infected individual cannot be achieved by current drug regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptional silent provirus. However, the molecular mechanisms that permit long-term transcriptional control of proviral gene expression in these cells are still not well understood. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication. Results We set out to develop a new in vitro HIV-1 latency model system using the doxycycline (dox)-inducible HIV-rtTA variant. Stable cell clones were generated with a silent HIV-1 provirus, which can subsequently be activated by dox-addition. Surprisingly, only a minority of the cells was able to induce viral gene expression and a spreading infection, eventhough these experiments were performed with the actively dividing SupT1 T cell line. These latent proviruses are responsive to TNFα treatment and alteration of the DNA methylation status with 5-Azacytidine or genistein, but not responsive to the regular T cell activators PMA and IL2. Follow-up experiments in several T cell lines and with wild-type HIV-1 support these findings. Conclusion We describe the development of a new in vitro model for HIV-1 latency and discuss the advantages of this system. The data suggest that HIV-1 proviral latency is not restricted to resting T cells, but rather an intrinsic property of the virus. PMID:18439275

  2. Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury.

    PubMed

    Gleason, D; Fallon, J H; Guerra, M; Liu, J-C; Bryant, P J

    2008-09-22

    Evidence is presented to show that cells of the ependymal layer surrounding the ventricles of the mammalian (rat) forebrain act as neural stem cells (NSCs), and that these cells can be activated to divide by a combination of injury and growth factor stimulation. Several markers of asymmetric cell division (ACD), a characteristic of true stem cells, are expressed asymmetrically in the ependymal layer but not in the underlying subventricular zone (SVZ), and when the brain is treated with a combination of local 6-hydroxydopamine (6-OHDA) with systemic delivery of transforming growth factor-alpha (TGFalpha), ependymal cells divide asymmetrically and transfer progeny into the SVZ. The SVZ cells then divide as transit amplifying cells (TACs) and their progeny enter a differentiation pathway. The stem cells in the ependymal layer may have been missed in many previous studies because they are usually quiescent and divide only in response to strong stimuli.

  3. Divided electrochemical cell assembly

    SciTech Connect

    King, Ch. J. H.

    1985-02-19

    A divided electrochemical cell assembly comprises stacked bipolar substantially square parallel planar electrodes and membranes. The corners and edges of the electrodes with bordering insulative spacers in juxtaposition with the chamber walls define four electrolyte circulation manifolds. Anolyte and catholyte channeling means permit the separate introduction of anolyte and catholyte into two of the manifolds and the withdrawal of anolyte and catholyte separately from at least two other manifolds. The electrodes and membranes are separated from one another by the insulative spacers which are also channeling means disposed to provide electrolyte channels across the interfaces of adjacent electrodes and membranes.

  4. Histone Deacetylase Inhibition Activates Transgene Expression from Integration-Defective Lentiviral Vectors in Dividing and Non-Dividing Cells

    PubMed Central

    Pelascini, Laetitia P.L.; Janssen, Josephine M.

    2013-01-01

    Abstract Integration-defective lentiviral vectors (IDLVs) are being increasingly deployed in both basic and preclinical gene transfer settings. Often, however, the IDLV transgene expression profile is muted when compared to that of their integration-proficient counterparts. We hypothesized that the episomal nature of IDLVs turns them into preferential targets for epigenetic silencing involving chromatin-remodeling histone deacetylation. Therefore, vectors carrying an array of cis-acting elements and transcriptional unit components were assembled with the aid of packaging constructs encoding either the wild-type or the class I mutant D116N integrase moieties. The transduction levels and transgene-product yields provided by each vector class were assessed in the presence and absence of the histone deacetylase (HDAC) inhibitors sodium butyrate and trichostatin A. To investigate the role of the target cell replication status, we performed experiments in growth-arrested human mesenchymal stem cells and in post-mitotic syncytial myotubes. We found that IDLVs are acutely affected by HDACs regardless of their genetic makeup or target cell replication rate. Interestingly, the magnitude of IDLV transgene expression rescue due to HDAC inhibition varied in a vector backbone– and cell type–dependent manner. Finally, investigation of histone modifications by chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) revealed a paucity of euchromatin marks distributed along IDLV genomes when compared to those measured on isogenic integration-competent vector templates. These findings support the view that IDLVs constitute preferential targets for epigenetic silencing involving histone deacetylation, which contributes to dampening their full transcriptional potential. Our data provide leads on how to most optimally titrate and deploy these promising episomal gene delivery vehicles. PMID:23140481

  5. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa.

    PubMed

    Nagaonkar, Dipali; Shende, Sudhir; Rai, Mahendra

    2015-01-01

    Nanobiotechnological application of copper nanoparticles has paved the way for advancement in agriculture owing to its bactericidal and fungicidal activities. Recently, researchers have focussed on bioinspired synthesis of copper nanoparticles as a viable alternative to existing physicochemical techniques. For the commercialization of nanocopper, the toxicity evaluation is a major issue. In this context, Citrus medica (L.) fruit extract-mediated copper nanoparticles were synthesized and its different concentrations (10, 20, 40, 60, 80, and 100 µg mL(-1) ) were evaluated for its effect on actively dividing cells of Allium cepa. The study clearly revealed that copper nanoparticles increased mitotic index up to the concentration of 20 µg mL(-1) . In addition, a gradual decline in mitotic index and increase in abnormality index was observed as the concentration of copper nanoparticles and treatment duration were increased. Aberrations in chromosomal behavior such as sticky and disturbed chromosomes in metaphase and anaphase, c-metaphase, bridges, laggard, disturbed telophase, and vacuolated nucleus were also observed.

  6. DNA repair mechanisms in dividing and non-dividing cells.

    PubMed

    Iyama, Teruaki; Wilson, David M

    2013-08-01

    DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.

  7. DNA repair mechanisms in dividing and non-dividing cells

    PubMed Central

    Iyama, Teruaki; Wilson, David M.

    2013-01-01

    DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye towards how these pathways may regulate the development of neurological disease. PMID:23684800

  8. Raman activity in synchronously dividing bacteria

    SciTech Connect

    Layne, S.P.

    1985-01-01

    Using a spectrometer equipped with an optical-multichannel analyzer as the detector (OMA), we have observed the Stokes laser-Raman spectra of metabolically active Escherichia coli and Bacillus megaterium from 100 - 2100 cm/sup -1/. After lengthy investigation, no Raman lines attributable to the metabolic process nor the cells themselves were found. Previous Raman spectra of active bacteria cannot be used to support nonlinear theories in biology. 34 refs., 9 figs.

  9. Divided attention interferes with fulfilling activity-based intentions.

    PubMed

    Brewer, Gene A; Ball, B Hunter; Knight, Justin B; Dewitt, Michael R; Marsh, Richard L

    2011-09-01

    Two experiments were conducted to examine the effects of divided attention on activity-based prospective memory. After establishing a goal to fulfill an intention upon completion of an ongoing activity, successful completion of the intention generally suffered when attention was being devoted to an additional task (Experiment 1). Forming an implementation intention at encoding ameliorated the negative effects of divided attention (Experiment 2). The results from the present experiments demonstrate that activity-based prospective memory is susceptible to distraction and that implementing encoding strategies that enhance prospective memory performance can reduce this interference. The current work raises interesting questions about the similarities and differences between event- and activity-based prospective memories.

  10. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  11. Brain activity associated with selective attention, divided attention and distraction.

    PubMed

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-03-28

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks.

  12. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    PubMed

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.

  13. Antiprion compounds that reduce PrPSc levels in dividing and stationary-phase cells

    PubMed Central

    Silber, B. Michael; Gever, Joel R.; Li, Zhe; Gallardo-Godoy, Alejandra; Renslo, Adam R.; Widjaja, Kartika; Irwin, John J.; Rao, Satish; Jacobson, Matthew P.; Ghaemmaghami, Sina; Prusiner, Stanley B.

    2014-01-01

    During prion diseases, a normally benign, host protein, denoted PrPC, undergoes alternative folding into the aberrant isoform, PrPSc. We used ELISA assays to identify and confirm hits in order to develop leads that reduce PrPSc in prion-infected dividing and stationary-phase mouse neuroblastoma (ScN2a-cl3) cells. We tested 52,830 diverse small molecules in dividing cells and 49,430 in stationary-phase cells. This led to 3,100 HTS and 970 single point confirmed (SPC) hits in dividing cells, 331 HTS and 55 confirmed SPC hits in stationary-phase cells as well as 36 confirmed SPC hits active in both. Fourteen chemical leads were identified from confirmed SPC hits in dividing cells and three in stationary-phase cells. From more than 682 compounds tested in concentration-effect relationships in dividing cells to determine potency (EC50), 102 had EC50 values between 1–10 µM and 50 had EC50 values of <1 µM; none affected cell viability. We observed an excellent correlation between EC50 values determined by ELISA and Western immunoblotting for 28 representative compounds in dividing cells (R2 = 0.75; p < 0.0001). Of the 55 confirmed SPC hits in stationary-phase cells, 23 were piperazine, indole, or urea leads. The potency (EC50) of one indole in stationary-phase and dividing ScN2a-cl3 cells was 7.5 and 1.6 µM, respectively. Unexpectedly, the number of hits in stationary-phase cells was ~10% of that in dividing cells. The explanation for this difference remains to be determined. PMID:24183589

  14. Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells

    PubMed Central

    1985-01-01

    Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to the onset of anaphase (metaphase transit time), (b) the time required to progress from anaphase to the initiation of the cell plate, and (c) the rate of chromosome motion in anaphase. Control cells complete metaphase in 32 min, initiate a cell plate in 19 min, and display a chromosome motion rate of 1.45 micron/min. If cells are treated with a calcium-EGTA buffer (pCa 8) for 4 h, the metaphase transit time is increased to 53 min without any change in the time of cell plate formation or the rate of chromosome motion. Lanthanum and D600, under conditions in which their access to the plasmalemma has been facilitated by pretreating the cells with cutinase, also markedly extend metaphase and in several instances permanently arrest cells. Lanthanum, however, produce little or no change in cell plate initiation or the rate of chromosome motion. Microscopic observations of the mitotic apparatus in calcium-stressed cells reveal normal chromatin condensation and metaphase progression. Chromosomes partly untwine but remain attached at their kinetochores. It is suggested that a flux of calcium, derived from the extracellular compartment, may cause the final splitting of sister chromosomes and trigger the onset of anaphase. However, once anaphase has begun, chromosome motion and cell plate initiation proceed normally even under conditions of extracellular calcium restriction. PMID:3921550

  15. Determining cell division symmetry through the dissection of dividing cells using single-cell expression analysis.

    PubMed

    Jasnos, Lukasz; Sawado, Tomoyuki

    2014-03-01

    Symmetric cell divisions give rise to two sister cells that are identical to each other, whereas asymmetric divisions produce two sister cells with distinctive phenotypes. Although cell division symmetry is usually determined on the basis of a few markers or biological functions, the overall similarity between sister cells has not been thoroughly examined at a molecular level. Here we provide a protocol to separate sister embryonic stem cells (ESCs) and to conduct multiplexed gene expression analyses at the single-cell level by using 48 ESC genes. The procedure includes the dissection of dividing, paired sister cells by micromanipulation, followed by cell lysis, reverse transcription, gene-specific cDNA amplification and multiplexed quantitative PCR analyses. This protocol can be completed in 10 d, and it can be readily adapted to other cell types that are able to grow in suspension culture.

  16. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division.

    PubMed

    Wang, Aimin; Ren, Juan; Wang, Christina P; Hascall, Vincent C

    2014-03-28

    Growth-arrested rat mesangial cells (RMCs) at a G0/G1 interphase stimulated to divide in hyperglycemic medium initiate intracellular hyaluronan synthesis that induces autophagy/cyclin D3-induced formation of a monocyte-adhesive extracellular hyaluronan matrix after completing cell division. This study shows that heparin inhibits the intracellular hyaluronan synthesis and autophagy responses, but at the end of cell division it induces synthesis of a much larger extracellular monocyte-adhesive hyaluronan matrix. Heparin bound to RMC surfaces by 1 h, internalizes into the Golgi/endoplasmic reticulum region by 2 h, and was nearly gone by 4 h. Treatment by heparin for only the first 4 h was sufficient for its function. Streptozotocin diabetic rats treated daily with heparin showed similar results. Glomeruli in sections of diabetic kidneys showed extensive accumulation of autophagic RMCs, increased hyaluronan matrix, and influx of macrophages over 6 weeks. Hyaluronan staining in the glomeruli of heparin-treated diabetic rats was very high at week 1 and decreased to near control level by 6 weeks without any RMC autophagy. However, the influx of macrophages by 6 weeks was as pronounced as in diabetic glomeruli. The results are as follows: 1) heparin blocks synthesis of hyaluronan in intracellular compartments, which prevents the autophagy and cyclin D3 responses thereby allowing RMCs to complete cell division and sustain function; 2) interaction of heparin with RMCs in early G1 phase is sufficient to induce signaling pathway(s) for its functions; and 3) influxed macrophages effectively remove the hyaluronan matrix without inducing pro-fibrotic responses that lead to nephropathy and proteinurea in diabetic kidneys.

  17. Sp1 transcriptional activity is up-regulated by phosphatase 2A in dividing T lymphocytes.

    PubMed

    Lacroix, Isabelle; Lipcey, Carol; Imbert, Jean; Kahn-Perlès, Brigitte

    2002-03-15

    We have followed Sp1 expression in primary human T lymphocytes induced, via CD2 plus CD28 costimulation, to sustained proliferation and subsequent return to quiescence. Binding of Sp1 to wheat germ agglutinin lectin was not modified following activation, indicating that the overall glycosylation of the protein was unchanged. Sp1 underwent, instead, a major dephosphorylation that correlated with cyclin A expression and, thus, with cell cycle progression. A similar change was observed in T cells that re-entered cell cycle following secondary interleukin-2 stimulation, as well as in serum-induced proliferating NIH/3T3 fibroblasts. Phosphatase 2A (PP2A) appears involved because 1) treatment of dividing cells with okadaic acid or cantharidin inhibited Sp1 dephosphorylation and 2) PP2A dephosphorylated Sp1 in vitro and strongly interacted with Sp1 in vivo. Sp1 dephosphorylation is likely to increase its transcriptional activity because PP2A overexpression potentiated Sp1 site-driven chloramphenicol acetyltransferase expression in dividing Kit225 T cells and okadaic acid reversed this effect. This increase might be mediated by a stronger affinity of dephosphorylated Sp1 for DNA, as illustrated by the reduced DNA occupancy by hyperphosphorylated Sp factors from cantharidin- or nocodazole-treated cells. Finally, Sp1 dephosphorylation appears to occur throughout cell cycle except for mitosis, a likely common feature to all cycling cells.

  18. House Divided: The Splitting of Active Duty Civil Affairs Forces

    DTIC Science & Technology

    2009-12-01

    training of Active Duty Civil Affairs. This will allow the reader to become familiar with the Active branch as a whole and show the different...readers are extremely familiar with the large-scale environment given the nightly news coverage, but the small-scale environment is decidedly different...apparatus and are familiar with operating in conjunction with embassies and country teams. While conventional forces also have their own intelligence

  19. Mechanisms of Mutation in Non-Dividing Cells

    DTIC Science & Technology

    2003-05-01

    Chromosome-encoded AmpC B- lactamases inactivate specific B-lactam antibiotics and are widespread in enterobacteria. E. coli carries all of the genes required...for ampC production except for ampR, the transcriptional activator of ampC . Loss-of-function mutations in ampD, an indirect regulator of ampR, are...phase mutation. Publications: Petrosino J.F., Pendleton A.R., Weiner J.H., Rosenberg S.M. 2002. Chromosomal system for studying AmpC -mediated beta-lactam

  20. Cell-cycle regulation in green algae dividing by multiple fission.

    PubMed

    Bišová, Kateřina; Zachleder, Vilém

    2014-06-01

    Green algae dividing by multiple fission comprise unrelated genera but are connected by one common feature: under optimal growth conditions, they can divide into more than two daughter cells. The number of daughter cells, also known as the division number, is relatively stable for most species and usually ranges from 4 to 16. The number of daughter cells is dictated by growth rate and is modulated by light and temperature. Green algae dividing by multiple fission can thus be used to study coordination of growth and progression of the cell cycle. Algal cultures can be synchronized naturally by alternating light/dark periods so that growth occurs in the light and DNA replication(s) and nuclear and cellular division(s) occur in the dark; synchrony in such cultures is almost 100% and can be maintained indefinitely. Moreover, the pattern of cell-cycle progression can be easily altered by differing growth conditions, allowing for detailed studies of coordination between individual cell-cycle events. Since the 1950s, green algae dividing by multiple fission have been studied as a unique model for cell-cycle regulation. Future sequencing of algal genomes will provide additional, high precision tools for physiological, taxonomic, structural, and molecular studies in these organisms.

  1. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks.

    PubMed

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.

  2. The effect of sleep deprivation on BOLD activity elicited by a divided attention task.

    PubMed

    Jackson, Melinda L; Hughes, Matthew E; Croft, Rodney J; Howard, Mark E; Crewther, David; Kennedy, Gerard A; Owens, Katherine; Pierce, Rob J; O'Donoghue, Fergal J; Johnston, Patrick

    2011-06-01

    Sleep loss, widespread in today's society and associated with a number of clinical conditions, has a detrimental effect on a variety of cognitive domains including attention. This study examined the sequelae of sleep deprivation upon BOLD fMRI activation during divided attention. Twelve healthy males completed two randomized sessions; one after 27 h of sleep deprivation and one after a normal night of sleep. During each session, BOLD fMRI was measured while subjects completed a cross-modal divided attention task (visual and auditory). After normal sleep, increased BOLD activation was observed bilaterally in the superior frontal gyrus and the inferior parietal lobe during divided attention performance. Subjects reported feeling significantly more sleepy in the sleep deprivation session, and there was a trend towards poorer divided attention task performance. Sleep deprivation led to a down regulation of activation in the left superior frontal gyrus, possibly reflecting an attenuation of top-down control mechanisms on the attentional system. These findings have implications for understanding the neural correlates of divided attention and the neurofunctional changes that occur in individuals who are sleep deprived.

  3. Depletion of MOM1 in non-dividing cells of Arabidopsis plants releases transcriptional gene silencing.

    PubMed

    Tariq, Muhammad; Habu, Yoshiki; Paszkowski, Jerzy

    2002-10-01

    Mitotic and meiotic inheritance of epigenetic information is coupled to the reproduction of chromatin conformation and DNA methylation patterns. This implies that the S phase of the cell cycle provides a window of opportunity for changes in epigenetic determination. Recent studies, however, have suggested that chromatin structure is also rather dynamic in quiescent cells of multicellular eukaryotes and that silent heterochromatic regions can become accessible to transcription. Such epigenetic flexibility in differentiated tissues could be of physiological importance. The mechanisms and molecular components involved are of great interest but as yet unknown. We examined MOM1 (Morpheus' Molecule 1), a regulator of transcriptional gene silencing (TGS) that acts independently of DNA methylation, for its role in the maintenance of TGS in non-dividing, differentiated cells. The results provide evidence that TGS maintenance mediated by MOM1 is a dynamic process that can be modified in non-dividing cells of mature plant organs by depletion of MOM1.

  4. Benzo(a)pyrene Is Mutagenic in Mouse Spermatogonial Stem Cells and Dividing Spermatogonia

    PubMed Central

    O’Brien, Jason M.; Beal, Marc A.; Yauk, Carole L.; Marchetti, Francesco

    2016-01-01

    Although many environmental agents are established male germ cell mutagens, few are known to induce mutations in spermatogonial stem cells. Stem cell mutations are of great concern because they result in a permanent increase in the number of mutations carried in sperm. We investigated mutation induction during mouse spermatogenesis following exposure to benzo(a)pyrene (BaP). MutaMouse males were given 0, 12.5, 25, 50, or 100 mg/kg bw/day BaP for 28 days by oral gavage. Germ cells were collected from the cauda epididymis and seminiferous tubules 3 days after exposure and from cauda epididymis 42 and 70 days after exposure. This design enabled targeted investigation of effects on post-spermatogonia, dividing spermatogonia, and spermatogonial stem cells, respectively. BaP increased lacZ mutant frequency (MF) in cauda sperm after exposure of dividing spermatogonia (4.2-fold at highest dose, P < .01) and spermatogonial stem cells (2.1-fold at highest dose, P < .01). No significant increases in MF were detected in cauda sperm or seminiferous tubule cells collected 3 days post-exposure. Dose-response modelling suggested that the mutational response in male germ cells to BaP is sub-linear at low doses. Our results demonstrate that oral exposure to BaP causes spermatogonial stem cell mutations, that different phases of spermatogenesis exhibit varying sensitivities to BaP, with dividing spermatogonia representing a window of peak sensitivity, and that sampling spermatogenic cells from the seminiferous tubules at earlier time-points may underestimate germ cell mutagenicity. This information is critical to optimize the use of the international test guideline for transgenic rodent mutation assays for detecting germ cell mutagens. PMID:27208087

  5. Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos

    PubMed Central

    Herbomel, Gaëtan; Hatte, Guillaume; Roul, Julien; Padilla-Parra, Sergi; Tassan, Jean-Pierre; Tramier, Marc

    2017-01-01

    Epithelia represent a unique situation where polarized cells must maintain sufficiently strong cell-cell contacts to guarantee the epithelial integrity indispensable for barrier functions. Nevertheless, epithelia must also keep sufficient plasticity which is crucial during development and morphogenesis. Adherens junctions and mechanical forces produced by the actomyosin cytoskeleton are major players for epithelial integrity maintenance and plasticity regulations. To understand how the epithelium is able to meet such a challenge, it is indispensable to determine how cellular junctions and mechanical forces acting at adherens junctions are regulated. Here, we investigate the tensile forces acting on adherens junctions via cadherin during cell division in the Xenopus embryos epithelium. Using the recently developed E-cadherin FRET tension sensor and a fastFLIM prototype microscope, we were able to measure mechanical forces applied on cadherin at cell-cell junctions. We have shown that the Xenopus epithelium is under tension, approximately 3 pN which remains stable, indicating that tensile forces acting on cadherin at the adherens junction are at equilibrium. Unexpectedly, mechanical tension across cadherin was similar between dividing and non-dividing epithelial cells. PMID:28327558

  6. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  7. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  8. The distribution of TPX2 in dividing leaf cells of the fern Asplenium nidus.

    PubMed

    Panteris, E; Adamakis, I-D S; Chanoumidou, K

    2013-01-01

    Plant cell division requires the dynamic organisation of several microtubule arrays. The mechanisms of regulation of the above arrays are under rigorous research. Among several factors that are involved in plant microtubule dynamics, the Targeting Protein for Xklp2 (TPX2) has been found to play a role in spindle organisation, in combination with Aurora kinases, in dividing cells of angiosperms. Microtubule organisation in dividing cells of ferns exhibits certain peculiarities. Accordingly, the presence and distribution of a TPX2 homologue might be helpful in understanding the patterns and regulatory mechanisms of microtubule arrays in this plant group. In this study, a putative TPX2 homologue was identified using Western blotting in the fern Asplenium nidus. It was found, using immunostaining and CLSM, that it is co-localised with perinuclear preprophase microtubules and the prophase spindle, and follows the microtubule pattern during metaphase/anaphase and telophase. During cytokinesis, while in angiosperms TPX2 is degraded, in A. nidus the TPX2 signal persists, co-localising with the phragmoplast. In early post-cytokinetic cells, a TPX2 signal is present on the nuclear surface facing the daughter cell wall and, thereafter it is co-localised with the fern-specific microtubule aggregation that lines the new wall, which is possibly involved in cortical microtubule assembly.

  9. Ciliated cells in vitamin A-deprived cultured hamster tracheal epithelium do divide

    SciTech Connect

    Rutten, A.A.; Beems, R.B.; Wilmer, J.W.; Feron, V.J.

    1988-09-01

    The pseudostratified tracheal epithelium, composed of a heterogeneous phenotypically varying cell population, was studied with respect to the in vitro cell proliferative activity of differentiated epithelial cells. Ciliated tracheal epithelial cells so far have been considered to be terminally differentiated, nonproliferating cells. Tracheal organ cultures obtained from vitamin A-deprived Syrian Golden hamsters were cultured in a vitamin A-deficient, serum-free, hormone-supplemented medium. In vitamin A-deprived tracheal epithelium treated with physiologically active all-trans retinol and low cigarette-smoke condensate concentrations it is possible to stimulate the cell proliferation of both basal and columnar cells. Therefore, the probability of finding proliferating columnar cells was increased compared with the in vivo and the vitamin A-deprived situation in which cell proliferative activity is relatively low. In the presence of cigarette-smoke condensate in a noncytotoxic concentration, basal, small mucous granule, ciliated, and indifferent tracheal epithelial cells incorporated (methyl-3H)-thymidine into the DNA during the S phase. The finding that ciliated cells were labeled was supported by serial sections showing the same labeled ciliated cell in two section planes separated by 2 to 3 micron, without labeled epithelial cells next to the ciliated cell. Furthermore, a ciliated tracheal epithelial cell incorporating (methyl-/sup 3/H)thymidine into DNA was also seen in tracheal cultures of vitamin A-deprived hamsters treated with all-trans retinol in a physiologic concentration.

  10. Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis

    PubMed Central

    Park, June-Hee; Lee, Hedok; Makaryus, Rany; Yu, Mei; Smith, S. David; Sayed, Kasim; Feng, Tian; Holland, Eric; Van der Linden, Annemie; Bolwig, Tom G.; Enikolopov, Grigori; Benveniste, Helene

    2014-01-01

    Rationale Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 ppm. In addition, we also apply the same 1HMRS methodology to metabolically profile glioblastomas with actively dividing cells growing in RCAS-PDGF mice. Methods 1HMRS metabolic profiles were acquired on a 9.4T MRI instrument in combination with LCModel spectral analysis of: 1) rat brains before and after ECS or sham treatments and 2) RCAS-PDGF mice with glioblastomas and wild-type controls. Quantified 1HMRS data were compared to post-mortem histology. Results Dividing cells in the rat hippocampus increased ∼3-fold after ECS compared to sham treatment. Quantification of hippocampal metabolites revealed significant decreases in N-acetyl-aspartate but no evidence of an elevated signal at ∼1.3 ppm (Lip13a+Lip13b) in the ECS compared to the sham group. In RCAS-PDGF mice a high density (22%) of dividing cells characterized glioblastomas. Nile Red staining revealed a small fraction (3%) of dying cells with intracellular lipid droplets in the tumors of RCAS-PDGF mice. Concentrations of NAA were lower, whereas lactate and Lip13a+Lip13b were found to be significantly higher in glioblastomas of RCAS-PDGF mice, when compared to normal brain tissue in the control mice. Conclusions Metabolic profiling using 1HMRS in combination with LCModel analysis did not reveal correlation between Lip13a+Lip13b spectral signatures and an increase in neurogenesis in adult rat hippocampus after ECS. However, increases in Lip13a+Lip13b were evident in glioblastomas suggesting that a higher density of actively dividing cells and/or the presence of lipid droplets is necessary for LCModel to reveal

  11. Whole cell cryo-electron tomography suggests mitochondria divide by budding.

    PubMed

    Hu, Guo-Bin

    2014-08-01

    Eukaryotes rely on mitochondrial division to guarantee that each new generation of cells acquires an adequate number of mitochondria. Mitochondrial division has long been thought to occur by binary fission and, more recently, evidence has supported the idea that binary fission is mediated by dynamin-related protein (Drp1) and the endoplasmic reticulum. However, studies to date have depended on fluorescence microscopy and conventional electron microscopy. Here, we utilize whole cell cryo-electron tomography to visualize mitochondrial division in frozen hydrated intact HeLa cells. We observe a large number of relatively small mitochondria protruding from and connected to large mitochondria or mitochondrial networks. Therefore, this study provides evidence that mitochondria divide by budding.

  12. The cell biology of secondary endosymbiosis--how parasites build, divide and segregate the apicoplast.

    PubMed

    Vaishnava, Shipra; Striepen, Boris

    2006-09-01

    Protozoan parasites of the phylum Apicomplexa harbour a chloroplast-like organelle, the apicoplast. The biosynthetic pathways localized to this organelle are of cyanobacterial origin and therefore offer attractive targets for the development of new drugs for the treatment of malaria and toxoplasmosis. The apicoplast also provides a unique system to study the cell biology of endosymbiosis. This organelle is the product of secondary endosymbiosis, the marriage of an alga and an auxotrophic eukaryote. This origin has led to a fascinating set of novel cellular mechanisms that are clearly distinct from those employed by the plant chloroplast. Here we explore how the apicoplast interacts with its 'host' to secure building blocks for its biogenesis and how the organelle is divided and segregated during mitosis. Considerable advances in parasite genetics and genomics have transformed apicomplexans, long considered hard to study, into highly tractable model organisms. We discuss how these resources might be marshalled to develop a detailed mechanistic picture of apicoplast cell biology.

  13. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis.

  14. Genetic modification of dividing cells using episomally maintained S/MAR DNA vectors.

    PubMed

    Wong, Suet-Ping; Harbottle, Richard Paul

    2013-08-13

    The development of episomally maintained DNA vectors to genetically modify dividing cells efficiently and stably, without the risk of integration-mediated genotoxicity, should prove to be a valuable tool in genetic research. In this study, we demonstrate the utility of Scaffold/Matrix Attachment Region (S/MAR) DNA vectors to model the restoration of a functional wild-type copy of the gene folliculin (FLCN) implicated in the renal cancer Birt-Hogg-Dubé (BHD). Inactivation of FLCN has been shown to be involved in the development of sporadic renal neoplasia in BHD. S/MAR-modified BHD tumor cells (named UOK257-FS) show restored stable FLCN expression and have normalized downstream TGFβ signals. We demonstrate that UOK257-FS cells show a reduced growth rate in vitro and suppression of xenograft tumor development in vivo, compared with the original FLCN-null UOK257 cell line. In addition, we demonstrate that mTOR signaling in serum-starved FLCN-restored cells is differentially regulated compared with the FLCN-deficient cell. The novel UOK257-FS cell line will be useful for studying the signaling pathways affected in BHD pathogenesis. Significantly, this study demonstrates the suitability of S/MAR vectors to successfully model the functional expression of a therapeutic gene in a cancer cell line and will aid the identification of novel cancer markers for diagnosis and therapy.Molecular Therapy-Nucleic Acids (2013) 2, e115; doi:10.1038/mtna.2013.40; published online 13 August 2013.

  15. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  16. The divide within: Older active ICT users position themselves against different 'Others'.

    PubMed

    Kania-Lundholm, Magdalena; Torres, Sandra

    2015-12-01

    Although research into older people's internet usage patterns is rapidly growing, their understandings of digital technologies, particularly in relation to how these are informed by their understandings of aging and old age, remain unexplored. This is the case because research on older active ICT users tends to regard old age as an empirically interesting part of the life-course as opposed to a theoretically profuse source of information about why and how older people engage with digital technologies. This article explores - through focus group interviews with 30 older adults (aged 66-89) - the ways in which the social position of old age is used by older active ICT users in order to make sense of how and why they engage with these technologies. In this article, positioning theory is used to shed light on how the older people interviewed positioned themselves as 'active older users' in the interviews. The analysis brings to the fore the divide that older people themselves create as they discursively position themselves against different types of ICT users and non-users (young and old) when describing how and why they engage with digital technologies.

  17. Stemness in Human Thyroid Cancers and Derived Cell Lines: The Role of Asymmetrically Dividing Cancer Stem Cells Resistant to Chemotherapy

    PubMed Central

    Minsky, Noga; Morshed, Syed A.; Davies, Terry F.

    2014-01-01

    Context: Cancer stem cells (CSCs) have the ability to self-renew through symmetric and asymmetric cell division. CSCs may arise from mutations within an embryonic stem cell/progenitor cell population or via epithelial-mesenchymal transition (EMT), and recent advances in the study of thyroid stem cells have led to a growing recognition of the likely central importance of CSCs in thyroid tumorigenesis. Objective: The objectives of this study were to establish the presence of a stem cell population in human thyroid tumors and to identify, isolate, and characterize CSCs in thyroid cancer cell lines. Results: 1) Human thyroid cancers (n = 10) and thyroid cancer cell lines (n = 6) contained a stem cell population as evidenced by pluripotent stem cell gene expression. 2) Pulse-chase experiments with thyroid cancer cells identified a label-retaining cell population, a primary characteristic of CSCs, which at mitosis divided their DNA both symmetrically and asymmetrically and included a population of cells expressing the progenitor marker, stage-specific embryonic antigen 1 (SSEA-1). 3) Cells positive for SSEA-1 expressed additional stem cell markers including Oct4, Sox2, and Nanog were confirmed as CSCs by their tumor-initiating properties in vivo, their resistance to chemotherapy, and their multipotent capability. 4) SSEA-1-positive cells showed enhanced vimentin expression and decreased E-cadherin expression, indicating their likely derivation via EMT. Conclusions: Cellular diversity in thyroid cancer occurs through both symmetric and asymmetric cell division, and SSEA-1-positive cells are one form of CSCs that appear to have arisen via EMT and may be the source of malignant thyroid tumor formation. This would suggest that thyroid cancer CSCs were the result of thyroid cancer transformation rather than the source. PMID:24823711

  18. Optimization of copper removal from aqueous solutions in a continuous electrochemical cell divided by cellulosic separator.

    PubMed

    Najafpoor, Ali Asghar; Davoudi, Mojtaba; Salmani, Elham Rahmanpour

    2017-03-01

    Copper, as an inseparable part of many industrial discharges, threatens both public and environmental health. In this work, an electrochemical cell utilizing a cellulosic separator was used to evaluate Cu removal using graphite anodes and stainless steel cathodes in a continuous-flow mode reactor. In the experimental matrix, Cu concentration (1-5 mg L(-1)), electrolysis time (20-90 min), and current intensity (0.1-0.4 A) were employed. Results showed that the maximum removal efficiency of copper was obtained as 99%. The removal efficiency was independent of initial copper concentration and directly related to electrolysis time and current intensity. Energy consumption was more dependent on current intensity than electrolysis time. Under optimal conditions (75.8 min electrolysis time, 0.18 A current intensity, and 3 mg L(-1) copper concentration), the removal efficiency was obtained as 91% while 7.05 kWh m(-3) electrical energy was consumed. The differences between the actual and predicted data under optimal conditions were 0.42% for copper removal and 0.23% for energy consumption, which signify the performance and reliability of the developed models. The results exhibited the suitability of the electrochemical reduction for copper removal from aqueous solutions, which was facilitated under alkaline conditions prevailing in the cathodic compartment due to applying a cell divided by a cellulosic separator.

  19. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Fang; Hsieh, Pei-Ying; Hsu, Hsin-Yun; Shigeto, Shinsuke

    2015-12-01

    In vivo, molecular-level investigation of cytokinesis, the climax of the cell cycle, not only deepens our understanding of how life continues, but it will also open up new possibilities of diagnosis/prognosis of cancer cells. Although fluorescence-based methods have been widely employed to address this challenge, they require a fluorophore to be designed for a specific known biomolecule and introduced into the cell. Here, we present a label-free spectral imaging approach based on multivariate curve resolution analysis of Raman hyperspectral data that enables exploratory untargeted studies of mammalian cell cytokinesis. We derived intrinsic vibrational spectra and intracellular distributions of major biomolecular components (lipids and proteins) in dividing and nondividing human colon cancer cells. In addition, we discovered an unusual autofluorescent lipid component that appears predominantly in the vicinity of the cleavage furrow during cytokinesis. This autofluorescence signal could be utilized as an endogenous probe for monitoring and visualizing cytokinesis in vivo.

  20. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis

    PubMed Central

    Hsu, Jen-Fang; Hsieh, Pei-Ying; Hsu, Hsin-Yun; Shigeto, Shinsuke

    2015-01-01

    In vivo, molecular-level investigation of cytokinesis, the climax of the cell cycle, not only deepens our understanding of how life continues, but it will also open up new possibilities of diagnosis/prognosis of cancer cells. Although fluorescence-based methods have been widely employed to address this challenge, they require a fluorophore to be designed for a specific known biomolecule and introduced into the cell. Here, we present a label-free spectral imaging approach based on multivariate curve resolution analysis of Raman hyperspectral data that enables exploratory untargeted studies of mammalian cell cytokinesis. We derived intrinsic vibrational spectra and intracellular distributions of major biomolecular components (lipids and proteins) in dividing and nondividing human colon cancer cells. In addition, we discovered an unusual autofluorescent lipid component that appears predominantly in the vicinity of the cleavage furrow during cytokinesis. This autofluorescence signal could be utilized as an endogenous probe for monitoring and visualizing cytokinesis in vivo. PMID:26632877

  1. DNA Damage Signaling Is Required for Replication of Human Bocavirus 1 DNA in Dividing HEK293 Cells.

    PubMed

    Deng, Xuefeng; Xu, Peng; Zou, Wei; Shen, Weiran; Peng, Jianxin; Liu, Kaiyu; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-01-01

    Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest.

  2. Non-integrating lentiviral vectors based on the minimal S/MAR sequence retain transgene expression in dividing cells.

    PubMed

    Xu, Zhen; Chen, Feng; Zhang, Lingling; Lu, Jing; Xu, Peng; Liu, Guang; Xie, Xuemin; Mu, Wenli; Wang, Yajun; Liu, Depei

    2016-10-01

    Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.

  3. Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue.

    PubMed

    Herszterg, Sophie; Leibfried, Andrea; Bosveld, Floris; Martin, Charlotte; Bellaiche, Yohanns

    2013-02-11

    How adherens junctions (AJs) are formed upon cell division is largely unexplored. Here, we found that AJ formation is coordinated with cytokinesis and relies on an interplay between the dividing cell and its neighbors. During contraction of the cytokinetic ring, the neighboring cells locally accumulate Myosin II and produce the cortical tension necessary to set the initial geometry of the daughter cell interface. However, the neighboring cell membranes impede AJ formation. Upon midbody formation and concomitantly to neighboring cell withdrawal, Arp2/3-dependent actin polymerization oriented by the midbody maintains AJ geometry and regulates AJ final length and the epithelial cell arrangement upon division. We propose that cytokinesis in epithelia is a multicellular process, whereby the cooperative actions of the dividing cell and its neighbors define a two-tiered mechanism that spatially and temporally controls AJ formation while maintaining tissue cohesiveness.

  4. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis → Electrolytic cell)

    SciTech Connect

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  5. Why do bacteria divide?

    PubMed Central

    Norris, Vic

    2015-01-01

    The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself. PMID

  6. Beyond the Divide: Boundaries for Patterning and Stem Cell Regulation in Plants

    PubMed Central

    Hepworth, Shelley R.; Pautot, Véronique A.

    2015-01-01

    The initiation of plant lateral organs from the shoot apical meristem (SAM) is closely associated with the formation of specialized domains of restricted growth known as the boundaries. These zones are required in separating the meristem from the growing primordia or adjacent organs but play a much broader role in regulating stem cell activity and shoot patterning. Studies have revealed a network of genes and hormone pathways that establish and maintain boundaries between the SAM and leaves. Recruitment of these pathways is shown to underlie a variety of processes during the reproductive phase including axillary meristems production, flower patterning, fruit development, and organ abscission. This review summarizes the role of conserved gene modules in patterning boundaries throughout the life cycle. PMID:26697027

  7. Translate to divide: сontrol of the cell cycle by protein synthesis

    PubMed Central

    Polymenis, Michael; Aramayo, Rodolfo

    2015-01-01

    Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division. PMID:28357283

  8. A novel DNA damage response mediated by DNA mismatch repair in Caenorhabditis elegans: induction of programmed autophagic cell death in non-dividing cells

    PubMed Central

    Moriwaki, Takahito; Kato, Yuichi; Nakamura, Chihiro; Ishikawa, Satoru; Zhang-Akiyama, Qiu-Mei

    2015-01-01

    DNA mismatch repair (MMR) contributes to genome integrity by correcting errors of DNA polymerase and inducing cell death in response to DNA damage. Dysfunction of MMR results in increased mutation frequency and cancer risk. Clinical researches revealed that MMR abnormalities induce cancers of non-dividing tissues, such as kidney and liver. However, how MMR suppresses cancer in non-dividing tissues is not understood. To address that mechanism, we analyzed the roles of MMR in non-dividing cells using Caenorhabditis elegans (C. elegans), in which all somatic cells are non-dividing in the adult stage. In this study, we used stable MMR-mutant lines with a balancer chromosome. First, we confirmed that deficiency of MMR leads to resistance to various mutagens in C. elegans dividing cells. Next, we performed drug resistance assays, and found that MMR-deficient adult worms were resistant to SN1-type alkylating and oxidizing agents. In addition, dead cell staining and reporter assays of an autophagy-related gene demonstrated that the cell death was autophagic cell death. Interestingly, this autophagic cell death was not suppressed by caffeine, implying that MMR induces death of non-dividing cells in an atl-1-independent manner. Hence, we propose the hypothesis that MMR prevents cancers in non-dividing tissues by directly inducing cell death. PMID:26413217

  9. Double-Staining Epifluorescence Technique to Assess Frequency of Dividing Cells and Bacteriovory in Natural Populations of Heterotrophic Microprotozoa †

    PubMed Central

    Sherr, Evelyn B.; Sherr, Barry F.

    1983-01-01

    We have developed a double-staining procedure for use with epifluorescence microscopy which allows the detection both of dividing cells and of ingested bacteria in food vacuoles of heterotrophic microprotozoa. Microprotozoan cells are stained sequentially with the DNA-specific fluorochrome DAPI (4′,6-diami-dino-2-phenylindole) and the nonspecific protein stain fluorescein isothiocyanate. During microscopic examination, heterotrophic microprotozoan cells are first located with fluorescein isothiocyanate fluorescence and then epifluorescence filter sets are switched to permit inspection under DAPI fluorescence of the cell nuclei and of the contents of food vacuoles. Among in situ populations of estuarine microprotozoa sampled over a tidal cycle, we found from 2.2 to 5.2% of the heterotrophic cells in a recognizable stage of division (nuclei elongated or double). Batch culture growth experiments were also carried out both with natural populations and with two isolated species of estuarine microprotozoa. In these experiments, the frequency of dividing cells ranged from 1.2 to 3.8% and appeared to be negatively correlated with growth rate. Microprotozoan populations sampled in continental shelf waters off Savannah, Ga., had mean frequencies of dividing cells ranging from 2.0 to 5.0%. A large fraction of cells in heterotrophic microprotozoan populations (an average of 27.4 ± 1.0% in estuarine water and of 30.1 ± 4.8% in shelf water) had DAPI-stained inclusions, presumably recently ingested bacteria, in their food vacuoles. Images PMID:16346446

  10. Protein segregation between dividing hematopoietic progenitor cells in the determination of the symmetry/asymmetry of cell division.

    PubMed

    Nteliopoulos, Georgios; Gordon, Myrtle Y

    2012-09-20

    In the present study, we investigated how the symmetry/asymmetry of cell division in mitotic CD34(+) cells can be evaluated by determining the plane of cell division and the potential distribution of proteins between daughter cells. The orientation of the mitotic spindle is dependent upon the positioning of the centrosomes, which determine the plane of cell division and the sharing of proteins. If the functions of unequally shared proteins are relevant to the kinetics of cell division, they could determine whether the daughter cells undergo self-renewal or differentiation. The kinetic function of the proteins of interest was investigated using a colony-replating assay and carboxyfluorescein succinimidyl ester (CFSE) staining. We used Notch/Numb as a model system, since they have a role in balancing symmetric/asymmetric divisions. Mitotic cells were examined microscopically and centrosomal markers γ-tubulin/pericentrin were used with activated Notch-1 and Numb. We monitored the first crucial divisions by CFSE staining and found an inverse relationship between activated Notch and Numb expression, suggesting a reciprocal regulation. We suggest that the subpopulations expressing activated Notch or Numb have different cell fates. To determine the influence of Notch signaling on progenitor cell self-renewal, we used the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl ester (DAPT). DAPT influences self-renewal/differentiation outcome by affecting the frequency of symmetric renewal divisions without affecting the rate of divisions. Overall, the purpose of this study was to establish a cellular system for predicting the symmetry/asymmetry of hematopoietic progenitor divisions at the level of centrosomes and protein distribution and to investigate the influence of these proteins on progenitor cell kinetics.

  11. A general mathematical framework to model generation structure in a population of asynchronously dividing cells.

    PubMed

    León, Kalet; Faro, Jose; Carneiro, Jorge

    2004-08-21

    In otherwise homogeneous cell populations, individual cells undergo asynchronous cell cycles. In recent years, interest in this fundamental observation has been boosted by the wide usage of CFSE, a fluorescent dye that allows the precise estimation by flow cytometry of the number of divisions performed by different cells in a population, and thus the generation structure. In this work, we propose two general mathematical frameworks to model the time evolution of generation structure in a cell population. The first modeling framework is more descriptive and assumes that cell division time is distributed in the cell population, due to intrinsic noise in the molecular machinery in individual cells; while the second framework assumes that asynchrony in cell division stems from randomness in the interactions individual cells make with environmental agents. We reduce these formalisms to recover two preexistent models, which build on each of the hypotheses. When confronted to kinetics data on CFSE labeled cells taken from literature, these models can fit precursor frequency distributions at each measured time point. However, they fail to fit the whole kinetics of precursor frequency distributions. In contrast, two extensions of those models, derived also from our general formalisms, fit equally well both the whole kinetics and individual profiles at each time point, providing a biologically reasonable estimation of parameters. We prove that the distribution of cell division times is not Gaussian, as previously proposed, but is better described by an asymmetric distribution such as the Gamma distribution. We show also that the observed cell asynchrony could be explained by the existence of a single transitional event during cell division. Based on these results, we suggest new ways of combining theoretical and experimental work to assess how much of noise in internal machinery of the cell and interactions with the environmental agents contribute to the asynchrony in cell

  12. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).

    PubMed

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus

    2016-11-15

    The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MKT), and DIVIDE was used to decompose MKT into components caused by microscopic anisotropy (MKA) and isotropic heterogeneity (MKI). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MKA correlated with cell eccentricity (r=0.95, p<10(-7)) and MKI with the cell density variance (r=0.83, p<10(-3)). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10(-3)) and microscopic scale (μFA, r=0.93, p<10(-6)). A multiple regression analysis showed that the conventional MKT parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MKA was associated only to cell eccentricity, and MKI

  13. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy

    PubMed Central

    Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom

    2016-01-01

    Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies. PMID:27535432

  14. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum.

    PubMed

    Swahari, Vijay; Nakamura, Ayumi; Baran-Gale, Jeanette; Garcia, Idoia; Crowther, Andrew J; Sons, Robert; Gershon, Timothy R; Hammond, Scott; Sethupathy, Praveen; Deshmukh, Mohanish

    2016-01-12

    Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.

  15. Divide, Conquer, and Sense: CD8+CD28− T Cells in Perspective

    PubMed Central

    Arosa, Fernando A.; Esgalhado, André J.; Padrão, Carolina A.; Cardoso, Elsa M.

    2017-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis. PMID:28096804

  16. Divide, Conquer, and Sense: CD8(+)CD28(-) T Cells in Perspective.

    PubMed

    Arosa, Fernando A; Esgalhado, André J; Padrão, Carolina A; Cardoso, Elsa M

    2016-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8(+) T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the "signal 2" CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8(+) T cells, also known as CD8(+)CD28(-), CD8(+)KIR(+), NK-like CD8(+) T cells, or innate CD8(+) T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8(+) T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.

  17. Influence of the Nutrient Medium on the Recovery of Dividing Cells from Tobacco Protoplasts 12

    PubMed Central

    Uchimiya, Hirofumi; Murashige, Toshio

    1976-01-01

    Systematic tests resulted in a nutrient solution containing the following, in milligrams per liter, for the culture of protoplasts isolated from Nicotiana tabacum L. callus cells: Murashige and Skoog salts (T. Murashige and F. Skoog, 1962. Physiol. Plant. 15: 473-497); sucrose, 15,000; mannitol, 110,000; α-naphthaleneacetic acid, 0.6; kinetin, 0-0.1; thiamine·HCl, 10; pyridoxine·HCl, 10; nicotinic acid, 5; myo-inositol, 100; and glycine, 2. In this medium, regeneration of cell wall has been observed in 85% and resumption of cell division among 35% of the protoplast isolates. PMID:16659496

  18. Bridging the Divide: The Role of Perceived Control in Mediating Reasoning and Activism.

    ERIC Educational Resources Information Center

    Laird, Philip G.

    2003-01-01

    Reviews the Defining Issues Test and Spheres of Control results of students involved in the pro-choice or pro-life movements. Rates participation of student involvement in on-campus activities. Reveals abortion activists more frequently endorsed moral issues and scored higher on sociopolitical issues. Discusses results based on relationships among…

  19. Antimitotic and antimutagenic action of the Hymenaea stigonocarpa bark on dividing cells.

    PubMed

    Santana, G M; Deus, M S M; Sousa, J M C; Ferreira, P M P; Fernandes, H B; Peron, A P

    2016-06-01

    The objective of this study was to evaluate the action of Hymenaea stigonocarpa bark hydroalcoholic extract against a mutagenic compound using A. cepa meristematic root cells as a test system. The treatment groups were: Negative Control (NC) - distilled water; Positive Control (PC) - paracetamol at a concentration of 0.008 mg/mL, Jatoba Control (JC) - aqueous fraction jatobá-do-cerrado at 0.5 or 1.0 or 1.5 mg/mL, and Simultaneous Treatment (ST) - jatobá-do-cerrado aqueous fraction at a concentration of 0.5 or 1.0 or 1.5 mg/mL associated with paracetamol solution at a concentration of 0.008 mg/mL. All groups were analyzed at 24 and 48 h. Five onion bulbs (five replications) were used for each treatment group. The root tips were fixed in Carnoy and slides prepared by the crush technique. Cells were analyzed throughout the cell cycle, totaling 5,000 for each treatment group at each exposure time. Mitotic indices were subjected to statistical analysis using the chi-square test (p<0.05). From the results it was found that the ST group, at the three concentrations, significantly potentiated the antiproliferative effect of the test system cells when compared to PC, NC and TJ at the three concentrations. Furthermore, the three ST concentrations significantly reduced the number of cell aberrations when compared to the number of aberrant cells obtained for the PC, demonstrating antimutagenic action on the A. cepa test system cells.

  20. Nematic Ordering in a Population of Growing and Dividing Rod-like Cells

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev

    2007-03-01

    Morphogenesis is one of the most important themes in biology, and it is also central to nonequilibrium physics. The fundamental issue is to understand how local interactions of elementary components lead to collective behavior and the formation of a highly organized system. In nature this self-organization is found on many different scales, from single cells to schools of fish and herds of animals. Collective behavior leads to significant selective advantages for living organisms. At low density, communication among cells occurs mainly due to chemotaxis, the mechanical response of cell to the gradients of chemicals emitted by other cells. At higher densities, steric exclusion effects may strongly affect their collective behavior. In this work we focus on the mechanical interaction among non-motile bacteria in engineered biofilms. These biofilms are formed by growing two-dimensional bacterial colonies in a highly controlled microfluidic environment. We combine experimental observations and analysis with discrete-element molecular dynamics simulations and theoretical modeling to provide mesoscopic description of the biofilm growth. Our results reveal how cell growth and colony expansion trigger the formation of the orientational (nematic) order in the biofilms.

  1. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells

    NASA Astrophysics Data System (ADS)

    Wu, Yongle; Li, Mingxing; Yan, Guangyou; Deng, Li; Liu, Yuanan; Ghassemlooy, Zabih

    2016-10-01

    In this paper, the spoof surface plasmon polaritons (SSPPs) transmission line (TL) of periodical grooved bow-tie cells is proposed. The complex propagation constant and characteristic impedance of the SSPPs TLs and microstrip lines (MLs) are extracted using the analytical method of generalized lossy TL theory. The properties of the SSPPs TLs with different substrates and the same geometrical configuration are experimented. Then, for comparison, two ML counterparts are also experimented, which shows that the SSPPs TL is less sensitive to the thickness, dielectric constant and loss tangent of the chosen substrate below the cutoff frequency, compared with the ML ones. The single-conductor co-planar quasi-symmetry unequal power divider based on this SSPPs TL is presented in microwave frequencies. For experimental validation, the 0-dB, 2-dB, and 5-dB power dividers are designed, fabricated, and measured. Both simulated and measured results verify that the unequal power divider is a flexible option, which offers massive advantages including single-conductor co-planar quasi-symmetry structures, wide-band operation, and convenient implementations of different power-dividing ratios. Hence, it can be expected that the proposed unequal power dividers will inspire further researches on SSPPs for future design of novel planar passive and active microwave components, circuits and systems.

  2. Circadian stage dependence in radiation: response of dividing cells in vivo

    SciTech Connect

    Rubin, N.H.

    1981-01-01

    1) When the mouse corneal epithelium wa irradiated with one dose or ionizing radiation, the effect on mitosis varied depending upon the time in the 24-h period when it was irradiated. 2) Release of the radiation-induced mitotic block, as measured by appearance of a recovery wave of mitotic cells, occurred only during the daily increase in mitotic index in the control animals. 3) The entire wave of recovery occurred within the same time as the controls, and no rebound was seen. 4) Mitotic delay was dose-dependent. 5) The results of these experiments emphasize the importance of considering the circadian system when studying cell division in vivo.

  3. A Microfluidic Device for Temporally Controlled Gene Expression and Long-Term Fluorescent Imaging in Unperturbed Dividing Yeast Cells

    PubMed Central

    Charvin, Gilles; Cross, Frederick R.; Siggia, Eric D.

    2008-01-01

    Background Imaging single cells with fluorescent markers over multiple cell cycles is a powerful tool for unraveling the mechanism and dynamics of the cell cycle. Over the past ten years, microfluidic techniques in cell biology have emerged that allow for good control of growth environment. Yet the control and quantification of transient gene expression in unperturbed dividing cells has received less attention. Methodology/Principal Findings Here, we describe a microfluidic flow cell to grow Saccharomyces Cerevisiae for more than 8 generations (≈12 hrs) starting with single cells, with controlled flow of the growth medium. This setup provides two important features: first, cells are tightly confined and grow in a remarkably planar array. The pedigree can thus be determined and single-cell fluorescence measured with 3 minutes resolution for all cells, as a founder cell grows to a micro-colony of more than 200 cells. Second, we can trigger and calibrate rapid and transient gene expression using reversible administration of inducers that control the GAL1 or MET3 promoters. We then show that periodic 10–20 minutes gene induction pulses can drive many cell division cycles with complete coherence across the cell cluster, with either a G1/S trigger (cln1 cln2 cln3 MET3-CLN2) or a mitotic trigger (cdc20 GALL-CDC20). Conclusions/Significance In addition to evident cell cycle applications, this device can be used to directly measure the amount and duration of any fluorescently scorable signal-transduction or gene-induction response over a long time period. The system allows direct correlation of cell history (e.g., hysteresis or epigenetics) or cell cycle position with the measured response. PMID:18213377

  4. Phosphotyrosyl phosphatase activator facilitates localization of Miranda through dephosphorylation in dividing neuroblasts.

    PubMed

    Zhang, Fan; Huang, Zhen-Xing; Bao, Hongcun; Cong, Fei; Wang, Huashan; Chai, Phing Chian; Xi, Yongmei; Ge, Wanzhong; Somers, W Gregory; Yang, Ying; Cai, Yu; Yang, Xiaohang

    2016-01-01

    The mechanism for the basal targeting of the Miranda (Mira) complex during the asymmetric division of Drosophila neuroblasts (NBs) is yet to be fully understood. We have identified conserved Phosphotyrosyl phosphatase activator (PTPA) as a novel mediator for the basal localization of the Mira complex in larval brain NBs. In mutant Ptpa NBs, Mira remains cytoplasmic during early mitosis and its basal localization is delayed until anaphase. Detailed analyses indicate that PTPA acts independent of and before aPKC to localize Mira. Mechanistically, our data show that the phosphorylation status of the T591 residue determines the subcellular localization of Mira and that PTPA facilitates the dephosphorylation of T591. Furthermore, PTPA associates with the Protein phosphatase 4 complex to mediate localization of Mira. On the basis of these results, a two-step process for the basal localization of Mira during NB division is revealed: cortical association of Mira mediated by the PTPA-PP4 complex is followed by apical aPKC-mediated basal restriction.

  5. The Zebrafish Anillin-eGFP Reporter Marks Late Dividing Retinal Precursors and Stem Cells Entering Neuronal Lineages

    PubMed Central

    Guglielmi, Luca; Patzel, Eva; Sel, Saadettin; Auffarth, Gerd U.; Carl, Matthias; Poggi, Lucia

    2017-01-01

    Monitoring cycling behaviours of stem and somatic cells in the living animal is a powerful tool to better understand tissue development and homeostasis. The tg(anillin:anillin-eGFP) transgenic line carries the full-length zebrafish F-actin binding protein Anillin fused to eGFP from a bacterial artificial chromosome (BAC) containing Anillin cis-regulatory sequences. Here we report the suitability of the Anillin-eGFP reporter as a direct indicator of cycling cells in the late embryonic and post-embryonic retina. We show that combining the anillin:anillin-eGFP with other transgenes such as ptf1a:dsRed and atoh7:gap-RFP allows obtaining spatial and temporal resolution of the mitotic potentials of specific retinal cell populations. This is exemplified by the analysis of the origin of the previously reported apically and non-apically dividing late committed precursors of the photoreceptor and horizontal cell layers. PMID:28107513

  6. Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.

    2012-12-01

    Greenland, we have identified 14 distinct basal ice packages over a wide region. The accumulation rate (~17 cm/yr) and ice velocity (~5-200m/yr) are higher than East Antarctica. These accretion bodies are 10-50 km wide, up to 940m thick and can be traced up to 140 km. The volume of the ice enclosed by the accretion ice reflector units is ~70-300 km3. We estimate that the freeze-on process in Petermann has been active for at least 6,000yr. Water has been mapped beneath much of the Greenland ice sheet and adjacent to the inland freeze-on site flat bright reflectors are interpreted as basal water. The onset of fast flow in Petermann Glacier is associated with the development of the thickest unit of freeze-on ice. Other areas of Greenland also have basal freeze-on ice. North of Jakobshavn Isbrae where the ice sheet is ~1000 m thick, evidence exists for a nearly 10 km wide, 200 m thick unit of basal ice in airborne radar. Located close to the site where basal freeze-on outcrops at the ice sheet margin at Pakitsoq, this unit may be the result of freeze-on of water draining from a supraglacial lake. Basal freeze-on is a critical component of subglacial hydrology. The evidence for large scale freeze-on East Antarctica and many areas of Greenland indicates widespread modification of the base of the ice sheet by basal hydrology.

  7. The Responses of Hyperglycemic Dividing Mesangial Cells to Heparin Are Mediated by the Non-reducing Terminal Trisaccharide*

    PubMed Central

    Wang, Christina P.; Hascall, Vincent C.; Zhang, Fuming; Linhardt, Robert J.; Abbadi, Amina; Wang, Aimin

    2015-01-01

    Our previous studies showed: (i) that growth-arrested G0/G1 rat mesangial cells stimulated to divide in hyperglycemic medium initiate intracellular hyaluronan synthesis that induces autophagy and the cyclin D3-induced formation of a monocyte-adhesive extracellular hyaluronan matrix after completing cell division; and (ii) that heparin inhibits the intracellular hyaluronan and autophagy responses, but after completing division, induces hyaluronan synthesis at the plasma membrane with the formation of a larger monocyte-adhesive hyaluronan matrix. This study shows: (i) that the non-terminal trisaccharide of heparin is sufficient to initiate the same responses as intact heparin, (ii) that a fully sulfated tetrasaccharide isolated from bacterial heparin lyase 1 digests of heparin that contains a Δ-2S-iduronate on the non-reducing end does not initiate the same responses as intact heparin, and (iii) that removal of the Δ-2S-iduronate to expose the fully sulfated trisaccharide (GlcNS(6S)-IdoUA(2S)-GlcNS(6S)) does initiate the same responses as intact heparin. These results provide evidence that mammalian heparanase digestion of heparin and heparan sulfate exposes a cryptic motif on the non-reducing termini that is recognized by a receptor on dividing cells. PMID:26378235

  8. The Responses of Hyperglycemic Dividing Mesangial Cells to Heparin Are Mediated by the Non-reducing Terminal Trisaccharide.

    PubMed

    Wang, Christina P; Hascall, Vincent C; Zhang, Fuming; Linhardt, Robert J; Abbadi, Amina; Wang, Aimin

    2015-11-27

    Our previous studies showed: (i) that growth-arrested G0/G1 rat mesangial cells stimulated to divide in hyperglycemic medium initiate intracellular hyaluronan synthesis that induces autophagy and the cyclin D3-induced formation of a monocyte-adhesive extracellular hyaluronan matrix after completing cell division; and (ii) that heparin inhibits the intracellular hyaluronan and autophagy responses, but after completing division, induces hyaluronan synthesis at the plasma membrane with the formation of a larger monocyte-adhesive hyaluronan matrix. This study shows: (i) that the non-terminal trisaccharide of heparin is sufficient to initiate the same responses as intact heparin, (ii) that a fully sulfated tetrasaccharide isolated from bacterial heparin lyase 1 digests of heparin that contains a Δ-2S-iduronate on the non-reducing end does not initiate the same responses as intact heparin, and (iii) that removal of the Δ-2S-iduronate to expose the fully sulfated trisaccharide (GlcNS(6S)-IdoUA(2S)-GlcNS(6S)) does initiate the same responses as intact heparin. These results provide evidence that mammalian heparanase digestion of heparin and heparan sulfate exposes a cryptic motif on the non-reducing termini that is recognized by a receptor on dividing cells.

  9. Evidence for Subglacial Volcanic Activity Beneath the area of the Divide of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2013-12-01

    There is an increasing body of aeromagnetic, radar ice-sounding, heat flow, subglacial volcanic earthquakes, several exposed active and subglacial volcanoes and other lines of evidence for volcanic activity associated with the West Antarctic Rift System (WR) since the origin (~25 Ma) of the West Antarctic Ice Sheet (WAIS), which flows through it. Exposed late Cenozoic, alkaline volcanic rocks, 34 Ma to present concentrated in Marie Byrd Land (LeMasurier and Thomson, 1990), but also exposed along the rift shoulder on the Transantarctic Mountains flank of the WR, and >1 million cubic kilometers, of mostly subglacially erupted 'volcanic centers' beneath the WAIS inferred from aeromagnetic data, have been interpreted as evidence of a magmatic plume. About 18 high relief, (~600-2000 m) 'volcanic centers' presently beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent, based on the 5-km orthogonally line spaced Central West Antarctica aerogeophysical survey. All would be above sea level after ice removal and isostatic adjustment. Nine of these high relief peaks are in the general area beneath the divide of the WAIS. This high bed relief topography was first interpreted in the 1980s as the volcanic 'Sinuous Ridge ' based on a widely spaced aeromagnetic -radar ice sounding survey (Jankowski et al,. 1983). A 70-km wide, circular ring of interpreted subglacial volcanic rocks was cited as evidence of a volcanic caldera underlying the ice sheet divide based on the CWA survey (Behrendt et al., 1998). A broad magnetic 'low' surrounding the caldera area possibly is evidence of a shallow Curie isotherm. High heat flow reported from temperature logging (Clow et al., 2012) in the WAISCORE and a thick volcanic ash layer in the core (Dunbar et al., 2012) are consistent with this interpretation. A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78.5 degrees S, 111 degrees W) ~ 100 km north from the WAISCORE could be the source of the ash

  10. TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of Drosophila.

    PubMed

    Robinett, Carmen C; Giansanti, Maria Grazia; Gatti, Maurizio; Fuller, Margaret T

    2009-12-15

    Although membrane addition is crucial for cytokinesis in many animal cell types, the specific mechanisms supporting cleavage furrow ingression are not yet understood. Mutations in the gene brunelleschi (bru), which encodes the Drosophila ortholog of the yeast Trs120p subunit of TRAPPII, cause failure of furrow ingression in male meiotic cells. In non-dividing cells, Brunelleschi protein fused to GFP is dispersed throughout the cytoplasm and enriched at Golgi organelles, similarly to another Drosophila TRAPPII subunit, dBet3. Localization of the membrane-trafficking GTPase Rab11 to the cleavage furrow requires wild-type function of bru, and genetic interactions between bru and Rab11 increase the failure of meiotic cytokinesis and cause synthetic lethality. bru also genetically interacts with four wheel drive (fwd), which encodes a PI4Kbeta, such that double mutants exhibit enhanced failure of male meiotic cytokinesis. These results suggest that Bru cooperates with Rab11 and PI4Kbeta to regulate the efficiency of membrane addition to the cleavage furrow, thus promoting cytokinesis in Drosophila male meiotic cells.

  11. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    NASA Astrophysics Data System (ADS)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  12. The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin.

    PubMed

    Collings, David A; Harper, John D I; Vaughn, Kevin C

    2003-12-01

    We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the beta-oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.

  13. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Voulgari, Georgia; Papadopoulou, Galini

    2011-07-01

    Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.

  14. Differential localization of cytoplasmic myosin II isoforms A and B in avian interphase and dividing embryonic and immortalized cardiomyocytes and other cell types in vitro

    NASA Technical Reports Server (NTRS)

    Conrad, A. H.; Jaffredo, T.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Two principal isoforms of cytoplasmic myosin II, A and B (CMIIA and CMIIB), are present in different proportions in different tissues. Isoform-specific monoclonal and polyclonal antibodies to avian CMIIA and CMIIB reveal the cellular distributions of these isoforms in interphase and dividing embryonic avian cardiac, intestinal epithelial, spleen, and dorsal root ganglia cells in primary cell culture. Embryonic cardiomyocytes react with antibodies to CMIIB but not to CMIIA, localize CMIIB in stress-fiber-like-structures during interphase, and markedly concentrate CMIIB in networks in the cleavage furrow during cytokinesis. In contrast, cardiac fibroblasts localize both CMIIA and CMIIB in stress fibers and networks during interphase, and demonstrate slight and independently regulated concentration of CMIIA and CMIIB in networks in their cleavage furrows. V-myc-immortalized cardiomyocytes, an established cell line, have regained the ability to express CMIIA, as well as CMIIB, and localize both CMIIA and CMIIB in stress fibers and networks in interphase cells and in cleavage furrows in dividing cells. Conversely, some intestinal epithelial, spleen, and dorsal root ganglia interphase cells express only CMIIA, organized primarily in networks. Of these, intestinal epithelial cells express both CMIIA and CMIIB when they divide, whereas some dividing cells from both spleen and dorsal root ganglia express only CMIIA and concentrate it in their cleavage furrows. These results suggest that within a given tissue, different cell types express different isoforms of CMII, and that cells expressing either CMIIA or CMIIB alone, or simultaneously, can form a cleavage furrow and divide.

  15. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission

    PubMed Central

    Dobro, Megan J.; Samson, Rachel Y.; Yu, Zhiheng; McCullough, John; Ding, H. Jane; Chong, Parkson Lee-Gau; Bell, Stephen D.; Jensen, Grant J.

    2013-01-01

    The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT–CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission. PMID:23761076

  16. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission.

    PubMed

    Dobro, Megan J; Samson, Rachel Y; Yu, Zhiheng; McCullough, John; Ding, H Jane; Chong, Parkson Lee-Gau; Bell, Stephen D; Jensen, Grant J

    2013-08-01

    The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT-CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission.

  17. Hyperglycemia diverts dividing osteoblastic precursor cells to an adipogenic pathway and induces synthesis of a hyaluronan matrix that is adhesive for monocytes.

    PubMed

    Wang, Aimin; Midura, Ronald J; Vasanji, Amit; Wang, Andrew J; Hascall, Vincent C

    2014-04-18

    Isolated rat bone marrow stromal cells cultured in osteogenic medium in which the normal 5.6 mm glucose is changed to hyperglycemic 25.6 mm glucose greatly increase lipid formation between 21-31 days of culture that is associated with decreased biomineralization, up-regulate expression of cyclin D3 and two adipogenic markers (CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor γ) within 5 days of culture, increase neutral and polar lipid synthesis within 5 days of culture, and form a monocyte-adhesive hyaluronan matrix through an endoplasmic reticulum stress-induced autophagic mechanism. Evidence is also provided that, by 4 weeks after diabetes onset in the streptozotocin-induced diabetic rat model, there is a large loss of trabecular bone mineral density without apparent proportional changes in underlying collagen matrices, a large accumulation of a hyaluronan matrix within the trabecular bone marrow, and adipocytes and macrophages embedded in this hyaluronan matrix. These results support the hypothesis that hyperglycemia in bone marrow diverts dividing osteoblastic precursor cells (bone marrow stromal cells) to a metabolically stressed adipogenic pathway that induces synthesis of a hyaluronan matrix that recruits inflammatory cells and establishes a chronic inflammatory process that demineralizes trabecular cancellous bone.

  18. The nondeterministic divide

    NASA Technical Reports Server (NTRS)

    Charlesworth, Arthur

    1990-01-01

    The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.

  19. Fully Automatic Determination of Soil Bacterium Numbers, Cell Volumes, and Frequencies of Dividing Cells by Confocal Laser Scanning Microscopy and Image Analysis

    PubMed Central

    Bloem, J.; Veninga, M.; Shepherd, J.

    1995-01-01

    We describe a fully automatic image analysis system capable of measuring cell numbers, volumes, lengths, and widths of bacteria in soil smears. The system also determines the number of cells in agglomerates and thus provides the frequency of dividing cells (FDC). Images are acquired from a confocal laser scanning microscope. The grey images are smoothed by convolution and by morphological erosion and dilation to remove noise. The background is equalized by flooding holes in the image and is then subtracted by two top hat transforms. Finally, the grey image is sharpened by delineation, and all particles above a fixed threshold are detected. The number of cells in each detected particle is determined by counting the number of local grey-level maxima in the particle. Thus, up to 1,500 cells in 10 fields of view in a soil smear are analyzed in 30 min without human intervention. Automatic counts of cell numbers and FDC were similar to visual counts in field samples. In microcosms, automatic measurements showed significant increases in cell numbers, FDC, mean cell volume, and length-to-width ratio after amendment of the soil. Volumes of fluorescent microspheres were measured with good approximation, but the absolute values obtained were strongly affected by the settings of the detector sensitivity. Independent measurements of bacterial cell numbers and volumes by image analysis and of cell carbon by a total organic carbon analyzer yielded an average specific carbon content of 200 fg of C (mu)m(sup-3), which indicates that our volume estimates are reasonable. PMID:16534976

  20. T cell activation.

    PubMed

    Smith-Garvin, Jennifer E; Koretzky, Gary A; Jordan, Martha S

    2009-01-01

    This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor

  1. The boron-neutron capture agent beta-D-5-o-carboranyl-2'-deoxyuridine accumulates preferentially in dividing brain tumor cells.

    PubMed

    Moore, Casey; Hernández-Santiago, Brenda I; Hurwitz, Selwyn J; Tan, Chalet; Wang, Chris; Schinazi, Raymond F

    2005-09-01

    Boron-neutron capture therapy (BNCT) is based on the preferential targeting of tumor cells with (10)B and subsequent irradiation with epithermal neutrons to produce a highly localized field of lethal alpha particles, while sparing neighboring non-targeted cells. BNCT treatment of 9L brain tumors in a rat model using beta-D-5-o-carboranyl-2'-deoxyuridine (D-CDU) resulted in greater efficacy than predicted based on the assumption of a uniform tumor distribution of (10)B. Thus, the geometric heterogeneity of dividing cells in brain tumors warranted studies on the cell cycle dependency of D-CDU accumulation, metabolism and entrapment in a relevant brain tumor cell system. U-271 human glioma cells were synchronized in G(1) or S-phases of the cell cycle. The cellular accumulation and phosphorylation of D-CDU was measured in the G(1) and S-phase cells using high-performance liquid chromatography (HPLC). Cells synchronized in the S-phase accumulated significantly higher amounts of D-CDU and produced larger amounts of negatively charged D-CDU monophosphate (D-CDU-MP) and nido-CDU metabolites than resting cells. Since brain tumors contain a larger proportion of cycling cells than neighboring tissue, these results support the hypothesis that in addition to breakdown of the blood-brain-barrier (BBB) in tumors, the preferential phosphorylation of D-CDU in cycling cells may further enrich the distribution of (10)B in dividing cells. Therefore, dosimetry calculations that include the spatial distribution of cycling cells may be warranted for D-CDU.

  2. Timing divided attention.

    PubMed

    Hogendoorn, Hinze; Carlson, Thomas A; VanRullen, Rufin; Verstraten, Frans A J

    2010-11-01

    Visual attention can be divided over multiple objects or locations. However, there is no single theoretical framework within which the effects of dividing attention can be interpreted. In order to develop such a model, here we manipulated the stage of visual processing at which attention was divided, while simultaneously probing the costs of dividing attention on two dimensions. We show that dividing attention incurs dissociable time and precision costs, which depend on whether attention is divided during monitoring or during access. Dividing attention during monitoring resulted in progressively delayed access to attended locations as additional locations were monitored, as well as a one-off precision cost. When dividing attention during access, time costs were systematically lower at one of the accessed locations than at the other, indicating that divided attention during access, in fact, involves rapid sequential allocation of undivided attention. We propose a model in which divided attention is understood as the simultaneous parallel preparation and subsequent sequential execution of multiple shifts of undivided attention. This interpretation has the potential to bring together diverse findings from both the divided-attention and saccade preparation literature and provides a framework within which to integrate the broad spectrum of divided-attention methodologies.

  3. Raman activated cell sorting.

    PubMed

    Song, Yizhi; Yin, Huabing; Huang, Wei E

    2016-08-01

    Single cell Raman spectra (SCRS) are intrinsic biochemical profiles and 'chemical images' of single cells which can be used to characterise phenotypic changes, physiological states and functions of cells. On the base of SCRS, Raman activated cell sorting (RACS) provides a label-free cell sorting approach, which can link single cells to their chemical or phenotypic profiles. Overcoming naturally weak Raman signals, establishing Raman biomarker as sorting criteria to RACS and improving specific sorting technology are three challenges of developing RACS. Advances on Raman spectroscopy such as stimulated Raman scattering (SRS) and pre-screening helped to increase RACS sorting speed. Entire SCRS can be characterised using pattern recognition methods, and specific Raman bands can be extracted as biomarkers for RACS. Recent advances on cell sorting technologies based on microfluidic device and surface-ejection enable accurate and reliable single cell sorting from complex samples. A high throughput RACS will be achievable in near future by integrating fast Raman detection system such as SRS with microfluidic RACS and Raman activated cell ejection (RACE).

  4. Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells

    PubMed Central

    Walsh, James C.; Angstmann, Christopher N.; Duggin, Iain G.; Curmi, Paul M. G.

    2015-01-01

    Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane-bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo. PMID:26018614

  5. Positioning the Flagellum at the Center of a Dividing Cell To Combine Bacterial Division with Magnetic Polarity

    PubMed Central

    Bennet, Mathieu; Klumpp, Stefan

    2015-01-01

    ABSTRACT Faithful replication of all structural features is a sine qua non condition for the success of bacterial reproduction by binary fission. For some species, a key challenge is to replicate and organize structures with multiple polarities. Polarly flagellated magnetotactic bacteria are the prime example of organisms dealing with such a dichotomy; they have the challenge of bequeathing two types of polarities to their daughter cells: magnetic and flagellar polarities. Indeed, these microorganisms align and move in the Earth’s magnetic field using an intracellular chain of nano-magnets that imparts a magnetic dipole to the cell. The paradox is that, after division occurs in cells, if the new flagellum is positioned opposite to the old pole devoid of a flagellum during cell division, the two daughter cells will have opposite magnetic polarities with respect to the positions of their flagella. Here we show that magnetotactic bacteria of the class Gammaproteobacteria pragmatically solve this problem by synthesizing a new flagellum at the division site. In addition, we model this particular structural inheritance during cell division. This finding opens up new questions regarding the molecular aspects of the new division mechanism, the way other polarly flagellated magnetotactic bacteria control the rotational direction of their flagella, and the positioning of organelles. PMID:25714711

  6. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma

    PubMed Central

    Lopez, José I.; Cortes, Jesús M.

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection. PMID:27127618

  7. Actively Negotiating the Mind-Body Divide: How Clozapine-Treated Schizophrenia Patients Make Health for Themselves.

    PubMed

    Brown, Julia E H; Dennis, Simone

    2017-01-10

    It is well recognised that antipsychotic treatments impact the whole body, not just the target area of the brain. For people with refractory schizophrenia on clozapine, the gold standard antipsychotic treatment in England and Australia, the separation of mental and physical regimes of health is particularly pronounced, resulting in multiple, compartmentalised treatment registers. Clinicians often focus on the mental health aspects of clozapine use, using physical indicators to determine whether treatment can continue. Our observations of 59 participants in England and Australia over 18 months revealed that patients did not observe this hierarchisation of mental treatments and physical outcomes. Patients often actively engaged in the management of their bodily symptoms, leading us to advance the figure of the active, rather than passive, patient. In our paper, we do not take the position that the facility for active management is a special one utilised only by these patients. We seek instead to draw attention to what is currently overlooked as an ordinary capacity to enact some sort of control over life, even under ostensibly confined and confining circumstances. We argue that clozapine-treated schizophrenia patients utilise the clinical dichotomy between mental and physical domains of health to rework what health means to them. This permits patients to actively manage their own phenomenological 'life projects' (Rapport, I am Dynamite: an Alternative Anthropology of Power, Routledge, London 2003), and forces us to reconsider the notion of clinical giveness of what health means. This making of one's own meanings of health may be critical to the maintenance of a sense of self.

  8. Across the health-social care divide: elderly people as active users of health care and social care.

    PubMed

    Roberts, K

    2001-03-01

    Several ways in which elderly people may assume an active role when using welfare services are discussed here. Selected findings are presented from a study that explored the experience and behaviour of elderly people on discharge from inpatient care with regard to criteria indicating user influence or control (namely participation, representation, access, choice, information and redress). Data were collected via semistructured interviews with service users (n = 30) soon after their return home from hospital. A number of differences were revealed between health care and social care in relation to users being provided with opportunities to assume an active role and in being willing and able to assume an active role. These differences were manifest in elderly service users accessing services, seeking information, exercising choice and acting independently of service providers. It appeared paradoxical that contact points were more easily defined with regard to health care yet users were more likely to exercise choice and act independently in securing social care. It is suggested that social care needs and appropriate service delivery are more easily recognised than making the link between perceived health care needs and appropriate services. In addition, it appeared that informal and private providers are more widely available and accessible for social care. If comprehensive continuing care is to be provided, incorporating both health and social care elements, greater uniformity appears to be required across the welfare sector. Lessons for social care provision from the delivery of health care suggest the clear definition of contact points to facilitate service use. Making health care more accessible, however, does not appear to be easily attainable due to the monopoly provision of health care and the lack of direct purchasing power by potential users.

  9. Active Cells for Multifunctional Structures

    DTIC Science & Technology

    2014-09-24

    techniques to explore a variety of cell designs.  Designed a simplified active cell using Nitinol as the actuation method and relying on Joule heating...for contraction of the cell.  Developed manufacturing techniques for reliably creating Nitinol spring coils in a variety of diameters and gauges...design of the active cells to maximum the stroked length of the active cells by tuning the stiffness of a passive spring in parallel with the Nitinol

  10. Crossing the phantom divide

    SciTech Connect

    Kunz, Martin; Sapone, Domenico

    2006-12-15

    We consider fluid perturbations close to the 'phantom divide' characterized by p=-{rho} and discuss the conditions under which divergencies in the perturbations can be avoided. We find that the behavior of the perturbations depends crucially on the prescription for the pressure perturbation {delta}p. The pressure perturbation is usually defined using the dark energy rest-frame, but we show that this frame becomes unphysical at the divide. If the pressure perturbation is kept finite in any other frame, then the phantom divide can be crossed. Our findings are important for generalized fluid dark energy used in data analysis (since current cosmological data sets indicate that the dark energy is characterized by p{approx_equal}-{rho} so that p<-{rho} cannot be excluded) as well as for any models crossing the phantom divide, like some modified gravity, coupled dark energy, and braneworld models. We also illustrate the results by an explicit calculation for the 'Quintom' case with two scalar fields.

  11. The Great Divide

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2005-01-01

    Steps away from where a concrete wall once divided this city east from west, a group of Muslim 1st graders at E.O. Plauen Elementary School sing a phrase that is unfamiliar to most German ears. Though the Roman Catholic and Protestant churches have long provided voluntary religion classes in Berlin schools, only recently have the courts allowed an…

  12. Fluorescence activated cell sorting.

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  13. Melting the Divide

    NASA Astrophysics Data System (ADS)

    Gibson, S. M.

    2014-12-01

    Presenting Quaternary Environmental Change to students who fall into Widening Participation criteria at the University of Cambridge, gives a unique opportunity to present academic debate in an approachable and entertaining way. Literally by discussing the melting of our ice caps, melts the divide Cambridge has between its reputation and the reality for the brightest, underprivileged, students. There is a balance between presenting cutting edge research with the need to come across as accessible (and importantly valuable to "learning"). Climate change over the Quaternary lends itself well to this aim. By lecturing groups of potential students through the entire Quaternary in an hour, stopping to discuss how our ancestors interacted with past Interglacials and what are the mechanisms driving change (in generalized terms), you are able to introduce cutting edge research (such as the latest NEEM ice core) to the students. This shows the evolution and importance of higher education and academic research. The lecture leads well onto group discussions (termed "supervisions" in Cambridge), to explore their opinions on the concern for present Anthropogenic Climate Change in relation to Past Climate Change after being presented with images that our ancestors "made it". Here discussion thrives off students saying obvious things (or sarcastic comments!) which quickly can lead into a deep technical discussion on their terms. Such discussions give the students a zest for higher education, simply throwing Ruddiman's (2003) "The Anthroprocene Started Several Thousand Years Ago" at them, questions in a second their concept of Anthropogenic Climate Change. Supervisions lend themselves well to bright, articulate, students and by offering these experiences to students of Widening Participation criteria we quickly melt the divide between the reputation of Cambridge ( and higher education as a whole) and the day to day practice. Higher education is not for the privileged, but a free and

  14. Monitoring the Digital Divide

    SciTech Connect

    Cottrell, Les

    2003-05-28

    It is increasingly important to support the large numbers of scientists working in remote areas and having low bandwidth access to the Internet. This will continue to be the case for years to come since there is evidence from PingER performance measurements that the, so-called, digital divide is not decreasing. In this work, we review the collaborative work of The Abdus Salam International Center for Theoretical Physics (ICTP) in Trieste, a leading organization promoting science dissemination in the developing world- and SLAC in Stanford, to monitor by PingER, Universities and Research Institutions all over the developing world following the recent ''Recommendations of Trieste'' to help bridge the digital divide. As a result, PingER's deployment now covers the real-time monitoring of worldwide Internet performance and, in particular, West and Central Africa for the first time. We report on the results from the ICTP sites and quantitatively identify regions with poor performance, identify trends, discuss experiences and future work.

  15. Laser dividing apparatus

    DOEpatents

    English, Jr., R. Edward; Johnson, Steve A.

    1995-01-01

    A laser beam dividing apparatus (10) having a first beam splitter (14) with an aperture (16) therein positioned in the path of a laser beam (12) such that a portion of the laser beam (12) passes through the aperture (16) onto a second beam splitter (20) and a portion of the laser beam (12) impinges upon the first beam splitter (14). Both the first beam splitter (14) and the second beam splitter (20) are, optionally, made from a dichroic material such that a green component (24) of the laser beam (12) is reflected therefrom and a yellow component (26) is refracted therethrough. The first beam splitter (14) and the second beam splitter (20) further each have a plurality of facets (22) such that the components (24, 26) are reflected and refracted in a number equaling the number of facets (22).

  16. Bacterial activation of mast cells.

    PubMed

    Chi, David S; Walker, Elaine S; Hossler, Fred E; Krishnaswamy, Guha

    2006-01-01

    Mast cells often are found in a perivascular location but especially in mucosae, where they may response to various stimuli. They typically associate with immediate hypersensitive responses and are likely to play a critical role in host defense. In this chapter, a common airway pathogen, Moraxella catarrhalis, and a commensal bacterium, Neiserria cinerea, are used to illustrate activation of human mast cells. A human mast cell line (HMC-1) derived from a patient with mast cell leukemia was activated with varying concentrations of heat-killed bacteria. Active aggregation of bacteria over mast cell surfaces was detected by scanning electron microscopy. The activation of mast cells was analyzed by nuclear factor-kappaB (NF-kappaB) activation and cytokine production in culture supernatants. Both M. catarrhalis and N. cinerea induce mast cell activation and the secretion of two key inflammatory cytokines, interleukin-6 and MCP-1. This is accompanied by NF-kappaB activation. Direct bacterial contact with mast cells appears to be essential for this activation because neither cell-free bacterial supernatants nor bacterial lipopolysaccharide induce cytokine secretion.

  17. The Digital Divide

    ERIC Educational Resources Information Center

    Hudson, Hannah Trierweiler

    2011-01-01

    Megan is a 14-year-old from Nebraska who just started ninth grade. She has her own digital camera, cell phone, Nintendo DS, and laptop, and one or more of these devices is usually by her side. Compared to the interactions and exploration she's engaged in at home, Megan finds the technology in her classroom falls a little flat. Most of the…

  18. Challenging the Digital Divide

    NASA Astrophysics Data System (ADS)

    Kembhavi, Ajit

    2006-08-01

    Vast quantities of astronomical data in the form of images, spectra and catalogues are now freely available over the internet, and tools for producing science from these resources are also becoming available, particularly through the emerging Virtual Observatories. In addition to this, most astronomical literature from research journals is available at no cost through the ADS and preprint service. This situation, in principle, provides equal opportunity to astronomers located anywhere in the world to participate in the process of discovery. The only requirement is that the astronomers have access to the internet, and a fertile imagination. But in the real world, astronomers in many countries have very limited bandwidth and computing power, and are therefore excluded from meaningful participation in astronomical research, even though they may have the ideas and experience to contribute substantially to the effort. The lack of connectivity and computing hardware also makes it difficult for astronomers in many countries from exposing adequately any data resources that they may have produced locally. This situation prevents many aspiring and experienced astronomers from reaching their creative potential, and from attracting young persons to the charms of modern astronomy; it also leads to opportunity loss to astronomy, as it loses out on the the human resources and fresh ideas and talents which astronomers from developing countries could bring to the subject. I will discuss in my talk the nature and extent of this digital divide, the ways in which it could be mitigated, and the benefits which would arise from the unification. I will base some of my discussion on my experiences in setting up a major programme to take the advantages of the internet revolution to hundreds of universities in India.

  19. Immunotherapy and mast cell activation.

    PubMed

    Carlos, A G; Carlos, M L; Santos, M A; Pedro, E; Santos, S; Lopes-Pregal, A

    1998-10-01

    Tryptase is the more specific markers for mast cell activation and mediators release and can be used as an index of mast cell activation after challenge. Nasal provocation tests have been done in patients allergic to the pollen of Parietaria (pellitory wall) before and after specific systemic immunotherapy and tryptase release evaluated in nasal lavage fluid. After specific immunotherapy the concentration of tryptase in nasal lavage was significantly decreased to all the concentrations used in challenge and the peack of tryptase release was delayed. These results confirm that assays of tryptase in nasal fluid after nasal provocation are a reliable markers of mast cell activation. Immunotherapy with specific allergen decreases mast cell reactivity to the same allergen.

  20. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  1. Essays on the Digital Divide

    ERIC Educational Resources Information Center

    Abdelfattah, Belal M. T.

    2013-01-01

    The digital divide is a phenomenon that is globally persistent, despite rapidly decreasing costs in technology. While much of the variance in the adoption and use of information communication technology (ICT) that defines the digital divide can be explained by socioeconomic and demographic variables, there is still significant unaccounted variance…

  2. Manufacture of finely divided carbon

    SciTech Connect

    Walker, D.G.

    1980-01-22

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  3. Similar disturbances in B cell activity and regulatory T cell function in Henoch-Schonlein purpura and systemic lupus erythematosus

    SciTech Connect

    Beale, M.G.; Nash, G.S.; Bertovich, M.J.; MacDermott, R.P.

    1982-01-01

    The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml) and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.

  4. M-cadherin-mediated intercellular interactions activate satellite cell division.

    PubMed

    Marti, Merce; Montserrat, Núria; Pardo, Cristina; Mulero, Lola; Miquel-Serra, Laia; Rodrigues, Alexandre Miguel Cavaco; Andrés Vaquero, José; Kuebler, Bernd; Morera, Cristina; Barrero, María José; Izpisua Belmonte, Juan Carlos

    2013-11-15

    Adult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation. Here we demonstrate that M-cadherin plays an important role in cell-to-cell recognition and fusion, and is crucial for cell division activation. Treatment of satellite cells with M-cadherin in vitro stimulates cell division, whereas addition of anti-M-cadherin antibodies reduces the cell division rate. Our results suggest an alternative model for the contribution of satellite cells to muscle development, which might be useful in understanding muscle regeneration, as well as muscle-related dystrophies.

  5. Sociology: The growing climate divide

    NASA Astrophysics Data System (ADS)

    Hoffman, Andrew J.

    2011-07-01

    Climate change has reached the level of a 'scientific consensus', but is not yet a 'social consensus'. New analysis highlights that a growing divide between liberals and conservatives in the American public is a major obstacle to achieving this end.

  6. Xyloglucan Endotransglycosylase Activity in Carrot Cell Suspensions during cell Elongation and Somatic Embryogenesis.

    PubMed

    Hetherington, P. R.; Fry, S. C.

    1993-11-01

    Xyloglucan endotransglycosylase (XET) has been proposed to contribute to cell elongation through wall loosening. To explore this relationship further, we assayed this enzyme activity in suspensions of carrot (Daucus carota L.) cells exhibiting various rates of cell elongation. In one cell line, elongation was induced by dilution into dichlorophenoxyacetic acid (2,4-D)-free medium. During this elongation, 93% of the XET activity was found in the culture medium; in nonelongating controls, by contrast, 68% was found in the cell extracts even though the specific activity of these extracts was lower than in the elongating cells. By far the highest rates of XET secretion per cell were in the elongating cells. A second cell line was induced to undergo somatic embryogenesis by dilution into 2,4-D-free medium. During the first 6 d, numerous globular embryoids composed of small, isodiametric cells were formed in the absence of cell elongation; extracellular XET activity was almost undetectable, and intracellular specific activity markedly declined. After 6 d, heart, torpedo, and cotyledonary embryoids began to appear (i.e. cell elongation resumed); the intracellular specific activity of XET rose rapidly and >80% of the XET activity accumulated in the medium. Thus, nonexpanding cell suspensions (whether or not they were rapidly dividing) produced and secreted less XET activity than did expanding cells. We propose that a XET molecule has an ephemeral wall-loosening role while it passes through the load-bearing layer of the wall on its way from the protoplast into the culture medium.

  7. Xyloglucan Endotransglycosylase Activity in Carrot Cell Suspensions during cell Elongation and Somatic Embryogenesis.

    PubMed Central

    Hetherington, P. R.; Fry, S. C.

    1993-01-01

    Xyloglucan endotransglycosylase (XET) has been proposed to contribute to cell elongation through wall loosening. To explore this relationship further, we assayed this enzyme activity in suspensions of carrot (Daucus carota L.) cells exhibiting various rates of cell elongation. In one cell line, elongation was induced by dilution into dichlorophenoxyacetic acid (2,4-D)-free medium. During this elongation, 93% of the XET activity was found in the culture medium; in nonelongating controls, by contrast, 68% was found in the cell extracts even though the specific activity of these extracts was lower than in the elongating cells. By far the highest rates of XET secretion per cell were in the elongating cells. A second cell line was induced to undergo somatic embryogenesis by dilution into 2,4-D-free medium. During the first 6 d, numerous globular embryoids composed of small, isodiametric cells were formed in the absence of cell elongation; extracellular XET activity was almost undetectable, and intracellular specific activity markedly declined. After 6 d, heart, torpedo, and cotyledonary embryoids began to appear (i.e. cell elongation resumed); the intracellular specific activity of XET rose rapidly and >80% of the XET activity accumulated in the medium. Thus, nonexpanding cell suspensions (whether or not they were rapidly dividing) produced and secreted less XET activity than did expanding cells. We propose that a XET molecule has an ephemeral wall-loosening role while it passes through the load-bearing layer of the wall on its way from the protoplast into the culture medium. PMID:12231995

  8. Bridging the Health Data Divide

    PubMed Central

    2016-01-01

    Fundamental quality, safety, and cost problems have not been resolved by the increasing digitization of health care. This digitization has progressed alongside the presence of a persistent divide between clinicians, the domain experts, and the technical experts, such as data scientists. The disconnect between clinicians and data scientists translates into a waste of research and health care resources, slow uptake of innovations, and poorer outcomes than are desirable and achievable. The divide can be narrowed by creating a culture of collaboration between these two disciplines, exemplified by events such as datathons. However, in order to more fully and meaningfully bridge the divide, the infrastructure of medical education, publication, and funding processes must evolve to support and enhance a learning health care system. PMID:27998877

  9. Use of an X-linked human neutrophil marker to estimate timing of lyonization and size of the dividing stem cell pool.

    PubMed Central

    Buescher, E S; Alling, D W; Gallin, J I

    1985-01-01

    In families with X-linked chronic granulomatous disease (CGD), heterozygous females have two stable populations of polymorphonuclear leukocytes (PMN) in their blood; one normal, the other, deficient in oxygen metabolism. The two types of PMN can be distinguished by the ability or lack of ability to reduce nitroblue tetrazolium dye. The variation in the percent normal PMN among 11 CGD heterozygotes was shown to follow a binomial distribution based on eight independent trials and a chance of success of 50%. This is consistent with the occurrence of X-chromosome inactivation (lyonization) when eight embryonic founder cells for the hematopoietic system are present. Serial determinations of the percent normal PMN in individual heterozygotes showed very limited variability (standard deviations ranged from 2.0% to 5.2%) most of which could be ascribed to experimental error. An estimate of the remaining variation (residual variance) was introduced into a well-known formula to calculate the appropriate number of pluripotent stem cells necessary to support hematopoiesis and a figure exceeding 400 was obtained. Thus, the data indicate that in humans there is a highly polyclonal system of hematopoiesis. PMID:3863835

  10. Viral Evasion of Natural Killer Cell Activation.

    PubMed

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  11. Getting Past the "Digital Divide"

    ERIC Educational Resources Information Center

    McCollum, Sean

    2011-01-01

    As most educators know, there is a lot more to addressing the so-called "digital divide" than having enough working machines in classrooms. Effective information technology (IT) in schools requires useful software, reliable and speedy Internet access, effective teacher training, and well-considered goals with transformative outcomes. Educators who…

  12. Dividing Fractions: A Pedagogical Technique

    ERIC Educational Resources Information Center

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  13. Getting Past the "Digital Divide"

    ERIC Educational Resources Information Center

    McCollum, Sean

    2011-01-01

    In the last decade, "digital divide" has become a catchphrase for the stubborn disparity in IT resources between communities, especially in regard to education. Low-income, rural and minority populations have received special scrutiny as the technological "have-nots." This article presents success stories of educators who can work around obstacles…

  14. CD27(-)CD45(+) γδ T cells can be divided into two populations, CD27(-)CD45(int) and CD27(-)CD45(hi) with little proliferation potential.

    PubMed

    Odaira, Kosuke; Kimura, Shin-Nosuke; Fujieda, Nao; Kobayashi, Yukari; Kambara, Kaori; Takahashi, Takuya; Izumi, Takamichi; Matsushita, Hirokazu; Kakimi, Kazuhiro

    2016-09-23

    In addition to the majority of T cells which carry the αβ T cell receptor (TCR) for antigen, a distinct subset of about 1-5% of human peripheral blood T cells expressing the γδ TCR contributes to immune responses to infection, tissue damage and cancer. T cells with the Vδ2(+) TCR, usually paired with Vγ9, constitute the majority of these γδ T cells. Analogous to αβ T cells, they can be sorted into naive (CD27(+)CD45RA(+)), central memory (CD27(+)CD45RA(-)), effector memory (CD27(-)CD45RA(-)), and terminally-differentiated effector memory (CD27(-)CD45RA(+)) phenotypes. Here, we found that CD27(-)CD45RA(+) γδ T cells can be further divided into two populations based on the level of expression of CD45RA: CD27(-)CD45RA(int) and CD27(-)CD45RA(hi). Those with the CD27(-)CD45RA(hi) phenotype lack extensive proliferative capacity, while those with the CD27(-)CD45RA(int) phenotype can be easily expanded by culture with zoledronate and IL-2. These CD27(-)CD45RA(hi) potentially exhausted γδ T cells were found predominantly in cancer patients but also in healthy subjects. We conclude that γδ T cells can be divided into at least 5 subsets enabling discrimination of γδ T cells with poor proliferative capacity. It was one of our goals to predict the feasibility of γδ T cell expansion to sufficient amounts for adoptive immunotherapy without the necessity for conducting small-scale culture tests. Fulfilling the ≥1.5% criterion for γδ T cells with phenotypes other than CD27(-)CD45RA(hi), may help avoid small-scale culture testing and shorten the preparation period for adoptive γδ T cells by 10 days, which may be beneficial for patients with advanced cancer.

  15. Chaos, brain and divided consciousness.

    PubMed

    Bob, Petr

    2007-01-01

    Modern trends in psychology and cognitive neuroscience suggest that applications of nonlinear dynamics, chaos and self-organization seem to be particularly important for research of some fundamental problems regarding mind-brain relationship. Relevant problems among others are formations of memories during alterations of mental states and nature of a barrier that divides mental states, and leads to the process called dissociation. This process is related to a formation of groups of neurons which often synchronize their firing patterns in a unique spatial maner. Central theme of this study is the relationship between level of moving and oscilating mental processes and their neurophysiological substrate. This opens a question about principles of organization of conscious experiences and how these experiences arise in the brain. Chaotic self-organization provides a unique theoretical and experimental tool for deeper understanding of dissociative phenomena and enables to study how dissociative phenomena can be linked to epileptiform discharges which are related to various forms of psychological and somatic manifestations. Organizing principles that constitute human consciousness and other mental phenomena from this point of view may be described by analysis and reconstruction of underlying dynamics of psychological or psychophysiological measures. These nonlinear methods in this study were used for analysis of characteristic changes in EEG and bilateral electrodermal activity (EDA) during reliving of dissociated traumatic and stressful memories and during psychopathological states. Analysis confirms a possible role of chaotic transitions in the processing of dissociated memory. Supportive finding for a possible chaotic process related to dissociation found in this study represent also significant relationship of dissociation, epileptiform discharges measured by typical psychopathological manifestations and characteristic laterality changes in bilateral EDA in patients

  16. Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers.

    PubMed

    Doostmohammadi, Amin; Thampi, Sumesh P; Saw, Thuan B; Lim, Chwee T; Ladoux, Benoit; Yeomans, Julia M

    2015-10-07

    We introduce the notion of cell division-induced activity and show that the cell division generates extensile forces and drives dynamical patterns in cell assemblies. Extending the hydrodynamic models of lyotropic active nematics we describe turbulent-like velocity fields that are generated by the cell division in a confluent monolayer of cells. We show that the experimentally measured flow field of dividing Madin-Darby Canine Kidney (MDCK) cells is reproduced by our modeling approach. Division-induced activity acts together with intrinsic activity of the cells in extensile and contractile cell assemblies to change the flow and director patterns and the density of topological defects. Finally we model the evolution of the boundary of a cellular colony and compare the fingering instabilities induced by cell division to experimental observations on the expansion of MDCK cell cultures.

  17. GALLATIN DIVIDE ROADLESS AREA, MONTANA.

    USGS Publications Warehouse

    Simons, Frank S.; Close, Terry J.

    1984-01-01

    A mineral-resource survey of the Gallatin Divide Roadless Area in the Gallatin Range of southwestern Montana was made. The area has probable and substantiated mineral-resource potential for phosphate rock, but most of the phosphate beds are thin, discontinuous, low grade, and deeply buried. Petrified wood is abundant but is scattered and of poor quality. Oil and gas resources are unlikely because possible productive structures are small and deeply eroded. The roadless area has little promise for the occurrence of other mineral or energy resources.

  18. Wealth and the marital divide.

    PubMed

    Schneider, Daniel

    2011-09-01

    Marriage patterns differ dramatically in the United States by race and education. The author identifies a novel explanation for these marital divides, namely, the important role of personal wealth in marriage entry. Using event-history models and data from the National Longitudinal Survey of Youth 1979 cohort, the author shows that wealth is an important predictor of first marriage and that differences in asset ownership by race and education help to explain a significant portion of the race and education gaps in first marriage. The article also tests possible explanations for why wealth plays an important role in first marriage entry.

  19. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  20. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  1. Active cell mechanics: Measurement and theory.

    PubMed

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  2. Choreography of MAGUKs during T cell activation.

    PubMed

    Rincón, Mercedes; Davis, Roger J

    2007-02-01

    T cell receptor activation requires the membrane-associated guanylate kinase CARMA1. A new study finds that a second such kinase, Dlgh1, is also required specifically for activation of the alternative p38 kinase pathway.

  3. A house divided cannot stand

    SciTech Connect

    Gilbert, S.M. )

    1994-01-01

    When it comes to the relationships between electric utilities and public service commissions, utilities would do well to remember the words of Abraham Lincoln -- [open quotes]A house divided against itself cannot stand.[close quotes] For just as distrust, dissension, and division threatened the future of the United States during the Civil War, they threaten the future of utilities today.In an effort to lower their costs and increase their competitive advantage, utility companies are increasingly looking to reinvent cultures, reengineer work processes, and redefine corporate missions, values, and strategies. But unless utilities also rebuild regulatory relations, such efforts are doomed to fail. If this prognosis sounds overly simplistic or melodramatic -- especially as utilities appear to be moving toward an era of reduced regulation -- think again. History shows that regulatory relationships drive a utility's ability to successfully integrate demand-side management (DSM) programs that are often critical to business strategies and goals.

  4. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  5. The Southern Ocean biogeochemical divide.

    PubMed

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  6. Modeled Aeromagnetic Anomalies, Controlled By Radar Ice Sounding, As Evidence for Subglacial Volcanic Activity in the West Antarctic Rift System (WR) Beneath the Area of the Divide of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2014-12-01

    The Thwaites and Pine Island ice shelves, buttressing the WAIS, have passed the turning point as they are eaten away by warmer ocean waters (Joghin et al., 2014; Rignot et al., 2014). There is an increasing evidence (aeromagnetic, radar ice-sounding, high heat flow, subglacial volcanic seismicity, and several exposed and subglacial active volcanoes), for volcanic activity in the WR beneath the WAIS, which flows through it. The 5-km, orthogonally line spaced, central West Antarctica (CWA) aerogeophysical survey defined >400 high amplitude volcanic magnetic anomalies correlated with glacial bed topography. Modeled anomalies defined magnetic properties; interpreted volcanic edifices were mostly removed by the moving ice into which they were erupted. Very high apparent susceptibility contrasts (.001->.3 SI) are typical of measured properties from volcanic exposures in the WAIS area. About 90% of the magnetic sources have normal magnetization in the present field direction. Two explanations as to why the anomalies are not approximately 50% negative: (1) Volcanic activity resulting in these anomalies occurred in a predominantly normal field (unlikely). (2) Sources are a combination of induced and remanent magnetization resulting in anomalies of low amplitude (induced cancels remanent) and are not recognized because they are <100 nT (most probable). About 18 high relief, (~600-2000 m) "volcanic centers" beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent; nine of these are in the general area beneath the divide of the WAIS. A 70-km wide, ring of interpreted subglacial volcanic rocks may define a volcanic caldera underlying thedivide (Behrendt et al., 1998). A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78o30'S, 111oW) ~ 100 km north of the WAISCORE, could be the source an ash layer observed in the core. Models by Tulaczyk and Hossainzadeh (2011) indicate >4mm/yr basal melting beneath the WAIS, supportive of high heat flow

  7. Active gel model of amoeboid cell motility

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Voituriez, R.

    2013-02-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  8. Receptor Dissociation and B-Cell Activation.

    PubMed

    Yang, Jianying; Reth, Michael

    2016-01-01

    The B-cell antigen receptor (BCR) is one of the most abundant receptors on the surface of B cells with roughly 100,000-200,000 copies per cell. Signaling through the BCR is crucial for the activation and differentiation of B cells. Unlike other receptors, the BCR can be activated by a large set of structurally different ligands, but the molecular mechanism of BCR activation is still a matter of controversy. Although dominant for a long time, the cross-link model (CLM) of BCR activation is not supported by recent studies of the nanoscale organization of the BCR on the surface of resting B cells. In contrast to the prediction of CLM, the numerous BCR complexes on these cells are not randomly distributed monomers but rather form oligomers which reside within membrane confinements. This finding is more in line with the dissociation activation model (DAM), wherein B-cell activation is accompanied by an opening of the auto-inhibited BCR oligomers instead of a cross-linking of the BCR monomers. In this review, we discuss in detail the new findings and their implications for BCR signaling.

  9. T cell activation requires force generation

    PubMed Central

    Hu, Kenneth H.

    2016-01-01

    Triggering of the T cell receptor (TCR) integrates both binding kinetics and mechanical forces. To understand the contribution of the T cell cytoskeleton to these forces, we triggered T cells using a novel application of atomic force microscopy (AFM). We presented antigenic stimulation using the AFM cantilever while simultaneously imaging with optical microscopy and measuring forces on the cantilever. T cells respond forcefully to antigen after calcium flux. All forces and calcium responses were abrogated upon treatment with an F-actin inhibitor. When we emulated the forces of the T cell using the AFM cantilever, even these actin-inhibited T cells became activated. Purely mechanical stimulation was not sufficient; the exogenous forces had to couple through the TCR. These studies suggest a mechanical–chemical feedback loop in which TCR-triggered T cells generate forceful contacts with antigen-presenting cells to improve access to antigen. PMID:27241914

  10. [Hydrogen ion activity in the cell].

    PubMed

    Sorokin, Z A

    1976-07-01

    Literature data and results of our experiments evidence for a heterogenous hydrogen distribution in cells. Intracellular pH should be regarded as a mean activity of hydrogen ions which is the sum of activities in different phases of a cell. Intracellular pH value does not depend on the transmembrane action potential difference, and is resistant to respiratory and metabolic disorders of acid-base equilibrium in the body. It also slightly changes with changing the electrolyte composition and pH of the medium and is not influenced by metabolic inhibitors. A low hydrogen activity in the cell has a certain functional significance. The pH stability is ensured by a number of regulatory mechanism: the buffer properties of the protoplasm itself, and the active hydrogen transport into the medium. Hydrogen released from cells is supposed to be connected with functioning of a specific respiratory chain of superficial protoplasmic membranes.

  11. Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition.

    PubMed

    Casas-Tintó, Sergio; Lolo, Fidel-Nicolás; Moreno, Eduardo

    2015-12-11

    Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue.

  12. Kinetic discrimination in T-cell activation.

    PubMed Central

    Rabinowitz, J D; Beeson, C; Lyons, D S; Davis, M M; McConnell, H M

    1996-01-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model. PMID:8643643

  13. Activated Membrane Patches Guide Chemotactic Cell Motility

    PubMed Central

    Hecht, Inbal; Skoge, Monica L.; Charest, Pascale G.; Ben-Jacob, Eshel; Firtel, Richard A.; Loomis, William F.; Levine, Herbert; Rappel, Wouter-Jan

    2011-01-01

    Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. PMID:21738453

  14. Bursts of activity in collective cell migration

    PubMed Central

    Chepizhko, Oleksandr; Giampietro, Costanza; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stéphane; Alava, Mikko J.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems. PMID:27681632

  15. America's digital divide: 2000-2003 trends.

    PubMed

    Whaley, Kermit C

    2004-04-01

    Computer ownership and literacy, along with Internet access and its many applications, has become, for many, a trademark for the Americans' lifestyle. Research shows that computer ownership and literacy, along with Internet access and expertise, is rapidly changing how Americans go about their business. The technological industry is providing many opportunities for Americans to operate in markets, global and local, not previously available. These changes are apparent across all U.S. sociocultural and geographic boundaries. Yet, upon close analysis, there are individuals and communities less connected with many completely excluded from participation. Those individuals exist below a line called the Digital Divide. Growth in computer ownership and Internet use, while offering optimism that the Digital Divide is narrowing, also illustrates that, without focused intervention will for certain populations, continue. Public and private programs, focus groups, and pocks of community activism, each hope to correct the disparities among on- and-off line Americans. On many fronts, there is evidence that progress is being made by many. Income, race, age, and geographic location are often the determining factors.

  16. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution

    NASA Astrophysics Data System (ADS)

    Whipple, K. X.; Forte, A. M.; DiBiase, R. A.; Gasparini, N. M.; Ouimet, W. B.

    2017-01-01

    Efforts to extract information about climate and tectonics from topography commonly assume that river networks are static. Drainage divides can migrate through time, however, and recent work has shown that divide mobility can potentially induce changes in river profiles comparable to changes caused by variation in rock uplift, climate, or rock properties. We use 1-D river profile and 2-D landscape evolution simulations to evaluate how mobile divides influence the interpretation of river profiles in tectonically active settings. We define a nondimensional divide migration number, NDm, as the ratio of the timescale of channel profile response to a change in drainage area (TdA) to the timescale of divide migration (TDm). In simulations of headward divide migration, NDm is much less than unity with no measurable perturbation of channel profiles. Only in simulations configured to induce rapid lateral divide migration are there occasional large stream capture events and zones where localized drainage area loss is fast enough to support NDm values near unity. The rapid response of channel profiles to changes in drainage area ensures that under most conditions profiles maintain quasi-equilibrium forms and thus generally reflect spatiotemporal variation in rock uplift, climate, or rock properties even during active divide migration. This implies that channel profile form may not reliably record divide mobility, so we evaluate alternate metrics of divide mobility. In our simulations and an example in Taiwan, we find that simple measures of cross-divide contrasts in topography are more robust metrics of divide mobility than measures of drainage network topology.

  17. Power Divider for Waveforms Rich in Harmonics

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III

    2005-01-01

    A method for dividing the power of an electronic signal rich in harmonics involves the use of an improved divider topology. A divider designed with this topology could be used, for example, to propagate a square-wave signal in an amplifier designed with a push-pull configuration to enable the generation of more power than could be generated in another configuration.

  18. Diversity, Disability, and Geographic Digital Divide

    ERIC Educational Resources Information Center

    Sumari, Melati; Carr, Erika; Ndebe-Ngovo, Manjerngie

    2006-01-01

    The phenomenon called digital divide was the focus of this paper. Diversity, disability, and geographical digital divide were relevant to this collaborative project. An extensive review of the literature was conducted for the completion of this project. The evidence for the digital divide in terms of race, level of education, and gender in the…

  19. The Myth about the Digital Divide

    ERIC Educational Resources Information Center

    Hawkins, Brian L.; Oblinge, Diana G.

    2006-01-01

    Although computer ownership is not 100 percent, progress has been made on closing the digital divide. However, defining the digital divide according to the haves and have-nots of computer ownership is only a starting point. Beyond computer ownership, colleges and universities should explore the "second-level digital divide," which can be…

  20. Tech, Teachers & Teens: Bridging the Divide

    ERIC Educational Resources Information Center

    Stuht, Amy Colcord; Colcord, Cean

    2011-01-01

    In past decades, the "digital divide" referred to the gap between those who could afford access to technology and those who could not. The divide has shifted in recent years to reflect the growing technological chasm between teachers and their students: today's schools and teenagers' worlds. The digital divide is widening and deepening…

  1. Adenine suppresses IgE-mediated mast cell activation.

    PubMed

    Silwal, Prashanta; Shin, Keuna; Choi, Seulgi; Kang, Seong Wook; Park, Jin Bong; Lee, Hyang-Joo; Koo, Suk-Jin; Chung, Kun-Hoe; Namgung, Uk; Lim, Kyu; Heo, Jun-Young; Park, Jong Il; Park, Seung-Kiel

    2015-06-01

    Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcɛRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcɛRI-independent but shares FcɛRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcɛRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcɛRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.

  2. Metabolic activity is necessary for activation of T suppressor cells by B cells

    SciTech Connect

    Elkins, K.L.; Stashak, P.W.; Baker, P.J. )

    1990-04-15

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag.

  3. Reduced mitotic activity at the periphery of human embryonic stem cell colonies cultured in vitro with mitotically-inactivated murine embryonic fibroblast feeder cells.

    PubMed

    Heng, Boon Chin; Cao, Tong; Liu, Hua; Rufaihah, Abdul Jalil

    2005-01-01

    This study attempted to investigate whether different levels of mitotic activity exist within different physical regions of a human embryonic stem (hES) cell colony. Incorporation of 5-bromo-2-deoxyuridine (BrdU) within newly-synthesized DNA, followed by immunocytochemical staining was used as a means of detecting mitotically-active cells within hES colonies. The results showed rather surprisingly that the highest levels of mitotic activity are primarily concentrated within the central regions of hES colonies, whereas the peripheral regions exhibited reduced levels of cellular proliferation. Two hypothetical mechanisms are therefore proposed for hES colony growth and expansion. Firstly, it is envisaged that the less mitotically-active hES cells at the periphery of the colony are continually migrating outwards, thereby providing space for newly-divided daughter cells within the more mitotically-active central region of the hES colony. Secondly, it is proposed that the newly-divided hES cells within the central region of the colony somehow migrate to the outer periphery. This could possibly explain why the periphery of hES colonies are less mitotically-active, since there would obviously be an extended time-lag before newly-divided daughter cells are ready again for the next cell division. Further investigations need to be carried out to characterize the atypical mechanisms by which hES colonies grow and expand in size.

  4. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    SciTech Connect

    Parekkadan, Biju; Poll, Daan van; Megeed, Zaki; Kobayashi, Naoya; Tilles, Arno W.; Berthiaume, Francois; Yarmush, Martin L.

    2007-11-16

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-{alpha} abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.

  5. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation.

  6. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage–induced cell senescence

    PubMed Central

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A.; Kumar, Sheetal; Kalab, Petr

    2016-01-01

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase–regulated nuclear–cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage–induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β–dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP–regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  7. The Digital Divide and urban older adults.

    PubMed

    Cresci, M Kay; Yarandi, Hossein N; Morrell, Roger W

    2010-01-01

    Computers and the Internet offer older adults opportunities and resources for independent living. However, many urban older adults do not use computers. This study examined the demographic, health, and social activities of urban older adults to determine variables that might predict the use and nonuse of computers in this population. A secondary data analysis was performed using the 2001 Detroit City-Wide Needs Assessment of Older Adults (n = 1410) data set. Logistic regression was used to explore potential differences in predictor variables between computer users and nonusers. Overall, computer users were younger (27%), had a higher level of education, were more likely to be employed, had an annual income greater than $20,000, and were healthier and more active than nonusers. They also were more likely to have memberships in community organizations and do volunteer work. Preferred computer activities included conducting Internet searches, playing games, writing, and communicating with family members and friends. The results suggest significant differences in demographic and health-related characteristics between computer users and nonusers among urban older adults. Although about a quarter of participants in this study used computers, the Digital Divide continues to exist in urban settings for scores of others.

  8. Entangled active matter: From cells to ants

    NASA Astrophysics Data System (ADS)

    Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.

    2016-07-01

    Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.

  9. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  10. Aging and defective lymphoid cell activation.

    PubMed

    Coffman, F D; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is a crucial process in the immune response. Age-related deficiencies in this cellular response strongly correlate with deficiencies in the immune system response, with concomitant increase in disease severity and mortality. Defects associated with the transmission of the initial activation signal and with IL-2 production contribute to the depressed response, but defects in the IL-2 response mechanism also play important roles. A major factor in this area is the inability of the nuclei of these cells to respond to the intracellular factor ADR, which plays a crucial role in the initiation of DNA replication. These cells produce normal levels of ADR; thus, either the nuclei cannot bind ADR in a productive manner or the defect lies beyond the point of ADR binding, perhaps in one of the other proteins of the initiation complex. An interesting contrast to the age-related failure of nuclei to respond to ADR is the failure of neoplastic nuclei to respond to the ADR inhibitor. This inhibitor, found in the cytoplasm of quiescent cells, suppresses both the activation of quiescent nuclei by ADR and the ongoing DNA synthesis in isolated nuclei from activated cells. Nuclei from spontaneous proliferating cell lines were not affected by this inhibitor, which may be an important factor in the uncontrolled growth seen in neoplastic cells. The investigation of ADR has given hints that perhaps two of the fundamental questions in biology, namely why some cells don't proliferate and why some others won't stop proliferating, may be two sides of the same coin.

  11. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion

    PubMed Central

    Cunniff, Brian; McKenzie, Andrew J.; Heintz, Nicholas H.; Howe, Alan K.

    2016-01-01

    Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion. PMID:27385336

  12. The contribution of working memory to divided attention.

    PubMed

    Santangelo, Valerio; Macaluso, Emiliano

    2013-01-01

    Previous studies have indicated that increasing working memory (WM) load can affect the attentional selection of signals originating from one object/location. Here we assessed whether WM load affects also the selection of multiple objects/locations (divided attention). Participants monitored either two object-categories (vs. one category; object-based divided attention) or two locations (vs. one location; space-based divided attention) while maintaining in WM either a variable number of objects (object-based WM load) or locations (space-based WM load). Behavioural results showed that WM load affected attentional performance irrespective of divided or focused attention. However, fMRI results showed that the activity associated with object-based divided attention increased linearly with increasing object-based WM load in the left and right intraparietal sulcus (IPS); while, in the same areas, activity associated with space-based divided attention was not affected by any type of WM load. These findings support the hypothesis that WM contributes to the maintenance of resource-demanding attentional sets in a domain-specific manner. Moreover, the dissociable impact of WM load on performance and brain activity suggests that increased IPS activation reflects a recruitment of additional, domain-specific processing resources that enable dual-task performance under conditions of high WM load and high attentional demand.

  13. Power Divider for Harmonically Rich Waveforms

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor)

    2001-01-01

    A power divider divides an RF signal into two output signals having a phase difference of 180 deg. or a multiple thereof. When the RF signal is a square wave or another harmonically rich signal. the phases of the fundamental and the harmonics have the proper relationship. The divider can be implemented in the form of microstrips on a board, with one of the output microstrips having several bends to provide a different electrical length from the other.

  14. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  15. Mechanically activated artificial cell by using microfluidics

    NASA Astrophysics Data System (ADS)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-09-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  16. Parthenolide enhances dacarbazine activity against melanoma cells.

    PubMed

    Koprowska, Kamila; Hartman, Mariusz L; Sztiller-Sikorska, Malgorzata; Czyz, Malgorzata E

    2013-09-01

    Dacarbazine induces a clinical response only in 15% of melanoma patients. New treatment strategies may involve combinations of drugs with different modes of action to target the tumor heterogeneity. We aimed to determine whether the combined treatment of heterogeneous melanoma cell populations in vitro with the alkylating agent dacarbazine and the nuclear factor-κB inhibitor parthenolide could be more effective than either drug alone. A panel of melanoma cell lines, including highly heterogeneous populations derived from surgical specimens, was treated with dacarbazine and parthenolide. The effect of drugs on the viable cell number was examined using an acid phosphatase activity assay, and the combination effect was determined by median-effect analysis. Cell death and cell-cycle arrest were assessed by flow cytometry. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by western blotting. Secretion of vascular endothelial growth factor and interleukin-8 was determined using an enzyme-linked immunosorbent assay. The self-renewing capacity was assessed using a clonogenic assay. Dacarbazine was less effective in heterogeneous melanoma populations than in the A375 cell line. Parthenolide and dacarbazine synergistically reduced the viable cell numbers. Both drugs induced cell-cycle arrest and apoptotic cell death. Importantly, parthenolide abrogated the baseline and dacarbazine-induced vascular endothelial growth factor secretion from melanoma cells in heterogeneous populations, whereas interleukin-8 secretion was not significantly affected by either drug. Parthenolide eradicated melanoma cells with self-renewing capacity also in cultures simultaneously treated with dacarbazine. The combination of parthenolide and dacarbazine might be considered as a new therapeutic modality against metastatic melanoma.

  17. Inductive voltage divider modeling in Matlab

    NASA Astrophysics Data System (ADS)

    Andreev, S. A.; Kim, V. L.

    2017-01-01

    Inductive voltage dividers have the most appropriate metrological characteristics on alternative current and are widely used for converting physical signals. The model of a double-decade inductive voltage divider was designed with the help of Matlab/Simulink. The first decade is an inductive voltage divider with balanced winding, the second decade is a single-stage inductive voltage divider. In the paper, a new transfer function algorithm was given. The study shows errors and differences that appeared between the third degree reduced model and a twenty degree unreduced model. The obtained results of amplitude error differ no more than by 7 % between the reduced and unreduced model.

  18. Density-dependent induction of 92-kd type IV collagenase activity in cultures of A431 human epidermoid carcinoma cells.

    PubMed Central

    Xie, B.; Bucana, C. D.; Fidler, I. J.

    1994-01-01

    We examined the in vitro regulation of the production of two type IV collagenases, MMP-2 and MMP-9, by A431 human epidermoid carcinoma cells. The A431 cells were cultured under sparse or confluent conditions. The addition of transforming growth factor-beta (TGF-beta) or phorbolester-TPA to sparse cultures induced low levels of MMP-9 secretion, whereas in confluent cultures only TGF-beta produced this effect. Neither treatment altered the level of constitutive secretion of MMP-2. Treatment of sparse, actively growing cultures but not confluent stationary cultures with both TGF-beta and TPA produced synergistic induction of MMP-9 but did not affect MMP-2. A431 cells were grown as discrete large monolayer colonies. Radiolabeling with [3H]leucine or [3H]thymidine followed by autoradiography revealed that all the A431 cells in the colonies were metabolically active and only those on the periphery were dividing. Only these dividing A431 cells stained positive by anti-MMP-9 antibodies. Our results demonstrate that the synergistic induction of MMP-9 secretion in A431 cells occurs subsequent to stimulation by external signals in only noncontact-inhibited dividing tumor cells. These regulatory mechanisms may account for the in vivo finding that many proteinases are localized at the invasion front of a neoplasm where tumor cells are dividing and accessible to various environmental signals. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8178929

  19. Glycolate kinase activity in human red cells.

    PubMed

    Fujii, S; Beutler, E

    1985-02-01

    Human red cells manifest glycolate kinase activity. This activity copurifies with pyruvate kinase and is decreased in the red cells of subjects with hereditary pyruvate kinase deficiency. Glycolate kinase activity was detected in the presence of FDP or glucose-1,6-P2. In the presence of 1 mmol/L FDP, the Km for adenosine triphosphate (ATP) was 0.28 mmol/L and a half maximum velocity for glycolate was obtained at 40 mmol/L. The pH optimum of the reaction was over 10.5 With 10 mumol/L FDP, 500 mumol/L glucose-1,6-P2, 2 mmol/L ATP, 5 mmol/L MgCl2, and 50 mmol/L glycolate at pH 7.5, glycolate kinase activity was calculated to be approximately 0.0013 U/mL RBC. In view of this low activity even in the presence of massive amounts of glycolate, the glycolate kinase reaction cannot account for the maintenance of the reported phosphoglycolate level in human red cells.

  20. Cell Cholesterol Homeostasis: Mediation by Active Cholesterol

    PubMed Central

    Steck, Theodore L.; Lange, Yvonne

    2010-01-01

    Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is that fraction which exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol prompts several feedback responses thereby. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol. PMID:20843692

  1. Parochial Geographies: Growing up in Divided Belfast

    ERIC Educational Resources Information Center

    Leonard, Madeleine

    2010-01-01

    This article explores the ways in which teenagers occupy and manage space in one divided community in Northern Ireland. Drawing on stories, maps and focus group discussions with 80 teenagers, from an interface area in Belfast, the article reveals their perceptions and experiences of divided cities, as risky landscapes. Teenagers respond to these…

  2. Social Welfare Implications of the Digital Divide

    ERIC Educational Resources Information Center

    Kim, Eunjin; Lee, Byungtae; Menon, Nirup M.

    2009-01-01

    The Internet plays a critical role in informing individuals about society, politics, business, and the environment. So much so that it has been said that the digital divide makes the segment of society on the ''right side'' of the divide (the digitally endowed group) better off and that on the ''wrong side'' (the digitally challenged group) worse…

  3. Bridge the Digital Divide for Educational Equity

    ERIC Educational Resources Information Center

    Mason, Christine Y.; Dodds, Richard

    2005-01-01

    Students' technological savvy has challenged schools to make greater use of computers and the Internet in their curricula, but unfortunately, not every student has the same access to it, and the inability to keep pace has created a digital divide that continues to widen. The digital divide particularly affects students who are black, Hispanic,…

  4. T cell immunoregulation in active ocular toxoplasmosis.

    PubMed

    Cordeiro, Cynthia A; Vieira, Erica L M; Castro, Vinicius M; Dutra, Walderez O; Costa, Rogerio A; Orefice, Juliana L; Campos, Wesley R; Orefice, Fernando; Young, Lucy H; Teixeira, Antonio Lucio

    2017-04-01

    Toxoplasma gondii infection is an important cause of infectious ocular disease. The physiopathology of retinochoroidal lesions associated with this infection is not completely understood. The present study was undertaken to investigate cytokine production by T cells from individuals with active toxoplasmic retinochoroiditis (TR) comparing with controls. Eighteen patients with active TR and 15 healthy controls (6 controls IgG(+) to Toxoplasma and 9 negative controls) were included in the study. Peripheral blood mononuclear cells were incubated in the presence or absence of T. gondii antigen (STAg), and stained against CD4, CD8, TNF, IL-10 and IFN-γ. Baseline expression of cytokines was higher in TR/IgG(+) patients in comparison with controls. Cytokine expression was not increased by STAg in vitro stimulation in controls. After stimulation, TR/IgG(+) patients' lymphocytes increased cytokine as compared to cultures from both controls. While T cells were the main source of IL-10, but also IFN-γ and TNF, other lymphocyte populations were relevant source of inflammatory cytokines. Interestingly, it was observed a negative correlation between ocular lesion size and IL-10 expression by CD4(+) lymphocytes. This study showed that T cells are the main lymphocyte populations expressing IL-10 in patients with TR. Moreover, expression of IL-10 plays a protective role in active TR.

  5. Shrinking the Civil-Military Divide: A Military Perspective

    DTIC Science & Technology

    2015-04-13

    military divide: The Culture Divide, the Control Divide, the Connectivity Divide, and the Knowledge Divide. The author recommends methods to improve each...divide: The Culture Divide, the Control Divide, the Connectivity Divide, and the Knowledge Divide. The author recommends methods to improve each...1 Chapter 2: Defining the Divides: A New Clausewitzian Paradigm……………. 4 Chapter 3: The Culture Divide: The Military and the People………………….. 11

  6. Mouse blastomeres acquire ability to divide asymmetrically before compaction

    PubMed Central

    Kłoś, Piotr; Maleszewski, Marek

    2017-01-01

    The mouse preimplantation embryo generates the precursors of trophectoderm (TE) and inner cell mass (ICM) during the 8- to 16-cell stage transition, when the apico-basal polarized blastomeres undergo divisions that give rise to cells with different fate. Asymmetric segregation of polar domain at 8–16 cell division generate two cell types, polar cells which adopt an outer position and develop in TE and apolar cells which are allocated to inner position as the precursors of ICM. It is still not know when the blastomeres of 8-cell stage start to be determined to undergo asymmetric division. Here, we analyze the frequency of symmetric and asymmetric divisions of blastomeres isolated from 8-cell stage embryo before and after compaction. Using p-Ezrin as the polarity marker we found that size of blastomeres in 2/16 pairs cannot be used as a criterion for distinguishing symmetric and asymmetric divisions. Our results showed that at early 8-cell stage, before any visible signs of cortical polarity, a subset of blastomeres had been already predestined to divide asymmetrically. We also showed that almost all of 8-cell stage blastomeres isolated from compacted embryo divide asymmetrically, whereas in intact embryos, the frequency of asymmetric divisions is significantly lower. Therefore we conclude that in intact embryo the frequency of symmetric and asymmetric division is regulated by cell-cell interactions. PMID:28362853

  7. Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis

    PubMed Central

    Serrano-Mislata, Antonio; Schiessl, Katharina; Sablowski, Robert

    2015-01-01

    Summary How cells regulate their dimensions is a long-standing question [1, 2]. In fission and budding yeast, cell-cycle progression depends on cell size, although it is still unclear how size is assessed [3, 4, 5]. In animals, it has been suggested that cell size is modulated primarily by the balance of external signals controlling growth and the cell cycle [1], although there is evidence of cell-autonomous control in cell cultures [6, 7, 8, 9]. Regardless of whether regulation is external or cell autonomous, the role of cell-size control in the development of multicellular organisms remains unclear. Plants are a convenient system to study this question: the shoot meristem, which continuously provides new cells to form new organs, maintains a population of actively dividing and characteristically small cells for extended periods [10]. Here, we used live imaging and quantitative, 4D image analysis to measure the sources of cell-size variability in the meristem and then used these measurements in computer simulations to show that the uniform cell sizes seen in the meristem likely require coordinated control of cell growth and cell cycle in individual cells. A genetically induced transient increase in cell size was quickly corrected by more frequent cell division, showing that the cell cycle was adjusted to maintain cell-size homeostasis. Genetically altered cell sizes had little effect on tissue growth but perturbed the establishment of organ boundaries and the emergence of organ primordia. We conclude that meristem cells actively control their sizes to achieve the resolution required to pattern small-scale structures. PMID:26526374

  8. Using Bloom To Bridge the WAC/WID Divide.

    ERIC Educational Resources Information Center

    Cross, Geoffrey; Wills, Katherine

    A longitudinal study combined Stephen Tsuchdi's Workaday activities with Bloom's taxonomy of educational objectives to bridge the WAC/WID (writing across the curriculum/writing in the disciplines) divide. The researchers hoped that by combining concrete activities that can be applied across disciplines with a Bloomian conceptual framework of…

  9. Inhibitors of aminoglycoside resistance activated in cells.

    PubMed

    Vong, Kenward; Tam, Ingrid S; Yan, Xuxu; Auclair, Karine

    2012-03-16

    The most common mechanism of resistance to aminoglycoside antibiotics entails bacterial expression of drug-metabolizing enzymes, such as the clinically widespread aminoglycoside N-6'-acetyltransferase (AAC(6')). Aminoglycoside-CoA bisubstrates are highly potent AAC(6') inhibitors; however, their inability to penetrate cells precludes in vivo studies. Some truncated bisubstrates are known to cross cell membranes, yet their activities against AAC(6') are in the micromolar range at best. We report here the synthesis and biological activity of aminoglycoside-pantetheine derivatives that, although devoid of AAC(6') inhibitory activity, can potentiate the antibacterial activity of kanamycin A against an aminoglycoside-resistant strain of Enterococcus faecium. Biological studies demonstrate that these molecules are potentially extended to their corresponding full-length bisubstrates by enzymes of the coenzyme A biosynthetic pathway. This work provides a proof-of-concept for the utility of prodrug compounds activated by enzymes of the coenzyme A biosynthetic pathway, to resensitize resistant strains of bacteria to aminoglycoside antibiotics.

  10. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.

    PubMed

    Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.

  11. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Sánchez-Martínez, Diego; Lanuza, Pilar M.; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A.; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments. PMID:27833611

  12. Evaluation of the divided attention condition during functional analyses.

    PubMed

    Fahmie, Tara A; Iwata, Brian A; Harper, Jill M; Querim, Angie C

    2013-01-01

    A common condition included in most functional analyses (FAs) is the attention condition, in which the therapist ignores the client by engaging in a solitary activity (antecedent event) but delivers attention to the client contingent on problem behavior (consequent event). The divided attention condition is similar, except that the antecedent event consists of the therapist conversing with an adult confederate. We compared the typical and divided attention conditions to determine whether behavior in general (Study 1) and problem behavior in particular (Study 2) were more sensitive to one of the test conditions. Results showed that the divided attention condition resulted in faster acquisition or more efficient FA results for 2 of 9 subjects, suggesting that the divided attention condition could be considered a preferred condition when resources are available.

  13. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    PubMed

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.

  14. Complement activation by a B cell superantigen.

    PubMed

    Kozlowski, L M; Soulika, A M; Silverman, G J; Lambris, J D; Levinson, A I

    1996-08-01

    Staphylococcal protein A (SpA), acting as a B cell superantigen, binds to the Fab region of human VH3+ Igs. Using SpA abrogated of its IgG Fc binding activity (Mod SpA) as a model B cell superantigen, we determined whether such an interaction causes complement activation. Addition of Mod SpA to human serum led to complement consumption and the generation of C3a. To determine whether this complement activation 1) was due to an interaction between VH3+ Igs and the Fab binding site of SpA and 2) proceeded via the classical complement pathway, we tested a panel of monoclonal IgM proteins for the ability to hind C1q following interaction with SpA. C1q binding was restricted to SpA-reactive, VH3+ IgM proteins. To formally determine whether the binding of SpA to the reactive VH3+ IgM proteins led to complement activation, we reconstituted the serum from a hypogammaglobulinemic patient with monoclonal IgM proteins and measured complement consumption and C3a generation following the addition of Mod SpA. We observed complement consumption and C3a production only in Mod SpA-treated serum reconstituted with a VH3+, SpA-binding, IgM protein. Taken together, these results provide compelling evidence that the interaction of the Fab binding site of SpA and VH3+ Igs can lead to complement activation via the classical pathway. This novel interaction may have significant implications for the in vivo properties of a B cell superantigen.

  15. On the neural basis of focused and divided attention.

    PubMed

    Nebel, Katharina; Wiese, Holger; Stude, Philipp; de Greiff, Armin; Diener, Hans-Christoph; Keidel, Matthias

    2005-12-01

    Concepts of higher attention functions distinguish focused and divided attention. The present study investigated whether these mental abilities are mediated by common or distinct neural substrates. In a first experiment, 19 healthy subjects were examined with functional brain imaging (fMRI) while they attended to either one or both of two simultaneously presented visual information streams and responded to repetitive stimuli. This experiment resembled a typical examination of these mental functions with the single task demanding focused and the dual task conditions requiring divided attention. Both conditions activated a widespread, mainly right-sided network including dorso- and ventrolateral prefrontal structures, superior and inferior parietal cortex, and anterior cingulate gyrus. Under higher cognitive demands of divided attention, activity in these structures was enhanced and left-sided homologues were recruited. In a second experiment investigating another 17 subjects with almost the same paradigm, it was accounted for that in most dual task investigations of focused and divided attention the single tasks are easier to process than their combined presentation. Therefore, the task difficulty of focused attention tasks was increased. Almost the same activity pattern observed during division of attention was now found during focusing attention. Comparing both attentional states matched for task difficulty, differences were found in visual but not in prefrontal or parietal cortex areas. Our results suggest that focused and divided attention depend on largely overlapping neuronal substrates. Differences in activation patterns, especially in prefrontal and parietal areas, may result from unequal demands on executive control due to disparate processing requirements in typical tasks of focused and divided attention: Easier conditions begin with mainly right-sided activity within the attention network. As conditions become more difficult, left-lateralized homologue

  16. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  17. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells

    SciTech Connect

    Ettinghausen, S.E.; Lipford, E.H. 3d.; Mule, J.J.; Rosenberg, S.A.

    1985-11-01

    The authors previously reported that the adoptive transfer of lymphokine-activated killer (LAK) cells plus repetitive injections of recombinant interleukin 2 (IL 2) produced a marked reduction in established pulmonary metastases from a variety of murine sarcomas. The requirement for the exogenous administration of IL 2 prompted a subsequent examination of the role of IL 2 in the in vivo function of transferred LAK cells. The in vivo proliferation and migration patterns of lymphoid cells in C57BL/6 mice were examined after i.v. transfer of LAK cells alone, i.p. injection of IL 2 alone, or the combination of LAK cells and IL 2. A model for in vivo labeling of the DNA of dividing cells was used in which mice were injected with 5-( SVI)-iodo-2'-deoxyuridine ( SVIUdR) and, 20 hr later, their tissues were removed and were counted in a gamma analyzer. A proliferation index (PI) was calculated by dividing the mean cpm of organs of experimentally treated mice by the mean cpm of organs of control mice. In animals given LAK cells alone, the lungs and liver demonstrated little if any uptake of SVIUdR above saline-treated controls, whereas the same organs of mice receiving 6000 U of IL 2 alone displayed higher radiolabel incorporation. When mice were given LAK cells plus 6000 U of IL 2, their tissues showed an additional increase in SVIUdR uptake.

  18. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  19. Human lymphokine-activated killer cells are cytotoxic against cells infected with Toxoplasma gondii

    PubMed Central

    1992-01-01

    Experiments were conducted to determine whether human lymphokine- activated killer (LAK) cells are cytotoxic against cells infected with Toxoplasma gondii. Nylon wool nonadherent (NWNA) peripheral blood lymphocytes, as well as purified natural killer cell (NK) (CD3- CD16+ CD56+) and T (CD3+ CD16- CD56-) cells obtained from five healthy T. gondii seronegative volunteers exhibited minimal cytotoxic activity against T. gondii-infected cells. When standard LAK (S-LAK) cell preparations were induced by incubation of NWNA cells with recombinant interleukin 2, induction of remarkable cytotoxic activity against T. gondii-infected cells. When standard in LAK cell preparations from each of the volunteers. The phenotype of the LAK precursor and effector cells varied depending on the target cell used. Whereas the precursor and the effector cells of most of the LAK activity against K562 and Daudi cells were cells with NK phenotype, when T. gondii-infected cells were used as targets, both cells with NK and T cell phenotypes were precursors and effectors of the lysis. When cytotoxic activity of S-LAK cells was compared with the activity of adherent LAK (A-LAK) cells, A- LAK cells displayed higher cytotoxic activity against T. gondii- infected cells, as well as against K562 and Daudi cells. Cold target inhibition experiments suggested that there is a subset of LAK effector cells capable of lysing both T. gondii-infected cells and Daudi cells, whereas other subsets preferentially or exclusively lyse one of these target cells. PMID:1460415

  20. Probing cell activity in random access modality

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Crocini, C.; Lotti, J.; Coppini, R.; Ferrantini, C.; Tesi, C.; Yan, P.; Loew, L. M.; Cerbai, E.; Poggesi, C.; Pavone, F. S.

    2013-06-01

    We combined the advantage of an ultrafast random access microscope with novel labelling technologies to study the intra- and inter-cellular action potential propagation in neurons and cardiac myocytes with sub-millisecond time resolution. The random accesses microscopy was used in combination with a new fluorinated voltage sensitive dye with improved photostability to record membrane potential from multiple Purkinje cells with near simultaneous sampling. The RAMP system rapidly scanned between lines drawn in the membranes of neurons to perform multiplex measurements of the TPF signal. This recording was achieved by rapidly positioning the laser excitation with the AOD to sample a patch of membrane from each cell in <100 μs for recording from five cells, multiplexing permits a temporal resolution of 400 μs sufficient to capture every spike. The system is capable to record spontaneous activity over 800 ms from five neighbouring cells simultaneously, showing that spiking is not temporally correlated. The system was also used to investigate the electrical properties of tubular system (TATS) in isolated rat ventricular myocytes.

  1. Hymenoptera Allergy and Mast Cell Activation Syndromes.

    PubMed

    Bonadonna, Patrizia; Bonifacio, Massimiliano; Lombardo, Carla; Zanotti, Roberta

    2016-01-01

    Mast cell activation syndrome (MCAS) can be diagnosed in patients with recurrent, severe symptoms from mast cell (MC)-derived mediators, which are transiently increased in serum and are attenuated by mediator-targeting drugs. When KIT-mutated, clonal MC are detected in these patients, a diagnosis of primary MCAS can be made. Severe systemic reactions to hymenoptera venom (HV) represent the most common form of anaphylaxis in patients with mastocytosis. Patients with primary MCAS and HV anaphylaxis are predominantly males and do not have skin lesions in the majority of cases, and anaphylaxis is characterized by hypotension and syncope in the absence of urticaria and angioedema. A normal value of tryptase (≤11.4 ng/ml) in these patients does not exclude a diagnosis of mastocytosis. Patients with primary MCAS and HV anaphylaxis have to undergo lifelong venom immunotherapy, in order to prevent further potentially fatal severe reactions.

  2. Temporal dynamics of divided spatial attention.

    PubMed

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.

  3. Neural Correlates of Divided Attention in Natural Scenes.

    PubMed

    Fagioli, Sabrina; Macaluso, Emiliano

    2016-09-01

    Individuals are able to split attention between separate locations, but divided spatial attention incurs the additional requirement of monitoring multiple streams of information. Here, we investigated divided attention using photos of natural scenes, where the rapid categorization of familiar objects and prior knowledge about the likely positions of objects in the real world might affect the interplay between these spatial and nonspatial factors. Sixteen participants underwent fMRI during an object detection task. They were presented with scenes containing either a person or a car, located on the left or right side of the photo. Participants monitored either one or both object categories, in one or both visual hemifields. First, we investigated the interplay between spatial and nonspatial attention by comparing conditions of divided attention between categories and/or locations. We then assessed the contribution of top-down processes versus stimulus-driven signals by separately testing the effects of divided attention in target and nontarget trials. The results revealed activation of a bilateral frontoparietal network when dividing attention between the two object categories versus attending to a single category but no main effect of dividing attention between spatial locations. Within this network, the left dorsal premotor cortex and the left intraparietal sulcus were found to combine task- and stimulus-related signals. These regions showed maximal activation when participants monitored two categories at spatially separate locations and the scene included a nontarget object. We conclude that the dorsal frontoparietal cortex integrates top-down and bottom-up signals in the presence of distractors during divided attention in real-world scenes.

  4. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity.

    PubMed

    D'Angelo, Rosemarie C; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A; Senbabaoglu, Yasin; Conley, Sarah J; Clouthier, Shawn G; Hassan, Khaled A; Wicha, Max S; Korkaya, Hasan

    2015-03-01

    Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

  5. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity

    PubMed Central

    Davis, April; Choi, Daejin; Tchuenkam, Stevie M.; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A.; Senbabaoglu, Yasin; Conley, Sarah J.; Clouthier, Shawn G.; Hassan, Khaled A.; Wicha, Max S.; Korkaya, Hasan

    2015-01-01

    Developmental pathways such as Notch play a pivotal role in tissue specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch+) or reduced activity (Notch-) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays we investigated the role of Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch+ cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch+ cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts while Notch- cells failed to generate tumors. Gamma-secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent effectively targets these Notch+ cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our studies reveal molecular mechanism for the role of Notch mediated regulation of breast CSCs and provide a compelling rationale for CSC targeted therapeutics. PMID:25673823

  6. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  7. Bursts of Active Transport in Living Cells

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-01

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  8. Bursts of active transport in living cells.

    PubMed

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-15

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  9. Wideband unbalanced waveguide power dividers and combiners

    SciTech Connect

    Halligan, Matthew; McDonald, Jacob Jeremiah; Strassner, II, Bernd H.

    2016-05-17

    The various technologies presented herein relate to waveguide dividers and waveguide combiners for application in radar systems, wireless communications, etc. Waveguide dividers-combiners can be manufactured in accordance with custom dimensions, as well as in accordance with waveguide standards such that the input and output ports are of a defined dimension and have a common impedance. Various embodiments are presented which can incorporate one or more septum(s), one or more pairs of septums, an iris, an input matching region, a notch located on the input waveguide arm, waveguide arms having stepped transformer regions, etc. The various divider configurations presented herein can be utilized in high fractional bandwidth applications, e.g., a fractional bandwidth of about 30%, and RF applications in the Ka frequency band (e.g., 26.5-40 GHz).

  10. Analogue Divider by Averaging a Triangular Wave

    NASA Astrophysics Data System (ADS)

    Selvam, Krishnagiri Chinnathambi

    2017-03-01

    A new analogue divider circuit by averaging a triangular wave using operational amplifiers is explained in this paper. The triangle wave averaging analog divider using operational amplifiers is explained here. The reference triangular waveform is shifted from zero voltage level up towards positive power supply voltage level. Its positive portion is obtained by a positive rectifier and its average value is obtained by a low pass filter. The same triangular waveform is shifted from zero voltage level to down towards negative power supply voltage level. Its negative portion is obtained by a negative rectifier and its average value is obtained by another low pass filter. Both the averaged voltages are combined in a summing amplifier and the summed voltage is given to an op-amp as negative input. This op-amp is configured to work in a negative closed environment. The op-amp output is the divider output.

  11. T helper cell activation and human retroviral pathogenesis.

    PubMed Central

    Copeland, K F; Heeney, J L

    1996-01-01

    T helper (Th) cells are of central importance in regulating many critical immune effector mechanisms. The profile of cytokines produced by Th cells correlates with the type of effector cells induced during the immune response to foreign antigen. Th1 cells induce the cell-mediated immune response, while Th2 cells drive antibody production. Th cells are the preferential targets of human retroviruses. Infections with human T-cell leukemia virus (HTLV) or human immunodeficiency virus (HIV) result in the expansion of Th cells by the action of HTLV (adult T-cell leukemia) or the progressive loss of T cells by the action of HIV (AIDS). Both retrovirus infections impart a high-level activation state in the host immune cells as well as systemically. However, diverging responses to this activation state have contrasting effects on the Th-cell population. In HIV infection, Th-cell loss has been attributed to several mechanisms, including a selective elimination of cells by apoptosis. The induction of apoptosis in HIV infection is complex, with many different pathways able to induce cell death. In contrast, infection of Th cells with HTLV-1 affords the cell a protective advantage against apoptosis. This advantage may allow the cell to escape immune surveillance, providing the opportunity for the development of Th-cell cancer. In this review, we will discuss the impact of Th-cell activation and general immune activation on human retrovirus expression with a focus upon Th-cell function and the progression to disease. PMID:8987361

  12. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOEpatents

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  13. Kinase Activity Studied in Living Cells Using an Immunoassay

    ERIC Educational Resources Information Center

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  14. Regulation of polymorphonuclear cell activation by thrombopoietin.

    PubMed Central

    Brizzi, M F; Battaglia, E; Rosso, A; Strippoli, P; Montrucchio, G; Camussi, G; Pegoraro, L

    1997-01-01

    Thrombopoietin (TPO) regulates early and late stages of platelet formation as well as platelet activation. TPO exerts its effects by binding to the receptor, encoded by the protooncogene c-mpl, that is expressed in a large number of cells of hematopoietic origin. In this study, we evaluated the expression of c-Mpl and the effects of TPO on human polymorphonuclear cells (PMN). We demonstrate that PMN express the TPO receptor c-Mpl and that TPO induces STAT1 tyrosine phosphorylation and the formation of a serum inducible element complex containing STAT1. The analysis of biological effects of TPO on PMN demonstrated that TPO, at concentrations of 1-10 ng/ml, primes the response of PMN to n-formyl-met-leu-phe (FMLP) by inducing an early oxidative burst. TPO-induced priming on FMLP-stimulated PMN was also detected on the tyrosine phosphorylation of a protein with a molecular mass of approximately 28 kD. Moreover, we demonstrated that TPO by itself was able to stimulate, at doses ranging from 0.05 to 10 ng/ml, early release and delayed synthesis of interleukin 8 (IL-8). Thus, our data indicate that, in addition to sustaining megakaryocytopoiesis, TPO may have an important role in regulating PMN activation. PMID:9120001

  15. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  16. A Nation Divided on Education in 2003

    ERIC Educational Resources Information Center

    Hardy, Lawrence

    2004-01-01

    To understand what is going on in American education, it might help to turn to a relatively neutral source, the Pew Research Center for the People and the Press, and its released report, The 2004 Political Landscape: Evenly Divided and Increasingly Polarized. "Over the past four years, the American electorate has been dealt a series of body…

  17. Crossing Divides: The Legacy of Graham Nuthall

    ERIC Educational Resources Information Center

    Davis, Alan

    2006-01-01

    Graham Nuthall's work cuts across methodological and conceptual divides that have worked against the development of a theory of learning and teaching that is at once predictive and practical. The micro-genetic approach to research on learning in classrooms that he developed with Adrienne Alton-Lee successfully transcends the unhelpful dichotomy…

  18. Project DIVIDE Instrument Development. Technical Report # 0810

    ERIC Educational Resources Information Center

    Ketterlin-Geller, Leanne; Jung, Eunju; Geller, Josh; Yovanoff, Paul

    2008-01-01

    In this technical report, we describe the development of cognitive diagnostic test items that form the basis of the diagnostic system for Project DIVIDE (Dynamic Instruction Via Individually Designed Environments). The construct underlying the diagnostic test is division of fractions. We include a description of the process we used to identify the…

  19. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may... blends gases to the specifications of § 1065.750 and to the flow-weighted concentrations expected...

  20. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may... blends gases to the specifications of § 1065.750 and to the flow-weighted concentrations expected...

  1. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may... blends gases to the specifications of § 1065.750 and to the flow-weighted concentrations expected...

  2. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may... blends gases to the specifications of § 1065.750 and to the flow-weighted concentrations expected...

  3. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may... blends gases to the specifications of § 1065.750 and to the flow-weighted concentrations expected...

  4. THE DEVELOPMENT OF THE TEACHING SPACE DIVIDER.

    ERIC Educational Resources Information Center

    BELLOMY, CLEON C.; CAUDILL, WILLIAM W.

    TYPES OF VERTICAL WORK SURFACES AND THE DEVELOPMENT OF A MODEL TEACHING SPACE DIVIDER ARE DISCUSSED IN THIS REPORT. THIS DESIGN IS BASED ON THE EXPRESSED NEED FOR MORE TACKBOARD AND SHELVING SPACE, AND FOR MOVABLE PARTITIONS. THE MODEL PANELS WHICH SERVE DIRECTLY AS PARTITIONS RATHER THAN BEING OVERLAID ON A PLASTERED SURFACE, INCLUDE THE…

  5. The electronic health record: a digital divide?

    PubMed

    Glaser, John

    2007-10-01

    The gap between EHR adoption among larger providers versus adoption by smaller or rural providers has caused a "digital divide" that could threaten smaller providers' survival in the years ahead. Closing this gap will require the collective action of providers, payers, and government.

  6. Young People's Internet Use: Divided or Diversified?

    ERIC Educational Resources Information Center

    Boonaert, Tom; Vettenburg, Nicole

    2011-01-01

    This article critically analyses research on young people's internet use. Based on a literature analysis, it examines which young people do what on the internet. These results invite a reflection on the dominant discourse on the digital divide. Within this discourse, there is a strong focus on the use of the internet for information purposes only,…

  7. Identification of differentiation-inducing activity produced by human bone marrow stromal cell line LP101.

    PubMed

    Hiramoto, Masaki; Kawakami, Yutaka; Nabeshima, Ryusuke; Shima, Daisuke; Handa, Hiroshi; Aizawa, Shin

    2004-11-01

    We have previously reported that human promyelocytic leukemia HL-60 cells can be induced to differentiate into mature granulocytes when HL-60 co-cultivated with human bone marrow stromal LP101 cells. In the present study, we investigated which factors produced by LP101 cells induce HL-60 cells to differentiate into mature granulocytes. The expression of the cell surface antigen CD11b on HL-60 cells was increased after a 72-h culture with the conditioned medium (CM) obtained from LP101 cells. LP101 cells were observed to produce various cytokines, including TNF-alpha, GM-CSF and IL-6. The neutralizing antibodies against these cytokines partially suppressed the CM-induced differentiation of HL-60 cells. Recombinant TNF-alpha induced the differentiation of HL-60 cells, and GM-CSF and IL-6 additionally enhanced the effect of TNF-alpha. When the CM was divided into a low molecular weight (LMW) fraction and a high molecular weight (HMW) fraction by ultrafiltration, the LMW fraction synergistically enhanced the differentiation inducible activity of TNF-alpha. These results demonstrate that LP101 cells induce the differentiation of HL-60 cells by producing various cytokines including TNF-alpha, IL-6, and GM-CSF, and that unknown low molecular weight factors also participate.

  8. Divided versus selective attention: evidence for common processing mechanisms.

    PubMed

    Hahn, Britta; Wolkenberg, Frank A; Ross, Thomas J; Myers, Carol S; Heishman, Stephen J; Stein, Dan J; Kurup, Pradeep K; Stein, Elliot A

    2008-06-18

    The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks' processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants' BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention.

  9. Epigenomics of T cell activation, differentiation and memory

    PubMed Central

    Cuddapah, Suresh; Barski, Artem; Zhao, Keji

    2010-01-01

    Activation of T cells is an essential step in the immunological response to infection. While activation of naïve T cells results in proliferation and slow differentiation into cytokine-producing effector cells, antigen engagement with memory cells leads to cytokine production immediately. Even though the cell surface signaling events are similar in both the cases, the outcome is different, suggesting that distinct regulatory mechanisms may exist downstream of the activation signals. Recent advances in the understanding of global epigenetic patterns in T cells have resulted in the appreciation of the role of epigenetic mechanisms in processes such as activation and differentiation. In this review we discuss recent data suggesting that naïve T cell activation, differentiation and lineage commitment results in epigenetic changes and a fine balance between different histone modifications is required. On the other hand, memory T cells are poised and do not require epigenetic changes for short-term activation. PMID:20226645

  10. MAIT cells are activated during human viral infections.

    PubMed

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Moore, Michael D; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M; Dustin, Lynn B; Ho, Ling-Pei; Thompson, Fiona M; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B; Screaton, Gavin R; Klenerman, Paul

    2016-06-23

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.

  11. Nylon wool purification alters the activation of T cells.

    PubMed

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  12. Isomaltulose is actively metabolized in plant cells.

    PubMed

    Wu, Luguang; Birch, Robert G

    2011-12-01

    Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with V(max) for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different V(max) and V(max)/K(m) ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields.

  13. Divided or kissing nevus of the penis.

    PubMed

    Hardin, Carolyn A; Tieu, Kathy D

    2013-10-16

    The divided or kissing nevus is an unusual congenital melanocytic nevus. By definition, these nevi appear on skin that separates during embryological development. These lesions have been reported on the eyelids, fingers, and rarely the penis. We describe an 18 year old uncircumcised male who presented with an asymptomatic darkly pigmented patch on the glans penis. He reported that the lesion had appeared recently and was enlarging. Physical examination revealed a second symmetric lesion on the adjacent foreskin. Punch biopsy of the lesion on the glans penis showed abundant intradermal melanocytes devoid of mitoses and atypia, consistent with an intradermal melanocytic nevus. Based on the benign histologic nature and clinical exam, the lesion was diagnosed as a divided or kissing nevus of the penis. Proposed treatments include excision and grafting as well as Nd:YAG laser therapy. However, these patients may be safely monitored with regular follow-up skin examinations because there is minimal risk of malignant transformation.

  14. Low phase noise digital frequency divider

    NASA Technical Reports Server (NTRS)

    Lutes, G. F., Jr. (Inventor)

    1973-01-01

    A low phase noise frequency divider composed of a grating arrangement is disclosed. The grating arrangement supplies selected portions of an input reference signal to be divided to a tuned circuit without any phase noise due to the grating action. The arrangement which in one embodiment consists of an FET is connected to the tuned circuit input to short out the input except when the input reference signal amplitude crosses ground level in a positive direction and a gate enabling signal is present at the gate electrode of the FET. The gate enabling signal alone does not decouple the tuned circuit input from ground, therefore phase noise, due to the leading and trailing edges of each gate-enabling signal, is substantially eliminated.

  15. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  16. Lysis of primary hepatic tumours by lymphokine activated killer cells.

    PubMed Central

    Hsieh, K H; Shu, S Y; Lee, C S; Chu, C T; Yang, C S; Chang, K J

    1987-01-01

    Lymphokine activated killer cell is a newly described lytic system against a variety of solid tumours and is distinct in several respects from the classic cytolytic T cell and the natural killer systems. This study was conducted to evaluate the lytic activity of lymphokine activated killer cells against fresh autologous and allogeneic, as well as cultured hepatocellular carcinoma cells. Lymphokine activated killer cell was generated by incubating peripheral blood mononuclear cells with various concentrations of recombinant IL-2 (rIL-2, Cetus, USA) for various periods of time. A four hour 51Cr release assay was used to measure cytotoxicity. The results show that fresh and cultured hepatocellular carcinoma cells were only slightly susceptible to natural killer cells. Normal hepatocytes were resistant to lymphokine activated killer-mediated lysis. Lymphokine activated killer cells could be generated from mononuclear cells of hepatocellular carcinoma patients and normal subjects with lytic activity against fresh autologous and allogeneic and cultured hepatocellular carcinoma cells, but lymphokine activated killer cells from the former was less efficient than that from the latter. It is concluded that the adoptive immunotherapy with combined rIL-2 and lymphokine activated killer may be worth trying in early cases of primary hepatocellular carcinoma. PMID:3030899

  17. Lake Buchannan, Great Dividing Range, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Buchannan, a small but blue and prominent in the center of the view, lies in the Great Dividing of Queensland, Australia (22.0S, 146.0E). The mountain range in this case is a low plateau of no more than 2,000 to 3,000 ft altitude. The interior is dry, mostly in pasture but the coastal zone in contrast, is wet tropical country where bananas and sugarcane are grown.

  18. Can Attention be Divided Between Perceptual Groups?

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.; Foyle, David C.; Johnston, James C.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    Previous work using Head-Up Displays (HUDs) suggests that the visual system parses the HUD and the outside world into distinct perceptual groups, with attention deployed sequentially to first one group and then the other. New experiments show that both groups can be processed in parallel in a divided attention search task, even though subjects have just processed a stimulus in one perceptual group or the other. Implications for models of visual attention will be discussed.

  19. Will the Nicaragua Canal connect or divide?

    PubMed

    Gross, Michael

    2014-11-03

    A century after the opening of the Panama Canal, a second inter-oceanic passage is set to be built in Central America, this time in Nicaragua. The ambitious and astronomically expensive project promises to bring economic opportunity to a poor country but it also carries risks to its tropical ecosystems. Will the new waterway ultimately link two oceans or divide a continent? Michael Gross investigates.

  20. Effects of valence and divided attention on cognitive reappraisal processes.

    PubMed

    Morris, John A; Leclerc, Christina M; Kensinger, Elizabeth A

    2014-12-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources.

  1. Splicing the Divide: A Review of Research on the Evolving Digital Divide among K-12 Students

    ERIC Educational Resources Information Center

    Dolan, Jennifer E.

    2016-01-01

    The digital divide has narrowed with regard to one definition of access to technology--the binary view of the "haves" and "have-nots." However, use of technology at home and in school is not equitable for all students. According to recent literature, a broader and more nuanced definition of the technological divide is necessary…

  2. Migratory divides and their consequences for dispersal, population size and parasite-host interactions.

    PubMed

    Møller, A P; Garamszegi, L Z; Peralta-Sánchez, J M; Soler, J J

    2011-08-01

    Populations of migratory birds differ in their direction of migration with neighbouring populations often migrating in divergent directions separated by migratory divides. A total of 26% of 103 passerine bird species in Europe had migratory divides that were located disproportionately often along a longitudinal gradient in Central Europe, consistent with the assumption of a Quaternary glacial origin of such divides in the Iberian and Balkan peninsulas followed by recolonization. Given that studies have shown significant genetic differentiation and reduced gene flow across migratory divides, we hypothesized that an absence of migratory divides would result in elevated rates of gene flow and hence a reduced level of local adaptation. In a comparative study, species with migratory divides had larger population sizes and population densities and longer dispersal distances than species without migratory divides. Species with migratory divides tended to be habitat generalists. Bird species with migratory divides had higher richness of blood parasites and higher growth rates of Staphylococcus on their eggs during the incubation period. There was weaker cell-mediated immunity in adults and stronger cell lysis in species with migratory divides. These findings may suggest that migratory divides constitute barriers to dispersal with consequences for ecology and evolution of distributions, population sizes, habitats and parasite-host interactions. They also suggest that migratory divides may play a role in local adaptation in host-parasite interactions.

  3. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  4. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  5. Mechanism of human natural killer cell activation by Haemophilus ducreyi.

    PubMed

    Li, Wei; Janowicz, Diane M; Fortney, Kate R; Katz, Barry P; Spinola, Stanley M

    2009-08-15

    The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.

  6. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  7. Mycoplasma pneumoniae induces cytotoxic activity in guinea pig bronchoalveolar cells

    SciTech Connect

    Kist, M.; Koester, H.; Bredt, W.

    1985-06-01

    Precultured guinea pig alveolar macrophages (AM) and freshly harvested alveolar cells (FHAC) activated by interaction with Mycoplasma pneumoniae were cytotoxic for xenogeneic /sup 75/selenomethionine-labeled tumor target cells. Phagocytosis of whole opsonized or nonopsonized M. pneumoniae cells was more effective in eliciting cytotoxicity than uptake of sonicated microorganisms. The addition of living mycoplasma cells to the assay system enhanced the cytotoxic effect considerably. Target cells were significantly more susceptible to the cytotoxic action of phagocytes if they were coated with mycoplasma antigen or cocultured together with M. pneumoniae. The activation of the phagocytes could be inhibited by 2-deoxy-D-glucose but not by antimicrobial substances suppressing mycoplasma protein synthesis. It was accompanied by /sup 51/Cr release without detectable signs of cell damage. The supernatants of activated cells were cytotoxic for approximately 24 h. Inhibition, release, and cytotoxic activity indicate the necessity of an intact metabolism of the effector cells and suggest a secretion of cytotoxic substances.

  8. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  9. Organizer activity of the polar cells during Drosophila oogenesis.

    PubMed

    Grammont, Muriel; Irvine, Kenneth D

    2002-11-01

    Patterning of the Drosophila egg requires the establishment of several distinct types of somatic follicle cells, as well as interactions between these follicle cells and the oocyte. The polar cells occupy the termini of the follicle and are specified by the activation of Notch. We have investigated their role in follicle patterning by creating clones of cells mutant for the Notch modulator fringe. This genetic ablation of polar cells results in cell fate defects within surrounding follicle cells. At the anterior, the border cells, the immediately adjacent follicle cell fate, are absent, as are the more distant stretched and centripetal follicle cells. Conversely, increasing the number of polar cells by expressing an activated form of the Notch receptor increases the number of border cells. At the posterior, elimination of polar cells results in abnormal oocyte localization. Moreover, when polar cells are mislocalized laterally, the surrounding follicle cells adopt a posterior fate, the oocyte is located adjacent to them, and the anteroposterior axis of the oocyte is re-oriented with respect to the ectopic polar cells. Our observations demonstrate that the polar cells act as an organizer that patterns surrounding follicle cells and establishes the anteroposterior axis of the oocyte. The origin of asymmetry during Drosophila development can thus be traced back to the specification of the polar cells during early oogenesis.

  10. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  11. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  12. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  13. Shape control and compartmentalization in active colloidal cells.

    PubMed

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C

    2015-08-25

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation.

  14. Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis

    PubMed Central

    Benham-Pyle, Blair W; Sim, Joo Yong; Hart, Kevin C; Pruitt, Beth L; Nelson, William James

    2016-01-01

    Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis. DOI: http://dx.doi.org/10.7554/eLife.19799.001 PMID:27782880

  15. Control of Experimental Autoimmune Encephalomyelitis by T Cells Responding to Activated T Cells

    NASA Astrophysics Data System (ADS)

    Lohse, Ansgar W.; Mor, Felix; Karin, Nathan; Cohen, Irun R.

    1989-05-01

    T cell vaccination against experimental autoimmune disease is herein shown to be mediated in part by anti-ergotypic T cells, T cells that recognize and respond to the state of activation of other T cells. The anti-ergotypic response thus combines with the previously shown anti-idiotypic T cell response to regulate autoimmunity.

  16. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  17. Recruitment and Activation of Natural Killer (Nk) Cells in Vivo Determined by the Target Cell Phenotype

    PubMed Central

    Glas, Rickard; Franksson, Lars; Une, Clas; Eloranta, Maija-Leena; Öhlén, Claes; Örn, Anders; Kärre, Klas

    2000-01-01

    Natural killer (NK) cells can spontaneously lyse certain virally infected and transformed cells. However, early in immune responses NK cells are further activated and recruited to tissue sites where they perform effector functions. This process is dependent on cytokines, but it is unclear if it is regulated by NK cell recognition of susceptible target cells. We show here that infiltration of activated NK cells into the peritoneal cavity in response to tumor cells is controlled by the tumor major histocompatibility complex (MHC) class I phenotype. Tumor cells lacking appropriate MHC class I expression induced NK cell infiltration, cytotoxic activation, and induction of transcription of interferon γ in NK cells. The induction of these responses was inhibited by restoration of tumor cell MHC class I expression. The NK cells responding to MHC class I–deficient tumor cells were ∼10 times as active as endogenous NK cells on a per cell basis. Although these effector cells showed a typical NK specificity in that they preferentially killed MHC class I–deficient cells, this specificity was even more distinct during induction of the intraperitoneal response. Observations are discussed in relation to a possible adaptive component of the NK response, i.e., recruitment/activation in response to challenges that only NK cells are able to neutralize. PMID:10620611

  18. Cutting edge: inhibition of T cell activation by TIM-2.

    PubMed

    Knickelbein, Jared E; de Souza, Anjali J; Tosti, Richard; Narayan, Preeti; Kane, Lawrence P

    2006-10-15

    T cell Ig and mucin domain protein 2 (TIM-2) has been shown to regulate T cell activation in vitro and T cell-mediated disease in vivo. However, it is still not clear whether TIM-2 acts mainly to augment T cell function or to inhibit it. We have directly examined the function of TIM-2 in murine and human T cell lines. Our results indicate that expression of TIM-2 significantly impairs the induction of NFAT and AP-1 transcriptional reporters by not only TCR ligation but also by the pharmacological stimuli PMA and ionomycin. This does not appear to be due to a general effect on cell viability, and the block in NFAT activation can be bypassed by expression of activated alleles of Ras or calcineurin, or MEK kinase, in the case of AP-1. Thus, our data are consistent with a model whereby TIM-2 inhibits T cell activation.

  19. Alloantigen presentation by B cells: analysis of the requirement for B-cell activation.

    PubMed Central

    Wilson, J L; Cunningham, A C; Kirby, J A

    1995-01-01

    This paper describes a model for investigation of the functional implications of B-cell activation for antigen presentation. Mixed lymphocyte cultures were used to assess the ability of freshly isolated B cells, mitogen-activated B cells and Epstein-Barr virus (EBV)-transformed B-cell lines to stimulate the activation and proliferation of allogeneic T cells under a variety of experimental conditions. It was found that resting B cells presented antigen poorly, while activated cells were highly immunogenic. Paraformaldehyde fixation completely eliminated antigen presentation by resting B cells, despite constitutive expression of class II MHC antigens. However, fixation had little effect on antigen presentation by activated B cells that expressed B7-1 and B7-2 in addition to class II major histocompatibility complex (MHC) molecules. Arrest of B-cell activation by serial fixation after treatment with F(ab')2 fragments of goat anti-human IgM produced cells with variable antigen-presenting capacity. Optimal antigen presentation was observed for cells fixed 72 hr after the initiation of B-cell activation. Although both B7-1 and B7-2 antigen expression increased after B-cell activation, it was found that the rate of T-cell proliferation correlated most closely with B7-2 expression. Stimulation of T cells by fixed activated B lymphocytes could be blocked by antibodies directed at class II MHC molecules, indicating involvement of the T-cell antigen receptor. In addition, T-cell proliferation was inhibited by antibodies specific for B7-1 and B7-2 and by the fusion protein CTLA4-Ig, demonstrating a requirement for CD28 signal transduction. The sole requirement of B7 family expression for antigen presentation by B lymphocytes was shown by demonstration of T-cell stimulation by fixed resting B cells in the presence of CD28 antibody as a source of artificial costimulation. PMID:8550066

  20. Activation strategies for invariant natural killer T cells.

    PubMed

    Kohlgruber, Ayano C; Donado, Carlos A; LaMarche, Nelson M; Brenner, Michael B; Brennan, Patrick J

    2016-08-01

    Invariant natural killer T (iNKT) cells are a specialized T cell subset that plays an important role in host defense, orchestrating both innate and adaptive immune effector responses against a variety of microbes. Specific microbial lipids and mammalian self lipids displayed by the antigen-presenting molecule CD1d can activate iNKT cells through their semi-invariant αβ T cell receptors (TCRs). iNKT cells also constitutively express receptors for inflammatory cytokines typically secreted by antigen-presenting cells (APCs) after recognition of pathogen-associated molecular patterns (PAMPs), and they can be activated through these cytokine receptors either in combination with TCR signals, or in some cases even in the absence of TCR signaling. During infection, experimental evidence suggests that both TCR-driven and cytokine-driven mechanisms contribute to iNKT cell activation. While the relative contributions of these two signaling mechanisms can vary widely depending on the infectious context, both lipid antigens and PAMPs mediate reciprocal activation of iNKT cells and APCs, leading to downstream activation of multiple other immune cell types to promote pathogen clearance. In this review, we discuss the mechanisms involved in iNKT cell activation during infection, focusing on the central contributions of both lipid antigens and PAMP-induced inflammatory cytokines, and highlight in vivo examples of activation during bacterial, viral, and fungal infections.

  1. Visualizing how T cells collect activation signals in vivo.

    PubMed

    Moreau, Hélène D; Bousso, Philippe

    2014-02-01

    A decade ago the first movies depicting T cell behavior in vivo with the help of two-photon microscopy were generated. These initial experiments revealed that T cells migrate rapidly and randomly in secondary lymphoid organs at steady state and profoundly alter their behavior during antigen recognition, establishing both transient and stable contacts with antigen-presenting cells (APCs). Since then, in vivo imaging has continuously improved our understanding of T cell activation. In particular, recent studies uncovered how T cells may be guided in their search for the best APCs. Additionally, the development of more sophisticated fluorescent tools has permitted not only to visualize T cell-APC contacts but also to probe their functional impact on T cell activation. These recent progresses are providing new insights into how T cells sense antigen, collect activation signals during distinct types of interaction and integrate information over successive encounters.

  2. The Activated Type 1–Polarized Cd8+ T Cell Population Isolated from an Effector Site Contains Cells with Flexible Cytokine Profiles

    PubMed Central

    Doyle, Anthony G.; Buttigieg, Kathy; Groves, Penny; Johnson, Barbara J.; Kelso, Anne

    1999-01-01

    The capacity of activated T cells to alter their cytokine expression profiles after migration into an effector site has not previously been defined. We addressed this issue by paired daughter analysis of a type 1–polarized CD8+ effector T cell population freshly isolated from lung parenchyma of influenza virus–infected mice. Single T cells were activated to divide in vitro; individual daughter cells were then micromanipulated into secondary cultures with and without added IL-4 to assess their potential to express type 2 cytokine genes. The resultant subclones were analyzed for type 1 and 2 cytokine mRNAs at day 6–7. When the most activated (CD44highCD11ahigh) CD8+ subpopulation from infected lung was compared with naive or resting (CD44lowCD11alow) CD8+ cells from infected lung and from normal lymph nodes (LNs), both clonogenicity and plasticity of the cytokine response were highest in the LN population and lowest in the activated lung population, correlating inversely with effector function. Multipotential cells were nevertheless detected among clonogenic CD44highCD11ahigh lung cells at 30–50% of the frequency in normal LNs. The data indicate that activated CD8+ T cells can retain the ability to proliferate and express new cytokine genes in response to local stimuli after recruitment to an effector site. PMID:10523606

  3. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells

    PubMed Central

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-01-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in

  4. Regulation of tissue factor coagulant activity on cell surfaces

    PubMed Central

    RAO, L.V.M.; PENDURTHI, U.R.

    2012-01-01

    Summary Tissue factor (TF) is a transmembrane glycoprotein and an essential component of factor VIIa-TF enzymatic complex that triggers activation of the coagulation cascade. Formation of TF-FVIIa complexes on cell surfaces not only trigger the coagulation cascade but also transduce cell signaling via activation of protease-activated receptors. Tissue factor is expressed constitutively on cell surfaces of a variety of extravascular cell types, including fibroblasts and pericytes in and surrounding blood vessel walls and epithelial cells but generally absent on cells that come in contact with blood directly. However, TF expression could be induced in some blood cells, such as monocytes and endothelial cells, following an injury or pathological stimuli. Tissue factor is essential for hemostasis, but aberrant expression of TF leads to thrombosis. Therefore, a proper regulation of TF activity is critical for the maintenance of hemostatic balance and health in general. TF-FVIIa coagulant activity at the cell surface is influenced not only by TF protein expression levels but also independently by a variety of mechanisms, including alterations in membrane phospholipid composition and cholesterol content, thiol-dependent modifications of TF allosteric disulfide bond, and other post-translational modifications of TF. In this article, we critically review key literature on mechanisms by which TF coagulant activity is regulated at the cell surface in the absence of changes in TF protein levels with specific emphasis on recently published data and provide the authors’ perspective on the subject. PMID:23006890

  5. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Pise-Masison, Cynthia A; Radonovich, Michael F; Park, Hyeon Ung; Brady, John N

    2005-10-06

    AKT activation enhances resistance to apoptosis and induces cell survival signaling through multiple downstream pathways. We now present evidence that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to NF-kappaB activation, p53 inhibition and cell survival. Overexpression of AKT wild type (WT), but not a kinase dead (KD) mutant, resulted in increased Tax-mediated NF-kappaB activation. Blocking AKT with the PI3K/AKT inhibitor LY294002 or AKT SiRNA prevented NF-kappaB activation and inhibition of p53. Treatment of C81 cells with LY294002 resulted in an increase in the p53-responsive gene MDM2, suggesting a role for AKT in the Tax-mediated regulation of p53 transcriptional activity. Further, we show that LY294002 treatment of C81 cells abrogates in vitro IKKbeta phosphorylation of p65 and causes a reduction of p65 Ser-536 phosphorylation in vivo, steps critical to p53 inhibition. Interestingly, blockage of AKT function did not affect IKKbeta phosphorylation of IkappaBalpha in vitro suggesting selective activity of AKT on the IKKbeta complex. Finally, AKT prosurvival function in HTLV-1-transformed cells is linked to expression of Bcl-xL. We suggest that AKT plays a role in the activation of prosurvival pathways in HTLV-1-transformed cells, possibly through NF-kappaB activation and inhibition of p53 transcription activity.

  6. Cytotoxic activity of CD4+ T cells against autologous tumor cells.

    PubMed

    Konomi, Y; Sekine, T; Takayama, T; Fuji, M; Tanaka, T

    1995-09-01

    The 51Cr-release assay is mostly applied to detecting the cytotoxic activity of CD8+ T cells, and little is known about the activity of CD4+ T cells. Therefore, the correlation between the cytotoxic activity of CD4+ or CD8+ T cells and the incubation period with autologous tumor cells was analyzed by two methods. The incubation periods were 4 and 20 h (4 h and 20 h assay) for the 51Cr-release assay. Eight pairs of tumor cells and T cells were assayed. T cells were fractionated into CD4+ and CD8+ T cells by using magnetic beads and panning methods, and those cells were activated by culture with recombinant interleukin-2 and immobilized anti-CD3 monoclonal antibody. In 6 out of 8 cases, no cytotoxic activity of CD4+ T cells was detected by the 4 h assay, whereas cytotoxic activity was detected in all cases in the 20 h assay. The cytotoxic activities in 20 h assay of CD4+ T cells were increased 67-fold in comparison with the activities in 4 h assay (range: 5-197). In the case of CD8+ T cells, cytotoxic activities were detected in 6 out of 8 cases in the 4 h assay. The lytic unit ratio of CD4+ and CD8+ T cells was calculated as 1.5 in the 20 h assay (range: 0.2- > 7.2) versus 0.4 in the 4 h assay (range: < 0.1-1.3). Cytotoxic activities in colorimetric assay using Crystal Violet with a 24 h incubation were similar to those in the 20 h 51Cr-release assay in all eight cases. These results indicate that CD4+ T cells have cytotoxic activity as strong as that of CD8+ T cells towards autologous tumor cells.

  7. Automatically activated, 300 ampere-hour silver-zinc cell

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1972-01-01

    A prototype silver zinc cell is reported for which the electrolyte is being stored in a separate tank; the cell is being activated when additional power is required by collapsing the neoprene bellows container and thus forcing the electrolyte into cell through a plastic connection. A solar array is proposed as main power source for the flow actuator.

  8. Reduced DNA topoisomerase II activity in ataxia-telangiectasia cells.

    PubMed Central

    Singh, S P; Mohamed, R; Salmond, C; Lavin, M F

    1988-01-01

    Considerable evidence supports a defect at the level of chromatin structure or recognition of that structure in cells from patients with the human genetic disorder ataxia-telangiectasia. Accordingly, we have investigated the activities of enzymes that alter the topology of DNA in Epstein Barr Virus-transformed lymphoblastoid cells from patients with this syndrome. Reduced activity of DNA topoisomerase II, determined by unknotting of P4 phage DNA, was observed in partially purified extracts from 5 ataxia-telangiectasia cell lines. The levels of enzyme activity was reduced substantially in 4 of these cell lines and to a lesser extent in the other cell line compared to controls. DNA topoisomerase I, assayed by relaxation of supercoiled DNA, was found to be present at comparable levels in both cell types. Reduced activity of topoisomerase II in ataxia-telangiectasia is compatible with the molecular, cellular and clinical changes described in this syndrome. Images PMID:2836804

  9. Estrogen influences satellite cell activation and proliferation following downhill running in rats.

    PubMed

    Enns, Deborah L; Tiidus, Peter M

    2008-02-01

    To investigate the influence of estrogen on postexercise muscle repair processes, we examined the effects of estrogen supplementation (0.25-mg pellet) on numbers of myofibers positive for markers of total, activated, and proliferating satellite cells in rat skeletal muscles 72 h following downhill running. Ovariectomized female rats (n = 44) were divided into four groups (n = 11 per group): sham (no estrogen) controls (SC); sham, exercised (SE); estrogen-supplemented controls (EC); and estrogen-supplemented, exercised (EE). After 8 days of estrogen exposure, animals were exposed to 90 min of treadmill running at 17 m/min (-13.5 degrees ). Seventy-two hours later, soleus and white vastus muscles were removed and immunostained for total [paired box homeotic gene 7 (Pax7)], [activated myogenic differentiation factor D (MyoD)], and proliferating [5-bromo-2'-deoxyuridine (BrdU)] satellite cells. beta-Glucuronidase activity was increased (P < 0.05) in both muscles following exercise; however, the postexercise elevations in enzyme activity were attenuated in the EE group compared with the SE group in the soleus (P < 0.05). Immunohistochemical analysis revealed that exercised groups displayed increased numbers of myofibers containing total, activated, and proliferating satellite cells compared with control groups (P < 0.05). Furthermore, greater numbers of fibers positive for markers of total, activated, and proliferating satellite cells were observed postexercise in EE animals compared with SE animals for both muscles (P < 0.05). The results demonstrate that estrogen may potentially influence post-damage repair of skeletal muscle through activation of satellite cells.

  10. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  11. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  12. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  13. Bridging the divide between science and journalism.

    PubMed

    Van Eperen, Laura; Marincola, Francesco M; Strohm, Jennifer

    2010-03-10

    There are countless reasons nearly every scientist should learn how to communicate effectively with the media, including increased understanding of critical research findings to attract or sustain funding and build new professional partnerships that will further propel forward research. But where do scientists begin? Bridging the Divide between Science and Journalism offers practical tips for any scientist looking to work with the media.Given the traditional and internet-based sources for medical research and healthcare-related news now available, it is imperative that scientists know how to communicate their latest findings through the appropriate channels. The credible media channels are managed by working journalists, so learning how to package vast, technical research in a form that is appetizing and "bite-sized" in order to get their attention, is an art. Reducing years of research into a headline can be extremely difficult and certainly doesn't come naturally to every scientist, so this article provides suggestions on how to work with the media to communicate your findings.

  14. Bridging the Digital Divide: Reaching Vulnerable Populations

    PubMed Central

    Chang, Betty L.; Bakken, Suzanne; Brown, S. Scott; Houston, Thomas K.; Kreps, Gary L.; Kukafka, Rita; Safran, Charles; Stavri, P. Zoe

    2004-01-01

    The AMIA 2003 Spring Congress entitled “Bridging the Digital Divide: Informatics and Vulnerable Populations” convened 178 experts including medical informaticians, health care professionals, government leaders, policy makers, researchers, health care industry leaders, consumer advocates, and others specializing in health care provision to underserved populations. The primary objective of this working congress was to develop a framework for a national agenda in information and communication technology to enhance the health and health care of underserved populations. Discussions during four tracks addressed issues and trends in information and communication technologies for underserved populations, strategies learned from successful programs, evaluation methodologies for measuring the impact of informatics, and dissemination of information for replication of successful programs. Each track addressed current status, ideal state, barriers, strategies, and recommendations. Recommendations of the breakout sessions were summarized under the overarching themes of Policy, Funding, Research, and Education and Training. The general recommendations emphasized four key themes: revision in payment and reimbursement policies, integration of health care standards, partnerships as the key to success, and broad dissemination of findings including specific feedback to target populations and other key stakeholders. PMID:15299002

  15. Bridging the digital divide: reaching vulnerable populations.

    PubMed

    Chang, Betty L; Bakken, Suzanne; Brown, S Scott; Houston, Thomas K; Kreps, Gary L; Kukafka, Rita; Safran, Charles; Stavri, P Zoe

    2004-01-01

    The AMIA 2003 Spring Congress entitled "Bridging the Digital Divide: Informatics and Vulnerable Populations" convened 178 experts including medical informaticians, health care professionals, government leaders, policy makers, researchers, health care industry leaders, consumer advocates, and others specializing in health care provision to underserved populations. The primary objective of this working congress was to develop a framework for a national agenda in information and communication technology to enhance the health and health care of underserved populations. Discussions during four tracks addressed issues and trends in information and communication technologies for underserved populations, strategies learned from successful programs, evaluation methodologies for measuring the impact of informatics, and dissemination of information for replication of successful programs. Each track addressed current status, ideal state, barriers, strategies, and recommendations. Recommendations of the breakout sessions were summarized under the overarching themes of Policy, Funding, Research, and Education and Training. The general recommendations emphasized four key themes: revision in payment and reimbursement policies, integration of health care standards, partnerships as the key to success, and broad dissemination of findings including specific feedback to target populations and other key stakeholders.

  16. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity.

    PubMed

    Pietra, Gabriella; Manzini, Claudia; Rivara, Silvia; Vitale, Massimo; Cantoni, Claudia; Petretto, Andrea; Balsamo, Mirna; Conte, Romana; Benelli, Roberto; Minghelli, Simona; Solari, Nicola; Gualco, Marina; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina

    2012-03-15

    Natural killer (NK) cells play a key role in tumor immune surveillance. However, adoptive immunotherapy protocols using NK cells have shown limited clinical efficacy to date, possibly due to tumor escape mechanisms that inhibit NK cell function. In this study, we analyzed the effect of coculturing melanoma cells and NK cells on their phenotype and function. We found that melanoma cells inhibited the expression of major NK receptors that trigger their immune function, including NKp30, NKp44, and NKG2D, with consequent impairment of NK cell-mediated cytolytic activity against various melanoma cell lines. This inhibitory effect was primarily mediated by indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2). Together, our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.

  17. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    SciTech Connect

    Bulleit, R.F.; Zimmerman, E.F.

    1984-09-15

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with (3H)arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity.

  18. Dormancy activation mechanism of oral cavity cancer stem cells.

    PubMed

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  19. Nylon Wool Purification Alters the Activation of T Cells

    PubMed Central

    Wohler, Jillian E.; Barnum, Scott R.

    2009-01-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method. PMID:18952296

  20. Cooperativity of peptidoglycan synthases active in bacterial cell elongation.

    PubMed

    Banzhaf, Manuel; van den Berg van Saparoea, Bart; Terrak, Mohammed; Fraipont, Claudine; Egan, Alexander; Philippe, Jules; Zapun, André; Breukink, Eefjan; Nguyen-Distèche, Martine; den Blaauwen, Tanneke; Vollmer, Waldemar

    2012-07-01

    Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.

  1. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    PubMed

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells.

  2. Phenotypic Approaches to Identify Inhibitors of B Cell Activation

    PubMed Central

    Kim, Suzie; Wiener, Jake; Rao, Navin L.; Milla, Marcos E.; DiSepio, Daniel

    2015-01-01

    An EPIC label-free phenotypic platform was developed to explore B cell receptor (BCR) and CD40R-mediated B cell activation. The phenotypic assay measured the association of RL non-Hodgkin’s lymphoma B cells expressing lymphocyte function-associated antigen 1 (LFA-1) to intercellular adhesion molecule 1 (ICAM-1)-coated EPIC plates. Anti-IgM (immunoglobulin M) mediated BCR activation elicited a response that was blocked by LFA-1/ICAM-1 specific inhibitors and a panel of Bruton’s tyrosine kinase (BTK) inhibitors. LFA-1/ICAM-1 association was further increased on coapplication of anti-IgM and mega CD40L when compared to individual application of either. Anti-IgM, mega CD40L, or the combination of both displayed distinct kinetic profiles that were inhibited by treatment with a BTK inhibitor. We also established a FLIPR-based assay to measure B cell activation in Ramos Burkitt’s lymphoma B cells and an RL cell line. Anti-IgM-mediated BCR activation elicited a robust calcium response that was inhibited by a panel of BTK inhibitors. Conversely, CD40R activation did not elicit a calcium response in the FLIPR assay. Compared to the FLIPR, the EPIC assay has the propensity to identify inhibitors of both BCR and CD40R-mediated B cell activation and may provide more pharmacological depth or novel mechanisms of action for inhibition of B cell activation. PMID:25948491

  3. Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells.

    PubMed

    Brown, Gabriella K; Tovar, Cesar; Cooray, Anne A; Kreiss, Alexandre; Darby, Jocelyn; Murphy, James M; Corcoran, Lynn M; Bettiol, Silvana S; Lyons, A Bruce; Woods, Gregory M

    2016-08-01

    Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8(+) T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC-negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll-like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL-2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo.

  4. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  5. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  6. Knowledge Activism: Bridging the Research/Policy Divide

    ERIC Educational Resources Information Center

    Gillies, Donald

    2014-01-01

    How research can better inform policy and how policy can have a better research base are longstanding issues both in educational research and across public policy generally. Drawing on the work of Hannah Arendt, this article argues that progress in increasing the impact of research can be made through a clearer understanding of the nature of…

  7. Activation of B cells by non-canonical helper signals.

    PubMed

    Cerutti, Andrea; Cols, Montserrat; Puga, Irene

    2012-09-01

    Cognate interaction between T and B lymphocytes of the adaptive immune system is essential for the production of high-affinity antibodies against microbes, and for the establishment of long-term immunological memory. Growing evidence shows that--in addition to presenting antigens to T and B cells--macrophages, dendritic cells and other cells of the innate immune system provide activating signals to B cells, as well as survival signals to antibody-secreting plasma cells. Here, we discuss how these innate immune cells contribute to the induction of highly diversified and temporally sustained antibody responses, both systemically and at mucosal sites of antigen entry.

  8. Substrate Stiffness Regulates Filopodial Activities in Lung Cancer Cells

    PubMed Central

    Liou, Yu-Ren; Torng, Wen; Kao, Yu-Chiu; Sung, Kung-Bin; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and should shed light

  9. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  10. Detection of activity of single microalgae cells in a new microfluidic cell capturing chip

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Meng, Xiongfei; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-12-01

    The analysis of single microalgae cell plays a very important role in understanding the activity of microalgae cell. In this paper, a new method of capturing and monitoring a microalgae cell is presented. This method uses the surface of an air bubble formed in an aqueous solution in a microchannel to capture a microalgae cell. The aliveness of the captured microalgae cell can be monitored quantitatively by measuring chlorophyll fluorescence intensity of the microalgae cell. To demonstrate the performance of this method, two species of microalgae cells, Dunaliella salina and Tetraselmis Chui, were taken as samples. The effect of pH on the cell capture was studied experimentally. The cells were treated by NaClO or Formaldehyde solutions of different concentrations. The kinetics of the photosynthesis activity of the captured single microalgae cells was investigated under different treatment conditions. The results show that the viability of single microalgae cells can be studied individually and accurately by this method.

  11. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines.

    PubMed

    Michishita, M; Akiyoshi, R; Suemizu, H; Nakagawa, T; Sasaki, N; Takemitsu, H; Arai, T; Takahashi, K

    2012-08-01

    Increasing evidence suggests that diverse solid tumours arise from a small population of cells known as cancer stem cells or tumour-initiating cells. Cancer stem cells in several solid tumours are enriched for aldehyde dehydrogenase (ALDH) activity. High levels of ALDH activity (ALDH(high)) were detected in four cell lines derived from canine mammary carcinomas. ALDH(high) cells were enriched in a CD44(+)CD24(-) population having self-renewal capacity. Xenotransplantation into immunodeficient mice demonstrated that 1×10(4) ALDH(high) cells were sufficient for tumour formation in all injected mice, whereas 1×10(4) ALDH(low) cells failed to initiate any tumours. ALDH(high)-derived tumours contained both ALDH(+) and ALDH(-) cells, indicating that these cells had cancer stem cell-like properties.

  12. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation.

    PubMed

    Taylor, A W; Dixit, S; Yu, J

    2015-01-29

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  13. Determination of telomerase activity in stem cells and non-stem cells of breast cancer.

    PubMed

    Li, Zhi; He, Yanli; Zhang, Jiahua; Zhang, Jinghui; Huang, Tao

    2007-07-01

    Although all normal tissue cells, including stem cells, are genetically homologous, variation in gene expression patterns has already determined the distinct roles for individual cells in the physiological process due to the occurrence of epigenetic modification. This is of special importance for the existence of tissue stem cells because they are exclusively immortal within the body, capable of self-replicating and differentiating by which tissues renew and repair itself and the total tissue cell population maintains a steady-state. Impairment of tissue stem cells is usually accompanied by a reduction in cell number, slows down the repair process and causes hypofunction. For instance, chemotherapy usually leads to depression of bone marrow and hair loss. Cellular aging is closely associated with the continuous erosion of the telomere while activation of telomerase repairs and maintains telomeres, thus slowing the aging process and prolonging cell life. In normal adults, telomerase activation mainly presents in tissue stem cells and progenitor cells giving them unlimited growth potential. Despite the extensive demonstration of telomerase activation in malignancy (> 80%), scientists found that heterogeneity also exists among the tumor cells and only minorities of cells, designated as cancer stem cells, undergo processes analogous to the self-renewal and differentiation of normal stem cells while the rest have limited lifespans. In this study, telomerase activity was measured and compared in breast cancer stem cells and non-stem cells that were phenotypically sorted by examining surface marker expression. The results indicated that cancer stem cells show a higher level of enzyme activity than non-stem cells. In addition, associated with the repair of cancer tissue (or relapse) after chemotherapy, telomerase activity in stem cells was markedly increased.

  14. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    PubMed Central

    Hauerslev, Simon; Vissing, John; Krag, Thomas O.

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength. PMID:24963862

  15. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    PubMed

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  16. MERTK as negative regulator of human T cell activation

    PubMed Central

    Cabezón, Raquel; Carrera-Silva, E. Antonio; Flórez-Grau, Georgina; Errasti, Andrea E.; Calderón-Gómez, Elisabeth; Lozano, Juan José; España, Carolina; Ricart, Elena; Panés, Julián; Rothlin, Carla Vanina; Benítez-Ribas, Daniel

    2015-01-01

    The aim of this study was to test the hypothesis whether MERTK, which is up-regulated in human DCs treated with immunosuppressive agents, is directly involved in modulating T cell activation. MERTK is a member of the TAM family and contributes to regulating innate immune response to ACs by inhibiting DC activation in animal models. However, whether MERTK interacts directly with T cells has not been addressed. Here, we show that MERTK is highly expressed on dex-induced human tol-DCs and participates in their tolerogenic effect. Neutralization of MERTK in allogenic MLR, as well as autologous DC–T cell cultures, leads to increased T cell proliferation and IFN-γ production. Additionally, we identify a previously unrecognized noncell-autonomous regulatory function of MERTK expressed on DCs. Mer-Fc protein, used to mimic MERTK on DCs, suppresses naïve and antigen-specific memory T cell activation. This mechanism is mediated by the neutralization of the MERTK ligand PROS1. We find that MERTK and PROS1 are expressed in human T cells upon TCR activation and drive an autocrine proproliferative mechanism. Collectively, these results suggest that MERTK on DCs controls T cell activation and expansion through the competition for PROS1 interaction with MERTK in the T cells. In conclusion, this report identified MERTK as a potent suppressor of T cell response. PMID:25624460

  17. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  18. Growth Factor Midkine Promotes T-Cell Activation through Nuclear Factor of Activated T Cells Signaling and Th1 Cell Differentiation in Lupus Nephritis.

    PubMed

    Masuda, Tomohiro; Maeda, Kayaho; Sato, Waichi; Kosugi, Tomoki; Sato, Yuka; Kojima, Hiroshi; Kato, Noritoshi; Ishimoto, Takuji; Tsuboi, Naotake; Uchimura, Kenji; Yuzawa, Yukio; Maruyama, Shoichi; Kadomatsu, Kenji

    2017-04-01

    Activated T cells play crucial roles in the pathogenesis of autoimmune diseases, including lupus nephritis (LN). The activation of calcineurin/nuclear factor of activated T cells (NFAT) and STAT4 signaling is essential for T cells to perform various effector functions. Here, we identified the growth factor midkine (MK; gene name, Mdk) as a novel regulator in the pathogenesis of 2,6,10,14-tetramethylpentadecane-induced LN via activation of NFAT and IL-12/STAT4 signaling. Wild-type (Mdk(+/+)) mice showed more severe glomerular injury than MK-deficient (Mdk(-/-)) mice, as demonstrated by mesangial hypercellularity and matrix expansion, and glomerular capillary loops with immune-complex deposition. Compared with Mdk(-/-) mice, the frequency of splenic CD69(+) T cells and T helper (Th) 1 cells, but not of regulatory T cells, was augmented in Mdk(+/+) mice in proportion to LN disease activity, and was accompanied by skewed cytokine production. MK expression was also enhanced in activated CD4(+) T cells in vivo and in vitro. MK induced activated CD4(+) T cells expressing CD69 through nuclear activation of NFAT transcription and selectively increased in vitro differentiation of naive CD4(+) T cells into Th1 cells by promoting IL-12/STAT4 signaling. These results suggest that MK serves an indispensable role in the NFAT-regulated activation of CD4(+) T cells and Th1 cell differentiation, eventually leading to the exacerbation of LN.

  19. Cytotoxic activity of natural killer cells in vitro under microgravity

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.

    2005-08-01

    Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.

  20. The NCI Digital Divide Pilot Projects: implications for cancer education.

    PubMed

    Kreps, Gary L; Gustafson, David; Salovey, Peter; Perocchia, Rosemarie Slevin; Wilbright, Wayne; Bright, Mary Anne; Muha, Cathy

    2007-01-01

    The National Cancer Institute (NCI) supported four innovative demonstration research projects, "The Digital Divide Pilot Projects," to test new strategies for disseminating health information via computer to vulnerable consumers. These projects involved active research collaborations between the NCI's Cancer Information Service (CIS) and regional cancer control researchers to field test new approaches for enhancing cancer communication in vulnerable communities. The projects were able to use computers to successfully disseminate relevant cancer information to vulnerable populations. These demonstration research projects suggested effective new strategies for using communication technologies to educate underserved populations about cancer prevention, control, and care.

  1. Activation of ion transport systems during cell volume regulation

    SciTech Connect

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K/sup +/ and Cl/sup -/ conductances, a K-Cl cotransport system, or parallel K/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca/sup 2 +/ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchange systems.

  2. Embryonic cuticle establishment: the great (apoplastic) divide.

    PubMed

    Moussu, Steven; San-Bento, Rita; Galletti, Roberta; Creff, Audrey; Farcot, Etienne; Ingram, Gwyneth

    2013-01-01

    The plant cuticle, a dynamic interface between plants and their environment, is formed by the secretion of hydrophobic lipids and waxes into the outer wall of aerial epidermal cells. Cuticle formation is such a ubiquitous feature of epidermal cells, and is of such fundamental importance for plant survival, that identifying and understanding specific developmental roles for this structure has been a major challenge for plant scientists. In recent work, we have tried to understand the functional relationships between a signaling feedback loop required for epidermal cell specification in developing plant embryos, and a seed specific signaling cascade, involving components localized both in the embryo and in the embryo surrounding endosperm, and necessary for embryo cuticle function. Analysis of the strongly synergistic genetic relationships between these 2 independent pathways, combined with mathematical simulations of the behavior of the signaling feedback loop, have allowed us to propose an important, and hitherto unsuspected, role for the embryonic cuticle as an apoplastic diffusion barrier, necessary for preventing the excessive diffusion of developmentally important signaling molecules away from developing embryo into surrounding tissues.

  3. Innate response activator B cells: origins and functions

    PubMed Central

    Swirski, Filip K.

    2015-01-01

    Innate response activator (IRA) B cells are a subset of B-1a derived B cells that produce the growth factors granulocyte macrophage colony stimulating factor and IL-3. In mouse models of sepsis and pneumonia, B-1a B cells residing in serosal sites recognize bacteria, migrate to the spleen or lung, and differentiate to IRA B cells that then contribute to the host response by amplifying inflammation and producing polyreactive IgM. In atherosclerosis, IRA B cells accumulate in the spleen, where they promote extramedullary hematopoiesis and activate classical dendritic cells. In this review, we focus on the ontogeny and function of IRA B cells in acute and chronic inflammation. PMID:25957266

  4. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  5. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    PubMed

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells.

  6. Beyond the Academic-Corporate Divide

    ERIC Educational Resources Information Center

    Siegel, David J.

    2012-01-01

    Academics often view intercourse with business as a dirty, unchaste affair. Yet in some realms of activity, academic institutions practice greater virtue not by rebuffing corporate interests but by being in bed with them. Cross-sector social partnership, one of the terms of art applied to this sort of interbreeding, offers a potent means of…

  7. Cell associated urokinase activity and colonic epithelial cells in health and disease.

    PubMed Central

    Gibson, P R; van de Pol, E; Doe, W F

    1991-01-01

    It is not known if urokinase-type plasminogen activator (uPA) is associated with normal colonic epithelial cells. The aims of this study were to determine if normal colonic epithelial cells have uPA activity and whether this is concentrated at the cell membrane. In addition, the contribution of colonic epithelial cell associated uPA activity to disease related pertubations of mucosal uPA activity were examined. A highly enriched population of colonic epithelial cells was isolated from resected colon or biopsy specimens by an enzymatic technique. uPA activity was measured in cell homogenates by a specific and sensitive colorimetric method and expressed relative to cellular DNA. In two experiments subcellular fractionation of colonic epithelial cells was performed by nitrogen cavitation followed by ultracentrifugation over a linear sucrose gradient. The fractions collected were analysed for uPA and organelle-specific enzyme activities. Normal colonic epithelial cells have cell associated uPA activity (mean (SEM) 5.6 (1.1) IU/mg, n = 18). This colocalised with fractions enriched for leucine-beta-naphthylamidase and 5'-nucleotidase, markers of plasma membrane. uPA activities in epithelial cells from cancerous colons (9.8 (3.1) n = 7) or from mucosa affected by inflammatory bowel disease (3.8 (0.7) n = 15) were not significantly different from normal (paired t test), while that in epithelial cells from greatly inflamed mucosa was similar to that from autologous normal or mildly inflamed areas (4.4 (1.2) v 5.9 (3.6), n = 9). Thus normal colonic epithelial cells have cell associated uPA activity which is concentrated on the plasma membranes, suggesting the presence of uPA receptors. Increased mucosal levels of uPA previously reported in patients with inflammatory bowel disease are not due to increased colonic epithelial cell associated uPA. PMID:1650741

  8. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  9. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis.

    PubMed

    Hornik, Tamara C; Vilalta, Anna; Brown, Guy C

    2016-01-01

    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.

  10. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  11. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming.

    PubMed

    Li, Heng-Hong; Wang, Yi-Wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D; Fornace, Albert J

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.

  12. CD4 T cell activation by B cells in human Leishmania (Viannia) infection

    PubMed Central

    2014-01-01

    Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to

  13. A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation

    PubMed Central

    Love, Nicola K.; Keshavan, Nandaki; Lewis, Rebecca; Harris, William A.; Agathocleous, Michalis

    2014-01-01

    In many growing tissues, slowly dividing stem cells give rise to rapidly proliferating progenitors that eventually exit the cell cycle and differentiate. Growth rates are limited by nutrient availability, but it is unclear which steps of the proliferation-differentiation programme are particularly sensitive to fuel supplies. We examined how nutrient deprivation (ND) affects stem and progenitor cells in the ciliary marginal zone (CMZ) of the amphibian retina, a well-characterised neurogenic niche. We show that ND specifically blocks the proliferation and differentiation of progenitor cells through an mTOR-mediated mechanism. By contrast, the identity and proliferation of retinal stem cells are insensitive to ND and mTOR inhibition. Re-feeding starved retinas in vitro rescues both proliferation and differentiation, and activation of mTOR is sufficient to stimulate differentiation even in ND retinas. These results suggest that an mTOR-mediated restriction point operates in vivo to couple nutrient abundance to the proliferation and differentiation programme in retinal progenitor cells. PMID:24449845

  14. Sclerostin Antibody Administration Converts Bone Lining Cells Into Active Osteoblasts.

    PubMed

    Kim, Sang Wan; Lu, Yanhui; Williams, Elizabeth A; Lai, Forest; Lee, Ji Yeon; Enishi, Tetsuya; Balani, Deepak H; Ominsky, Michael S; Ke, Hua Zhu; Kronenberg, Henry M; Wein, Marc N

    2016-11-14

    Sclerostin antibody (Scl-Ab) increases osteoblast activity, in part through increasing modeling-based bone formation on previously quiescent surfaces. Histomorphometric studies have suggested that this might occur through conversion of bone lining cells into active osteoblasts. However, direct data demonstrating Scl-Ab-induced conversion of lining cells into active osteoblasts are lacking. Here, we used in vivo lineage tracing to determine if Scl-Ab promotes the conversion of lining cells into osteoblasts on periosteal and endocortical bone surfaces in mice. Two independent, tamoxifen-inducible lineage-tracing strategies were used to label mature osteoblasts and their progeny using the DMP1 and osteocalcin promoters. After a prolonged "chase" period, the majority of labeled cells on bone surfaces assumed a thin, quiescent morphology. Then, mice were treated with either vehicle or Scl-Ab (25 mg/kg) twice over the course of the subsequent week. After euthanization, marked cells were enumerated, their thickness quantified, and proliferation and apoptosis examined. Scl-Ab led to a significant increase in the average thickness of labeled cells on periosteal and endocortical bone surfaces, consistent with osteoblast activation. Scl-Ab did not induce proliferation of labeled cells, and Scl-Ab did not regulate apoptosis of labeled cells. Therefore, direct reactivation of quiescent bone lining cells contributes to the acute increase in osteoblast numbers after Scl-Ab treatment in mice. © 2017 American Society for Bone and Mineral Research.

  15. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  16. Real-time transposable element activity in individual live cells

    PubMed Central

    Lee, Gloria; Martini, K. Michael

    2016-01-01

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE’s orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  17. Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation.

    PubMed

    Castaneda, Julie T; Harui, Airi; Roth, Michael D

    2017-03-31

    Cannabinoid receptor type 2 (CB2) is the primary receptor pathway mediating the immunologic consequences of cannabinoids. We recently reported that human peripheral blood B cells express CB2 on both the extracellular membrane and at intracellular sites, where-as monocytes and T cells only express intracellular CB2. To better understand the pattern of CB2 expression by human B cells, we examined CD20(+) B cells from three tissue sources. Both surface and intracellular expression were present and uniform in cord blood B cells, where all cells exhibited a naïve mature phenotype (IgD(+)/CD38(Dim)). While naïve mature and quiescent memory B cells (IgD(-)/CD38(-)) from tonsils and peripheral blood exhibited a similar pattern, tonsillar activated B cells (IgD(-)/CD38(+)) expressed little to no surface CB2. We hypothesized that regulation of the surface CB2 receptor may occur during B cell activation. Consistent with this, a B cell lymphoma cell line known to exhibit an activated phenotype (SUDHL-4) was found to lack cell surface CB2 but express intracellular CB2. Furthermore, in vitro activation of human cord blood resulted in a down-regulation of surface CB2 on those B cells acquiring the activated phenotype but not on those retaining IgD expression. Using a CB2 expressing cell line (293 T/CB2-GFP), confocal microscopy confirmed the presence of both cell surface expression and multifocal intracellular expression, the latter of which co-localized with endoplasmic reticulum but not with mitochondria, lysosomes, or nucleus. Our findings suggest a dynamic multi-compartment expression pattern for CB2 in B cells that is specifically modulated during the course of B cell activation.

  18. Surface free energy activated high-throughput cell sorting.

    PubMed

    Zhang, Xinru; Zhang, Qian; Yan, Tao; Jiang, Zeyi; Zhang, Xinxin; Zuo, Yi Y

    2014-09-16

    Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs). We demonstrated the feasibility of this method by sorting model binary cell mixtures of various bacterial species, including Pseudomonas putida KT2440, Enterococcus faecalis ATCC 29212, Salmonella Typhimurium ATCC 14028, and Escherichia coli DH5α. This method can effectively separate 10(10) bacterial cells within 30 min. Individual bacterial species can be sorted with up to 96% efficiency, and the cell viability ratio can be as high as 99%. In addition to its capacity of sorting evenly mixed bacterial cells, we demonstrated the feasibility of this method in selecting and enriching cells of minor populations in the mixture (presenting at only 1% in quantity) to a purity as high as 99%. This SFE-activated method may be used as a stand-alone method for quickly sorting a large quantity of bacterial cells or as a prescreening tool for microbial discrimination. Given its advantages of label-free, high-throughput, low cost, and simplicity, this SFE-activated cell sorting method has potential in various applications of sorting cells and abiotic particles.

  19. T Cell Receptor-induced Activation and Apoptosis In Cycling Human T Cells Occur throughout the Cell Cycle

    PubMed Central

    Karas, Michael; Zaks, Tal Z.; JL, Liu; LeRoith, Derek

    1999-01-01

    Previous studies have found conflicting associations between susceptibility to activation-induced cell death and the cell cycle in T cells. However, most of the studies used potentially toxic pharmacological agents for cell cycle synchronization. A panel of human melanoma tumor-reactive T cell lines, a CD8+ HER-2/neu-reactive T cell clone, and the leukemic T cell line Jurkat were separated by centrifugal elutriation. Fractions enriched for the G0–G1, S, and G2–M phases of the cell cycle were assayed for T cell receptor-mediated activation as measured by intracellular Ca2+ flux, cytolytic recognition of tumor targets, and induction of Fas ligand mRNA. Susceptibility to apoptosis induced by recombinant Fas ligand and activation-induced cell death were also studied. None of the parameters studied was specific to a certain phase of the cell cycle, leading us to conclude that in nontransformed human T cells, both activation and apoptosis through T cell receptor activation can occur in all phases of the cell cycle. PMID:10588669

  20. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  1. Novel APC-like properties of human NK cells directly regulate T cell activation

    PubMed Central

    Hanna, Jacob; Gonen-Gross, Tsufit; Fitchett, Jonathan; Rowe, Tony; Daniels, Mark; Arnon, Tal I.; Gazit, Roi; Joseph, Aviva; Schjetne, Karoline W.; Steinle, Alexander; Porgador, Angel; Mevorach, Dror; Goldman-Wohl, Debra; Yagel, Simcha; LaBarre, Michael J.; Buckner, Jane H.; Mandelboim, Ofer

    2004-01-01

    Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane–enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell–mediated cytotoxicity and specific ligand recognition by cell surface–activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell–activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell–activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells. PMID:15578093

  2. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  3. Edwardsiella tarda invasion of fish cell lines and the activation of divergent cell death pathways.

    PubMed

    Wang, Bin; Yu, Tong; Dong, Xue; Zhang, Zenghu; Song, Lin; Xu, Ying; Zhang, Xiao-Hua

    2013-05-03

    Edwardsiella tarda is an important gram-negative intracellular pathogen of fish. However, the invasive features of E. tarda to fish cells and the pathogenesis of host cell death have not been thoroughly investigated. In this study, two fish cell models were used to investigate the interactions between E. tarda and its cellular hosts. E. tarda invaded and replicated in both cell lines. Epithelioma papulosum cyprini (EPC) cells were more sensitive to E. tarda infection than the flounder gill cell line FG-9307, with higher levels of intracellular bacteria in the former. The invasion and intracellular replication of E. tarda in FG-9307 cells were studied at the ultrastructural level, and infected cells with large amounts of replicated bacteria and destroyed organelles were observed. Apoptosis was observed in EPC cells upon infection, characterized by the occurrence of apoptotic bodies, DNA ladder, increased Annexin V binding and the activation of caspase-3, whereas E. tarda infected FG-9307 cells were negative for all of those features. E. tarda infection in FG-9307 cells failed to protect the staurosporine-induced apoptosis. Moreover, both intrinsic and extrinsic pathways were activated in EPC cells upon E. tarda infection. The present study revealed that E. tarda interacts with fish cells in different manners, and divergent pathways were activated in these cellular hosts to mediate cell death. These results provided new information on the interactions between E. tarda and fish cells.

  4. NITRIC OXIDE, MITOCHONDRIAL HYPERPOLARIZATION AND T-CELL ACTIVATION

    PubMed Central

    Nagy, Gyorgy; Koncz, Agnes; Fernandez, David; Perl, Andras

    2007-01-01

    T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell function, contributing to the pathogenesis of autoimmunity. PMID:17462531

  5. The regulation and activation of lupus-associated B cells.

    PubMed

    Fields, Michele L; Hondowicz, Brian D; Wharton, Gina N; Adair, Brigette S; Metzgar, Michele H; Alexander, Shawn T; Caton, Andrew J; Erikson, Jan

    2005-04-01

    Anti-double-stranded DNA (anti-dsDNA) B cells are regulated in non-autoimmune mice. While some are deleted or undergo receptor editing, a population of anti-dsDNA (VH3H9/V lambda 1) B cells that emigrate into the periphery has also been identified. These cells have an altered phenotype relative to normal B cells in that they have a reduced lifespan, appear developmentally arrested, and localize primarily to the T/B-cell interface in the spleen. This phenotype may be the consequence of immature B cells encountering antigen in the absence of T-cell help. When provided with T-cell help, the anti-dsDNA B cells differentiate into antibody-forming cells. In the context of the autoimmune-prone lpr/lpr or gld/gld mutations, the VH3H9/V lambda 1 anti-dsDNA B cells populate the B-cell follicle and by 12 weeks of age produce serum autoantibodies. The early event of anti-dsDNA B-cell follicular entry, in the absence of autoantibody production, is dependent upon CD4(+) T cells. We hypothesize that control of autoantibody production in young autoimmune-prone mice may be regulated by the counterbalancing effect of T-regulatory (T(reg)) cells. Consistent with this model, we have demonstrated that T(reg) cells are able to prevent autoantibody production induced by T-cell help. Additional studies are aimed at investigating the mechanisms of this suppression as well as probing the impact of distinct forms of T-cell-dependent and -independent activation on anti-dsDNA B cells.

  6. Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase.

    PubMed Central

    Fang, K C; Raymond, W W; Lazarus, S C; Caughey, G H

    1996-01-01

    Gelatinolytic metalloproteinases implicated in connective tissue remodeling and tumor invasion are secreted from several types of cells in the form of inactive zymogens. In this report, characterization of gelatinase activity secreted by the BR line of dog mastocytoma cells reveals a phorbol-inducible, approximately 92-kD, Ca2+ - and Zn2+ -dependent proenzyme cleaved over time to smaller, active forms. Incubation of cells with the general serine protease inhibitor, PMSF, prevented proenzyme cleavage and permitted its purification free of activation products. The NH2-terminal 13 amino acids of the purified mastocytoma progelatinase are 50-67% identical to those of human, mouse, and rabbit 92-kD progelatinase (gelatinase B; matrix metalloproteinase-9). Degranulation of mastocytoma cells using ionophore A23187 greatly accelerated proenzyme cleavage, suggesting that a serine protease present in secretory granules hydrolyzed the progelatinase to active fragments. To identify the activating protease, cells were coincubated with ionophore and a panel of selective serine protease inhibitors. Soybean trypsin inhibitor and succinyl-L-Ala-Ala-Pro-Phe-chloromethylketone, which inhibit mast cell chymase, prevented progelatinase activation. Inhibitors of tryptase and dog mast cell protease (dMCP)-3, i.e., aprotinin or bis(5-amidino-2-benzimidazolyl) methane (BABIM), did not. In further experiments using highly purified enzymes, mastocytoma cell chymase activated 92-kD progelatinase in the absence of other enzymes or cofactors; tryptase and dMCP-3, however, had no effect. These data demonstrate that dog mastocytoma cells secrete a metalloproteinase related to progelatinase B that is directly activated outside of the cell by exocytosed chymase, and provide the first demonstration of a cell that activates a matrix metalloproteinase it secretes by cosecreting an activating enzyme. In mastocytomas, this pathway may facilitate tumor invasion of surrounding tissues, and in normal mast

  7. Natural killer cell activity in cigarette smokers and asbestos workers

    SciTech Connect

    Ginns, L.C.; Ryu, J.H.; Rogol, P.R.; Sprince, N.L.; Oliver, L.C.; Larsson, C.J.

    1985-06-01

    In order to evaluate the effects of cigarette smoking and asbestos exposure on cellular immunity, the authors tested a group of cigarette smokers and asbestos workers for natural killer (NK) activity in the peripheral blood. The mean NK activity in cigarette smokers was lower than in normal subjects (13.7 +/- 1.6 versus 29.0 +/- 3%; p less than 0.05). As a group, the mean NK activity for the asbestos-exposed group was also reduced compared with that of the nonsmoking control group (22.6 +/- 3.2%; p less than 0.05). When divided according to the smoking status, the asbestos workers who were nonsmokers or ex-smokers showed similar decreases in NK activity compared with normal subjects (19.5 +/- 6.2 and 21.2 +/- 4.5%, respectively; p less than 0.05). A subgroup of asbestos-exposed subjects who currently smoked showed no decrease in NK activity. The data show that NK activity is reduced in the peripheral blood of cigarette smokers and asbestos workers. The relatively normal NK activity found in asbestos workers who also smoked is unexplained. Impairment of NK activity is a potential mechanism for the increased incidence of infection and cancer in smokers and neoplasia in asbestos workers.

  8. A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans

    PubMed Central

    van Rijnberk, Lotte M.; van der Horst, Suzanne E. M.; van den Heuvel, Sander; Ruijtenberg, Suzan

    2017-01-01

    Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit. PMID:28158315

  9. trans-Activation of a globin promoter in nonerythroid cells.

    PubMed Central

    Evans, T; Felsenfeld, G

    1991-01-01

    We show that expression in fibroblasts of a single cDNA, encoding the erythroid DNA-binding protein Eryf1 (GF-1, NF-E1), very efficiently activates transcription of a chicken alpha-globin promoter, trans-Activation in these cells occurred when Eryf1 bound to a single site within a minimal globin promoter. In contrast, efficient activation in erythroid cells required multiple Eryf1 binding sites. Our results indicate that mechanisms exist that are capable of modulating the trans-acting capabilities of Eryf1 in a cell-specific manner, without affecting DNA binding. The response of the minimal globin promoter to Eryf1 in fibroblasts was at least as great as for optimal constructions in erythroid cells. Therefore, the assay provides a very simple and sensitive system with which to study gene activation by a tissue-specific factor. Images PMID:1990287

  10. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    PubMed

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  11. Isosmotic modulation of cell volume and intracellular ion activities during stimulation of single exocrine cells.

    PubMed

    Foskett, J K; Wong, M M; Sue-A-Quan, G; Robertson, M A

    1994-02-01

    Stimulation of salivary secretion is associated with a rise of [Ca2+]i in acinar cells. We examined the osmotic and ionic consequences of activation of Ca(2+)-dependent K+ and Cl- channels, by simultaneous optical determinations of cell volume and [Ca2+]i, [Cl-]i or [Na+]i during muscarinic stimulation of single salivary acinar cells, using a differential interference contrast (DIC)-fluorescence microscope. Carbachol caused a rapid rise of [Ca2+]i, as well as a substantial cell shrinkage. Despite variability in the level and kinetics of the subsequent sustained phase of the [Ca2+]i response, cell volume was correlated with [Ca2+]i in all cases. Elevated [Ca2+]i was both necessary and sufficient to cause these changes in cell volume. The proposition that changes in cell volume reflected changes in cell solute content was confirmed by simultaneously measuring [Cl-]i and cell volume. Simultaneous determinations of cell volume and [Na+]i indicated that the initial cell shrinkage was due entirely to K+ and Cl- efflux. Subsequent to the initial shrinkage, [Na+]i rose to high levels, primarily due to activation of Na+/H+ exchange. Thus, modulation of ion transport activities under isosmotic conditions results in substantial changes in cell solute content and cell volume. Subsequent to the early Ca(2+)-induced changes in these parameters, other transporters become active, but it is unclear what signals their activation. Cell swelling by osmotic dilution of the bath resulted in compensatory cell shrinkage (RVD) which was sensitive to K+ and Cl- gradients. Nevertheless, a rise of [Ca2+]i was not necessary for RVD. Osmotic shrinkage and/or cell acidification were insufficient to activate Na+ influx.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death

    PubMed Central

    Kim, Hyun-Ji

    2016-01-01

    Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death. PMID:27030196

  13. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.

  14. Cytokine dependent and independent iNKT cell activation

    PubMed Central

    Reilly, Emma C.; Wands, Jack R.; Brossay, Laurent

    2010-01-01

    Invariant NKT (iNKT) cells have been extensively studied throughout the last decade due to their ability to polarize and amplify the downstream immune response. Only recently however, have the various mechanisms underlying NKT cell activation begun to unfold. iNKT cells have the ability to respond as innate immune cells with minimal TCR involvement as well as through direct TCR recognition of glycolipid antigens. Additionally, the existence of several subsets of iNKT cells creates the potential for other unique pathways, which are not yet clearly defined. Here we provide an overview of the known mechanisms of invariant NKT cell activation, focusing on cytokine driven pathways and the resulting cytokine responses. PMID:20554220

  15. Macroautophagy regulates energy metabolism during effector T cell activation.

    PubMed

    Hubbard, Vanessa M; Valdor, Rut; Patel, Bindi; Singh, Rajat; Cuervo, Ana Maria; Macian, Fernando

    2010-12-15

    Macroautophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a key role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins, and regulating protein levels in response to extracellular signals. We have found that macroautophagy is induced after effector T cell activation. Engagement of the TCR and CD28 results in enhanced microtubule-associated protein 1 light chain 3 (LC3) processing, increased numbers of LC3-containing vesicles, and increased LC3 flux, indicating active autophagosome formation and clearance. The autophagosomes formed in stimulated T cells actively fuse with lysosomes to degrade their cargo. Using a conditional KO mouse model where Atg7, a critical gene for macroautophagy, is specifically deleted in T cells, we have found that macroautophagy-deficient effector Th cells have defective IL-2 and IFN-γ production and reduced proliferation after stimulation, with no significant increase in apoptosis. We have found that ATP generation is decreased when autophagy is blocked, and defects in activation-induced cytokine production are restored when an exogenous energy source is added to macroautophagy-deficient T cells. Furthermore, we present evidence showing that the nature of the cargo inside autophagic vesicles found in resting T cells differs from the cargo of autophagosomes in activated T cells, where mitochondria and other organelles are selectively excluded. These results suggest that macroautophagy is an actively regulated process in T cells that can be induced in response to TCR engagement to accommodate the bioenergetic requirements of activated T cells.

  16. Computer and Video Games in Family Life: The Digital Divide as a Resource in Intergenerational Interactions

    ERIC Educational Resources Information Center

    Aarsand, Pal Andre

    2007-01-01

    In this ethnographic study of family life, intergenerational video and computer game activities were videotaped and analysed. Both children and adults invoked the notion of a digital divide, i.e. a generation gap between those who master and do not master digital technology. It is argued that the digital divide was exploited by the children to…

  17. Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells.

    PubMed

    Hayabuchi, Yasunobu; Nakaya, Yutaka; Mawatari, Kazuaki; Inoue, Miki; Sakata, Miho; Kagami, Shoji

    2011-01-01

    The aim of this study is to determine the signal transduction of membrane stretch on intermediate-conductance Ca(2+)-activated K(+) (IKca) channels in rat aorta smooth muscle cells using the patch-clamp technique. To stretch the cell membrane, both suction to the rear end of patch pipette and hypotonic shock were used. In cell-attached and inside-out patch configurations, the open probability of IKca channels increased when 20- to 45-mmHg suction was applied. Hyposmotic swelling efficiently increased IKca channel current. When the Ca(2+)-free solution was superfused, the activation of IKca current by the hyposmotic swelling was reduced. Furthermore, gadolinium (Gd(3+)) attenuated the activation of IKca channels induced by hyposmotic swelling, whereas nicardipine did not. In the experiments with Ca(2+)-free bath solution, pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely abolished the stretch-induced activation of IKca currents. The stretch-induced activation of IKca channels was strongly inhibited by cytochalasin D, indicating a role for the F-actin in modulation of IKca channels by changes in cell stretching. These data suggest that cell membrane stretch activates IKca channels. In addition, the activation is associated with extracellular Ca(2+) influx through stretch-activated nonselective cation channels, and is also modulated by the F-actin cytoskeleton and the activation of PKC.

  18. The Nrf2 activator tBHQ inhibits T cell activation of primary human CD4 T cells.

    PubMed

    Turley, Alexandra E; Zagorski, Joseph W; Rockwell, Cheryl E

    2015-02-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates a battery of antioxidant, detoxification, and cell stress genes. It is activated by oxidative stress and a number of exogenous compounds, one of which is tert-butylhydroquinone (tBHQ), a widely used food preservative. Nrf2 modulates immune responses in numerous rodent models of inflammation, but its effects on human immune cells are not well characterized. The purpose of these studies was to evaluate the effects of the Nrf2 activator tBHQ on early events of T cell activation in primary human cells. Treatment with tBHQ induced mRNA expression of the Nrf2 target genes HMOX-1, GCLC, and NQO1, and also increased NRF2 mRNA expression, albeit to a lesser extent than the other target genes. tBHQ decreased production of the cytokines IL-2 and IFN-γ at both the protein and mRNA levels after stimulation with anti-CD3/anti-CD28 in human peripheral blood mononuclear cells and to an even greater extent in isolated CD4 T cells. Likewise, tBHQ decreased induction of CD25 and CD69 in peripheral blood mononuclear cells (PBMCs) and this decrease was even more marked in isolated CD4 T cells. In addition, tBHQ inhibited induction of NFκB DNA binding in anti-CD3/anti-CD28-activated PBMCs. Collectively, these data suggest that tBHQ inhibits activation of primary human CD4 T cells, which correlates with activation of Nrf2 and inhibition of NFκB DNA binding. Although these studies suggest the food additive tBHQ negatively impacts T cell activation, further studies will be needed to fully elucidate the effect of tBHQ on human immune responses.

  19. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    PubMed

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells.

  20. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells

    PubMed Central

    Gong, Jianlin; Avigan, David; Chen, Dongshu; Wu, Zekui; Koido, Shigeo; Kashiwaba, Masahiro; Kufe, Donald

    2000-01-01

    We have reported that fusions of murine dendritic cells (DCs) and murine carcinoma cells reverse unresponsiveness to tumor-associated antigens and induce the rejection of established metastases. In the present study, fusions were generated with primary human breast carcinoma cells and autologous DCs. Fusion cells coexpressed tumor-associated antigens and DC-derived costimulatory molecules. The fusion cells also retained the functional potency of DCs and stimulated autologous T cell proliferation. Significantly, the results show that autologous T cells are primed by the fusion cells to induce MHC class I-dependent lysis of autologous breast tumor cells. These findings demonstrate that fusions of human breast cancer cells and DCs activate T cell responses against autologous tumors. PMID:10688917

  1. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    ERIC Educational Resources Information Center

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  2. GSK621 Targets Glioma Cells via Activating AMP-Activated Protein Kinase Signalings

    PubMed Central

    Jiang, Hong; Liu, Wei; Zhan, Shi-Kun; Pan, Yi-Xin; Bian, Liu-Guan; Sun, Bomin; Sun, Qing-Fang; Pan, Si-Jian

    2016-01-01

    Here, we studied the anti-glioma cell activity by a novel AMP-activated protein kinase (AMPK) activator GSK621. We showed that GSK621 was cytotoxic to human glioma cells (U87MG and U251MG lines), possibly via provoking caspase-dependent apoptotic cell death. Its cytotoxicity was alleviated by caspase inhibitors. GSK621 activated AMPK to inhibit mammalian target of rapamycin (mTOR) and downregulate Tetraspanin 8 (Tspan8) in glioma cells. AMPK inhibition, through shRNA knockdown of AMPKα or introduction of a dominant negative (T172A) AMPKα, almost reversed GSK621-induced AMPK activation, mTOR inhibition and Tspan8 degradation. Consequently, GSK621’s cytotoxicity in glioma cells was also significantly attenuated by AMPKα knockdown or mutation. Further studies showed that GSK621, at a relatively low concentration, significantly potentiated temozolomide (TMZ)’s sensitivity and lethality against glioma cells. We summarized that GSK621 inhibits human glioma cells possibly via activating AMPK signaling. This novel AMPK activator could be a novel and promising anti-glioma cell agent. PMID:27532105

  3. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment.

    PubMed

    Orinska, Zane; Bulanova, Elena; Budagian, Vadim; Metz, Martin; Maurer, Marcus; Bulfone-Paus, Silvia

    2005-08-01

    Mast cells play an important role in host defense against various pathogens, but their role in viral infection has not been clarified in detail. dsRNA, synthesized by various types of viruses and mimicked by polyinosinic-polycytidylic acid (poly(I:C)) is recognized by Toll-like receptor 3 (TLR3). In this study, we demonstrate that poly(I:C) injection in vivo potently stimulates peritoneal mast cells to up-regulate a number of different costimulatory molecules. Therefore, we examined the expression and the functional significance of TLR3 activation in mast cells. Mast cells express TLR3 on the cell surface and intracellularly. After stimulation of mast cells with poly(I:C) and Newcastle disease virus (NDV), TLR3 is phosphorylated and the expression of key antiviral response cytokines (interferon beta, ISG15) and chemokines (IP10, RANTES) is upregulated. Interestingly, mast cells activated via TLR3-poly(I:C) potently stimulate CD8+ T-cell recruitment. Indeed, mast-cell-deficient mice (KitW/KitW-v) given an intraperitoneal injection of poly(I:C) show a decreased CD8+ T-cell recruitment, whereas granulocytes normally migrate to the peritoneal cavity. Mast-cell reconstitution of KitW/KitW-v mice normalizes the CD8+ T-cell influx. Thus, mast cells stimulated through engagement of TLR3 are potent regulators of CD8+ T-cell activities in vitro and in vivo.

  4. mTOR activation is critical for betulin treatment in renal cell carcinoma cells.

    PubMed

    Cheng, Wenlong; Ji, Shiqi; Zhang, Haijian; Han, Zhixing; Liu, Qingjun; Wang, Jianwen; Ping, Hao

    2017-01-22

    Betulin, a natural product isolated from the bark of the birch trees, exhibits multiple anticancer effects. Activation of mTOR signaling pathway has been found in numerous cancers, including renal cell carcinoma (RCC). Here, we attempted to study whether mTOR signaling was essential for betulin to treat RCC. Based on cell survival and colony formation assays, we found that mTOR hyperactive RCC cell line 786-O cells were more sensitive to betulin treatment compared with mTOR-inactive Caki-2 cells. Knockdown of TSC2 in Caki-2 cells had similar results to 786-O cells, and mTOR silencing in 786-O cells rescued the inhibitory effect of betulin, indicating that betulin inhibited RCC cell proliferation in an mTOR-dependent manner. Furthermore, betulin treatment decreases the levels of glucose consumption and lactate production in 786-O cells, while minimal effects were observed in Caki-2 cells. In addition, betulin significantly inhibited the expression of PKM2 and HK2 in 786-O cells. Finally, knockdown of PKM2 or HK2 in 786-O reversed the anti-proliferative effects of betulin, and overexpression of PKM2 or HK2 in Caki-2 cells enhanced the sensitivity to betulin treatment. Taken together, these findings demonstrated the critical role of mTOR activation in RCC cells to betulin treatment, suggesting that betulin might be valuable for targeted therapies in RCC patients with mTOR activation.

  5. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    PubMed

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+)) and MDA-MB-453 cells (CD44-), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+) is a commonly used cancer-stem-cell biomarker, our

  6. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    SciTech Connect

    Arulanandam, Rozanne; Geletu, Mulu; Feracci, Helene; Raptis, Leda

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  7. Upregulation of swelling-activated Cl− channel sensitivity to cell volume by activation of EGF receptors in murine mammary cells

    PubMed Central

    Abdullaev, Iskandar F; Sabirov, Ravshan Z; Okada, Yasunobu

    2003-01-01

    Whole-cell recordings showed that, in mouse mammary C127 cells transfected with the full genome of the bovine papilloma virus (BPV), a hypotonic challenge induced the activation of outwardly rectifying Cl− currents with a peak amplitude 2.7 times greater than that in control C127 cells. Cell-attached single-channel recordings showed that BPV-induced augmentation of the peak amplitude of the whole-cell current could not chiefly be explained by a small increase (1.2 times) in unitary conductance. There was no difference between control and BPV-transfected cells in the osmotic cell swelling rate, and hence, osmotic water permeability. However, a plot of the whole-cell current density as a function of cell volume, which was measured simultaneously, showed that the BPV-transfected cells had a strikingly greater volume sensitivity than control cells. Since the E5 protein of BPV has been reported to induce constitutive activation of the epidermal growth factor (EGF) receptor and platelet-derived growth factor (PDGF) receptor in a variety of cell lines including C127 cells, effects of the growth factors on volume-sensitive outwardly rectifying (VSOR) Cl− currents were examined in C127 cells. Application of PDGF peptides failed to affect the Cl− currents in control and BPV-transfected cells, although C127 cells are known to endogenously express PDGF receptors. In contrast, EGF peptides significantly increased the VSOR Cl− current in control cells. However, they failed to induce further augmentation of the current in BPV-transfected cells. VSOR Cl− currents were inhibited by tyrphostin B46, an inhibitor of the EGF receptor tyrosine kinase, in both control and BPV-transfected cells. The IC50 value in BPV-transfected cells (12 μm) was lower than that in control cells (31 μm). However, the VSOR Cl− currents in both cell types were insensitive to tyrphostin AG1296, an inhibitor of the PDGF receptor tyrosine kinase. The rate of regulatory volume decrease (RVD) was

  8. Substrate rigidity regulates human T cell activation and proliferation.

    PubMed

    O'Connor, Roddy S; Hao, Xueli; Shen, Keyue; Bashour, Keenan; Akimova, Tatiana; Hancock, Wayne W; Kam, Lance C; Milone, Michael C

    2012-08-01

    Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.

  9. Substrate rigidity regulates human T cell activation and proliferation1

    PubMed Central

    O’Connor, Roddy S.; Hao, Xueli; Shen, Keyue; Bashour, Keenan; Akimova, Tatiana; Hancock, Wayne W.; Kam, Lance; Milone, Michael C.

    2012-01-01

    Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane) (PDMS), a biocompatible silicone elastomer. We show that softer (Young’s Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4+ and CD8+ T cells compared with stiffer substrates (E >2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (non-significant) towards a greater proportion of CD62Lneg, effector-differentiated CD4+ and CD8+ T cells. Naïve CD4+ T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ producing TH1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation and TH differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands. PMID:22732590

  10. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  11. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  12. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  13. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells

    PubMed Central

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E.

    2015-01-01

    Summary Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl− efflux and osmotic cell shrinkage by opening TMEM16A Ca2+-activated Cl− channels. Release of Cl− from ISCs also forces K+ efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea, and prevents ATP-dependent shrinkage of supporting cells. These results indicate that support cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  14. Antiproliferative activities of Garcinia bracteata extract and its active ingredient, isobractatin, against human tumor cell lines.

    PubMed

    Shen, Tao; Li, Wei; Wang, Yan-Yan; Zhong, Qing-Qing; Wang, Shu-Qi; Wang, Xiao-Ning; Ren, Dong-Mei; Lou, Hong-Xiang

    2014-03-01

    In our cell based screening of antitumor ingredients from plants, the EtOH extract of Garcinia bracteata displayed antiproliferative effect against human lung adenocarcinoma A549 cells, human breast cancer MCF-7 cells, and human prostate cancer PC3 cells. Phytochemical investigation of this active extract produced nine ingredients, and their structures were established by analysis of MS and NMR spectra. Antiproliferative evaluation of isolated ingredients on A549, MCF-7 and PC3 cells indicated that a xanthone named isobractatin (1) exhibited potent antiproliferative activity against the above three human cancer cell lines with IC50 values ranging from 2.90 to 4.15 μM. Treatment of PC3 cells with 1 led to an enhancement of the cell apoptosis, and arrested cell cycle in the G0/G1 phase. The G0/G1 phase cycle-related proteins analysis showed that the expressions of cyclins D1 and E were reduced by 1, whereas the protein level of cyclin dependent kinase (CDK) inhibitor P21 was induced. Additionally, 1 enhanced PC3 cell apoptosis by activations of Bax, caspases 3 and 9, and by inhibition of Bcl-2. Our combined data illustrated that isobractatin (1) was the antiproliferative ingredient of G. bracteata against three human cancer cell lines, which exerted its antiproliferatrive effect via cell cycle arrest and induction of apoptosis.

  15. An integrated optofluidic platform for Raman-activated cell sorting.

    PubMed

    Lau, Adrian Y; Lee, Luke P; Chan, James W

    2008-07-01

    We report on integrated optofluidic Raman-activated cell sorting (RACS) platforms that combine multichannel microfluidic devices and laser tweezers Raman spectroscopy (LTRS) for delivery, identification, and simultaneous sorting of individual cells. The system allows label-free cell identification based on Raman spectroscopy and automated continuous cell sorting. Two optofluidic designs using hydrodynamic focusing and pinch-flow fractionation are evaluated based on their sorting design and flow velocity effect on the laser trapping efficiency at different laser power levels. A proof-of-principle demonstration of the integrated optofluidic LTRS system for the identification and sorting of two leukemia cell lines is presented. This functional prototype lays the foundation for the development of a label-free cell sorting platform based on intrinsic Raman markers for automated sampling and sorting of a large number of individual cells in solution.

  16. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  17. A role for CD9 molecules in T cell activation

    PubMed Central

    1996-01-01

    Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28- independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28- independent costimulatory signal. PMID:8760830

  18. Caerulomycin A Suppresses Immunity by Inhibiting T Cell Activity

    PubMed Central

    Chauhan, Arun; Khatri, Neeraj; Vohra, Rakesh M.; Jolly, Ravinder S.; Agrewala, Javed N.

    2014-01-01

    Background Caerulomycin A (CaeA) is a known antifungal and antibiotic agent. Further, CaeA is reported to induce the expansion of regulatory T cell and prolongs the survival of skin allografts in mouse model of transplantation. In the current study, CaeA was purified and characterized from a novel species of actinomycetes, Actinoalloteichus spitiensis. The CaeA was identified for its novel immunosuppressive property by inhibiting in vitro and in vivo function of T cells. Methods Isolation, purification and characterization of CaeA were performed using High Performance Flash Chromatography (HPFC), NMR and mass spectrometry techniques. In vitro and in vivo T cell studies were conducted in mice using flowcytometry, ELISA and thymidine-[methyl-3H] incorporation. Results CaeA significantly suppressed T cell activation and IFN-γ secretion. Further, it inhibited the T cells function at G1 phase of cell cycle. No apoptosis was noticed by CaeA at a concentration responsible for inducing T cell retardation. Furthermore, the change in the function of B cells but not macrophages was observed. The CaeA as well exhibited substantial inhibitory activity in vivo. Conclusion This study describes for the first time novel in vitro and in vivo immunosuppressive function of CaeA on T cells and B cells. CaeA has enough potential to act as a future immunosuppressive drug. PMID:25286329

  19. Gamma Delta T-Cells Regulate Wound Myeloid Cell Activity After Burn

    DTIC Science & Technology

    2014-03-01

    GAMMA DELTA T CELLS REGULATE WOUND MYELOID CELL ACTIVITY AFTER BURN Meenakshi Rani ,* Qiong Zhang,* and Martin G. Schwacha*† *Department of Surgery...Cell Activity After Burn 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Rani M., Zhang Q., Schwacha M. G., 5d...WT mice. 138 SHOCK VOL. 42, NO. 2 RANI ET AL. Copyright © 2014 by the Shock Society. Unauthorized reproduction of this article is prohibited. systemic

  20. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  1. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  2. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  3. Engineering an improved cell cycle-regulatable herpes simplex virus type 1 amplicon vector with enhanced transgene expression in proliferating cells yet attenuated activities in resting cells.

    PubMed

    Wang, Grace Y; Ho, Ivy A W; Sia, Kian C; Miao, L; Hui, Kam M; Lam, Paula Y P

    2007-03-01

    We previously generated a herpes simplex virus type 1 (HSV-1)-based amplicon vector (denoted pC8-36) in which gene expression from the minimal cyclin A promoter is repressed by preventing the binding of a trans-activating protein, Gal4-NF-YA, to it through selective interaction with the transcriptional repressor protein CDF-1. Because CDF-1 is absent in actively dividing cells, transgene expression conferred by the pC8-36 vector is therefore cell cycle dependent. As gene therapy evolves to become a promising therapeutic modality for many human diseases, there is an increasing need to further improve the kinetics of gene regulation. In the present study, we examined whether the availability of more binding sites for CDF-1 repressor proteins could enhance transgene expression. Using an overlap extension polymerase chain reaction (PCR) method, the CDE and CHR elements within the minimum cyclin A promoter were multimerized to contain two, three, and six copies of the designated CDE/CHR sequence. Interestingly, our results demonstrated that six-copy CDE/CHR sequence motifs (pC8-6CC-Luc) conferred an approximately 20-fold increase in the ratio of cell cycle regulation compared with the previous reported construct. Further, the overall transcriptional activities mediated by pC8-6CC-Luc were stronger compared with the native human survivin promoter, which consists of three copies of the CDE element and one copy of the CHR element. pC8-6CC-Luc contained, in essence, only the synthetic six-copy CDE/CHR sequence motif (about 262 bp). In comparison with other native endogenous promoters, which usually contain many other transcription binding sites, pC8-6CC-Luc amplicon vectors should confer better regulated and consistent transgene expression and may be considered a gene delivery vector of choice to target actively proliferating tumor cells.

  4. Zinc modulates PPARgamma signaling and activation of porcine endothelial cells.

    PubMed

    Meerarani, Purushothaman; Reiterer, Gudrun; Toborek, Michal; Hennig, Bernhard

    2003-10-01

    Dietary zinc has potent antioxidant and anti-inflammatory properties and is a critical component of peroxisome proliferator-activated receptor (PPAR) gene expression and regulation. To assess the protective mechanisms of PPARgamma in endothelial cell dysfunction and the role of zinc in the modulation of PPARgamma signaling, cultured porcine pulmonary artery endothelial cells were exposed to the membrane-permeable zinc chelator N,N,N'N'-tetrakis (2-pyridylmethyl)-ethylene diamine (TPEN), thiazolidinedione (TZD; PPARgamma agonist) or bisphenol A diglycidyl ether (BADGE; PPARgamma antagonist). Subsequently, endothelial cells were activated by treatment with linoleic acid (90 micro mol/L) for 6 h. Zinc chelation by TPEN increased the DNA binding activity of nuclear factor (NF)-kappaB and activator protein (AP)-1, decreased PPARgamma expression and activation as well as up-regulated interleukin (IL)-6 expression and production. These effects were fully reversed by zinc supplementation. In addition, exposure to TZD down-regulated linoleic acid-induced DNA binding activity of NF-kappaB and AP-1, whereas BADGE further induced activation of these oxidative stress-sensitive transcription factors. Most importantly, the TZD-mediated down-regulation of NF-kappaB and AP-1 and reduced inflammatory response were impaired during zinc chelation. These data suggest that zinc plays a critical role in PPARgamma signaling in linoleic acid-induced endothelial cell activation and indicate that PPARgamma signaling is impaired during zinc deficiency.

  5. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  6. Auxin-mediated cell cycle activation during early lateral root initiation.

    PubMed

    Himanen, Kristiina; Boucheron, Elodie; Vanneste, Steffen; de Almeida Engler, Janice; Inzé, Dirk; Beeckman, Tom

    2002-10-01

    Lateral root formation can be divided into two major phases: pericycle activation and meristem establishment. In Arabidopsis, the first lateral root initiation event is spatially and temporally asynchronous and involves a limited number of cells in the xylem pericycle. To study the molecular regulation during pericycle activation, we developed a lateral root-inducible system. Successive treatments with an auxin transport inhibitor and exogenous auxin were used to prevent the first formative divisions and then to activate the entire pericycle. Our morphological and molecular data show that, in this inducible system, xylem pericycle activation was synchronized and enhanced to cover the entire length of the root. The results also indicate that the inducible system can be considered a novel in planta system for the study of synchronized cell cycle reactivation. In addition, the expression patterns of Kip-Related Protein2 (KRP2) in the pericycle and its ectopic expression data revealed that the cyclin-dependent kinase inhibitor plays a significant role in the regulation of lateral root initiation. KRP2 appears to regulate early lateral root initiation by blocking the G1-to-S transition and to be regulated transcriptionally by auxin.

  7. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  8. Nattokinase-promoted tissue plasminogen activator release from human cells.

    PubMed

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration.

  9. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells

    PubMed Central

    Hock, Barry D.; MacPherson, Sean A.; McKenzie, Judith L.

    2017-01-01

    Chronic lymphocytic leukemia (CLL) is associated with T cell dysfunction. Activated CLL cells are found within the lymphoid tumor micro-environment and overcoming immuno-suppression induced by these cells may improve anti-CLL immune responses. However, the mechanisms by which activated CLL cells inhibit T cell responses, and reagents targeting such mechanisms have not been identified. Here we demonstrate that the ability of in vitro activated CLL cells to suppress T cell proliferation is not reversed by the presence of ecto-nuclease inhibitors or blockade of IL-10, PD-1 and CTLA-4 pathways. Caffeine is both an adenosine receptor antagonist and a phosphatidylinositol-3-kinase, p110δ (PI3Kδ) inhibitor and, at physiologically relevant levels, significantly reversed suppression. Significant reversal of suppression was also observed with the PI3Kδ specific inhibitor Idelalisib but not with adenosine receptor specific antagonists. Furthermore, addition of caffeine or Idelalisib to activated CLL cells significantly inhibited phosphorylation of AKT, a downstream kinase of PI3K, but did not affect CLL viability. These results suggest that caffeine, in common with Idelalisib, reduces the immuno-suppressive activity of activated CLL cells by inhibiting PI3Kδ. These findings raise the possibility that these compounds may provide a useful therapeutic adjunct by reducing immuno-suppression within the tumor micro-environment of CLL. PMID:28257435

  10. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    NASA Astrophysics Data System (ADS)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  11. Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas.

    PubMed

    Eitelhuber, Andrea C; Vosyka, Oliver; Nagel, Daniel; Bognar, Miriam; Lenze, Dido; Lammens, Katja; Schlauderer, Florian; Hlahla, Daniela; Hopfner, Karl-Peter; Lenz, Georg; Hummel, Michael; Verhelst, Steven H L; Krappmann, Daniel

    2015-01-22

    MALT1 paracaspase is activated upon antigen receptor stimulation to promote lymphocyte activation. In addition, deregulated MALT1 protease activity drives survival of distinct lymphomas such as the activated B cell type of diffuse large B cell lymphoma (ABC-DLBCL). Here, we designed fluorophore or biotin-coupled activity based-probes (ABP) that covalently modify the active center of MALT1. MALT1-ABPs are exclusively labeling an active modified full length form of MALT1 upon T cell stimulation. Further, despite the CARMA1 requirement for initial MALT1 activation, the MALT1-ABPs show that protease activity is not confined to the high-molecular CARMA1-BCL10-MALT1 (CBM) complex. Using biotin-coupled ABPs, we developed a robust assay for sensitive and selective detection of active MALT1 in cell lines, primary lymphocytes, and DLBCL tumor biopsies. Taken together, MALT1-ABPs represent powerful chemical tools to measure cellular MALT1 activation, determine efficacy of small molecule inhibitors, and classify lymphomas based on MALT1 activity status.

  12. Evidence for B cell activation in patients with active rheumatoid arthritis.

    PubMed Central

    Youinou, P Y; Irving, W L; Shipley, M; Hayes, J; Lydyard, P M

    1984-01-01

    Peripheral blood lymphocytes and in some cases synovial eluate cells from 51 patients with rheumatoid arthritis (RA), were analysed for the percentages of cells bearing surface light chains (total B cells), IgM and IgD. In addition, their capacity to form rosettes with mouse erythrocytes (mRFC)--a property of a B cell subpopulation--was determined. Activity of the disease was assessed by clinical and laboratory criteria and classified as very active, moderately active and inactive. Normal, age and sex matched individuals and a group of patients with a variety of other rheumatological disorders, were used as control populations. Although there was no significant difference in percentages of total B cells in any of the groups compared with normal controls, there was a small but significant increase in the ratio of cells bearing IgM to those bearing IgD in patients with very active disease. This was paralleled by a significant decrease in the mRFC in this disease activity group. Patients with inactive disease showed no change in their proportions of IgM:IgD, but did show a significant increase in mRFC. These results are discussed in terms of the presence of activated B cells in patients with very active RA. PMID:6607144

  13. Cinnamon effectively inhibits the activity of leukemia stem cells.

    PubMed

    Guan, X; Su, M C; Zhao, R B; Ouyang, H M; Dong, X D; Hu, P; Pei, Q; Lu, J; Li, Z F; Zhang, C R; Yang, T-H

    2016-08-19

    Cinnamon is the main component of Sanyangxuedai, which is one of the effective traditional Chinese medicines for treating malignancies. Leukemia is a prevalent malignant disease that Sanyangxuedai has been used to treat. Although successful in several studies, there is a lack of solid evidence as to why Sanyangxuedai has an effect on leukemia, and little is known about the underlying mechanisms. In this study, the active ingredients of cinnamon were isolated, purified, and identified. The transwell transport pool formed with the Caco-2 cell model was used to filter the active ingredients of cinnamon by simulating the gastrointestinal barrier in vitro. Moreover, the cell morphology, cell cycle status, apoptosis status, and antigenic variation of the cell surface antigens were observed and measured in K562 cells after treatment with the active ingredients of cinnamon. Our results showed that 50-75 μM was a safe concentration of cinnamon extract for treatment of K562 cells for 72 h. The cinnamon extract caused growth inhibition of K562 cells. Cinnamon extract seemed to arrest the cells at the G1 stage and increased the apoptosis rate significantly. Interestingly, cinnamon extract treatment upregulated the expression of erythroid and myeloid differentiation antigens and downregulated that of the megakaryocytic differentiation antigens in a dose-dependent manner. Our findings indicate that cinnamon extract from Sanyangxuedai may be effective for treating leukemia.

  14. Synaptic background activity influences spatiotemporal integration in single pyramidal cells.

    PubMed Central

    Bernander, O; Douglas, R J; Martin, K A; Koch, C

    1991-01-01

    The standard one-dimensional Rall cable model assumes that the electrotonic structure of neurons does not change in response to synaptic input. This model is used in a great number of both theoretical and anatomical-physiological structure-function studies. In particular, the membrane time constant, tau m, the somatic input resistance, Rin, and the electrotonic length are used to characterize single cells. However, these studies do not take into account that neurons are embedded in a network of spontaneously active cells. Synapses from these cells will contribute significantly to the membrane conductance, especially if recent evidence of very high specific membrane resistance, Rm = 100 k omega.cm2, is taken into account. We numerically simulated the electrical behavior of an anatomically reconstructed layer V cortical pyramidal cell receiving input from 4000 excitatory and 1000 inhibitory cells firing spontaneously at 0-7 Hz. We found that, over this range of synaptic background activity, tau m and Rin change by a factor of 10 (80-7 msec, 110-14 M omega) and the electrotonic length of the cell changes by a factor of 3. We show that this significantly changes the response of the cell to temporal desynchronized versus temporal synchronized synaptic input distributed throughout the neuron. Thus, the global activity of the network can control how individual cells perform spatial and temporal integration. PMID:1763072

  15. Phagocytosis by macrophages and endothelial cells inhibits procoagulant and fibrinolytic activity of acute promyelocytic leukemia cells.

    PubMed

    Xie, Rui; Gao, Chunyan; Li, Wen; Zhu, Jiuxin; Novakovic, Valerie; Wang, Jing; Ma, Ruishuang; Zhou, Jin; Gilbert, Gary E; Shi, Jialan

    2012-03-08

    The coagulopathy of acute promyelocytic leukemia (APL) is mainly related to procoagulant substances and fibrinolytic activators of APL blasts, but the fate of these leukemic cells is unknown. The aim of this study was to investigate the removal of APL blasts by macrophages and endothelial cells in vitro and consequent procoagulant and fibrinolytic activity of APL cells. We found that human umbilical vein endothelial cells as well as THP-1 and monocyte-derived macrophages bound, engulfed, and subsequently degraded immortalized APL cell line NB4 and primary APL cells. Lactadherin promoted phagocytosis of APL cells in a time-dependent fashion. Furthermore, factor Xa and prothrombinase activity of phosphatidylserine-exposed target APL cells was time-dependently decreased after incubation with phagocytes (THP-1-derived macrophages or HUVECs). Thrombin production on target APL cells was reduced by 40%-45% after 2 hours of coincubation with phagocytes and 80% by a combination of lactadherin and phagocytes. Moreover, plasmin generation of target APL cells was inhibited 30% by 2 hours of phagocytosis and ∼ 50% by lactadherin-mediated engulfment. These results suggest that engulfment by macrophages and endothelial cells reduce procoagulant and fibrinolytic activity of APL blasts. Lactadherin and phagocytosis could cooperatively ameliorate the clotting disorders in APL.

  16. Xenobiotic induction of quinone oxidoreductase activity in lens epithelial cells.

    PubMed

    Tumminia, S J; Rao, P V; Zigler, J S; Russell, P

    1993-12-08

    Xenobiotic regulatory elements have been identified for enzymes which ameliorate oxidative damage in cells. Zeta (zeta)-crystallin, a taxon-specific enzyme/crystallin shown to be a novel NADPH-dependent quinone reductase, is found in a number of tissues and cell types. This study shows that zeta-crystallin is present in mouse lens epithelium, as well as in the alpha TN4 mouse lens epithelial cell line. To determine whether zeta-crystallin is an inducible quinone reductase, cell cultures were exposed to the xenobiotics, 1,2-naphthoquinone and beta-naphthoflavone. Assays of cellular homogenates showed that quinone reductase activity was stimulated greater than 70% and 90%, respectively, over the control cells. This observed activity was sensitive to dicumarol, a potent inhibitor of quinone reductase activity. 1,2-Naphthoquinone- and beta-naphthoflavone-exposed cells were found to exhibit 1.47- and 1.68-fold increases, respectively, in zeta-crystallin protein concentration. A comparable increase in zeta-crystallin mRNA was indicative of an induction in zeta-crystallin expression in response to naphthalene challenge. Lens epithelial cells were also checked for DT-diaphorase, a well-known cellular protective enzyme which can catalyze the two-electron reduction of quinones. Slot blot analyses indicated that alpha TN4 cells exposed to 1,2-naphthoquinone and beta-naphthoflavone exhibited 2.71- and 6.81-fold increases in DT-diaphorase concentration when compared to the control cells. The data suggest that while DT-diaphorase is most likely responsible for the majority of the observed increase in quinone reductase activity, the zeta-crystallin gene also undergoes activation which is apparently mediated by a xenobiotic-responsive element.

  17. Effect of Fibroblast-Like Cells of Mesenchymal Origin of Cytotoxic Activity of Lymphocytes against NK-Sensitive Target Cells.

    PubMed

    Lupatov, A Yu; Kim, Ya S; Bystrykh, O A; Vakhrushev, I V; Pavlovich, S V; Yarygin, K N; Sukhikh, G T

    2017-02-01

    We studied immunosuppressive properties of skin fibroblasts and mesenchymal stromal cells against NK cells. In vitro experiments showed that mesenchymal stromal cells isolated from human umbilical cord and human skin fibroblasts can considerably attenuate cytotoxic activity of NK cells against Jurkat cells sensitive to NK-mediated lysis. NK cells cultured in lymphocyte population exhibited higher cytotoxic activity than isolated NK cells. Mesenchymal stromal cells or fibroblasts added 1:1 to lymphocyte culture almost completely suppressed NK cell cytotoxicity. This suggests that fibroblast-like cells can suppress not only isolated NK cells, but also NK cells in natural cell microenvironment.

  18. Activation of neural progenitor cells in human eyes with proliferative vitreoretinopathy.

    PubMed

    Johnsen, Erik O; Frøen, Rebecca C; Albert, Réka; Omdal, Bente K; Sarang, Zsolt; Berta, András; Nicolaissen, Bjørn; Petrovski, Goran; Moe, Morten C

    2012-05-01

    In addition to the ability for self-renewal and functional differentiation, neural stem/progenitor cells (NSCs) can respond to CNS injuries by targeted migration. In lower vertebrates, retinal injury is known to activate NSCs in the ciliary marginal zone (CMZ). Cells expressing markers of NSCs are also present in the ciliary body epithelium (CE) and in Müller glia in the peripheral retina (PR) of the adult human eye. However, these cells seem to be quiescent in the adult human eye and recent reports have shown that CE cells have limited properties of NSCs. In order to further clarify whether NSCs exist in the adult human eye, we tested whether NSC-like cells could be activated in eyes with proliferative vitreoretinopathy (PVR). The PR and CE were studied for NSC-associated markers in human enucleated control eyes and eyes with confirmed PVR, as well as in a mouse model of PVR. Furthermore, cells isolated from vitreous samples obtained during vitrectomies for retinal detachment were directly fixed or cultured in a stem cell-promoting medium and compared to cells cultured from the post-mortem retina and CE. In situ characterization of the normal eyes revealed robust expression of markers present in NSCs (Nestin, Sox2, Pax6) only around peripheral cysts of the proximal pars plana region and the PR, the latter population also staining for the glial marker GFAP. Although there were higher numbers of dividing cells in the CE of PVR eyes than in controls, we did not detect NSC-associated markers in the CE except around the proximal pars plana cysts. In the mice PVR eyes, Nestin activation was also found in the CE. In human PVR eyes, proliferation of both non-glial and glial cells co-staining NSC-associated markers was evident around the ora serrata region. Spheres formed in 7/10 vitreous samples from patients with PVR compared to 2/15 samples from patients with no known PVR, and expressed glial - and NSC-associated markers both after direct fixation and repetitive

  19. Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.

    PubMed Central

    Martínez-Martínez, S; Gómez del Arco, P; Armesilla, A L; Aramburu, J; Luo, C; Rao, A; Redondo, J M

    1997-01-01

    Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants. PMID:9343406

  20. Passive versus active local microrheology in mammalian cells and amoebae

    NASA Astrophysics Data System (ADS)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  1. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  2. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  3. Efficient Killing of High Risk Neuroblastoma Using Natural Killer Cells Activated by Plasmacytoid Dendritic Cells

    PubMed Central

    Cordeau, Martine; Belounis, Assila; Lelaidier, Martin; Cordeiro, Paulo; Sartelet, Hervé; Duval, Michel

    2016-01-01

    High-risk neuroblastoma (NB) remains a major therapeutic challenge despite the recent advent of disialoganglioside (GD2)-antibody treatment combined with interleukin (IL)-2 and granulocyte monocyte-colony stimulating factor (GM-CSF). Indeed, more than one third of the patients still die from this disease. Here, we developed a novel approach to improve the current anti-GD2 immunotherapy based on NK cell stimulation using toll-like receptor (TLR)-activated plasmacytoid dendritic cells (pDCs). We demonstrated that this strategy led to the efficient killing of NB cells. When the expression of GD2 was heterogeneous on NB cells, the combination of pDC-mediated NK-cell activation and anti-GD2 treatment significantly increased the cytotoxicity of NK cells against NB cells. Activation by pDCs led to a unique NK-cell phenotype characterized by increased surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with increased expression of CD69 on CD56dim cytotoxic cells, and strong interferon-γ production. Additionally, NB-cell killing was mediated by the TRAIL death-receptor pathway, as well as by the release of cytolytic granules via the DNAX accessory molecule 1 pathway. NK-cell activation and lytic activity against NB was independent of cell contact, depended upon type I IFN produced by TLR-9-activated pDCs, but was not reproduced by IFN-α stimulation alone. Collectively, these results highlighted the therapeutic potential of activated pDCs for patients with high-risk NB. PMID:27716850

  4. Activated NKT cells imprint NK-cell differentiation, functionality and education.

    PubMed

    Riese, Peggy; Trittel, Stephanie; May, Tobias; Cicin-Sain, Luka; Chambers, Benedict J; Guzmán, Carlos A

    2015-06-01

    NK cells represent a vital component of the innate immune system. The recent discoveries demonstrating that the functionality of NK cells depends on their differentiation and education status underscore their potential as targets for immune intervention. However, to exploit their full potential, a detailed understanding of the cellular interactions involved in these processes is required. In this regard, the cross-talk between NKT cells and NK cells needs to be better understood. Our results provide strong evidence for NKT cell-induced effects on key biological features of NK cells. NKT-cell activation results in the generation of highly active CD27(high) NK cells with improved functionality. In this context, degranulation activity and IFNγ production were mainly detected in the educated subset. In a mCMV infection model, we also demonstrated that NKT-cell stimulation induced the generation of highly functional educated and uneducated NK cells, crucial players in viral control. Thus, our findings reveal new fundamental aspects of the NKT-NK cell axis that provide important hints for the manipulation of NK cells in clinical settings.

  5. A PTEN inhibitor displays preclinical activity against hepatocarcinoma cells

    PubMed Central

    Augello, Giuseppa; Puleio, Roberto; Emma, Maria Rita; Cusimano, Antonella; Loria, Guido R.; McCubrey, James A.; Montalto, Giuseppe; Cervello, Melchiorre

    2016-01-01

    ABSTRACT Phosphatase and tensin homolog (PTEN) gene is considered a tumor suppressor gene. However, PTEN mutations rarely occur in hepatocellular carcinoma (HCC), whereas heterozygosity of PTEN, resulting in reduced PTEN expression, has been observed in 32–44% of HCC patients. In the present study, we investigated the effects of the small molecule PTEN inhibitor VO-OHpic in HCC cells. VO-OHpic inhibited cell viability, cell proliferation and colony formation, and induced senescence-associated β-galactosidase activity in Hep3B (low PTEN expression) and to a lesser extent in PLC/PRF/5 (high PTEN expression) cells, but not in PTEN-negative SNU475 cells. VO-OHpic synergistically inhibited cell viability when combined with PI3K/mTOR and RAF/MEK/ERK pathway inhibitors, but only in Hep3B cells, and significantly inhibited tumor growth in nude mice bearing xenografts of Hep3B cells. Therefore, we demonstrated for the first time that VO-OHpic inhibited cell growth and induced senescence in HCC cells with low PTEN expression, and that the combination of VO-OHpic with PI3K/mTOR and RAF/MEK/ERK inhibitors resulted in a more effective tumor cell kill. Our findings, hence, provide proof-of-principle evidence that pharmacological inhibition of PTEN may represent a promising approach for HCC therapy in a subclass of patients with a low PTEN expression. PMID:26794644

  6. Activation and Function of iNKT and MAIT Cells.

    PubMed

    Chandra, Shilpi; Kronenberg, Mitchell

    2015-01-01

    Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.

  7. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  8. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  9. Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase.

    PubMed

    Kim, Dong Eun; Kim, Yunha; Cho, Dong-Hyung; Jeong, Seong-Yun; Kim, Sung-Bae; Suh, Nayoung; Lee, Jung Shin; Choi, Eun Kyung; Koh, Jae-Young; Hwang, Jung Jin; Kim, Choung-Soo

    2015-01-01

    Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

  10. Simvastatin requires activation in accessory cells to modulate T-cell responses in asthma and COPD.

    PubMed

    Knobloch, Jürgen; Yakin, Yakup; Körber, Sandra; Grensemann, Barbara; Bendella, Zeynep; Boyaci, Niyazi; Gallert, Willem-Jakob; Yanik, Sarah Derya; Jungck, David; Koch, Andrea

    2016-10-05

    T-cell-dependent airway and systemic inflammation triggers the progression of chronic obstructive pulmonary disease (COPD) and asthma. Retrospective studies suggest that simvastatin has anti-inflammatory effects in both diseases but it is unclear, which cell types are targeted. We hypothesized that simvastatin modulates T-cell activity. Circulating CD4+ and CD8+ T-cells, either pure, co-cultured with monocytes or alveolar macrophages (AM) or in peripheral blood mononuclear cells (PBMCs), were ex vivo activated towards Th1/Tc1 or Th2/Tc2 and incubated with simvastatin. Markers for Th1/Tc1 (IFNγ) and Th2/Tc2 (IL-5, IL-13) were measured by ELISA; with PBMCs this was done comparative between 11 healthy never-smokers, 11 current smokers without airflow limitation, 14 smokers with COPD and 11 never-smokers with atopic asthma. T-cell activation induced IFNγ, IL-5 and IL-13 in the presence and absence of accessory cells. Simvastatin did not modulate cytokine expression in pure T-cell fractions. β-hydroxy-simvastatin acid (activated simvastatin) suppressed IL-5 and IL-13 in pure Th2- and Tc2-cells. Simvastatin suppressed IL-5 and IL-13 in Th2-cells co-cultivated with monocytes or AM, which was partially reversed by the carboxylesterase inhibitor benzil. Simvastatin suppressed IL-5 production of Th2/Tc2-cells in PBMCs without differences between cohorts and IL-13 stronger in never-smokers and asthma compared to COPD. Simvastatin induced IFNγ in Th1/Tc1-cells in PBMCs of all cohorts except asthmatics. Simvastatin requires activation in accessory cells likely by carboxylesterase to suppress IL-5 and IL-13 in Th2/Tc2-cells. The effects on Il-13 are partially reduced in COPD. Asthma pathogenesis prevents simvastatin-induced IFNγ up-regulation. Simvastatin has anti-inflammatory effects that could be of interest for asthma therapy.

  11. Ca2+-activated K channels in parotid acinar cells

    PubMed Central

    Romanenko, Victor G; Thompson, Jill

    2010-01-01

    Fluid secretion relies on a close interplay between Ca2+-activated Cl and K channels. Salivary acinar cells contain both large conductance, BK, and intermediate conductance, IK1, K channels. Physiological fluid secretion occurs with only modest (<500 nM) increases in intracellular Ca2+ levels but BK channels in many cell types and in heterologous expression systems require very high concentrations for significant activation. We report here our efforts to understand this apparent contradiction. We determined the Ca2+ dependence of IK1 and BK channels in mouse parotid acinar cells. IK1 channels activated with an apparent Ca2+ affinity of about 350 nM and a hill coefficient near 3. Native parotid BK channels activated at similar Ca2+ levels unlike the BK channels in other cell types. Since the parotid BK channel is encoded by an uncommon splice variant, we examined this clone in a heterologous expression system. In contrast to the native parotid channel, activation of this expressed “parslo” channel required very high levels of Ca2+. In order to understand the functional basis for the special properties of the native channels, we analyzed the parotid BK channel in the context of the horrigan-Aldrich model of BK channel gating. We found that the shifted activation of parotid BK channels resulted from a hyperpolarizing shift of the voltage dependence of voltage sensor activation and channel opening and included a large change in the coupling of these two processes. PMID:20519930

  12. Behavioral inspiratory inhibition: inactivated and activated respiratory cells.

    PubMed

    Orem, J

    1989-11-01

    1. Eleven adult cats were trained to stop inspiration in response to a conditioning stimulus. The conditioning stimuli were presented at the onset of inspiration at intervals of approximately 20-30 s. Intratracheal pressures, diaphragmatic activity, and the extracellular activity of single medullary respiratory neurons were recorded while the animals performed this response. 2. Inactivation of the diaphragm to the conditioning stimuli occurred at latencies that varied from 40 to 110 ms and averaged 74 +/- 32 (SD) ms. 3. The subjects of this report are 38 inspiratory neurons that were inactivated and 19 cells that were activated when inspiration was stopped behaviorally. These cells were located in the region of n. ambiguus and the ventrolateral n. of tractus solitarius. 4. The inspiratory cells that were inactivated behaviorally had the following characteristics: 1) Most had an augmenting inspiratory profile with (n = 14) or without (n = 9) postinspiratory activity. Other types were inspiratory throughout (n = 5), decrementing inspiratory (n = 3), tonic inspiratory (n = 4), early inspiratory (n = 2), and expiratory-inspiratory (n = 1). 2) Their mean discharge rate was 39 +/- 2.7 (SE) Hz. 3) The latency of their inactivation in response to the task averaged 81 +/- 4.9 (SE) ms, and 4) Their activity corresponded closely to breathing not only during the behavioral response but also during eupnea (eta 2 = 0.62 +/- 0.04, mean +/- SE) and respiratory acts such as sneezing, sniffing, meowing, and purring. 5. The cells that were activated when inspiration was stopped behaviorally had the following characteristics. 1) As a group, they had discharge profiles related to every phase of the respiratory cycle. 2) They were recorded in the same region as, and often simultaneously with, respiratory cells that were inactivated. 3) Their activity patterns were highly variable such that the signal strength and consistency of the respiratory component of that activity were weak (eta 2

  13. Divided Attention Abilities in Young and Old Adults.

    ERIC Educational Resources Information Center

    Somberg, Benjamin L.; Salthouse, Timothy A.

    1982-01-01

    Two experiments on divided attention and adult aging are reported that take into account age differences in single-task performance and that measure divided attention independently of resource allocation strategies. No significant age difference in divided attention ability independent of single-task performance level was found in either…

  14. 20 CFR 404.1207 - Divided retirement system coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Divided retirement system coverage groups... of Employees May Be Covered § 404.1207 Divided retirement system coverage groups. (a) General. Under... instrumentalities may divide a retirement system based on whether the employees in positions under that system...

  15. 20 CFR 404.1207 - Divided retirement system coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Divided retirement system coverage groups... of Employees May Be Covered § 404.1207 Divided retirement system coverage groups. (a) General. Under... instrumentalities may divide a retirement system based on whether the employees in positions under that system...

  16. 20 CFR 404.1207 - Divided retirement system coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Divided retirement system coverage groups... of Employees May Be Covered § 404.1207 Divided retirement system coverage groups. (a) General. Under... instrumentalities may divide a retirement system based on whether the employees in positions under that system...

  17. 20 CFR 404.1207 - Divided retirement system coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Divided retirement system coverage groups... of Employees May Be Covered § 404.1207 Divided retirement system coverage groups. (a) General. Under... instrumentalities may divide a retirement system based on whether the employees in positions under that system...

  18. 20 CFR 404.1207 - Divided retirement system coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Divided retirement system coverage groups... of Employees May Be Covered § 404.1207 Divided retirement system coverage groups. (a) General. Under... instrumentalities may divide a retirement system based on whether the employees in positions under that system...

  19. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study.

    PubMed

    Javor, Kristina; Tisserant, Jean-Nicolas; Stemmer, Andreas

    2017-01-15

    It is known that electrochemical energy can be harvested from mammalian cells, more specifically from white blood cells (WBC). This study focuses on an improved biofuel cell operating on phorbol myristate acetate (PMA) activated THP-1 human monocytic cells. Electrochemical investigation showed strong evidence pointing towards hydrogen peroxide being the primary current source, confirming that the current originates from NADPH oxidase activity. Moreover, an adequate substrate for differentiation and activation of THP-1 cells was examined. ITO, gold, platinum and glass were tested and the amount of superoxide anion produced by NADPH oxidase was measured by spectrophotometry through WST-1 reduction at 450nm and used as an indicator of cellular activity and viability. These substrates were subsequently used in a conventional two-compartment biofuel cell where the power density output was recorded. The material showing the highest cell activity compared to the reference cell culture plate and the highest power output was ITO. Under our experimental conditions, a power density of 4.5μW/cm(2) was reached. To the best of our knowledge, this is a threefold higher power output than other leukocyte biofuel cells.

  20. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  1. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    PubMed Central

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we have investigated the importance of multivalent binding on T-cell activation. Using antibody-functionalized sDCs, we have tested the influence of polymer length and antibody density. Increasing the multivalent character of the antibody-functionalized polymer lowered the effective concentration required for T-cell activation. This was evidenced for both early and late stages of activation. The most important effect observed was the significantly prolonged activation of the stimulated T cells, indicating that multivalent sDCs sustain T-cell signaling. Our results highlight the importance of multivalency for the design of aAPCs and will ultimately allow for better mimics of natural dendritic cells that can be used as vaccines in cancer treatment. PMID:28393131

  2. The role of the dorsolateral prefrontal cortex in bimodal divided attention: two transcranial magnetic stimulation studies.

    PubMed

    Johnson, Jennifer Adrienne; Strafella, Antonio P; Zatorre, Robert J

    2007-06-01

    The neural processes underlying the ability to divide attention between multiple sensory modalities remain poorly understood. To investigate the role of the dorsolateral prefrontal cortex (DLPFC) in bimodal divided attention, we completed two repetitive transcranial magnetic stimulation (rTMS) studies. We tested the hypothesis that the DLPFC is necessary in the ability to divide attention across modalities. This hypothesis originated as a result of a previous fMRI study in which the posterior DLPFC was active during a bimodal divided attention condition [Johnson, J. A., & Zatorre, R. J. Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. Neuroimage, 2006]. In the current experiments, two separate groups of subjects underwent 10 min of slow rTMS to temporarily disrupt function of the DLPFC. In both groups, the ability to divide attention between unrelated auditory and visual stimuli decreased following DLPFC disruption compared to control site stimulation. Specifically, the ability to divide attention between modalities was hindered, leading to a pattern of behavior similar to bimodal selective attention (ability to attend to one or the other modality but not both). We discuss possible roles of the posterior DLPFC in bimodal divided attention and conclude that the area may be functioning to support the increased working memory load associated with divided, compared to selective attention.

  3. Distinct FAK activities determine progenitor and mammary stem cell characteristics

    PubMed Central

    Luo, Ming; Zhao, Xiaofeng; Chen, Song; Liu, Suling; Wicha, Max S.; Guan, Jun-Lin

    2013-01-01

    Mammary stem (MaSCs) and progenitor cells are important for mammary gland development and maintenance and may give rise to mammary cancer stem cells (MaCSCs). Yet there remains limited understanding of how these cells contribute to tumorigenesis. Here we show that conditional deletion of focal adhesion kinase (FAK) in embryonic mammary epithelial cells (MaECs) decreases luminal progenitors (LPs) and basal MaSCs, reducing their colony-forming and regenerative potentials in a cell autonomous manner. Loss of FAK kinase activity in MaECs specifically impaired LP proliferation and alveologenesis, whereas a kinase-independent activity of FAK supported ductal invasion and basal MaSC activity. Deficiency in LPs suppressed tumorigenesis and MaCSC formation in a mouse model of breast cancer. In contrast to the general inhibitory effect of FAK attenuation, inhibitors of FAK kinase preferentially inhibited proliferation and tumorsphere formation of LP-like, but not MaSC-like, human breast cancer cells. Our findings establish distinct kinase dependent and independent activities of FAK that differentially regulate LPs and basal MaSCs. We suggest that targeting these distinct functions may tailor therapeutic strategies to address breast cancer heterogeneity more effectively. PMID:23832665

  4. Shed syndecan-2 enhances tumorigenic activities of colon cancer cells

    PubMed Central

    Choi, Sojoong; Choi, Youngsil; Jun, Eunsung; Kim, In-San; Kim, Seong-Eun; Jung, Sung-Ae; Oh, Eok-Soo

    2015-01-01

    Because earlier studies showed the cell surface heparan sulfate proteoglycan, syndecan-2, sheds from colon cancer cells in culture, the functional roles of shed syndecan-2 were assessed. A non-cleavable mutant of syndecan-2 in which the Asn148-Leu149 residues were replaced with Asn148-Ile149, had decreased shedding, less cancer-associated activities of syndecan-2 in vitro, and less syndecan-2-mediated metastasis of mouse melanoma cells in vivo, suggesting the importance of shedding on syndecan-2-mediated pro-tumorigenic functions. Indeed, shed syndecan-2 from cancer-conditioned media and recombinant shed syndecan-2 enhanced cancer-associated activities, and depletion of shed syndecan-2 abolished these effects. Similarly, shed syndecan-2 was detected from sera of patients from advanced carcinoma (625.9 ng/ml) and promoted cancer-associated activities. Furthermore, a series of syndecan-2 deletion mutants showed that the tumorigenic activity of shed syndecan-2 resided in the C-terminus of the extracellular domain and a shed syndecan-2 synthetic peptide (16 residues) was sufficient to establish subcutaneous primary growth of HT29 colon cancer cells, pulmonary metastases (B16F10 cells), and primary intrasplenic tumor growth and liver metastases (4T1 cells). Taken together, these results demonstrate that shed syndecan-2 directly enhances colon cancer progression and may be a promising therapeutic target for controlling colon cancer development. PMID:25686828

  5. Dopamine Modulates the Activity of Sensory Hair Cells

    PubMed Central

    Toro, Cecilia; Trapani, Josef G.; Pacentine, Itallia; Maeda, Reo; Sheets, Lavinia; Mo, Weike

    2015-01-01

    The senses of hearing and balance are subject to modulation by efferent signaling, including the release of dopamine (DA). How DA influences the activity of the auditory and vestibular systems and its site of action are not well understood. Here we show that dopaminergic efferent fibers innervate the acousticolateralis epithelium of the zebrafish during development but do not directly form synapses with hair cells. However, a member of the D1-like receptor family, D1b, tightly localizes to ribbon synapses in inner ear and lateral-line hair cells. To assess modulation of hair-cell activity, we reversibly activated or inhibited D1-like receptors (D1Rs) in lateral-line hair cells. In extracellular recordings from hair cells, we observed that D1R agonist SKF-38393 increased microphonic potentials, whereas D1R antagonist SCH-23390 decreased microphonic potentials. Using ratiometric calcium imaging, we found that increased D1R activity resulted in larger calcium transients in hair cells. The increase of intracellular calcium requires Cav1.3a channels, as a Cav1 calcium channel antagonist, isradipine, blocked the increase in calcium transients elicited by the agonist SKF-38393. Collectively, our results suggest that DA is released in a paracrine fashion and acts at ribbon synapses, likely enhancing the activity of presynaptic Cav1.3a channels and thereby increasing neurotransmission. SIGNIFICANCE STATEMENT The neurotransmitter dopamine acts in a paracrine fashion (diffusion over a short distance) in several tissues and bodily organs, influencing and regulating their activity. The cellular target and mechanism of the action of dopamine in mechanosensory organs, such as the inner ear and lateral-line organ, is not clearly understood. Here we demonstrate that dopamine receptors are present in sensory hair cells at synaptic sites that are required for signaling to the brain. When nearby neurons release dopamine, activation of the dopamine receptors increases the activity of

  6. Brucella and Osteoarticular Cell Activation: Partners in Crime.

    PubMed

    Giambartolomei, Guillermo H; Arriola Benitez, Paula C; Delpino, M Victoria

    2017-01-01

    Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4(+) T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the

  7. Brucella and Osteoarticular Cell Activation: Partners in Crime

    PubMed Central

    Giambartolomei, Guillermo H.; Arriola Benitez, Paula C.; Delpino, M. Victoria

    2017-01-01

    Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the

  8. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells

    PubMed Central

    Kwak, Tae Won; Park, Su Bum; Kim, Hyun-Jung; Jeong, Young-IL; Kang, Dae Hwan

    2017-01-01

    Purpose Epigallocatechin-3-gallate (EGCG) is an antioxidant agent derived from green tea. Because it has chemopreventive and anti-invasive effect against various cancer cells, EGCG can be used to inhibit proliferation and invasion of cholangiocarcinoma (CCA) cells. Methods The anticancer effects of EGCG were studied using human CCA cells (HuCC-T1). Apoptosis was analyzed by Western blotting. Invasion and migration of cancer cells were assessed with Matrigel® and wound healing assays. An animal tumor xenograft model of HuCC-T1 was used to study the in vivo antitumor activities of EGCG. Results EGCG effectively inhibited the growth of HuCC-T1 cells with no adverse effects on the viability of 293T cells. EGCG induced apoptotic cell death at 5 µg/mL concentration. It inhibited the expression of mutant p53 and induced apoptotic molecular signals such as Bax/Bcl-2, Caspase, and cytochrome C. Furthermore, EGCG dose-dependently inhibited the activity of matrix metalloproteinase (MMP)-2/9, invasion, and migration. In the animal tumor xenograft model of HuCC-T1 cells, EGCG was subcutaneously administered beside the tumor for local treatment. EGCG efficiently inhibited growth of the tumor and suppressed carcinogenic molecular signals such as Notch1, MMP-2/9, and proliferating cell nuclear antigen. Conclusion EGCG induced apoptosis of cancer cells without adverse effects on normal cells. EGCG inhibited growth, invasion, and migration of HuCC-T1 cells. We suggest EGCG as a promising candidate for local treatment of CCA. PMID:28053547

  9. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development.

    PubMed

    Dengler, Christopher G; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A

    2017-02-20

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses.

  10. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    PubMed Central

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  11. Inner ear cell therapy targeting hereditary deafness by activation of stem cell homing factors.

    PubMed

    Kamiya, Kazusaku

    2015-01-01

    Congenital deafness affects about 1 in 1000 children and more than half of them have a genetic background such as Connexin26 (CX26) gene mutation. Inner ear cell therapy for sensorineural hearing loss has been expected to be an effective therapy for hereditary deafness. Previously, we developed a novel strategy for inner ear cell therapy using bone marrow mesenchymal stem cells as a supplement for cochlear fibrocytes functioning for cochlear ion transport. For cell therapy targeting hereditary deafness, a more effective cell delivery system to induce the stem cells into cochlear tissue is required, because gene mutations affect all cochlear cells cochlear cells expressing genes such as GJB2 encoding CX26. Stem cell homing is one of the crucial mechanisms to be activated for efficient cell delivery to the cochlear tissue. In our study, monocyte chemotactic protein-1, stromal cell-derived factor-1 and their receptors were found to be a key regulator for stem cell recruitment to the cochlear tissue. Thus, the activation of stem cell homing may be an efficient strategy for hearing recovery in hereditary deafness.

  12. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  13. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    SciTech Connect

    Sun, Yuan; Fujigaki, Yoshihide; Sakakima, Masanori; Hishida, Akira

    2010-02-15

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PT cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.

  14. IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions.

    PubMed

    Patten, Piers E M; Chu, Charles C; Albesiano, Emilia; Damle, Rajendra N; Yan, Xiao-Jie; Kim, Dorothy; Zhang, Lu; Magli, Amanda R; Barrientos, Jacqueline; Kolitz, Jonathan E; Allen, Steven L; Rai, Kanti R; Roa, Sergio; Mongini, Patricia K; MacCarthy, Thomas; Scharff, Matthew D; Chiorazzi, Nicholas

    2012-12-06

    Clonal evolution occurs during the course of chronic lymphocytic leukemia (CLL) and activation-induced deaminase (AID) could influence this process. However, this possibility has been questioned in CLL because the number of circulating AID mRNA(+) cells is exceedingly low; synthesis of AID protein by blood CLL cells has not been demonstrated; the full range of AID functions is lacking in unmutated CLL (U-CLL), and no prospective analysis linking AID expression and disease severity has been reported. The results of the present study show that circulating CLL cells and those within secondary lymphoid tissues can make AID mRNA and protein. This production is related to cell division because more AID mRNA was detected in recently divided cells and AID protein was limited to the dividing fraction and was up-regulated on induction of cell division. AID protein was functional because AID(+) dividing cells exhibited more double-stranded DNA breaks, IGH class switching, and new IGHV-D-J mutations. Each of these actions was documented in U-CLL and mutated CLL (M-CLL). Furthermore, AID protein was associated with worse patient outcome and adverse cytogenetics. We conclude that the production of fully functional AID protein by U-CLL and M-CLL cells could be involved in clonal evolution of the disease.

  15. Unbalanced acetylcholinesterase activity in larynx squamous cell carcinoma.

    PubMed

    Castillo-González, Ana Cristina; Pelegrín-Hernández, Juan Pablo; Nieto-Cerón, Susana; Madrona, Antonio Piñero; Noguera, José Antonio; López-Moreno, María Fuensanta; Rodríguez-López, José Neptuno; Vidal, Cecilio J; Hellín-Meseguer, Diego; Cabezas-Herrera, Juan

    2015-11-01

    Previous reports have demonstrated that a non-neuronal cholinergic system is expressed aberrantly in airways. A proliferative effect is exerted directly by cholinergic agonists through the activation of nicotinic and muscarinic receptors. In cancer, particularly those related with smoking, the mechanism through which tumour cells respond to aberrantly activated cholinergic signalling is a key question. Fifty paired pieces of larynx squamous cell carcinoma and adjacent non-cancerous tissue were compared in terms of their acetylcholinesterase activity (AChE). The AChE activity in non-cancerous tissues (0.248 ± 0.030 milliunits per milligram of wet tissue; mU/mg) demonstrates that upper respiratory tissues express sufficient AChE activity for controlling the level of acetylcholine (ACh). In larynx carcinomas, the AChE activity decreased to 0.157 ± 0.024 mU/mg (p=0.009). Larynx cancer patients exhibiting low ACh-degrading enzymatic activity had a significantly shorter overall survival (p=0.031). Differences in the mRNA levels of alternatively spliced AChE isoforms and molecular compositions were noted between glottic and supraglottic cancers. Our results suggest that the low AChE activity observed in larynx squamous cell carcinoma may be useful for predicting the outcome of patients.

  16. Hili inhibits HIV replication in activated T cells.

    PubMed

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-03-22

    Piwil proteins restrict the replication of mobile genetic elements in the germline. They are also expressed in many transformed cell lines. In this report, we discovered that the human piwil 2 (hili) can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express hili, it was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of hili increased levels of viral proteins and new viral particles. Further studies revealed that hili binds to tRNA. Some of them represent rare tRNA species, whose codons are over-represented in the viral genome. Targeting tRNA(Arg)(UCU) with an antisense oligonucleotide replicated effects of hili and also inhibited HIV replication. Finally, hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germline. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small piRNAs. However, in some species and in human somatic cells, piwil proteins bind primarily to tRNA. In this report, we demonstrate that human piwil proteins, especially hili, not only bind to select tRNA species that include rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of hili in CD4+ T cells. Since hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.

  17. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  18. Antitumor activity of dobutamine on human osteosarcoma cells

    PubMed Central

    YIN, JUN; DONG, QIRONG; ZHENG, MINQIAN; XU, XIAOZU; ZOU, GUOYOU; MA, GUOLIN; LI, KEFENG

    2016-01-01

    Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma. PMID:27284371

  19. Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in mantle cell lymphoma and enhances rituximab activity in vivo

    PubMed Central

    Czuczman, Natalie M.; Barth, Matthew J.; Gu, Juan; Neppalli, Vishala; Mavis, Cory; Frys, Sarah E.; Hu, Qiang; Liu, Song; Klener, Pavel; Vockova, Petra; Czuczman, Myron S.

    2016-01-01

    Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and inevitable development of refractory disease, stressing the need to develop alternative therapeutic strategies. To this end, we evaluated pevonedistat (MLN4924), a novel potent and selective NEDD8-activating enzyme inhibitor in a panel of MCL cell lines, primary MCL tumor cells, and 2 distinct murine models of human MCL. Pevonedistat exposure resulted in a dose-, time-, and caspase-dependent cell death in the majority of the MCL cell lines and primary tumor cells tested. Of interest, in the MCL cell lines with lower half-maximal inhibitory concentration (0.1-0.5 μM), pevonedistat induced G1-phase cell cycle arrest, downregulation of Bcl-xL levels, decreased nuclear factor (NF)-κB activity, and apoptosis. In addition, pevonedistat exhibited additive/synergistic effects when combined with cytarabine, bendamustine, or rituximab. In vivo, as a single agent, pevonedistat prolonged the survival of 2 MCL-bearing mouse models when compared with controls. Pevonedistat in combination with rituximab led to improved survival compared with rituximab or pevonedistat monotherapy. Our data suggest that pevonedistat has significant activity in MCL preclinical models, possibly related to effects on NF-κB activity, Bcl-xL downregulation, and G1 cell cycle arrest. Our findings support further investigation of pevonedistat with or without rituximab in the treatment of MCL. PMID:26675347

  20. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    PubMed Central

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  1. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  2. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  3. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  4. Bridging the Organizational Divide: Toward a Comprehensive Approach to the Digital Divide. A PolicyLink Report.

    ERIC Educational Resources Information Center

    Kirschenbaum, Josh; Kunamneni, Radhika

    This report discusses innovative uses of information technology by community based organizations, examining how to develop a comprehensive policy agenda for bridging the digital divide. It begins by presenting background information on the digital divide as context for understanding the organizational divide. Next, it discusses challenges facing…

  5. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    PubMed

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  6. Cell Activation-Induced Phosphoinositide 3-Kinase Alpha/Beta Dimerization Regulates PTEN Activity

    PubMed Central

    Pérez-García, Vicente; Redondo-Muñoz, Javier; Kumar, Amit

    2014-01-01

    The phosphoinositide 3-kinase (PI3K)/PTEN (phosphatase and tensin homolog) pathway is one of the central routes that enhances cell survival, division, and migration, and it is frequently deregulated in cancer. PI3K catalyzes formation of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] after cell activation; PTEN subsequently reduces these lipids to basal levels. Activation of the ubiquitous p110α isoform precedes that of p110β at several points during the cell cycle. We studied the potential connections between p110α and p110β activation, and we show that cell stimulation promotes p110α and p110β association, demonstrating oligomerization of PI3K catalytic subunits within cells. Cell stimulation also promoted PTEN incorporation into this complex, which was necessary for PTEN activation. Our results show that PI3Ks dimerize in vivo and that PI3K and PTEN activities modulate each other in a complex that controls cell PI(3,4,5)P3 levels. PMID:24958106

  7. Spectral perspective on the electromagnetic activity of cells.

    PubMed

    Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal

    2015-01-01

    In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.

  8. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    PubMed

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  9. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  10. SNX17 Affects T Cell Activation by Regulating T Cell Receptor and Integrin Recycling

    PubMed Central

    Osborne, Douglas G.; Piotrowski, Joshua T.; Dick, Christopher J.; Zhang, Jin-San; Billadeau, Daniel D.

    2015-01-01

    A key component in T cell activation is the endosomal recycling of receptors to the cell surface, thereby allowing continual integration of signaling and antigen recognition. One protein potentially involved in T cell receptor transport is sorting nexin 17 (SNX17). SNX proteins have been found to bind proteins involved in T cell activation, but specifically the role of SNX17 in receptor recycling and T cell activation is unknown. Using immunofluorescence, we find that SNX17 co-localizes with TCR and localizes to the immune synapse in T-APC conjugates. Significantly, knockdown of the SNX17 resulted in fewer T-APC conjugates, lower CD69, TCR, and LFA-1 surface expression, as well as lower overall TCR recycling compared to control T cells. Lastly, we identified the FERM-domain of SNX17 as being responsible in the binding and trafficking of TCR and LFA-1 to the cell surface. These data suggest that SNX17 plays a role in the maintenance of normal surface levels of activating receptors and integrins to permit optimum T cell activation at the immune synapse. PMID:25825439

  11. Effect Of Simulated Microgravity On Activated T Cell Gene Transcription

    NASA Technical Reports Server (NTRS)

    Morrow, Maureen A.

    2003-01-01

    Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.

  12. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells.

    PubMed

    Tamhane, Tripti; Lllukkumbura, Rukshala; Lu, Shiying; Maelandsmo, Gunhild M; Haugen, Mads H; Brix, Klaudia

    2016-03-01

    Prominent tasks of cysteine cathepsins involve endo-lysosomal proteolysis and turnover of extracellular matrix constituents or plasma membrane proteins for maintenance of intestinal homeostasis. Here we report on enhanced levels and altered subcellular localization of distinct cysteine cathepsins in adenocarcinoma tissue in comparison to adjacent normal colon. Immunofluorescence and immunoblotting investigations revealed the presence of cathepsin L in the nuclear compartment in addition to its expected endo-lysosomal localization in colorectal carcinoma cells. Cathepsin L was represented as the full-length protein in the nuclei of HCT116 cells from which stefin B, a potent cathepsin L inhibitor, was absent. Fluorescence activated cell sorting analyses with synchronized cell cultures revealed deceleration of cell cycle progression of HCT116 cells upon inhibition of cathepsin L activity, while expression of cathepsin L-enhanced green fluorescent protein chimeras accelerated S-phase entry. We conclude that the activity of cathepsin L is high in the nucleus of colorectal carcinoma cells because of lacking stefin B inhibitory activity. Furthermore, we hypothesize that nuclear cathepsin L accelerates cell cycle progression of HCT116 cells thereby supporting the notion that cysteine cathepsins may play significant roles in carcinogenesis due to deregulated trafficking.

  13. IFNγ Regulates Activated Vδ2+ T Cells through a Feedback Mechanism Mediated by Mesenchymal Stem Cells

    PubMed Central

    Fechter, Karoline; Dorronsoro, Akaitz; Jakobsson, Emma; Ferrin, Izaskun; Lang, Valérie; Sepulveda, Pilar; Pennington, Daniel J.; Trigueros, César

    2017-01-01

    γδ T cells play a role in a wide range of diseases such as autoimmunity and cancer. The majority of circulating human γδ T lymphocytes express a Vγ9Vδ2+ (Vδ2+) T cell receptor (TCR) and following activation release pro-inflammatory cytokines. In this study, we show that IFNγ, produced by Vδ2+ cells, activates mesenchymal stem cell (MSC)-mediated immunosupression, which in turn exerts a negative feedback mechanism on γδ T cell function ranging from cytokine production to proliferation. Importantly, this modulatory effect is limited to a short period of time (<24 hours) post-T cell activation, after which MSCs can no longer exert their immunoregulatory capacity. Using genetically modified MSCs with the IFNγ receptor 1 constitutively silenced, we demonstrate that IFNγ is essential to this process. Activated γδ T cells induce expression of several factors by MSCs that participate in the depletion of amino acids. In particular, we show that indolamine 2,3-dioxygenase (IDO), an enzyme involved in L-tryptophan degradation, is responsible for MSC-mediated immunosuppression of Vδ2+ T cells. Thus, our data demonstrate that γδ T cell responses can be immuno-modulated by different signals derived from MSC. PMID:28076364

  14. PPARγ negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation.

    PubMed

    Park, Hong-Jai; Kim, Do-Hyun; Choi, Jin-Young; Kim, Won-Ju; Kim, Ji Yun; Senejani, Alireza G; Hwang, Soo Seok; Kim, Lark Kyun; Tobiasova, Zuzana; Lee, Gap Ryol; Craft, Joseph; Bothwell, Alfred L M; Choi, Je-Min

    2014-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates lipid and glucose metabolism. Although studies of PPARγ ligands have demonstrated its regulatory functions in inflammation and adaptive immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARγKO mice to investigate PPARγ-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IκBα, Sirt1, and Foxo1, which are inhibitors of NF-κB, was observed in PPARγ-deficient T cells that were prone to produce all the signature cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARγKO mice spontaneously developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization more induced TFH cells and germinal centers in CD4-PPARγKO mice and the T cells showed increased of Bcl-6 and IL-21 expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARγ has a regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.

  15. Premalignant Oral Lesion Cells Elicit Increased Cytokine Production and Activation of T-cells

    PubMed Central

    JOHNSON, SARA D.; LEVINGSTON, CORINNE; YOUNG, M. RITA I.

    2016-01-01

    Background Head and neck squamous cell carcinomas (HNSCC) are known to evade the host immune response. How premalignant oral lesions modulate the immune response, however, has yet to be elucidated. Materials and Methods A mouse model of oral carcinogenesis was used to determine how mediators from premalignant oral lesion cells vs. HNSCC cells impact on immune cytokine production and activation. Results Media conditioned by premalignant lesion cells elicited an increased production of T cell-associated cytokines and proinflammatory mediators from cervical lymph node cells compared to media conditioned by HNSCC cells or media alone. In the presence of premalignant lesion cell-conditioned media, CD4+ T cell expression of the IL-2 receptor CD25 and CD8+ T cell expression of the activation marker CD69 was greater, compared to what was induced in HNSCC cell-conditioned media or media alone. Conclusion Premalignant lesion cells promote a proinflammatory environment and induce immune changes before HNSCC tumors are established. PMID:27354582

  16. Cytoplasmic myosin exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

    PubMed Central

    Cui, Xiaoxuan; Zhang, Lu; Magli, Amanda R.; Catera, Rosa; Yan, Xiao-Jie; Griffin, Daniel O.; Rothstein, Thomas L.; Barrientos, Jacqueline; Kolitz, Jonathan E.; Allen, Steven L.; Rai, Kanti R.; Chiorazzi, Nicholas; Chu, Charles C.

    2015-01-01

    The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease. PMID:26220042

  17. Stochasticity and spatial heterogeneity in T-cell activation.

    PubMed

    Burroughs, Nigel J; van der Merwe, P Anton

    2007-04-01

    Stochastic and spatial aspects are becoming increasingly recognized as an important factor in T-cell activation. Activation occurs in an intrinsically noisy environment, requiring only a handful of agonist peptide-major histocompatibility complex molecules, thus making consideration of signal to noise of prime importance in understanding sensitivity and specificity. Furthermore, it is widely established that surface-bound ligands are more effective at activation than soluble forms, while surface patternation has highlighted the role of spatial relocation in activation. Here we consider the results of a number of models of T-cell activation, from a realistic model of kinetic segregation-induced T-cell receptor (TCR) triggering through to simple queuing theory models. These studies highlight the constraints on cell activation by a surface receptor that recruits kinases. Our analysis shows that TCR triggering based on trapping of bound TCRs in regions of close proximity that exclude large ectodomain-containing molecules, such as the phosphatases CD45 and CD148, can effectively reproduce known signaling characteristics and is a viable 'signal transduction' mechanism distinct from oligomerization and conformation-based mechanisms. A queuing theory analysis shows the interrelation between sensitivity and specificity, emphasizing that these are properties of individual cell functions and need not be, nor are likely to be, uniform across different functions. In fact, threshold-based mechanisms of detection are shown to be poor at ligand discrimination because, although they can be highly specific, that specificity is limited to a small range of peptide densities. Time integration mechanisms however are able to control noise effectively, while kinetic proofreading mechanisms endow them with good specificity properties. Thus, threshold mechanisms are likely to be important for rapidly detecting minimal signaling requirements, thus achieving efficient scanning of antigen

  18. T-Cell Immunophenotyping Distinguishes Active From Latent Tuberculosis

    PubMed Central

    Pollock, Katrina M.; Whitworth, Hilary S.; Montamat-Sicotte, Damien J.; Grass, Lisa; Cooke, Graham S.; Kapembwa, Moses S.; Kon, Onn M.; Sampson, Robert D.; Taylor, Graham P.; Lalvani, Ajit

    2013-01-01

    Background. Changes in the phenotype and function of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4+ and CD8+ T-cell subsets in response to stage of infection may allow discrimination between active tuberculosis and latent tuberculosis infection. Methods. A prospective comparison of M. tuberculosis-specific cellular immunity in subjects with active tuberculosis and latent tuberculosis infection, with and without human immunodeficiency virus (HIV) coinfection. Polychromatic flow cytometry was used to measure CD4+ and CD8+ T-cell subset phenotype and secretion of interferon γ (IFN-γ), interleukin 2 (IL-2), and tumor necrosis factor α (TNF-α). Results. Frequencies of CD4+ and CD8+ cells secreting IFN-γ-only, TNF-α-only and dual IFN-γ/TNF-α were greater in active tuberculosis vs latent tuberculosis infection. All M. tuberculosis-specific CD4+ subsets, with the exception of IL-2-only cells, switched from central to effector memory phenotype in active tuberculosis vs latent tuberculosis infection, accompanied by a reduction in IL-7 receptor α (CD127) expression. The frequency of PPD-specific CD4+ TNF-α-only-secreting T cells with an effector phenotype accurately distinguished active tuberculosis from latent tuberculosis infection with an area under the curve of 0.99, substantially more discriminatory than measurement of function alone. Conclusions. Combined measurement of T-cell phenotype and function defines a highly discriminatory biomarker of tuberculosis disease activity. Unlocking the diagnostic and monitoring potential of this combined approach now requires validation in large-scale prospective studies. PMID:23966657

  19. Effect of millimeter waves on natural killer cell activation.

    PubMed

    Makar, V R; Logani, M K; Bhanushali, A; Kataoka, M; Ziskin, M C

    2005-01-01

    Millimeter wave therapy (MMWT) is being widely used for the treatment of many diseases in Russia and other East European countries. MMWT has been reported to reduce the toxic effects of chemotherapy on the immune system. The present study was undertaken to investigate whether millimeter waves (MMWs) can modulate the effect of cyclophosphamide (CPA), an anticancer drug, on natural killer (NK) cell activity. NK cells play an important role in the antitumor response. MMWs were produced with a Russian-made YAV-1 generator. The device produced modulated 42.2 +/- 0.2 GHz radiation through a 10 x 20 mm rectangular output horn. Mice, restrained in plastic tubes, were irradiated on the nasal area. Peak SAR at the skin surface and peak incident power density were measured as 622 +/- 100 W/kg and 31 +/- 5 mW/cm2, respectively. The maximum temperature elevation, measured at the end of 30 min, was 1 degrees C. The animals, restrained in plastic tubes, were irradiated on the nasal area. CPA injection (100 mg/kg) was given intraperitoneally on the second day of 3-days exposure to MMWs. All the irradiation procedures were performed in a blinded manner. NK cell activation and cytotoxicity were measured after 2, 5, and 7 days following CPA injection. Flow cytometry of NK cells showed that CPA treatment caused a marked enhancement in NK cell activation. The level of CD69 expression, which represents a functional triggering molecule on activated NK cells, was increased in the CPA group at all the time points tested as compared to untreated mice. However, the most enhancement in CD69 expression was observed on day 7. A significant increase in TNF-alpha level was also observed on day 7 following CPA administration. On the other hand, CPA caused a suppression of the cytolytic activity of NK cells. MMW irradiation of the CPA treated groups resulted in further enhancement of CD69 expression on NK cells, as well as in production of TNF-alpha. Furthermore, MMW irradiation restored CPA

  20. Investigation of MEK activity in COS7 cells entering mitosis.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Luo, Jun

    2014-12-01

    Although the mitogen-activated protein kinase (MAPK) pathway has been extensively investigated, numerous events remain unclear. In the present study, we examined mitogen-activated protein kinase kinase (MEK) expression from interphase to mitosis. Following nocodazole treatment, COS7 cells gradually became round as early as 4 h after treatment. Cyclin B1 expression gradually increased from 4 to 24 h in the presence of nocodazole. When cells were treated with nocodazole for 4 h, the level of epidermal growth factor (EGF)-mediated MEK phosphorylation did not significantly change between nocodazole-untreated and -treated (4 h) cells (P>0.05). However, EGF-mediated MEK phosphorylation was significantly inhibited upon treatment with nocodazole for 8 and 24 h compared to nocodazole-untreated cells (P<0.05). MEK phosphorylation levels were comparable between 1, 5, 10 and 50 ng/ml EGF treatments. Phorbol 12-myristic 13-acetate (PMA) did not activate MEK in mitotic cells. Following treatment of COS7 cells at the interphase with AG1478 or U0126, MEK phosphorylation was blocked. In addition, the investigation of the expression of proteins downstream of MEK demonstrated that EGF does not significantly affect the phosphorylation level of extracellular-signal-regulated kinase (ERK), ribosomal protein S6 kinase (RSK) and Elk in mitotic cells (P>0.05). The results showed that MEK expression is gradually inhibited from cell interphase to mitosis, and that MEK downstream signaling is affected by this inhibition, which probably reflects the requirements of cell physiology during mitosis.

  1. Paeonol Suppresses Neuroinflammatory Responses in LPS-Activated Microglia Cells.

    PubMed

    He, Li Xia; Tong, Xiaoyun; Zeng, Jing; Tu, Yuanqing; Wu, Saicun; Li, Manping; Deng, Huaming; Zhu, Miaomiao; Li, Xiucun; Nie, Hong; Yang, Li; Huang, Feng

    2016-12-01

    In this work, we assessed the anti-inflammatory effects of paeonol (PAE) in LPS-activated N9 microglia cells, as well as its underlying molecular mechanisms. PAE had no adverse effect on the viability of murine microglia N9 cell line within a broad range (0.12∼75 μM). When N9 cell line was activated by LPS, PAE (0.6, 3, 15 μM) significantly suppressed the release of proinflammatory products, such as nitric oxide (NO), interleukin-1β (IL-1β), and prostaglandin E2 (PGE2), demonstrated by the ELISA assay. Moreover, the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly reduced in PAE-treated N9 microglia cells. We also examined some proteins involved in immune signaling pathways and found that PAE treatment significantly decreased the expression of TLR4, MyD88, IRAK4, TNFR-associated factor 6 (TRAF6), p-IkB-α, and NF-kB p65, as well as the mitogen-activated protein kinase (MAPK) pathway molecules p-P38, p-JNK, and p-ERK, indicating that PAE might act on these signaling pathways to inhibit inflammatory responses. Overall, we found that PAE had anti-inflammatory effect on LPS-activated N9 microglia cells, possibly via inhibiting the TLR4 signaling pathway, and it could be a potential drug therapy for inflammation-associated neurodegenerative diseases.

  2. Possible Local Stem Cells Activation by Microcurrent Application in Experimentally Injured Soleus Muscle

    PubMed Central

    Zickri, Maha Baligh

    2014-01-01

    Background: Severe injuries in skeletal muscle result in muscle weakness that delays recovery and contribute to progressive decline in muscle function. Microcurrent therapy (MCT) is a novel treatment method used in soft tissue injury and tissue regeneration therapy. The regenerative capacity of skeletal muscle tissue resides in satellite cells, the quiescent adult stem cells. Aim: The present work aimed at investigating the relation between microcurrent therapy and local stem cells in regeneration of induced skeletal muscle injury in albino rat. Materials and methods: Twenty six adult male albino rats were divided into Sham group, Injury group (I): subjected to soleus muscle injury and subdivided into subgroups I1 & I2 sacrificed 2 and 4 weeks after injury respectively. Microcurrent group (M): subjected to muscle injury and micro-current was applied. The animals were subdivided into subgroups M1 and M2 sacrificed 2 and 4 weeks after injury. Histological, immunohistochemical and morphometric studies were performed. Results: Atypical fibers widely separated by infiltrating cells and strong acidophilic sarcoplasm with focal vacuolations were found in injury group. In M1 subgroup few atypical fibers were found. In M2 subgroup multiple typical fibers were detected. A significant decrease in the mean area of atypical fibers, a significant increase in the mean area% of alpha SMA+ve cells and that of CD34+ve cells were found in microcurrent group compared to injury group. Conclusion: A definite therapeutic effect of the microcurrent was found on induced skeletal muscle injury. This effect was proved to be related to satellite cell activation. PMID:25473445

  3. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity.

    PubMed

    El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A

    2016-01-01

    The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.

  4. Femtosecond laser fabricated microfluorescence-activated cell sorter for single cell recovery

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Nava, G.; Yang, T.; Minzioni, P.; Martinez Vazquez, R.; Bellini, N.; Ramponi, R.; Cristiani, I.; Osellame, R.

    2014-03-01

    Manipulation, sorting and recovering of specific live cells from samples containing less than a few thousand cells is becoming a major hurdle in rare cell exploration such as stem cell research or cell based diagnostics. Moreover the possibility of recovering single specific cells for culturing and further analysis would be of great impact in many biological fields ranging from regenerative medicine to cancer therapy. In recent years considerable effort has been devoted to the development of integrated and low-cost optofluidic devices able to handle single cells, which usually rely on microfluidic circuits that guarantee a controlled flow of the cells. Among the different microfabrication technologies, femtosecond laser micromachining (FLM) is ideally suited for this purpose as it provides the integration of both microfluidic and optical functions on the same glass chip leading to monolithic, robust and portable devices. Here a new optofluidic device is presented, which is capable of sorting and recovering of single cells, through optical forces, on the basis of their fluorescence and. Both fluorescence detection and single cell sorting functions are integrated in the microfluidic chip by FLM. The device, which is specifically designed to operate with a limited amount of cells but with a very high selectivity, is fabricated by a two-step process that includes femtosecond laser irradiation followed by chemical etching. The capability of the device to act as a micro fluorescence-activated cell sorter has been tested on polystyrene beads and on tumor cells and the results on the single live cell recovery are reported.

  5. T cell-mediated activation and regulation of anti-chromatin B cells.

    PubMed

    Pagán, Antonio J; Ramón, Hilda E; Hondowicz, Brian D; Erikson, Jan

    2006-07-01

    We have taken an immunoglobulin transgenic approach to study how self-reactive B cells are held in check in healthy mice and what parameters contribute to their activation in autoimmunity. Using this strategy, we have documented that a population of anti-chromatin B cells migrate to the periphery. In a healthy background, these cells have a reduced lifespan, appear developmentally arrested, and localize primarily to the T/B cell interface in the spleen. Importantly, they are capable of differentiating into antibody-forming cells when provided with T cell help. T(H)1 and T(H)2 cells induce IgG2a and IgG1 autoantibodies, respectively. In the context of the autoimmune-prone lpr/lpr or gld/gld mutations, these autoreactive B cells populate the B cell follicle, and this is dependent upon CD4 T cells. However, after 10 weeks of age serum autoantibodies are produced. We hypothesize that control of autoantibody production in young autoimmune-prone mice is regulated by the counterbalancing influence of regulatory T cells. We show that while autoantibody production is blocked in the context of regulatory T cells, early events characterizing a productive T cell-B cell interaction are not disturbed, with the notable exceptions of T(H) ICOS levels and IFN-gamma and IL-10 production.

  6. Calcium-dependent activation of mitochondrial metabolism in mammalian cells

    PubMed Central

    Gaspers, Lawrence D.; Thomas, Andrew P.

    2008-01-01

    Endogenous fluorophores provide a simple, but elegant means to investigate the relationship between agonist-evoked Ca2+ signals and the activation of mitochondrial metabolism. In this article, we discuss the methods and strategies to measure cellular pyridine nucleotide and flavoprotein fluorescence alone or in combination with Ca2+-sensitive indicators. These methods were developed using primary cultured hepatocytes and neurons, which contain relatively high levels of endogenous fluorophores and robust metabolic responses. Nevertheless, these methods are amendable to a wide variety of primary cell types and cell lines that maintain active mitochondrial metabolism. PMID:18854213

  7. Muscarinic activation of mitogen-activated protein kinase in PC12 cells.

    PubMed

    Berkeley, J L; Levey, A I

    2000-08-01

    Muscarinic acetylcholine receptors (mAChRs) activate many downstream signaling pathways, some of which can lead to mitogen-activated protein kinase (MAPK) phosphorylation and activation. MAPKs play roles in regulating cell growth, differentiation, and synaptic plasticity. Here, the activation of MAPK was examined in PC12 cells endogenously expressing mAChRs. Western blot analysis using a phosphospecific MAPK antibody revealed a dose-dependent and atropine-sensitive increase in MAPK phosphorylation in cells stimulated with carbachol (CCh). The maximal response occurred after 5 min and was rapidly reduced to baseline. To investigate the receptors responsible for CCh activation of MAPK in PC12 cells, the mAChR subtypes present were determined using RT-PCR and immunoprecipitation. RT-PCR was used to amplify fragments of the appropriate sizes for m1, m4, and m5, and the identities of the bands were confirmed with restriction digests. Immunoprecipitation using subtype-specific antibodies showed that approximately 95% of the expressed receptors were m4, whereas the remaining approximately 5% were m1 and m5. A highly specific m1 toxin completely blocked MAPK phosphorylation in response to CCh stimulation. The mAChR-induced MAPK activation was abolished by protein kinase C down-regulation and partially inhibited by pertussis toxin. Although m1 represents a small proportion of the total mAChR population, pharmacological evidence suggests that m1 is responsible for MAPK activation in PC12 cells.

  8. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells

    PubMed Central

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes—catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and ·O−2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells. PMID:26388737

  9. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells

    PubMed Central

    Li, Jing; Song, Jun; Weiss, Heidi L.; Weiss, Todd; Townsend, Courtney M.

    2016-01-01

    AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca2+ calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion. PMID:26528831

  10. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells.

    PubMed

    Li, Jing; Song, Jun; Weiss, Heidi L; Weiss, Todd; Townsend, Courtney M; Evers, B Mark

    2016-01-01

    AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca(2+) calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion.

  11. The influence of tetracyclines on T cell activation.

    PubMed Central

    Kloppenburg, M; Verweij, C L; Miltenburg, A M; Verhoeven, A J; Daha, M R; Dijkmans, B A; Breedveld, F C

    1995-01-01

    Minocycline has been shown to have an anti-inflammatory effect in patients with rheumatoid arthritis (RA). Since there is evidence that RA is a T cell-mediated disease, we investigated the effect of minocycline on human T cell clones derived from the synovium of an RA patient. The T cells, when activated via the T cell receptor (TCR)/CD3 complex, were suppressed functionally by minocycline, resulting in a dose-dependent inhibition of T cell proliferation and reduction in production of IL-2, interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha). Besides an inhibition of IL-2 production, minocycline exerted its effect on T cell proliferation by induction of a decreased IL-2 responsiveness. We showed that the chelating capacity of minocycline plays a crucial role in the inhibitory effect on T cell function, since the inhibitory effect on T cell proliferation could be annulled by addition of exogenous Ca2+. However, minocycline did not markedly influence the typical TCR/CD3-induced intracellular Ca2+ mobilization. Taken together, the results clearly indicate that minocycline has immunomodulating effects on human T cells. PMID:8536384

  12. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  13. Calcineurin functions in Ca(2+)-activated cell death in mammalian cells

    PubMed Central

    1995-01-01

    Calcineurin is a calcium-dependent protein phosphatase that functions in T cell activation. We present evidence that calcineurin functions more generally in calcium-triggered apoptosis in mammalian cells deprived of growth factors. Specifically, expression of epitope-tagged calcineurin A induces rapid cell death upon calcium signaling in the absence of growth factors. We show that this apoptosis does not require new protein synthesis and therefore calcineurin must operate through existing substrates. Co-expression of the Bcl-2 protooncogene efficiently blocks calcineurin-induced cell death. Significantly, we demonstrate that a calcium-independent calcineurin mutant induces apoptosis in the absence of calcium, and that this apoptotic response is a direct consequence of calcineurin's phosphatase activity. These data suggest that calcineurin plays an important role in mediating the upstream events in calcium-activated cell death. PMID:7593193

  14. Pattern matching based active optical sorting of colloids/cells

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  15. Boundaries in gravitational and magnetic activation of cells for sorting.

    PubMed

    Czerlinski, G H

    1991-06-01

    Standard deviations in the distribution of radii of cells and particles are considered to arrive at realistic limits in the use of gravitational and magnetic activation of cells for sorting. Using a specific fractionation design, it is shown that the radius of particles (or cells) may be fractionated down to a precision of +/- 0.76%. Although higher precisions could be obtained with other designs, the number of particles available per fraction is inversely proportional to the precision desired. Thus, one would prefer to keep the precision as moderate as permissible by the experiments.

  16. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  17. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  18. Divided attention in computer game play: analysis utilizing unobtrusive health monitoring.

    PubMed

    McKanna, James A; Jimison, Holly; Pavel, Misha

    2009-01-01

    Divided attention is a vital cognitive ability used in important daily activities (e.g., driving), which tends to deteriorate with age. As with Alzheimer's and other neural degenerative conditions, treatment for divided attention problems is likely to be more effective the earlier it is detected. Thus, it is important that a method be found to detect changes in divided attention early on in the process, for both safety and health care reasons. We present here a new method for detecting divided attention unobtrusively, using performance on a computer game designed to force players to attend to different dimensions simultaneously in order to succeed. Should this model prove to predict scores on a standard test for divided attention, it could help to detect cognitive decline earlier in our increasingly computer-involved aging population, providing treatment efficacy benefits to those who will experience cognitive decline.

  19. Use of a human plaque-forming cell assay to study peripheral blood bursa-equivalent cell activation and excessive suppressor cell activity in humoral immunodeficiency.

    PubMed Central

    Herrod, H G; Buckley, R H

    1979-01-01

    A plaque assay that detects human mononuclear blood cells producing immunoglobulin (Ig)M antibody to sheep erythrocytes was investigated for its usefulness in studying B-cell activation and regulation in 24 patients with humoral immunodeficiency. Cells from 3 of 15 patients with common variable agammaglobulinemia produced some plaques (range 40--160/10(6) cells; normal range 80--1240/10(6)), but those from the other 12, from all 7 with x-linked agammaglobulinemia and from the 2 with x-linked immunodeficiency with hyper-IgM failed to produce any detectable plaques. In co-cultures of patient and normal cells a very good correlation was seen between results of the plaque assay and an IgM biosynthesis assay in detecting excessive suppressor cell activity. Cells from 7 of 15 common variable agammaglobulinemics, from 3 of 7 x-linked agammaglobulinemics, and from both patients with hyper-IgM caused significant suppression of IgM biosynthesis and(or) plaque formation by normal cells. The observations in the last two groups and discordance for excess suppressor activity in identical twins with common variable agammaglobulinemia suggest that the activity develops secondarily to whatever their primary defects may be. Culturing non-T cells from common variable agammaglobulinemics exhibiting excessive suppressor cell activity with normal T cells resulted in plaque formation in four of five patients so studied; in all five the suppressor activity was found in the T-cell population. The availability of a plaque assay for the study of blood cells from immunodeficient patients provides a new probe to examine the cellular nature of such defects. PMID:376549

  20. Functional Anatomy of T Cell Activation and Synapse Formation

    PubMed Central

    Fooksman, David R.; Vardhana, Santosh; Vasiliver-Shamis, Gaia; Liese, Jan; Blair, David; Waite, Janelle; Sacristán, Catarina; Victora, Gabriel; Zanin-Zhorov, Alexandra; Dustin, Michael L.

    2010-01-01

    T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward. PMID:19968559

  1. Expression of activated Ras during Dictyostelium development alters cell localization and changes cell fate.

    PubMed

    Jaffer, Z M; Khosla, M; Spiegelman, G B; Weeks, G

    2001-03-01

    There is now a body of evidence to indicate that Ras proteins play important roles in development. Dictyostelium expresses several ras genes and each appears to perform a distinct function. Previous data had indicated that the overexpression of an activated form of the major developmentally regulated gene, rasD, caused a major aberration in morphogenesis and cell type determination. We now show that the developmental expression of an activated rasG gene under the control of the rasD promoter causes a similar defect. Our results indicate that the expression of activated rasG in prespore cells results in their transdifferentiation into prestalk cells, whereas activated rasG expression in prestalk causes gross mislocalization of the prestalk cell populations.

  2. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  3. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells.

    PubMed

    Seo, Yo-Seob; Yim, Min-Ji; Kim, Bok-Hee; Kang, Kyung-Rok; Lee, Sook-Young; Oh, Ji-Su; You, Jae-Seek; Kim, Su-Gwan; Yu, Sang-Joun; Lee, Gyeong-Je; Kim, Do Kyung; Kim, Chun Sung; Kim, Jin-Soo; Kim, Jae-Sung

    2015-12-01

    In the present study, we investigated berberine‑induced apoptosis and the signaling pathways underlying its activity in FaDu head and neck squamous cell carcinoma cells. Berberine did not affect the viability of primary human normal oral keratinocytes. In contrast, the cytotoxicity of berberine was significantly increased in FaDu cells stimulated with berberine for 24 h. Furthermore, berberine increased nuclear condensation and apoptosis rates in FaDu cells than those in untreated control cells. Berberine also induced the upregulation of apoptotic ligands, such as FasL and TNF-related apoptosis-inducing ligand, and triggered the activation of caspase-8, -7 and -3, and poly(ADP ribose) polymerase, characteristic of death receptor-dependent extrinsic apoptosis. Moreover, berberine activated the mitochondria‑dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bax, Bad, Apaf-1, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. In addition, berberine increased the expression of the tumor suppressor p53 in FaDu cells. The pan-caspase inhibitor Z-VAD-fmk suppressed the activation of caspase-3 and prevented cytotoxicity in FaDu cells treated with berberine. Interestingly, berberine suppressed cell migration through downregulation of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38, components of the mitogen-activated protein kinase pathway that are associated with the expression of MMP and VEGF, was suppressed in FaDu cells treated with berberine for 24 h. Therefore, these data suggested that berberine exerted anticancer effects in FaDu cells through induction of apoptosis and suppression of migration. Berberine may have potential applications as a chemotherapeutic agent for the management of head and neck squamous carcinoma.

  4. Detection of programmed cell death in cells exposed to genotoxic agents using a caspase activation assay.

    PubMed

    Gupta, Madhu; Santra, Madhumita; Koty, Patrick P

    2014-01-01

    Many toxins that individuals are exposed to cause DNA damage. Cells that have sustained DNA damage may attempt to repair the damage prior to replication. However, if a cell has sustained serious damage it cannot repair, it will commit suicide through a genetically regulated programmed cell death (PCD) pathway. Crucial to the ultimate execution of PCD is a family of cysteine proteases called caspases. Activation of these enzymes occurs late enough in the PCD pathway that a cell can no longer avoid cell death, but still earlier than PCD-associated morphological changes or DNA fragmentation. This protocol details a method for using fluorochrome-conjugated caspase inhibitors for the detection of activated caspases in intact cells. The analysis and documentation is performed using fluorescence microscopy.

  5. Detection of programmed cell death in cells exposed to genotoxic agents using a caspase activation assay.

    PubMed

    Gehring, Michael E; Koty, Patrick P

    2005-01-01

    Many environmental toxins cause DNA damage. Cells that have sustained significant DNA damage must attempt to repair the damage prior to replication, in which aberrant base incorporation can result in an irreversible mutation. If a cell cannot repair the damage, however, it may commit suicide through a genetically regulated programmed cell death (PCD) pathway. Crucial to the ultimate execution of PCD is a family of cysteine proteases called caspases. Activation of these enzymes occurs late in the PCD pathway, when a cell can no longer avoid cell death, but earlier than other PCD markers, such as morphological changes or DNA fragmentation. This protocol details a method for using fluorochrome-conjugated caspase inhibitors for the detection of activated caspases in intact cells using fluorescent microscopy.

  6. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.

  7. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.

    PubMed

    Schmid, Lothar; Weitz, David A; Franke, Thomas

    2014-10-07

    We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.

  8. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting.

    PubMed

    Liu, Ling; Cheung, Tom H; Charville, Gregory W; Rando, Thomas A

    2015-10-01

    The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology, and it has been a major focus of research across tissues in different organisms. Muscle stem cells (MuSCs) are now among the most intensely studied stem cell populations in mammalian systems, and the prospective isolation of these cells has allowed cellular and molecular characterizations that were not dreamed of a decade ago. In this protocol, we describe how to isolate MuSCs from limb muscles of adult mice by fluorescence-activated cell sorting (FACS). We provide a detailed description of the physical and enzymatic dissociation of mononucleated cells from limb muscles, a procedure that is essential in order to maximize cell yield. We also describe a FACS-based method that is used subsequently to obtain highly pure populations of either quiescent or activated MuSCs (VCAM(+)CD31(-)CD45(-)Sca1(-)). The isolation process takes ∼5-6 h to complete. The protocol also allows for the isolation of endothelial cells, hematopoietic cells and mesenchymal stem cells from muscle tissue.

  9. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma.

    PubMed

    Roy, Ishan; Boyle, Kathleen A; Vonderhaar, Emily P; Zimmerman, Noah P; Gorse, Egal; Mackinnon, A Craig; Hwang, Rosa F; Franco-Barraza, Janusz; Cukierman, Edna; Tsai, Susan; Evans, Douglas B; Dwinell, Michael B

    2017-03-01

    The mechanisms by which the extreme desmoplasia observed in pancreatic tumors develops remain unknown and its role in pancreatic cancer progression is unsettled. Chemokines have a key role in the recruitment of a wide variety of cell types in health and disease. Transcript and protein profile analyses of human and murine cell lines and human tissue specimens revealed a consistent elevation in the receptors CCR10 and CXCR6, as well as their respective ligands CCL28 and CXCL16. Elevated ligand expression was restricted to tumor cells, whereas receptors were in both epithelial and stromal cells. Consistent with its regulation by inflammatory cytokines, CCL28 and CCR10, but not CXCL16 or CXCR6, were upregulated in human pancreatitis tissues. Cytokine stimulation of pancreatic cancer cells increased CCL28 secretion in epithelial tumor cells but not an immortalized activated human pancreatic stellate cell line (HPSC). Stellate cells exhibited dose- and receptor-dependent chemotaxis in response to CCL28. This functional response was not linked to changes in activation status as CCL28 had little impact on alpha smooth muscle actin levels or extracellular matrix deposition or alignment. Co-culture assays revealed CCL28-dependent chemotaxis of HPSC toward cancer but not normal pancreatic epithelial cells, consistent with stromal cells being a functional target for the epithelial-derived chemokine. These data together implicate the chemokine CCL28 in the inflammation-mediated recruitment of cancer-associated stellate cells into the pancreatic cancer parenchyma.

  10. Regulation of B cell fate by chronic activity of the IgE B cell receptor

    PubMed Central

    Yang, Zhiyong; Robinson, Marcus J; Chen, Xiangjun; Smith, Geoffrey A; Taunton, Jack; Liu, Wanli; Allen, Christopher D C

    2016-01-01

    IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses. DOI: http://dx.doi.org/10.7554/eLife.21238.001 PMID:27935477

  11. Regulation of B cell fate by chronic activity of the IgE B cell receptor.

    PubMed

    Yang, Zhiyong; Robinson, Marcus J; Chen, Xiangjun; Smith, Geoffrey A; Taunton, Jack; Liu, Wanli; Allen, Christopher D C

    2016-12-09

    IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE(+) B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE(+) germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE(+) GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses.

  12. Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade.

    PubMed

    Eissler, Nina; Mao, Yumeng; Brodin, David; Reuterswärd, Philippa; Andersson Svahn, Helene; Johnsen, John Inge; Kiessling, Rolf; Kogner, Per

    2016-01-01

    Removal of immuno-suppression has been reported to enhance antitumor immunity primed by checkpoint inhibitors. Although PD-1 blockade failed to control tumor growth in a transgenic murine neuroblastoma model, concurrent inhibition of colony stimulating factor 1 receptor (CSF-1R) by BLZ945 reprogrammed suppressive myeloid cells and significantly enhanced therapeutic effects. Microarray analysis of tumor tissues identified a significant increase of T-cell infiltration guided by myeloid cell-derived chemokines CXCL9, 10, and 11. Blocking the responsible chemokine receptor CXCR3 hampered T-cell infiltration and reduced antitumor efficacy of the combination therapy. Multivariate analysis of 59 immune-cell parameters in tumors and spleens detected the correlation between PD-L1-expressing myeloid cells and tumor burden. In vitro, anti-PD-1 antibody Nivolumab in combination with BLZ945 increased the activation of primary human T and NK cells. Importantly, we revealed a previously uncharacterized pathway, in which T cells secreted M-CSF upon PD-1 blockade, leading to enhanced suppressive capacity of monocytes by upregulation of PD-L1 and purinergic enzymes. In multiple datasets of neuroblastoma patients, gene expression of CD73 correlated strongly with myeloid cell markers CD163 and CSF-1R in neuroblastoma tumors, and associated with worse survival in high-risk patients. Altogether, our data reveal the dual role of activated T cells on myeloid cell functions and provide a rationale for the combination therapy of anti-PD-1 antibody with CSF-1R inhibitor.

  13. XIAP reverses various functional activities of FRNK in endothelial cells

    SciTech Connect

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. Black-Right-Pointing-Pointer XIAP binds the FRNK domain of FAK. Black-Right-Pointing-Pointer XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. Black-Right-Pointing-Pointer XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  14. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    PubMed Central

    2013-01-01

    Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification

  15. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting

    PubMed Central

    Atkin-Smith, Georgia K.; Paone, Stephanie; Zanker, Damien J.; Duan, Mubing; Phan, Than K.; Chen, Weisan; Hulett, Mark D.; Poon, Ivan K. H.

    2017-01-01

    Apoptotic bodies (ApoBDs) are membrane-bound extracellular vesicles that can mediate intercellular communication in physiological and pathological settings. By combining recently developed analytical strategies with fluorescence-activated cell sorting (FACS), we have developed a method that enables the isolation of ApoBDs from cultured cells to 99% purity. In addition, this approach also enables the identification and isolation of cell type-specific ApoBDs from tissue, bodily fluid and blood-derived samples. PMID:28057919

  16. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation

    PubMed Central

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O.; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical “molecular switch” to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  17. DOCK2 regulates cell proliferation through Rac and ERK activation in B cell lymphoma

    SciTech Connect

    Wang, Lei; Nishihara, Hiroshi; Kimura, Taichi; Kato, Yasutaka; Tanino, Mishie; Nishio, Mitsufumi; Obara, Masato; Endo, Tomoyuki; Koike, Takao; Tanaka, Shinya

    2010-04-23

    DOCK2; a member of the CDM protein family, regulates cell motility and cytokine production through the activation of Rac in mammalian hematopoietic cells and plays a pivotal role in the modulation of the immune system. Here we demonstrated the alternative function of DOCK2 in hematopoietic tumor cells, especially in terms of its association with the tumor progression. Immunostaining for DOCK2 in 20 cases of human B cell lymphoma tissue specimens including diffuse large B cell lymphoma and follicular lymphoma revealed the prominent expression of DOCK2 in all of the